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Abstract

Diffusion-based Magnetic Resonance Imaging (dMRI) is rapidly becoming the
instrument of choice to probe the structure of the human brain in vivo. By mod-
elling the properties of water diffusion inside cerebral tissues, it is indeed possible
to extract surrogates of histological measures, such as fibre density, conforma-
tion and preferential direction, in a non-invasive manner. Furthermore, local
orientational features can be used to reconstruct axonal pathways that link dif-
ferent brain regions, allowing the study of how they are structurally connected.
Nevertheless, the quantification of dMRI measures must be cautious when the
physiological environment of brain tissues is drastically altered. Such is the case
of brain tumours. The microstructure of brain tumours is highly heterogeneous,
being diverse between and inside specific types and malignancy grade. The wide
spectrum of cellular environments they feature invalidates several hypotheses on
which diffusion-based microstructure models are built and, contemporarily, poses
difficulties in the process of tracking white matter in affected regions. Given
these limitations, are these techniques worth using in this complex pathologi-
cal environment? During the last three years I explored several state of the art
diffusion-based methodologies in a cohort of patients suffering from a range of
brain tumours. Hence, this thesis strives to be a summary of this work, laying
the foundation for future studies aiming to integrate the use of advanced dMRI in
the clinical neuro-oncological practice. The thesis is divided in three main parts,
which are organized as follows:

In the first part, an assessment is made whether two widely known diffusion
advanced models, Neurite Orientation Dispersion and Density Imaging (NODDI)
and the Spherical Mean Technique (SMT) are properly fitted in the tumoral lesion
in terms of goodness-of-fit and parameter precision. Several works, concentrat-
ing mainly on NODDI, used such techniques not as biophysical models but as
signal representations, trying to find biomarkers that differentiate more and less
isotropic environments which contribute to the totality of the diffusion signal in
‘tumoral’ voxels. These studies were performed without first checking whether
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these diffusion metrics are mathematically reliable. This issue is here assessed
from a technical point of view, without giving specific biophysical meaning to the
models in exam inside the tumoral tissues

The second part features a comparison study between methods for the identifi-
cation of structurally disconnected white matter (WM) in brain tumour patients.
Here, two branches of methodologies were identified, namely direct and indirect
approaches. The former branch use single-subject tractography to directly in-
vestigate which fibre bundles may be affected by the presence of the tumour.
The latter branch, instead, embed the focal lesion on a normative atlas of white
matter tracts, identifying the probability of a WM voxel being disconnected by
the pathology. Employing known image analysis metrics, both approaches are
discussed, highlighting points of convergence, but also of disagreement, in terms
of the physio-pathological information they can convey.

In the third and last part of this thesis, tumour-related anomalies of diffusion-
based structural connectivity (SC) matrices are put in relationship with metabolic
measures from [18F]-FDG PET. A procedure for tractography algorithm selection
was firstly performed, and after the SC quantification, a statistical method of de-
tecting altered connections in the tumour-affected SC matrix is presented. Within
such a framework, the amount of affected SC entries was eventually quantified in
the available cohort of patients and put in relationship with standardized uptake
values from PET. Finally, a discussion of the results of this association is pro-
vided, paying particular attention to the limitations of these imaging modalities
in the brain oncological field.
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Sommario

La Risonanza magnetica di diffusione (dMRI) sta diventando lo strumento più
adatto per indagare la microstruttura del cervello umano in vivo. Modellando
le proprietà della diffusione dell’acqua nei tessuti cerebrali, è infatti possibile ot-
tenere delle misure simili a quelle derivate dall’istologia, come la densità di fibre,
la loro conformazione e la loro direzione di propagazione, in maniera non invasiva.
In più, misure locali di integrità e di orientazione della materia bianca possono
essere usate da algoritmi di trattografia per ricostruire globalmente il percorso
seguito dalle fibre in tutto il cervello, permettendo di studiare come le varie re-
gioni corticali sono connesse. Nonostante ciò, l’utilizzo della dMRI deve essere
condotto con attenzione in presenza di patologie che alterano drasticamente la
fisiologia del cervello, come nel caso dei tumori cerebrali. La varietà di microam-
bienti cellulari che caratterizza questo tipo di patologie invalida alcune ipotesi
sul quale si fondano i modelli di microstruttura basati sulla dMRI. In più, il
processo di ricostruzione della trattografia nel cervello presenta particolari dif-
ficoltà tecniche nelle regioni affette dalla patologia. Date queste limitazioni, vi
è del valore nell’utilizzare tecniche basate sulla dMRI in questo complesso am-
biente patologico? Negli ultimi tre anni, ho avuto modo di esplorare diverse di
queste metodologie in una popolazione di pazienti con tumore cerebrale. La pre-
sente tesi vorrebbe quindi essere una sintesi di questo lavoro, che costituisce una
base verso l’integrazione di tecniche di diffusione avanzate all’interno della pratica
neuro-oncologica. Nella sua interità, la tesi presenta tre lavori, organizzati come
segue:

La prima parte presenta uno studio analitico su due noti modelli di microstrut-
tura, Neurite Orientation Dispersion and Density Imaging (NODDI) e la Spher-
ical Mean Technique. Questo lavoro è volto alla quantificazione della bontà del
fit e precisione parametrica delle due tecniche all’interno della lesione tumorale.
Alcuni lavori, concentrati principalmente su NODDI, usano queste tecniche come
modelli di segnale e non biofisici, cercando di trovare biomarker capaci di carat-
terizzare aspecificamente il tessuto patologico. L’analisi qui svolta supporta i
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risultati di letteratura da un punto di vista tecnico, senza considerazioni sul sig-
nificato biologico di questi modelli.

La seconda parte contiene uno studio di confronto tra due diversi metodi per
la quantificazione di regioni di materia bianca sconnessa a causa del tumore. Due
categorie di approcci qui sono stati studiati: approcci diretti, e approcci indiretti.
I primi fanno uso della trattografia singolo-soggetto per investigare quali fasci di
fibre siano affetti nel loro decorso dalla presenza del tumore. I secondi invece non
hanno bisogno di acquisizioni dMRI, e utilizzano un atlante normativo di fasci
di materia bianca per investigare, probabilisticamente, quali di questi potrebbero
essere affetti data la locazione e l’estensione della zona tumorale. Utilizzando
noti strumenti di analisi dell’immagine, i due approcci vengono qui confrontati,
discutendo pregi e difetti di ciascun metodo.

Nella terza e ultima parte della tesi, viene studiata la relazione tra alterazioni
di matrici di connettività strutturale (SC) di pazienti tumorali e variazioni re-
gionali di metabolismo misurate usando la Tomografia ad Emissione di Positroni
(PET) con tracciante [18F]-FDG. All’interno di questo studio, viene prima pro-
posta una procedura per la selezione dell’algoritmo di trattografia ottimale per
le analisi. A seguire, viene sviluppata una metodologia statistica per rilevare le
loro connessioni della matrice SC alterate dalla presenza del tumore. La presenza
di queste alterazioni viene infine correlata con la PET, e si discutono i risul-
tati ottenuti, ponendo particolare attenzione alle limitazioni di entrambe queste
modalità di imaging.
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Chapter 1

Introduction

Globally, 250000 new cases of brain tumours are diagnosed every year (Ferlay et
al., 2015). Among them, gliomas are the most prevalent and aggressive subtypes,
infiltrating and disrupting the normal appearing parenchyma, and causing signif-
icant morbidity and mortality (Chen et al., 2017; Ostrom et al., 2014). Gliomas
frequently develop from glial cells and, according to the World Health Organiza-
tion (WHO), they are classified into different histological grades that reflect their
malignancy and aggressiveness (Louis, Perry, Reifenberger, et al., 2016; Louis,
Perry, Wesseling, et al., 2021). High-grade gliomas (HGG; grades III and IV) are
considered malignant tumours and are treated more aggressively than low-grade
gliomas (LGG; grades I and II).

Imaging plays a a pivotal role in assisting patients affected by brain tumours,
providing useful information for surgical planning, diagnosis and follow-up. While
Computed Tomography (CT) scans initially were the preferred diagnostic tool
due to their ease of access, they were readily substituted by Magnetic Resonance
Imaging (MRI) as its value became evident throughout the years. Clinical MRI
protocols for brain tumours include several morphological images: T2-weighted
(T2w) and fluid-attenuated inversion recovery (FLAIR) imaging provide clear
outline of the tumoral lesion and oedema, while the gadolinium enhanced T1-
weighted contrast is directly linked to blood-brain-barrier disruption (Dhermain
et al., 2010). While these magnetic resonance (MR) sequences are the basis for the
diagnosis of primary brain tumours, the detailed characterization of their struc-
ture along its clinical course is extremely challenging to be done by morphological
imaging alone. Diffusion Magnetic Resonance imaging (dMRI) is a neuroimaging
technique which allows to probe the human brain tissues by analyzing the dif-
fusive motion of water molecules (Jacques-Donald Tournier et al., 2011). Given
that the process of molecular diffusion is highly sensitive to the structural fea-

16



tures of the environment it occurs in, dMRI has a unique connection to biological
features such as cell sizes, shapes, permeability and spatial arrangement. From
its conception as a tool to measure the apparent diffusion coefficient (ADC) of
water throughout the brain (Le Bihan, Eric Breton, et al., 1986), research into
dMRI methodologies brought forward many hardware- and software-related im-
provement, giving birth to two broad categories of techniques: Microstructure
models (Alexander et al., 2019; Dmitry S Novikov, Els Fieremans, et al., 2019)
and Tractography (Mori, Crain, et al., 1999; Basser, Pajevic, et al., 2000; Jeuris-
sen, Descoteaux, et al., 2019). While extensively used to investigate the healthy
human brain, both these analysis approaches struggle to find consistent applica-
tion in the clinical practice for brain tumours, due to a series of causes. Estab-
lished microstructure models from the literature are usually targeted to healthy
white matter (H. Zhang et al., 2012; Fieremans et al., 2013; Kaden, Kelm, et al.,
2016), but in the tumoral area their parameter estimates lose their specific mean-
ing. New formulations targeted at the tumour require extensive validation before
their possible clinical translation (Nilsson et al., 2018). Furthermore they require
specific acquisition protocols which are not commonly distributed through MR
vendors, rendering their implementation non-trivial (Szczepankiewicz, Lasič, et
al., 2015; T. A. Roberts et al., 2020). On the other side, tractography algorithms
face the issue of false positive/false negative connections (Maier-Hein et al., 2017;
Aydogan et al., 2018) and present overall difficulties in tracking through oedema
and the tumoral region (F.-C. Yeh et al., 2021).

1.1 Aims

Employing microstructure models to extract meaningful information from tu-
moral tissue and characterizing the impact of the mass lesion on the axonal fibers
in the whole brain offer two separate but complementary ways with which dMRI
research can significantly contribute to advance the current state of glioma (and
brain tumours in general) diagnosis, presurgical planning and monitoring. Paying
careful attention to the limitations of the related state of the art techniques, the
work featured in this thesis spans across both these branches of research. More
specifically, the objectives of the thesis were the following

• The assessment of the mathematical reliability of parameter estimates from
selected white matter microstructure models inside the tumoral lesion, with-
out looking at their biophysical meaning.
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• Quantifying patterns of white matter damage due to the presence of the
tumour through the use of tractography algorithms, both at the voxel level
and at the connectome level.

1.2 Outline of the thesis

The structure of the thesis is organized as follows:

• Chapter Two will give a basic introduction to the theoretical and practical
concepts of dMRI. Advanced concepts of microstructure imaging and trac-
tography will be briefly presented in order to better understand the context
of the studies of the subsequent chapters.

• Chapter Three contains an analytical study of goodness of fit and parameter
estimation precision inside the tumoral lesion for three advanced diffusion
techniques: Neurite Orientation Dispersion and Density Imaging (NODDI),
the Spherical Mean Technique (SMT), and the Diffusion Kurtosis Imaging
(DKI).

• Chapter Four is a comparison study between two different approaches to
quantifying patterns of white matter disconnections due to the presence of
a tumour. A quantitative framework to evaluate their similarity is here
proposed, and benefits and criticalities of both techniques are extensively
discussed here.

• Chapter Five details a statistical procedure to define subject-specific alter-
ations of the structural connectome based on the evaluation of structural
connectivity matrices. Before the computation of said matrices, a thorough
tractography algorithm selection is carried out, based on the physiologi-
cal plausibility of the derived tractogram and its sensitivity to streamline
cut-off criteria. Eventually, findings concerning subject-specific structural
alterations are correlated with regional [18F]-FDG PET measures, estab-
lishing a link between the metabolism of normal appearing cortical regions
and the state of their white matter connections.

• Chapter Six marks the conclusion of this thesis, recapping the results of the
work and expressing some brief thoughts regarding their significance and
contextualization in the current literature.
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Chapter 2

Basics of diffusion MRI

2.1 The diffusion process

As the name implies, diffusion Magnetic Resonance Imaging revolves around ac-
quiring magnetic resonance imaging signals which are in some manner impacted
by the physical process of the diffusion of water molecules in the brain. Before
describing this particular biophysical process, it important to note that it is not
the only kind of movement water molecules undergo in physical bodies during an
MRI scan. It is therefore beneficial to introduce the three separate motions to
make a clear separation between these different contexts:

1. We define bulk motion as the motion which occurs when water molecules
move for more for a distance which exceedes the dimensions of a voxels. Bulk
motion usually happens due to subject movements during the scan, causing
single MR images to feature blurring and ghosting, and to be misaligned
between each other.

2. We define flow as the coherent water motion happening inside a single
voxel of the MR images. This movement occurs due to perfusion in blood
arteries, vessels and capillaries. In practice, flow can be multidirectional
when in presence of convoluted capillary structures.

3. The third process, the one we are interested in, is the biophysical process of
diffusion. If we place a drop of ink in a system where diffusion is present,
the center of the drop will remain approximately in the same position,
but particles will start to randomly scatter among the available volume
(provided no obstacle or barriers are present in the medium).
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Figure 2.1: The three different types of water motion experienced by water
molecules. (A) The effect of bulk motion on MR images. (B) Flow. Groups
of molecules experience a displacement with similar intensity and directional fea-
tures. (C) Diffusion. Water molecules scatter randomly and independently from
each other, with no defined direction. Reproduced from (Mori and J-Donald
Tournier, 2013).

Figure 2.1 provides a graphical overview of the three different processes. Hav-
ing distinguished between them, the next few sections will solely be devoted to
give a basic understanding of the process of diffusion

2.1.1 Statistical description of diffusion

Empirical evidence of diffusion (or Intra-Voxel Incoherent Motion, IVIM) dates
back to 1828, when Robert Brown first described the incoherent motion of pollen
grains suspended in water (Brown, 1828). Such motion was quantitatively de-
scribed later by Adolf Fick, who theorized two mathematical laws to describe
this process (Fick, 1855). The first one describes the phenomenon in stationary
conditions, while the second does so in a time-variant system:
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J =
∂

∂x
(Dρ) (2.1)

∂ρ

∂t
+

∂J

∂x
= 0 (2.2)

where J is the net molecular flow, D is the diffusion coefficient, t is time, x is
the position in space and ρ is the particle density. Assuming D is fixed, merging
(2.1) and (2.2) yields:

∂ρ

∂t
= D

∂2ρ

∂x2
(2.3)

The solution to (2.3) was proposed by Albert Einstein (Einstein, 1905), which
has the following form:

ρ(x, t) =
1√
4πDt

e−
x2

4Dt (2.4)

(2.4) reflects the fact that diffusion can be described as a gaussian process
with zero mean and standard deviation (also called diffusion length), equal to:

σ = L(t) =
√
2Dt (2.5)

(2.5) is of pivotal importance as it highlights that the statistical properties
of the net displacement of particles are essentially dependent on the diffusion
coefficient and the time t from which diffusion starts occurring. In absence of
obstacles or barriers, the diffusion coefficient D is determined by the Stokes-
Einstein equation:

σ = µkbT (2.6)

where µ is the mobility of spins, kb is the-Stephan Boltzmann Constant and T

is the temperature. (2.6) highlights how the temperature is an important param-
eter to account for in diffusion experiments, and needs to be accounted for when,
for example, designing and comparing in-vivo and ex-vivo acquisitions. Why is
the diffusion process of water molecules so relevant to us? The answer to this
question lies in (2.5). In typical MRI experiments, the diffusion time is essentially
controlled and fixed between the millisecond and second scales, depending on the
specific acquisition sequence and performance of diffusion gradients. On the other
hand, the diffusion coefficient, between 10◦ and body temperature, usually varies
between 1 to 3 mm2/ms. It follows that typical values for the diffusion length
(again, the standard deviation of the gaussian process described above) are in the
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range:

L(t)∼1− 50µm (2.7)

Two brief but important considerations can be made at this point:

1. Modulating the diffusion time via experimental settings allows us to study
a phenomenon occurring at scales which are far smaller that the nominal
resolution of conventional MRI scanners

2. Furthermore, the diffusion lengths which we can study are similar to the
dimensions of cells composing the tissues of the human body.

Thus, measuring and detecting anomalies in the diffusion process occurring
in a particular region of the brain offers us a powerful tool to investigate the
structural changes caused by potential physiological and pathological events.

2.2 Measuring diffusion with MRI

Given that analyzing the properties of diffusion offers us an invaluable chance
to probe microstructural environments in the human brain, it is important to
understand how this process can be related to the MRI signal. The possibility of
measuring diffusion with Nuclear Magnetic Resonance (NMR) was long known
before MRI was first proposed in early 1970s. The disruptive effect of brownian
motion on NMR measurements was first described by Hahn in 1950 (Hahn, 1950).
Shortly after, the basic formalism describing magnetic resonance, the Bloch Equa-
tions (Bloch, 1946) was extended by Torrey to account for the diffusion process
(Torrey, 1956). Later in the years, Stejskall and Tanner proposed to add a pair
of pulsed gradients in the basic spin echo sequence to enhance the sensitivity of
the NMR signal to the diffusive motion of water molecules (Stejskal et al., 1965).
This addition brought them to the the definition of the Pulsed-Gradient Spin-
Echo (PGSE) scheme, which is the basis of a vast portion of the diffusion-weighted
sequences used nowadays. The PGSE scheme is shown in Figure 2.2.

