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“Research is what I’m doing when I don’t know what I’m doing.”

Wernher von Braun

“The most exciting phrase to hear in science, the one that heralds new discoveries, is
not ’Eureka!’ but ’That’s funny...’”

Isaac Asimov
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Abstract
Natural scientists have been always attracted by the study of the phenomenon
of Life, since it displays a plethora of curious and yet puzzling behaviors. In
the last decades it has been registered an increasing interest in the investi-
gations of ecological and biological systems by the Physics community. This
stems from the fact that the physical discipline of Statistical Mechanics of-
fers many tools, frameworks and ideas that have turned out to be naturally
adapted, as well as very efficient, to deal with systems affected by an huge
degree of complexity, like living systems are.

In this Thesis we embrace such a perspective and so we tackle ecological
and biological topics employing a Statistical Mechanics mindset.

We firstly model ecological communities in which several different species
compete for the consumption of a shared pool of resources with the aim of
understanding how the huge biodiversity empirically encountered can orig-
inate. To do so, we extended the celebrated MacArthur’s consumer-resource
model to account for spatial contributions, originating from a variety of eco-
logical mechanisms, in an effective way. Thanks to this, we show analytically
the model predicts several species coexisting while competing for a limited
number of resources, in complete agreement with evidences coming from
empirical observations. This is solely due to the modification we introduce,
based on both physical and ecological arguments, since such a result can not
be obtained within the classical formulation of the model.

Then, we move our attention to study the universal features of self-organized
regular spatial structures, which can be found in both empirical and theoret-
ical ecological investigations. Due to their wide diffusion also in other sci-
entific fields, we search for any universal behavior in their spatio-temporal
evolution, regardless the microscopic peculiarities characterizing a certain
system. We provide a mathematical framework able to state whether such
patterns emerge or not. More interestingly, in the pattern formation phase of
the model, we are able to show that it exists a regime in which the evolution
of the envelope of such spatial structures on long timescales and large spatial
scales is model independent, i.e., it is governed by an equation, whose shape
does not dependent on the dynamics details.

Finally, motivated by real-world biological scenarios, we build a theoreti-
cal framework, which acquires the form of a generalized Langevin dynamics,
accounting for demographic stochastic contributions and temporal delays ef-
fects. Hence we model systems whose evolution, subjected to noisy effects,
is determined also by the past states visited by the system. We demonstrate
how such a framework predicts quite naturally the emergence of almost reg-
ular oscillating behaviors, in the form of noise-induced cycles, in the tempo-
ral evolution of the system. We then apply these theoretical findings to un-
derstand the experimental results studying gene expression regulatory net-
works, in which noise and delay contributions indeed are at stake.
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Chapter 1

Thesis Introduction

1.1 Historical remarks on population dynamics

Ecological systems have been attracting the interest of scientists since long
time in the past. This curiosity was not relegated simply to empirical in-
vestigations, which indeed led to ground-breaking revolutions in the way
with which Nature is interpreted (to cite maybe the most innovative one, we
could think of the Darwinian theory of species evolution), but efforts have
been directed also to build mathematical models in order to gain quantita-
tive predictions on these systems.

One of the most studied aspects of ecosystems is for sure the temporal
dynamics of populations sizes, i.e., how the number of individuals belonging
to a given species grows and changes with the elapsing of time. In fact being
able to predict the future number of individuals is of crucial importance, for
example, if one is interested in sustainability problems or conservation.

The first documented work dealing with this topic goes back around the
year 1200 and it has to be attributed to Leonardo Fibonacci [1]. He aimed to
mathematically describe the evolution of the number of rabbits belonging to
a colony and to accomplish such a task he modelled the mating habits of the
species assuming that the population of new rabbits born in each generation
is equal to the sum of the numbers of individuals present in the previous two
generations. If we call Nk the population size of the k-th generation we can
express such idea in the following mathematical form

Nk+2 = Nk+1 + Nk, (1.1)

where we impose the initial conditions N0 = 0 and N1 = 1. It is easy to see
that Eq. (1.1) gives the celebrated Fibonacci’ sequence.

Although it has the merit to be the first attempt tackling population evo-
lution, this early work is very naïve since it simplifies the problem into a mere
additive dynamics. A new description for the evolution of a single-species
population was later proposed by Thomas Malthus in 1798 in his book “An
Essay on the Principle of Population" [2], which turned out to be a cornerstone
for the future developments of population dynamics. In this seminal work,
Malthus stated that the population size of a given species, including the hu-
man kind, would grow with a speed proportional to the current size itself,
in the absence of external constraints. Employing the concept of derivative
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(which was not conceived yet at Fibonacci’s era), we can mathematically ex-
press this idea in terms of a simple differential equation of the form

Ṅ(t) = rN(t), (1.2)

where N(t) is the population size at time t and r is what has been called the
intrinsic growth rate. Eq. (1.2) is known as Malthusian growth model.

If the initial condition is N(0) = N0, the solution of Eq. (1.2) takes the
simple form of an exponential function, i.e.,

N(t) = N0ert. (1.3)

This is famous with the name of Exponential Law of population growth and
due to its historic relevance is sometimes referred as the first principle of
population dynamics.

It is immediate to see that if r > 0, Eq. (1.3) predicts that the population
would diverge with the elapsing of the time. For this reason, this led to the
so called Malthusian catastrophe: at a certain moment the population growth
would outpace the supply of food and the other necessary resources, hence
part of the individuals would be inevitably doomed and simultaneously the
surviving population would go back to lower but more sustainable sizes.

However, the rationale behind such scaring prediction is not completely
correct: indeed the exponential growth can capture pretty well the evolution
in the early stages when the initial size is small, meaning that the population
can grow without being limited by the finite availability of resources. But in
real-world situations the growth rate has to start decreasing sensibly when
the number of individuals grows too much since, sooner or later, the lack of
resources and other environmental restrictions will start to be faced by the
increasing population. In other words, an unbounded growth of any popu-
lation is not feasible since it has to be subjected to the fact that environmental
resources are limited.

This more realistic concept was properly formalized by Pierre-François
Verhulst in 1838 [3]. He proposed to substitute the constant growth rate of
the Malthusian growth model with one that depends on the population size
such that it decreases linearly when the number of individuals goes up. To
do this it is necessary to modify Eq. (1.2) with the substitution

r −→ r (1 − N(t)/K) , (1.4)

where the inverse of the parameters K quantifies the strength of the crowding
effect that leads to the reduction of speed of the growth. Now it is clear that
when N(t) is larger than K the growth rate becomes negative. This means
that the population size starts to decay until it reaches the equilibrium value
K. For this reason, the parameter K has been called carrying capacity.

Because of this modification, the differential equation describing the pop-
ulation evolution is nonlinear and takes the form

Ṅ(t) = r N(t) [1 − N(t)/K] , (1.5)
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FIGURE 1.1: Exponential growth [Eq. (1.3)] (red line) versus logistic
growth [Eq. (1.6)] (blue line). We can see that the two at a certain moment
start to deviate one from the other. In particular, the red curves keeps on
increasing indefinitely, whereas the blue one saturates up to the value of
the carrying capacity Kr = 1000, as hinted by the horizontal gray dashed
line. For both the curves we took the initial value N0 = 10 and the intrin-
sic growth rate r = 0.1.

which is known as logistic equation. Given that N(0) = N0, the solution of
this dynamics, named logistic growth, can be found to be

N(t) =
K

1 + (K/N0 − 1) e−rt . (1.6)

It is possible to see that when the population is much smaller than the car-
rying capacity, the growth is still captured by an exponential, but when N(t)
becomes significantly big it starts to deviate from such behavior until it satu-
rate reaching the value Kr. In Figure 1.1 we compare an exponential growth
against a logistic one so that the deviation of the latter from the former with
the elapsing of time is clear.

The introduction of a density-dependent growth rate can be seen as the
first and simple attempt to model competition among the population individ-
uals due to the finite availability of environmental resources. Indeed, detri-
mental competitive interactions for the resources become relevant when the
population size grows and it therefore starts to affect negatively the popula-
tion expansion. This means that while increasing in number, the competition
among the individuals becomes stronger and stronger, reducing the speed of
growth up to the moment in which such competitive interactions become so
intense that it is not possible anymore to have a net increment in the popula-
tion size.

If we limit ourselves to consider the expansion of a single-species popu-
lation, the interactions are among individuals of the same type. However, in
real ecosystems many species are observed to coexist together. This means
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that realistic dynamics aiming to model such ecological settings should ac-
count for interactions occurring among different species. Therefore the ex-
tension to the co-evolution of multiple species interacting among each others
was naturally the following conceptual revolution in the class of population
dynamics models.

Mathematically, this can be achieved by introducing systems of coupled
differential equations, one for each population taken into account. The cou-
pling between the evolution dynamics is the key feature to model in a simple
and yet realistic way the interactions that each species experience due to the
presence of the others within the same habitat.

Such innovation was proposed for the first time by Alfred Lotka [4] and
Vito Volterra in 1920 and 1926 [5], respectively. They independently came
up with the same model to describe predator-prey systems in a simple and
yet elegant form. Calling x(t) the prey population size at time t and y(t) the
corresponding quantity for the predators, they wrote

ẋ(t) = ax(t)− bx(t)y(t) = x(t) [a − by(t)] , (1.7a)
ẏ(t) = −cy(t) + dx(t)y(t) = y(t) [−c + dx(t)] , (1.7b)

where all the model parameters are positive. The main ideas behind such
a model, that for obvious reasons is also known as Lotka-Volterra predator-
prey model, are quite easy to understand. The population of preys alone, i.e.,
in absence of predators, would grow because of an intrinsic birth rate, but
when predators interact strongly with the preys by hunting, their population
growth is negatively affected and so they must start to decrease. This is cap-
tured by the nonlinear term that couples the number of predators and prey.
On the other hand, such an interaction must lead to an increment of preda-
tors number, that however decays in time, due to a mortality rate, when they
are not able to predate because of the lack of preys.

In other words, the two populations have growth rates that depend lin-
early on the other one modeling a feedback mechanism: when predators are
too abundant, preys will have a negative growth rate because predation has
become too intense, whereas if there are few individuals of the prey species
predators will start not to be able to maintain the population and hence de-
caying in number. In this way the model given by Eqs. (1.7a)-(1.7b) predicts
oscillations in time where x(t) and y(t) go from high to low values and vicev-
ersa. We can either prove this using standard tools of dynamical systems or
we can see it directly by plotting the numerical solutions of the dynamics, as
we did in Figure 1.2. In particular, this cyclic behavior is tied to the existence
of a the conserved quantity, which takes the form [6]

H(x, y) = a ln y + d ln x − cx − by. (1.8)

Once the initial condition (x0, y0) is given, the predator and prey populations
evolve in time such that H (x(t), y(t)) = H(x0, y0) at any moment. Hence,
with the elapse of time x(t) and y(t) will go back to the initial values x0 and
y0 and the dynamics will start all over, repeating itself again and again.
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FIGURE 1.2: Solutions of the Lotka-Volterra predator-prey model (1.7a)-
(1.7b) where a = 10, b = 1.5, c = 1.5 and d = 0.4. We used the initial
conditions x(0) = y(0) = 15. We can see that both the population of preys
x(t) (red line) and of predators y(t) (blue line) display regular oscillations.

To conclude, we must mention how it is possible to generalize Eqs. (1.7a)-
(1.7b) to describe an arbitrary number of species n ≥ 2 present in the same
environment. In fact calling x⃗(t) the vector whose components xi(t) (i goes
from 1 to n) represent the population sizes of the different species, we have n
coupled differential equations of the form

ẋi(t) = xi(t) fi (x⃗(t)) , (1.9)

where fi (x⃗(t)) can be seen as the components of the vectorial field

f⃗ (x⃗) = r⃗ + Ax⃗, (1.10)

with ri being the intrinsic growth rate of the i-th species and the matrix A
is called community matrix, since it contains information regarding the type
of relationships among the species. In fact aij < 0 means that species i is
negatively affected by the presence of species j in the ecosystem, whereas if
aij > 0 we have the former benefits from the interaction with the latter. Such
dynamics takes the name of generalized Lotka-Volterra model [7], [8].

1.2 The era of complex systems

As it emerged from this brief historic digression, theoretical models evolved
in order to account in a more and more realistic way for the interactions oc-
curring within the individuals of the same species, but also with the ones of
a different kind. The generalized Lotka-Volterra model pushed this idea as
further as it could while keeping the modeling in the simplest form possible.
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Thus the role of interactions has started to be recognized as more and
more crucial in shaping the dynamics and the features of ecological systems
[9]–[11]. Nowadays in fact when studying such systems, but more in gen-
eral living systems, we start by acknowledging they are affected by an huge
degree of complexity [12]–[14]: these systems are made up by dozens of ele-
mentary components interacting in a very heterogeneous and intricate way
among themselves. One could expect that such dynamics would display
messy outcomes. Nevertheless, surprisingly we observe coherent behaviors
emerging from the interactions among the myriads of components. Finding
an answer regarding how such harmony arise a very interesting challenge in
modern science [15].

In principle, one could start by following the behavior of each elementary
units. Unfortunately this would not be feasible given the huge number of
degrees of freedom required to describe the whole system. Also, in this way
it could be hard to unveil the origin of systematic behaviors simply studying
the dynamics of the single building-blocks [16], [17]. So we need an alter-
native to a reductionist standpoint, which aims to explain the entire system
behavior starting from its smallest constituents.

This suggests that it would be more beneficial to use a holistic perspective,
moving the focus of the description from the microscopic details in order to
gain an overall description of the entire system [18].

Therefore the modern way to look at ecological but also biological sys-
tems is the same one employed for the study of the so called complex systems
[19], [20]. Broadly speaking, systems whose components are correlated one
to the other through dense and various interactions networks are said to be
complex. Also, the systems could receive external disturbance from the en-
vironment, making them even more unpredictable at first glance. Because
of this strong and articulated entwining featuring the system, it is not trivial
at all to infer a priori from a microscopic picture the outcome of the system
dynamics or the emergence of non-trivial properties at global scales [21]–
[23]. Just to list some of these curious features, complex systems might dis-
play nonlinear response to external inputs and in general nonlinear dynamics
(the change of the state of the system to an alteration is not proportional to
the perturbation itself), self-organization (the system displays peculiar prop-
erties that can be observed only in suitable conditions, however the system
rearranges itself and reaches such conditions without any required external
tuning) and adaptation through feedback loops.

To sum up clearly the concept of complexity, often the long-standing quote
“the whole is more than the sum of its parts” is employed: to understand the
system in its wholeness it is not enough to frame it as a mere sum of elemen-
tary units. So, the core idea behind the formulation of complex systems is
the possibility to describe collective phenomena and evidences regarding the
behavior of the global systems emerging at different spatio-temporal scales
which can not be obtained starting from the understanding of the elementary
units on an individual basis [24], [25].

With this being said, it is clear why ecological and biological systems
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should be regarded as complex [26], [27]. If one thinks of ecological commu-
nities, neural networks or fundamental cellular processes, just to make some
remarkable examples, one can immediately identify the small constituents,
i.e., the individuals of the coexisting species, the neurons in brain or protein,
DNA molecules and so on in the case of cell machinery. Also it is evident
that such units are strongly intertwined through an rich set of different inter-
actions, leading in this way to complexity.

The field of complex systems is intrinsically interdisciplinary since within
this broad framework we can naturally describe topics coming from different
research fields. So the study of complex systems borrows several ideas and
techniques from different disciplines, ranging from Mathematics to Com-
puter and Network Science. However, for us it is very intriguing the possibil-
ity to employ Physics and in particular Statistical Physics with its powerful
tools. Not only this, but applying a physics approach to the investigation
of living complex systems might stimulate the development of frameworks
and the discovery of new phenomena that might not be found when study-
ing purely physical settings [28]. The application of Statistical Mechanics to
the study of complex systems can indeed lead to remarkable scientific results
that are able to fascinate and be acknowledged by the whole Physics commu-
nity. As a culmination of this, in the present year (2021) the Nobel prize for
Physics was awarded to the italian physicist Giorgio Parisi "for the discovery
of the interplay of disorder and fluctuations in phyisical systems from atomic
to planetary scales".

The concepts born with the seminal studies of Statistical Mechanics, such
as order/disorder, phase transitions [29], scale-invariance and criticality [16],
[30], [31], are indeed appealing to be exploited when trying to describe eco-
logical and biological systems [32]–[34]. As we said, complex systems science
always tries to treat the system as a whole and not simply made up by the
summation of its units. This is exactly the core of statistical physics where
we renounce to search for a microscopic description in favor of an ensem-
ble treatment of the system under study. Therefore its standard techniques
look suitable for a quantitative investigations of the living systems [25]. In
this way the system behavior can be understood from simple laws emerging
from the overall description of the dynamics that in principle can be compare
with data to see if they have empirical confirmations.

As we stressed so far, interactions are strongly present and crucially shape
the system’s evolution, introducing non-trivial spatial and/or temporal cor-
relations. Hence a proper theoretical modeling of the dynamics can not dis-
regard these. Taking into account this naturally leads to the formulations of
coupled and nonlinear dynamical systems (the generalized Lotka-Volterra is
once again the archetypal of this type of models). As we will see in the next
chapters of this Thesis when we will tackle three different ecological and bio-
logical topics, we will always start with models considering nonlinear equa-
tions in order to account for the correlations among the system components.
Indeed, acknowledging the effects of these correlations in the systems’ evolu-
tion will be crucial to retrieve results replicating the empirical evidences and
to avoid that models might predict structureless and unrealistic outcomes.



8 Chapter 1. Thesis Introduction

A second recurrent motif of the Thesis is given by the generality of the
theoretical frameworks we will develop in the following Chapters. In fact,
consistently with the complex systems approach we discussed above, we will
formulate fairly general models without the need of specifying the entire set
of microscopic details that characterizes concrete case studies. However, the
broad settings we will provide can still be employed to capture concrete rel-
evant scenarios and retrieve insightful descriptions on the systems behavior.

