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relevant aspect in multiple competition is represented by the choice to model
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article is devoted to unbalanced ones. A third relevant aspect in simultane-
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market entries. In the latter case, the proposed model is further extended in
order to detect whether the beginning of competition alters the first entrant’s
diffusion parameters. The resulting differential system has a closed-form solu-
tion that allows an empirical validation through sales data of the assumptions
underlying the model structure. An application to pharmaceutical drugs com-
petition is discussed. Finally, we approach here the topic of agent heterogeneity
by introducing a multivariate Cellular Automata representation which allows a
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Abstract: Diffusion of innovations within simultaneous processes examined as univariate
models of separate trajectories cannot take into account and properly explain systematic
perturbations due to competition-substitution effects. This inability is quite evident in spe-
cial product categories such as pharmaceutical drugs based upon equivalent or similar active
compounds. A second relevant aspect in multiple competition is represented by the choice to
model the word-of-mouth effect either at the category level (balanced model) or at the brand
level, separating within-brand effect from cross-brand one (unbalanced model). The choice
has to be grounded on the features of the products to be described. In this paper, balanced
models will be studied, while the companion article is devoted to unbalanced ones. A third
relevant aspect in simultaneous competing diffusions is the separation between synchronic
and diachronic market entries. In the latter case, the proposed model is further extended
in order to detect whether the beginning of competition alters the first entrant’s diffusion
parameters. The resulting differential system has a closed-form solution that allows an em-
pirical validation through sales data of the assumptions underlying the model structure. An
application to pharmaceutical drugs competition is discussed. Finally, we approach here the
topic of agent heterogeneity by introducing a multivariate Cellular Automata representation
which allows a feasible description of Complex Systems of this type with a direct specifica-
tion of substitution effect between competing products.

Keywords: multivariate cellular automata, multivariate diffusion process, generalized
Bass model, competition, intervention

1 Introduction

The diffusion of innovations in a social system has been examined in the past four
decades from many points of view. Sociologists (in particular, Rogers, 2003), math-
ematicians, physicists, quantitative marketing experts, statisticians, systems engi-
neers, biologists, evolutionary economists, epidemiologists and experts in ecological
systems have given deep contributions to theory and have realized widespread ap-
plications in different fields.

The main effort expressed in the corresponding literature is usually concentrated
on univariate versions of such processes with a limited attention to multiple mathe-
matical modelling and related multivariate statistical inference which highlight com-
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petition and interaction effects. The pioneering work by Bass (1969) and its sub-
sequent extensions are valuable modelling tools for forecasting separate diffusion of
innovations processes. One of the main assumptions in those models is the aggre-
gate level of description. In other words, emphasis is focused on the behaviour of
a special subpopulation to avoid modelling individual preferences and decisions for
which data availability is unfeasible because of economic, ethical, or physical con-
straints. The Bass model is monodimensional in nature and relates to homogeneous
category-level sales growth, or more extensively, to specific brand-level sales whose
diffusion does not depend upon competing brands.

An outstanding advance in introducing external control variables in diffusion of
innovation dynamics is the Bass et al. (1994) definition of the GBM (Generalized
Bass Model). This extension allowed the introduction of relative prices and relative
advertising effects as a first relevant example for marketing and management sci-
ences. Nevertheless, market potential m is assumed constant over the life cycle and,
even in this case, the focus is on a single product or category neglecting influence
by competing actors in the marketplace.

Multi-product growth models were first examined in the marketing literature
by Peterson and Mahajan (1978) under the assumption of synchronic launch of
corresponding processes. They classify co-existing products in the marketplace in
four categories: independent, complementary, contingent and substitute products.
Only substitute products generate competition, which is modelled through the in-
troduction of within-brand and cross-brand word-of-mouth (w.o.m.) effects related
to brand specific residual markets. This choice partially contradicts the definition
of a common category product where substitution and related competition are gen-
erated.

Category level diffusions originate mainly from a monopolistic diffusion process.
New entrants define competition and substitution effects which may be described,
following Parker and Gatignon (1994) in two classes: 1) diffusion processes which
are product class driven (i.e., there is a common residual market potential); and 2)
diffusion processes that are specific to the individual brand (i.e., each competitor
detains its own market) as in Peterson and Mahajan (1978). Moreover, interpersonal
influence of adopters may be either a function of product class relative knowledge
or brand specific.

Further contributions to the multi-product growth models may be found in Ma-
hajan et al. (1993). The restricted version of their model is based on diffusion pro-
cesses that are product class driven, that is based upon a common residual market.
This assumption correctly represents the situation of multiple substitute products
in the same marketplace. In that model, interpersonal influence is, however, brand
specific partially contradicting previous product class concepts. Moreover, the in-
novative effect is constrained to the specific residual market. Similar models are
presented in Teng and Thompson (1983), Horsky and Mate (1988), and Kalish et al.
(1995). A common feature of the above cited papers is the limited attention devoted
to the “regime change” problem. In diachronic cases, it is not unusual that the new
entrant affects the diffusion processes of previously existing products.

An old attempt to model simultaneous (synchronic) competition between two
brands within the same market was performed in Bonaldo (1991). We refer to it
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in the sequel as GB model. The proposed model (Eqs. (10), Section 3) splits the
rate sales into two separate equations under the hypothesis that the category is
sufficiently homogeneous, and therefore, the relative knowledge of the product class
is common knowledge driving word-of-mouth. Obviously, parameters that modulate
access to that knowledge may be different for the two products.

Krishnan et al. (2000) rediscover the GB model for the synchronic case and intro-
duce a new representation for the diachronic case, KBKD, which considers the late
introduction of a third competitor with respect to two previously existing synchronic
actors in the same category. The relevant assumptions of the model are the follow-
ing. Market potential may change from ma to mc after the late entrance. It may be
both an expansion or a reduction. The innovative parameters of the first entrants
are not modified after the introduction of the third competitor (while imitative ones
may change). The innovative parameter of the late entrant is forced to be zero
(while the imitative parameter is free). The published closed-form solution presents
some minor problems probably due to typing errors. We argue that the relevant
constraints on the constancy of innovative parameters of old competitors and the
assumed non-existence of an innovative effect for the late entrant may be avoided
in order to properly test these assumptions. In this paper, the extended diachronic
version, GBD, will be examined and solved, obtaining a closed-form representation
including KBKD results as special cases.