The two magnetic pulsed gradients featured in the PGSE sequence (denoted
in purple in the figure) introduce dephasing in the precession of the nuclear spins
of water molecules, causing the overall signal to be attenuated. The extent of this
process is governed by the random motion of water molecules occuring between
the application of the two pulsed gradients, following the formula (Emsell et al.,
2016):
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Figure 2.2: The scheme for the Stejskal-Tanner diffusion-weighted spin echo se-
quence with EPI readout. In purple are highlighted the pulsed gradients which
allow the diffusion sensitization. Reproduced from (Avram, 2011). EPI = echo-
planar imaging, RF = radiofrequency.

S =

∫
x

P (x,∆)ϕ(x) dx =

∫
x

1√
4πD∆

e−
x2

4D∆ eiγGδx dx (2.8)

where S is the total NMR signal, P (x,∆) is the probability describing the
diffusion process (see (2.4)), ϕ(x) is the dephasing caused by the diffusion pulsed
gradients, γ is the gyromagnetic ratio and x is the net displacement spins undergo
due to the diffusion process. G, ∆ and δ are respectively the gradient strength,
the diffusion time and the diffusion gradient pulse duration. The three of them
characterize the diffusion gradients in the PGSE sequence.

(2.8) appears convoluted to understand at first. Thus a few considerations
can be made to exemplify its understanding:

1. In cases where either G = 0 or/and δ = 0, the second exponential term
amounts to 1. Without dephasing, the signal subsequently becomes iden-
tical to 1, being the integral of a probability density function. Thus, in
absence of the PGSE pulsed gradients, the signal remains theoretically unat-
tenuated, even in presence of diffusion (D > 0).

2. In cases where both G > 0 and δ > 0, but no diffusion is present (D = 0),
the probability density function collapses to a Dirac’s delta δ0(x). Again,
the integral is identically equal to 1. Thus, with active gradients and no
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diffusion, we are in the case of no attenuation of the original signal (S = 1).

3. Whenever the gradients are active and the diffusion process is present in
the system, nuclear spin populations will experience dephasing due to the
action of the two pulsed gradients, resulting in a decrease of the NMR signal.
(S < 1). The amount of dephasing introduced depends on the experimental
settings G, ∆, δ (i.e. parameters for which values are known and can be
set) and the diffusion coefficient D, which is an intrinsic property of the
system.

(2.8) has a closed form solution, and after several passages of derivation, we
obtain the well-known Stejskal-Tanner formula:

S

S0

= e−γ2G2δ2(∆−δ/3)D (2.9)

where S0 is the signal acquired without diffusion gradient and identical echo
time. In contemporary literature, it is customary to reorganize (2.9) in the fol-
lowing form: S = S0e

−bD

b = γ2G2δ2(∆− δ/3)
(2.10)

The term b is named b-value and has unit s/mm2. (2.10) is a functional reor-
ganization which clearly shows what was previously stated: we have a dependence
on experimental settings (i.e. the b-value) and on a property of the system in
exam (the diffusion coefficient). It is worth mentioning that (2.10) is valid under
the hypothesis that D does not vary within each voxel. As it will be discussed
further in this chapter, this assumption does not hold in practice, causing issues
in the biological interpretation of the formula.

2.3 From the measurement to the quantification:
DWI and DTI

The translation of the diffusion sequence from NMR to MRI begun with the pi-
oneering work of Denis Le Bihan (Le Bihan and Breton, 1985; Le Bihan, Eric
Breton, et al., 1986), who introduced the concept of diffusion-weighted images.
Later in the years additional work combinining the PGSE scheme with 2D Echo-
Planar Imaging (EPI) readout made the sequence feasible in clinical settings by
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Figure 2.3: Schematic illustration of the computation of the diffusion coefficient
map inside the brain. Having acquired a set of dMRI images, the diffusion signal
can be used to quantify the voxel-wise ADC. Adapted from (Mori and J-Donald
Tournier, 2013).

greatly reducing the time of acquisition and the presence of imaging artifacts
(Schmitt et al., 2012; R. Turner et al., 1991). Acquiring diffusion MR images
essentially translates to acquiring a multitude of diffusion-weighted signals, with
precise and known spatial location. Looking back at the mono-exponential be-
haviour of (2.10), it is clear that it is possible to compute an approximation of
the diffusion coefficient D for each location of the MR image defined by its vox-
els. The process of this computation, shown in Figure 2.3, can be explained as
follows:

1. Several diffusion-weighted images of the brain are acquired. These image
have significant differences in terms of contrast because the b-value was set
differently for each one of them. It is common to say that these images have
different diffusion weightings

2. From the entirety of these images, we extract the values relative to a spe-
cific position (see purple and blue dots in 2.3). It follows that we have a
magnitude signal, whose independent variable is the b-value.

3. To each one of these signals, we can fit (2.10) using linear least squares
(LLS) techniques to recover the diffusion coefficient term.
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Figure 2.4: Peculiarities of the diffusive motion of water molecules in presence
of axonal fibres. Particles are free to move in the direction parallel to axonal
bodies, but present motion restriction due to their presence in the perpendicular
direction.

4. Recovering all Ds from the voxels of the brain, we can finally reconstruct
a parameter map which gives us a depiction of how the diffusion coefficient
changes throughout the entirety of the brain.

This process is usually referred to as Diffusion-weighted Imaging (DWI). It is
worth of note that the term D is also known as the Apparent Diffusion Coefficient
(ADC) to highlight the fact that it is an averaged measure. A multitude of
cellular environments, inside which diffusion may behave very differently, inhabit
each voxel of the brain, and ADC is ’apparent’ in the sense that it is an overall
description of these behaviours across its volume. In its simplicity, DWI makes the
strong assumption that the diffusive motion of water molecules is isotropic, which
means that there is no preferential direction along which the water molecules
move. This assumptions does not hold in white matter, where we have bundles of
axons coherently oriented. In this situation, the cellular bodies act as a physical
barrier to the process of diffusion, restricting molecular motion to take place
mainly along the preferential direction of the fibres (see Figure 2.4 for a graphical
representation of the concept).

Thus a single scalar D, representing the diffusion coefficient in a perfectly
isotropic environment, is not adequate when describing a system where the diffu-
sion does exhibit a dependence on the specific direction along which it is measured.
Basser and colleagues (Basser, Mattiello, et al., 1994) released the constraint of
isotropy in the following way, through the introduction of diffusion tensor imaging
(DTI):
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S = S0e
−br⊤Dr

b = γ2G2δ2(∆− δ/3)
(2.11)

where r is the specific direction along which the diffusion signal is sensitized
and D is the diffusion tensor, described by:

D =

dxx dxx dxx

dyx dyy dyz

dzx dzy dzz

 (2.12)

Similarly to the procedure described for DWI, The diffusion tensor D can
be recovered using LLS fitting routines. As the tensor can be described by a
symmetric 3x3 matrix, it is completely characterized by six degrees of freedom
(i.e. dxx. dyy ,dzz dxy dxz dyz). Thus, not counting the S0 image, at least 6
non-collinear directions are needed to fit the DTI model. Once recovered, the
voxel-wise diffusion tensor is usually processed through spectral decomposition,
and its eigenvectors (ϵ1, ϵ2, ϵ3) and its eigenvalues (λ1, λ2, λ3) are recovered.
Starting from this decomposition, several indexes are then quantified. Amongst
them, the most commonly used are the following:

• Fractional Anisotropy (FA): FA is a measure of directional selectivity of
the diffusive process inside a voxel. It varies in [0−1] and is mathematically
defined as:

FA =

√
(λ1 − λ2)2 + (λ2 − λ3)2 + (λ1 − λ3)2

2(λ2
1 + λ2

2 + λ2
3)

(2.13)

An elongated diffusion tensor is represented by high FA values (FA −→ 1)
while spherical tensors (i.e isotropic diffusion) are represented by FA values
close to zero. Figure 2.5 represents these situations (displayed as a ellipsoid)
at different values of FA.

• Mean Diffusivity (MD): MD is a measure which represents the averaged
diffusion coefficient based on the eigenvalues of the diffusion tensor. It is
defined as:

MD =
λ1 + λ2 + λ3

3
(2.14)

Although not mathematically equivalent, it is conceptually similar to the
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Figure 2.5: The shape of diffusion ellipsoids at different values of frac-
tional anisotropy (FA). Elongated ellipsoids correspond to high values of FA
while perfect spherical ellipsoids have FA=0. Reproduced from http://www.
diffusion-imaging.com/2015/10/what-is-diffusion-tensor.html.

ADC quantified with the DWI technique.

• The principal direction of diffusion: the principal eigenvector of the
tensor (ϵ1) is a tridimensional vector representing the main direction along
which water diffuses in a given voxel. Its spatial variation can be represented
by direction-encoded color (DEC) maps.

Illustratory examples of FA, MD and DEC maps are shown in Figure 2.6

2.4 White-matter microstructure imaging: a brief
introduction

DWI and DTI are the basic techniques with which properties of water diffusion
inside brain tissues can be inferred to recover important information regarding
the cellular architecture and its possible damage due to a number of pathologies.
Although sensitive to structural alteration, metrics like FA and MD quantify
diffusion characteristics which may be due a plethora of different causes. Cellular
loss/proliferation, changes in the organization of axonal fibers, demyelination
and the possible presence of oedema may all be causes of significant changes of
DTI indexes. Thus, the real cause underlying their possible modifications are
not properly known, limiting the usefulness of this technique. Microstructure
diffusion models, on the other hand, aim to give a mechanistic description of the
brain architecture by associating specific biophysical meaning to each of their
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Figure 2.6: The main three parameter maps which are extracted with diffusion
tensor imaging. To the left, the mean diffusivity map; in the middle the fractional
anisotropy map; to the right, the direction-encoded color map showing the voxel-
wise principal orientation of diffusion (red: left-right direction, green: anterior-
posterior direction, blue: superior-inferior direction).

parameters. Given its close link with structural features, dMRI is one of the
most suitable techniques on which such models can be built. The identification
of diffusion-based microstructure models allows to recover a multitude of metrics
which can be thought to be surrogates of histological measures. Figure 2.7 shows
several characteristics which may be recovered from these techniques.

Amongst others, these include fractional volume densities occupied by axons
and the extracellular space, the geometrical spreading of fibre bundles and cellular
population sizes. In most cases, the modeling paradigm is relatively straightfor-
ward: a particular biophysical object is simplified to a geometry which captures
its relevant features. A diffusion protocol designed to optimally characterize the
parameters of the simplified geometry is studied, and its attenuation model is
subsequently fitted to the acquired data. Figure 2.8 illustrates this process for
axonal fibres.

The first diffusion-based microstructure model for white matter was proposed
by Stanisz and colleagues (Stanisz et al., 1997). The technique featured in this
study designated individual compartments for glial cells, axons and the extra-
cellular space, aiming to estimate the volume fraction of each compartment and
the spatial dimensions of the cellular populations. The structure of this model
has 9 degrees of freedom and requires an extensive set of images acquired at
multiple diffusion times and gradient strengths to be fit. The need for a de-
manding acquisition protocol rendered this approach difficult to transpose clini-
cally. Building upon this work, a plethora of models have since then be presented
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Figure 2.7: Examples of histological features which can be measured by
biopsy/subsequent cellular microscopy and their surrogate retrieved with mi-
crostructure imaging MRI. A-D, Imaging indices of neurite (axon or dendrite)
density with classical histology (A) and by model-based dMRI (B-D). E-G, Imag-
ing fibre orientation distribution. Estimation of fibre directions from histology
(E) and corresponding estimates from dMRI (F,G). H-L, Imaging indices of axon
diameter. Histology-based high-resolution maps enabling measurements of indi-
vidual axon diameters (H) and their dMRI-based estimation (I-L). Adapted from
(Alexander et al., 2019).

(Alexander et al., 2019; Dmitry S Novikov, Els Fieremans, et al., 2019). As seen
in Figure 2.8, they mostly focus on a two- or three-compartment (representing
intra-axonal,extra-axonal and, if included, cerebrospinal fluid) structure without
exchange to describe the diffusion signal from white matter. Water diffusion
in myelin sheets surrounding axons would require an additional compartment,
but its contribution to the overall dMRI signal is irrelevant due to its short T2
relaxation time (Jelescu and Budde, 2017).

2.5 Tractography: a brief introduction

As noted in a previous section, one of the key quantities which can be recovered
by fitting the voxel-wise diffusion tensor is λ1, the principal orientation of the
diffusive motion of water molecules. The local directions recovered in each voxel
may then be pieced together to obtain a picture of long and short pathways
connecting different regions of the brain. This process is usually labelled as
tractography or fiber tracking. Tractography algorithms reconstruct streamlines
(Conturo et al., 1999; Mori, Crain, et al., 1999), which are curves in a defined
3D space with the property of being tangent in each of their points to the local
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Figure 2.8: The modeling paradigm for axonal fibres in the brain. At first, the
complex biological architecture is approximated to a standard geometry whose
diffusion properties can be described in parametrical terms. Subsequently, dMRI
images from a suitable protocol are acquired and parameter maps are computed.
Reproduced from (Alexander et al., 2019).

direction of diffusion. In mathematical terms:

dr(s)

ds
= v(r(s)) (2.15)

where s is the varying arc length, r is the 3D position along the streamline,
and v is the local diffusion orientation at the position r. Having at disposal the
vector field containing all diffusion directions in the brain, the most basic way
to reconstruct the streamlines is by performing Euler Integration (Mori, Crain,
et al., 1999):

ri+1 = ri + v(ri)∆ (2.16)

which is equivalent to say that, given a starting point r0, the reconstruction
of r1involves following the field direction v(r0) for a short distance ∆, also called
step size. The new position will be called r1, and the process can begin anew
until some termination criteria are met. The process of streamline reconstruction
is visualized in Figure 2.10

Euler’s method falls into the category of first-order integration methodologies,
which assume that v is constant along the distance ∆. This assumption generally
does not hold, especially in highly curved regions. While one simple solution is
the reduction of the step size, it may be beneficial to use Runge-Kutta integra-
tion methodologies (Butcher, 1996), which are less biased by these integration
errors (Basser, Pajevic, et al., 2000). In its simplest form, diffusion tractogra-
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Figure 2.9: General modeling schematics (left) and white matter tissue compo-
nents (right). The definition of the various compartmental diffusivities and vol-
umetric fractions depend on each model specific formulation. Myelin sheats are
not treated as a compartment due to their minimal contribution to the diffusion
signal caused by their short T2 relaxation time. Reproduced from (Jelescu and
Budde, 2017).

phy relies on DTI to extract the principal diffusion direction occurring inside a
voxel. Such a diffusion description may be too simplistic in cases of complex
architectural configurations such as crossing fibres (Savadjiev et al., 2008). Mul-
tiple solutions, usually labelled higher order models, have been proposed through
the years to extract diffusion directions from multiple fibre populations in single
voxels (Dell’Acqua et al., 2017). These approaches require richer dMRI proto-
cols than ones used to fit DTI, but are demonstrated to produce fiber trajectories
which are biologically more plausible in general (Jeurissen, Leemans, et al., 2011).
Amongst them, spherical deconvolution (SD) is arguably the most notorious ad-
vanced approach (J-Donald Tournier, Calamante, Gadian, et al., 2004), estimat-
ing voxel-wise fiber orientations as a probability distribution function varying on
the unit sphere (fiber orientation distribution, FOD). FODs are usually forced
to yield non-negative values using constrained spherical deconvolution (CSD, J-
Donald Tournier, Calamante, and Connelly, 2007), an improved version of SD
which gives more physiologically plausible results, is robust to noise fluctuations
and provides better angular contrast.

Another key feature of fiber tracking algorithms regards the nature of the
sampling of the diffusion direction at each point of the streamline construction
process. Such nature may be either deterministic or probabilistic, with the fol-
lowing differences:

• Deterministic algorithms assume there is a single diffusion orientation in
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Figure 2.10: The vector field which contains the local predominant diffusion di-
rection and two streamlines. The red one is part of the corpus callosum, while the
blue one is part of the cortico-spinal tract. In each voxel, streamlines are tangent
to local orientations. Reproduced from (Jeurissen, Descoteaux, et al., 2019).

each voxel of the brain. This direction is chosen with empirical criteria, such
as selecting the principal eigenvector of the diffusion tensor (e.g. DTI-based
tracking) or picking the maximum of an orientation distribution function
(e.g. CSD-based tracking).

• Probabilistic algorithms, on the other hand, assume that multiple fiber
populations with different directions may coexists in a single voxel. As
such, at each streamline point, the direction to follow is sampled from a
continuous probability function (i.e., the orientation distribution function,
ODF). Probabilistic approaches are preferred by some authors because they
think they better approximate the biological variability of white matter
tracts in the human brain (J-Donald Tournier, Calamante, and Connelly,
2012).

Example of different tractography approaches to reconstruct the cortico-spinal
tract are shown in Figure 2.11. As it can be noted from the figure, deterministic
DTI approaches (left) provide the most essential description of the axonal path-
ways of the brain. Indeed, DTI-based probabilistic algorithms (center) may allow
for a more extensive delineation of main fiber bundles. However, it is by combin-
ing probabilistic sampling with higher order diffusion models such as CSD (right),
that one achieves the maximum sensitivity in tracking the most peripheral fibers.
While certainly appearing more capable in describing the intricate nature of the
connection of the human brain, probabilistic CSD-based tractography algorithms
are far from being perfect. The more complex the reconstruction process is, the
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more susceptible it becomes to errors, giving birth to streamlines which depict
nonexistent connections in the brain. This is the problem of the so called ’false
positive connections’ (Maier-Hein et al., 2017). The opposite problem, ’false neg-
ative connections’ (i.e. the failure to reconstruct truly existent connections) is
also present, and tends to affect DTI-based algorithms more than the advanced
alternatives (Knösche et al., 2015).

Figure 2.11: The corticospinal tract of a single subject reconstructed with three
different tractography approaches. To the left, DTI-based computation of the
principal orientation and deterministic direction sampling. In the middle DTI-
based computation of the principal orientation and probabilistic direction sam-
pling. To the right CSD-based computation of the principal orientation and
probabilistic direction sampling. Adapted from (Calamante, 2019). DTI = diffu-
sion tensor imaging, CSD = constrained spherical deconvolution.

.
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Chapter 3

Diffusion-based microstructure
models in brain tumours: fitting in
presence of a model-microstructure
mismatch

3.1 Introduction

Since its introduction as a tool of outstanding sensitivity to detect early cerebral
ischemic changes in acute stroke patients (Van Everdingen et al., 1998), diffu-
sion magnetic resonance imaging has proven its invaluable usefulness in probing
tissues’ microstructure. Notoriously, the involvement of invasive techniques such
as biopsy and subsequent pathological studies are required to retrieve detailed
information concerning the anatomy of the brain.