At this point, we are ready to sketch the themes we are going to inves-
tigate in the next-coming chapters. Among the many features of living sys-
tems one might be interested in, we will focus on the followings. First we will
investigate the long-standing puzzle of species coexistence and the mainte-
nance of the huge biodiversity empirically encountered in many real-world
ecosystems. The second topic will deal with the research of universality in
the emergence of regular spatial structure, i.e., pattern formation, from non-
local dynamical systems, which is a wide spread feature of many ecosystems
(and not only). In latest, we will study how cyclic dynamics and seasonal
behaviors, observed across many research fields, can arise just combining
temporal delays effects with the intrinsic stochastic contributions affecting
biological dynamics.

1.2.1 The puzzle of species coexistence

The species richness we can observe in many real-world ecosystems, whose
scales range from microscopic to macroscopic ones, is a striking feature of
our planet [35]. Examples include microbial organisms [36]–[38], birds [39],
snakes [40]–[42], coral reefs [43]–[45] and trees communities [46], [47].

Sharing the same environment, we expect the species to be entwined one
to the others via a network of trophic interactions that defines the food-web
of the ecosystem under consideration [48], [49].

It might seem obvious that when the different species are not in contact
with each other, they can survive, since the inter-specific interactions, which
might be harmful for their survival, are not at play. However, as soon as
species interface with each other, such damaging mechanisms might alter
extensively the ecological panorama. In particular, more similar two species
are, more intensely they are expected to compete [50] since they will have, for
example, similar diets. Hence, observing such a richness in the species bio-
diversity featuring so many real scenarios seems surprising and unexpected
a priori. Empirical evidences, in fact, tell us that several microbial species
seem to coexist in close-by regions [51]–[53]. The same counter-intuitive sce-
nario was noticed for the first time while studying plankton communities
and therefore such puzzling outcome in these competitive ecological dynam-
ics has been called the paradox of plankton [54].

So the large biodiversity, that on an intuitive level is hardly explained, is a
property that frames ecological systems as complex. Trying to shed light on
what makes species-rich ecosystems stable is still an open and very intrigu-
ing challenge.
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The first theoretical attempt trying to investigate the stability of large
ecosystems came from the Robert May’ seminal work [55], which for this
reason has to be undoubtedly regarded as one of the most influential works
in theoretical ecology.

May started by considering an ecological community made by M differ-
ent species. The evolution of their populations is subjected to a set of nonlin-
ear coupled differential equations of a certain form [for example the general-
ized Lotka-Volterra model Eq. (1.9)]. To study the stability of the system, we
search for its feasible equilibrium point, where for feasible we mean that the
stationary values of the populations sizes have to be non-negative. Then we
linearize the dynamics around such an equilibrium, obtaining a set of linear
equations of the form

̇⃗x = Ax⃗, (1.11)

where now x⃗ is the deviation from the stationary state, A is the Jacobian of
the full set of equations evaluated at the equilibrium and it has the form of
an M × M matrix. Employing the results of linear stability analysis, we can
state whether the dynamics is (linearly) stable or not by searching for the
eigenvalues of A. In particular, to ensure the stability we need that all its
eigenvalues have negative real parts.

At this point, here May’s revolutionary idea came. Instead of computing
A from a concrete ecological model, which indeed must be very intricate for
large ecosystems, he proposed to model directly the matrix A as a random
matrix, i.e., a matrix whose entries are sampled from a certain probability
distribution. We can see that an advantage of this would be that the stability
we will find will not depend crucially on the structure of the system, on the
contrary if we are able to find a criterion in this broad setting the results
would have a larger applicability.

May postulated the A matrix to be a random matrix with connectance
C. This means that each non-diagonal entry is zero with probability 1 − C,
whereas with probability C each Aij is sampled from a probability distribu-
tion with zero mean and variance σ2, i.e., Aij ∼ P(0, σ).

Instead, the diagonal elements are taken as negative constants, i.e., Aii =
−d < 0 to ensure that each population size, when the species are isolated
from the others, would not diverge. For clarity, such a contribution can be
thought to model a carrying capacity binding the maximal value for the pop-
ulations.

To infer the stability of the dynamics, now it is enough to compute the
eigenvalues of A and search if all of them have a negative real part. This is
equivalent to studying the sign of the eigenvalue having the largest real part.
Employing results obtained from the theory of random matrices [56], [57]
in the limit of large M, May (and later developments of his first proposal)
was able to show that the system described by a matrix A drawn from the
ensemble of matrices one can construct in such a way would be unstable
with probability going to one in the limit of large M [58], i.e.,

P(M, C, σ) → 1 ⇐⇒ σ
√

MC < d. (1.12)
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From this we can immediately say that species-rich ecosystems, i.e., eco-
logical communities with a large number M of interacting species, are likely
to be unstable: small perturbation to the equilibrium population size would
depart the system from it and so ecosystems with many coexisting popula-
tions should be hard to be observe. Using this simple mathematical formula-
tion, May gave rise to the Diversity-Stability debate [59]: an increase on the
complexity and diversity of the ecosystem, which is related to an increase of
M, C and σ, leads to a resulting decrease of stability. But recalling what we
presented at the very beginning of the section, this is in stark contrast with
the empirical evidence, where large ecosystems seem to not be the exception,
but rather the rule.

Although it has been enlightening and a very brilliant starting point to
discuss the stability of biodiversity, May’s work is limited by the fact that
linear stability analysis gives a criterion only about the local stability, i.e.,
when the dynamics takes place in a neighbourhood of the equilibrium point
[58]. Thus, May’s criterion has limited application when describing out-of-
equilibrium populations. Additionally, instability does not necessarily im-
ply lack of persistence of the populations, which can be achieved through
limit cycles or chaotic attractors emerging typically from unstable equilib-
rium points.

From an ecological standpoint instead, this way of thinking ecological
communities is focusing on the interactions occurring between the coexisting
species, regardless of the food resources and nutrients for which the different
species are in competition for. Indeed, the availability of them will affect how
the populations evolve themselves. If the concentrations of resources are too
low, they would not be enough to sustain the expansion of the populations.
Similarly, while growing the population uptake the nutrients, making them
not available for the other individuals. Hence, correlations between the con-
sumer populations’ evolution and the availability of the nutrients they re-
quire to growth are indeed present and they should not be neglected.

For this reason, a more realistic description of species competing for a
shared set of resources would consist in a framework describing the evolu-
tion of the species population along with the temporal changes in the levels of
resource concentrations present in the environment. Going in this direction,
Robert MacArthur was one of the first who developed such an approach [60],
[61] that eventually led to the introduction of the so called consumer-resource
model [62], [63].

As we said, the novel aspect of this model has to be searched in the fact
that it does not limit only to describe the evolution of the species popula-
tions, but it aims also to take into account explicitly the dynamics determin-
ing the resources concentrations. To accomplish this, the consumer-resource
model is made of two coupled systems of differential equations, one for the
M species and the other for the R different types of resources consumed. In
other words, the full dynamics takes the following form:

ṅσ = fσ (nσ, {ci}) , σ = 1, · · · , M (1.13a)
ċi = gi ({nσ}, ci) , i = 1, · · · , R (1.13b)
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where the right-hand sides depend on the assumptions we use to model the
uptake, the consumption of the resources by the consumers along with how
new quantities of resources get generated in the system. The state-of-the-art
way of modeling these is given by

ṅσ = nσ

[︄
R

∑
i=1

ασiri(ci)− βσ

]︄
, σ = 1, · · · , M (1.14a)

ċi = µi(Λi − ci)− ri(ci)
M

∑
σ=1

ασinσ, i = 1, · · · , R (1.14b)

The first equation tells that the net growth rate of the population of species σ
is given by the balance between an intrinsic mortality rate, βσ, and a growth
rate determined by the consumption of the resources. This contribution is
modeled as the sum over all the R nutrients of the rates, quantified by the
set of parameters ασi named metabolic strategies, with which the resources
are consumed by the individuals of species σ times the rate with which the
resources can be uptaken from the environment, modeled by the functions
ri(ci). It makes sense to assume that the uptake rate of a given resource i,
when the concentration is small, varies linearly with the nutrient concentra-
tion itself. However, when the resource becomes abundant such contribution
has to saturate, since it is biologically unrealistic to have individuals uptak-
ing the resource in an unlimited fashion. Because of these arguments, com-
monly the ri(ci) functions are assumed to take the so called Monod form [64],
i.e.,

ri(ci) =
ci

ci + Ki
, (1.15)

with the parameter Ki called the half-saturation constant. The same term deter-
mining the populations growth describes also the resources depletion. How-
ever, new resource is constantly added into the system through the supply
rate si = µiΛi, whereas there is an additional loss term due to resource degra-
dation taking place with rate µi, which is thus called degradation rate. In some
setting instead, it might be more appropriate to substitute such term with a
logistic growth contribution. In the former case we say to deal with abiotic
resource, in the latter with biotic ones.

At this point we can search for the stationary state of Eqs. (1.14a)-(1.14b).
Asking that the stationary population sizes are all non-zero for all the M
starting species, i.e., n∗

σ > 0 ∀σ, we end up with

R

∑
i=1

ασiri (c∗i ) = βσ ∀σ. (1.16)

This gives us a set of M equations in R unknowns. When the number of
species is larger than the number of resources, i.e., M > R, such system
does not admit a solution (unless some tuning of the model parameters is
assumed).

This implies that at least M − R species necessarily go to extinction and
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we have an upper bound on the total biodiversity the consumer-resource
model can predict. In particular, we can conclude that the maximum number
of different species that can coexist while competing for the consumption of
the same resources is limited by the number of resources itself. This principle
is famous under the name of Competitive Exclusion Principle (CEP) [65].

Once again, this theoretical result is manifestly in disagreement with the
evidences provided by the empirical observation listed at the beginning. In
fact, for the sake of clarity, there are ecosystems, whose extensions range
from microscopic scales to macroscopic scales, where an huge biodiversity
is maintained over a restricted, even a handful of different resources.

The irreconcilability between the unquestionable existence of so many
biodiversity-rich ecosystems around the globe and the dramatic theoretical
predictions of CEP is still an open question. In particular, why CEP in real-
world ecosystems does not hold is an hot topic at the center of a vibrant
scientific debate nowadays.

1.2.2 Pattern formation in complex systems

As we said, one of the possible signatures of complexity in systems is the
possibility to observe spatial correlations, translating into spatial order, at
the system scale without any external drive.

Maybe the most remarkable example of patterns breaking the transla-
tional invariance can be seen in the self-emergence of non-trivial spatial struc-
tures on very large scales. In this case, the system elementary constituents
are heterogeneously distributed across space in an almost periodic fashion.
Such ordered spatial structures are known in the literature as spatial patterns
and for this reason when discussing their emergence we speak about pattern
formation.

The basic mechanisms underpinning pattern formation [66]–[70] is com-
monly searched in the instability under small disturbances of the stationary
and spatially uniform states emerging from the nonlinear dynamics model-
ing the interactions among the atomic system components under study.

Besides being an interesting phenomenon to be understood if one would
like to properly describe a system displaying patterns, the self-emergence
of spatial structures has captured the attention of a huge part of the scientific
research since long time due to its wide-spread observations across many dif-
ferent scientific fields. To list some examples, one could cite chemical species
undergoing reaction-diffusion mechanism [71]–[76], the convection and flow
of fluids [77]–[80], the organization of nematic liquid crystals [81], [82] or the
surfaces formed during the growth of a crystal [83].

Biological systems are no exception when it comes to provide clear ev-
idences of pattern formation dynamics [84]. The interfaces between bacte-
ria swarms [85] or auto- and cross-catalysis mechanism inducing patterns in
cellular tissues [86] are just two examples. However, the archetypes of bi-
ological patterns are those observed in animals coats and skin [87], [88] or
on seashells [89]. Mathematically, the emergence is related to the instabil-
ity of the homogeneous stationary state of reaction-diffusion systems, whose
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FIGURE 1.3: Left panel: pattern on the skin of a giant pufferfish (figure
taken from [90]). Right panel: Turing pattern obtained from Eq. (1.17)
using the set of chemical reactions of the Brusselator model [91].

dynamics is given by

̇⃗ϕ(x⃗, t) = D∇2ϕ⃗(x⃗, t) + R
(︁
ϕ⃗(x⃗, t)

)︁
, (1.17)

where ϕ⃗(x⃗, t) is an n− dimensional vector whose components are the densi-
ties of the n different chemical species at time t and position x⃗ (for example
the pigments of the coat of an animal), D is an n × n diagonal matrix of the
diffusion coefficients and R

(︁
ϕ⃗(x⃗, t)

)︁
is a nonlinear function accounting for

all the interactions among the elementary units occurring at the location x⃗
and at time t. This framework was first proposed by Alan Turing in 1952
[71] and for this reason this class of patterns is commonly known as Turing
patterns. From Eq. (1.17) patterns displaying spots, striped, hexagons or even
spirals arise, which resemble closely regular motifs one could encounter in
nature. In Figure 1.3 we display the skin of a pufferfish (left panel) and a
Turing pattern emerging from Eq. (1.17) so that it is possible to notice how
similar are one to the other.

In the system evolution equations, an essential role is played by the non-
linear terms that are able to stabilise the initial growth of perturbations and
eventually select the spatial pattern. In many examples of interest, including
those we have alluded to above, nonlinearities are assumed to be local, as in
Eq. (1.17), albeit spatial patterns can be generated by more general forms of
nonlinear terms. For instance, the Phase Field Crystal (PFC) theory incorpo-
rates crystalline details on length and time scales of experimental relevance
and is used to model the structure of several materials [92], [93]. The con-
nection to the microscopic details is achieved via the Dynamic Density Func-
tional (DDF) theory, from which it can be derived [94]. In the DDF theory
the pairwise and higher order spatial correlation functions are responsible
for the nonlocal (and nonlinear) contributions, which govern the evolution
of the conserved order parameter.
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More relevant for the focus of this Thesis, ecology provides several other
examples of systems displaying regular spatial structures on large scales from
nonlocal dynamics. The first ones have to be searched in the vegetation land-
scapes of many different areas around the Earth characterized by a regular al-
ternation of colonized regions and bare soil by plants, bush or grass [95]–[99].
Interestingly, models describing plant-species dynamics [100]–[108] provide,
to some extent, the physical insights about the origin of such observations.
To account for the interactions within the system in the most realistic way
possible, these models use nonlocal contributions in the evolution equations.
Such an idea can be mathematically expressed in the following form:

ϕ̇(x⃗, t) = D∇2ϕ(x⃗, t) + ϕ(x⃗, t)
[︃

r −
∫︂

Ω
G
(︁
|⃗x − x⃗′|

)︁
ϕ(x⃗′, t) dx⃗′

]︃
, (1.18)

where now ϕ(x⃗, t) has the meaning of the vegetation density at position x⃗ at
time t. The nonlinear interaction term is modeled with a convolution over
the space domain of the landscape Ω between the density field and a kernel
weighting the strength of interactions as a function of the distance. There-
fore, to model the nonlocality of the interactions occurring in the system, the
evolution in a fixed position x⃗ of the space domain Ω is affected by all the
other positions with a weight given by the kernel G (|⃗x − x⃗′|), as expressed
through the convolution term. This naturally introduces correlations in space
at the system’ size scales.

Using the class of models given in Eq. (1.18), we can shed light on the
empirical observations interpreting them as pattern formation phenomena.
Therefore, in light of this, we predict regular structures over long scales to
emerge on their own, even in the absence of any environmental perturbation.

Further, the nonlocal features also play an important role while modelling
population dynamics. Herein, the intertwining combination of competition
and environmental effects is usually modelled by assuming that species un-
dergo a diffusion process and interact nonlocally in space. Such contributions
play a vital role in describing the aggregation and distribution of individuals
or species in terms of emerging patterns [109]–[111].

Similar settings also enhance our understanding of species origination
[65]. In particular, the competition can indeed lead to formation of species
by limiting their similarity and partitioning environmental resources [50].
In this case the diffusive process and inter-species interactions occur in the
space of species traits, and the eventual patterns obtained from such models
are a hallmark of the surviving species [112]–[114].

Given that emergence of patterns is a wide-spread phenomenon across
many scientific fields, the research for universal behaviors in their formation
could be of great interest since it may indicate that the key features of their
evolution are common, despite of the details at the microscopic level that dif-
fer across many pattern-forming dynamics. Having ecological applications
in mind, it might be relevant in this sense to search for universalities in mod-
els affected by nonlocal contributions.
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FIGURE 1.4: Examples of patterns emerging from nonlocal dynamics in
ecology. Left panel: Aerial view of a vegetation landscaped with gapped
bush in Niger where it is clear the alternation of occupied and occupied
spots by the vegetation (figure taken from [115]). Right panel: Species for-
mation as emerged pattern in the trait space with the dynamics described
in [112] modified by the addition of a diffusion term. The lumpy peaks can
be regarded as the possible phenotypes for the species, which have been
selected by the competitive pressure occurring in the trait space among
the continuous of possible phenotype allowed a priori.

1.2.3 Seasonality in complex systems temporal evolution

Besides from the self-organized spatial order discussed in the previous sec-
tion, it is common in complex systems dynamics to observe also regularities
on long timescales in the temporal evolution of the system key quantities. In
this case, the temporal order acquires the form of (almost) periodic behaviors
featured by oscillations typical of seasonal phenomena.

Living systems dynamics are deeply affected by this. Examples are pro-
vided by host-pathogen systems [116], where the concentrations of infected
and healthy individuals keep on alternating regularly between high and low
values. For the sake of concreteness, one could think of seasonality charac-
terizing the spread of diseases, like measles [117], which has been studied for
many years.

Experimental results also show that emergence of oscillations in the con-
centration of the chemical reactants in biochemical systems is a quite diffuse
process. Circadian rhythms in microorganisms [118], [119] and the oscilla-
tion of ATP and ADP concentrations during glycolysis [120], [121] are just
two well known instances in this field. Oscillations in proteins concentration
within the cells also are crucial in ruling cellular cycles. For instance, this is
well documented for the cyclin protein [122], [123].

