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A B S T R A C T

It is a common practice in multimodal medical imaging to undersample the anatomically-
derived segmentation images to measure the mean activity of a co-acquired functional image.
This practice avoids the resampling-related Gibbs effect that would occur in oversampling the
functional image. As sides effect, waste of time and efforts are produced since the anatomical
segmentation at full resolution is performed in many hours of computations or manual work.
In this work we explain the commonly-used resampling methods and give errors bound in the
cases of continuous and discontinuous signals. Then we propose a Fake Nodes scheme for image
resampling designed to reduce the Gibbs effect when oversampling the functional image. This
new approach is compared to the traditional counterpart in two significant experiments, both
showing that Fake Nodes resampling gives smaller errors at the cost of an higher computational
time.

1. Introduction

In nowadays medical imaging it is becoming more and more popular the usage of multimodal imaging. The typical setup of a
ultimodal imaging system allows to acquire simultaneously both anatomical and functional images of a physical body [1,2], as for

nstance SPECT/CT,1 PET/MRI2 or PET/CT. Anatomical imaging (e.g. CT, MRI) aims to picture accurately the interiors of the body
nd offers a high spatial resolution, around 1 mm3 per voxel with the present day’s machines. To the other side, functional imaging

(SPECT, PET in our example) aims to show physiological activity of the body under examination, offering an high sensitivity at the
price of a lower spatial resolution (about 8 − −27 mm3 per voxel) than the morphological counterpart.

In this context, in many clinical studies researchers need to measure some statistical moments (usually the mean or median) of
the functional activity inside some specific segment previously identified from the anatomical image, see e.g. [3]. In order to get
such measure it is necessary that the anatomical and functional image have the exact same shape, which ensures that the position
of all the voxels of both images correspond. There are usually two ways to achieve that:

1. oversampling the functional image to the same size of the anatomical,
2. undersampling the anatomical image and the segments to the same size of the functional image [4,5].

∗ Corresponding author at: PNC - Padova Neuroscience Center, University of Padova, Padua, Italy.
E-mail address: dr.davide.poggiali@gmail.com (D. Poggiali).

1 SPECT stands for Single Photon Emission Tomography, CT for Computed Tomography.
2 Positron Emission Tomography and Magnetic Resonance Imaging, respectively.
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In a recent paper [6] we showed that the latter is preferable due to the Gibbs effect that occurs in oversampling. However we found
that this approach would be a waste of the time and efforts that are spent in producing accurate segments at full resolution [7]. For
these reasons we have been looking for a Gibbs-free oversampling technique.

Inspired by the Fake Nodes Approach introduced in [8,9], in this work we propose a Fake Nodes-based interpolation technique
hat allows to oversample the functional image that takes into account the segments at full resolution, resulting in a remarkable
eduction of the error due to the Gibbs effect. After a description of the interpolation scheme behind the Fake Nodes Approach, we
iscuss some theoretical results and some experiments.

The paper is organized as follows. After this Introduction, in Section 2 we recall the interpolation methods currently used in
mage resampling and give an error bound for these methods. In Section 3 we describe the Fake Nodes interpolation and the new
cheme based on Fake Nodes in multimodal image resampling. In Section 4 we describe two significant experiments to compare
commonly used resampling method with the Fake Nodes-based approach. The first experiment is in silico using an analytically-

defined test image. The second one is in vitro, using a set of PET/CT scans of a phantom for with known foreground to background
ratio.

In the last section we conclude outlining some future research directions.

2. Interpolation methods for image resampling

2.1. Image definition

An image is given by the signal intensity at a given point in space. Mathematically we may define an image function

𝑓 ∶ 𝛺 ⊆ R3 ⟶ R (1)

where the domain is a parallelepiped 𝛺 = [𝑎1, 𝑏1] × [𝑎2, 𝑏2] × [𝑎3, 𝑏3]. In practice the information on an image function are the its
values sampled over a regular and equispaced grid

𝑋 =
{

(𝒙𝑖𝑗𝑘) = (𝑥𝑖, 𝑦𝑗 , 𝑧𝑘) ∈ 𝛺
}

with
𝑖 = 1,… , 𝑛𝑥
𝑗 = 1,… , 𝑛𝑦
𝑘 = 1,… , 𝑛𝑧

. (2)

The values are stored in the matrix 𝐹𝑖𝑗𝑘 = 𝑓 (𝒙𝑖𝑗𝑘) which is indeed 𝑓 (𝑋). From now on, 𝐹 is referred simply as the image.
For the sake of simplicity and without loss of generality we may consider the cube 𝛺 = [𝑎, 𝑏]3 equally-sampled along the axes,
i.e. 𝑛𝑥 = 𝑛𝑦 = 𝑛𝑧 = 𝑛, so that 𝑥𝑖 = 𝑦𝑖 = 𝑧𝑖 =

𝑏−𝑎
𝑛−1 (𝑖 − 1) + 𝑎, 𝑖 = 1,… , 𝑛.

2.2. Interpolation for image resampling

Resampling an image to another equispaced grid, say 𝑋′, is equivalent to find 𝑓 (𝑋′), which is in general different from 𝑓 (𝑋).
his can be done by linear interpolation.