With the advent of dMRI, some of these important features became non-
invasively accessible. In this field, Diffusion Tensor Imaging (Basser, Mattiello,
et al., 1994) stands out as the most prominent and widely known approach to
measure the anisotropic nature of water motion inside biological tissues, both in
vivo and ex vivo.

Although sensitive to microstructural variations, DTI metrics suffers from
poor specificity, as they may be affected by both neurite density and geometrical
alterations (Jacques-Donald Tournier et al., 2011). To overcome this issue, the
joint use of high angular resolution diffusion and the multi-compartment mod-
elling of the dMRI signal gave birth to techniques labelled as ‘microstructure
imaging’ (Alexander et al., 2019), whose aim is that of virtual histology. These

35



models hypothesize that the voxel-wise diffusion signal arises from the composi-
tion of several microenvironment of the brain (e.g., cerebrospinal fluid, intra/extra
axonal spaces) and try to recover their relative contributions to it in a data-driven
fashion.

Although it is possible to fit microstructure models to detect structural changes
caused by different pathologies, whenever the normal appearing tissues are dis-
rupted, the generalized use of these techniques requires some additional cares.
Such is the case of brain tumours.

In this context, several hypotheses of these techniques, concerning cell shapes
and water diffusivities, no longer hold. This divergence between the biophysical
model and the underlying microarchitectural truth causes the impossibility to
have a clear physiological interpretation of the diffusion signal (Wen et al., 2015).

Despite the presence of these issues, current state-of-the-art literature is no
stranger to the employment of these techniques in gliomas, with a major focus on
the use of the Neurite Orientation Dispersion and Density Imaging (H. Zhang et
al., 2012) (NODDI) model. Listing some examples, Masjoodi et al. (Masjoodi et
al., 2018) found good separation between oedema, tumour and normal-appearing
tissues; Maximov et al. (Maximov et al., 2017) and Li et al. (S.-H. Li et al.,
2019) showed significant differentiation between different glioma grades, while
Kadota et al. (Kadota et al., 2020) found good discrimination between gliomas
and solitary brain metastases. Additionally, Caverzasi et al. (Caverzasi et al.,
2016) proposed colour encoded maps of NODDI volumetric fractions which enable
fine visual characterization of neoplastic pathologies.

Successful applications like these open the interesting question whether a mi-
crostructure model (a mathematical expression which gives specific biophysical
meaning to its parameter estimates) outside of its physiological assumptions may
be used as a signal representation (an approximate mathematical description of
the data, not based on any theory on the composition of the signal it describes)
(Dmitry S Novikov, Kiselev, et al., 2018). For example, the entire scientific
field of radiomics (Timmeren et al., 2020) relies on the data-driven analysis of
texture features, whose link to specific physio-pathological properties is question-
able. Radiomics-based models succeed in explaining tumour phenotypes, giving
precious information to decision-support techniques for personalized treatment
(Aerts et al., 2014). With the increasing use of machine learning techniques
in the dMRI field (Ravi et al., 2019), parameter maps coming from NODDI or
similar alternatives may prove as useful biomarkers to use in conjunction with
other imaging modalities to support tumour classification and disease progression
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monitoring. The current state of the art literature, however, lacks a thorough ex-
amination whether proper parameter estimation of these techniques is feasible
in tumoral tissues. Indeed, without this assessment, no further consideration
regarding the value a parameter may have in this different environment can be
made.

Given these premises, in this work we deal with this first-level question. We
here aim to investigate whether diffusion-based microstructure models can be
properly identified in an environment far from that of their conception. Without
making any inference about the physiological meaning and specificity of these
techniques in tumours, the assessment we propose here has a main focus on two
specific topics: 1) Are there significant model biases in fitting these techniques
in the tumoral lesion? 2) Is the accuracy of the parameter estimates completely
disrupted by the physiological implausibility of the employed diffusion model?

We tackle these questions by fitting two microstructure models from the liter-
ature on a cohort of 11 brain tumour patients and comparing their performance
both in the normal-appearing brain and in the tumoral lesion. We are not inter-
ested here in comparing performance between models, but between tissues using
the same technique. In particular, because of the growing number of studies
using NODDI and the possibility of estimating the compartmental diffusivities
(which are not estimated in NODDI) with the direction-averaged approach pro-
posed by the Spherical Mean Technique (Kaden, Kruggel, et al., 2016; Kaden,
Kelm, et al., 2016) (SMT), we mostly focus on these two mathematical struc-
tures. Additionally, we include in our analysis the Diffusion Kurtosis Imaging
(DKI) signal representation (Jens H Jensen et al., 2005; Steven et al., 2014). Due
to not making any hypothesis on the underlying microstructure geometry, DKI
does not suffer from the above-mentioned mismatch and may be used as reference
for intra-model comparison of quality of fit measures in different tissues (Dmitry
S Novikov, Kiselev, et al., 2018). We here performed an analysis of model fitting
results using the following statistical tools:

• The Model’s Residual Sum of Squares (RSS): The RSS will be computed
to evaluate the average goodness of fit for all tissues.

• The Uncertainty of parameter estimates: standard deviations of parameter
estimates were computed as their Cramer-Rao Lower bound (CRLB) and
statistical bootstrapping of the model.

• The generalized sensitivity functions (GSFs): in this work, GSFs introduced
to investigate the sensitivity of parameter estimates to the employed diffu-
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sion protocols. In other words, can a single diffusion protocol yield reliable
parameter estimates in both normal appearing and pathological tissues?
We look for an answer to this question using this tool.

The rest of the text is organized as follows. In the “Methods” section, the inves-
tigated models/signal representations are briefly introduced, along with the dMRI
acquisition details and the framework we use to evaluate model performance. In
the “Results” section we report the outcomes separately for each analysis and,
lastly, the “Discussion and Conclusion” section provides contextualization of our
findings. Here, we highlight the contribution of this work to the literature and
discuss its limitations.

3.2 Methods

Firstly, this section gives a brief overview of the models used in this work. As a
second point, we explain the metrics we use to evaluate their performance.

3.2.1 Models and signal representations

The two techniques we fitted to oncological data were the original NODDI imple-
mentation and the bi-compartment SMT. These models, while providing different
physiological information, share modest protocol requirements in terms of gradi-
ent performance. Indeed, one hundred diffusion directions distributed following
the static repulsion of charges, taken across two b-shells, are not only sufficient,
but also reported as optimal (H. Zhang et al., 2012). Whole brain quantification
is relatively fast, taking 4 hours for NODDI (an acceleration down to 5/10 min-
utes is possible by employing the AMICO framework (Daducci et al., 2015)) and
5 minutes for the SMT on standard machines. Moreover, by employing solely
tensor-like components for the construction of their compartments, they allow
the use of the b-value quantity to define the overall diffusion weighting, thus
bypassing the need for the separate introduction of its ‘microparameters’ such
as gradient strength and diffusion time. These qualities mark the reason why
they are preferentially selected by clinical studies investigating brain microstruc-
ture. The DKI technique can be fitted on a similar protocol to the one described
above, as the higher b-shell (provided it has b > 1500s/mm2) disentangles the
non-Gaussian effects of water diffusion in the brain.
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NODDI

Arguably the most widely known diffusion-based microstructure model, NODDI,
adopts a three-compartment formulation aimed to describe the overall signal as
a composition of diffusive behaviours in three different environments. As such,
the general equation of the model has the following form:

A = (1− Viso)(VicAic + (1− Vic)Aec) + VisoAiso (3.1)

where A is the acquired normalized dMRI signal, Viso is the isotropic volume
fraction and Vic is the intracellular volume fraction. Representing the normalized
signal of three compartments, Aic Aiso and Aec respectively model the intracel-
lular space by using Watson distributed sticks, the extracellular space with an
anisotropic tensor and the free water content with a perfectly isotropic tensor.
Figure 3.1 contains a graphical depiction of the structure described by (3.1). The
diffusion signal arising from each compartment (i.e Aic Aiso and Aec) has its own
mathematical formulation, which can be found in the original article presenting
the model (H. Zhang et al., 2012). Accounting for NODDI in its entirety, the
complete set of model parameters to be estimated is:

1. Vic [unitless], the intracellular volume fraction.

2. κ [unitless], concentration parameter of the Watson distribution (present in
the mathematical formulation of Aic) .

3. Viso [unitless], the isotropic volume fraction.

4. Θ [rad], first Euler angle to describe the mean orientation of the Watson dis-
tribution in spherical coordinates (present in the mathematical formulation
of Aic)

5. ϕ [rad], second Euler angle to describe the mean orientation of the Watson
distribution in spherical coordinates (present in the mathematical formula-
tion of Aic).

It is worth mentioning that, while technically κ is the model parameter, the
original authors propose to visualize and evaluate the so-called Orientation Dis-
persion Index, which ranges between 0 and 1 and, more intuitively than κ, maps
higher axonal dispersion into higher values. The fitting routine for NODDI de-
termines the maximum likelihood of parameter estimates with the assumption
of additive Rician noise in two steps. Firstly, a brute force search is performed

39



Figure 3.1: Breakdown of the total normalised diffusion MRI signal as modelled
by Neurite orientation dispersion and density imaging. reproduced from (Tariq
et al., 2016).

over a coarse and regular grid of possible parameter combinations to provide a
preliminary, rough estimate. As nonlinear estimators can be highly sensitive to
the initial choice of the parameters, this preliminary step offers reasonable initial-
ization conditions. Consequently, results from the previous phase are carried over
to be used as a starting point for the non-linear optimization procedure involving
the Gauss-Newton technique. In both steps, the cost function to minimize is the
rician log-likelihood function Lric (Alexander, 2008), described as:

Lric =
M∑
n=1

(log(Sn(b,G))− 2log(σ) + log(I0(D̃n)− Ãn) (3.2)

where D̃n and Ãn are respectively defined as:

Ãn =
Sn(b,G)2 + S̃n(b,G)2

2σ2
(3.3)

D̃n =
S̃n(b,G)Sn(b,G)

σ2
(3.4)

With σ being the standard deviation of the gaussian distribution underlying
the Rician distribution, Sn the n-th measurement, S̃n the n-th model prediction, b
the b-value, G the diffusion gradient direction, M the total number of acquired q-
space points and I0 the Bessel function of the first kind. During the optimization,
the volumetric fractions are constrained to belong to the [0-1] interval, while the
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free water diffusion coefficient (present in the mathematical formulation of Aiso)
and the intrinsic free diffusivity (present in the mathematical formulation of Aic)
are respectively fixed to diso = 3 · 10−3mm2/s and din = 1.7 ·mm2/s.

SMT

The Spherical Mean Technique model exploit the powder averaging (Kroenke et
al., 2004; Callaghan et al., 1979) of the angularly varying diffusion MR signal
to obtain a measurement which is independent from the orientation distribution
function (ODF) of fibers. As such, SMT does not explicitly model the diffusion
signal but rather its b-value dependent mean. Following this rationale, Kaden
and colleagues (Kaden, Kelm, et al., 2016) proposed a bi-compartment model,
separating intracellular and extracellular environments, in the following form:

ēb = vintē
int
b + (1− vint)ē

ext
b (3.5)

where ēb is the averaged spherical mean of the dMRI signal, vint is the intracel-
lular volume fraction and the two compartments have the following formulations:

ēintb =

√
πerf(

√
bd||)

2
√
bd||

(3.6)

ēextb = e−bdext

√
πerf(

√
b(d|| − dext))

2
√

b(d|| − dext))
(3.7)

where erf is the error function, d|| is the intrinsic diffusivity and dext follows
the tortuosity model dext = (1− vint)d|| (Stanisz et al., 1997). Unlike NODDI, no
compartment is devoted to account for cerebrospinal fluid presence, and diffusiv-
ity values are central in the estimation process instead of being fixed quantities.
In this case, the complete set of parameters to be estimated is:

1. vint, the intracellular volume fraction.

2. d||, the intrinsic diffusivity inside axons.

Another remarkable difference from the NODDI model is the choice of the
estimator: the SMT bi-compartment model employs a constrained unweighted
nonlinear least square approach with the following cost function:

C =
N∑
i=1

(ēbi − êbi(vint, d||))
2 (3.8)
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where N is the number of spherical mean images, ēbi is the spherical mean of
the diffusion signal taken at the i-th shell and êbi is the prediction of the SMT
bi-compartment model. (3.7) is subject to the constraints vint ∈ [0 − 1] and
0 < d|| < dfree, which take place to ensure both diffusivities lie in a physically
meaningful range. The bulk water diffusivity constitutes the upper bound, with
a body-temperature approximate value of dfree = 3.05µm2/ms.

DKI

The DKI is the straightforward extension of the DTI model which adds a quadratic
term in the b-value series expansion of the dMRI signal to quantify the degree
of non-gaussian diffusion happening inside the different tissues. Like DTI, DKI
does not make any physiological assumptions about possible diffusion behaviours
inside/outside cellular object and is therefore referred to a signal representation.
The formula for the DKI is given by the second-order approximation of the Taylor
expansion of the noiseless diffusion-weighted signal around b=0:

ln[S(b,g)] = ln[S(0)]− b
3∑

i,j=1

gigjDi,j +
b2

6
(

3∑
i=1

Dii

3
)2

3∑
i,j,k,l=1

gigjgkglWijkl (3.9)

where S is the diffusion signal, gi are the diffusion gradient directions, Dij

are the components of the diffusion tensor and Wijkl are the components of the
diffusion kurtosis tensor. As the fitting of the DKI model can be formulated
as a linear regression problem, we used the readily available MATLAB toolbox
implementing the weighted linear least-square estimator (Veraart, Sijbers, et al.,
2013) described by the equation:

p = (XTWX)−1XWy (3.10)

where p is vector containing the parameters of the model, X is the design
matrix of the regression problem, y is the vector of the observed diffusion signal,
and W is the diagonal weight matrix containing the square of the observed signal.

3.2.2 Assessment Metrics

Residual Analysis

One of the most practical ways to assess whether a model can accurately represent
the diffusion signal is to look at the behaviour of its residuals, which are defined
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as:

r(bi,Gi) = S(bi,Gi)− Ŝ(bi,Gi) (3.11)

where S is the measured signal, Ŝ is the model prediction, bi is the b-value
and Gi is the diffusion gradient direction. To explain their usefulness, let the
diffusion signal be represented as:

S(bi,Gi) = Strue(bi,Gi) + n(bi,Gi) (3.12)

where Strue is the physiological source of the signal and n is the additive noise.
Under the hypothesis that our microstructure model is a good approximation of
noiseless source, i.e. Ŝ ∼= Strue, the model residuals are an estimation of a random
realization of n:

r(bi,Gi) = n(bi,Gi) (3.13)

From (3.13), we essentially assess whether model residuals are centred around
zero and whether their variances are comparable to that of the additive noise.
Such a qualitative analysis, valid in the case of gaussian noise, is extended to
the rician case, as for SNR > 2 the two probability distributions have similar
properties [24]. When looking at MR images composed by several hundred thou-
sand voxels, the inspection of all generated residuals is often performed by simply
computing the Residual Sum of Squares to recover a voxel-wise scalar measure of
model fit quality. The RSS is mathematically defined as:

RSS =
N∑
i=1

r(bi,Gi)
2 (3.14)

where N is the number of the acquired q-space points. Under the hypothesis
noise is invariant to the gradient direction and b-value changes, one can also
derive a voxel-wise estimation of the standard deviation of the measurement noise.
For each voxel, this was done by approximating σ as the standard deviation
computed across the multiple b0 measurements (Jacques-Donald Tournier et al.,
2011). Subsequently, we computed the expected RSS (i.e, the RSS a model should
approximately have if it is in accordance with the underlying noise hypotheses)
as:

E[RSS] = σ2N (3.15)
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Uncertainty of estimated microstructure parameters

To assess whether the estimation process of the given model yields robust and re-
producible results in vivo, it is necessary to understand how the intrinsic variance
of the measurement error affects the final parameter estimate. One way to tackle
these problems relies on the use of statistical bootstrapping (Efron et al., 1994)
to extract variability from the dataset. Statistical bootstrapping in the modelling
context can be summarized by the following steps:

1. Fit the MR signal with the employed diffusion model and compute the
model prediction and residuals.

2. Obtain a unique permutation of the extracted residuals and add it the model
prediction.

3. Fit the newly synthetized diffusion signal with the model again, obtaining
a new vector of parameter estimates.

4. Given all the iterations, compute the standard deviation of parameter esti-
mates.

This technique requires extensive computational power, as multiple model fit-
ting steps are required to achieve statistical significance. A second, less time-
demanding, strategy can be pursued by exploiting a theoretical result from the
mathematical statistics frame known as the Cramer-Rao Lower Bound (CRLB).
Briefly, let the Fisher information matrix be:

Ji,j = E[
∂2L

∂wi∂wj

] (3.16)

where L is the log likelihood of the measurement with the appropriate noise
model and wi,j are the model parameters. If the partial derivatives ∂L/∂wi exist,
the used estimator is unbiased and matrix J is invertible, then:

Σp ⪰ J−1 (3.17)

where Σp is the covariance matrix of the parameter estimates. (3.17) effec-
tively means, for the single model parameters that:

σ2 ≥ (J−1)i,j (3.18)

The Fisher information matrix J has a closed form solution when the additive
noise model is gaussian. However, when this assumption becomes Rician, which
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is valid in general for MR magnitude images (Gudbjartsson et al., 1995), the for-
mulation becomes less trivial and, borrowing the results from (Alexander, 2008),
the information matrix becomes:

Ji,j =
K∑
k=1

1

σ4

∂Ŝk

∂wi

∂Ŝk

∂wj

(Zk − Ŝ2
k) (3.19)

where K is the number of measurements and Zk has the following form:

Zk =

∫ ∞

0

Ŝ2
kI

2
1 (
ŜkS

σ2
)I20 (

ŜkS

σ2
)Pric(S)dS (3.20)

where I0,1,...,n are the modified Bessel functions of the first kind and Pric de-
notes the Rician distribution. As presented in the original article (Alexander,
2008), the integral in (3.20) requires numerical approximation and computing its
exact values for Zk is computationally intensive. Thus, we precompute a grid
of possible fixed values and rely on linear interpolation to recover pointwise esti-
mates. The evaluation of CRLB derived variance metrics and the model residuals
are common practice in modelling in medicine and as such they mark the basis
of the analysis in this work.