Thinking of ecological settings instead, interacting populations in natural
environments oftentimes display cycles in the evolution of their densities.
The food web architecture is frequently responsible for the cyclic dynam-
ics, even though the recognition of a general biological mechanism which
induces oscillations is usually a hard task [124].

It is relatively easier, instead, to generate oscillatory dynamics with a
model for biological interactions. The Lotka-Volterra (LV) model we already
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presented in Eqs. (1.7a)-(1.7b) is probably the best known model which pro-
duces oscillations. We also briefly discussed from an ecological standpoint
how the continuous feedback due to the predation interaction entwining the
predators and prey populations leads to a seasonal temporal evolution.

However, the cyclic behavior in the LV equations depends on the exis-
tence of a conserved quantity which has no biological motivation, and this
makes the model quite unrealistic. Simple, and more realistic, modifications
of the equations actually do not have cyclic dynamics [125]. It is therefore
bewildering that in order to predict oscillatory behaviors we require a very
specific model, which is not robust in describing this feature against slight
modifications.

At this point it is worth noting that when the LV model as well as the mod-
els describing the biological and epidemiological examples we listed above
are formulated as a set of deterministic equations, sustained oscillations can
emerge if and only if such dynamics predict limit cycles [126]. Of course,
this is a quite limiting conditions to observe a feature that seems to appear
to be fairly general and diffuse across so many different dynamics. Hence,
employing a complex system approach to investigate these dynamics, we ex-
pect a more general mechanism, which is less dependent of the peculiarities
of the evolution equations of the model, able to explain how the emerging
seasonality.

The deterministic approach neglects completely the stochasticity that in-
trinsically affects biochemical reactions or predator-prey interactions [127].
In fact, such processes, given the system state, do not take place in a fully
determined fashion, but more properly they have a propensity to occur or
not to occur in time. Therefore, we must be cautious when modeling such
dynamics and understand whether we can or can not neglect this intrinsic
stochastic behavior.

It is known that the deterministic limit is correct when the systems are
large enough, i.e., when the number of elementary units becomes formally
infinite [128]. However, in the case of small systems where the number of
components is quite restricted, stochasticity can play a major role and ne-
glecting completely stochasticity might lead to erroneous descriptions of the
system. Interestingly, this latter scenario is the one we most often observe in
biological settings, where the concentrations levels can acquire usually low
values.

It has been shown that the stochastic generalization of the LV equations
introduces substantial new features. A paradigmatic example is the phe-
nomenon of stochastic amplification, where the intrinsic demographic noise
generated by the birth and death processes of a coupled predator-prey sys-
tem can generate a persistent oscillating behavior, when the deterministic
limit predicts damped oscillations [129].

Although being originally obtained for a predator-prey system, stochas-
tic amplification turned out to be appropriate for explaining the emergence
of non-trivial cycling dynamics and seasonal behaviors in a broad range of
situations [129]–[131]. Applications can be found in biology [132], economics
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[133] and epidemiology [134]. Due to the pure stochastic nature of the phe-
nomenon, it is common to find that in the such oscillatory behaviors are also
referred as noise-induced cycles.

On a mathematical ground, stochastic amplification occurs when the de-
terministic system approaches the stationary state with damped oscillations,
i.e., the Jacobian calculated at the stationary state has complex eigenvalues
with a negative real part, albeit this is only a necessary condition. In this
situation the intrinsic noise excites all frequencies and, in resonating the sys-
tem, sustains oscillations indefinitely. This reflects into the appearance of
non-trivial peaks in the stationary power-spectrum, which, roughly speak-
ing, gives information regarding the weight of each frequency components
composing the fluctuations. It is therefore clear that the presence of an ab-
solute maximum at a non-zero frequency implies that on average the sig-
nal is dominated and well described by an almost harmonic oscillation with
characteristic frequency. As a clarification, we show in Figure 1.5 the results
obtained in the seminal work by Alan McKane and Thea Newmann deal-
ing with a predator-prey system [129]. In the left panels we see two typical
time-series describing the prey and the predator populations evolution, re-
spectively, according to the stochastic dynamics. As it is possible to see, these
trajectories keep on oscillating almost regularly, even when the deterministic
solutions have reached the stationary values via damped oscillations. In-
stead the right panel and its inset display the two power-spectra (one for
the predator population and the other for the prey population) that capture
the spectral properties of the predator-prey time-series. There, two peaks lo-
cated at non-zero frequencies are clearly visible, confirming the emergence
of the regular oscillatory behavior in the predator-prey system evolution. In
particular, the two peaks correspond to the characteristic frequencies, one de-
scribing the predator and the other the prey population temporal oscillations
observed in the stochastic trajectories, as displayed in the panels on the left.

The mathematical framework that originally led to the prediction of stochas-
tic amplification is based on a Master Equation (ME) description of the sys-
tem dynamics [127]. In order to achieve some analytical results, Van Kam-
pen’ system size expansion is then employed [128]. At the leading order of
such expansion of the ME we obtain the mean-field dynamics which describe
the behavior of the system in the deterministic limit, i.e., in the limit of infi-
nite system size. The next-to-leading order instead gives the Fokker-Planck
equation for the fluctuations around the deterministic solution. Equivalently,
this can be translated into linear Langevin equations where the stochastic
contributions appear explicitly in the form of white Gaussian noises [136].
To infer the spectral properties of these, it is enough to take the Fourier
transform of the set of Langevin equations which eventually gives back the
power-spectra. In this way, once the transition rates of the ME describing
the microscopic dynamics of the systems are fixed, it is immediate to see
if the power-spectra present a non-trivial peak, confirming the occurrence
of the resonance between the asymptotic deterministic damped oscillations
and the demographic noise (the detailed derivation can be found in [129],
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FIGURE 1.5: Figures taken from [129] where all the details to replicate
them are provided. The noisy lines in the left panels represent two typical
time-series, one for the prey density ( f1) and the second describing the
predators density ( f2), numerically obtained using the Gillespie algorithm
[135] against the deterministic solutions (dashed lines). As we can see,
the stochastic time-series present an almost regular oscillatory behavior
also when the deterministic solution reached the stationary state. In the
right panel instead we can find the numerical power-spectra (noisy lines)
compared to the theoretical ones. In both, the agreement is excellent and
we can clearly state the presence of two peaks, which are the hallmarks
that stochastic amplification took place.

[130]). We have to remark that in the scientific literature stochastic ampli-
fication is treated as a qualitatively different phenomenon from what is re-
ferred with the name of stochastic resonance [137], [138], acknowledged for
the first time in meteorological models [139], [140]. Indeed, the two display
a similar phenomenology since both of them rely on a resonance mechanism
of deterministic oscillations with a stochastic component. Nevertheless, the
key difference has to be searched in the origin of the forcing that makes the
resonance possible: in the latter the forcing is provided by an external per-
turbation acting on the system, whereas when one deals with the former the
resonance source is inherent to the system and it is the intrinsic stochasticity
due to underlying dynamics.

However, besides the stochastic origin of the fluctuating dynamics, it is
also known that in deterministic systems temporal delays, even small ones,
may generate oscillations which could not be observed without delay [141].
In particular, this may happen even in one-dimensional first-order differen-
tial equations, which could not display oscillations otherwise. In fact, tempo-
ral delays introduce correlations in time, which can materialize into temporal
cycles.

Gene expression networks are a crystal clear example of biological dy-
namics affected by delays induced by the underlying biochemical reactions
[142]–[145]. Indeed, the key processes taking place in the cellular machinery
involved, such as transcription and translation, are not instantaneous, but
the effects of the reaction become manifest only well after the reaction has
been triggered, especially in eukaryotes.
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At the same time, empirical studies have shown that in the zebrafish gene
expression network responsible for the production of Hes1 proteins the num-
bers of proteins and the associated coding mRNA sequences undergo an os-
cillatory evolution in time [146].

When the delayed deterministic equation predicts oscillations, generally
their amplitude decays with time. As before, indefinitely lasting cycles are
only captured by models for a fine-tuned choice of the parameters [142]–
[144]. Even small deviations from the tuned values would dramatically alter
the outcome of the predicted dynamics, leading to quickly vanishing oscilla-
tions. Biologically, this does not make sense, unless one accepts that natural
evolution has selected such a peculiar set of parameters in the whole parame-
ter space. Instead, it would seem more reasonable to search for the existence
of an underlying more general physical mechanism that does not depend
so crucially on the system intrinsic parameters, making the cyclic behavior
robust against perturbations and noisy disturbances in the system setting,
which strongly affect biochemical reactions inside cells.

Of course, in such biological processes stochasticity again is at play. There-
fore, it is indeed appealing to investigate whether cycles in delayed and noisy
systems can still be explained within the theoretical framework provided by
stochastic amplification. Additionally, one might study if and how the delay
modifies the main features of such phenomenon.

1.3 Thesis plan

We presented three behaviors emerging from the complex nature of ecologi-
cal and biological systems. Aim of this Thesis is to investigate each of these
with the broad framework of complex systems. By properly accounting for
the spatial or temporal correlations among the systems’ degrees of freedom,
we will study the three topics introduced above to obtain new insights on
their features and the possible mechanisms originating them.

In Chapter 2 we will deal with the problem of species coexistence. In par-
ticular, we will extent the consumer-resource framework to account for spa-
tial terms, thus modeling other ecological mechanisms, apart from the indi-
rect competition for nutrients consumption. We will achieve this by employ-
ing an effective description of such contributions after having performed a
coarse-graining procedure on the starting spatial degrees of freedom, result-
ing in the addition in the mean-field dynamics of a new term with respect
to the state-of-art model. We will argue that this modification can arise also
from the incorporation within a consumer-resource model of other relevant
ecological mechanisms, such as the noxious effect caused by host-specific
pathogens. Then we will show that this modified setting is able to violate
the CEP. On top of that, we will also be able to obtain analytical conditions
on the model parameters with which we can predict if and which species
would face extinction and be outcompeted by the surviving ones. With the
same rationale, we will argue how it is possible to predict if an invading
species could successfully colonize an environment and how this would af-
fect the previous pool of coexisting species. Lastly, we will be able to get
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quantitative predictions on important ecological patterns, such as the species
abundance distribution describing how the species population sizes are dis-
tributed, which we will compare with empirical datasets.

At this point, we will study pattern-forming dynamics in Chapter 3. There
we will be interested in searching for universal properties of patterns due
to their wide-spread diffusion in complex systems dynamics. We already
acknowledged that spatially regular structures emerge from homogeneous
states if they are linearly unstable under small perturbations, either the non-
linear interactions terms are local or nonlocal. This can be seen as a first uni-
versal aspect shared by pattern-forming systems. Beside this, we will show
that, in an appropriate system regime, also the evolution of patterns on long
temporal and large spatial scales is ruled by a model-independent dynam-
ics. After having discussed the necessary conditions required to develop our
theory, we will provide a mathematical framework capable of obtaining such
evolution equation. In particular, due to what we said about the role of non-
linearity in ecological applications, we will start from a general nonlinear
and nonlocal model. Thanks to this generic starting point, we will be able to
conclude that the result we find is universal. We will see that by universal
we mean that the shape of this equation does not depend on the underly-
ing system dynamics, as its details enter only through the specific form of
the equation coefficients. In order to check the validity of the mathematical
framework, we will perform some tests comparing the theoretical predictions
with the patterns coming from numerical integration of a model dynamics.

Later, we will move our attention on the emergence of temporal cycles in
noisy and delayed dynamics. In fact, in Chapter 4 we provide a simple set-
ting, in the form of a Langevin dynamics, that naturally accounts for tempo-
ral delays effects and stochastic contribution. We will see that noise-induced
cycles might emerge and we will demonstrate how this can be explained in
term of stochastic amplification phenomenon. Moreover, we will argue how
the addition of delay to the original formulation of the phenomenon leads to
new features that can not be seen otherwise. For sure, the most remarkable
one is the possibility to observe stochastic amplification in one-dimensional
systems. Moving on, we will show analytically that the presence of asymp-
totic damped oscillation does not imply that, as soon as noise is taken into
account, that the resonance leading to non-trivial peaks in the power-spectra
necessarily occur. On the contrary, we will identify a region of the param-
eter space where the deterministic dynamics approach the stationary state
via damped oscillations, however the stochastic description does not predict
stochastic amplification and hence no cycles are observed. Going even fur-
ther, surprisingly we will find scenarios in which the power-spectra of the
fluctuations display non-trivial peaks even if in the asymptotic deterministic
limit the dynamics reaches stationarity through an exponential decay. Fi-
nally, we will employ the framework unifying delays effects and noisy con-
tributions to study a gene expression network. In this way we will argue how
the empirical observations can be understood in terms of noise-induced cy-
cles predicted by the resonance phenomenon of noise with the deterministic
oscillations.
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Chapter 2

Effective Resource-Competition
Model for Species Coexistence

The contents presented in this Chapter, including the displayed figures, are
taken with permission from the published paper [147]. Copyright (2021) by
the American Physical Society.

Chapter abstract: Local coexistence of species in large ecosystems is tradi-
tionally explained within the broad framework of niche theory, whose ra-
tionale however hardly justifies the rich biodiversity observed in nearly ho-
mogeneous environments. Here, we consider a consumer-resource model
in which effective spatial effects, induced by a coarse-graining procedure,
exhibit stabilization of species competition. We find that such interactions
are crucial to maintain biodiversity. Herein, we provide conditions for sev-
eral species to live in an environment with very few resources. In fact, the
model displays two different phases depending on whether the number of
surviving species is larger or smaller than the number of resources. We ob-
tain conditions whereby a species can successfully colonize a pool of coexist-
ing species. Finally, we analytically compute the distribution of the popula-
tion sizes of coexisting species. Numerical simulations as well as empirical
distributions of population sizes support our analytical findings.

2.1 Introduction

Herein, we deal with the long-standing puzzle of species coexistence. Our
aim is to provide a theoretical framework, based on both ecological and
physical arguments, that accounts for the most fundamental mechanisms at
play in ecological competitive communities and that yet is capable of repli-
cating the astonishing biodiversity empirically observed in many real-world
ecosystems.

As mentioned in Section 1.2.1, our planet hosts an enormous number of
species [35], which thrive within a variety of environmental conditions. The
coexistence of this enormous biological diversity is traditionally explained
in terms of local adaptation [148], [149], environmental heterogeneity [150],
[151], species’ abilities to aptly respond to the distribution of resources [152],
[153], and other abiotic factors which broadly define a niche [154]. When
species are geographically separated, they may survive because they match
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a specific environmental condition and inter-specific competition is not detri-
mental.

However, several microbial or plankton species seem to coexist despite
they occupy very similar niches in close-by regions [51]–[54], leaving the sci-
entific community puzzled attempting to search for explanations able to dis-
solve this paradox. Now, on timescales that are larger than one generation
but smaller than speciation timescales, the fittest species should outcompete
all the others. Then, why do we still observe coexistence?

Consistent with this rationale, in Section 1.2.1 we showed how the the-
oretical work of MacArthur’s consumer-resource model [62], [63] leads in-
evitably to observe the CEP: the number of coexisting species competing for
the same resources is bounded by the number of resources themselves [155]–
[161]. Despite numerous attempts [162]–[165], no definitive answer has yet
been achieved for explaining such stark contrast between the predictions of
CEP and species’ coexistence.

In the scientific literature the role of space and how it might affect eco-
logical interactions is at the center of a vivid debate. In fact it has been ar-
gued that spatial effects might promote the coexistence of species [166]–[169].
Nevertheless, spatial effect have been neglected so far, both in the classical
formulation of the consumer-resource model and in its modified versions
mentioned early on.

For these reasons, in this Chapter we propose a generalization of the
aforementioned MacArthur’s consumer-resource model capable of account-
ing for spatial effects in an ecological community made up by different species
of consumers competing for the same resources. The key feature of this new
framework is the emergence, from the inclusion of the spatial contributions,
of new terms which stabilize species interactions and affect the dynamics on
top of the traditional inter-species couplings, which account for the indirect
resource consumption. Indeed, by coarse-graining the spatial degrees of free-
dom, we show that a density-dependent inhibition term forms and stabilizes
the dynamics. Thus, these stabilizing factors emerge naturally in all ecosys-
tems when spatial effects are not negligible.

More generally, such a term is not solely due to spatial contributions, but
it might emerge whenever other mechanisms preventing overcrowding are
crucially involved in the ecosystems dynamics. For the sake of concrete-
ness, in tree communities, this term may model the Janzen-Connell effect (JCE)
[170]–[172], that describes the inhospitability for the seedlings in the proxim-
ity of parent trees due to host-specific pathogens. This leads to a penalization
of their growth and inhibits the local crowding of individuals belonging to
the same species [173]–[175]. Apart from this, the new density-dependent
inhibition term could be thought to capture crowding effects of species com-
peting for resources in limited areas or species-induced modification of the
environment for a competitive advantage. Clear examples are provided by
microbial colonies, where certain strains produce toxins dangerous for the
others or even themselves [176]–[180].

The rest of the Chapter is organized as follows. In Section 2.2 we intro-
duce the generalized consumer-resource model including spatial terms from
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which, after having performed a coarse-graining procedure of some spatial
degrees of freedom, we get the effective model, as discussed in Section 2.3,
used in the following investigation. We then show in Section 2.4 that this
new formulation explains why a large number of species can coexist even in
the presence of a limited number of resources. In particular we provide clear
numerical examples and analytical criteria from which we can conclude that
CEP can be openly violated. After this, in Section 2.5 we predict how many
species will survive depending on the amount of resource present in the
habitat and we also provide the conditions under which an invading species
outcompetes a pool of coexisting species. Finally, we analytically obtain the
species abundance distribution (SAD), i.e., the probability distribution of the
population sizes of the species in Section 2.6, where we also show that it jus-
tifies the empirical SAD calculated from the plankton data presented in [181].
Finally, we conclude the discussion in Section 2.7 The full analytical deriva-
tions and the details of the numerical studies are presented in Appendix A. In
particular, Appendices A.1 and A.2 contain the calculations showing how the
new stabilizing inter-specific interaction term can emerge both from the spa-
tial coarse-graining or by incorporating a host-pathogen mechanism, such
as JCE, in a consumer-resource framework, respectively. We also provide in
Appendix A.3 the details under some model conditions used to perform nu-
merical simulations when we consider multiple different resources. We then
discuss how to compute the SAD curve in the case of a large number of re-
sources in Appendix A.4, whereas in Appendix A.5 we search for the same
pattern when the dynamics present some extinctions. In the end, the behav-
ior of the SAD tail, described by a power-law decay of which we can predict
the range of values for the exponent, is studied in Appendix A.6.