We underline here the essential role of a closed-form solution. The crucial ques-
tion of the model choice can be supported by available data, through an efficient
estimation method that exploits cumulative observations and avoids the cumbersome
procedure needed to fit instantaneous data to the differential equations. Moreover,
the analysis of the closed-form solutions allows a correct interpretation of the com-
petition and substitution effects. This would not be possible through the qualitative
study of the differential equations, because that method describes only the asymp-
totic behavior of the system and not the competition dynamics that led to the
equilibrium solution. Conversely, in this paper, the solutions of GBD highlight that
the sales of each product are composed by a share of the whole category sales, cor-
rected by two further departures. These ones take into account the role both of
the level already reached by the first product when competition starts and of the
relative skills in the diffusing of the two products along the whole life cycle. The
relative sizes of these components are evaluated through parameter estimates and
their interpretation enables analysis of the interactions between the competitors.

In this paper, we focus on diffusion processes that are product-class driven, and
interpersonal influence is not specific. In particular, in this paper we assume a
common (balanced) effect for within-brand and cross-brand w.o.m. components. A
further perspective, examined for example in Savin and Terwiesch (2005), is not
handled here. It is treated in the companion article Guseo and Mortarino (2010),
which proposes the decomposition of the category relative knowledge in brand spe-
cific (unbalanced) components (with different access parameters in order to separate
within-brand effects from cross-brand effects in corresponding parallel equations in
synchronic and diachronic cases). In this paper, we do not examine different per-
spectives in model building, which rest on a brand specific dynamic residual market
that generalizes the Lotka-Volterra framework (Abramson and Zanette, 1998, and
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Morris and Pratt, 2003).
The introduction emphasizes the common choice based on aggregate dynamic

modelling, which ignores individual preferences and attitudes. The limited attention
paid to the individual level has been perceived as a strong restriction, especially in
the economic and social contexts. In order to recognize different local diffusions,
Cellular Automata models (CA) and Network Automata (NA) are a recent example
of the trial to take into account the heterogeneity of adopters. Boccara et al. (1997),
Boccara and Fuks (1998) and Boccara (2004) among others proposed interesting
representations of special Cellular Automata models within the theory of Complex
Systems. Nevertheless, such models give rise to simulative frameworks that do not
allow a stable and well-characterized statistical inference. The proposed Genetic
Algorithms in this area are not very efficient, and in the past, their performances
were questioned. A much stronger argument is that, in applied contexts, it is much
more common to work with aggregate adoption data that are cheaper, more reliable,
and more suitable from a managerial point of view.

In Guseo and Guidolin (2008), it has been proved, for a univariate case and under
a mean-field approximation, that there exists a differential dual representation of a
particular CA driven by a Riccati equation that can be solved in a closed form. This
property allows the use of well-founded statistical inference in this nonlinear context.
A confirmation of this property is explicitly attained in Guseo and Guidolin (2009)
under a more general framework where a dynamic information network allows the
implementation of a dynamic market potential extending popular Bass models, BM
and GBM. Here we propose a special CA where an agent may select, at time t,
at most one between two competing innovations. This bivariate automaton is then
simplified under a mean-field approximation, obtaining a continuous representation
that gives rise to the GB duopolistic model.

The paper is organized as follows. In Section 2, we introduce a deterministic
one-dimensional CA following Boccara (2004) and Boccara and Fuks (1998), and we
extend it to a suitable probabilistic version. As a second step, we find a bivariate
CA generating the GB duopolistic model summarized in Section 3. Moreover, in
Section 4 we study some characterizations of the more complex twofold diachronic
case, GBD, and compare it with KBKD model. In Section 5, we consider a specific
application of the proposed twofold diachronic model, GBD, with reference to com-
peting pharmaceutical drugs. Final remarks and discussion are presented in Section
6. Moreover, in the Appendix, we consider the problem of competition and environ-
mental intervention, for both synchronic and diachronic cases, in order to extend
our results following the inspiration of Bass et al. (1994).

2 Multivariate Cellular Automata

A deterministic univariate Cellular Automaton (CA) is characterized by three ele-
ments: a population of agents (cells), Z, a state function s(i, t) and a local evolu-
tionary rule, f(·).

The population of agents, Z, biunivocally corresponds to a set of labels for agents’
identification. We assume Z as the set of all integers. The state function s(i, t) ∈ Q
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denotes, for each agent i ∈ Z at time t ∈ IN∗ (the set of all positive integers), a
level within the class Q = {0, 1} of possible states: s(i; t) = 1 denotes the adoption
of a particular innovation by agent i and, conversely, s(i; t) = 0 depicts the neutral
state.

The local evolutionary rule (transition rule) is a function f : Qr`+rr+1 → Q, such
that

s(i; t+ 1) = f(s(i− r`; t), s(i− r` + 1; t), · · · , s(i− 1 + rr; t), s(i+ rr; t)), (1)

where the integers, r`, rr, are the radii of the rule. The function St : i→ s(i, t), i ∈ Z
denotes the global state of the CA or configuration at time t. The space of all
configurations is S = QZ so that St ∈ S,∀t ∈ IN∗. The configuration at time t+ 1,
St+1, is univocally determined by the state St and by the rule f so that there exists
a unique application Ff : S → S for which

St+1 = Ff (St), (2)

where Ff is the evolutionary operator induced by the local rule f .
Let us define for i ∈ Z a kind of local pressure of the system, 0 ≤ σs(i; t) ≤ 1,

depending on a flexible probability measure, pn ≥ 0, that allows a more general
description of a neighboring stimulating effect towards adoption:

σs(i; t) =
∞∑

n=−∞
s(i+ n; t)pn ;

∑
n

pn = 1. (3)

If local pressure is based on a common radius r = r` = rr and is translational
invariant, we may consider the mean-field approximation. This reduction excludes
the local effect of distribution pn,

σs(i; t) = lim
r→∞

r∑
j=−r

s(i+ j; t)
2r + 1

' ν(t) =
z(t)
m

, (4)

where ν(t) depicts the “density” of the adoption process or the normalized ratio
ν(t) = z(t)/m with m the assumed constant market potential and z(t) the cumula-
tive product sales at time t.

