Design Procedure of IPM Motor Drive for Railway Traction

Nicola Bianchi

Massimo Barcaro Emanuele Fornasiero Silverio Bolognani

Electric Drives Laboratory Department of Electrical Engineering University of Padova

IEEE - IEMDC 2011 International Electric Machines and Drives Conference Niagara Falls, 15-18 May 2011

PM machine design and analysis

Predicted machine performance

Power converter

Results

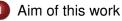
Conclusions

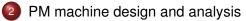
This presentation refers to the paper

Massimo Barcaro, Emanuele Fornasiero, Nicola Bianchi and Silverio Bolognani

> "Design Procedure of IPM Motor Drive for Railway Traction"

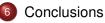
International Electric Machines and Drives Conference (IEMDC 2011)


held in Niagara Falls, CA, May 15-18, 2011



Outline

- PM machine design and analysis
- Predicted machine performanc
- Power converter
- Results
- Conclusions



Predicted machine performance

Results

Power converter

PM machine design and analysis

Predicted machine performance

Power converter

Results

Conclusions

Aim of this work

The aim

of this work is to investigate how the design choices of both the machine and the power converter affect the total performance of the traction drive.

Aim of this work

Aim of this work

- PM machine design and analysis
- Predicted machine performance
- Power converter
- Results
- Conclusions

Railway application

- Italian system,
- 2 Commuter train.

• Adoption of a permanent magnet machine

- High efficiency
- e High power density
- Lower maintenance
- Sensorless control capability
- Flux-weakening capability (Interior Permanent Magnet)

PM machine design and analysis

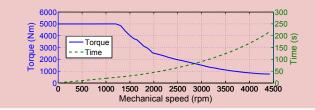
Predicted machine performance

Power converter

Results

Conclusions

Requirements


Maximum motor size

- Frame length: 800mm,
- Prame diameter: 500mm.

Torque–to–speed curve

Base operating point: 5000Nm @ 1200 r/min,

2 Max speed: 4500 r/min.

Requirements

Aim of this work

PM machine design and analysis

Predicted machine performance

Power converter

Results

Conclusions

Voltage

Nominal dc bus: 3000V (min. 80%),

Uncontrolled Generator Operation (UGO) voltage lower than nominal voltage at maximum speed.

IGBT Volt–Ampere rating

Series and parallel IGBT connections are avoided

PM machine design and analysis

Predicted machine performance

Power converter

Results

Conclusions

PM machine design and analysis

Geometries

Different rotor geometries are investigated:

Aim of this work

PM machine design and analysis

Predicted machine performance

Power converter

Results

Conclusions

Main parameters

- 48 slots,
- 4 poles,
- SmCo magnets,
- Different PM volume,
- $L_{stk} = 500 mm$,

(a) IPM-3b

(b) IPM-V

(c) IPM-SQ

(d) SPM

Winding design with different PM contribution

Aim of this work

PM machine design and analysis

Predicted machine performance

Power converter

Results

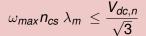
Conclusions

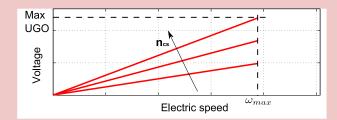
Changing the PM volume, the number of series conductors per slot, n_{cs} , can be changed

Variation of *n*_{cs}

The variation of series conductors per slot does not affects the electromechanical torque for given slot current \hat{l}_{S} .

If *n_{cs}* increases:


- the phase current decreases
- the nominal flux—linkage increases
- the base speed ω_B decreases



Winding design with different PM contribution

Uncontrolled Generator Operation

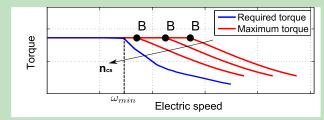
The flux–linkage due to the PM has to be limited so as to satisfy the UGO requirement at the el. maximum speed:

PM machine design and analysis

Predicted machine performance

Power converter

Results


Conclusions

Base speed

$$\left(\frac{V_n}{\omega_B}\right)^2 \simeq \Lambda^2 = n_{cs}^2 \left[\left(\lambda_m + l_d \hat{l}_{S,d}\right)^2 + \left(l_q \hat{l}_{S,q}\right)^2 \right]$$

For a given nominal voltage V_n the increase of n_{cs} yields an increase of the nominal flux–linkage and a reduction of the base speed ω_B .