We shall concern with real-valued functions defined in 𝛺. In 𝛺 we the consider a set 𝑋 = {𝑥1,… , 𝑥𝑛} of nodes, the so-called
ode set. For each 𝑥𝑖 a value, say 𝑦𝑖 ∈ R, is given. The interpolation problem is finding a suitable function 𝑝 ∶ 𝛺 ⟶ R such that
(𝑥𝑖) = 𝑦𝑖, 𝑖 = 1,… , 𝑁 . Usually 𝑝 is chosen from some family of functions on 𝛺. In this work we are interested to interpolation from
finite dimensional linear space of functions.

efinition 2.1. Let 𝑓 be a function from a 𝑁-dimensional vector space of functions on 𝛺. Let 𝐵 this vector space with basis
𝑏1,… , 𝑏𝑁}. The interpolant of 𝑓 is then the linear combination

𝑓 =
𝑁
∑

𝑖=1
𝑐𝑖𝑏𝑖 (3)

with 𝑐𝑖 ∈ R found by imposing the conditions

𝑓
|𝑋 = 𝑓

|𝑋 . (4)

The interpolant is unique provided that

det
[

𝑏𝑖(𝑥𝑗 )
]

𝑖,𝑗=1,…,𝑁 ≠ 0.

With the notation 𝑓
|𝑋 = 𝑓

|𝑋 we mean 𝑓 (�̄�) = 𝑓 (�̄�) ∀𝑥 ∈ 𝑋.
In the case of image resampling, we choose the interpolant 𝑓 as the (possibly unique) linear combination of a chosen set of

asis functions

 = {𝐵𝑖𝑗𝑘}𝑖,𝑗,𝑘=1,…,𝑛

uch that
𝑓 (𝒙𝑖𝑗𝑘) = 𝑓 (𝒙𝑖𝑗𝑘) ∀𝑖, 𝑗, 𝑘 = 1,… , 𝑛.
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To compute the resampled image it is sufficient to evaluate the interpolant over the evaluation grid 𝑓 (𝑋′) and store its value in
a 3-dimensional array.

In image resampling, since the number of voxels 𝑛3 can be extremely large, it is necessary to make some assumptions on the
basis functions to compute the resampling image in a relatively short time. Accordingly with [6,10,11], the basis should satisfy the
following characteristics.

(I) Separable: given a function 𝑏 the basis 𝐵𝑖𝑗𝑘 is then the product of translates of 𝑏 at the samples, that is

𝐵𝑖𝑗𝑘(𝑥, 𝑦, 𝑧) ∶= 𝑏(𝑥 − 𝑥𝑖) 𝑏(𝑦 − 𝑦𝑗 ) 𝑏(𝑧 − 𝑧𝑘), (5)

𝑥 ∈ 𝛺, 𝑖, 𝑗, 𝑘 = 1,… , 𝑛.
(II) Cardinal:

𝐵𝑖𝑗𝑘(𝒙𝑖′𝑗′𝑘′ ) =
{

1 if (𝑖, 𝑗, 𝑘) = (𝑖′, 𝑗′, 𝑘′)
0 else (6)

(III) Normalized:
𝑛
∑

𝑖𝑗𝑘=1
𝐵𝑖𝑗𝑘(𝒙) = 1 ∀𝒙 ∈ [𝑎, 𝑏]3. (7)

(IV) Compact support:

∃𝛼 ∈ R+ s.t. 𝐵𝑖𝑗𝑘(𝒙) = 0 ∀‖𝒙 − 𝒙𝑖𝑗𝑘‖∞ ≥ 𝛼. (8)

The reader can find some examples of basis functions satisfying all these characteristics in [6,10]. For instance the so-called trilinear
interpolation corresponds to choose the function 𝑏 as

𝑏(𝑥) =

{

1 − |𝑥|
ℎ if |𝑥| ≤ ℎ

0 otherwise
(9)

with ℎ = 𝑏−𝑎
𝑛 the distance between two samples, and to define the basis functions 𝐵𝑖𝑗𝑘 by consequence as in Eq. (5).

Under the hypothesis (I) we can write the interpolant function as

𝑓 (𝒙) =
𝑛
∑

𝑖𝑗𝑘=1
𝑓 (𝒙𝑖𝑗𝑘)𝐵𝑖𝑗𝑘(𝒙). (10)

Such interpolant can be quickly computed as the result of three subsequent tensor products as the following holds for hypothesis
(II)

𝑓 (𝑥, 𝑦, 𝑧) =
𝑛
∑

𝑘=1

𝑛
∑

𝑗=1

𝑛
∑

𝑖=1
𝐹𝑖𝑗𝑘𝑏(𝑥 − 𝑥𝑖) 𝑏(𝑦 − 𝑦𝑗 ) 𝑏(𝑧 − 𝑧𝑘) (11)

or, in Einstein’s summation convention

𝑓 (𝑥, 𝑦, 𝑧) = 𝐹𝑖𝑗𝑘𝑏(𝑥 − 𝑥𝑖) 𝑏(𝑦 − 𝑦𝑗 ) 𝑏(𝑧 − 𝑧𝑘).