Let us define a special rule f(·) underQ = {0, 1}, through a partially probabilistic
specification,

s(i; t+ 1) = s(i; t) + [Bi(1, p)⊕Bi(1, q σs(i; t))] I(s(i;t)=0) −Bi(1, w) I(s(i;t)=1)

= s(i; t) +Bi(1, p+ q σs(i; t)) I(s(i;t)=0) −Bi(1, w) I(s(i;t)=1), (5)

where ⊕ denotes a selection rule between two mutually exclusive components. The
first innovative component of equation (5), Bi(1, p), depends upon a binomial ex-
periment, with parameter p, which is realizable only if indicator function I(s(i;t)=0)

is set to one, that is proposition (s(i; t) = 0) is true. The meaning of such a first
component may be linked to the effect of mass media communication channels. The
change of state is possible, with probability p only if such “institutional commu-
nication” reaches the susceptible agent i which supports the initializing aspects of
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an adoption process. We consider such an agent to be an innovator. The second
innovative component of equation (5), Bi(1, q σs(i; t))), considers the joint proba-
bility qσs(i; t), that depicts the local pressure effect of a neighboring social practice
to adopt, σs(i; t), combined with the intrinsic attitude to pure imitative response
pushed by a parameter q. This second experiment is an opportunity strictly re-
ferred to standard agents and expresses the commonly perceived fact that imitative
behaviour is twofold: an individual attitude combined with a local pressure due to
the neighboring environment. We consider such an agent to be an imitator. Notice
that activation of the previous two components is strictly alternative. In other words,
under condition I(s(i;t)=0) = 1, an agent selects only one binomial experiment, if any,
at his free choice, so that the resulting framework is a special binomial experiment
for the external observer, Bi(1, p+ qσs(i; t)). In particular, the binomial parameter
p + qσs(i; t) represents the marginal adoption probability (mixture) based on the
averaging of the corresponding group conditional adoption probabilities, 1 for inno-
vators, σs(i; t) for imitators and zero for neutral agents. The group weights are p, q
and 1−p−q respectively so that we attain p·1+q ·σs(i; t)+(1−p−q)·0 = p+qσs(i; t).
As mentioned above, we denote with the term selection rule such a composition rule.
Finally, the third component in equation (5) is a decay effect driven by a binomial
Bi(1, w) under the control of the correct state, I(s(i;t)=1), and describes a possible
withdrawal from an active state.

The stochastic rule (5) defines a simple evolution of a CA and may be simu-
lated on the basis of a specification of the involved parameters p, q, w and m. A
more interesting problem is obviously the estimation of these unknown parameters
with available data. Usually, individual data are not available at time t, due to
privacy constraints or costs, while aggregate information about the general state of
the system may be easier to handle.

Let us consider, therefore, the average behaviour of rule (5), under a mean-field
approximation expressed by equation (4) followed by the sum of all states indicators
s(i; t) within Z divided by 2r + 1. If the limit exists we have

ν(t+ 1) = ν(t) + (p+ qν(t))(1− ν(t))− wν(t). (6)

We can approximate previous discrete time equation with a continuous Riccati
equation, namely,

ν ′(t) = −qν2(t) + (q − p− w)ν(t) + p, (7)

and if we exclude the exit rule component, w = 0, we have a standard Bass (1969)
model. Solution ν(t) of equation (7) is described in Guseo and Guidolin (2008). We
underline that z(t) = mν(t) defines an absolute aggregate temporal evolution of the
proposed Cellular Automaton.

Previous approach can be extended to a competitive market. We represent an
automaton where an agent at time t may remain neutral, or select, without loss of
generality, at most only one between two competing innovations. As we did before,
we define with an indicator function I(s(i;t)=0) = I(s1(i;t)+s2(i;t)=0) the condition under
which agent i has performed no adoption at time t, where s1(i; t) and s2(i; t) denote
the state functions related to two different innovations, namely, innovation 1 and
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innovation 2. Their sum, s(i; t) = s1(i; t) + s2(i; t), is at most one. If we exclude
the exit rule component, w = 0, we may generalize equation (5), simultaneously
representing the transitions rules for both state functions, as follows:

s1(i; t+ 1) = s1(i; t) +Bi(1, p1 + q1σs(i; t))I(s(i;t)=0)
(8)

s2(i; t+ 1) = s2(i; t) +Bi(1, p2 + q2σs(i; t))I(s(i;t)=0),

where σs(i; t) =
∑∞

n=−∞ s(i + n; t)p(n) and
∑

n pn = 1. In particular, σs(i; t) is a
common pressure towards adoption based on the knowledge of the product category
and does not depend on the specific brand/product.

Note that if we sum previous synchronic processes in equations (8) we obtain a
category transition rule,

s(i; t+ 1) = s(i; t) +Bi(1, p+ q σs(i; t))I(s(i;t)=0), (9)

where p = p1 + p2 and q = q1 + q2. The reason for this result is that the sum
of the binomial experiments in equations (8) follows the selection rule (the agent
selects at most one brand). This explains, with a different terminology, the source
of competition.