Once the n_{cs} is defined, the nominal current of the machine $I_{n,mot}$ is selected to satisfy the requirements.

IEMDC 2011 Design Procedure of IPM Motor Drive for Railway Traction

Aim of this work

PM machine design and analysis

Predicted machine performance

Power converter

Results

Conclusions

PM machine design and analysis

Predicted machine performance

Power converter

Results

Conclusions

Summary of the motor designs parameters

Motor	V _{pm} (%)	ξB	n _{cs}	Î _{n,mot} (A)	Λ _m (Vs)	$\omega_{B,max} \ (el.rad/s)$
IPM–3b	100%	3.34	6.0	512	1.93	448
IPM–3b	90%	3.35	7.0	458	1.95	382
IPM–3b	80%	3.34	8.0	422	1.88	332
IPM–3b	70%	3.12	9.5	379	1.82	272
IPM–3b	60%	3.02	8.5	458	1.26	299
IPM–3b	40%	2.84	7.0	667	0.47	351

• n_{cs} is due to UGO requirement ($\Lambda_m < 2Vs$). It increases with the PM volume reduction (IPM–3b).

 $n_{cs} = 9.5 \Rightarrow$ limit value: the minimum ω_B is reached

 IPM–3b with 60% and 40% V_{pm} ⇒ UGO satisfaction is not sufficient. n_{cs} reduced, with a corresponding increase of the current to provide suitable FW torque.

PM machine design and analysis

Predicted machine performance

Power converter

Results

Conclusions

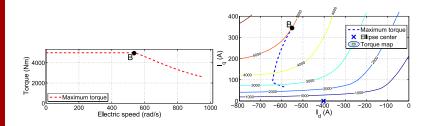
Motor	V _{pm} (%)	ξв	n _{cs}	Î _{n,mot} (Α)	\bigwedge_m (Vs)	ω _{B,max} (el.rad/s)
IPM–3b	100%	3.34	6.0	512	1.93	448
IPM–3b	90%	3.35	7.0	458	1.95	382
IPM–3b	80%	3.34	8.0	422	1.88	332
IPM–3b	70%	3.12	9.5	379	1.82	272
IPM–3b	60%	3.02	8.5	458	1.26	299
IPM–3b	40%	2.84	7.0	667	0.47	351
IPM–V	-	2.38	5.0	650	1.83	522
IPM–SQ	-	1.41	5.0	750	2.08	509
SPM	-	0.81	3.5	1006	1.83	794

 ξ_B is almost equal to 3 for all the IPM–3b machines. The IPM–V and the IPM–SQ machine has lower saliency.

PM machine design and analysis

Motor	V _{pm} (%)	ξB	n _{cs}	Î _{n,mot} (A)	Λ_m (Vs)	$\omega_{{\it B},{\it max}} \ ({\it el.rad}/s)$
IPM–3b	100%	3.34	6.0	512	1.93	448
IPM–V	-	2.38	5.0	650	1.83	522
IPM–SQ	-	1.41	5.0	750	2.08	509
SPM	-	0.81	3.5	1006	1.83	794

- The IPM–V machine requires lower current than the IPM–SQ machine thanks to the higher saliency ratio.
 - The SPM machine requires an excessive current and the base speed is about 3 times higher than the required.


Procedure to compute machine performance

Finite element simulations

Torque, Flux linkages, Flux densities

Maximum machine performance

- MTPA trajectory is followed up to the voltage limit: from zero up to the base speed ω_B, B base point.
- At higher speed the flux-weakening control is adopted.

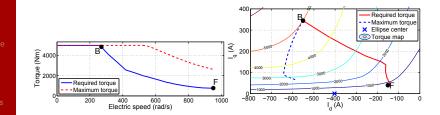
design and analysis

machine performance

Power converter

Results

Conclusions



PM machine design and analysis

Procedure to compute machine performance

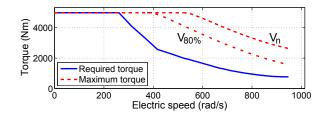
Fitting of the required torque-to-speed

- The current vector trajectory is modified,
- The lowest current that satisfies both the voltage limit and torque requirement is selected.