It has to be noticed that such formulation of image resampling and the theoretical results presented in this work can be easily
extended to any dimension.

In particular, it is possible to speed up the computation of the interpolant, as it is shown by the following Lemma, whose proof
is given in [6].

Lemma 2.1. If 𝑓 is an interpolant of 𝑓 satisfying (I), (II) and (IV) then, for every evaluation point (𝑥, 𝑦, 𝑧) ∈ [𝑥𝑝, 𝑥𝑝+1] × [𝑦𝑞 , 𝑦𝑞+1] ×
[𝑧𝑟, 𝑧𝑟+1] it exists a strictly positive integer 𝑎 ∈ N such that

𝑓 (𝑥, 𝑦, 𝑧) =
𝑚𝑖𝑛(𝑛,𝑟+𝑎−1)

∑

𝑘=𝑚𝑎𝑥(1,𝑟−𝑎)

𝑚𝑖𝑛(𝑛,𝑞+𝑎−1)
∑

𝑗=𝑚𝑎𝑥(1,𝑞−𝑎)

𝑚𝑖𝑛(𝑛,𝑝+𝑎−1)
∑

𝑖=𝑚𝑎𝑥(1,𝑝−𝑎)
𝐹𝑖𝑗𝑘𝑏(𝑥 − 𝑥𝑖) 𝑏(𝑦 − 𝑦𝑗 ) 𝑏(𝑧 − 𝑧𝑘). (12)

This means that the local compactness of the support of the basis functions ensures that in each dimension only the 𝑎 nodes
efore and after the evaluation point have an active role in evaluating the interpolant.

.3. Error bound for image resampling

In this section we give an error bound for the image interpolation which relies on the modulus of continuity of a function [12–15].

efinition 2.2. Let 𝑓 ∶ 𝛺 ⊆ R𝑑 ⟶ R be a piecewise continuous function. The function 𝑓 admits a modulus of continuity
𝒙0 (𝛿) ∶ R+ ⟶ R+ in 𝒙0 ∈ 𝛺 if

|𝑓 (𝒙) − 𝑓 (𝒙0)| ≤ 𝜔𝒙0 (𝛿) ∀𝒙 ∈ 𝛺 s.t. ‖𝒙 − 𝒙0‖ ≤ 𝛿.

here ‖ ⋅ ‖ is an arbitrary norm.
3
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The definition of modulus of continuity given here is slightly relaxed from the one given in literature in order to include piecewise
ontinuous functions. Namely, in our formulation it is not necessarily true that

lim
𝛿→0

𝜔𝒙0 (𝛿) = 0.

We can extend this definition and consider the global modulus of continuity, say 𝜔(𝛿),

|𝑓 (𝒙) − 𝑓 (𝒚)| ≤ 𝜔(𝛿) ∀𝒙, 𝒚 ∈ 𝛺 s.t. ‖𝒙 − 𝒚‖ ≤ 𝛿.

t is noteworthy to recall that if a function admits a local modulus of continuity for every 𝒙0 ∈ 𝛺, then admits a global modulus of
continuity

𝜔(𝛿) ∶= sup
𝒙0∈𝛺

𝜔𝒙0 (𝛿).

We now enounce the definition of discontinuity jumps, that we will use for quantifying the discontinuities of a piecewise
continuous signal.

Definition 2.3. Let 𝑓 ∶ 𝛺 ⊆ R𝑑 ⟶ R be piecewise continuous on pairwise disjoint subdomains 𝛺1,… , 𝛺𝑚 such that

𝛺 =
◦
⋃

𝑚

𝑖=1
𝛺𝑖.

The jump between two subdomains 𝛺𝑖, 𝛺𝑗 , 𝑖 ≠ 𝑗 is the positive real

𝐷(𝛺𝑖, 𝛺𝑗 ) ∶= sup
(

𝐽𝑖𝑗
⋃

𝐽𝑗𝑖
)

with

𝐽𝑖𝑗 =
{

lim
𝒙→𝒚

|𝑓 (𝒙) − 𝑓 (𝒚)| , 𝒙 ∈ 𝛺𝑖, 𝒚 ∈ 𝜕𝑖𝛺𝑗

}

were 𝜕𝑖𝛺𝑗 ∶= 𝜕𝛺𝑖
⋂

𝛺𝑗 is the part of the border of 𝛺𝑖 that belongs to 𝛺𝑗 .
In the special case that 𝜕𝛺𝑖 ∩ 𝜕𝛺𝑗 = ∅, and consequently 𝐽𝑖𝑗 and 𝐽𝑗𝑖 are empty sets, the jump is considered equal to zero.

We now enounce two useful Lemmas for the estimation of the error at a given evaluation point.

emma 2.2. A 𝑑-variate, Lipschitz-continuous function 𝑓 admits a modulus of continuity of the form

𝜔(𝛿) = 𝐾𝛿

eing 𝐾 the Lipschitz constant.