We may approximate the aggregate discrete time system (8) with a continuous
representation, under the mean-field approximation described in equation (4),

z′1(t) '
∑
i

[s1(i; t+ 1)− s1(i; t)] and z′2(t) '
∑
i

[s2(i; t+ 1)− s2(i; t)],

where, in particular, z(t) =
∑

i s(i; t) =
∑

i[s1(i; t) + s2(i; t)] = z1(t) + z2(t). These
positions give rise to the differential counterpart, the GB model described in Sec-
tion 3, and confirm analogous results expressed in Guseo and Guidolin (2008) and
Guseo and Guidolin (2009) that establish a dualism between Complex Systems rep-
resentation based on Cellular Automata and the corresponding mean-field aggregate
versions based on traditional differential equations systems.

3 GB system and twofold synchronic competition

We start here with the simpler situation of a synchronic competition, where the
competitors enter simultaneously into the market. For reasons of simplicity, we
summarize the duopolystic case, but the system may be naturally extended to larger
systems with more than two competitors. In that case, the GB model (Bonaldo,
1991) is:

z′1(t) = m

[
p1 + q1

z(t)
m

] [
1− z(t)

m

]
(10)

z′2(t) = m

[
p2 + q2

z(t)
m

] [
1− z(t)

m

]
,

where z(t) = z1(t) + z2(t) depicts the sum of two cumulative diffusion processes
(aggregate sales) and m denotes the limiting state of z(t), as far as t → +∞,
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the constant aggregate carrying capacity or market potential. Parameters pi (qi),
i = 1, 2, refer to innovators (imitators) as in the standard Bass Model.

In the system (10), the residual market m[1 − z(t)/m] is represented by the
whole category market potential m from which the sales of both brands have to
be subtracted. This model is adequate to describe competition between perfect
substitute products competing for the same group of adopters. Coherently, the
mechanism which governs the interpersonal influence is assumed to be a common
driver, that is a common relative knowledge z(t)/m and it is a typical property of
a particular competitive niche: a competitive environment or a competitive market
based on a common class of substitutes that “cooperate” in defining the agents’
awareness towards the product category. Notice that the fraction of common driver,
qiz(t)/m, is the specific imitative characteristic of ith diffusion process. Nevertheless,
the joint presence of two competitors gives rise to a non null substitution effect.

We notice that the well-known Givon et al. (1995) paper about piracy studies
legal and illegal trajectories of a common product. Only the legal series is observable;
the illegal one is latent. That model may be included as a special case in GB with
the following constraints: p1 = p`, p2 = 0, q1 = αq`, q2 = (1 − α)q`. In this case,
direct estimation of all involved parameters, m, p`, q`, and α may be carried out
through the legal observable series.

The solution of system (10) is based on the simple property of the aggregate pro-
cess, z(t), for which the standard differential equation of the Bass model is satisfied
(see Bass, 1969)

z′(t) = m

[
p+ q

z(t)
m

] [
1− z(t)

m

]
(11)

where p = p1 + p2 and q = q1 + q2. The solution of previous equation (11), under
initial condition z(0) = 0, is well–known

z(t) = m
1− e−(p+q)t

1 + q
pe
−(p+q)t

, (12)

and the integration of system (10) gives rise to

z1(t) = m
q1
q

1− e−(p+q)t

1 + q
pe
−(p+q)t

+m
p

q

(
p1

p
− q1

q

)
ln

1 + q
p

1 + q
pe
−(p+q)t

(13)

z2(t) = m
q2
q

1− e−(p+q)t

1 + q
pe
−(p+q)t

+m
p

q

(
p2

p
− q2

q

)
ln

1 + q
p

1 + q
pe
−(p+q)t

.

The proof is omitted here, since in the next section details will be given for the more
general diachronic situation, including system (10) as a special case.

We remark that system (10) falls into Case 2 of Parker and Gatignon (1994),
where it was defined as a situation of “non competitive interpersonal influence.”
However, the closed-form solution (13), also available in Bonaldo (1991) and Kr-
ishnan et al. (2000), highlights a direct effect of competition among brands based
on a compensating dynamic deterministic perturbation (the parametric functions
(p1/p−q1/q) and (p2/p−q2/q) are opposite values so that their sum is zero). In this



4 Twofold diachronic competition, GBD 9

Figure 1: Twofold diachronic competition, GBD: rate or instantaneous observations.
Stand alone first entrant sales, az′1. First entrant sales under competition, cz′1. Second
entrant sales under competition, cz′2.
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case, the common (balanced) influence coefficient qi multiplied by the relative cate-
gory knowledge z/m does not imply a competition absence. An unbalanced influence
of interpersonal relative knowledge of specific brands within a category, denoted as
cross-brand or competitive interpersonal influence (see Peterson and Mahajan, 1978)
may further emphasize competition or even allow for a market’s leadership change.
Moreover, we notice that Case 4 of Parker and Gatignon (1994), described in their
equation

z′i(t) = [ai + bi(zi/mi) + ci(z − zi)/(m− zi)](m− z), (14)

leads to a debatable model. In this case, the ratio (z − zi)/(m − zi) does not rep-
resent a relative knowledge of the complementary brands with respect to zi. In the
light of previous reasoning, (m−mi) could probably be the coherent denominator.
Moreover, the simultaneous presence of brand specific market potential, mi, and
category potential, m, appears as contradictory.

4 Twofold diachronic competition, GBD

Infrequently observed are two or more diffusion processes that are exactly synchronic
and with direct effects of substitution between competitors within the same envi-
ronment. On the contrary, it is a common experience to observe the late entrance
of new diffusion processes. Let us consider the twofold simpler case with the late
entrance of the second competitor at time t = c2 with c2 > 0 where t = 0 denotes
the time origin for the first competitor (see Figure 1).