Sensitivity analysis of the model equations

Sensitivity equations are often used in simulation studies of physiological systems
to understand how a variation of model parameters affect model outputs (Frank
et al., 1980). They are generally used for optimal experiment design purposes,
but we here used them to the test whether the employed protocol was suitable for
parameter estimation in all different tissues. More specifically, we adopted the
GSFs formulation proposed by Tomaseth and Cobelli (Thomaseth et al., 1999).
Briefly, GSFs recover, in a context where time is the independent variable, which
temporal sub-intervals are informative for a particular model parameter. This is
done by evaluating the Fisher Information conveyed on a model parameter by a
hypothetical observation and normalizing it by the total information provided by
the entire set of the evaluated observations. Thus, for each model we compute
the Generalized Sensitivity matrix as:

GS(bJ) =
J∑

j=1

[
M∑

m=1

Iθ(bm)]
−1Iθ(bj) (3.21)

where GS is the Generalized Sensitivity matrix computed on a subset of the
b-values bJ , M is the length of the b-value vector b = [b1, b2, . . . , bM ], and Iθ(β)
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is the Fisher Information matrix computed from observations coming from a
diffusion shell at b-value equal to β, according to Equation (3.16). GSFs for all
separated parameters are then extracted as:

gsf θ(bJ) = diag(GS(bJ)) (3.22)

Operatively, we evaluate GSFs for both NODDI and the SMT bi-compartment
model on increasingly higher diffusion shells in the range b ∈ [0 − 4000]s/mm2

with 30 uniformly distributed gradient directions. Model parameter values for
the generation of GSFs of a specific tissue were chosen as their median across
that tissue for a representative subject of the dataset.

3.2.3 In vivo acquisition

Eleven patients suffering from de novo brain tumours have been scanned at the
University Hospital of Padova. All procedures were in accordance with the ethical
standards of the institutional research committee and with the 1964 Helsinki
declaration plus later amendments. All participants provided informed, written
consent in accordance with the local University Hospital Institutional Review
Board. DWIs have been acquired on a Siemens Biograph mMR-PET/MR scanner
at 3T equipped with the PET compatible 16-channels Siemens head and neck
coil (TR/TE 5355/104ms; 2.0x2.0x2.0 mm3). Each volume was composed of
68 slices, acquired in interleaved mode with a multiband accelerator factor of 2
(CMRR, R014) and no in-plane acceleration. The multi-shell diffusion protocol
was composed by a total of 100 diffusion weighted images, subdivided in the
following way:

• 10 b0 images, with zero diffusion weighting;

• 30 diffusion weighted images at b-value=710 s/mm2 (Shell 1);

• 60 diffusion weighted images at b-value=2855 s/mm2 (Shell 2);

In varying the b-value, diffusion time and impulse duration have been kept
fixed to values ∆ = 50.05ms and δ = 27.77ms, while gradient strength G was al-
tered. This diffusion HARDI protocol is the optimized two shell NODDI protocol
as described in (H. Zhang et al., 2012). Each diffusion volume has been acquired
in both Anterior-Posterior (AP) and Posterior-Anterior (PA) phase encoding di-
rection for pre-processing needs, as explained in a subsequent section. In the
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same MR session, a reference 3D T2-weighted Fluid Attenuated Inversion Recov-
ery (FLAIR) image (TR/TE 5000/395ms; 1.0x1.0x1.0mm3; FOV 250mm), two
T1w structural images (TR/TE 2400/3.2ms, 1.0x1.0x1.0mm3, FOV 256mm, 160
slices) acquired both before and after contrast agent injection, and a T2w struc-
tural image (TR/TE 3200/536ms, 1.0x1.0x1.0mm3, FOV 256mm, 160slices)
were acquired.

3.2.4 Preprocessing of images and tumour segmentation

The acquired diffusion weighted volumes were visually inspected to identify and
remove those images affected by interslice instabilities (Bastiani et al., 2019)
which were deemed excessively corrupted for subsequent pre-processing tech-
niques to correct. The rest of the pre-processing was executed in its entirety
within the MRtrix Software (J-Donald Tournier, R. Smith, et al., 2019) and fea-
tures an initial denoising step based on random matrix theory (Veraart, Dmitry
S Novikov, et al., 2016), and a subsequent call to the tools topup (Andersson,
Skare, et al., 2003) and eddy (Andersson and Sotiropoulos, 2016) from the FM-
RIB Software library (FSL) for B0 inhomogeneity, eddy current and motion joint
correction. Tumour masks to separate the tumour core and the oedema from
healthy tissue were manually drawn by an expert radiologist on the acquired
T1w, T2w and FLAIR images and were subsequently coregistered to the mean
b0 volume with the Advanced Normalization Tools (ANTs) (Avants et al., 2011)
toolbox. Structural pre-processing was applied to the T1w image of each patient
and consisted in bias field correction (N4BiasFieldCorrection, (Tustison et al.,
2010)), skull-stripping (Multi-Atlas Skull Stripping, (Doshi et al., 2013)), tissue
segmentation (into GM, WM and cortico-spinal fluid, with the unified segmenta-
tion tool (Ashburner et al., 2005) of SPM12 v. 7771) and diffeomorphic non-linear
registration (as implemented in the SyN algorithm of ANTs) to the symmetric
MNI152 atlas. Segmentation results were further registered to the native b0 vol-
ume using ANTs by applying an affine transformation previously estimated on
the T1w image.

3.2.5 Model Fitting softwares and Statistical Analysis

We fitted NODDI, SMT and DKI to the acquired oncological dataset using
off-the-shelf toolboxes which are publicly available (http://mig.cs.ucl.ac.uk/
index.php?n=Tutorial.NODDImatlab for NODDI, https://github.com/ekaden/
smt for SMT and https://github.com/jelleveraart/RobustDKIFittingforDKI)
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and integrated some in-house MATLAB scripts to compute the RSS, the voxel-
wise approximation of parameter standard deviations (σ) through the Cramer-
Rao inequality (for SMT and NODDI) and statistical bootstrapping (for DKI).
Subsequently, by computing the GSFs, we evaluated the general sensitivity of
model parameters to investigate whether the different microstructural environ-
ments (i.e., WM, GM, tumour core and oedema) affect the optimality of the
employed diffusion protocol. Lastly, we briefly discuss the orthogonality of in-
formation these diffusion parameters may convey in differentiating the studied
tissues. Correlation matrices between voxel-wise values of each pair of diffusion
metrics were computed for every subject and tissue along with their across-subject
median. Lastly, from these median tissue-specific matrices, we eventually com-
pute the parameter Redundancy Matrix (RM) by thresholding the four matrices
at ρ = 0.5 and computing their intersection. The RM matrix highlights strong
correlations between diffusion metrics which are common to GM, WM, Oedema
and the tumour core.

3.3 Results

3.3.1 Signal considerations, model fitting and parameter
precisions

Figure 3.2 shows an example of the voxel-wise model fit for NODDI/SMT/DKI
and highlights how the three techniques quantify microstructure information in
very different ways.While NODDI and DKI capitalize on the entirety of the ac-
quired diffusion signal, the SMT is a model for its spherical mean, thus reducing
the number of independent points to the number of the acquired diffusion shells.
This has repercussions in terms of the feasibility of residual analyses of the model
in case of widely spread two shells HARDI acquisitions such as the one we utilize
here: as the model features two degrees of freedom, the fit results in a perfect
interpolation of the available data, rendering the computation of residuals trivial
and noninformative in terms of goodness-of-fit. In the other two cases, model
residuals have definite meaning, and their derived metrics can be reliably quan-
tified. In the representative voxel in the figure, the average of NODDI and DKI
residuals are respectively µNODDI = 0.0748 [A.U.] and µDKI = 0.127 [A.U.], de-
noting the absence of model biases in terms of fitting. Standard deviations for
this example fit are σNODDI = 16.61 [A.U.] and σDKI = 5.61 [A.U.], σNODDI

higher than σDKI but both comparable with the estimation of the noise standard
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Figure 3.2: On the top row, visualization of the diffusion signal along with NODDI
model prediction and its residuals. On the mid row, the DKI model prediction
of the diffusion signal and its residuals. On the bottom row, the spherical mean
of the signal and the SMT bi-compartment model prediction. NODDI = neurite
orientation dispersion and density imaging, SMT = spherical mean technique,
DKI = diffusion kurtosis imaging.

deviation through the b0 images σnoise = 6.26 [A.U.].
Figure 3.3 shows both the maps of microstructure parameters of the three

diffusion techniques and those of their relative standard deviation for an axial
slice of a representative patient. Although the modelling choices for the vari-
ous compartments may be physiologically questionable in tumours, the employed
parameter estimators are able to react to the different features of the diffusion
signal and output spatially coherent metrics, both in terms of their value and
uncertainty. NODDI and SMT parameter maps appear to have a good degree
of spatial continuity in the pathological area, revealing unique contrasts which
are not seen in structural images and in the DKI model. The standard deviation
images show a varying degree of spatial smoothness both in normal appearing
tissues and in the tumoral lesion. Although standard deviations are very close in
numerical values, some slight trends can be observed, where the tumoral lesion
appears to have higher precision with respect to normal appearing tissues for all
parameters except for NODDI’s ODI.

These representative single-slice observations are generalized in Figure 3.4,
which shows the boxplot of the voxel-wise parameter values and the standard
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Figure 3.3: An axial slice from a representative patient showing its T1w and
FLAIR structural images as well as both NODDI/SMT/DKI metrics (first row
of each box, grey scale) along with their standard deviation map (second row,
jet scale). NODDI = neurite orientation dispersion and density imaging, SMT
= spherical mean technique, DKI = diffusion kurtosis imaging, ICVF = intra-
cellular volume fraction, ISOVF = isotropic volume fraction, ODI = orientation
dispersion index, FA = fractional anistropy, MD = mean diffusivity, MK = mean
kurtosis.

deviations for all subjects in the dataset. While the single parameters show het-
erogeneous patterns between healthy and tumoral tissues and appear to have
different discrimination power, their standard deviation does not dramatically
differ. As seen in the previous figures, slight differences between tissues are still
present, with a tendency of σ to be lower for oedema and tumours for most
parameters. Overall, the general trend highlights however that estimation pre-
cision is stable both in healthy and pathological tissues. As this behaviour is
common both to DKI and to the two microstructural models, it suggests the
model-microstructure-mismatch does not significantly impair parameter estima-
tion precision when fitting NODDI and SMT inside tumoral tissues.

Figure 3.1 shows the table with both the tissue specific mean RSS across
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Figure 3.4: Boxplots for tissue-specific mean and standard deviations (logscale)
of NODDI, SMT and DKI metrics coming from normal-appearing white matter
in blue, grey matter in green, tumoral tissues in red and from the oedema region
in black. NODDI = neurite orientation dispersion and density imaging, SMT
= spherical mean technique, DKI = diffusion kurtosis imaging, ICVF = intra-
cellular volume fraction, ISOVF = isotropic volume fraction, ODI = orientation
dispersion index, FA = fractional anistropy, MD = mean diffusivity, MK = mean
kurtosis.

all subjects for NODDI and the DKI, and its expected value given the appro-
priate noise model. As it was observed in the case of parameter precisions, it
appears that the residuals from both techniques are not particularly affected by
the pathological environment of the tumour and the oedema. The fitting perfor-
mance seems unaltered in the general picture, with both techniques being fairly in
agreement with the expected RSS given the estimation of the standard deviation
of the noise. It is worth mentioning that, as the used estimators are different, it
is difficult to draw any conclusions about an inter-model comparison of goodness-
of-fit. Moreover, as the residuals of SMT model are uninformative due to the
aforementioned reasons, the RSS was not computed.

3.3.2 Generalized sensitivity of the models

Figure 3.5 shows the GSF plots for the model parameters of NODDI, DKI and
SMT, generated as explained in Section 3.2.2. Concerning the behaviour of single
diffusion parameters, we can identify three different trends: A first set of param-
eters (fiso, d|| and the diffusion tensor components) gain their informational con-
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DKI log(RSS) NODDI log(RSS) Expected log(RSS)
Subj WM GM Tum Oed WM GM Tum Oed WM GM Tum Oed
#01 3.678 3.792 3.718 3.869 4.129 4.037 3.858 4.139 4.063 4.328 4.272 4.411
#02 3.651 3.768 3.764 3.789 4.106 4.079 4.065 4.160 3.886 4.157 4.394 4.098
#03 3.615 3.061 3.769 3.688 4.061 3.987 4.356 4.168 3.887 4.096 4.139 4.044
#04 3.544 3.734 3.496 x 4.035 4.013 3.722 x 3.844 4.204 4.144 x
#05 3.713 3.875 3.775 3.842 4.185 4.104 4.046 4.222 4.043 4.412 4.347 4.515
#06 3.701 3.895 3.634 3.548 4.146 4.097 4.026 3.997 4.027 4.373 3.959 4.092
#07 3.577 3.405 3.632 x 4.096 3.914 4.063 x 3.830 3.985 3.901 x
#08 3.618 3.666 3.646 3.752 4.062 3.974 4.089 4.067 3.978 4.102 4.126 4.389
#09 3.571 3.754 3.649 3.818 4.021 4.010 4.115 4.182 3.914 4.304 4.028 4.523
#10 3.679 2.686 3.762 3.721 4.166 4.062 3.981 4.143 4.052 4.375 4.191 4.199
#11 3.538 3.172 3.752 3.625 4.119 4.020 4.132 4.198 3.753 3.940 4.328 4.057

Table 3.1: Mean residual sum of squares for each subject and tissue in the dataset.
The set of columns to the right represents the expectations of the RSS, given the
standard deviation of the noise affecting the diffusion signal. Results are reported
in logarithmic scale (log10). Cells marked with “x” denote subjects for which
no oedematous tissue was found in the lesion segmentation procedure. NODDI
= neurite orientation dispersion and density imaging, SMT = spherical mean
technique, DKI = diffusion kurtosis imaging, RSS = residual sum of squares.

tent in the b-values approaching b = 1000s/mm2; a second set of parameters (fic,
fintra and the diffusion kurtosis tensor components) benefit from b-values starting
from b = 2500s/mm2 and a single parameter (Watson’s distribution concentra-
tion parameter κ) steadily gains information across the entire studied b-value
range, with no clear optimal interval. The general behaviour of the curves for
every parameter does not significantly vary between tissues, identifying 0-1 rises
which are relatively similar in WM, GM, oedema, and the tumour. This lack of
difference in the sensitivity functions for the two microstructural models suggests
the acquisition protocol employed in this study (designed for the healthy brain)
features similar estimation precision in all tissues, and is therefore suitable inside
the pathological region. As a last remark, significant over/undershoot from the
0-1 range for the GSFs reveals substantial correlations during the estimation pro-
cess of same-model parameters, which in this case tends to be tissue dependent,
as it will be discussed in the following section.

3.3.3 Investigating parameter correlations

Lastly, Figure 3.6 (a-d) shows the median correlation matrix across all subjects of
the voxel-wise parameters from all models, computed for the four studied tissues.
These matrices present significantly different features, supporting the hypothesis
that the relationship between diffusion parameters change in dependence to the
microstructure environment. However, we find some strong correlations, both
positive and negative, which tend to be common in all four matrices. Figure 3.6
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Figure 3.5: Generalized sensitivity equations for the NODDI, SMT and DKI gen-
erated with parameter values corresponding to voxels from white matter, grey
matter and the tumoral tissues (tumour core and oedema). The DKI section
contains the mean GSF for the parameters of the kurtosis-corrected diffusion
tensor(DT components) and the mean GSFs across the parameters of the kurto-
sis tensor (DKT components). The interval for which we have the 0-1 transition
marks the b-value range which is most informative for each of the model pa-
rameters. NODDI = neurite orientation dispersion and density imaging, SMT =
spherical mean technique, DKI = diffusion kurtosis imaging, GSFs = generalized
sensitivity functions, DT = diffusion tensor, DKT = diffusion kurtosis tensor.

(e) shows the redundancy matrix (RM). The occurrences in the RM reveal those
couples of metrics which both feature high correlation (non-orthogonality of infor-
mation) and are common to all tissue-specific matrices (poor tissue discrimination
power). In particular, the AD, MD, and RD diffusivity metrics from DKI, ODI
from NODDI and d|| from the SMT appear to be strongly related, suggesting the
entire inclusion of this subset of diffusion metrics in any data-driven procedure
to be redundant. Similar considerations can be made about the MK-RK pair, for
which the combined use is discouraged. All relationships highlighted by the RM
were statistically significant in all subjects (p < 10−28).
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Figure 3.6: Figure 5: (a-d) Median voxel-wise correlation matrices for the com-
puted diffusion metrics for all subjects in the dataset; (e) Metrics Redundancy
Matrix, highlighting strong parameter correlations common to the structure of
matrices a-d. For clarity of view, main diagonal values (trivially equal to 1) were
identically put to zero. ficvf = intracellular volume fraction, fiso = isotropic vol-
ume fraction, ODI = orientation dispersion index, FA = fractional anisotropy,
MD = mean diffusivity, MK = mean kurtosis, AK = axial kurtosis, RK = radial
kurtosis.