The proof follows trivially from the definitions of Lipschitz continuity and global modulus of continuity.

emma 2.3. A piecewise 𝑑-variate, Lipschitz-continuous function 𝑓 admits a modulus of continuity of the form

𝜔(𝛿) = 𝐾𝛿 +𝐷

roof. Suppose that domain 𝛺 is the union of 𝑚 pairwise disjoint subdomains 𝛺1,… , 𝛺𝑚,

𝛺 =
◦
⋃

𝑚

𝑖=1
𝛺𝑖

and in each 𝛺𝑖 𝑓 is Lipschitz-continuous with constant 𝑘𝑖.
Considering two generic points 𝑥, 𝑦 ∈ 𝛺, we have to analyze three different cases.
Case 1: If 𝑥, 𝑦 ∈ 𝛺𝑖, the thesis follows by Lemma 2.2 with 𝐾 = 𝑘𝑖 and 𝐷 = 0.
Case 2: Suppose now that the points 𝑥 and 𝑦 belong to two neighboring subdomains, namely 𝑥 ∈ 𝛺𝑖 and 𝑦 ∈ 𝛺𝑗 with 𝜕𝛺𝑖∩𝜕𝛺𝑗 ≠ ∅.
As in Definition 2.3, for any choice of 𝝃𝑖 ∈ 𝛺𝑖 and 𝝃𝑗 ∈ 𝜕𝑖𝛺𝑗 = 𝜕𝛺𝑖

⋂

𝛺𝑗 we get

|𝑓 (𝒙) − 𝑓 (𝒚)| ≤ |𝑓 (𝒙) − 𝑓 (𝝃𝑖)| + |𝑓 (𝝃𝑖) − 𝑓 (𝝃𝑗 )| + |𝑓 (𝝃𝑗 ) − 𝑓 (𝒚)|. (13)

This inequality still true for the limit

|𝑓 (𝒙) − 𝑓 (𝒚)| ≤ lim
𝜉𝑖→𝜉𝑗

{

|𝑓 (𝒙) − 𝑓 (𝝃𝑖)| + |𝑓 (𝝃𝑖) − 𝑓 (𝝃𝑗 )| + |𝑓 (𝝃𝑗 ) − 𝑓 (𝒚)|
}

≤

≤ 𝑘𝑖𝛿 +𝐷(𝛺𝑖, 𝛺𝑗 ) + 𝑘𝑗𝛿

for all 𝒙, 𝒚 ∈ 𝛺 such that ‖𝒙 − 𝒚‖ ≤ 𝛿.
The thesis follows with 𝐷 = 𝐷(𝛺𝑖, 𝛺𝑗 ) and 𝐾 = 𝑘𝑖 + 𝑘𝑗 . This inequality also holds when 𝜕𝑖𝛺𝑗 is an empty set. In fact in such case

𝜕 𝛺 cannot be empty as, so we can take 𝝃 ∈ 𝜕 𝛺 , 𝝃 ∈ 𝛺 and the limit for 𝜉 → 𝜉 in (13).
𝑗 𝑖 𝑖 𝑗 𝑖 𝑗 𝑗 𝑗 𝑖

4
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Case 3: As last possible case we now suppose that the points 𝑥 and 𝑦 belong to two non-neighboring subdomains 𝛺𝑖 and 𝛺𝑗
respectively, with 𝜕𝛺𝑖 ∩ 𝜕𝛺𝑗 = ∅. In this case the inequality (13) is repeated for all the subdomains intersecting the straight line
etween 𝒙 ∈ 𝛺𝑖 and 𝒚 ∈ 𝛺𝑗 . In the worst case such line touches all the 𝑚 subdomains. Hence the claim follows with

𝐾 = 𝑚
(

max
1≤𝑖≤𝑚

𝑘𝑖

)

nd

𝐷 = 𝑚
(

max
1≤𝑖,𝑗≤𝑚

𝐷(𝛺𝑖, 𝛺𝑗 )
)

. □

We now prove an upper bound for the pointwise interpolation error given by any modulus of continuity.

Theorem 2.4. Let 𝑓 be a trivariate and bounded function admitting a local modulus of continuity 𝜔𝒙(𝛿). Let 𝑓 be its interpolant built
ccording to (I), (II), (III) and (IV). Then, there exits 𝛿∗ > 0 such that

|𝑓 (𝒙) − 𝑓 (𝒙)| ≤ 𝜔𝒙(𝛿∗) .

roof. From Eq. (10) and from (III) we get

𝑓 (𝒙) − 𝑓 (𝒙) =
𝑛
∑

𝑖𝑗𝑘=1
𝑓 (𝒙𝑖𝑗𝑘)𝐵𝑖𝑗𝑘(𝒙) − 𝑓 (𝒙)

( 𝑛
∑

𝑖𝑗𝑘=1
𝐵𝑖𝑗𝑘(𝒙)

)

=
𝑛
∑

𝑖𝑗𝑘=1

(

𝑓 (𝒙𝑖𝑗𝑘) − 𝑓 (𝒙)
)

𝐵𝑖𝑗𝑘(𝒙).