We propose here a modified GB that includes such a time lag on the birth of a
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second competitor, GBD:

z′1(t) = m

{[
p1a + q1a

z(t)
m

]
(1− It>c2) +

[
p1c + q1c

z(t)
m

]
It>c2

}[
1− z(t)

m

]
z′2(t) = m

[
p2 + q2

z(t)
m

] [
1− z(t)

m

]
It>c2 (15)

m = ma(1− It>c2) +mcIt>c2

z(t) = z1(t) + z2(t)It>c2 ,

where usual parameters p1 and q1 for the first competitor may be different in the
“stand alone” situation (subscript a) and in the competitive situation (subscript
c). This special feature of our model allows dealing with the not unusual “regime
change” problem. The transition from a monopolistic market to a duopolistic one is
likely to upset the diffusion’s structure of the first entrant and gives rise to different
parameters for the first competitor and (or) to a new carrying capacity. As previously
mentioned, the KBKD model by Krishnan et al. (2000) is a special case of the GBD
model obtained when p1a = p1c and p2 = 0 (see Table 1).

The system (15) has the following closed-form solution:

z1(t) = az1(t)(1− It>c2) + cz1(t)It>c2 (16)
z2(t) = 0 · (1− It>c2) + cz2(t)It>c2 = cz2(t)It>c2 , (17)

where p = p1c + p2, q = q1c + q2,

az1(t) = ma
1− e−(p1a+q1a)t

1 + q1a

p1a
e−(p1a+q1a)t

(18)

cz1(t) = mc
q1c
q
w(t) +

q2
q
zs +mc

p

q

(
p1c

p
− q1c

q

)
ln y(t) (19)

cz2(t) = mc
q2
q
w(t) − q2

q
zs +mc

p

q

(
p2

p
− q2

q

)
ln y(t) (20)

Table 1: Diachronic models. GBD=current model, KBKD= Krishnan et al. (2000)
model. PR1= first entrant product, PR2=second entrant product, AGG= aggregate
model.

Before competition Under competition
Diachronic t < c2 t ≥ c2

Models inn im mkt pot inn im mkt pot

GBD PR1 p1a q1a p1c q1c
(# p. 8) PR2 0 0 ma p2 q2 mc

(# a.p. 6) AGG p1a q1a p1c + p2 q1c + q2

KBKD PR1 p1a q1a p1a q1c
(# p. 6) PR2 0 0 ma 0 q2 mc

(# a.p. 5) AGG p1a q1a p1a q1c + q2
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w(t) =
1 + q

p
zs
mc
−
(

1− zs
mc

)
e−(p+q)(t−c2)

1 + q
p
zs
mc

+ q
p

(
1− zs

mc

)
e−(p+q)(t−c2)

(21)

y(t) =
1 + q

p

1 + q
p
zs
mc

+ q
p

(
1− zs

mc

)
e−(p+q)(t−c2)

. (22)

Proof. We try to determine z(t) within the two different regimes, namely z(t) =
az(t)(1 − It>c2) + cz(t)It>c2 . Until t = c2 we observe no competition and then the
global equation is the local one for z1(t),

az
′(t) = az

′
1(t) = ma

[
p1a + q1a

z1(t)
ma

] [
1− z1(t)

ma

]
, t ≤ c2, (23)

so that the aggregate solution, under initial condition az(0) = az1(0) = 0, is

az(t) = az1(t) = z1(t)It≤c2 = ma
1− e−(p1a+q1a)t

1 + q1a

p1a
e−(p1a+q1a)t

. (24)

The final cumulative condition at time t = c2 is zs = az(c2) = az1(c2). After c2, we
observe competition and the aggregate equation is

cz
′(t) = z′(t) = mc

[
p+ q

z(t)
mc

] [
1− z(t)

mc

]
, t > c2, (25)

with initial condition zs at time t = c2 and p = p1c + p2, q = q1c + q2. Equation (25)
may be solved under previous condition (see, for instance, Bass, 1969, p. 218),

cz(t) = mc

pe(p+q)c2
(
zs
mc
− 1
)

+
(
p+ q zs

mc

)
e(p+q)t

−qe(p+q)c2
(
zs
mc
− 1
)

+
(
p+ q zs

mc

)
e(p+q)t

It>c2 (26)

or, equivalently,

cz(t) = mc

1 + q
p
zs
mc
−
(

1− zs
mc

)
e−(p+q)(t−c2)

1 + q
p
zs
mc

+ q
p

(
1− zs

mc

)
e−(p+q)(t−c2)

It>c2 = mcw(t)It>c2 . (27)

We try to determine now the z1(t) component under the competitive situation for
t > c2 and, coherently with the previous notation, we denote such a solution with a
special subscript c, cz1(t) = z1(t)It≥c2 .

We consider, preliminary, a new position,

E =
[(

1− zs
mc

)
/

(
1 +

q

p

zs
mc

)]
e−(p+q)(t−c2).

Equation (27) is equivalent, for f = q/p, to

W = w(t) = cz(t)
mc

=
1− E

1 + fE
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and, in particular, we observe W (c2) = zs/mc.
Since we are considering t > c2, integration of the first equation in (15) gives rise

to

cz1(t) =
mc

p

∫
p1c + q1cW

1 + fW
dW, (28)

and its general solution is

H1(t) =
mc

pf

[(
p1c −

q1c
f

)
ln(fW + 1) + q1cW

]
+K, (29)

with K a generic undetermined constant.
We may compute the definite integral within the range [w(c2),W ] and, therefore,

we obtain

cz1(t) = H1(t)−H1(c2) + zs

=
mc

pf

{(
p1c −

q1c
f

)
ln
[

fW + 1
fW (c2) + 1

]
+ q1c[W −W (c2)]

}
+ zs

= mc

[
qp1c − q1cp

q2
ln

(
fW + 1
f zs
mc

+ 1

)
+
q1c
q
W

]
+
q2
q
zs. (30)

Notice that, for c2 = 0 we have zs = az1(c2) = mcw(c2) = 0 and then we attain the
synchronic solution (13) by backward substitution.

In order to write equation (30) as an explicit function of t, we further develop it
starting from the argument of the logarithm:

fW + 1
f zs
mc

+ 1
=

1 + q
p

1 + q
p
zs
mc

+ q
p

(
1− zs

mc

)
e−(p+q)(t−c2)

= y(t). (31)

Substituting expression (31) into (30) gives, after simple simplifications, expression
(19).