PM machine design and analysis

Predicted machine performance

Power converter


Results

Conclusions

Procedure to compute machine performance

Operations with reduced voltage

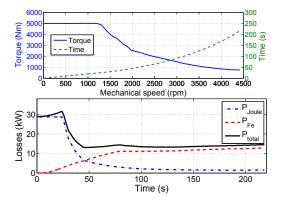
The required torque has to be satisfied also considering the variation of the grid voltage, e.g. according to the 80% of the rated voltage. A decrease of V_{dc} implies a shift of the torque characteristic due to the reduction of speed ω associated to each vector position.

Procedure to compute machine performance

Machine losses

 The machine losses are computed considering the standard traction cycle,

Aim of this work


PM machine design and analysis

Predicted machine performance

Power converter

Results

Conclusions

PM machine design and analysis

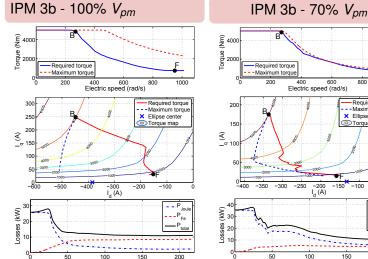
Predicted machine performance

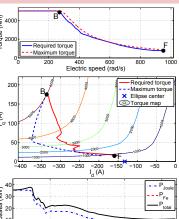
Power converter

Results

Conclusions

Predicted machine performance


Predicted machine performance


IPM 3b

Predicted machine performance

Time (s)

100 Time (s)

150

Design Procedure of IPM Motor Drive for Railway Traction

200

PM machine design and analysis

Predicted machine performance

Power converter

Results

Conclusions

Summary of motor performance

Motor	V _{pm} (%)	Voltage 80%	P _{motavg} (kW)	P _{Cu} (%)	P _{Fe} (%)
IPM–3b	100%	\checkmark	13.86	48.0	50.5
IPM–3b	90%	\checkmark	13.34	58.0	40.5
IPM–3b	80%	\checkmark	14.21	65.0	33.6
IPM–3b	70%	-	18.68	76.3	22.6
IPM–3b	60%	-	18.87	73.1	25.9
IPM–3b	40%	-	22.05	69.7	29.4
IPM–V	-	\checkmark	16.13	40.3	58.5
IPM–SQ	-	\checkmark	20.20	39.7	59.3
SPM	-	\checkmark	20.00	35.4	63.6

 Only the IPM–3b configurations with V_{pm} from 70% to 40% are not able to provide the required torque versus speed characteristic at a reduced voltage (80%).

PM machine design and analysis

Predicted machine performance

Power converter

Results

Conclusions

Motor	V _{pm} (%)	Voltage 80%	P _{motavg} (kW)	P _{Cu} (%)	P _{Fe} (%)
IPM–3b	100%	\checkmark	13.86	48.0	50.5
IPM–3b	90%	\checkmark	13.34	58.0	40.5
IPM–3b	80%	\checkmark	14.21	65.0	33.6
IPM–3b	70%	-	18.68	76.3	22.6
IPM–3b	60%	-	18.87	73.1	25.9
IPM–3b	40%	-	22.05	69.7	29.4
IPM–V	-	\checkmark	16.13	40.3	58.5
IPM–SQ	-	\checkmark	20.20	39.7	59.3
SPM	-	\checkmark	20.00	35.4	63.6

• The IPM–3b motors with a *V_{pm}* > 80% exhibit lower average losses during the standard cycle.