We know from Lemma 2.1 that only some nodes in a neighborhood of 𝒙 have to be taken into account in the interpolation formula.
To be precise the 𝒙𝑖𝑗𝑘 such that ‖𝒙 − 𝒙𝑖𝑗𝑘‖∞ < 𝛼. Since 𝑓 admits a modulus of continuity we can state

|

|

|

𝑓 (𝒙𝑖𝑗𝑘) − 𝑓 (𝒙)||
|

≤ 𝜔𝒙(𝛿∗),

with 𝛿∗ = 𝛼 and 𝑖, 𝑗, 𝑘 in the range indicated in Lemma 2.1. By using the normalized basis

𝑓 (𝒙) − 𝑓 (𝒙) ≤
𝑛
∑

𝑖𝑗𝑘=1
𝜔𝒙(𝛿∗)𝐵𝑖𝑗𝑘(𝒙) = 𝜔𝒙(𝛿∗).

and similarly

𝑓 (𝒙) − 𝑓 (𝒙) ≥ −𝜔𝒙(𝛿∗),

which proves the Theorem.

In a similar way we can find a global upper bound to the interpolation error, simply by taking the supremum of the local
continuity moduli.

Corollary 2.4.1. Let 𝑓 be a trivariate and bounded function admitting a global modulus of continuity 𝜔(𝛿). Let 𝑓 be its interpolant built
according to (I), (II), (III) and (IV). Then, there exits 𝛿∗ > 0 such that

|𝑓 (𝒙) − 𝑓 (𝒙)| ≤ 𝜔(𝛿∗) .

2.4. Gibbs effect in image oversampling

We usually refer to Gibbs effect as the oscillations around a discontinuity that occurs when approximating a signal with a
truncated Fourier series [16,17]. Such effect is present also in image (re)sampling, often called ‘‘ringing effect’’ for the wavelike,
concentric oscillations that appears around any sudden change of signal intensity [18,19]. Unlike the Runge effect, the magnitude of
the oscillation goes to a plateau as the number of interpolation nodes goes to infinity. The presence of the Gibbs effect in multimodal
medical imaging has already been discussed in [6] where a ‘‘natural’’ error analysis has been presented. Similar results can be
obtained by the results of the previous section. In fact, we can build the basis functions so that their support is 𝛼 ∝ 1

𝑛 . Hence,
the interpolation error bound given in Theorem 2.4 goes to zero as 𝑛 → ∞ if the image function 𝑓 is Lipschitz-continuous at the
valuation point 𝒙. By Lemma 2.2 indeed the image function admits a continuity modulus 𝜔𝒙(𝛿) ≤ 𝐾𝛿 that has the role of an error

bound once evaluated on 𝛼, and goes to zero as 𝑛 → ∞. On the other hand, if 𝑓 is only piecewise Lipschitz-continuous and the
evaluation point belongs to the border of a subdomain 𝛺𝑖, then by Lemma 2.3 the image function admits a continuity modulus
𝜔𝒙(𝛿) ≤ 𝐾𝛿 +𝐷 that evaluated on 𝛼 is an error bound, which converges to 𝐷 as 𝑛 increases to infinity.

In the next section we introduce the Fake Nodes interpolation, aiming to interpolating a discontinuous image on a mapped set

of nodes so that it appears as continuous, getting rid of the Gibbs effect.

5
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3. Fake Nodes interpolation

Fake Nodes is an interpolation paradigm introduced in [8,9] that can reduce the Gibbs effect in different frameworks and
pplications [20–22].

.1. Definition of Fake Nodes interpolation

The Fake Nodes interpolant can be defined as in Definition 2.1, with the difference that the interpolation and evaluation nodes
re subject to mapping. For reasons that will be clarified soon, in this paper we choose a slightly different definition of Fake Nodes
ith respect to the above quoted literature.

efinition 3.1. Let 𝑓 be a 𝑑-variate function sampled on a set of 𝑛 distinct nodes 𝑋. Let the set of functions {𝑏1,… , 𝑏𝑚}, 𝑚 ≥ 𝑛 be
basis. Consider the map 𝑆 ∶ 𝛩 ⊆ R𝑑 → R𝑑 , and 𝑓 the interpolant over 𝑋𝑆 ⊇ 𝑆(𝑋) to 𝑌 ⊇ 𝑓 (𝑋), 𝑋𝑆 , 𝑌 both of cardinality 𝑚. We

all Fake Nodes interpolant the function

𝑆𝑓 ∶= 𝑓◦𝑆.

The following proposition holds.

roposition 3.1. The Fake Nodes interpolant as defined in Definition 3.1 satisfies the interpolation conditions (4), i.e 𝑆𝑓
|𝑋 = 𝑓

|𝑋 .

roof. Being 𝑆𝑓 = 𝑓◦𝑆 and the fact that 𝑓 is the interpolant over the whole supersets 𝑋𝑆 , 𝑌 , in particular we get

𝑓 (𝑆(�̄�)) = 𝑓 (�̄�) ∀�̄� ∈ 𝑋,

hat is

𝑆𝑓 (�̄�) = 𝑓 (�̄�) ∀�̄� ∈ 𝑋. □

emark. This definition of Fake Nodes differs to classical ones since considers a larger number of basis functions and interpolation
odes. To use the image resampling defined in the previous section, we must have to consider a regular, equispaced grid as input.
ince the mapped nodes 𝑆(𝑋) is not equispaced in general, we choose to interpolate over a larger grid by adding some nodes in
rder to obtain a regular and equispaced grid 𝑋𝑆 ⊇ 𝑆(𝑋).