The profile of second or late entrant is very simple. For t ≤ c2 we have az2(t) =
az(t)− az1(t) = 0. For t > c2 we obtain cz2(t) = cz(t)− cz1(t) or equivalently,

cz2(t) = mcw(t)−mc

[
q1c
q
w(t) +

p

q

(
p1c

p
− q1c

q

)
ln y(t)

]
− q2

q
zs

= mc
q2
q
w(t)− q2

q
zs +mc

p

q

(
p2

p
− q2

q

)
ln y(t). �

We remark that the aggregated sales resulting from the GBD model z(t) =
az(t)(1− It>c2) + cz(t)It>c2 , t ∈ [0,+∞) are not described by a pure Bass model. It
is a two regimes function based on local Bass models: BM(ma, p1a, q1a) for t ∈ [0, c2]
and BM(mc, p, q) for t ∈ (c2,+∞) with a continuity condition z(c2) = az(c2) = zs
for t = c2.

In (19) we can recognize three components: a “baseline” process

b1(t) = mc
q1c
q
w(t);
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a time dependent “perturbation”

r1(t) = mc
p

q

(
p1c

p
− q1c

q

)
ln y(t),

whose sign and size depend upon parameter values; a constant term, q2
q zs. In a

similar way, in (20) we can recognize three components: the “baseline” process

b2(t) = mc
q2
q
w(t);

the time dependent “perturbation”

r2(t) = −r1(t) = mc
p

q

(
p2

p
− q2

q

)
ln y(t);

the constant term, − q2
q zs. The last two components exactly compensate the corre-

sponding ones seen in cz1(t). For each product, the “baseline” process represents a
share of the whole category sales. The time dependent departures, ri(t), i = 1, 2,
highlight competition/substitution effects and, in particular, these perturbations
tell us whether competition generates advantage (q1c/p1c > q2/p2) or drawback
(q1c/p1c < q2/p2) to the first competitor. Notice that, if local parameters are pro-
portional, i.e., q1/p1 = q2/p2, the competition effects, ri(t), i = 1, 2, vanish. Finally,
the constant term q2

q zs represents the advantage of the first entrant.
The asymptotic behaviour of equations (19) and (20) is straightforward and

highlights a non intuitive splitting of aggregate carrying capacity mc, namely,

lim
t→+∞ cz1(t) = mc

q1c
q

+mc
p

q

(
p1c

p
− q1c

q

)
ln

(
1 + q/p

1 + (q/p) zs
mc

)
+
q2
q
zs

(32)

lim
t→+∞ cz2(t) = mc

q2
q

+mc
p

q

(
p2

p
− q2

q

)
ln

(
1 + q/p

1 + (q/p) zs
mc

)
− q2

q
zs.

The closed-form solution also allows simple graphical analyses of competition
structures consistent with the GBD model. Figure 2 summarizes, with a qualitative
description, some possible relationships. For the sake of simplicity, the situations
here depicted describe the case of the unmodified first competitor’s parameters after
the second competitor’s entrance. In Figure 2(a) we consider a new entrant at time
c2 = 10 with no incremental market potential, ma = mc = 100, with p1a = p1c =
0.02, p2 = 0.01, q1a = q1c = 0.3 and q2 = 0.4. We observe a diminished ceiling
of the first competitor, z1(+∞) ' 78. If we interchange the values of parameters
p1a = p1c and p2, i.e., p1a = p1c = 0.01 and p2 = 0.02, we note a worse situation for
the first entrant (see Figure 2(b)). We may be interested in the effect of a market
potential expansion. In Figure 2(c) we notice, for ma = 30 and mc = 100, an
interesting benefit for the first entrant with an asymptotic potential z1(+∞) ' 54,
as compared with the stand alone asymptotic level (30). If we interchange the
innovator parameters of the two competitors, that is p1a = p1c = 0.01 and p2 = 0.02,
we observe a more limited benefit for the first entrant (Figure 2(d)). In this situation
the second entrant becomes the market leader.
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Figure 2: Twofold diachronic competition, GBD: comparison among different situa-
tions.

(a) (b)

(c) (d)

It is useful to examine more deeply the relationship between ma and mc. In par-
ticular, in the light of (32), strong closeness between ma and mc, due to the perfect
knowledge of a mature environment, generates a substitutive turbulent competition.
Conversely, a large divergence between ma and mc (with ma � mc) is a synonym
of a first explorative situation, within which the competition effect is a stimulat-
ing causal precursor with a possible benefit for the first entrant competitor. These
considerations are in agreement with similar ones developed in Givon et al. (1995).

As a final remark, we underline that also the GBD model can be easily extended
to deal with more than two competitors and that closed-form solutions exist for the
most complex cases where the entrance of each new competitor generates a regime
change.

5 An application to pharmaceutical drugs

Ranitidine was introduced to the Italian pharmaceutical market in 1981, fourth
quarter. The active compound acts as a non-imidazole blocker of those histamine
receptors (H2 receptors) that mediate gastric secretion. It is used to treat gastroin-
testinal ulcers and related pathologies. In particular, the typical covered diseases
are duodenal ulcer, mild to moderate reflux oesophagitis, gastric ulceration, and
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Figure 3: Cumulative and rate sales (quarterly data). Source: IMS-Health , Italy.
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peptic ulcer. It is equally safe and effective in preventing or reducing symptoms
of heartburn. Competing therapeutical active compounds constitute a wide class:
for instance, Cimetidine, Famotidine, Omeprazole, Nizatidine, and, among others,
Misoprostol, Sucralfate, Lansoprazole. Since their launch, 1981/4, Zantac and Rani-
dil dominated the Italian Ranitidine market (90% in 1991). Here we examine two
subsequent further entrants, Trigger in 1983/4 and Raniben in 1986/4.