3.4 Discussion and Conclusions

In this work, we explore the use of advanced diffusion models in tumours from the
standpoint of goodness of fit and precision of their estimates. We refrained from
giving explicit biophysical meaning to their parameters, due to the microstructure-
model mismatch such choice features and concentrate on investigating their sta-
bility in the pathological tissues as signal representations. In doing so, we sep-
arately assessed their mathematical reliability in the tumoral lesion and in the
normal appearing tissues. We questioned whether we would consistently find
worse model residuals and less precise parameter estimates, as we thought the
discrepancy between the tumour architecture and the biophysical formulation of
the compartments would result in the inability to properly identify the model. We
noticed, however, how the parameter estimation procedure is minimally impacted
by the tissue-model mismatch, resulting for some cases in light trends of higher
precision inside the tumoral tissues with respect to the normal-appearing brain.
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This is most surprising when it comes to the intra-axonal compartments of both
NODDI and SMT, where we feel the structural mismatch is most present. Highly
anisotropic, ‘stick-like’, neuronal structures are mostly absent in tumours, yet the
corresponding parameters are identified precisely and with a certain degree of spa-
tial coherence. To our knowledge, the use of the stick diffusion model is known in
tumour diffusion modelling. In fact, the Vascular, Extracellular, and Restricted
Diffusion for Cytometry in Tumours (VERDICT-MRI) model for colorectal and
prostate cancer (Eleftheria Panagiotaki et al., 2015; Eletheria Panagiotaki et al.,
2014) employs isotropically dispersed sticks to describe pseudo-diffusion inside
blood vessels. Nevertheless, this information comes from diffusion volumes at
very low b-values (b < 300s/mm2) (similarly to Intravoxel Incoherent Motion
(IVIM) MRI (Le Bihan, Eric Breton, et al., 1986)), which are not acquired in
typical HARDI datasets such as ours. It should be noted that, while the method-
ology used in this work is sound for comparing fitting results of the same model
in healthy and pathological conditions, it is not appropriate for the compari-
son of different models. Indeed, DKI features consistently lower residuals than
NODDI across tissues. However, as different estimators are used for the two
techniques, lower RSS does not necessarily indicate that DKI performs better in
the tumoral tissue. Moreover, the standard deviation of the measurement noise
was estimated from the multiple b0 images acquired, thus disregarding possible
contributions from varying b-value and gradient direction. Thus, we cannot es-
tablish if DKI is underestimating or NODDI is overestimating the noise level.
It is interesting to notice how the SMT estimation leads to dramatically higher
relative precision for the intracellular volume fraction with respect to NODDI
(up to 3-4 orders of magnitude smaller values of σ). This observation however
does not come completely unexpected, as the spherical mean signal is produced
with a significant direction averaging procedure which comes with the benefit of
suppressing the additive gaussian-like noise. Overall, we found significant evi-
dence that the model-microstructure mismatch does not substantially affect the
fitting performance of NODDI and the SMT in the tumoral lesion, as similar
trends in the studied metrics are witnessed for the DKI signal representation.
The information and novel contrast these parameter maps produce appears to
be stable and may potentially be exploited by data driven approaches to analyse
different microstructural environments. In this work, we give useful indications
about which of the studied metrics provide information about tissues (patho-
logical and healthy) which is non-collinear and investigate ways to discriminate
those which are non-informative, in relation to their collective use. While model
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identification appears to be optimal, we still advise to use additional caution to
give a patho-physiological interpretation to single parameters when applying ‘bio-
physical’ models in tumours. Indeed, the comprehension of their mathematical
structure, assumptions and limitations, is vital to make any biological inference.
If proper validation in this pathological environment is not provided, NODDI
and SMT remain geometrical models of diffusion, or signal representation, not
specifically linked to any biological meaning. Probing the microstructural envi-
ronment of brain tumours through diffusion imaging may yield useful biomarkers
to monitor progression and treatment response, but there is still room for various
improvements (Nilsson et al., 2018). Apart from the use of advanced models,
the use of peculiar acquisition schemes may enrich the diffusion signal enough
to move past the model identification degeneracies reported in recent literature
(Jelescu, Veraart, et al., 2016; Dmitry S Novikov, Els Fieremans, et al., 2019),
and more unconventional datasets acquired with multiple diffusion times (Eleft-
heria Panagiotaki et al., 2015) or ‘B-tensor encoding’ (Szczepankiewicz, Sjölund,
et al., 2019) are recent signs that the research framework of dMRI pulse sequence
design still has a lot to offer. While some interesting works about specifically
modelling the diffusion in gliomas are recently starting to appear (T. Roberts et
al., 2018; Zaccagna et al., 2019), this is an environment which is still largely unex-
plored. Until these novel methodologies gain trust and recognition, we hope our
efforts here provided support to the cautious use of existing advanced diffusion
techniques to investigate this pathological environment.
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Chapter 4

Assessment of structural
disconnections in gliomas: a
comparison of indirect and direct
approaches

4.1 Introduction

A richer depiction of the topological alterations caused by brain tumours on the
structural connectome may lead to a better understanding of the complex network
dysfunctions the pathology causes, (Sporns, 2011; Castellano et al., 2017) and
could identify cortical regions and WM bundles to be carefully navigated during
surgery (Duffau, 2019). Techniques which identify and quantify the extent of
WM damage beyond the location of a focal lesion have recently been gaining
popularity in the field of stroke, as they tend to explain functional alterations
better than damage to specific grey matter regions (Griffis et al., 2019; Salvalaggio
et al., 2020; Schotten et al., 2020; Di Vita et al., 2019). Translating the use of
such techniques in the oncological field requires, however, additional cares as the
neoplastic nature of tumours poses some difficult challenges to the investigation
of the alteration of WM tracts. Indeed, gliomas do not represent a focal and acute
lesion but rather a slowly evolving infiltrative process. When studying the course
of WM pathways through imaging, diffusion MRI is the instrument of choice, as
it allows to extract the state and directional information of WM fibres through
modelling the random motion of water molecules occurring in the different brain
regions. Through dMRI, patterns of WM structural disconnections can be derived
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exploiting so-called indirect or direct approaches:

• Indirect approaches bypass the need of a subject specific dMRI dataset
by projecting the tumoral lesion of a given patient onto a tract-based at-
las to detect which WM pathways are most likely to be affected by the
pathology (Foulon et al., 2018). Although indirect methods may be more
readily accessible, they currently generalize the glioma to be one lesioned
region causing homogeneous effects on WM pathways. In this way, the high
heterogeneity of the underlying pathological tissues (i.e., oedema, necrosis,
tumoral core comprising different cell dimensions and cellularity) and their
specific effects on axonal bundles is completely disregarded.

• Direct approaches involve the quantification of the brain connectome through
tractography algorithms applied on dMRI data. Such methodologies are
known to have their own limitations and pitfalls (Jeurissen, Descoteaux,
et al., 2019) but, contrary to indirect approaches, have the undisputed ad-
vantage of providing subject-specific quantification of WM bundles.

Given the intrinsic difference between direct and indirect approaches, the aim
of this study is to propose a quantitative comparison between them. We apply
simple but effective image analyses to evaluate benefits and criticalities of both,
highlighting points of agreement and divergence in terms of WM disconnection
information that can be derived. Moreover, as the oedematous tissue appears to
play a crucial role in defining tissutal regions which are subject to inflammation,
favourable pathways for tumour spreading, we additionally investigate how pat-
terns of structural disconnections are quantified when the oedematous tissue is
included in the definition of pathological lesions.

4.2 Material and methods

Forty-four patients suffering from de novo brain tumours have been recruited and
acquired at the University Hospital of Padova from July 2017 to March 2021. All
procedures were in accordance with the ethical standards of the institutional re-
search committee and with the 1964 Helsinki declaration plus later amendments.
All participants provided informed, written consent in accordance with the local
University Hospital Institutional Review Board. Figure 4.1 shows a comprehen-
sive overview of the analyses introduced in this section.
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Figure 4.1: Visualisation of the processing pipeline which led to the computation
of the four structural disconnection maps (upper row: indirect approach; lower
row: direct approach) which were eventually compared. b-values are shown in
s/mm2. T = Tumour, T+O = Tumour+Oedema, iFOD2 = Second-order Inte-
gration over Fiber Orientation Distributions, Gd = Gadolinium, FLAIR = Fluid
Attenuated Inversion Recovery

4.2.1 MRI acquisition

44 patients suffering from de novo brain tumours have been scanned at the Uni-
versity Hospital of Padova. The acquisition details were identical to those written
in Chapter 3.

4.2.2 Tumour segmentation and structural pre-processing

Structural pre-processing of T1w, T2w and FLAIR scans and tissue segmenta-
tion details are given in Chapter 2. Employing structural images, two masks were
manually delineated through the ITK-SNAP software (http://www.itksnap.org/)
by an expert neuroradiologist with more than five years of experience. The first
mask, labelled T, included the tumour core (contrast agent enhancing and non-
enhancing regions) and the necrosis, where present. The second mask, labelled
T+O, was created by adding the oedema area to the T mask. In addition, each
tumour was labelled by the same neuroradiologist as left, right or bilateral accord-
ing to the location of its core and to the mainly involved hemisphere. For each
patient, the T and T+O masks were mapped into the MNI152 space exploiting
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the estimated diffeomorphic non-linear transformations. Finally, since direct and
indirect disconnection mapping methods differ in the tracking of potential discon-
nections within subcortical areas, for each patient, we used the AAL3 atlas (Rolls
et al., 2020) to segment the following regions: thalamus, caudates, putamen, pal-
lidum, and hippocampus. Such areas were eventually discarded (i.e. masked out
of all StrD maps) not to bias the subsequent methods’ comparison.

4.2.3 Disconnection maps computation

Direct disconnection maps computation

Diffusion MRI Pre-processing The acquired diffusion weighted volumes were
visually inspected to identify and remove those images affected by interslice in-
stabilities (Jacques-Donald Tournier et al., 2011) which were deemed excessively
corrupted for subsequent pre-processing techniques to correct. Among all pa-
tients, 5 were discarded due to severely motion corrupted structural images, which
prevented us to reliably perform structural pre-processing and tumour segmen-
tation. 2 patients were additionally excluded from the study as their diffusion
images presented within-volume motion artefacts on more than 10% of the total
number of DWI volumes. Finally, for the remaining 44 patients, on average 3.3
volumes were discarded and in 20 out 44 patients no volume was removed. The
rest of the pre-processing was executed in its entirety within the MRtrix3 Soft-
ware (J-Donald Tournier, R. Smith, et al., 2019) and featured an initial denoising
step based on random matrix theory (Veraart, Dmitry S Novikov, et al., 2016),
with a subsequent call to the tools topup and EDDY (Andersson, Skare, et al.,
2003; Andersson and Sotiropoulos, 2016) from FSL for B0 inhomogeneity, eddy
current and motion joint correction. T1w segmentation results (including GM,
subcortical parcellation, lesion and tumour masks) were registered to the naïve b0
volume using ANTs, by applying an affine transformation previously estimated
on the patient’s naïve T1w image.

Diffusion tractography specifications The patient structural connectome
reconstruction was performed in its entirety within the MRtrix3 software. We
firstly performed multi-shell multi-tissue spherical deconvolution (Jeurissen, Jacques-
Donald Tournier, et al., 2014) to recover the orientation distribution functions for
each voxel. Subsequently, we computed the structural connectome by employing
Anatomically Constrained Tractography (R. E. Smith et al., 2012), tracking indi-
vidual fibres with a second-order Integration over Fiber Orientation Distributions
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algorithm (J. D. Tournier et al., 2010). Standard streamline termination criteria
values were used. The number of generated streamlines for each patient initially
amounted to 100 millions, which were quantitatively reduced to 10 millions via
the Spherical-deconvolution Informed Filtering of Tractograms (SIFT) framework
(R. E. Smith et al., 2013).

Disconnection Maps Computation For each patient, following the quan-
tification of the diffusion tractogram, we computed the patterns of structural
disconnections by taking the two following steps:

1. We computed the subset of the streamlines in the tractogram that featured
an overlap with the tumoral lesion (respectively, with T and, after, with
T+O masks).

2. In the dMRI space (i.e., the native space of the tractogram), we computed
how many altered streamlines (the subset in step 1) were passing through
each voxel of the brain. We labelled direct structural disconnection (dStrD)
maps these voxel-wise frequency maps.

We used in-house MATLAB (ver. 2020b, The Mathworks, Natick, MA) scripts to
perform the creation of the dStrD maps. As further volumetric analyses of dStrD
maps required their binarization, the definition of a threshold to define signifi-
cant disconnection was necessary. We defined such threshold with the following
procedure:

1. Similarly to the dStrD map quantification, we computed for each subject in
the dMRI space a voxel-wise streamline density map, this time considering
the entirety of the tractogram.

2. We brought the individual streamline density maps to the MNI152 space
via the previously estimated diffeomorphic transformations.

3. In the common MNI152 space, we computed the population average of the
individual maps, omitting the lesioned ROI on a patient-by patient basis.

4. To balance the presence of a higher number of patients with left tumours,
we symmetrised the frequency template by flipping (left-right) the obtained
map, summing the flipped and non-flipped maps and dividing by two.

5. Using the same transform as in 2, we projected back the population-averaged
streamline density map to the T1w space of each subject. We referred this
resulting map as AvgDensity.
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6. Finally, we considered the structural disconnection value of voxel with co-
ordinates (x,y,z) as significant if the following criterion was met:

dStrD(x, y, z)/AvgDensity(x, y, z) > 10% (4.1)

Additional investigations were performed also using more stringent and per-
missive thresholds.

Hence for each patient we obtained a mask of significantly disconnected voxels.

Indirect Disconnection Maps Computation

Indirect structural disconnection (iStrD) maps were quantified with the BCB
Toolkit v. 4.2 (Foulon et al., 2018; Schotten et al., 2020). In choosing which
healthy controls tractography atlas to use within the toolbox, we opted for the
extended diffusion dataset provided by the toolkit authors, for which the struc-
tural connectome of 180 healthy controls from the Human Connectome Project
7T dataset was quantified (full tractography specification in (Thiebaut de Schot-
ten, Urbanski, et al., 2017)). In summary, using the BCB Toolkit, for each pa-
tient, the lesion masks (both T and T+O) in the MNI152 space were registered
to each control naïve space using affine and diffeomorphic transformations and
subsequently used as seed for the tractography in TrackVis (http://trackvis.org).
Tractographies from the lesions were transformed in visitation maps, binarized
and brought to the MNI152. Finally, the percentage overlap map was computed
by summing at each point in the MNI152 space the normalized visitation map of
each healthy subject. Hence, in the resulting disconnection map (i.e., iStrD), the
value in each voxel considers the tracts’ interindividual variability and indicate a
probability of disconnection from 0 to 100% for the given lesion. As no ad-hoc
studies are available regarding the recommended use of iStrD maps in tumours,
we set the probabilistic threshold to 0.5 as in the software defaults settings. Ad-
ditional investigations were performed also using more stringent and permissive
thresholds (i.e., 0.7 and 0.3 respectively).

4.2.4 Metrics of comparison

Having obtained a total of four different structural disconnection (StrD) maps
(i.e., two for each methodology, different in terms of the employed input mask:
T and T+O), we wanted to compare them both intra-methodology (i.e., same
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approach, T versus T+O maps) and inter-methodology (i.e., same lesion mask,
direct versus indirect maps).

The framework we employed for their comparison had three simple metrics,
useful to quantify different similarity features:

• The difference in volume (∆Vol): This metric allowed us to quan-
tify the difference in the extension of alteration which is detected by two
disconnection maps.

• The Dice Similarity index (Dice): The Sørensen-Dice similarity index
is a well-known metric of comparison between digital images and is defined
by the following formula:

Dice =
2(A ∩B)

|A|+ |B|
(4.2)

where A, B are the two binary matrices for which the similarity needs to
be tested. The Dice index quantifies how similar the shape of structural
alterations is between two different approaches.

• The correlation at the intersection (Corr): We computed the Pearson
correlation in a region of interest defined by the intersection of the two
matrices in exam. Unlike the Dice index which evaluates only the similarity
between shapes, the correlation analysis considers where the hotspots of
alteration are in the two StrD maps, and measures their spatial agreement.

While the ∆V ol and Dice metrics were calculated using the binarized dis-
connection maps, the Corr index was computed using the thresholded StrD
maps. Additionally, ∆V ol and Dice were computed both considering the
entire disconnection maps and subdividing them into their ipsilateral and
contralateral components (bilateral tumours were excluded from this last
analysis).

To summarise the obtained indices, we computed the median value and the
25th / 75th percentiles across all subjects for each metric of comparison.

4.2.5 Statistical analysis

To test for statistically significant differences in ∆V ol, both considering whole
brain results and ipsi-/contralateral hemisphere separately, a Wilcoxon rank sum
test (significance level α = 0.05) was employed.
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To assess whether there was a linear relationship between the comparison
metrics and the extension of the input mask, we performed a correlation analysis
(Spearman Correlation, significance level α = 0.05) between the three indices
(i.e. ∆V ol, Dice and Corr) and the volume of the input mask, separately for T

and T +O masks. To test the sensitivity of the comparison metrics to the set of
thresholds used for the dStrD/iStrD maps, we defined their normalized range of
variation (nRV) as:

nRV (k) = 100 ∗ |max(k(tiStrD, tdStrD))−min(k(tiStrD, tdStrD))|
max(k(tiStrD, tdStrD))

(4.3)

where k(tiStrD, tdStrD)) is the median value across the dataset of the compari-
son metric between two StrD maps, given the indirect (tiStrD) and direct (tdStrD)
thresholds. The investigated thresholds values were tdStrD = [5%, 10%, 15%, 20%, 25%]

and tiStrD = [0.3, 0.5, 0.7].
To assess whether there was a relationship between the comparison metrics

and the extension of the input mask, we performed a correlation analysis (Spear-
man Correlation, significance level 0.05) between ∆V ol, Dice and Corr and the
volume of the input mask, separately T and T+O masks. Scatterplots of such
analyses were generated to visually inspect the investigated relationships. Ad-
ditionally the Simple Moving Average (SMA, 7 points, centerer window) was
computed to support the interpretation of possible trends.

4.3 Results

Patients’ main demographic and clinical information are summarized in Table
4.1.

Overall, according to 2021 World Health Organization classification of tu-
mours of the central nervous system (Louis, Perry, Wesseling, et al., 2021), 33
patients had a glioblastoma, 1 had an astrocytoma, 3 had a glioneuronal and
neuronal tumours, 1 had an oligodendroglioma, 1 had a primary diffuse large
B-cell lymphoma, 2 had other types of brain tumour (1 intracranial mesenchymal
tumour and 1 non-otherwise specified tumour) and 3 had an unclassifiable brain
tumour, as they deceased shortly before the surgery or did not underwent neuro-
surgery. The extent of the T+O mask ranged between 5.7 and 191.6 cm3 (mean
value 65.1 cm3, std 50.4cm3), whereas the extent of the T mask between 0.4 and
155.9 cm3 (mean value 46.5, std 39.1 cm3). Figure 4.2 shows the frequency maps
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Age(y) 59.9± 14.6
Gender

female(n) 20
male(n) 24

Tumour Histology
Astrocytoma (n) 1
Glioblastoma (n) 33

Glioneuronal and neuronal tumours (n) 3
Astrocytoma (n) 1

Oligodendroglioma (n) 1
Primary diffuse large B-cell lymphoma (n) 1

Other (n) 2
n.a. (n) 3

Tumour Grade
Low (n) 5
High (n) 36
n.a. (n) 3

IDH-1 Mutation Status
Wild Type (n) 29
Mutated (n) 5

n.a. (n) 10
Tumour Site

Left (n) 22
Right (n) 17

Bilateral (n) 5

Table 4.1: Patient’s main demographic and clinical information for the cohort of
subjects included in this study. n.a.= not available.

of the lesions in the patient population. The two reported maps refer to the
T (first two rows) and to the T+O masks (second two rows). The distribution
is sparse with tumours involving predominantly the right frontal and temporal
lobes, with a low spatial overlap (maximum value 17.8% of patients for the T
mask, and 22.2% of patients for the T+O mask).