2.2 Spatially extended model

Herein, we consider an ecological community composed by M different species
competing for R resources. To do so, we start from MacArthur’s consumer-
resource model Eqs. (1.14a)-(1.14b), which we already described in Section 1.2.1.
Motivated by what we said in the previous section about the potential key
role played by spatial effects in promoting the biodiversity, we extend such
classical framework to account for spatial degrees of freedom. Hence, we
promote both the population densities nσ and the resource concentrations ci
to depend on time (which in the following we do not make it explicit) and
space. In this way we write a dynamics of the form

ṅσ(x⃗) = nσ(x⃗)

[︄
R

∑
i=1

ασiri (ci(x⃗))− βσ

]︄
− ∇⃗ · J⃗σ(x⃗), (2.1a)

ċi(x⃗) = µi(Λi − ci(x⃗))− ri(ci(x⃗))
M

∑
σ=1

nσ(x⃗)ασi, (2.1b)

where for ease we do not explicit the time-dependencies, whereas x⃗ indicates
the position in space, hence it indicates the spatial degrees of freedom of the
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dynamical quantities and finally J⃗σ(x⃗) is the flux describing the motion in
space of the individuals of species σ.

In particular, inspired by the seminal work done by Keller and Segel [182],
the motion of the individuals described by the flux J⃗σ(x⃗) can be thought as
the sum of two separate contributions. The former accounts for the diffu-
sive random motion, whereas the latter models a motion of the organisms
towards areas with more abundant resource concentrations due to their abil-
ity to trace resource gradients in the environment. In ecological context such
effect is called foraging, whereas we speak about chemotaxis when consider-
ing microbial communities. In Appendix A.1 more details on these are given.
We can notice that in Eq. (2.1b) no diffusive contribution for the resources is
considered, which is equivalent to assume that the temporal scales, on which
the resources diffusion takes place, are much longer than the corresponding
ones for the consumers motion. In other words, the individuals of the dif-
ferent species populations are assumed to be more motile than the nutrients
present in the environment.

2.3 Emergence of the quadratic competitive term

Analyzing the evolution of the ecosystem from the dynamics expressed in
Eqs. (2.1a)-(2.1b) might be very complicated. An alternative way to study
such dynamics would be to deal with a mean-field description of the dy-
namics which however takes into account spatial effects in an effective way.
This is achieved by properly integrating the spatial degrees of freedom. Such
procedure is called spatial coarse-graining and it is often employed in Physics,
especially in Field Theory [183], [184].

Therefore, if we perform the spatial coarse-graining procedure on Eqs. (2.1a)-
(2.1b) (the detailed steps and calculations are presented in Appendix A.1), we
eventually end up with the following effective consumer-resource model:

ṅσ = nσ

[︄
R

∑
i=1

ασiri(ci)− βσ −
M

∑
ρ=1

ϵσρnρ

]︄
, (2.2a)

ċi = µi(Λi − ci)− ri(ci)
M

∑
σ=1

nσασi, (2.2b)

where now the spatial dependencies are washed away and the term ϵσρnσnρ

in Eq. (2.2a), emerged from the spatial coarse-graining, represents the com-
petitive interaction of species ρ with species σ (notice the minus sign).

The emergence of this new quadratic term in the effective theory can be
intuitively explained using the following argument: individuals head pref-
erentially towards areas of high resource concentration due to the foraging
strategy, but this also attracts other individuals of other species, leading in
the coarse-grained model to this additional competition term. Moreover, ϵ−1

σσ ,
coming from the self-inhibiting term ϵσσn2

σ that quantifies the strength of in-
teractions among the individuals of the same species, may be regarded as the
carrying capacity for species σ.
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Of course, the proposed coarse-graining approach is meaningful only
when applied to those systems whose spatial extension results to be larger
that the typical spatial scales characterizing the consumers motions. How-
ever, as we mentioned in the Introduction, the coarse-graining procedure is
not the only mechanism leading to the emergence of the quadratic competi-
tive term. Interestingly, the inhibition term in Eq. (2.2a) can also arise when
studying ecosystems where the consumers evolution is also affected by the
presence of pathogens. In the case of tree communities, for example, such
a novel term can be thought to model effectively JCE. In Appendix A.2 we
present a mathematical argument in favor of this statement.

We remark that in Eq. (2.2b), the quantity µiΛi is the rate of supplying
abiotic resources. The modeling of biotic resources scenario is achieved by
substituting µi with µici. In what follows, for simplicity, we report the re-
sults for the case of abiotic resources with degradation rates of all resources
to be the same, i.e, µi = µ because it is analytically treatable. The cases deal-
ing with biotic resources and/or heterogeneous degradation rates µi do not
display qualitative differences.

2.4 CEP violation

Given the dynamics Eqs. (2.2a)-(2.2b), we are ready to start exploring the
model predictions. The first and maybe the most remarkable one consists in
the possibility to overcome CEP, which instead was inevitably pictured by
the classical formulation of the consumer-resource model independently of
the choice of the model parameters, as we showed in Section 1.2.1. In fact,
as we are going to see first numerically and then analytically, the framework
with the modification due to the coarse-graining procedure is able to sustain
a large number of different coexisting species even if the pool of nutrients is
made up by a small number of different resources.

So let us start with some numerical exploration of the stationary values
of the model dynamics Eqs. (2.2a)-(2.2b). In Figure 2.1 we plot the fraction
of survived species out of the initial M = 200 as a function of the (rescaled)
resource supply Λ in the presence of one resource, i.e., R = 1 after having
let the dynamics Eqs. (2.2a)-(2.2b) evolve till the stationarity. At this point
we can count the number of species which have survived, i.e., those that
have a non-vanishing stationary population size. Here we vary the ratio,
a = ϵσρ/ϵσσ, of inter- to intra-species interaction. The different markers refers
to different choices for the value of the ratio. In concrete, when choosing the
parameters we decided to draw them from some probability distributions.
Therefore, if the distribution of ϵσσ is Pdiag(ϵ), then the distribution of ϵσρ

(with σ ̸= ρ) is taken as Poff−diag(ϵ) = a−1Pdiag(ϵ/a).
First we notice that when the ratio a increases, the fraction of survived

species decreases. However from such preliminary numerical investigations,
we can immediately see how CEP is violated: since we are considering R = 1,
if CEP holds, we would expect only one species at stationarity. Instead we
find higher values for the fraction of the surviving species. Interestingly,
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FIGURE 2.1: Panel (a): We numerically evolve dynamics (2.2a)-(2.2b) up
stationarity and compute the fraction of survived species as a function of
Λ. The ratio of inter- to intra-species interaction, i.e., ϵσρ/ϵσσ, is increased
by a power of 2 as we go from the top saturating curve (ϵσρ/ϵσσ = 2−12)
to the bottom one (ϵσρ/ϵσσ = 22). Here we take the initial number of
species M = 200 and R = 1. The parameters ϵσσ are sampled from a uni-
form distribution whose support is on the positive real axis, in the case of
this numerical study ϵσσ ∼ U (0.0001, 0.0005), whereas the parameters ϵσρ

with σ ̸= ρ instead are sampled from the rescaled uniform distribution,
where the current value of the ratio ϵσρ/ϵσσ is the scaling factor. Hence,
also the support of the uniform distribution, from which ϵσρ with σ ̸= ρ
are sampled, is on the positive real numbers, i.e, ϵσρ > 0 The other param-
eters are µ = 0.001, k = 5, βσ = 1 ∀σ and the metabolic strategies are also
drawn from an uniform distribution, i.e., ασ ∼ U [5, 50]. Panel (b): Plot
for the saturation values, i.e., corresponding to Λ = 1012, of the curves
displayed in panel(a) (with same color coding) as a function of the ratio
ϵσρ/ϵσσ.

all initial species survive when the inter-species interactions are relatively
weaker, and an increasing number of species coexists competing for one re-
source when the resource supply Λ is correspondingly larger. This is man-
ifestly shown in Figure 2.2, which refers to the limiting case ϵσρ → 0 for
(σ ̸= ρ). It turns out that such limit is analytically tractable and, therefore,
we will focus on this case in the following to find explicit conditions on the
model parameters to ensure species coexistence and CEP violation.

As the time progresses, we expect this system to reach a stationary state.
If all species have survived (later we will discuss the case when a sub-set of
them go extinct) at a large time (n∗

σ > 0 ∀ σ), then the following equations in
the matrix form can be obtained by setting the left-hand side of Eqs. (2.2a)-
(2.2b) equal to zero:

N⃗ = E−1(QG U⃗ − B⃗), (2.3a)

µ(⃗L − χ⃗) = GQTN⃗ , (2.3b)
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FIGURE 2.2: Coexistence of species competing for 1 resource. Horizon-
tal arrow indicates a schematic for Λ such that l number of species co-
exist if Λ(l) < Λ < Λ(l+1) with Λ(M+1) = ∞. We verify these re-
sults by numerically evolving dynamics Eqs. (2.2a)-(2.2b) for 4 species
(M = 4, solid lines) competing for one resource (R = 1, dashed line).
Clearly, for Λ < Λ̄, the number of survived species M∗ is smaller than
M. The other parameters are chosen to be k = 5, βσ = 1 ∀σ, µ =
0.001, {ασ}σ=1,··· ,4 = (4.3, 2.5, 3.8, 4.7) and {ϵσσ}σ=1,··· ,4 = {ϵσ}σ=1,··· ,4 =
(0.003, 0.00258, 0.00175, 0.00454), while ϵσρ = 0 if σ ̸= ρ.

where N⃗ = (n∗
1 , n∗

2 , . . . , n∗
M)⊤ is the vector whose components are the sta-

tionary values of the population sizes, while

B⃗ = (β1, β2, . . . , βM)⊤, (2.4)

L⃗ = (Λ1, Λ2, . . . , ΛR)
⊤, (2.5)

χ⃗ = (c∗1 , c∗2 , . . . , c∗R)
⊤, (2.6)

E = diag[ϵ1, ϵ2, . . . , ϵM], (2.7)
G = diag[r1(c∗1), r2(c∗2), . . . , rR(c∗R)], (2.8)

U⃗ = (1, 1, . . . , 1)⊤⏞ ⏟⏟ ⏞
R components

(2.9)

and Q is a M×R matrix whose elements are the metabolic strategies ([Q]σi=ασi).
We remark that Eqs. (2.3a)-(2.3b) still hold in the case of a non-diagonal E ma-
trix, as long as it is invertible, however it is not possible anymore to carry out
analytical calculations. Substituting Eq. (2.3a) in Eq. (2.3b) gives R coupled
equations:

GQTE−1QGU⃗ − GQTE−1B⃗ = µ(⃗L − χ⃗), (2.10)

that can be solved for ri(c∗i ) as a function of the other parameters. Further,
the condition for all species to survive, using Eq. (2.3a), is

(QG U⃗ )σ > B⃗σ ∀ σ, (2.11)
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which gives the coexistence region in the R-dimensional space whose axes
are r1(c∗1), r2(c∗2), . . . , rR(c∗R). Thus, we found a necessary condition for all
initial species to coexist that is the solution of Eq. (2.10) lying within this
coexistence region defined by Eq. (2.11); otherwise, some of them must go
extinct.

In the following we will illuminate the above result by first showing M =
3 species coexisting while consuming only R = 2 and hence violating the
CEP once the condition obtained above are fulfilled. Later, we will consider
a case when several species are competing for one resource.

2.4.1 Example: coexistence of M = 3 species in the presence
of R = 2 resources

Herein, we present the calculations to obtain the condition that ensures the
coexistence of all initial species competing for two resources (R = 2). For
convenience, we show the calculations for three species (M = 3). Nonethe-
less, for large number of species, one can follow the procedure given below.

As discussed in the previous section, the condition for all species to coex-
ist is that the solutions ri ≡ ri(c∗i ) of Eq. (2.10), which written explicitly are

r1

[︃
α21 (r1α21 + r2α22 − β2)

ϵ2
+

α31 (r1α31 + r2α32 − β3)

ϵ3
− β1α11

ϵ1

+
α11 (r1α11 + r2α12)

ϵ1

]︃
= µ

(︃
Λ1 −

r1k1

1 − r1

)︃
,

(2.12a)

r2

[︃
α22 (r1α21 + r2α22 − β2)

ϵ2
+

α32 (r1α31 + r2α32 − β3)

ϵ3
− β1α12

ϵ1

+
α12 (r1α11 + r2α12)

ϵ1

]︃
= µ

(︃
Λ2 −

r2k2

1 − r2

)︃
,

(2.12b)

should lie inside the region given by Eq. (2.11), i.e.,

α11r1(c∗1) + α12r2(c∗2) > β1, (2.13a)
α21r1(c∗1) + α22r2(c∗2) > β2, (2.13b)
α31r1(c∗1) + α32r2(c∗2) > β3. (2.13c)

In Eqs. (2.12a)-(2.12b) we substitute c∗i = riki
1−ri

as we inverte the Monod func-
tion.

To advance, numerics are required. Therefore, we first fix the model pa-
rameters as βσ = 1 ∀σ, µ = 0.001, ki = 5, E = diag(0.001, 0.002, 0.003) and

Q =

⎛⎝1.5 2.8
3.1 5.2
1.7 2.5

⎞⎠ . (2.14)
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Notice that in the following, we consider Λ as a tuning parameter.
Now using Eqs. (2.13a)-(2.13c), we show the coexistence region where all

initial species survive in Figure 2.3 (a). For Λ1 = 3 × 105, we plot the equa-
tion of contour (2.12a), whereas we plot Eq. (2.12b) for two different values
of Λ2. In the first case we take Λ2 = 106 and we can see that the solution of
Eqs. (2.12a)-(2.12b) lies inside the shaded region. Instead in the second case
we consider Λ2 = 105 giving that the solution now is located outside of co-
existence region. Thus, for the first case all the species coexist, as also proved
by Figure 2.3 (b) where, displaying the temporal evolution of the population
sizes given by the corresponding choice of the model parameters, we can see
that all the three reach non-vanishing stationary values. In the second case
instead two species go extinct, as shown by Figure 2.3 (c). In Figs. 2.3 (b) and
(c), the solid lines indicate the evolution of species while the dashed ones are
for resources.

2.4.2 Condition for the coexistence with R = 1

If we now consider a system with only one resource, we can obtain an explicit
condition on the model parameters ensuring the survival of all M starting
species. Clearly, the case of only one resource is a limit case, nevertheless it is
interesting since it helps us to show our framework can picture a huge biodi-
versity even in presence of a reduced number of resources, openly violating
CEP and thus retrieving prediction which look more similar to the empirical
observations of natural systems.

Given R = 1, we can drop the immaterial index i. Thus, Eq. (2.3a) be-
comes

n∗
σ = [ασr(c∗)− βσ]/ϵσ ∀σ. (2.15)

Since we need n∗
σ > 0, we find

r(c∗) > βσ/ασ. (2.16)

Moreover, we can write

r(c∗) > r(c̄) ≡ max
σ

{βσ/ασ}, (2.17)

where r(c∗) is the solution of Eq. (2.10):

Ar2(c∗)− Br(c∗)− µ(Λ − c∗) = 0, (2.18)

in which the coefficients A and B are defined as

A = ∑
σ

α2
σ/ϵσ, (2.19)

B = ∑
σ

ασβσ/ϵσ. (2.20)
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FIGURE 2.3: Coexistence of M = 3 species in the presence of R = 2
resources. Panel (a): The shaded region is obtained from Eqs. (2.13a)–
(2.13c). Eq. (2.12a) is plotted for Λ1 = 3 × 105 (green curve), while
Eq. (2.12b) is shown for two different Λ2, where for Λ2 = 106 (red curve)
the intersection giving the solution of Eqs. (2.12a)-(2.12b) is inside the co-
existence region, whereas for Λ2 = 105 (blue curve), the solution is out-
side of shaded region. Panels (b) and (c): Numerical integration of the
dynamics with two different Λ2 as discussed for Panel (a). In all plots,
the parameters are the ones presented in the text. In Panel (b) and (c), the
solid lines indicate the evolution of species population sizes nσ(t), while
the dashed ones refer to the resources concentrations ci(t).
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Note that r(c∗) ≤ 1, therefore, the metabolic strategies, in order to guarantee
a coexistence of all species, should be greater than the death rates, i.e.,

ασ > βσ ∀σ. (2.21)

Thus, for fixed parameters that characterize the species, i.e., {ασ, βσ, ϵσ}, co-
existence of all species is achieved when tuning the resource supply rate by
varying Λ at a fixed µ in such a way that the condition r(c∗) > r(c̄) is satis-
fied. Such a critical value of Λ is given by

Λ̄ = r(c̄)[Ar(c̄)− B]/µ + c̄. (2.22)

In Figure 2.2, we consider an example of ecosystem having 4 species compet-
ing for 1 resource. Clearly, when Λ > Λ̄, all initial species survive (shown by
solid lines), while some of them go extinct in the contrasting case.

2.5 Extinction and invasibility conditions

As we saw, we can have that all the species survive for Λ > Λ̄. However, if
this is not true, the system will face some extinctions but still the CEP could
be violated. We expect that the number of the extinct species depends on the
choice of Λ once all the other parameters are fixed. In the following we will
search for a condition within our theoretical framework with which we can
state how many and which species go extinct when competing for a single
resource when Λ < Λ̄.

