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Abstract

In this paper we consider a suitable scale adjustment of the estimating func-
tion which defines a class of robust M-estimators for generalized linear models.
This leads to a robust veision of the quasi-profile loglikelihood which allows the
derivation of robust likelihood ratio-type tests for inference and model selection,
with a standard asymptotic behaviour. An application to logistic regression is

discussed.

Keywords: Likelihood ratio test, Logistic regression, M-estimator, Quasi-

likelihood, Robustness.

1 Introduction

Generalized linear models (GLM) (McCullagh and Nelder, 1989) are a technique
for modeling the relationship between p + 1 predictors &; = (1, %15, .- o Zpi) T
and a function of the means p; of continuous or discrete response variables y;,

for : =1,...,n. More precisely, a GLM assumes that

m = g() = B i,




where 8 = (Bo, B1,---,5p)7 is a vector of unknown parameters belonging to
RP*1 and g(-) is the link function. Usually, the response variables are supposed
to come from a distribution belonging to the exponential family.

It is well known that the maximum likelihood estimator for A is not robust
as well as the usual quasi-likelihood estimator (see e.g. McCullagh and Nelder,
1989, Heyde, 1997), both defined as solutions of estimating equations of the
form

z(ya i) w=0, )

i—1 ﬂ‘a)

where p; = g~ 1B x;), p; = Op;/0BT and V(w;) = Var(y) is the variance
function, which is assumed to be known in the quasi-likelihood approach. In
fact, these estimators are M-estimators with unbounded influence function (see
e.g. Hampel et al., 1986). Therefore, large deviations of the response from its
mean or ouflying points in the explanatory variables may have a large influence
on the estimators. In view of this, estimators with better robustness properties
are needed and several robust alternatives have been proposed in the literature
(see e.g. Pregibon, 1982, Stefanski et al, 1986, Kiinsch et al,, 1989, Carroll
and Pederson, 1993 and Preisser and Qagish, 1999). In particular, Preisser and
Qaqish (1999) propose a class of robust estimators in the more general setup of
generalized estimating equations.

Starting from the class of robust estimators discussed by Pretsser and Qaqish
(1999), Cantoni and Ronchetti (2000) propose robust tools for inference for the
whole class of GLM, based on a natural generalization of the quasi-likelihood
approach. In particular, Cantoni and Ronchetti define robust deviances and
present felated tests for model selection playing the same role as the classical
tests based on quasi-deviances. However, unlike their classical counterpart,
these tests do not have a standard asymptotic distribution. This is because
the estimating function which defines the class of M-estimators considered by
Cantoni and Ronchetti does not satisfy a condition equivalent to the second
Bartlett identity.

The aim of this paper is to discuss a suitable scale adjustment of the estimat-




ing function defining the class of robust M-estimators considered by Cantoni and
Ronchetti (2000). Such an adjustment allows the derivation of a robust quasi-
profile loglikelihood function which may be used as an ordinary profile loglike-
lihood to make inference about a scalar parameter of interest, in the presence
of nuisance parameters. In particular, the related likelihood ratio-type tests for
inference and model selection present a standard asymptotic behaviour, as in

the classical framework.

2 M-estimators and robust inference

Cantoni and Ronchetti {2000} consider a class of Mallows type robust estimators
for GLM, where the influence of deviations on the response and on the predictors
are bounded separately. A Mallows quasi-likelihood estimator for 3 is defined

as a solution ﬁ of the estimating equation

=1

¥(B) =) Py,m) =0, | (2)

with |
Py, ps) = f/’k(fi)w(mi)mﬂi
where ¢ (u) = min{k, max{u,—k}} is the Huber t-function, for fixed k > 0,
and r; = (¥ — )/ \/m are the Pearson residuals. The correction term
a(B) = (1/n) 30, E[g(ri)]w(z:)pe;//V (i) ensures the Fisher consistency
of the estimator 3 and can be computed explicitly for the binomial, the Poisson

- a(ﬁ) *

and the logistic models; here the expectation is taken with respect to the condi-
tional distribution of ylx. The estimating equation (2) for GLM has a structure
suggested by the classical quasi-likelihood equation (1) and is a special case of
an estimating equation given in Preisser and Qaqish (1999) in a more general
setup.