Figure 4.3 shows an example of disconnection maps for two representative
subjects in our dataset. In panel A we can clearly see that the dStrD map is able
to detect the displacement of axonal fibres in the brain due to the tumoral mass
(most apparent in the axial and coronal views). This effect is not detectable by the
indirect approach, which inevitably leads to key differences between methodolo-
gies (∆V ol(iStrDT+O, dStrDT +O) = −28.05cm3; ∆V ol(iStrDT , dStrDT ) =

−4.8cm3; Dice(iStrDT+O, dStrDT+O) = 0.51; Dice(iStrDT , dStrDT ) = 0.51;
Corr(iStrDT+O, dStrDT+O
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Figure 4.2: Frequency maps of tumoral lesions in our cohort of patients. In the
two upper rows, the lesion was composed by the tumoral core (both enhancing
and non-enhancing, and necrotic regions). In the two lower rows, the tumoral
lesion mask was composed by the tumour core and the oedematous tissue.

) = 0.45; Corr(iStrDT , dStrDT ) = 0.43). While the displacement of fibres
is less visually appreciable in panel B, differences between approaches are still
present (∆V ol(iStrDT+O, dStrDT+O) = −21.1cm3; ∆V ol(iStrDT , dStrDT ) =

−4.1cm3; Dice(iStrDT+O, dStrDT+O) = 0.59; Dice(iStrDT , dStrDT ) = 0.51;
Corr(iStrDT+O, dStrDT+O) = 0.41; Corr(iStrDT , dStrDT ) = 0.33). Looking
at the StrD maps intra-methodology, i.e., comparing between T and T+O maps,
the difference is less self-evident and, apart from a few areas where T+O maps
show more extensive structural disconnections, we find analogous behaviours and
morphological features. While ∆V ol remains high, suggesting the presence of vol-
umetric differences between the maps, this is well reflected by the Dice and Corr
metrics being sensibly higher, both in A. (∆V ol(dStrDT+O, dStrDT ) = 25cm3;
∆V ol(iStrDT+O, iStrDT ) = 15.17cm3; Dice(dStrDT+O, dStrDT ) = 0.74;
Dice(iStrDT+O, iStrDT ) = 0.84; Corr(dStrDT+O, dStrDT ) = 0.79;
Corr(iStrDT+O, iStrDT ) = 0.89) and in B. (∆V ol(dStrDT+O, dStrDT ) = 39.36cm3;
∆V ol(iStrDT+O, iStrDT ) = 22.40cm3; Dice(dStrDT+O, dStrDT ) = 0.75;
Dice(iStrDT+O, iStrDT ) = 0.85; Corr(dStrDT+O, dStrDT ) = 0.92;
Corr(iStrDT+O, iStrDT ) = 0.86).

Generalizing Figure 4.3 results, Table 4.2 shows the metrics employed for the
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Figure 4.3: Lesion segmentation (dark green = oedema, green=tumour core),
iStrD (blue/light-blue) and dStrD (red/yellow) maps overlayed on the T1w im-
age for two representative subjects from our cohorts of patients. In the StrD
maps, the lighter the colour is, the higher the probability/severity of WM dis-
connection. iStrD = indirect structural disconnection, dStrD = direct structural
disconnection.

comparison in the entire dataset and reports their median and their 25th/75th

percentiles. Comparing intra-method results, as expected, we obtained a posi-
tive ∆V ol which means that the volume of disconnection increased when T+O
is used as input mask (mainly in the whole brain analysis and in the ipsilateral
hemisphere). In addition, we obtained a good agreement between the compared
maps highlighted both by Dice and by Corr indices, suggesting that in both cases
analogous spatial patterns of disconnection were detected. On the other hand,
the inter-method comparison revealed that: 1) the detected volume of disconnec-
tion is significantly lower at the whole-brain and ipsilateral level for the indirect
method when the T+O mask is used (p-value respectively of 0.005 at whole brain,
0.0008 at ipsilateral level); 2) overall there is a decrease in the agreement of the
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Table 4.2: median values (with 25th and 75th percentiles in squared brackets) for
the similarity metrics computed across the patient cohort. Each column repre-
sents a comparison between two specific StrD maps (e.g., the first column is the
intra-methodology comparison between the StrD maps generated with the T and
T+O lesion masks). For further specificity, we additionally divided the analysis
of the Dice and ∆V ol indices in the hemispheres ipsilateral and contralateral to
the presence of the tumour. iStrD = indirect structural disconnection, dStrD =
direct structural disconnection, T = tumour, T+O = tumour + oedema.

disconnection location (whole brain, ipsilateral and contralateral) with a median
Dice value of 0.57; 3) there is a poor agreement of the disconnection pattern with
a median Corr value of 0.45 and 0.39 respectively for the T and T+O input
masks.

Figure 4.4 shows the sensitivity of the median of the computed metrics across
the dataset to a set of possible thresholds. Considering inter-methodology com-
parisons (green-stars and red triangles in the figure), we found the ∆V ol in-
dex to be the most variable across the tested thresholds (nRVT+O(∆V ol) =

280.34%, nRVT (∆V ol) = 210.34%). Morphology similarities were more con-
sistent (nRVT+O(Dice) = 35.58%, nRVT (Dice) = 29.53%), as well as the agree-
ment of hotspot locations (nRVT+O(Corr) = 26.58%, nRVT (Corr) = 31.32%).
Shifting to intra-methodology comparisons (blue circles and purple squares in
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Figure 4.4: Sensitivity to iStrD/dStrD thresholds for the similarity metrics in
inter- and intra-methodology comparisons. Individual points of the same shape
and colour (e.g., green stars, representing the inter-methodology comparison of
T+O maps) are the median values across the dataset for the given index, com-
puted with a different pair of dStrD/iStrD thresholds. iStrD = indirect structural
disconnection, dStrD = direct structural disconnection, T = tumour, T+O = tu-
mour + oedema.

the figure), as expected, we found a more stable situation. Again, volumet-
ric measures were the most variable across thresholds (nRVT+O(∆V ol) = 52%,
nRVT (∆V ol) = 48.24%), and an even higher consistency was found consider-
ing the Dice (nRVT+O(Dice) = 4.79%, nRVT (Dice) = 2.45%), and Corr indices
(nRVT+O(Corr) = 4.79%, nRVT (Corr) = 3.91%).

Lastly, Figure 4.5 shows the scatterplot between the extension of the cancerous
lesion (both considering only the tumour core and including the oedema) and the
similarity metrics. Statistically significant relationships were found for the Dice
coefficient (rT = 0.42, pT = 0.004, rT+O = 0.55 pT+O = 9.5e− 05) and for ∆V ol

(rT = 0.33pT = 0.03). Nevertheless, the simple moving average showed that
all three relationships were highly non-linear and heavily influenced by a limited
number of small tumours. Indeed, when lesions were larger than 50 cm3, the
linear trend disappeared due to heavy saturation, leading to no major evidence
that the size of the lesion plays a fundamental role in the similarity of direct and
indirect structural disconnection maps.

4.4 Discussion and Conclusions

Throughout the recent years, several warnings have been raised against the use
of indirect approaches to investigate the disruption of structural connectivity in
neoplastic pathologies, as physio-pathological phenomena such as tissue displace-
ment (Clark et al., 2003) or transneuronal degeneration (Fornito et al., 2015)
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Figure 4.5: Scatterplots of tumour/lesion size and the similarity measures. The
simple moving average is superimposed in red to highlight the trend of the rela-
tionships.

cannot be considered by atlas-based methodologies. On the other hand, diffusion
tractography techniques may enable us to quantify these effects in a subject-
wise manner. The framework of analysis we introduced in this article allowed
us to systematically compare patterns of WM disconnections and quantitatively
point out the difference between methodologies. Thus, we here investigated the
difference between direct and indirect approaches to quantify patterns of WM
disconnections in subjects suffering from brain tumours. The quantitative com-
parison of the investigated structural disconnection maps included the evaluation
of the difference of their overall volume, the Dice index to evaluate their shape
similarities, and finally a correlation analysis aimed to investigate if hotspots of
disconnections were identified accordingly. We performed these analyses both by
defining the cancerous lesion as the tumour core, and by including the oedema-
tous tissue in the lesion segmentation. In this way, we could additionally analyse
the impact of the oedema in the computation of StrD maps within the same
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methodology. We found that in terms of volumetric extension of the disconnec-
tions, the inclusion of the oedema in the tumoral lesion had a higher impact
on direct methodologies w.r.t. indirect ones, as disconnection volume increased
more extensively in the former case. This increase occurred particularly in the
hemisphere ipsilateral to the tumour, where fibres are most likely to intersect the
tumoral lesion. Contralateral fibres, on the other hand, are less likely to intersect
the tumoral lesion and the detection of their alterations did not appear to be
influenced as much by the oedema. In general, the inclusion of the oedema ap-
peared to drastically alter the extension of ipsilateral patterns of disconnections
but did not severely impact the detection of contralateral alteration. For what
concerns the spatial similarity between the investigated maps, the Dice coefficient
revealed good intra-methodology agreement, with both direct/indirect maps fea-
turing high values when testing the difference in terms of inclusion of the oedema
in the tumoral lesion. When comparing direct and indirect methodologies how-
ever, the Dice coefficient showed lower values indicating a substantial mismatch
between the structural disconnection patterns. Such differences remained consis-
tent even when we considered ipsilateral and contralateral hemispheres separately.
Dice values for inter- and intra- methodology maps were well reflected by the Corr
index, which revealed whether the localization of hotspots of alterations was con-
cordant between structural disconnection maps. As expected, intra-methodology
correlations were strong, with hotspots of alterations having the same spatial
location. When we investigated inter-methodology relationships, however, such
correspondence was lost, regardless if the oedema was included or excluded in
the analysis. Overall, these differences lead us to think that the impact of the
inclusion of the oedema in the tumoral lesion has a minor impact than varying
between direct/indirect approaches. However, the effect of such choice is still
non-negligible and produces sensible changes in the structural disconnection pat-
terns that can be observed. We initially hypothesized that the size of the tumour
would play a pivotal role in the similarity between the patterns of disconnections.
However, no significant linear relationship was found between the studied met-
rics and the tumoral lesion extension. The sensitivity analysis to the thresholds
for indirect and direct disconnection maps revealed that volumetric indices are
moderately dependent on such choice, potentially altering the interpretation of
its results.

We are aware there are some limitations to our work. First and foremost,
the structural disconnection maps must be thresholded to make any inference
regarding the volume and shape of the detected disconnections. This choice is
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non-trivial, and while there are some literature indications (although not specifi-
cally in tumour cases) for indirect methodologies (Thiebaut de Schotten, Flavio
Dell’Acqua, et al., 2015), thresholding tractograms is an open question in the
field of dMRI (C.-H. Yeh et al., 2021). Volumetric measures of disconnection
were significantly impacted by threshold choice, whereas the Dice and Corr in-
dices were less affected. These observations lead us to raise a warning on the use
of volumetric measures when relating structural disconnection features to other
quantities of clinical interest. As a second limitation, there are differences in place
between the streamline reconstruction of the tract-based atlas of the BCB toolkit
and of the patients belonging to our dataset. While using the same tractog-
raphy algorithm in both methodologies would indeed eliminate the variability in
results due to the different tracking, the purpose of this study was to use the indi-
rect disconnection tools “as is”, and to compare such results with state-of-the-art
tracking techniques. Moreover, "voxellizing” the streamlines to the disconnection
maps arguably reduces the variability due to diffusion orientation sampling and
streamline shapes. Thus, we believe this discretization step highlights in the fi-
nal StrD maps those differences between the two approaches which are mainly
due to dominant physio-pathological effects rather than fibre reconstruction in-
tricacies. As a last note, few studies have shown that the presence of a tumoral
lesion may cause Wallerian degeneration to take place in the surrounding area
and at distance from its location (Saksena et al., 2013; Lahrmann et al., 2005;
Sawlani et al., 1997). This physio-pathological process represents the inflamma-
tory response of the nervous system to an axonal injury and may significantly
impair the permeability of axons in those regions (Pierpaoli et al., 2001), limiting
the possibility for tractography algorithms to robustly reconstruct the associated
streamlines. Depending on the severity of the degeneration, such WM regions
may not be visible to direct approaches, which would consequently fail to detect
sites of ongoing pathological alteration. In conclusion, with our work we pre-
sented evidence that direct and indirect approaches offer two different pictures of
structural disconnections in patients affected by brain tumours. Given these dif-
ferences, we advise that whenever mass displacement effects appear to be present,
direct methodologies should be preferred as they are better suited to account for
these morphological and pathological variations. Nevertheless, assessing struc-
tural disconnection maps’ predictive value of biological/cognitive progression of
glioma patients is vital to addressing the clinical relevance of these techniques.
Thus, further studies are needed to answer these unmet demands.
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Chapter 5

Structurally altered white matter
connections underlie regional grey
matter metabolism changes in brain
tumour patients

5.1 Introduction

Diffusion MRI, with its intrinsic link to microstructural features of brain tissues,
has been proven over the years to hold diagnostic and prognostic value in brain
tumours, characterizing their heterogeneity (C. Li, S. Wang, Yan, Piper, et al.,
2019), evaluating aggressiveness (C. Li, S. Wang, Yan, Torheim, et al., 2019)
and differentiating between different grades (Maekawa et al., 2020). The value of
dMRI is however not limited to investigating the tumoral focal lesion, but extends
to detecting overall systemic abnormalites.

Structural brain networks can be effectively represented by structural con-
nectivity matrices. These mathematical entities contain the amount of connec-
tivity between each pair of nodes of a given brain parcellation. Quantifying
region-region connectivity usually involves analyzing the streamlines which con-
nect them, and extracting measures such as their number, their length or average
FA/MD along their path.

Indeed, dMRI-based structural connectomes have become a widespread tool
for the investigation of white matter connections of the human brain (C.-H. Yeh
et al., 2021). It has in fact widely been shown that graph analysis related to struc-
tural networks is able characterize different pathologies (Crossley et al., 2014). As
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such, there has been a recent interest in the state-of the art literature to capture
possible changes in the structural organization of the human brain in presence of
a complex disease such as brain tumours.

Evidence of benefits in predicting patient survival has already been shown with
the integration of diffusion connectomics information to basic clinical information
(L. Liu et al., 2016). Gliomas positioned in a specific lobe and hemisphere appear
to produce characteristic changes in terms of network efficiency and role of brain
regions in the overall topology of the structural network (D’Souza, Hirt, et al.,
2021). The same group additionally showed that normal appearing tissue in
proximity of the lesion may feature microstructure alterations (D’Souza, Ormond,
et al., 2019), highlighting widespread tissue abnormalities beyond the MR-evident
tumoral lesion. Moreover, Liu and colleagues found that gliomas disrupt the rich-
club organization of the brain, suggesting the structural resilience of the network
is globally affected in presence of the tumoral mass (Y. Liu et al., 2020).

While these works focus on characterizing the alterations of global proper-
ties in the structural connectome, to our knowledge, no attempt has been made
to characterize the pathophysiological state of the subject-specific nodes of the
network, and how the presence of a tumoral lesion may alter their metabolic
function when the associated structural links are compromised. To this end, in
this work we propose an approach to detect altered WM connections based on
the statistical analysis of SC matrices derived with dMRI tractography. To define
compromised structural connections, we built a pseudo-healthy reference distri-
bution for each entry of the SC matrix on the dataset at disposal and quantified
the deviation of each subject from normative values. Each node of the network
was then associated with a degree of alteration based on the number of its afferent
compromised connections. Finally, we related this degree of alteration measures
with metabolism variations quantified by regional [18F]-FDG PET Standardized
uptake value ratios (SUVR).

5.2 Materials and Methods

5.2.1 MRI acquisition

The dataset and MRI acquisition details were identical to those written in Chapter
3. Due to computational complexity, the steps of tractography algorithm selection
explained in Section 5.2.4 and Section 5.2.5 were executed on a subset consisting
of 11 subjects from the entire dataset of 44 patients. Once the tractography
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Name Model Orientation sampling #streamlines cut-off
iFOD2 SD Probabilistic 10M peak(FOD)=0.1

SD Stream SD Deterministic 10M peak(FOD)=0.1
Tensor det DTI Deterministic 10M FA=0.1
Tensor prob DTI Probabilistic 10M FA=0.1

Table 5.1: List of the four tractography algorithms utilized to build the structural
connectome. SD = Spherical deconvolution, FOD = fiber orientation distribution,
FA = fractional anisotropy, DTI = diffusion tensor imaging.

algorithm was selected following those steps, from Section 5.2.6 onwards the entire
dataset was used.

5.2.2 Tumour segmentation and structural preprocessing

Structural Processing and tumour segmentation details were described in Chapter
2 and 3.

5.2.3 dMRI processing and tractography computation

A first visual inspection was performed on the dMRI images, and those volumes
containing significantly visible interslice instabilities (Bastiani et al., 2019) were
eliminated from subsequent analysis. The subsequent steps of pre-processing were
carried out within the MRtrix software (J-Donald Tournier, R. Smith, et al.,
2019), and featured random-matrix based denoising via the dwidenoise (Veraart,
Dmitry S Novikov, et al., 2016) and a joint correction for B0-inhomogeneties,
subject motion and eddy currents via dwifslpreproc (Andersson, Skare, et al.,
2003; Andersson and Sotiropoulos, 2016).

Tractography specifications are as follows. At first, multi-shell multi-tissue
spherical deconvolution was performed to recover voxel-wise orientation distribu-
tion functions for WM, GM and CSF (Jeurissen et al. 2014). The structural
connectome was then reconstructed with 4 different algorithms available in MR-
trix, chosen to cover every combination of deterministic/probabilistic and DTI-
based/SD-based tractography options. Further details of the reconstruction are
reported in Table 5.1. For the two cases employing SD as the underlying diffusion
model, the tractogram was generated with 100M streamlines and subsequently
reduced to 10M through the SIFT framework (R. E. Smith et al., 2013).