2.5.1 Threshold Λ(l) for the coexistence of l < M species

For simplicity, in what follows, we consider βσ = 1 ∀σ. Nevertheless, the
analysis can also be done along the same line for generic βσ’s. Since now
each species is characterized by a set of parameters, one can define an array
{α1, ϵ1; α2, ϵ2; . . . ; αM, ϵM}, where species are arranged according to decreas-
ing metabolic strategies.

Because of what we said, when Λ < Λ̄ some extinctions will necessar-
ily occur. For this reason the stationary state of Eqs. (2.2a)-(2.2b) can be ex-
pressed as

n∗
σ =

ασr̃(c∗)− 1
ϵσ

U(ασ − α̃), (2.23)

r̃(c∗) =
µ(Λ − c∗)
∑σ n∗

σασ
. (2.24)

Note that the sum in Eq. (2.24) is restricted because some nσ-s are equal
to zero (when ασ < α̃) as shown in (2.23). Also the number α̃ is yet to
be obtained. In the above Eq. (2.23) U(x) is the Unit-step function with
U(x ≥ 0) = 1 and 0 otherwise.
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FIGURE 2.4: Survival of species with Λ. Panel (a): We compare the num-
ber of survived species obtained from numerical simulation (circles) of
dynamics (2.2a)-(2.2b) for R = 1 with theoretical prediction (dashed
curve) for initial 500 species. Moreover, we compare the simulations re-
sults of R = 1 with R > 1 (square, diamond, and triangle). Clearly, all
these curves collapse to each other when one rescales Λ with R (simu-
lation details for R > 1 are relegated to Appendix A.3). The model pa-
rameters are taken as follows: βσ = 1 ∀σ, µi = 0.001 and ki = 5 ∀i,
ϵσ ∼ U (0.0001, 0.0005) and ασi ∼ U (1.5, 10.0). Panel (b): Schematic of
invasion by a third species (square) in a pool of two coexisting species
(star and circle) competing for one resource. Two vertical lines corre-
spond to metabolic strategies of two species (blue and thicker refers to
the fitter one, i.e., the circle). We plot Λ̄(3) given in Eq. (2.22), shown by
a black solid curve [enclosing the region (R2)], that gives the critical re-
source supply for all of them to coexist as a function of metabolic strategy
α of the invader for other fixed parameters. The dashed curve separating
(R3) and (R4) corresponds to Λ(2) above which square and circle can co-
exist. The horizontal dashed line is the threshold Λ̄(2) above which circle
and star coexist in the absence of invader. Four different regions (R1)–(R4)
are shown depending on the survival of species. For this Figure, the pa-
rameters are βcircle = βstar = βsquare = 1, ϵcircle = 0.0015, ϵstar = 0.0025,
ϵsquare = 0.0017, k = 5 and µ = 0.001.
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Substituting Eq. (2.23) in Eq. (2.24), we find

Ãr̃2(c∗)− B̃r̃(c∗)− µ(Λ − c∗) = 0, (2.25)

where we defined

Ã = ∑
σ

α2
σ

ϵσ
U(ασ − α̃), (2.26)

B̃ = ∑
σ

ασ

ϵσ
U(ασ − α̃). (2.27)

With this reasoning, we can find the fraction of surviving species as

fs =
1
M

M

∑
σ=1

U(ασ − α̃), (2.28)

implying the fraction of extinct ones to be fe = 1 − fs.
Now we need to find the cut-off α̃. This depends on the value of Λ and

the choice of α-s and ϵ-s. To do so, we first introduce two conditional sums
A(c)

l and B(c)
l :

A(c)
l =

l

∑
j=1

α2
j

ϵj
, (2.29)

B(c)
l =

l

∑
j=1

αj

ϵj
, (2.30)

in which 1 ≤ l ≤ M.
Now if a number l of species survive starting from M, it follows from

Eq. (2.23) that

r̃(c∗) > α−1
l = r̃(c̄) = max{α−1

σ | 1 ≤ σ ≤ l}. (2.31)

In this way we find, similarly to what we did to obtain Λ̄ before, the critical
supply for first l species to survive to be

Λ(l) =
r̃(c̄)

µ

[︃
A(c)

l r̃(c̄)− B(c)
l

]︃
+

kr̃(c̄)
1 − r̃(c̄)

. (2.32)

Thus, if Λ(l) < Λ < Λ(l+1) then l species survive, l = 1, 2, . . . , M, where
we have defined Λ(M+1) ≡ ∞. In Figure 2.2, we show both Λ(1) and Λ(2)

(left markers) within which only the fittest species survives. We verify this
result in Figure 2.2 by numerically evolving the dynamics (2.2a)-(2.2b) for 4
species competing for one resource.

In Figure 2.4 (a), we compare the theoretical prediction using Λ(l) for the
number of coexisting species (dashed curve) with numerical simulations (cir-
cles) of Eqs. (2.2a) and (2.2b) for initial 500 species, and they have an excellent
match. Moreover, we show the comparison for number of survived species
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as R increases, where we relegate the detailed discussion of such cases in
Appendix A.3. Interestingly, we find that the simulation data for R > 1 col-
lapse on the theoretical prediction for R = 1 when the resource supply is
scaled with the number of resources. This is because for the same number of
species to coexist a smaller resource supply for each resource is required, as
expected.

2.5.2 Outcome of an ecosystem invasion by an external species

The conditions found ensuring the survival of all the initial species or a frac-
tion of those can be employed also to answer another question, which has a
great interest from an ecological standpoint.

In fact, let us consider a pool of coexisting species and let us assume a new
species enters the community. One could wonder if the invading species will
ever be able to colonize successfully the environment and/or coexist with the
other species and, when the answer is affirmative, under which conditions on
the model parameters this could happen.

To answer this question, for convenience, we consider a system of two
coexisting species consuming one resource. The coexistence is crucially de-
termined, once all the other parameters are fixed, by the value of Λ with
respect to the different thresholds identified in the previous discussions. In
particular, to grant the coexistence of these first two species in absence of the
invader, we need the value of Λ to be greater than the critical value Λ̄(2) for
the system composed by the initial two species, as we discussed before (the
subscript is introduced to make clear that we are referring to the system with
the first two species).

Let us assume that now a third one arrives. In Figure 2.4 (b) we show a
schematic of the experiment. Here, on the axes we have the metabolic strat-
egy α of the invading species and the rescaled supply rate of the resource Λ,
while all the other model parameters are supposed to be fixed. In the scheme,
the first two species are indicated by a circle and a star, whereas the square is
used for the invader. Additionally, the horizontal dashed lines represents the
value Λ̄(2), while the green and blue vertical lines correspond to the values of
the metabolic strategy of species star and circle. Finally, the black solid line
shows the critical value Λ̄(3) (the subscript now refers to the system in which
we are considering the three species together) as a function of α. Hence for
a fixed value of the metabolic strategy of the invader, α, the survival of all
three species depends whether the considered Λ is above or below the point
of the black curve corresponding to α.

Four different regimes, that we will call (R1)–(R4), can be identified in
Figure 2.4 (b), depending on the different possible survival scenarios. Let us
start analyzing them. For a given Λ above the horizontal dashed line Λ̄(2),
only species star and circle could survive in region (R1). In fact, in such re-
gion Λ is lower than the black solid curve and the invader has a weaker
metabolic strategy with respect to initial two species, hence it will be out-
competed when facing them. In (R2) Λ is higher than the black curve and
therefore we can see coexistence of all the three. In (R3) Λ(2) < Λ < Λ̄(3),
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where we recall that Λ(2) is the critical values above which the two fittest
species out of the three (the initial two plus the invader) can coexist. Such
value, which depends indeed on α, is represented by the blue dashed curve
at the boundary of (R3) and (R4). Hence the less fit species, which is species
star, is outcompeted by the invader and the second initial one. Finally, in (R4)
the invader is so much fit, i.e., its metabolic strategy is so high. Therefore, not
only it can successfully colonize the system, but it also leads the previous co-
existing two to extinction. This because in such region Λ(1) < Λ < Λ(2),
ensuring the survival only of the fittest.

In Figure 2.5 we show explicitly the outcomes of the model dynamics in
the four different regimes we identified. In the end, we stress that it is not
mandatory for the initial two species (circle and star) to reach a stationary
state and then for the invader to arrive. Even if the system of these two
species does not reach stationary state and the invader participates in the
competition, the results do not change.

2.6 SAD pattern and comparison with data

In addition to the prediction of the critical values for Λ ensuring the coex-
istence of a certain number l ≤ M of species and the related invasibility
problem, our framework also allows us to determine the species abundance
distribution (SAD), an important ecological pattern which tells how many
different species have a certain population size. If such distribution is nor-
malized to one, it can be regarded as the probability density function P(z) of
observing a given population size z.

Such distribution P(z) can be easily computed numerically for any num-
ber R of resource. However, in the case of one resource we can obtain the ex-
act P(z). Another case that is analytically treatable is the case of large number
of resources R, as shown in Appendix A.4.

2.6.1 Calculations for the SAD pattern

Let us start from the case in which all initial M species survive. Herein, from
Eq. (2.3a) we have

n∗
σ =

ασr(c∗)− βσ

ϵσ
, (2.33)

where we remember that r(c∗) is the solution of Eq. (2.18), once all the pa-
rameters have been fixed. In what follows, for simplicity, we fix βσ = 1.

Now, for a large number of species, one can think the parameters ασ and
ϵσ as random variables to incorporate the species variability and their dif-
ferences. The stochasticity of these variables hinges on the way these are
distributed among species. Since α-s and ϵ-s are distributed, this means that
also n-s are distributed randomly. Our aim is to obtain the distribution de-
scribing the stationary population sizes, once the distributions of α-s and ϵ-s
are known.
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FIGURE 2.5: Discussion on Figure 2.4 (b). We begin (see top left corner)
with two species (star and circle) at a given Λ (solid horizontal black
line in the central panel) greater than the dashed line (critical value for
both these species to survive in absence of the invader). Once the system
reaches steady state, an invader arrives (shown by square) and, depend-
ing on its metabolic strategies, four possibilities can be seen. These are
displayed in the central figure, similarly to Figure 2.4 (b). In the central
panel, the solid orange curve indicates critical resource supply Λ̄ for all
three species to survive and dashed green curve (right side) is the critical
resource supply Λ̄ for invader and circle to survive. The parameters are
taken as in Figure 2.4 (b) with Λ = 106. The metabolic strategies are dis-
played in the Figure. The top, bottom, left and right panels refer to the
outcome of the system evolution in the four regimes, depending on the
metabolic strategy of the invader, whose value is shown in each panel.
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In other words, α and ϵ are random variables and, once a concrete ecosys-
tem is considered, the sets {ασ}σ=1,··· ,M and {ϵσ}σ=1,··· ,M are drawn from
their distributions, corresponding to possible realizations of the α and ϵ ran-
dom variables. Now, let us define z = x

y , where x = αr(c∗)− 1 and y = ϵ.
Thus, we have z ∈ {n∗

1 , n∗
2 , . . . , n∗

M} and we want to find the distribution
describing the histogram one could construct from {n∗

1 , n∗
2 , . . . , n∗

M}.
Let Q1(α) and Q2(ϵ), respectively, be the distributions for α and ϵ. At

this point one can compute the distribution of z = x/y in full generality as
follows:

P(z) =
∫︂

dx
∫︂

dy Q1(x)Q2(y) δ

(︃
z − x

y

)︃
=

1
z2

∫︂
dx

∫︂
dy |x|Q1(x)Q2(y) δ

(︃
y − x

z

)︃
= (2.34)

=
1
z2 f (z), (2.35)

where Q1(x) = Q1(α)
⃓⃓ dα

dx

⃓⃓
. In the above equation, the integrations are per-

formed over the supports in which the distributions Q1(x) and Q2(y) are
defined.

For the sake of concreteness, we can investigate three different scenarios.
In the first one we have α distributed according to a non-trivial Q1(α) and
Q2(ϵ) = δ(ϵ − ϵ̂), which describes a scenario in which the species differs one
to the others only because of the metabolic strategies, whereas the carrying-
capacity term is the same for all of them. In this way it is easy to see that from
Eq. (2.34) we would get

P(z) = Q1(α)

⃓⃓⃓⃓
dα

dx

⃓⃓⃓⃓⃓⃓⃓⃓
dx
dz

⃓⃓⃓⃓
=

ϵ̂

r(c∗)
Q1

(︃
ϵ̂z + 1
r(c∗)

)︃
, (2.36)

where Q1(α) is the distribution with which the α-s are distributed.
Similarly, one could consider the case in which Q1(α) = δ(α − α̂) and ϵ

distributed as a non-trivial Q2(ϵ). Plugging these into Eq. (2.34) we have

P(z) = Q2(y)
⃓⃓⃓⃓
dy
dz

⃓⃓⃓⃓
=

α̂r(c∗)− 1
z2 Q2

(︃
α̂r(c∗)− 1

z

)︃
. (2.37)

The final and most general case is obtained when both are non-trivial
random variables. Here, the distribution is found from Eq. (2.34) once both
Q1(α) and Q2(ϵ) are known. To show an explicit case in which analytical
predictions are possible, we restrict to consider the case when α-s and ϵ-s are
distributed uniformly such that α ∈ (a, b) and ϵ ∈ (c, d). Therefore, it follows
that x takes values in (p, q), with p ≡ a r(c∗) − 1 and q ≡ b r(c∗) − 1. We
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remark that 0 < p < q since we assumed all the species survive. Of course, y
takes values in the interval (c, d).

Therefore, plugging all of this in Eq. (2.34) we find

P(z) =
1

(q − p)(d − c)z2

∫︂ q

p
dx|x|

=1 since 0<p<q⏟ ⏞⏞ ⏟
[Θ(x − p)− Θ(x − q)] [Θ(x/z − c)− Θ(x/z − d)]

=
1

(q − p)(d − c)z2

∫︂ q

p
dx x [Θ(x/z − c)− Θ(x/z − d)] , (2.38)

where Θ(·) is the Heaviside theta function.
Now we change integration variable, replacing x/z with t. In this way we

get

P(z) =
1

(q − p)(d − c)

∫︂ q/z

p/z
dt t[Θ(t − c)− Θ(t − d)]

=
1

(q − p)(d − c)
[︁
I1(c, z)− I1(d, z)

]︁
. (2.39)

Finally, carrying out the integration, we end up with

I1(κ, z) =
∫︂ q/z

p/z
dt t[Θ(t − κ)] =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 κ > q/z,
1

2z2 (q
2 − κ2z2) p/z < κ < q/z,

1
2z2 (q

2 − p2) κ < p/z < q/z,

(2.40)

and substituting it in Eq. (2.39), we obtain

P(z) =
1

2z2(q − p)(d − c)
[︁

J1(c, z)− J1(d, z)
]︁
, (2.41)

where
J1(κ, z) = 2z2 I1(κ, z). (2.42)

With a similar procedure, one can obtain the distribution of species’ popu-
lation sizes when only some of the initial ones survive. This case is presented
in Appendix A.5.

In Figure 2.6, we plot the complementary cumulative distribution func-
tion (CCDF) of the population sizes of the coexisting species, defined as

F(z) =
∫︂ ∞

z
dy P(y). (2.43)

The exact prediction from Eq. (2.34) is shown for the case of a single resource.
From such Figure, we can see our theoretical predictions are confirmed by
the numerical evidences, proving the validity of our derivation. Moreover,
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FIGURE 2.6: Complementary cumulative distribution function (CCDF),
F(z), is shown when all species coexist in the effective consumer-resource
model. Circles are obtained by numerically integrating Eqs. (2.2a)-(2.2b)
up to stationarity for M = 500 and one resource, where the parameters
are taken as in Figure 2.4 (a), i.e., α-s and ϵ-s are uniformly distributed,
with Λ = 3 × 1010. The dashed line is the analytical prediction of CCDF
obtained within our framework. Since we consider uniform distributions
for the species parameters, the analytical prediction of CCDF can be found
from Eq. (2.41). Squares and diamonds, respectively, are the numerical
CCDF curves obtained from numerical integration of the model dynamics
when the number of resources is R = 5 or 10. All cases exhibit a similar
trend.

we can see that the CCDFs obtained in the case R > 1 do not show qualitative
differences with respect to the case of R = 1.

We emphasize that starting from Eq. (2.34), we predict the distribution
P(z) to have a power-law tail. This is mathematically shown in Appendix A.6.
In particular, we find that the power-law tail z−2 for SAD is inevitable if
Q2(ϵ) is bounded in a neighbourhood of ϵ = 0 with Q2(0) > 0. In fact, by
looking at Eq. (2.34), when z → ∞ we have

f (z) ∼

assuming it is finite⏟ ⏞⏞ ⏟(︃∫︂
dx |x|Q1(x)

)︃(︃∫︂
dyQ2(y)δ(y)

)︃
∝ Q2(0) < ∞, (2.44)

implying that P(z) behaves like z−2 when z becomes larger and larger.
Finally, the population sizes distribution P(z) seems to display a similar

behavior when the matrix E is non-diagonal with off-diagonal entries rela-
tively smaller with respect to the diagonal ones. Of course, in such case we
do not have any theoretical prediction, Nevertheless, by letting the dynamics
evolve we can find numerical estimates for this pattern. In Figure 2.7, we
plot the complementary cumulative distribution function F(z) as a function
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FIGURE 2.7: CCDF for the population sizes of surviving species of initial
500 species competing for one resource. The symbols are obtained from
numerically integrating the model dynamics Eqs. (2.2a)-(2.2b) up to sta-
tionarity. The parameters are βσ = 1 ∀σ, µ = 0.001, k = 5 and Λ = 1012.
The species parameters are instead drawn from the following uniform
distributions: ασ ∼ U (10, 50), diagonal entries ϵσσ ∼ U (10−5, 5. × 10−5)
and off-diagonal entries ϵσρ ∼ a U (10−5, 5. × 10−5) of E matrix, where
the value of a, which is the ratio of the inter- to intra-species interaction
strength, is given for each symbol in the Figure.

of the population sizes for different ratio for off-diagonal and diagonal ele-
ments of E, where the metabolic strategies {ασ}, the diagonal entries {ϵσσ}
and off-diagonal ones {ϵσρ}σ ̸=ρ are drawn from uniform distributions. We
can see that the trend of F(z) resembles closely to CCDF shown in Figure 2.6,
obtained using a purely diagonal matrix E.