The influence function for the M-estimator defined by (2) is M ~14(y, u),
where M = XTBX/n, with B = diag(by,...,bn), |

bs = B V(1) (5 log a1 fx% (o0 )




and h(-,-) is the conditional density or probability of y;|x;. The shape of the
function (-,-) ensures robustness by putting a bound on the influence func-
tion. In particular, the function (-} controls deviations in the y-space and
leverage points are down-weighted by the weights w(z;). A simple choice for
w(zx;) is /1 — hy, where h; is the i-th diagonal element of H = X (XTX)1XT
and X denotes the design matrix. This choice is suggested by the classical lin-
ear models theory (see Staudte and Sheather, 1990, Sec. 7). More sophisticated
choices for w(-} are also available (see Cantoni and Ronchetti, 2000, for a discus-
sion and some references). Subject to some regularity conditions, B admits an
asymptotic normal distribution with mean 8 and variance M ~1QM ', where
Q = XTAX/n — a(B)a(B)T, with A = diag(a;,...,a,) and
w?(x;) {0\’
o= me1es (o)
Equation (2) corresponds to the minimization with respect to 3 of the quan-

tity

8
In(B) = [ T(b)db

which can be seen as the robust counterpart of the classical quasi-loglikelihood
function. Cantoni and Ronchetti (2000) use Iy(8) to define robust quasi-
deviances and obtain robust tests for model selection. Such iests are gener-
alisations of the quasi-deviance tests for GLM. In particular, in order to test
Hy : B4y = 0 against Hy : G,) # 0, where () is a set of ¢ < p components of
A, an-a,dequate robust statistic based on I3;(3) is

An =20t (B) — L (B)) ,

where 3 is the estimate of 8 under Hy. In view of the structure of the function
¥(-,-), Ia () takes the form

™ yi—ty) yi—t w(z;)
i) =3 {“”ﬂ(\/—vm) E[”’”‘ (\/_V@)J} v "

where p; = g—l(,@Tm,-). Consequently, the computation of the statistic A,

involves n one-dimensional integrations, which can be performed numerically.
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Observe that Ay = 2[IMP(,@(1)) — Iy p(0)), where Iprp(-) is the quasi-profile
loglikelihoed for By;. '

A difficulty in using tests based on I(#) is that, unlike their classical coun-
terpart, they do not have a standard asymptotic x? distribution. Indeed, Ay
is asymptotically distributed as a linear combination of g independent X3 vari-
ables, whose coefficients are the eigenvalues of a suitable matrix. In general,
these coefficients depend on the unknown parameter [3; see Proposition 1 in
Cantoni and Ronchetti (2000) and Heritier and Ronchetti (1994).

The discrepancy between the asymptotic behaviour of quasi-likelihood ratio-
type tests in the classical and in the robust framework occurs because I5s(3)
does not verify the relation
9
ap”
that is known as the second Bartlett identity when ¥(8) is the usual score

Var (‘I’(ﬂ)) =-E ( ‘I'(ﬁ)) ,

function. However, following Adimari and Ventura (2000), for inference on a
scalar component of 8, it is possible to modify the estimating function in (2)
yielding to quasi-profile loglikelihood functiqns with the standard asymptotic
behaviour.