In correspondence of the newly added nodes, we can choose some values to form the set 𝑌 ⊇ 𝑓 (𝑋). Since we want to avoid the
ibbs effect, which occurs next to a discontinuity, we shall choose such values in order to get a smooth, regular image. Given these
hoices, it becomes mandatory to use a larger basis of functions.

.2. Fake Nodes approach for multimodal image resampling

As discussed in the Introduction, in multimodal imaging we have a high resolution morphological image 𝐼 along with its
egmentation 𝑀 , composed by integer values indicating the number of segment each voxel belongs. We also have a low resolution
unctional image 𝐹 , and we aim to estimate the mean value of the functional image inside each segment with the lowest possible
rror.

The image 𝐼 is defined on a grid 𝑋ℎ𝑖𝑔ℎ of the domain 𝛺 = [𝑎, 𝑏]3. The segmentation is the set of pairwise disjoint subsets of the
omain 𝛺 (cf. e.g. [23]), that is

𝛺 =
𝑚
⋃

𝑘=0
𝛺𝑘 with 𝛺𝑖 ∩𝛺𝑗 = ∅ ∀𝑖, 𝑗 = 1,… , 𝑚, (14)

nd is known up to the resolution of 𝐼 , and stored in the matrix

𝑀 =
𝑚
∑

𝑘=0
𝑘 𝜒𝛺𝑘

(𝒙𝑖𝑗𝑘) with 𝒙𝑖𝑗𝑘 ∈ 𝑋ℎ𝑖𝑔ℎ (15)

f the same size of 𝐼 . By convention, the zero-indexed segment represent the background.
On the other hand, the functional image 𝐹 is defined on another, smaller grid of [𝑎, 𝑏]3, say 𝑋𝑙𝑜𝑤.
We then propose to oversample the functional image 𝐹 to the dimension of 𝐼 and 𝑀 by using a Fake Nodes interpolation with

apping function

𝑆(𝒙) = 𝒙 +
𝑚
∑

𝑘=0
𝜶𝑘𝜒𝛺𝑘

(𝒙), (16)

here 𝜶𝑘 = ((𝑏 − 𝑎)𝑘, 0, 0). In other words, we create as many images as the segments, each with the values of the functional
mage inside the relative segment and zero elsewhere. These images are then stacked over the first axis, creating a long, unique
-dimensional image.
6
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As stated in the remark, this would be not sufficient to overcome Gibbs effect, as the so obtained signal has still some sudden
hange of intensity. Since we have the freedom to choose the values on the new nodes, we apply Gaussian blurring on the image
nd re-impose the original intensity values on the set 𝑆(𝑋𝑙𝑜𝑤). This process can be repeated a chosen number of times, say 𝑛𝑠, until
smooth and continuous-like image is obtained. Our preliminary experiments showed that increasing the value of 𝑛𝑠 did not lead

o significant improvements after 𝑛𝑠 = 3. For this reason the experiments below, we chose 𝑛𝑠 = 3. The result of this process can be
een in Fig. 2.

The so-obtained image is then oversampled to the same resolution of 𝐼 and 𝑀 , and then recomposed according to the mapping
defined in Eq (16), as indicated in Definition 3.1. This method is explained in better detail in the following Algorithm 3.1.

lgorithm 3.1. Fake Nodes image resampling

Inputs:
𝐼 the target, high-resolution image;
𝑀 the segmentation of 𝐼 in 𝑚 + 1 segments;
𝐹 the input, low-resolution image;
 a Gaussian function of fixed variance.
Execution:

1. Downsample the segmentation image 𝑀 to the resolution of 𝐹 , call the result 𝑀𝑙𝑜𝑤;
2. for 𝑠𝑒𝑔𝑚 in 0:𝑚:

2.1. Impose the values of the current segment to the image at 𝑠𝑒𝑔𝑚 level and add the result to a list of images
𝑡𝑒𝑚𝑝𝐹 :

𝑡𝑒𝑚𝑝𝐹 [𝑠𝑒𝑔𝑚] = 𝐹 [𝑀𝑙𝑜𝑤 == 𝑠𝑒𝑔𝑚]
2.2. repeat 𝑛𝑠 times:

2.2.1. Gaussian smoothing by convolution:
𝑡𝑒𝑚𝑝𝐹 [𝑠𝑒𝑔𝑚] = 𝑡𝑒𝑚𝑝𝐹 [𝑠𝑒𝑔𝑚] ∗ 

2.2.2. Re-imposition: 𝑡𝑒𝑚𝑝𝐹 [𝑠𝑒𝑔𝑚] = 𝐹 [𝑀𝑙𝑜𝑤 == 𝑠𝑒𝑔𝑚]
3. Stack the images 𝑡𝑒𝑚𝑝𝐹 [] along the first axis, call the result 𝑓𝑎𝑘𝑒𝐹 ;
4. Oversample the image 𝑓𝑎𝑘𝑒𝐹 to the resolution of 𝐼 with a basis of choice, call the result 𝐻𝑅𝑓𝑎𝑘𝑒𝐹 ;
5. Initialize the result image ℎ𝑖𝑔ℎ𝐹 as a matrix with the size of 𝐼 ;
6. for 𝑠𝑒𝑔𝑚in 0:𝑚:

6.1. Impose the values at each segment:
ℎ𝑖𝑔ℎ𝐹 [𝑀 == 𝑠𝑒𝑔𝑚] = 𝐻𝑅𝑓𝑎𝑘𝑒𝐹 [𝑀 == 𝑠𝑒𝑔𝑚]

Output:
ℎ𝑖𝑔ℎ𝐹 , the resampled version of 𝐹 using Fake Nodes.