2.6.2 Plankton data

As mentioned above, ocean plankton communities are among the most fa-
mous and studied examples where several species coexist even in the pres-
ence of an handful of resources [54]. Recently, it has also been observed that
in such communities we can observe population sizes distributions, as esti-
mated by metagenomic studies, that decay as a steep power-law [181], [185].

Here we consider data on microplankton (20-180 µm in body size) from
the Tara ocean expedition [186] (for more details, see [181], from which the
data have been taken). In Figure 2.8, we compare the CCFDs obtained from
the empirical SADs (color-coded points) constructed from 134 surface seawa-
ter samples distributed over all the oceans [181] (each point corresponds to
one station) to the ones obtained from the stationary solution of our extended
consumer-resource model (solid and dashed lines): F(z) =

∫︁ ∞
z P(x)dx ∝

z−γ+1 for two “extreme” slopes γ = 1.5 and γ = 1.75. This was obtained
from our model by considering a simple setting in which all species have the
same α, whereas the ϵ-s follow a power-law distribution Q2(ϵ) ∼ ϵγ−2, for
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FIGURE 2.8: Empirical CCDF for 134 surface seawater samples of mi-
croplankton obtained from the Tara ocean expedition [181], [186] (each
color-code indicates one station). The solid lines are the theoretical pre-
dictions of the power-law decay F(z) ∝ z−γ+1 with exponents between
γ = 1.5 (blue dashed line) and γ = 1.75 (red solid line).

small ϵ, with γ ∈ (1, 2], as we show in Appendix A.6. We point out that a
range of exponents emerging from the data, i.e., [1.5, 1.75], can be reproduced
by an appropriate tuning of parameter γ in Q2(ϵ).

2.7 Conclusions and future perspectives

In summary, we have extended the consumer-resource model by incorporat-
ing explicit inter- and intra-species competitive interactions term, on top of
the indirect inter-specific competition for the resource consumption encoded
also in the classical formulation of the model. We argued how such terms
may arise from the coarse-graining of the spatial degrees of freedom and/or
due to the presence of species-specific pathogens. Hence, these new terms,
since are reminiscences of spatial effects, capture in an effective way the role
of space and crowding effects in a mean-field dynamics.

This new version of the consumer-resource model is able to predict how
several species can coexist even in the presence of relatively small number of
resources, thus violating the CEP.

We were then able to obtain conditions ensuring the survival of the all
species present at the beginning of the dynamics. If instead such condition is
not met, we then shown how we can predict how many and which species
would face extinction. Using a similar approach, we could also deal with
invasibility problems and understand whether an invasion would be suc-
cessful or not depending on the parameters.

Further, we obtained analytically the distribution of the population sizes
for one and a large number of resources. Our results are supported by nu-
merical simulations as well as the empirical SAD for plankton communities.
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One of the first analysis we could perform to additionally check our re-
sults is indeed to consider new datasets, such as the ones obtained from ex-
periments on microbial communities [187]. Testing our theoretical predic-
tions, we could conclude whether they are still suited to capture such new
data or not.

It could be indeed interesting to search for other predictions coming from
the model dynamics to be tested against the outcomes of experimental re-
sults. For example, one could be interested in extracting the extinction rates
from the model dynamics to compare them with the one measured in labo-
ratory experiments.

Finally, another possibly interesting direction could be to study how SAD
pattern might change after taking into account demographic stochasticity
[188] in Eq. (2.2a). In particular, we could investigate if the inclusion of such
an effect within our framework would lead to different behaviour as com-
pared to those obtained in a neutral theory framework [189]. However, more
careful and rigorous analysis, in which we need to perform statistical com-
parisons, would be required to make precise statements. For this reasons,
this is left for further investigations.
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Chapter 3

Ginzburg-Landau amplitude
equation for nonlinear nonlocal
models

This Chapter, including the displayed Figures, is taken with permission from
the published paper [190]. Copyright (2021) by the American Physical Soci-
ety.

Chapter abstract: Regular spatial structures emerge in a wide range of dif-
ferent dynamics characterized by local and/or nonlocal coupling terms. In
several research fields this has spurred the study of many models, which
can explain pattern formation. The modulations of patterns, occurring on
long spatial and temporal scales, can not be captured by linear approxima-
tion analysis. Here, we start by considering a general model displaying pat-
terns in presence of long range couplings. We then show that the spatio-
temporal evolution of large scale modulations at the onset of instability is
ruled by the well-known Ginzburg-Landau equation, independently of the
details of the dynamics. Hence, we demonstrate the validity of such equation
in the description of the behavior of a wide class of systems. We introduce a
novel mathematical framework that is also able to retrieve the analytical ex-
pressions of the coefficients appearing in the Ginzburg-Landau equation as
functions of the model parameters. Such a framework can also accounts for
higher order nonlocal interactions, extending its applicability to even more
general models with very different physical features.

3.1 Introduction

Now we move our attention on pattern forming systems. In Section 1.2.2
we presented what spatial patterns are and how they can be observed in a
broad class of scenarios studied by different research fields. We also discuss
the role played by the nonlinear contributions in the systems dynamics in
stabilizing the perturbations on the homogeneous state and so how they are
crucial in leading to the formation of such regular spatial structures. Later,
we considered also patterns emerging from dynamics in which the evolution
of the quantity of interest in a given position of the space is influenced and
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determined by the current state of the system in all the other locations. Sev-
eral examples worth to be mentioned of this latter scenario are provided by
both empirical and theoretical ecology.

With all of this being said, it is of natural interest the research for possi-
ble universal mechanisms at play that determine and govern the emergence
the eventual evolution of such spatial patterns. In particular, provided the
homogeneous and stationary state to be unstable under small random per-
turbations, it would be engaging to find universal, i.e., model-independent,
frameworks able to give back information on the spatial and temporal scales
involved in the formation and stabilization of such ordered structures.

Indeed, the simplest method to have an insight into pattern formation is
the linear stability analysis. Within this framework, we gain understand-
ing of the modes which drive instability, and therefore, determine length
and time scales that characterize the spatial structures. Typically these struc-
tures are distorted over either large length or large temporal scales, and these
slow changes unfortunately cannot be determined by a simple linear anal-
ysis. However, near the onset of a supercritical instability [79] and in the
weakly nonlinear regime, it is possible to deduce the evolution equation of
the amplitude of the most unstable modes, which captures the basic infor-
mation about those distortions and their relative scales.

Such equation known as the Ginzburg-Landau (GL) amplitude equation
has been obtained first in simple settings like the Rayleigh-Bénard convec-
tion [191], [192] or the celebrated Swift-Hohenberg model [79]. In the follow-
ing, those results have been extended to others models generating patterns
from local dynamics [193]–[197]. However, the majority of studies taking
into account nonlocal features were limited to particular cases, such as the
generalizations of the aforementioned Swift-Hohenberg model [198], [199]
or the paradigmatic Fisher-KPP equation [200], [201]. In these studies, the
authors considered specific settings in order to derive the amplitude equa-
tion with nonlocal interaction terms. Thus, to the best of our knowledge, the
validity of the amplitude equation in describing the large-scale properties of
patterns emerging from a general nonlinear and nonlocal model has still not
been explored. In other words, it has still to be demonstrated whether the
spatio-temporal evolution of the patterns over large length or large temporal
scales predicted by the GL amplitude equation can be regarded as an uni-
versal feature shared by pattern-forming systems, regardless the fact that the
underlying dynamics might be local or nonlocal.

In this Chapter, we focus on this latter problem for systems with nonlin-
ear dynamics in the presence of non-local interactions exhibiting supercritical
instability [79]. Moreover, we assume that the nonlocal couplings are even
functions and can be expanded in Taylor series. In this case, we first obtain
the criterion for pattern formation in a general model. Then, we obtain the
equation that takes the form of the GL equation using a novel mathemati-
cal approach based on the expansion of nonlocal operators in the parameter
space around the onset of instability. We also show that, near the supercrit-
ical onset of instability, where stable pattern solutions emerge continuously
from the homogeneous state, the amplitude equation does not depend on
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the details of the specific model. In other words, we show that the amplitude
equation is independent of the form of the nonlinearity and the interaction
kernel as long as its Fourier transform exists. Finally, we emphasize that the
GL equation depends on the model only through its coefficients. These latter
are obtained analytically from the general setting we adopted in our deriva-
tion.

The rest of the Chapter is organized as follows. We first present our gen-
eral setting, that will be used in the next-coming, in Section 3.2. From this in
Section 3.3 we uncover the mechanism describing the emergence of patterns.
Hence we obtain an explicit criterion, identifying two different phases of the
system, with which we can divide the parameters space into two separated
regions, depending on whether the translational invariance characterizing
the general evolution equation is broken or not. Section 3.4 contains the in-
formation of the model that we use to illustrate concretely our general the-
oretical formalism. In Section 3.5, we introduce the main ideas underlying
our mathematical formulation and we then derive the amplitude equation.
We then compare the predicted evolution with numerical simulations in Sec-
tion 3.6. Finally, we conclude the discussion in Section 3.7. The details of
all the derivations required in Section 3.5 are relegated in Appendix B.1, Ap-
pendix B.2, and Appendix B.3. Also, we obtain some particular solutions of
the amplitude equation in Appendix B.4, that are used to benchmark the the-
ory with the amplitudes coming from numerical integration. The methods to
obtains these are discussed in Appendix B.5.

3.2 Problem Setup

Herein, we investigate pattern formation in systems whose evolution is char-
acterized by a nonlocal and nonlinear dynamics in the supercritical regime
[79]. For the sake of simplicity, we study the dynamics of a real field ϕ(x, t),
which is governed by the following equation in one spatial dimension

∂tϕ(x, t) = Fq
[︁
ϕ(x, t),

(︁
Gq ∗ ϕ

)︁
(x, t)

]︁
+ D∂2

xϕ(x, t), (3.1)

where Fq(·, ·) is an analytic nonlinear function, q indicates a set of parame-
ters and D a diffusion constant. In the above Eq. (3.1), for convenience, we
write ∂y for a partial derivative with respect to y. Notice that the nonlocal
contribution to the equation comes from the convolution of the field with a
smooth function Gq(·), that plays the role of a kernel, defined as

(Gq ∗ ϕ)(x, t) =
∫︂ +∞

−∞
Gq(x − y) ϕ(y, t) dy. (3.2)

Moreover, we assume that Gq(·) is even, and this function and its Fourier
transform can be expanded using the Taylor series. We stress that in our
formulation, we are not considering the contribution from the spatial bound-
aries. Therefore, we can perform the integral over the x-variable from −∞
to +∞. The generalization to spatial higher dimensions is straightforward,
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as long as the kernel maintains the same symmetry properties, e.g., G(⃗x) =
G(|⃗x|). Further, we emphasize that Eq. (3.1) generalizes several models, in-
cluding the competitive Lotka-Volterra equation [112], [202], [203] and some
reaction-diffusion models [71], [204], [205].

3.3 Mechanism of the emergence of patterns

As stated in the Introduction, patterns start emerging due to the instability
of the homogeneous and stationary solution ϕ

(0)
q . From Eq. (3.1) we can see

that such solution satisfies

Fq[ϕ
(0)
q , G̃q(k = 0) ϕ

(0)
q ] = 0, (3.3)

where G̃q(k) =
∫︁ +∞
−∞ dz Gq(z) eikz is the Fourier transform of Gq, and k being

the wavenumber. Spatial patterns that form in the weakly nonlinear regime
can be investigated in the region of instability around ϕ

(0)
q . To find such a

region, we perform linear stability analysis. Therefore, we substitute

ϕk(x, t) = ϕ
(0)
q + δ eλp(k)t+ikx + c.c.

into Eq. (3.1), where we perturb the homogeneous solution with an harmonic
perturbation of mode k. Now we assume that the spatially harmonic pertur-
bation is uniformly small; namely, 0 < δ ≪ 1. However, the amplitude of the
perturbation will evolve in time as described by the term eλp(k)t. The quan-
tity λp(k) is called the growth rate of the perturbation, since it gives the rate
with which the amplitude of the harmonic perturbation of mode k evolves
exponentially in time. Performing a linearization of Eq. (3.1) around ϕ

(0)
q we

can obtain, up to first order in δ, the growth rate λp(k) as a function of wave
number k. Carrying out the calculations, we find that this reads

λp(k) = (1, G̃q(k)) · ∇Fq
⃓⃓(︂

ϕ
(0)
q ,G̃q(0)ϕ

(0)
q

)︂ − D k2, (3.4)

where p ≡ {q, D} refers to the set of all parameters of the model and

∇Fq
⃓⃓
(x∗,y∗) =

[︁
∂xFq(x, y)|(x∗,y∗), ∂yFq(x, y)|(x∗,y∗)

]︁⊤. (3.5)

Since we assume that Gq(x) is an even function, λp(k) is a real function of k.
The sign of λp(k) tells us if the amplitude of the harmonic perturbation

will increase or vanish in time. The former case occurs when λp(k) > 0, the

latter when λp(k) < 0. Thus, ϕ
(0)
q is stable if and only if all the modes will

die out with the elapsing of time, i.e., λp(k) < 0 for all k; otherwise, ϕ
(0)
q is an

unstable solution. Which one of these two scenarios is observed depends on
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the system parameters p. In fact, let us call kM(p), defined as a solution of

∂λp(k)
∂k

⃓⃓⃓⃓
k=kM(p)

= 0,

the point where the growth rate achieves maximum i.e., λM(p) = λp(kM(p)),
where the subscript M refers to the maximum. Notice that both λp(k) and
kM(p) are parameterized by system parameters p. Thus, a sufficient con-
dition that the parameters have to fulfill in order to observe instability and
hence pattern formation is λM(p) > 0. Therefore, in the parameter space
a critical hypersurface M can be obtained by setting λM ≡ λp0

(kM(p0)) = 0
where p0 ≡ {q0, D0} belongs to M, and this hypersurface distinguishes the
regions depending on the stability of ϕ

(0)
q .

3.4 Example: the nonlocal Fisher-KPP equation

In order to make our formalism more transparent, we consider the Fisher
equation, also known as Kolmogorov–Petrovsky–Piskunov equation and thus
often called in the literature as Fisher-KPP (F-KPP) equation [204], [205],
where we extend it introducing also a nonlocal contribution [206]–[208]. We
refer to such equation as the nonlocal F-KPP equation. Notice that this lat-
ter is known as nonlocal Lotka-Volterra equation in the ecological literature
[112]. Within this context, the model describes population dynamics charac-
terized by the presence of nonlocal couplings, which can be interpreted as
nonlocal interactions of individuals with those that are far away in space or
that have different phenotypic traits.

We choose this particular model because it is amenable to analytical cal-
culations and it exhibits pattern forming dynamics in the presence of non-
local couplings [200], [201]. Therefore, in this example, the first term on the
right-hand side of Eq. (3.1) has the following form:

Fq[u, v] := u[1 − av], (3.6)

where a is a dimensionless parameter. Explicitly, plugging Eq. (3.6) into
Eq. (3.1), the nonlocal F-KPP equation used as a clarification example of the
formalism reads

∂tϕ(x, t) = ϕ(x, t)
[︃

1 − a
∫︂ +∞

−∞
Gq(x − y) ϕ(y, t) dy.

]︃
(3.7)

Herein, we consider the functional form of the kernel as following:

Gq(z) = exp
(︃
− |z|

R

)︃
− b exp

(︃
− |z|

βR

)︃
. (3.8)

This form has been chosen mainly because it illuminates the main steps of
our calculations for the general model. In Eq. (3.8), R is the range of the
interaction, β and b are dimensionless parameters such that 0 < b, β < 1.
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FIGURE 3.1: Left panel: The dispersion relation given in Eq. (3.11) λp(k)
as a function of k for the nonlocal F-KPP equation at three different values
of b. The remaining parameters for the plots are β = 0.2, D = 10−8, and
R = 0.1. Right panel: Phase diagram in the (β, b) space for the nonlocal F-
KPP equation given in Eqs. (3.1) and (3.8) with Fq[u, v] := u[1− av]. In this
case p ≡ {β, b, R, a, D} and the critical hyper-surface M does not depend
on a. The phase diagram is shown for two fixed parameters D = 10−8

and R = 0.1, where the solid contour M [defined by λp0
(kM(p0)) = 0]

divides the parameter space depending on whether or not there is pattern
formation. A vector p = p0 + ϵ2v̂ indicates a point in the pattern forming
region, where p0 sits on M.

Following Section 3.2, we obtain the the homogeneous and stationary so-
lution as

ϕ
(0)
q = [aG̃q(0)]−1, (3.9)

where

G̃q(k) = 2R
(︃

1
1 + k2R2 − bβ

1 + k2R2β2

)︃
. (3.10)

Similarly, the dispersion relation using Eq. (3.4) can be obtained as

λp(k) =
1

1 − bβ

(︃
bβ

1 + β2k2R2 − 1
1 + k2R2

)︃
− D k2, (3.11)

in which p = {b, β, a, R, D} is the set of parameters as discussed in Section 3.2
and λp(k) does not depend on a. We plot λp(k) vs. k in the left panel of
Figure 3.1 for three different values of b, while the other parameters are kept
fixed.

In order to obtain the phase diagram that identifies the region of stabil-
ity, we study the sign of maximum of λp(k) by varying the parameters p.
Specifically, the critical hypersurface, that divides the parameters space, we
obtain by setting such maximum equal to zero. The analytical computation
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to find this phase boundary is difficult. Nevertheless, we numerically obtain
the phase diagram in the (β, b) plane for other fixed parameters, and it is
shown in Figure 3.1 (right panel), where the blue shaded region indicates the
region of instability of the homogeneous and stationary solution. Thus, we
name that region as pattern forming region.