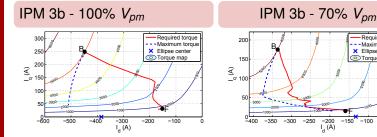
PM machine design and analysis

Predicted machine performance

Power converter

Results

Conclusions


Motor	V _{pm} (%)	Voltage 80%	P _{motavg} (kW)	P _{Cu} (%)	P _{Fe} (%)
IPM–3b	100%	\checkmark	13.86	48.0	50.5
IPM–3b	90%	\checkmark	13.34	58.0	40.5
IPM–3b	80%	\checkmark	14.21	65.0	33.6
IPM–3b	70%	-	18.68	76.3	22.6
IPM–3b	60%	-	18.87	73.1	25.9
IPM–3b	40%	-	22.05	69.7	29.4
IPM–V	-	\checkmark	16.13	40.3	58.5
IPM–SQ	-	\checkmark	20.20	39.7	59.3
SPM	-	\checkmark	20.00	35.4	63.6

• With IPM–3b machines the *V*_{pm} reduction leads to a shift of the losses from iron to copper, due to the higher average phase current.

This behaviour is reasonable, since the current of the IPM–3b with 100% V_{pm} decreases significantly from the nominal value $\hat{I}_{n,mot}$ at the base point B.

Predicted machine performance

Required torque

Maximum torque

× Ellipse center

Torque map

-150-100 -50

PM machine design and analysis

Predicted machine performance

Power converter

Results

Conclusions

Power converter

PM machine design and analysis

Predicted machine performance

Power converter

Results

Conclusions

IGBT choice

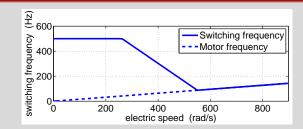
Power converter

- Use of a single power switch for each inverter leg. ⇒ power switch must be chosen with a reverse voltage of 6500 V, to sustain voltage peaks due to the commutations.
- Referring to the values of the machine phase current $\hat{I}_{n,mot}$, an IGBT with nominal current equal to 750*A* is adopted in the computation of the power converter losses.

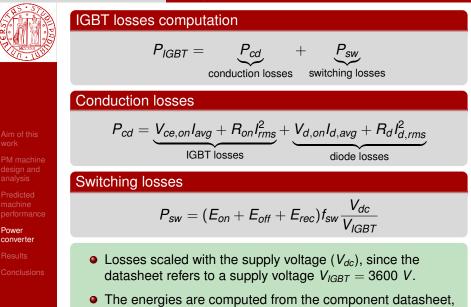
IGBT parameters, $V_n = 3600 V$

I _c A	V _{ce,on} V	R _{on} mΩ	V _{d,on} V	R _{d,on} mΩ	E _{on} J	$E_{off} \ J$	E _d J
400	2.8	6.2	2.1	4	4	2.3	1.05
600	2.9	4	2.3	2.7	5.9	3.5	1.6
750	2.2	2	1.7	1.38	6.5	4.2	3

Switching frequency profile



Aim of this work


- PM machine design and analysis
- Predicted machine performance

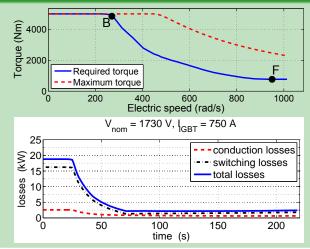
Power converter

- Results
- Conclusions

- The switching frequency is kept constant $(f_{sw} = 500 \text{ Hz})$ up to the electrical base speed $\omega_B = 251 \text{ el.rad/s.}$
- Then, it decreases linearly until about two times the base speed.
- Finally, the switching frequency is kept equal to the main frequency of the drive, so that the motor is practically supplied with a square wave voltage.

according to its actual current.

IPM 3b machine with 100% Vpm

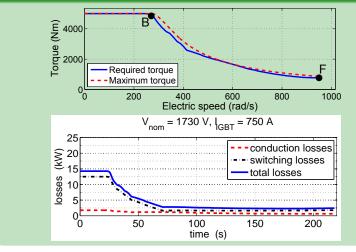

PM machine design and analysis

Predicted machine performance

Power converter

Results

Conclusions



Power

converter

IPM 3b machine with 70% V_{pm}

Results

Results of the losses computation

Motor	V _{pm} (%)	Voltage 80%	P _{motavg} (kW)	P _{Cu} (%)	P _{Fe} (%)	P _{IGBT,avg} (kW)
IPM–3b	100%	\checkmark	13.86	48.0	50.5	5.17
IPM–3b	90%	\checkmark	13.34	58.0	40.5	4.81
IPM–3b	80%	\checkmark	14.21	65.0	33.6	4.61
IPM–3b	70%	-	18.68	76.3	22.6	4.71
IPM–3b	60%	-	18.87	73.1	25.9	5.18
IPM–3b	40%	-	22.05	69.7	29.4	6.56
IPM–V	-	\checkmark	16.13	40.3	58.5	6.00
IPM–SQ	-	\checkmark	20.20	39.7	59.3	6.57
SPM	-	\checkmark	20.00	35.4	63.6	-