The Schaefer Atlas featuring a 17-networks, 100-regions cortical parcellation
of the brain (Schaefer et al., 2018) was employed to define the individual SC
matrices, based on the number of streamlines metric, for each of the quantified
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tractograms.

5.2.4 Tractography algorithm selection criteria

The physiological plausibility of axonal fibers tracked by diffusion-MRI (dMRI)
currently is a central problem for the clinical application of tractography algo-
rithms (Jeurissen, Descoteaux, et al., 2019). We here adopted an atlas-based
approach for objectively comparing different tractography strategies in terms of
how accurately white matter tracts are reconstructed.

Starting from the tractograms of the four algorithms, with the tools provided
by the open-source whitematteranalysis package from the dMRISlicer software,
we performed the implemented spectral clustering procedure (O’Donnell et al.,
2007) to automatically reconstruct 73 deep white matter tracts (the complete
list of segmented tracts can be found in (F. Zhang, Y. Wu, et al., 2018)). The
clustering was performed independently for each of the alternatives of Table 5.1.
While the reconstruction and physiological validation of the anatomical pathways
with the present software was initially designed for healthy subjects, it was shown
to generalize well in patients with brain tumours in a recent study (O’Donnell
et al., 2017). The Atlas we use for the comparison of the different algorithms is
available in the aforementioned software, and is detailed by Zhang and colleagues
(F. Zhang, Y. Wu, et al., 2018). Such decision was dictated by the high amount
of subjects the atlas is composed of (i.e. 100 subjects, from the Human Connec-
tome Project publicly available dataset, https://www.humanconnectome.org),
and by the presence of a subsequent manual annotation of anatomical segments
by expert neuroanatomists. Moreover, this streamline-based atlas was created
with a two-tensor unscented Kalman filter tractography (Malcolm et al., 2010),
an option which is not object of our comparisons, thus eliminating any same-
algorithm-tracking bias. For each tractogram, we quantified how the streamlines
are subdivided into each defined bundle and compared this distribution to the
one of the anatomically curated atlas. Mathematically, for any given tract, let
nt(alg) be the number of streamlines which the clustering procedure assigned to
the anatomical tract t from the original tractogram quantified with algorithm
alg. We then defined the normalized number of streamlines of the anatomical
tract as:

pt(alg) =
nt(alg)∑
t∈T nt(alg)

(5.1)

Where T is the set of all the 73 clustered tracts. Such a normalization is neces-
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Figure 5.1: Example of rt(iFOD2) << 1 for a representative patient of the
dataset. On the left, the left external capsule as quantified by the iFOD2 al-
gorithm; On the right, the left external capsule as represented in the utilized
anatomically constrained atlas.

sary even in the case of input tractograms having an equal number of streamlines,
as the outlier rejection procedure present in the software (F. Zhang, Savadjiev,
et al., 2018; O’Donnell et al., 2017), which is based on evaluating the similar-
ity distance of each fiber from the centroid of the assigned cluster, may behave
differently in dependence of the tracking algorithm used. We then define the
normalized ratio of streamlines of the anatomical tract as:

rt(alg) =
pt(alg)

pt(atlas)
(5.2)

The rt measures evaluates how a given tract t is under/overrepresented in
terms of number of streamlines with respect to the anatomically curated atlas of
choice (e.g. rEC << 1 highlights how the given tractogram employs a much lower
portion of its total number of streamlines to represent the external capsule (EC)
with respect to the anatomically curated atlas. See Figure 5.1). By quantifying
rt in our dataset, we wish to understand which of the algorithms in Table 5.1
comes closer to the atlas representation in terms of the anatomical distribution of
streamlines. Figure 5.2 provides a graphical representation of the rt computation.
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Figure 5.2: Graphical representation of the steps which, starting from the trac-
tograms, lead to the rt computation. ACT = anatomically constrained tractog-
raphy, FA = fractional anisotropy, FOD = fiber orientation distribution.

5.2.5 Cut-off value for tract termination decision

The streamline termination criterion may have a noticeable effect on the recon-
struction of the tractogram. Once the tractography algorithm was chosen by
evaluating the rt measure described above, we were subsequently interested in
verifying that the cut-off value for stopping the tracking would not severely im-
pact the obtained connectome. More specifically, apart from software defaults,
we tested 5 progressively more permissive thresholds (i.e., FA or FOD amplitude
values equal to 0.09, 0.08, 0.07, 0.06, 0.05) and verified the sensitivity of SC ma-
trices to their variation. The quantitative framework employed was based on two
techniques:

• The Krzanowsky test: Given a set of matrices, the Krzanowsky test
(Krzanowski, 1993) tests the hypothesis that the two population SC ma-
trices obtained respectively with a cut-off value of 0.1 and of 0.05 (the
extreme values of the cut-off range) share similar eigenvectors and eigenval-
ues. The test has been run with 1000 permutations and a significance level
of α = 0.05.

• The principal component analysis (PCA): The PCA analysis allows
to test whether the single-subject set of SC matrices, reconstructed with
different cut-off values, share a similar structure. In practice, we computed
the first principal component for each subject and analyzed its explained
variance (EV).

The difference between two SC matrices (or lack thereof) quantified with
the two extreme values of the tested cut-off interval (i.e., 0.1 and 0.05) can be
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Figure 5.3: On the left, a structural connectivity (SC) matrix quantified with a
10M iFOD2-based tractogram and a streamline cutoff value of peak(FOD) =
0.05). On the right, the same SC matrix, but whose tractogram had a streamline
cutoff value of peak(FOD) = 0.1 .

appreciated in Figure 5.3.

5.2.6 Defining structurally altered links of SC matrices

After having determined the algorithm and cut-off value with which to proceed,
structurally altered links were identified using the following statistical procedure:

• For each subject, we firstly identified all pseudo-healthy entries of its SC
matrix. The criteria for such a selection were two: 1) the Schaefer regions
constituting the endpoints of the link needed to feature an overlapping with
the tumoural lesion for less than 5% of the total volume of the parcel, and
2) streamlines connecting such endpoints were required not to cross the
tumoral lesion at any position. Following these exclusion criteria, Figure
5.4 shows the number of subjects for each SC entry which satisfy the pseudo-
healthy conditions.

• Using the above defined pseudo-healthy data, we reconstructed the pseudo-
healthy distribution for all entries of the SC matrix. As the majority of
these distributions had significant non-gaussian features, they were non-
parametrically characterized by their median and Mean Absolute Deviation
(MAD).

• SC entries either featuring singular distributions (i.e. having their median
and/or MAD identically equal to zero) or being streamline-poor (having less
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Figure 5.4: Matrix showing the link-wise number of subjects which are labelled
as ’pseudo-healthy’ after the exclusion process described in the text.

than 10 streamlines on average) were discarded from subsequent analyses.
This selection was performed to exclude from further analyses SC entries
which were due to noise and false positive connections.

• For all subject, each individual SC entry was then compared with its ref-
erence pseudo-healthy distribution. The link was defined as structurally
altered if the following condition was true:

SCi(j, k) < SCmed(j, k)− 3MADj,k (5.3)

where (j, k) defines the specific entry of the SC matrix, SCi is the subject-
specific SC matrix, SCmed is the median pseudo-healthy SC matrix and
MADj,k denotes the MAD of the pseudo-healthy distribution for the specific
entry.

We called the 3MAD matrix the subject-wise binary matrix containing the
structurally altered entries defined by (5.3). The process just described is graph-
ically depicted in Figure 5.5.

5.2.7 PET acquisition, pre-processing and quantification

PET scans were acquired simultaneously to MRI images on the Siemens Biograph
mMR (Siemens Medical Solutions USA, Inc.) PET/MRI scanner equipped with
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Figure 5.5: Visualisation of the statistical methodology used to derive subject-
specific 3MAD matrices. Each individual entry of the structural connectivity (SC)
matrix is compared to its pseudo-healthy reference from the dataset at hand. If
the streamline count is inferior to the chosen threshold, the corresponding location
in the 3MAD matrix is highlighted.

a 16-channels head-neck coil described above. Concerning PET imaging protocol,
after the tracer administration, a 60-minutes dynamic PET list mode acquisition
was performed. An average dose of 206.5 MBq (range: 145-303MBq, accord-
ing to the body mass index) of [18F]2-fluoro-2-deoxy-D-glucose ([18F]FDG) was
intravenously administered to each patient. The scanner was calibrated with
recommended quality assurance (QA) regimes implemented and daily QA pass
before clinical use to ensure accuracy and consistency of scanning was maintained.
Exploiting the last 20 minutes of acquisition, for each patient the PET static im-
age was reconstructed offline using the Siemens e7-tool for Biograph mMR. The
image reconstruction pipeline included correction for scatter, dead time, atten-
uation (due to head and radio-frequency coil), tracer decay and normalization.
Image reconstruction was performed with Poisson ordered subset expectation
maximization (3 iterations and 21 subsets). No spatial smoothing was performed
after reconstruction. The patient’s head attenuation map was estimated from
the individual T1w MPRAGE image as in the work of Izquierdo-Garcia and col-
leagues (Izquierdo-Garcia et al., 2014). At the time of beginning of the study,
this method was one of the best performing methods for MR-based attenuation
correction (Ladefoged et al., 2017). The Standard Uptake Volume Ratio (SUVR)
was employed to semi-quantify the local brain metabolism. As cerebellum is an
area where the incidence of glioma is very low (4.5% of all gliomas according to
Miller and colleagues (Miller et al., 2021)) and a crossed cerebellar diaschisis is

81



not infrequent in glioma patients (Wiestler et al., 2016), we used the cerebellum
grey matter ipsilateral to the tumour as reference region. Such reference was
identified in two steps:

1. Firstly, for each patient the cerebellum was segmented using the Hammer-
smith brain atlas (Hammers et al., 2003) which was non-linearly coregis-
tered into the individual PET naïve space passing through the patient’s
T1w MPRAGE image employing ANTs (Avants et al., 2011).

2. Secondly, the cerebellum grey matter which was ipsilateral to the tumour
was extracted masking the cerebellum Hammersmith segmentation with a
patient’s grey matter segmentation obtained with the Segmentation routine
included in the Statistical Parametric Mapping (SPM) 12 tool (SPM12, v.
7219).

5.2.8 Computing the alteration for each network node

Once the subject-wise 3MAD matrix was created, showing which link for each
subject was potentially impaired in our cohort of subjects, we proceeded to define
a measure of overall alteration of each node. In analogy to the graph analysis
concept of node degree (Bassett et al., 2017), for each node j, we defined a
measure of its alteration as:

Degree(j) =
K∑
i=1

3MAD(i, j) (5.4)

Equation 5.4 associates each node of the SC network to a measure of severity of
damage to its structural connections. As will be explained in subsequent sections
below, this metric has been investigated in relationship with the regional SUVR
derived from PET measures.

5.2.9 Measuring the impact of the tumoral lesion size and
location on the detected alterations

Scatterplots of the tumoral region size vs the number of altered connection
were produced to inspect the dependence between these two quantities. Spear-
man’s correlation was computed to quantitatively support visual findings, using
a α = 0.05 statistical significance threshold. After dividing the subjects based
on the hemispheric location of the tumour(i.e, right,left and bilateral tumours),
for each of these subpopulations three boxplots reporting the number of altered
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links detected in each hemisphere were computed. The patient-wise number of
altered links contained in each hemisphere was normalized to the total number
of SC links in that hemisphere.

5.2.10 Topological distinction of the nodes of the structural
network

The nodes of the network were characterized both in terms of their topological
role and in terms of their relationship with the presence of the pathology. More
specifically, we characterized the following node subdivisions:

• Hub / Non Hub: We identified the hubs of the structural connectivity
networks following the indications of Oldham and colleagues (Oldham et al.,
2019). Briefly, in the cited work a network node is identified as a hub if both
its degree and betweeness centrality are superior to a threshold identified
as the mean plus the standard deviation of the distribution of such indexes
across all nodes. In our case, we evaluated these thresholds based on the
pseudo-healthy median matrix described above. Furthermore, as the degree
and betweeness centrality distributions were significantly non-gaussian, in
our computation we substituted the mean and standard deviation with their
non-parametric versions (i.e., the median and the mad)

• Normal Appearing / Oedema / Tumour: With respect to the pres-
ence of the tumoral lesion in each patient, nodes were additionally classified
in base of the nature of the tissue overlapping its region. More specifically,
nodes were identified as normal appearing if their spatial intersection with
the tumoral lesion was inferior 5% of their total volume. Should this con-
dition not be verified, a node was classified as either Oedema or Tumour
based on which of the two pathological tissues was most prevalent in the
volume which defined the node.

5.2.11 Multimodal association of structural and metabolic
measures

As the degree of alteration defined above is a categorical variable, the associa-
tion between this measure regional [18F]-FDG SUVR was quantified by means
of Spearman correlation. A α = 0.05 threshold was chosen for statistical signifi-
cance. Scatterplots defining the structure-metabolism relationship were produced
to visually aid the interpretation of correlation results.
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Figure 5.6: Median rt computed across 11 subjects for each anatomical tract and
algorithm in Table 5.1, across the 11 patients of the dataset at disposal. Each
line here represents an algorithm.

5.3 Results

5.3.1 Tractography algorithm selection and cut-off value
sensitivity

Figure 5.6 shows the median rtfor all 73 tracts computed across the 11 subjects.
Each line here represents a specific algorithm. Several trends can be noticed in
terms of streamlines distribution between different anatomical bundles, and that
they are usually followed by all the four proposed tracking alternatives. Most
notably, all of them tend to employ a higher number of streamlines with respect
to the anatomically curated atlas to form the striato-parietal (SP) tract. Several
other anatomical tracts in the left portion of the graph, however, remain highly
underrepresented: the most notable examples here are the EC (again, shown as
example in Figure 5.1) and the extreme capsule (EmC).

Figure 5.7 and Figure 5.8 show, respectively, the median rt and its MAD
computed across the 73 tracts for the 11 subjects and the four investigated al-
gorithms. The agreement of a tractogram’s streamline distribution to the one of
the anatomically curated atlas can be represented by a median rt close to 1 and
MAD as low as possible. From both figures it can be seen that both properties
are scored consistently for the iFOD2 algorithm across all subjects, with the other
three fiber tracking options being generally worse.

Having chosen the iFOD2 algorithm to proceed with the analysis, we tested
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Figure 5.7: Median rt computed across the 73 anatomical tracts for each patient
(X axis) and algorithm in Table 5.1 (Y axis)

whether changing the streamline cut-off value to more permissive thresholds
would significantly affect the resulting SC matrices.

Table 5.2 reports the EV of the first principal component (PC1) of the PCA
computed on the SC matrices with varying cut-offs. The EV was equal on aver-
age to 99.3± 0.33%. It follows that, in all patients, the EV of the second (PC2)
and following principal components was lower than 1%, as shown in Figure 5.9.
These findings suggest an extremely strong common structure to be present be-
tween matrices computed by simply varying the termination criteria. In fact,
apart from the common structure described PC1, the other PCs contribute triv-
ially to defining the heterogeneity of the subject-wise sets of matrices. The PCA
results were confirmed at the group level by the Krzanowski test, as no statis-
tically significant difference was found between eigenvalues/eigenvectors of the
set of SC matrices computed with peak(FOD) = 0.1 and peak(FOD) = 0.05

as streamline termination criteria (p = 0.87). Given the minimal sensitivity of
SC matrices to the tested cut-off values, for the subsequent analysis, we decided
to keep the default MRtrix3 value of 0.1. This choice was evaluated in terms of
overall replicability and possibility to compare the findings of this study with the
literature, as its the most commonly used setting.
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Figure 5.8: Mean absolute deviation of rt, computed across the 73 anatomical
tracts for each patient (X axis) and algorithm in Table 5.1 (Y axis). MAD =
mean absolute deviation.

5.3.2 Structurally altered connections and tumour loca-
tion/size

Figure 5.10 shows the correlation between the extension of both the tumoral
lesion/core and the number of altered structural links that are quantified with our
approach. Pearson’s correlations are strong and statistically significant in both
cases (rlesion = 0.78, plesion = 10−10, rcore = 0.51 pcore = 0.003). Interestingly,
when including the oedematous tissue in the analysis, the correlation and its
significance are much stronger, highlighting its central role in the definition of
structurally altered links.

Moving to the SC impact of tumours in different locations, Figure 5.11 shows
respectively the number of altered links found in each hemisphere for left, right
and bilateral tumours. As expected, each tumour appears to disrupt the struc-
tural connectivity in the same hemisphere it is located, along with interhemi-
spheric connections. While lower in number, contralateral alterations were still
detected in cases of right and left tumours, suggesting that the focal tumoral
lesion additionally causes widespread abnormalities at distance in the brain.

Figure 5.12 shows the analogous of Figure 5.11 for interhemispheric connec-
tions. As expected, bilateral tumours impact these links the most, but a sig-
nificant interhemispheric connection alterations are found also for left and right
tumours.
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Figure 5.9: Explained variance for each principal component of the principal
component analysis (PCA) for a representative subject. The PCA analysis was
run on the set of cutoff-varying structural connectivity matrices for every subject.

5.3.3 Association of metabolic and structural measures

Firstly, Figure 5.13A shows the relationship between the SUVR of a region and the
degree of alteration of its structural links, making the distinction in Hubs (rhub =
−0.24 phub = 1.96e− 08) and non-Hubs (rhub = −0.221 phub = 1.96e− 42) of the
network. Figure 5.13B and Figure 5.13C show boxplots respectively expressing
the amount of structurally altered links and SUVR for regions belonging to the
two categories. Both these quantities differ between hubs and non-hubs nodes
(palter = 2.9e−20 and pSUV R = 0.027, respectively). Hubs with non-zero degree of
alteration were more impacted than peripheral nodes in terms of the metabolism,
featuring overall lower SUVR values.