3.5 Amplitude equation

This section is dedicated to the derivation of the amplitude of the pattern
near the contour of instability in the general case of which Figure 3.1 (right
panel) is a particular case.

In order to make analytical progress, we use the Taylor series expan-
sion of the right-hand side of Eq. (3.1) around the homogeneous and sta-
tionary solution ϕ

(0)
q , i.e., we expand the nonlinear function Fq(·, ·) around(︂

ϕ
(0)
q , G̃q(0) ϕ

(0)
q

)︂
. This allows to set up equations that hold in the weakly

nonlinear regime and finally obtain the amplitude equation. We express the
field as ϕ(x, t) = ϕ

(0)
q + φ(x, t). The evolution equation for φ(x, t) can then

be cast in the form:

φ̇ = Lpφ +Nqφ, (3.12)

where the first and second term, respectively, on the right-hand side cor-
respond to linear and nonlinear contributions in φ. In the above equation
(3.12), the linear operator has the following structure

Lpφ =
(︁

φ, Gq ∗ φ
)︁
· ∇Fq|(︂ϕ

(0)
q G̃q(0)ϕ

(0)
q

)︂ + D∂2
x φ

= C(1,0)
q φ + C(0,1)

q
(︁
Gq ∗ φ

)︁
+ D∂2

x φ, (3.13)

while the nonlinear operator is

Nqφ =
+∞

∑
n,m=0

with n+m≥2

C(n,m)
q φn (︁Gq ∗ φ

)︁m , (3.14)

where C(n,m)
q are the coefficients obtained from the Taylor series expansion.

We notice that Eq. (3.1) is translational invariant. Therefore, the eigen-
functions of the linear nonlocal operator Lp are the simple wavefunctions
eikx, and then, the eigenvalue equation reads

Lpeikx = λp(k) eikx, (3.15)

where the spectrum is defined in Eq. (3.4). The general solution of the linear
part of Eq. (3.12), i.e., ∂t φ(x, t) = Lpφ, is a linear combinations of functions
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eλp(k)t+ikx with k dependent coefficients. In this case, Eq. (3.4) becomes

λp(k) = C(1,0)
q + C(0,1)G̃q(k)− Dk2. (3.16)

To better understand the meaning of Eq. (3.12), we again consider our model
discussed in Section 3.4. Herein, the linear operator acting on the perturba-
tion field φ has the following form:

Lpφ = −[G̃q(0)]−1(Gq ∗ φ) + D∂2
x φ, (3.17)

and the second term on the right-hand side of Eq. (3.12) can be shown as

Nqφ = −a φ(Gq ∗ φ). (3.18)

In what follows, unless specified, we focus on our general setting de-
scribed in Eq. (3.1).

To obtain the equation that describes the evolution (whose form will be
discussed later) of the patterns near the bifurcation contour, we investigate
the behavior of the system close to the onset of instability, namely near the
critical hyper-surface M. Thus, we consider parameters p in the neighbor-
hood of p0 ≡ {q0, D0}, i.e.,

p = p0 + ϵ2v̂, (3.19)

where p0 ∈ M, v̂ is a unit vector pointing toward the region of pattern for-
mation, and 0 < ϵ2 ≪ 1. An example of such point p for nonlocal F-KPP
equation (see Section 3.4) is indicated in the left panel of Figure 3.1.

In addition, we assume that the growth rate λp(k) exhibits a quadratic
scaling in the wave-number k close to the point of maximum kM(p) > 0,
which is satisfied if λp(k) admits continuous second derivative with respect
to k.

With a set of parameters p that can be expressed as in Eq. (3.19) with ϵ
small, we can expand the growth rate around p0 as

λp(k) = λp0
(k) + ϵ2v̂ · ∇pλp(k)|p=p0

+O
(︂

ϵ4
)︂

, (3.20)

where we assume that the second term on the right-hand side is non-zero.
We know that the above function achieves the maximum at k = kM(p),

and that kM(p) can also be expanded about p0

kM(p) = kM(p0) + ϵ2v̂ · ∇pkM|p=p0
+O

(︂
ϵ4
)︂

. (3.21)
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Substituting Eq. (3.21) in Eq. (3.20) at k = kM(p), we get

λM ≡ λp(kM(p))

= λp0
(kM(p)) + ϵ2v̂ · ∇pλp(kM(p))|p=p0

+ O
(︂

ϵ4
)︂

= λp0
(kM(p0))⏞ ⏟⏟ ⏞
=0

+ ϵ2v̂ · ∇pkM|p=p0
λ′

p0
(kM(p0))⏞ ⏟⏟ ⏞
=0

+ ϵ2 v̂ · ∇pλp(kM(p0))|p=p0⏞ ⏟⏟ ⏞
λ̄M

+O
(︂

ϵ4
)︂

. (3.22)

Therefore, we find that the maximum scales like ϵ2 as ϵ → 0+, i.e.,

λM → ϵ2λ̄M as ϵ → 0+, (3.23)

where we introduce the re-scaled quantity λ̄M, which is O(1).
Owing to this scaling property, we can introduce a temporal- and spatial-

scale separation which simplifies Eq. (3.12). The long time modulations of
the fast oscillations evolve on scales determined by the slower time variable
τ = ϵ2t. A similar spatial-scale separation for the perturbation field φ(x, t, ϵ)
occurs with a spatial scale given by the slower variable ξ = ϵx. Therefore
we make the educated guess that the ϵ dependence is as follows: φ(x, ξ, t) =
∑j≥1 ϵj φj(x, ξ, τ) where the time dependence in each mode on the right-hand
side is through τ. Similarly the spatial dependence appears both through the
x and the slower variable ξ [67].

Due to these separation of scales, the time derivative transforms as

∂t → ϵ2∂τ, (3.24)

while the spatial derivative encoded in the linear operator becomes

∂x → ∂x + ϵ∂ξ . (3.25)

As discussed above, φ(x, ξ, τ) can be written as a power series in ϵ, i.e.,

φ(x, ξ, τ) = ∑
i≥1

ϵi φi(x, ξ, τ), (3.26)

From the above expression (3.26), we see that close to the bifurcation, only
first terms will be dominant and that will determine the growth of the pat-
terns.

Similar to Eqs. (3.20) and (3.21), we also expand the linear and nonlinear
operators appearing in Eqs. (3.13) and (3.14):

Lp = Lp0
+ ϵ2

δLp0⏟ ⏞⏞ ⏟
v̂ ·
(︁
∇pLp

)︁
|p=p0

+O
(︂

ϵ4
)︂

, (3.27)

Nq = Nq0
+ ϵ2v̂ ·

(︁
∇pNq

)︁
|p=p0

+O
(︂

ϵ4
)︂

. (3.28)
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Next, we proceed as follows. We first substitute Eqs. (3.24)–(3.28) into Eq.
(3.12), and then we introduce the spatial scale separation in Lp0

and in the
nonlocal terms of Nq0

. The detailed procedure can be found in Appendix B.1.
Finally, we arrive at

ϵ3 φ̇1 + o
(︂

ϵ3
)︂
= ϵH1(p0, φ1) + ϵ2H2(p0, φ1, φ2) + ϵ3H3(p0, φ1, φ2), (3.29)

where the functional forms of Hi are given in Appendix B.1, and we remind
that p0 ≡ {q0, D0}.

The above equation (3.29) is the starting point to obtain the amplitude
equation. To proceed further, as a standard approach, we will compare the
coefficients on the left and right-hand side of the equation at same order in ϵ.
Let us first begin with the first order contribution. At the lowest order in ϵ,
we find from Eq. (3.29) that

H1(p0, φ1) = 0. (3.30)

Thus, from the expression of H1(p0, φ1) shown in Appendix B.1 one can eas-
ily write the solution of this equation as:

φ1(x, ξ, τ) = A(ξ, τ) eikM(p0)x + Ā(ξ, τ) e−ikM(p0)x. (3.31)

The functional form of φ1(x, ξ, τ) suggests that it has harmonic oscillation
with the mode characterized by kM(p0). We further notice that, the temporal
dependence is only present through the amplitude of this harmonic oscilla-
tion on a slower scale defined by τ. Moreover, such amplitude may display
a spatial evolution, but on the longer scale given by ξ. Near criticality, we
expect that this is the relevant contribution to the pattern formation. Thus, to
understand the growth of the patterns near bifurcation, we aim to obtain the
equation for that amplitude.

Next, we compare the second order contribution O(ϵ2) in Eq. (3.29), and
then, use the first order solution (3.31), we obtain (see Appendix B.2 for de-
tails)

φ2(x, ξ, τ) =

Λ(x,ξ,τ)⏟ ⏞⏞ ⏟
B(ξ, τ)eikM(p0)x + B̄(ξ, τ)e−ikM(p0)x +Σp0

[︃
A2(ξ, τ)e2ikM(p0)x

λp0
(2kM(p0))

+ 2
|A|2(ξ, τ)

λp0
(0)

+
Ā2(ξ, τ)e−2ikM(p0)x

λp0
(2kM(p0))

]︃
, (3.32)

Note that the system is at the onset of bifurcation, and we have

|ϵ2φ2(x, ξ, τ)| ≪ |ϵφ1(x, ξ, τ)| (3.33)

Therefore, due to the choice of the parameters, φ2(x, ξ, τ) does not play any
significant role in shaping the patterns. Hence, Eq. (3.31) would be sufficient
to predict the patterns characterized by the amplitude A(ξ, τ).

Finally, on comparing third order contributions, as shown in Appendix B.3,
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FIGURE 3.2: Left panel: Comparison between the growth in time of the
amplitude predicted by Eq. (3.34) from the initial condition A(ξ, τ =
0) = A0 = 0.05 (solid red line) and the corresponding numerical evalua-
tion (blue dashed line) from the integration of the nonlocal F-KPP equa-
tion using ϕ(x, ξ, 0) = ϕ

(0)
q + 2ϵA0 cos(kM(p0)x) as an initial condition

(see Appendix B.5). Owing to this choice, the amplitude remains space-
independent at any time, displaying only temporal changes (see Ap-
pendix B.4). We refer to Appendix B.5 for the details of the parameters p
and p0 used in both analytics and numerical simulation. The insets show
the zoom on the initial growth (a) and the saturation observed at large
time (b). We can notice a remarkable agreement between two curves at all
times. Right panel: Comparison between the spatially-dependent station-
ary solution of Eq. (3.34), Ast(ξ), presented in Appendix B.4 (the red solid
line is the envelope curve ϕ

(0)
q + 2ϵAst(ξ), where ξ = ϵx) and the solution

obtained from the numerical integration of the nonlocal F-KPP equation
using ϕ(x, ξ, 0) = ϕ

(0)
q + 2ϵAst(ξ) cos(kM(p0)x) as initial condition (see

Appendix B.5). This plot is obtained at time t = 102 (time steps). The pa-
rameters p and p0 along with a discussion of this solution are included in
Appendix B.5. We can appreciate how the carrier wave obtained from the
numerical integration shows a remarkable agreement with the analytical
solution calculated in the weakly nonlinear regime. This suggests that our
framework is able to describe also the spatial modulations of the envelope
of the emerging patterns.
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and utilizing the solutions given in Eqs. (3.31) and (3.32), we obtain the growth
equation for A(ξ, τ):

∂A
∂τ

= λ̄M A − α|A|2A +
1
2
|λ′′

p0
(kM(p0))|

∂2A
∂ξ2 , (3.34)

where we have dropped the dependence ξ and τ from A(ξ, τ). We stress that
the above equation (3.34) is obtained by ensuring that the higher-order terms
in the expansion of Eq. (3.12) are well defined. In the above equation (3.34),
all coefficients on the right-hand side depend on p0, and the detailed expres-
sion of the constant α in terms of model details is given in Appendix B.3.
Eq. (3.34) represents our main result, and interestingly, it is the celebrated GL
equation for a complex field A(ξ, τ).

Since the interaction kernel Gq(·) is even, the resulting amplitude equa-
tion (3.34) has real coefficients. Relaxing such constraint in the nonlocal cou-
pling term, one may end up with a complex amplitude equation that can gen-
erate more complicated behaviors, including spatio-temporal intermittency
and phase turbulence [209]. In our analysis, we have considered systems
whose interaction kernel is smooth in the weakly nonlinear regime. Should
the coupling be strong, those expansions were not valid [210], [211] and a dif-
ferent approach is necessary. We leave this study for a future investigation.

In our framework that includes the expansion of nonlocal operators in
the parameters space at the onset of instability, we explicitly demonstrate
that the GL equation emerges from a larger class of models, irrespective of
whether systems have nonlocal interactions or not. In particular, we show
that this equation is universal, namely only the three coefficients of Eq. (3.34)
are affected by the specific form of the model defined by Eq. (3.1), as pointed
by the derivation displayed in Appendix B.3.

For example, when Eq. (3.1) defines a nonlocal F-KPP equation, we re-
trieve the amplitude equation obtained in [200], in which, however, a slow
spatial variable was not included. Instead, if we use the explicit forms of F
and G in Eq. (3.1) as the one given in [201], we exactly end up with Eq. (3.34).

3.6 Numerical simulation

We confirm Eq. (3.34) with the numerical integration of the model discussed
in Section 3.4, i.e., the nonlocal F-KPP equation, obtained inserting Eqs. (3.8)
and (3.6) into Eq. (3.1). For fixed parameters p and p0, we consider two
cases, which differ by the choice of the initial conditions used in the am-
plitude equation as well as for the evolution of the nonlocal F-KPP equation.
In the first one, we take a homogeneous initial condition for the amplitude,
while in the second we set the initial condition to be a particular stationary
solution of Eq. (3.34). These two cases are discussed in Appendix B.4. The
comparison between analytical predictions and numerical results are shown
in Figs. 3.2 (left panel) and 3.2 (right panel). In both figures a remarkable
agreement can be observed, suggesting the validity of our findings for tem-
porally and spatially modulated patterns. The numerical amplitude and the
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predicted envelope displayed in Figure 3.2 are obtained by taking into ac-
count only the first order term (3.31) of the perturbative expansion. In Ap-
pendix B.5 we present the results for the numerical evaluation of the ampli-
tude when considering the next-to-leading order terms and compare with
the numerical simulation, and they also have a very good agreement.

3.7 Conclusions and future perspectives

In this Chapter, we have considered a general model which can describe pat-
tern formation in several physical systems. We have combined nonlocal cou-
pling terms and nonlinear interactions, which may possibly include many-
body terms. From this dynamics, the patterns can emerge when the homo-
geneous stationary solution becomes unstable. As an example, we can think
of an ecological model defined on the abstract niche space, where species
emerge as a trade-off between nonlocal interactions and their tendency to
scour the space for better evolutionary solutions. In this case, we find regu-
larly spaced lumps, showing a general tendency of species to coexist when
they are either sufficiently similar or sufficiently different, with typical dis-
tance of lumps O(k−1

M (p0)) along a niche axis.
The amplitude of the patterns emerging from dynamics described by Eq. (3.1)

is dictated by the universality which operates near the instability. The afore-
mentioned universality is particularly interesting for the implications. The
key steps in our derivations – e.g., the introduction of the nonlocal linear op-
erator Lp, the expansion close to the boundaries of the critical hyper-surface
M where a quadratic scaling occurs – could equally well be applied to mod-
els with different physical features. For instance, nonlocal higher-order in-
teractions may play an important role in shaping patterns of many physical
systems, e.g., ecological communities, and may also help to stabilize their
dynamics [212]. The inclusion of such contributions in our framework is
straightforward. One just need to insert in the function Fq in Eq. (3.1) terms
with the form∫︂

Gq(x − y1, x − y2, . . . , x − yn)
n

∏
i=1

[︁
ϕ(yi, t) dyi

]︁
. (3.35)

Close to instability, those terms will affect only the coefficients of the GL
equation (3.34). Further, by replacing Fq with ∂2

x(δFq/δϕ) in Eq. (3.1), we
could also describe the dynamics of a conserved order parameter as we have
alluded to in the Introduction. Large scale modulation of patterns of such
fields may still be described by GL equations. Finally, generalized GL equa-
tions for many amplitudes could be derived for systems with many interact-
ing fields/species ϕm(x, t), with m being a discrete index. We expect that,
even in the presence of long range coupling terms, the number of compo-
nents in the amplitude equation is determined by the symmetries and the
conservation laws of the system [79]. This is an interesting aspect which we
leave for future investigations.





57

Chapter 4

Stochastic amplification in delayed
and noisy systems

The corresponding manuscript is currently under preparation.

Chapter abstract: The emergence of oscillations which persist indefinitely in
time is a common feature of many natural systems, including cyclic dynam-
ics in gene expression, neural oscillations or interacting species. Here we
investigate how delay feedback along with stochastic perturbations to de-
terministic dynamics lead to sustained oscillations with a non-trivial power
spectrum. Starting from a simple general setting, we show that the noise
and the temporal delay are able to generate stochastic amplifications in a re-
gion of the parameter space where they are forbidden without delay. We
demonstrate that systems with one dynamic variable may produce a power
spectrum with multiple maxima, unlike the case without delay. As an appli-
cation, we consider the coupled dynamics of protein and mRNA molecules
in the gene expression, and show that our framework provides a general and
robust prediction of the stochastic oscillations which are observed in the ex-
periments.

4.1 Introduction

In this Chapter of the Thesis we study systems affected by seasonal behav-
iors, i.e., systems which display periodic cycles in their temporal evolution.
In such systems, the time-series describing the dynamical quantities are char-
acterized by almost regular and persistent oscillations which alternate regu-
larly between high and low values [116]–[121].

As discussed in Section 1.2.3, stochastic models are able to predict and ex-
plain this feature in a more natural way thanks the phenomenon of stochastic
amplification [129]–[131]. In fact it has been shown that such a result can be
promptly applied to explain empirical evidences coming from natural and
social sciences [132]–[134].