Our data, provided by IMS-Health, Italy, consist of the cumulative quarterly
number of packages sold in Italy by Trigger and Raniben. Data are available until the
third quarter of 1991 (32 observations for Trigger and 20 observations for Raniben,
see Figure 3).

The equations stemming from system (15), i.e., (18), (19) (which together give
rise to (16)) and (20), were fitted simultaneously applying the Beauchamp and Cor-
nell (1966) technique (in the first step the models (16) and (20) pertaining to the two
products are fitted separately to their own series in order to estimate the covariance
matrix for the two responses through residuals; at the second step, the models are
fitted jointly with weighted nonlinear least squares using the covariance matrix as
weight). Parameter estimates are summarized in Table 2 and the agreement between
observed and fitted values is shown in Figure 4. The most impressive feature is a
huge increase in market potential after Raniben’s launch. Moreover, we observe that
differences between p̂1a and p̂1c and q̂1a and q̂1c are significant: both parameters are
reduced after c2. Finally, we notice that p̂2 ' 0, i.e., the innovative quote for the
second competitor is negligible.

In this situation, the fit of a simplified model with p2 constrained to zero seemed a
natural choice. Estimates and marginal confidence intervals for the other parameters
were almost identical to those presented in Table 2, with the only exception of
mc : the new estimate is m̂c = 9463.52 with a much smaller confidence interval,
(8630.41,10296.6).

The effect of competition between the two products can be seen in Figure 5.
Here the first competitor reached a smaller part of the overall market ( q1c

q = 0.293),
but gained through a positive increasing perturbation δ(t) and, obviously, through
(q2/q)zs. In this case, Trigger was facing a declining phase of its diffusion process
when Raniben entered the market. This upheaval increased the market of the whole
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Table 2: Multivariate estimation results for model GBD.
Estimate Standard Error 95% Confidence Interval

ma 1330.09 105.950 (1117.85, 1542.33)
mc 8696.34 984.832 (6723.49, 10669.2)
p1a 0.01419 0.00067 (0.01285, 0.01554)
q1a 0.29802 0.02303 (0.25189, 0.34416)
p1c 0.00922 0.00059 (0.00803, 0.01041)
q1c 0.02364 0.00486 (0.01391, 0.03337)
p2 -0.00063 0.00093 (-0.00248, 0.00122)
q2 0.05698 0.00627 (0.04443, 0.06953)
R2 = 0.999872

Figure 4: GBD. Comparison between observed and fitted values.
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Figure 5: GBD. Model components.
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Table 3: Squared Pearson correlation coefficient between observed and fitted values
for alternative models.

indep. GBD GBD KBKD
ρ2 models model model model

(BM) (B&C) (direct) (B&C)

trigger (n=32) 0.998023 0.999823 0.999837 0.999739
raniben (n=20) 0.999485 0.999578 0.999528 0.999619
#parameters 6 8 8 6

category and kept Trigger vital.
In order to compare the previous model with alternative solutions, the same data

were used to fit two independent Bass models (one for each series), and the joint
model (KBKD) by Krishnan et al. (2000).

Moreover, in order to control for noise due to model misspecification, the joint
estimates of our model were performed without weighting as required by Beauchamp
and Cornell (1966) (we will refer to this technique as a “direct” estimation).

The comparison among different models is performed through a simple mea-
surement, the squared Pearson correlation coefficient between observed and fitted
values. Results are proposed in Table 3. There are small differences between the
Beauchamp and Cornell (1966) technique and the direct (unweighted) least squares
estimates (2nd and 3rd column of Table 3). The joint model performs much better
than independent models (1st column) for the first competitor. Raniben’s trend,
conversely, is well described also by an independent model that essentially ignores
competition.

The KBKD model (4th column) has values similar to (15) joint model (as re-
ported in Section 4, it is a special case of model (15) obtained when p2 = 0 and
p1c = p1a). With reference to the first constraint in our application, the innovative
component of the second competitor was negligible (p̂2 ' 0), but we deduced this
information from sales data, instead of imposing it through a model choice. The
choice of a common innovative parameter for the first competitor both before and
after the beginning of competition is, conversely, not well supported by our data: in
Table 2, we see that p̂1a significantly differs from p̂1c; moreover, from Figure 6 we
see that the stand alone fit of the KBKD model is worse than the fit of our model
(in detail, for the KBKD model, the Squared Pearson correlation coefficient between
observed and fitted values is 0.997459 for the stand alone period and 0.999433 for
the competitive period; for our model, the corresponding values are, respectively,
0.999612 and 0.999424). An F test to detect whether the gain from the KBKD
model to the more complex model (15) is significant assigns the value 10.93, de-
noting the relevance of the extended model GBD (for details about the F test, see
Section 5 in the companion article, Guseo and Mortarino, 2010). The analysis of
residuals and fitted values (see Figure 6) confirms that the joint model (15), GBD,
is essential in order to catch the features of the first competitor, while for the second
competitor differences among alternative models are, in this case, less appreciable.
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Figure 6: Comparisons among residuals and fitted values of independent models,
joint model GBD and KBKD model with the Beauchamp and Cornell (1966) tech-
nique.
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6 Final remarks and discussion

Diffusion of innovation methodologies and the corresponding models have faced and
are facing new challenges in order to incorporate, in a parsimonious model build-
ing, the major effects that can modify their evolutionary shapes over time. The
seminal paper by Bass (1969) has originated a wide set of contributions, including
the possibility of an external control effect through the intervention function within
the GBM framework, Bass et al. (1994). That function allows a time domain con-
trol, expanding or reducing sales over time under a fixed market potential. This
useful re-allocation tool depends on market-mix policies and strategic interventions.
Nevertheless, further actions due to management policies, regulatory contexts, and
network externality effects, may modify dynamically the market potential (Guseo
and Guidolin, 2009, Guseo and Guidolin, 2010).