Let 8;,a sca.lé.r component of 3, be the parameter of interest. Let ¥a.(8i,A)
be the estimating function corresponding to 3;. Here A indicates the vector 8
without its j-th element. The adjusted quasi-profile loglikelihood function for

B; (Adimari and Ventura, 2000) can be written as

8; R .
lgp(B;) = / w(b, As)¥g; (b, Ap)db , (3)
with
Mg, 5; — 5:1;,- M(_—lj)gﬁs
T o= Y= T o
Qas.8; — 265, M 5Cp, + €, M5 Q- 5y M55,

where Mg, . is the j-th diagonal element of the matrix M, £5 is the j-th col-

m(ﬁj? A)=

umn of M without its j-th element, M_;, denotes M without the j-th column
and the j-th row, {4 is the j-th column of § without its j-th element and i,g,.
is the estimate of A for §; fixed. Function (3) is obtained by a scale adjustment




which corrects the quasi-profile score ¥, (f;, Ag,) to have information bias at
the proper order O(1) (see Adimari and Ventura, 2000, and McCullagh and
Tibshirani, 1990). As a consequence, igp(83;) has similar properties to the ordi-
nary profile loglikelihood. In particular, for setting quasi-likelihood confidence
regions or for testing hypotheses, the adjusted quasi-likelihood ratio statistic

. B; . N
Wor(3) =2 (lorBs) ~ lar(3)) =2 [ w6, w5, 0. 300 (@

may be used. Unlike Ay, under Hp : §; = 0 and usual regularity conditions,
Wqp(0) is approximately x? distributed (see Adimari and Ventura, 2000) and,
for instance, asymptotic confidence regions with nominal coverage 1 — a for
B; can be constructed as {8; : Wop(8;) < xi,1- 4}, where x3,,_, is the (1 —
a)—quantile of the x? distribution. Alternatively, the quasi-directed likelihood
rop(B;) = sgn(f; — Bi)\/Wop(B;), which is approximately standard normal,
may be used. Observe that statistic (4) suffices to check the significance of one
variable in a selection model procedure. _

It must be noted that the adjustment of Wy, (8;, Ag,) by the factor w(-, )
leaves the M-estimator for 3; unchanged. Consequently, the robustness proper-

ties are maintained. According to the results obtained in Cantoni and Ronchetti

(2000) and Heritier and Ronchetti (1994), such robustness properties will carry 7

over to quasi-likelihood based inferential procedures.

3 Application: Logistic Regression

In this section we consider the U.S. Food Stamp data previously analyzed by
Stefanski et al. (1986), Kiinsch et al. (1989), Carroll and Pederson (1993), in the
framework of robust estimation, and Heritier and Ronchetti (1994). For these
data, the response (y) indicates partecipation in the Federal Food Stamp pro-
gram and the covariates employed for study include two dichotomous variables,
i.e. tenancy (z,) and supplemental income (x3), and a logarithmic tranformation
of monthly income [log(monthly income + 1)] (z3). The data consists on obser-

vations on 150 individuals. Previous analyses show that data contain at least
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a leverage point (case 5); some authors also suggest that case 66 is somewhat
outlying.
Consider the logit model

log (1 ,u.,-,” ) = fo + Bix1i + Paz2i + PaTai .
— i

We have p; = pr(y; = 1| a;) = ef” = /(1 + ¢#" =), with 8 = (B, B1, Ba, Ba)T
and @; = (LT, T2i,T3:) T, V(i) = ps(1 — ) and g; = pa(1 — pg)x;. The
Mallows quasi-likelihood estimator is defined by the estimating function

P(B) = Z": ["Pk (M—) w(w) v/ il — ) = — ﬂ(ﬁ)] ; (5)

sl — )

i=1

where

a(f) = %Z": [‘!Pk (V e A" )#z’ — 1 ( efTe ) (1 - P'i)] w(E:) v/ (1 — ) ;.
pa

The diagonal elements of the matrices 4 and B are given by

a; = [9} (V™o ) i — o (V=) (1 - )] wahus(1 — )

and

b= s (Vi) + o (Ver™) | waalu(t - w2

The parameter of interest is the fourth component 83, which corresponds to
monthly income. In fact, previous analyses show that this coefficient changes
considerably its numerical value and significance level if case 5 is deleted. For
this data set, the Mallows estimator defined by (5) with k = 1.55 and w(z;) =
v/1— h; produces very similar results to the conditional estimators proposed in
Kiinsch et el. (1989) and appears to be sufficiently robust. In particular, for the
component 33 the Mallows estimator ,53 yields the fit -1.18 with estimated stan-
dard error 0.50. Conversely, the classical logistic maximuin likelihood estimator
yields the fit -0.33 with estimated standard error 0.27.