Next, we proceeded to investigate the structure-metabolism relationship be-
tween healthy and pathological nodes. As such, Figure 5.14A shows the scatter-
plot between the SUVR of a region and the degree of alteration of its structural
links, for regions belonging to the normal appearing tissue (rnorm = −0.165,
pnorm = 8.6e− 28), the oedematous region (roed = 0.12, poed = 0.15) and the
tumoral region (rtum = 0.105, ptum = 0.069). The only statistically significant
relationship was found for normal appearing grey matter. In these regions, the
trend shows that the higher the number of faulty links with the rest of the brain,
the lower its SUVR is. Figure 5.14B and 5.14C show boxplots respectively ex-
pressing the amount of structurally altered links and SUVR for regions belonging
to the three different tissues. Regions with high tumour/oedema invasion show
impairment on more connections than normal appearing cortical regions, and
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Subject EV of PC1
#01 99.27
#02 99.30
#03 98.85
#04 99.98
#05 99.43
#06 99.03
#07 98.96
#08 99.39
#09 99.14
#10 98.78
#11 99.07

Table 5.2: Bar plot of the explained variance for all the components of the PCA
analysis on the SC matrices of a representative subject.

lower SUVR than normal appearing tissues.
Focusing further investigation on the normal appearing nodes, Figure 5.15

shows the structural alterations VS metabolism scatterplots for the entire dataset
(reported above) and specifically glioblastoma (gbm) patients (rgbm = −0.118 and
pgbm = 6.17e−11). As gbms are between the most infiltrative subtypes of gliomas,
we would have expected a stronger anti-correlation with respect to the entirety
of the dataset, but we could not confirm such an hypothesis.

Lastly, to reduce the heterogeneity in the results, we extended the correlation
analysis between structure and metabolism by looking separately to each Schaefer
brain region. To ensure that statistical testing featured reasonable results, the
analysis was restricted to nodes which were normal-appearing in at least 15 sub-
jects in our dataset. Figure 5.16 shows the scatterplots of the regions for which a
statistically significant (FDR-corrected) correlation was found (Table 5.2 shows
the region ID, network of belonging and correlation values). When accounting
for the regional heterogeneity of SUVR values, a much stronger association was
found between structural alterations and metabolic changes in several normal
appearing regions of the brain.

5.4 Discussion and conclusions

Overall, In this work several results were presented, concerning three different
main points:

• the optimal selection of both the tractography algorithm and the streamline
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Figure 5.10: On the left, the scatterplot between the tumoral lesion size (i.e.,
tumour core + oedema) and the number of the quantified altered connections. On
the right, the scatterplot between the tumoral core size (i.e., only the tumour core)
and the number of the quantified altered connections. Different colors denote the
tumour location for the specific patient.

termination cut-off value for the computation of the SC matrices.

• the development of a statistical procedure to define structural links which
are altered due to the presence of the tumour in each subject.

• the multimodal association between the degree of alteration of SC con-
nections afferent to a node and regional metabolic changes measured by
18F-FDG PET.

As done in the results section, the different outcomes of this work will be
discussed separately in different subchapters.

5.4.1 Tractography algorithm selection and cut-off value
sensitivity

The physiological validation of reconstructed tractograms has always been a cen-
tral problem in the field of diffusion MRI. It is widely known that tractography
algorithms provide an approximate reconstruction of white matter pathways in a
’connecting the dots’ fashion. Local diffusion orientation, representing the direc-
tion along which axonal fibers propagate, are interpolated together to extract a
surrogate measure of the connection between different regions of the brain. Such
reconstruction methods, while detecting the majority of true axonal bundles, are
extremely susceptible to computing false positive streamlines (i.e, streamlines

89



Figure 5.11: On the left, boxplots of the normalized number of structurally al-
tered links in the left hemisphere computed respectively for the subpopulation of
subjects with a tumour in the left, right and both hemisphere. On the right, the
same analysis was conducted for the altered links in the right hemisphere.

Region ID Network classification Spearman’s R
79 Default A -0.51
86 Default B -0.47
108 Visual Peripheral -0.739
153 Saliency/Ventral Attention -0.544
158 Limbic B -0.594
172 Control Components B -0.569
178 Control Components B -0.639
182 Default A -0.553
197 Temporal-Parietal -0.632

Table 5.3: Regions of the Schaefer’s Atlas for which a statistically significant
relationship was found between the degree of alteration and regional metabolism

which represents fibers which do not really exist in the brain) (Maier-Hein et
al., 2017). While tracing axons with virtual and physical phantoms (Côté et
al., 2013) and other techniques (Grisot et al., 2021; Knösche et al., 2015) can
help in discerning which connections are more accurate than others, these ap-
proaches cannot be applied subjectively to every patient, and rely on validation
on external data. We here presented an application of the open-source software
package whitematteranalysis to test for the physiological plausibility of a given
tractogram by comparing it with an anatomically-curated atlas of streamlines.
While the proposed rt is prone to bias and pitfalls of tractography measures,
it gives a first depiction on how the total number of streamlines is partitioned
amongst physiological bundles. From our anaysis the iFOD2 algorithm appears
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Figure 5.12: The boxplot of the normalized number of structurally altered links
in each hemisphere for the subpopulation of subjects with a bilateral tumour.

to produce a structural connectome which, between the alternatives, is the most
similar on average to the anatomically curated atlas in use. This algorithm addi-
tionally appears to be the most consistent across the tested subjects, featuring the
lowest mean MAD of the studied options. In terms of the criterion for terminat-
ing streamlines, the Krzanowski test and the PCA analysis revealed, respectively
inter- and intra-subjects, that no significant variation was found amongst SC ma-
trices computed by only modifying the cutoff value. Indeed, the null hypothesis
(H0, no variation between groups) of the test was accepted and the first principal
components of the set on intra-subject SC matrices featured at least 98% of EV
in all subjects. Thus, these results support the hypothesis that only minor mod-
ifications occur in the overall structural connectivity estimation by using more
permissive thresholds. As the in the current literature using the Mrtrix3 software
this parameter is set to default values, we opted for the same choice in order to
ensure the replicability and comparability of our results.

5.4.2 The statistical definition of altered SC links and its
sensitivity to tumour size and location

As it is reasonable to expect, a strong correlation was found between the size
of the tumoral lesion and the amount of structurally altered links detected in a
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Figure 5.13: In A, the scatterplot between SUVR values for all regions of every
patient and the degree of structural alteration of its connections. Nodes were
divided in hub regions (red) and non-hub (green). In B, boxplots showing the
degree of alteration for hubs and non hubs. In C, boxplots showing the regional
SUVR for hubs and non hubs.

patient. This findings supports the hypothesis that the developed technique is
sensitive to the extension of the pathology and is able to capture the microstruc-
tural abnormalities it causes. Of particular interest is the fact that the correlation
and p-value is significantly weaker when excluding the oedema from the analy-
sis. The heterogeneity of the oedematous tissue, both in terms of its extension
and composition, is object of many studies investigating the deficits and prog-
nosis caused by tumours (Dehcordi et al., 2013; C.-X. Wu et al., 2015; X. Qin
et al., 2021), and we here have shown its importance to describe structural dam-
age. Thus, the findings in our study support the inclusion of the oedema in all
tumour-related analyses, as it considerably strengthens the association between
the measure of structural alterations we defined and the presence of the cancerous
lesion. While the majority of altered SC links are found in the ipsilateral hemi-
sphere to the tumoral lesion and cross-hemispheric alterations, a non-negligibile
amount of altered links is also found in the contralateral portion of the brain
for every subject. Indeed, as we also were able to detect, widespread alterations
in normal appearing WM and GM were recently shown in several studies with
glioma patients (D’Souza, Ormond, et al., 2019; Yuan et al., 2020; X. Wang et al.,
2020), suggesting that neuroplasticity and pathological phenomena may induce
modifications in the brain also at distance from the tumoral lesion. Overall, the
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Figure 5.14: In A, the scatterplot between Standardized uptake value ratios
(SUVR) values for all regions of every patient and the degree of structural alter-
ation of its connections. The color code distinguishes between the three different
tissues. In B, boxplots showing the number of structurally altered links for re-
gions respectively occupied by normal appearing tissue, oedema and the tumour
core. In C, boxplots showing the SUVR for regions respectively occupied by nor-
mal appearing tissues, the oedema and the tumour core.

statistical procedure proposed in this work is one of the first attempts in lit-
erature to define the structural damage brain tumours cause in subject-specific
connectomes. Of course, relying on the comparison between individual SC en-
tries and its "dataset-defined" pseudo-healthy distribution, the definition of the
latter is dependent on the number of subjects for which that specific connection
is pseudo-healthy. Having at disposal larger datasets would lead to having bet-
ter defined reference distributions and thus, more accurate detection of their left
tails (i.e., the altered connections). Another key point of our metholodology is
the assumption that the number of streamline connecting two region is a quan-
titative measure of the structural connection between the two. This is indeed a
critical point, as in basic tractography analyses, there is little to no relationship
between the streamlines and the original intensities of the dMRI signal (Jbabdi
et al., 2011). This issue was in this work mitigated by processing the obtained
tractogram with the SIFT framework (R. E. Smith et al., 2013; R. E. Smith
et al., 2015). Briefly, with SIFT the original 100M streamlines tractography was
filtered to a subset of 10M. This was done by relating each streamline to the orig-
inal diffusion signal via the utilization of a proper cost function and subsequently
pruning those connections whose contribution was non-significant. To reach our
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Figure 5.15: On the left, scatterplot of Standardized Uptake Value Ratios (SUVR)
vs degree of structural alterations between normal appearing nodes of the SC ma-
trices from glioblastoma subjects. On the right, the same scatterplot for normal
appearing nodes from all subjects. GBM = Glioblastoma, na = normal appear-
ing, DEG = degree.

objective, this step of the employed diffusion analysis pipeline was crucial, en-
abling more quantitative inference to be made from analyses of SC matrices based
on the number of streamlines metric.

5.4.3 Multimodal association of structural and metabolic
measures

A first analysis concerning the distinction between Hubs and Non-hubs nodes of
the structural network was carried to understand how structural alterations were
linked to metabolic variations in these two populations of regions. The trends in
the scatterplots were confirmed by the correlation analysis, associating an inverse
relationship between structural alterations and metabolic function. In general,
we found that hubs were slightly more affected in terms of structural alterations
than non-hubs, and that their SUVR was lower. Future studies may investigate
this relationship further having at disposal a dataset with healthy adults. Indeed,
characterizing the metabolic state of healthy hubs and non-hubs may allow for
the computation of baseline metabolism changes in presence of alterations, in-
stead of the absolute values presented here. Unfortunately, no such scans were at
disposal at the time of the study, so we could not perform this additional analysis.
Moving to more tissue-specific analyses, the only nodes for which a statistically
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Figure 5.16: Illustratory Scatterplot depicting the relationship between regional
standardize uptake value ratios (SUVR) values and degree of structural alteration
in 3 of the 9 regions for which statistical significant correlation is achieved (p <
0.05, FDR corrected). DEG = degree

significant anti-correlation was found between the degree of alteration and the
SUVR were those belonging to normal appearing GM. Indeed, when looking at
the glucose uptake in oedematous and tumoral regions, the physiology of the
underlying white matter network is disrupted, and the dependence between en-
ergy consumption and the state of axonal connections is questionable. Moreover,
SUVR values are significantly different between and inside brain tumours sub-
populations (Padma et al., 2003), reflecting an heterogeneity which appears not
to be explainable in terms of alterations to the structural connectivity network
alone. Restricting the multimodal association between metabolism and structure
to the normal appearing GM nodes, we hypothesized that differentiating patients
suffering from glioblastomas and the rest of the tumours would yield a stronger
anti-correlation. These brain tumours are well known for being extremely in-
filtrative (Louis, Perry, Reifenberger, et al., 2016; Louis, Perry, Wesseling, et
al., 2021), expanding beyond the MR-evident mass through normal white mat-
ter tracts. While we expected this aggressiveness to impair network nodes more
severely, our results did not expose a weaker structure-metabolism correlation in
this subpopulation of tumours. This weakened relationship may be due in part
to glioblastoma having heterogeneous [18F]-FDG uptake based on mutations oc-
curring in particular genes. Indeed, it has been shown by several studies that
IDH1-mutated glioblastomas feature lower glucose consumption than IDH1 wild-
type ones (F.-M. Liu et al., 2021) and are prognostically linked to better overall
survival of patients (D. Kim et al., 2018). Both these variants are significantly
present in our dataset, possibly causing heterogeneity in the results we obtain.
Lastly, the node-specific analysis, which gave the strongest results of this study,
was performed to account for the inter-region variability of FDG-PET measures.
Indeed, this evaluation showed that some normal appearing GM regions were
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strongly affected when several of their afferent axonal connections were impaired
by the presence of a tumour. Recent findings suggested that brain tumors have
broad repercussion on functional networks (Fox et al., 2018; Hacker et al., 2019).
However, while PET has been extensively used to diagnose, differentiate and
grade brain tumours, in current literature there has been strikingly low interest
in studying metabolism-related changes outside of the tumoral/peritumoral area.
The interplay between functioning neurons and the malignant tissue appears to
be central in determining the progression of gliomas (Gillespie et al., 2018), and
we here enforce the hypothesis that functional network changes (Harris et al.,
2014) are accompanied by joint structural and metabolic abnormalities. The
default mode network (DMN) appears to be at the centre of functional connec-
tivity changes in brain tumour patients (Jütten et al., 2020; Hacker et al., 2019;
Ghumman et al., 2016; Esposito et al., 2012), which is in line with our findings.
Indeed, several of the regions for which we find a strong relationship between
structural and metabolic alterations belong to this network. Our findings thus
support the multimodal centrality of the role of this network in determining the
cognitive progression of brain tumour patients. Our work additionally highlights
the importance of abnormalities occurring in contralateral and interhemispheric
structural connections, which may explain the corresponding functional alter-
ations found by some glioblastoma studies (De Baene et al., 2019; Nenning et al.,
2020).

5.4.4 Overall conclusions

In this work, we developed a statistical approach to evaluate altered structural
connections based on the evaluation SC matrices in a cohort of brain tumour
patients. After careful evaluation of which tractography algorithm to use for the
computation of SC matrices, we have shown that this methodology may be sensi-
tive to WM alterations happening both in proximity of the tumour location and
at distance, in the hemisphere contralateral to it. We eventually correlated the
degree of connection alteration of a node with its metabolism using 18F-FDG
PET measures, showing that several cortical regions are metabolically impacted
by the loss of physiological white matter links due to the pathology. As discussed
throughout this chapter, the methodology we employ is mainly dependent on the
ability of diffusion-MRI tractography to provide quantitative measures of connec-
tivity between different regions of the brain. This topic is of pivotal importance
in the field, and has always been object of heated debate (C.-H. Yeh et al., 2021;
Jeurissen, Descoteaux, et al., 2019; Dmitry S Novikov, Kiselev, et al., 2018). Nev-
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ertheless, We want to reinforce the fact that the processing and analysis pipeline
featured here was targeted to minimize this issue. The structure-metabolism re-
lationship we described supports the argument that tractography is a powerful
tool that, when complemented by other imaging modalities, can offer new and
precious insights into the physiopathology of brain tumours.
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Chapter 6

Conclusions

This last chapter marks the closing section of this thesis.
Among the vast field of neuroimaging, Diffusion MRI stands out as one of the

most promising tools to investigate the structure of the human brain. Indeed,
given its intrinsic link with the diffusion of water molecules, dMRI provides the
most specific access to tissues biological features, which are far below the nominal
resolution of current MRI scanners. dMRI thus yields enormous promise to make
the difference in the diagnosis and monitoring of several pathologies, including
brain tumours, which were the main study focus of this thesis.

At the time of writing the diffusion MRI state of the art is bloated by the
presence of multiple models, a plethora of tractography algorithms and abudant
preprocessing methodologies concurrently minimizing sources of noise. While this
is a problem which is starting to be tackled, general consensus for diffusion data
analysis is still practically absent in the international MRI community. As such,
without a shared direction, the translation of research result to the clinic has seen
slow advancement since DTI was first introduced.

When I started this PHD programme, the question which I asked myself was:
"This wide range of models, algorithms and analysis metholodogies which are
available, how can I use them to extract meaningful information from the brain
of patients suffering from tumours?". Thus, my work during these three years was
not devoted to developing a new diffusion-based technique to throw in the chaos
of the literature, but rather to explore new ideas to exploit what already was
there to be used (indeed, as an engineer would do). This line of reasoning acts as
a common thread to the three studies presented in this thesis, which dealt with
different dMRI techniques appliced to brain tumours. In fact, from the particular
to the general, this three-years-spanning work dealt with voxel-wise estimation
of diffusion properties, the assessment of local tractography modifications and
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network-level structural connectivity analysis. For the sake of summarizing this
thesis, a brief recap to the result obtained in this work follows.

• In Chapter 2, two microstructure models, NODDI and the SMT, were eval-
uated in terms of their goodness of fit and parameter estimation precision
in the tumoral lesion. The concept of generalized sensitivity functions to
analyze the optimality of the employed dMRI protocol in the various tissues
was also introduced. While their biological meaning is still unknown in the
tumor region, we showed that these techniques provide stable and reliable
estimates inside it, making them suitable to use at least as signal represen-
tation in the search of new biomarkers to describe the pathophysiology of
brain tumours.

• In Chapter 3, the use of tractography algorithms to quantify white matter
disconnections in brain tumour patients was explored for the first time. In-
side the chapter, a comparison between indirect (i.e., atlas based) and direct
(i.e. tractography-based) approaches was performed, empirically showing
there can be pronounced differences between them. The strengths and pit-
falls of both methods were discussed, paying particular attention to high-
light which pathological effects can or cannot be tracked by the two alter-
natives.

• In Chapter 4, a statistical procedure was developed to detect tumour-altered
entries of individual structural connectivity matrices. Prior to its applica-
tion, a careful selection of the tractography algorithm was in this chap-
ter proposed. This choice was quantitatively evaluated both in terms of
similitude to an anatomically curated atlas and sensitivity to streamline
termination criteria. Finally, for the first time in the literature, metabolic
alterations of normal appearing nodes of the structural network of patients
were associated with the measure of structural alteration proposed in this
work. This last multimodal analysis revealed that particular brain regions
are metabolically affected when its structural connections feature patholog-
ical alterations.

Indeed the work featured within this thesis stands on its own in terms of the
contribution to the research of brain tumours involving dMRI. As a conclusive
thought however, I believe its greatest strength is more as a foundation to further
research, rather than as a conclusive product. We are still far from having the
perfect microstructure model, or a flawless tractography algorithm which only
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and specifically tracks truly existing axonal bundles in normal and pathological
tissues. Nevertheless, as discussed throughout the thesis, the analysis methodolo-
gies developed and employed here can only benefit from improvements in these
fields, and thus can acquire more and more relevance in terms of clinical applica-
bility as the science of diffusion MRI advances.
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