Remark. The whole algorithm has a computational cost of 𝑚 times the computational cost of the corresponding resampling
lgorithm, where 𝑚 is the number of segments. This means that if the number of segments is too large it would be better to reduce
t by merging some segments with similar values at the boundaries.

. Experiments and results

For testing the Fake Nodes resampling and compare it to the usual resampling methods, we carried on two experiments. The
irst one is made on the Shepp–Logan phantom [24], an analytically-defined image with constant intensity in each of its ellipsoidal
egments. Since the exact value is known, in this case we can compute the resampling errors. An example of Shepp–Logan phantom
s reported in Fig. 1.

The second test is from a real PET/CT dataset of scans of the same physical phantom. This phantom is a closed container made
f plastic. Inside the containers six spheres of diameters 10, 13, 17, 22, 28 and 37 mm are filled with the tracer of known activity (we

call ‘hot’ or foreground the interior of the spheres), whereas the remaining part of the phantom (here called ‘cold’ or background)
is filled with water and tracer of known activity.

In both experiments we compare the results obtained by oversampling the functional image using the trilinear interpolation
basis (9), cfr. [10] (Trilinear from now on) to the trilinear interpolation used in combination with the Fake Nodes scheme explained
in the previous paragraph (Fake-Trilinear) and the usually-adopted method of undersampling the anatomical sement image to
match the functional image resolution (Downscaling). The resampling is performed in ANTs [25,26], a popular software suite in
neuroimaging written on top of ITK [27]. The Fake Nodes scheme is implemented in a set of Python scripts. All the scripts written
for this paper and some sample data can be found in the repository of this paper https://github.com/pog87/FakeResampling3D.

Another package that can be useful to understand image resizing can be found at [28].
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Fig. 1. Left: an axial slice of the Shepp–Logan phantom. Right: segmentation of the same slice, with the segments colored as follows: black segment number 0,
red 1, green 2, blue 3, yellow 4, cyan 5. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

Table 1
Segment index and absolute error per segment (the smaller, the better)
relative to the oversamplings of the Shepp–Logan phantom with Trilinear
interpolation, Trilinear interpolation with Fake Nodes and Downscaling
of the segment image. The reference values are indicated with different
colors in the right parts of Fig. 1.
Segm. index Trilinear Fake-Trilinear Downscaling

0 2.0 ⋅ 10−3 9.9 ⋅ 10−17 6.7 ⋅ 10−4

1 1.8 ⋅ 10−1 9.3 ⋅ 10−5 1.3 ⋅ 10−1

2 6.9 ⋅ 10−3 1.4 ⋅ 10−6 4.6 ⋅ 10−3

3 1.6 ⋅ 10−2 2.4 ⋅ 10−6 1.2 ⋅ 10−2

4 3.9 ⋅ 10−3 7.9 ⋅ 10−6 2.4 ⋅ 10−3

5 1.0 ⋅ 10−2 6.1 ⋅ 10−5 2.7 ⋅ 10−3

4.1. Experiment 1: Shepp-Logan phantom

We generated two Shepp–Logan phantom images: an high resolution image of size 2563 and a low resolution image of 1283 voxels
ith the Python packages tomopy and nibabel [29].

Since the Shepp–Logan phantom is piecewise constant, segmentation has been performed simply by identifying the voxels of the
ame values. The phantom and its segmentation can be observed in Fig. 1. The low resolution ‘functional’ image was resampled to
he high resolution using Trilinear interpolation, Fake Nodes Trilinear interpolation, and the usually adopted method of downscaling
he segment to the lower resolution. The Fake Image generated for resampling can be observed in Fig. 2. At last, the mean value
er segment has been computed and compared with the actual, constant value of the segment.

As a second error measure we compare the errors between the global errors of the Trilinear and Fake-Trilinear oversampling
ith respect to the high resolution phantom. The error is evaluated using three different metrics: Root Mean Square Error (RMSE),
eak Signal to Noise Ratio (PSNR) [30] and inverse Structural Similarity Index Measure (1-SSIM) [31].

The results can be observed in Fig. 3 and Tables 1 and 2. As can be easily seen, the Fake Nodes resampling leads to more
ccurate mean value for every segment, including the background. The Fake-Trilinear oversampling also outperformed the Trilinear
nterpolation in all the chosen metrics.