To illustrate the use of the adjusted quasi-profile loglikelihood (3), we test
the hypothesis

Hy:B3=0 (6)




against the alternative Hy : g3 # 0. By the results given above, the Wald-type
test based on the Mallows estimator ﬁa with £ = 1.55 and w(z;) = /1= R,
rejects the hypothesis (6) at the usual 5% significance level. In contrast, the
related test based on the adjusted quasi-likelihood ratio statistic (4) performs
similarly to the logistic Wald test and gives a p-value of 0.135. The discrepancy
between these results can be explained by looking at Figure 1, which gives
the quasi-profile score g, (83, As,) and the adjusted quasi-profile score (dashed
line) w(Ba, Ag,)Wa, (B2, Ag,) for B, when k = 1.55 and:

(a) w(z:) = v1—hy;

(b) w(z;) = +/T— h; and case 5 is removed;

(c) w(z:) = (1 - 1)

In fact, Figure 1 shows the inﬂuénce of observation 5 on the estimate f5 and
on the shape of the adjusted quasi-profile score. It may be noted that, when
w(x;) = +/T— h;, the shape of the adjusted quasi-profile score is still greatly
influenced by the observation 5, unlike the numerical value of the estimate Bs.
Since the adjusted quasi-likelihood ratio statistic is twice the area under the
dashed line between 35 and 0, it is clear why the likelihood ratio-type test fails
to reject the null hypothesis when w(x;) = /1 — &;. This result suggests that
more care is necessary in choosing the weight function and confirms some limits
of automatic methods for measuring leverage. In particular, in this case it seems
that the function w(z;) = /T — k; does not down-weight observation 5 enough.
For comparison, the following table shows the weights given to cases 5 and 66
by three different functions, namely +/1~h;, (1 —h;)? and 1 — /A;.

case \/1 - h,‘ (]. - h,;)z 1- ‘\/h_,
5 0.828 0.471 0.440
66 0.992 0.969 0.875

If we use the adjusted quasi-likelihood ratio statistic based on (5) with &£ = 1.55
and w(z;) = (1 — h;)? we obtain a p-value of 0.022, which leads to the rejection
of the hypothesis (6).

The adjusted quasi-likelihood approach can also be used to construct confi-
dence intervals. As an example, Figure 2 gives the plot of the adjusted quasi-
profile loglikelihood ratio function Waop(B3) computed from (5) with k& = 1.55

8




and w(z;) = +/1 — h;. The horizontal line shown is at the asymptotically justi-
fied 95% level. Confidence intervals obtained by this method do not present the
predetermined symmetry which appears when one uses the classical technique
based on the asymptotic distribution of f3. A partial simulation experiment
(based on'5000 Monte Carlo trials) has also been made to evaluate coverage
probabilities of the nominal 1-a confidence intervals for 83 obtained by the ad-
justed quasi-profile loglikelthood. For this experiment, responses y; have been
generated according to the model pr(y; = 1 | ;) = eB-® /(1 + eP= =), where
B. = (6,-1.8,0.7,—1.2)7. For nominal 0.90, 0.95 and 0.99 coverage proba-
bilities we obtained empirical coverages probabilities 0.898, 0.953 and 0.988,
respectively.

4 Conclusion

The adjusted quasi-profile loglikelihood obtained from an estimating function
defining Mallows type robust estimators for GLM (Cantoni and Ronchetti, 2000)
is appealing. It represents a robust version ~of the profile loglikelihood and
allows robust inference and model selection in a standard way. In particular, it
allows the derivation of robust likelihood ratio-type tests and confidence regions
by using a standard x? approximation. In addition, the application exainple
discussed in Section 3 shows that this tool is also useful to evaluate the resistance

properties of the underlying estimating function.
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