Results Conclusions

SPM not considered

SPM nominal current $I_{n,mot} = 1006A > 750A$

IEMDC 2011

Design Procedure of IPM Motor Drive for Railway Traction

Results

Results of the losses computation

Motor	V _{pm} (%)	Voltage 80%	P _{motavg} (kW)	P _{Cu} (%)	Р _{Fe} (%)	P _{IGBT,avg} (kW)
IPM–3b	100%	\checkmark	13.86	48.0	50.5	5.17
IPM–3b	90%	\checkmark	13.34	58.0	40.5	4.81
IPM–3b	80%	\checkmark	14.21	65.0	33.6	4.61
IPM–3b	70%	-	18.68	76.3	22.6	4.71
IPM–3b	60%	-	18.87	73.1	25.9	5.18
IPM–3b	40%	-	22.05	69.7	29.4	6.56
IPM–V	-	\checkmark	16.13	40.3	58.5	6.00
IPM–SQ	-	\checkmark	20.20	39.7	59.3	6.57
SPM	-	\checkmark	20.00	35.4	63.6	-

Results

Conclusions

Best converter performance

IPM-3b with 80% PM volume

IEMDC 2011

Design Procedure of IPM Motor Drive for Railway Traction

Results

V

Motor

Results of the losses computation

		(%)	80%	(kW)	(%)	(%)	(<i>kW</i>)
	IPM–3b	100%	\checkmark	13.86	48.0	50.5	5.17
	IPM–3b	90%	\checkmark	13.34	58.0	40.5	4.81
	IPM–3b	80%	\checkmark	14.21	65.0	33.6	4.61
	IPM–3b	70%	-	18.68	76.3	22.6	4.71
	IPM–3b	60%	-	18.87	73.1	25.9	5.18
	IPM–3b	40%	-	22.05	69.7	29.4	6.56
	IPM–V	-	\checkmark	16.13	40.3	58.5	6.00
	IPM–SQ	-	\checkmark	20.20	39.7	59.3	6.57
	SPM	-	\checkmark	20.00	35.4	63.6	-

Results Conclusions

Best drive performance

IPM-3b with 90% PM volume

IEMDC 2011

Design Procedure of IPM Motor Drive for Railway Traction

Pro Propt

Pa

- PM machine design and analysis
- Predicted machine performance
- Power converter
- Results

Conclusions

Conclusions

- A railway application has been considered; in particular:
 - a torque/speed characteristic was given
 - different motors topologies have been compared
 - the motors are different in terms of the amount of flux given from the magnets and rotor saliency.
 - the number of turns per phase *n_{cs}* is computed during the design process in order to avoid a too high UGO voltage and to satisfy the required torque versus speed characteristic.
 - the same IGBT component have been used for all the motor drives
- All motors satisfy the requirements of the traction application

- Aim of this work
- PM machine design and analysis
- Predicted machine performance
- Power converter
- Results
- Conclusions

Conclusions

Conclusions

- The SPM motor is not suitable for the application, since it has a limited flux weakening capability and presents a too high current
- Motors with low volume of permanent magnet does not have an adequate Torque/Volume ratio
- Motors characterized by higher saliency exhibit better performance.
- In addition, the fulfillment of the different requirements leads to configurations with also high PM flux
- The IPM–3b 90% machine is characterized by a high saliency and high PM volume (90%), that leads to current and losses reduced. It results to be the more suitable candidate for the commuter train considered in this study.

PM machine design and analysis

Predicted machine performance

Power converter

Results

Conclusions

Thank you for the attention