.2. Experiment 2: PET/CT phantom data

The RIDER PET/CT Phantom dataset [32] has been downloaded from the dataset official webpage hosted on the Cancer Imaging
rchive (TCIA) [33] website. This dataset consists in 20 repeated scans of the RIDER PET/CT Phantom filled with Ge68 tracer and
econstructed using 3D Filtered Back Projection (FBP) [34]. We know that in principle the foreground-to-background ratio should
e exactly equal to 4, as the interior of the spheres has been filled with a radioactive tracer of activity four times higher than the
ater lying outside them.
8
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Fig. 2. Top: a Fake Image to be resampled, obtained from the low resolution image with Algorithm 3.1. Bottom: a zoom of the same, showing that the signal is
smooth. The jet colormap (blue–green–yellow–red) has been used to better represent the smoothness of the signal. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Left: a zoom of an axial slice of the high resolution Shepp–Logan phantom. Center: the same slice oversampled with Trilinear interpolation. Right: the
same slice oversampled with Trilinear interpolation and Fake Nodes.

Table 2
Global errors of Trilinear and Fake-Trilinear oversampled images over
the gold standard, high resolution image, in terms of Root Mean Square
Error (RMSE, the smaller, the better), Peak Signal to Noise Ratio (PSNR,
the closer to 100, the better) and inverse Structural Similarity Index
Measure (1-SSIM, the smaller, the better).

RMSE PNSR (dB) 1-SSIM

Trilinear error 7.5 ⋅ 10−2 22.5 4.3 ⋅ 10−2

Fake-Trilinear error 8.5 ⋅ 10−5 81.4 5.4 ⋅ 10−8
9
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Fig. 4. The same axial (top) and sagittal (bottom) slices of the PET RIDER phantom CT (left), CT segmentation (center) and PET scan (right). The segmentation
indexes are: background (black) 0, phantom shell (red) 1, ‘cold’ water (green) 2, ‘hot’ spheres (violet) 3. The jet colormap has been used for PET images. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Results of the RIDER phantom experiments, pictured as Raincloud plots. Comparison between foreground to background ratios obtained using Trilinear
nterpolation (top, green), Fake Nodes Trilinear interpolation (middle, orange) and Downscaling of the CT segment image to the PET resolution (bottom, purple).
For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

The CT scan has been automatically segmented using k-means clustering in four segments: exterior, phantom plastic shell,
ackground ‘cold’ water and foreground ‘hot’ spheres. A slice of a phantom scan can be found in Fig. 4. The foreground to background
atio of each scan has been computed as the average of PET signal in the foreground segment over its average in the foreground
egment

𝐹𝐵𝑟 =
𝑎𝑣𝑔(𝑃𝐸𝑇 [𝑓𝑜𝑟𝑒𝑔𝑟𝑜𝑢𝑛𝑑])
𝑎𝑣𝑔(𝑃𝐸𝑇 [𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑])

(17)

for each of the three interpolation methods described above. In all of the cases a Partial Volume Correction (PVC) method [35]
was applied to resampled PET before computing the mean value per segment, with an estimated Full Width at Half Maximum
(FWHM) [36] of 6 mm. Even if PVC still does not completely exclude the possibility errors in the computation on 𝐹𝐵𝑟, this should
not affect the difference between the interpolation methods.

The results of this experiment can be observed in the Raincloud plot [37] at Fig. 5. The Fake Nodes approach results in a
mean error reduced of about 14% with respect to the usual Trilinear resampling and 6% lower than the error produced by the
undersampling method. The t-test between the FBr of Fake-Trilinear groups gives a 𝑝-value of about 𝑝 ≈ 0.7 ⋅ 10−8 with respect to

Trilinear and 𝑝 ≈ 0.003 with respect to Undersampling, indicating that the Fake Nodes approach leads to a significantly better result.

10
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4.3. Comments to the results

The first experiment shows that resampling a functional image with the Fake Nodes approach results in an almost perfect set
f mean values for each segment, with an impressive improvement with respect both to the Trilinear image resampling and to
he Undersampling method. In a less controlled and more realistic situation, the use of Fake Nodes in resampling does lead to a
ignificant improvement in terms of 𝐹𝐵𝑟, but still the result appears not close enough to the target value of 4. These results are
oherent with the dataset documentation [32], indicating that an exact quantification of the tracer concentration in PET is still far
rom being achieved.

. Conclusions and future work

In this paper we have proposed a Fake Nodes scheme for medical image oversampling that can be applied to any image of
rbitrary dimension. This scheme allows to achieve an higher accuracy at the cost of a larger computational time. In Sections 2 and
, we introduced image resampling techniques as interpolatory methods and gave an error bound which is different in the cases of
ontinuous and piecewise continuous signals. Fake Nodes approach has proved to bring a more accurate functional quantification
n the experiments, both using an analytically-defined phantom and real data from the scans of a PET/CT physical phantom.

The results on the physical phantom appeared to be still too far from the target value of 4. This may indicate that the Partial
olume Correction, Attenuation Correction and a Fake Nodes-like oversampling should be all applied during the reconstruction
hase in order to achieve an exact quantification in PET imaging.

The usage of Fake Nodes resampling could also in principle bring benefits in a generic image analysis context, provided that an
igh resolution segmentation is available.
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