A complementary direction in modelling and explaining observed systematic per-
turbations in a diffusion may be described via a multi-innovation diffusion model
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that explicitly takes into account competition among substitute products through
the simultaneous study of the competitors’ diffusions. The proposed GBD model
considers a diachronic competition that extends the Krishnan et al. (2000) model,
KBKD, in a natural way avoiding unnecessary restrictions on parameters. The basic
GB model is obtained through a multivariate Cellular Automata representation re-
stricted by a mean-field approximation confirming a recent methodology that avoids
direct simulative approaches.

The application to a case study concerning two competing drugs based on Ran-
itidine’s active compound allows valuable interpretations regarding interactions in-
duced by the late entrant which, in this case, delays the declining behaviour of the
first entrant and expands the whole category.

The main assumption of the present diachronic model GBD is related to the
balanced word-of-mouth effects that do not take into account separate influences
induced by the within-brand relative knowledge as opposed to the parallel cross-
brand one. This assumption may be adequate for a wide range of applications, where
differences between brands are narrow. For applications where that assumption is
questionable, we refer to Guseo and Mortarino (2010), where the unbalanced version
of this model is analyzed.

From an inferential point of view, it is surprising to observe quite systemati-
cally a substantial equivalence in terms of efficiency of the well-known re-weighted
methodology by Beauchamp and Cornell (B&C) that induces regularity conditions
on multivariate residuals (homoscedasticity and incorrelation) and a more robust
multivariate NLS procedure without previous correction. Experience with parallel
cases suggests that B&C is an efficient method if there is no error due to model
specification. Its fragility is evident when some limited model deviation is inter-
preted as a stochastic residual that (erroneously) contributes to the regularization.
In this case, a simple multivariate NLS procedure may be more robust and efficient.
A detailed comparison of the two techniques will be studied in the future.

Appendix. Competition and environmental intervention

The GBD model may be generalized if we introduce a common intervention function
x(t) following the ideas developed by Bass et al. (1994) for the Generalized Bass
Model. Function x(t) is positive definite and locally integrable. This function, which
may depend upon exogenous variables, can modify the velocity of time elapsing
within the niche that includes the two competitors. We underline here that we
assume a common function x(t) in order to express common dynamical properties
of the competitive environment affecting both competitors. These properties may
include only exogenous political or macroeconomic effects as well as general effects
due to expansion–competition interaction between the competitors.

If competition arises at time c2 > 0 we have to follow the way designed within
Section 4 with an updated model such that the existence of a common intervention
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function x(t) is represented,

z′1(t) = m

{[
p1a + q1a

z(t)
m

]
(1− It>c2) +

[
p1c + q1c

z(t)
m

]
It>c2

}[
1− z(t)

m

]
x(t)

z′2(t) = m

[
p2 + q2

z(t)
m

] [
1− z(t)

m

]
x(t)It>c2 (33)

m = ma(1− It>c2) +mcIt>c2

z(t) = z1(t) + z2(t)It>c2 ,

If t ≤ c2 the generalized version of aggregate (and first entrant) cumulative function
is

agz(t) = agz1(t) = ma
1− e−(p1a+q1a)

∫ t
0 x(τ)dτ

1 + q1a

p1a
e−(p1a+q1a)

∫ t
0 x(τ)dτ

, t ≤ c2, (34)

where we denote the final condition with gzs = agz1(c2).
The aggregate cumulative function cgz(t) for t > c2 is a Generalized Bass Model

with initial condition gzs for t = c2 and has the following shape

cgz(t) = mc

1−
[(

1− gzs
mc

)
/
(

1 + q
p

gzs
mc

)]
e−G(t)

1 + q
p

[(
1− gzs

mc

)
/
(

1 + q
p

gzs
mc

)]
e−G(t)

It≥c2 , (35)

with G(t) = (p+ q)
∫ t
c2
x(ξ)dξ and p = p1c + p2, q = q1c + q2.

The new function, cgz1(t), that depicts the behaviour of z1(t) for t ≥ c2 has a
new form,

cgz1(t) = gH1(t)− gH1(c2) + gzs, (36)

where

gH1(t) =
mc

pf

[(
p1c −

q1c
f

)
ln(f gW + 1) + q1c gW

]
+K, (37)

with gE =
[(

1− gzs
mc

)
/
(

1 + q
p

gzs
mc

)]
e
−(p+q)

∫ t
c2
x(τ)dτ , gW = cgz(t)

mc
= (1 − gE)/(1 +

fgE) and f = q/p, so that equation (36) reduces to

cgz1(t) = mc

[
q1cp− qp1c

q2
ln

(
f gzs
mc

+ 1
fgW + 1

)
+
q1c
q
gW

]
+
q2
q
gzs. (38)

Analogously, for the second competitor we have

cgz2(t) = mc

[
q2p− qp2

q2
ln

(
f gzs
mc

+ 1
fgW + 1

)
+
q2
q
gW

]
− q2

q
gzs, t > c2, (39)

where cgz2(t) = 0 for t < c2. Under x(t) = 1, t ≥ 0, gzs = zs, gE = E and gW = W.
In that case, equations (38) and (39) reduce to (19) and (20).
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In the simpler synchronic case, the solutions of the generalized GB model under
competition are

z1(t) = m
q1
q

1− e−(p+q)
∫ t
0 x(τ)dτ

1 + q
pe
−(p+q)

∫ t
0 x(τ)dτ

+m
p

q

(
p1

p
− q1

q

)
ln

1 + q
p

1 + q
pe
−(p+q)

∫ t
0 x(τ)dτ

z2(t) = m
q2
q

1− e−(p+q)
∫ t
0 x(τ)dτ

1 + q
pe
−(p+q)

∫ t
0 x(τ)dτ

+m
p

q

(
p2

p
− q2

q

)
ln

1 + q
p

1 + q
pe
−(p+q)

∫ t
0 x(τ)dτ

.

From the comparison of the previous solutions with system (13), it is easy to see
how the function x(t) affects the diffusion of the two brands.
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