From a physical standpoint, the roots of stochastic amplification can be
found in terms of a resonance phenomenon. In fact the noisy contributions
arise from the demographic stochasticity. For this reason we deal with white
noise terms, which can excite all frequencies. In resonating the system, the
oscillations, which in the deterministic limit are predicted to be damped,
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are sustained indefinitely. The smoking gun of this resonance process can
be found by looking for the presence of non-trivial peaks of the stationary
power-spectrum describing the spectral properties of such fluctuations.

Another possible mechanism leading to dynamics with oscillating behav-
iors is the presence of memory effects in the evolution equations. Mathe-
matically this is modeled with the introduction of delayed terms so that the
evolution of the system is not only determined by the current state of the
system but also by its past history [141].

However, in many cases both memory effects and stochastic contributions
are at play and therefore it might be worth to study their combined effect in
producing cyclic dynamics.

Theoretical studies accounting for temporal delay within stochastic mod-
els have been proposed. In particular, a formalism has been developed that,
starting from a microscopical description of the delayed and stochastic sys-
tem, leads to a Langevin description of the dynamics [213], [214], that subse-
quently can be cast into a linear equation using the linear-noise approxima-
tion.

Computational works instead focus on developing numerical algorithms
[145], [215] for integrating the delayed version of a chemical Master equation
[216], which provide a recipe to generate faithfully the time-series associated
to the process. Both the theoretical and numerical investigations showed the
stochastic trajectory might be characterized by noise-induced cycle.

Therefore we aim to search for conditions on the dynamics ensuring the
emergence of rhythmic behavior when we combine temporal delays with
stochastic dynamics. In other words, we would like to understand which
is the region of the model parameters describing a given delayed stochastic
dynamics for which we can say affirmatively that stochastic amplification
takes place. Moreover, since combing two effects that are said to generate
oscillations, we are also interested in seeing if the combination of the two
would modify the phenomenon with respect to its original formulation [129].

For these purposes, in this Chapter we build a general, yet simple, frame-
work where delay contributions and random perturbations can be naturally
taken into account. Given the theoretical results available in the literature,
our starting point is cast into the form of a Langevin equation. From this,
we show how delayed terms make an oscillatory dynamics to emerge and
then we provide the conditions for which the noise is able to induce stochas-
tic amplification. To this end, we analytically calculate the power-spectrum
of the time series and compare it against the one obtained from numerical
simulations. As we will see, temporal delays along with a generic stochas-
tic dynamics indeed allow systems to display stochastic amplification with
new features when compared to the original formulation [129]. For instance,
a one-dimensional system may sustain oscillating fluctuations even though
that would be impossible without delay. The framework which we define
here captures the main oscillatory features of systems with noise and tem-
poral delayed feedback. As an example, we will discuss the dynamics of a
model for gene expression for which our results provide general theoretical
insights on some remarkable empirical behaviors.
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The rest of the Chapter is organized as follows. Section 4.2 introduces
the stochastic and delayed equation we use as our general theoretical frame-
work. We then study in Section 4.3 when the solution in the deterministic
limit display asymptotic damped oscillation. We uncover the presence of a
threshold mechanism, i.e., the delay has to be larger than a critical values
for the system to start oscillating. Moving on, we analyze the spectral prop-
erties of the stochastic time-series obtained within our framework in Sec-
tion 4.4. Herein, we compute analytically the power-spectrum and we obtain
an explicit condition on the model parameters to ensure the presence of a
non-trivial peak, uncovering once again a threshold mechanism. We then
extend in Section 4.5 the starting model to take into account a more com-
plex and general form of delay contributions, i.e., the distributed delay. As
an application of the theoretical framework developed, we study gene ex-
pression in regulatory networks, as discussed in Section 4.6. Finally, we sum
up the conclusions in Section 4.7. In Appendix C.1 we study the same set-
ting and the presence of damped oscillations but with parameters taken in a
different region with respect to the one used in the following. More gener-
ally, we also obtain the full solution of the deterministic delayed equation in
Appendix C.2. In Appendix C.3 we also discuss the occurrence of stochas-
tic amplification in the same region of parameters used in Appendix C.1.
Having identified different threshold which determine the behavior of the
system, we discussed their order in Appendix C.4. We then study in detail
the case if distributed delay, uncovering a new and surprising feature in Ap-
pendix C.5. Appendices C.6 and C.7 contain two straightforward extensions
of the framework. In particular, we discussed a multi-dimensional system in
Appendix C.7, showing that the inclusion of delay enlarges the region the pa-
rameters providing the stochastic amplification with respect to non-delayed
case.

4.2 Theoretical framework

Thanks to the results found in [213], [214], we can start from a delayed Ornstein-
Uhlenbeck process, which can be seen as a paradigmatic example of delayed
stochastic equation since it contains both noise and delay contributions in a
simple form. Thus we consider a model defined by the following generalized
Langevin equation

dx(t)
dt

= −ax(t)− bx(t − τ) +
√

Dξ(t), (4.1)

where a, b are constant and ξ(t) is a Gaussian white noise of strength D
(which we made explicit for future purposes), i.e.,

⟨ξ(t)⟩ = 0 (4.2)

⟨ξ(t)ξ(t′)⟩ = δ(t − t′). (4.3)
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Finally, the parameter τ > 0, called discrete delay, selects the state at time t− τ
in the past which affects the current state at time t. The delayed dynamics
defined in Eq. (4.1) is well defined if we introduce initial conditions for all
times t ∈ [−τ, 0].

Notice that Eq. (4.1) can be thought of as the linearization around a (de-
terministic) stationary state z∗ of a nonlinear one-dimensional model, i.e.,

dz(t)
dt

= f (z(t), z(t − τ)) +
√

Dξ(t), (4.4)

where f (z∗, z∗) = 0 is a minimum of f when the solutions of Eq. (4.1) are
stable. Thus the linear Eq. (4.1) can be used a good approximation of the
nonlinear model as long as the fluctuations x(t) = z(t)− z∗ away from the
deterministic stationary state are small.

The properties of the solutions of Eq. (4.1) have been extensively studied
[217]–[219]. In the following, we will investigate the stability of the deter-
ministic solution of Eq. (4.1), which can be achieved by setting D = 0. Later,
we investigate the spectral properties of the stochastic and delayed equation
and the possibility of stochastic amplification to emerge [213], [214]. In par-
ticular, we will search for conditions on the model parameters so that we can
find criteria to state whether noise-induced cycle can or cannot be detected.

4.3 Asymptotic damped oscillations in the deter-
ministic Eq. (4.1)

Herein, we will consider a > b > 0. The results for other choices of a and b are
presented in Appendix C.1. In this case, independently of τ, the asymptotic
stability of the stationary state x̄ = 0 of the deterministic Eq. (4.1) (D = 0),
i.e.,

dx(t)
dt

= −ax(t)− bx(t − τ), (4.5)

is guaranteed [141].
This region of stability may be divided into two different sub-regions, ac-

cording to whether the dynamics reaches asymptotically the stationary state
through damped oscillations or not. Indeed, when seeking solutions of the
form

x(t) = Ceλ(τ)t (4.6)

and defining
β(τ) = Im(λ(τ)), (4.7)

one can identify a critical delay τc such that, for fixed values of a and b pa-
rameters,

β(τ) =

{︄
0 if τ ≤ τc

̸= 0 if τ > τc
(4.8)

When substituting the exponential ansatz for the asymptotic behavior of the
solution into the deterministic Eq. (4.5), one obtains the so called characteristic
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equation, which reads
λ = −a − be−λτ. (4.9)

Employing Lambert W function, defined as the function satisfying the
following identity W(z)eW(z) = z [220], we can obtain analytical solution of
Eq. (4.9) as a function of the three parameters. In fact, multiplying both sides
of Eq. (4.9) by τeτa we obtain

τ(λ + a) = W (−τeτab) . (4.10)

At this point we can find the explicit expression of λ as

λ = λ(a, b, τ) =
W (−τeτab)

τ
− a. (4.11)

When z < −e−1 W(z), λ becomes complex. Therefore we can use such prop-
erty to calculate τc. In concrete, we have that the solution of Eq. (4.5) starts to
display an oscillatory behavior, i.e., when Im (λ) ̸= 0, if

−bτeτa < −e−1 =⇒ bτeτa > e−1. (4.12)

Thus, τc can be found as the value for τ satisfying the equality and so we get

τc =
1
a
· W

(︂ a
eb

)︂
. (4.13)

Thus, for τ > τc and sufficiently large times, the solutions decay with a
frequency β(τ) ̸= 0. We can show that β(τ = τc + δτ) ∼

√
δτ close to the

critical delay τc, i.e., 0 < δτ ≪ τc.
In fact, if we call α = Re(λ) and β = Im(λ) from Eq. (4.9) we get

α = −a − beτα cos (βτ) , (4.14)
β = beτα sin (βτ) (4.15)

by equating the real and imaginary parts of the two sides of the equation.
Close to the critical threshold τc, we expect β to be small. Hence we can

expand the right-hand side of Eq. (4.15) in β finding

1 = bτeτα

(︃
1 − τ2β3

6

)︃
+ o

(︂
β5
)︂

, (4.16)

that leads to
β2 =

6
bτ3 (bτ − eτα) + o

(︂
β3
)︂

. (4.17)
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At this point we insert τ = τc + δτ into Eq. (4.17) and we expand in δτ
assuming it is small. This procedure gives us

β2 =
6

bτ3
c

[︂
bτc − eτcα(τc)

]︂
+ δτ · 6

bτ3
c
·
(︄
−2b +

3eτcα(τc)

τc
− ρ

)︄
+ o

(︂
δτ2
)︂

,

(4.18)
where

ρ =
deτα(τ)

dτ

⃓⃓⃓⃓
τ=τc

. (4.19)

Now we recall that

α(τc) = λ (τc) =
1
τc

− a, (4.20)

since by definition β (τc) = 0. Consequently we have that

bτc − eτcα(τc) = 0. (4.21)

In fact, assuming this is true we get

bτc = e1−aτc , (4.22)

which, after some manipulations, gives

τc(a, b) =
W
(︁ a

eb
)︁

a
, (4.23)

consistently with the starting point.
Hence, the first contribution in the right-hand side of Eq.(4.18) is zero and

so we get that
β ∼

√
δτ. (4.24)

We test this analytical result against numerical evidences in Figure 4.1,
where the agreement is found to be remarkable.

Interestingly, although for our purposes for the moment it is enough to
have studied the asymptotic stability of the deterministic system, using the
solutions of characteristic equation it is possible to compute the exact solu-
tion of Eq. (4.5), as we show in Appendix C.2.

4.4 Spectral properties of Eq. (4.1)

We now consider the stochastic contribution to the solutions of Eq. (4.1) with
D ̸= 0. Figure 4.2 displays a typical time series of the process for τ > τc.
The fluctuations around the stationary state show sustained stochastic oscil-
lations whose amplitude does not decay with time.
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FIGURE 4.1: Numerical check for the scaling of the frequency of the os-
cillating solution of Eq. (4.5) after having fixed a = 3 and b = 5. In both
panels the blue dots are obtained by taking the imaginary part of the so-
lution of Eq. (4.9) obtained numerically, while the red line is the square
root behavior we analytically found in Eq. (4.24). Panel (a): We use linear-
linear scale with β(τ) evaluated for τ smaller and greater than τc. The
vertical orange dashed lines indicates such critical threshold. For values
of the delay greater than this, it is clear that the frequency grows as a
square root. Panel (b): Here we use a double logarithmic scale. On the
horizontal axis we show δτ = τ − τc, whereas on the vertical axis we
show β(τ = τc + δτ). In both cases, for small values of δτ the agreement
is excellent, confirming the theoretical findings.
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FIGURE 4.2: The blue noisy line shows a typical time series for x(t) gener-
ated numerically from Eq. (4.1) with D = 1 in the time interval t ∈ [0, 25];
the solid red line in the inset shows the deterministic solution (D = 0) of
the delayed process given by Eq. (4.1). In both cases the parameters are
a = 3, b = 5 and τ = 0.5, whereas the time increment is dt = 10−3 and
x(t) = x0 = 10−2 for t ∈ [−τ, 0]. A deterministic trajectory relaxes to the
stationary state with damped oscillations (inset), whilst the correspond-
ing stochastic solution fluctuates with sustained random oscillations.



64 Chapter 4. Stoch. Amp. in delay and noisy systems

This behaviour can be analytically investigated by looking at the spectral
properties of x(t). We consider the Fourier transform of Eq. (4.1) and find

iωx̂(ω) = −ax̂(ω)− bx̂(ω)e−iωτ +
√

Dξ̂(ω), (4.25)

where x̂(ω) and ξ̂(ω) indicate the Fourier components of frequency ω of x(t)
and ξ(t), respectively. Given that ξ(t) is a Gaussian white noise, it follows
that ⟨ξ̂(ω)⟩ = 0 and ⟨ξ̂(ω)ξ̂(ω′)⟩ = δ(ω+ω′)

2π . From Eq. (4.25) we can express
the Fourier component of x(t) of a given given frequency ω in terms of the
relative component of the noise ξ(t), i.e., we get

x̂(ω) =

√
D

[a + b cos(ωτ)] + i [ω − b sin(ωτ)]
ξ̂(ω). (4.26)

Following [127], the power-spectrum P(ω) can be obtained from the re-
lation ⟨x̂(ω)x̂∗(ω′)⟩ = δ(ω − ω′)P(ω). A direct computation from Eq. (4.26)
yields

P(ω) =
D

[a + b cos(ωτ)]2 + [ω − b sin(ωτ)]2
. (4.27)

Let us comment on this result. Because of the sinusoidal functions in the
denominator, which are caused by the discrete delay, the power-spectrum is
not reminiscent of the one of a simple damped harmonic oscillator as it is for
the original stochastic amplification [129]. The first new feature is that P(ω)
itself may oscillate, thus displaying multiple local maxima, even though the
deterministic system has only one characteristic frequency. This is different
from the stochastic amplification without delay, in which multiple peaks are
not possible with only two degrees of freedom [129].

To get an analytical insight about this, we can set to zero the first deriva-
tive with respect to ω of P(ω), obtaining

ω =
(aτ + 1)b sin(ωτ)

1 − bτ cos(ωτ)
. (4.28)

Asymptotically, if bτ > 1, this equations is solved by

ω ≈ 2πn ± arccos
(︃

1
bτ

)︃
with n a large integer. (4.29)

Hence in this case the power-spectrum has multiple local maxima and min-
ima.

In Figure 4.3 we benchmark the theoretical power-spectrum of Eq. (4.27)
against the one obtained from an ensemble of independent realizations of
Eq. (4.1) showing the absolute maximum, while the inset includes local max-
ima occurring at higher frequencies.
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FIGURE 4.3: Comparison between the predicted power-spectrum in
Eq. (4.27) (solid red line) and the numerical one (blue dots) obtained from
500 independent realizations of the process defined in Eq. (4.1). The pa-
rameters and the initial conditions are those in Figure 4.2. The main panel
includes a range of frequencies where P(ω) contains only its absolute
maximum; this identifies the characteristic frequency ωmax of stochastic
oscillations (similarly to Figure 4.2). The inset instead shows the power-
spectrum on a larger interval of frequencies in which other local maxima
are reached (notice that bτ > 1).

In addition, Eq. (4.27) shows that peaks may emerge at ω > 0 only for
τ > 0. Indeed, if we set τ = 0, the power-spectrum becomes

Pτ=0(ω) =
D

(a + b)2 + ω2 , (4.30)

which has an absolute maximum at ωmax = 0 and P(ω) decays as P(ω) ∼
ω−2 for ω ≫ a. Hence, stochastic amplification can not take place with only
one degree of freedom if there are no delay effects.

More interestingly, as we saw from Figure 4.3, when τ > 0 non-trivial
peaks might appear. In this case, the time series for x(t) generated via Eq. (4.1)
are characterized by a dominant frequency corresponding to ωmax. There-
fore, the stationary solutions of the process fluctuate with a characteristic
frequency ωmax and the random oscillations are persistent in time. The am-
plitude of the noise D simply changes the size of the fluctuations, but does
not alter the characteristic frequency of the resonance.

4.4.1 Emergence of stochastic amplification

At this point, given that the introduction of a discrete delay might guaran-
tee the onset of stochastic amplification, we search for a condition for the
power spectrum to display a peak at ω > 0. This is readily found by study-
ing the nature of the stationary point ω = 0. Indeed, the first derivative of
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the power-spectrum with respect to ω computed in ω = 0 is always zero,
independently of the parameters, i.e.,

dP
dω

⃓⃓⃓⃓
ω=0

= 0. (4.31)

From the expression shown in Eq. (4.27) we can see that P(ω) is an even pos-
itive function that decays to zero at infinity, i.e., P(ω) > 0 ∀ω with P(ω) → 0
for ω → ±∞. Thus, if ω = 0 is a point of minimum, it must be that such func-
tion displays a point of (absolute) maximum for ωmax > 0. For this reason,
we evaluate the second derivative of P(ω) in ω = 0 finding

d2P
dω2

⃓⃓⃓⃓
ω=0

= 2D
[bτ(2 + aτ)− 1]

(a + b)4 . (4.32)

Therefore ω = 0 is a local minimum if and only if

bτ(2 + aτ)− 1 > 0. (4.33)

Given that we are considering a > 0, we get

τ > τa =
−1 +

√︂
1 + a

b

a
. (4.34)

Given this result, we can see that stochastic amplification does not occur
for delays that are too small, i.e., if 0 < τ ≤ τa, whereas it requires ωmax(τ) >
0 for τ > τa.

Furthermore, if we consider a delay greater than the critical threshold,
we can find that the position of the maximum ωmax of the power-spectrum
grows as the square root of the increment of τ from the critical threshold τa,
i.e., ωmax(τa + δτ) ∼

√
δτ as 0 < δτ ≪ τa.

To prove this, we need to evaluate the first derivative of Eq. (4.27) with
respect to ω and, setting it to be equal to zero, we obtain

ωmax = bωmaxτ cos (ωmaxτ) + b(1 + aτ) sin (ωmaxτ) (4.35)

When τ = τa + δτ with 0 < δτ ≪ 1 we expect ωmax to be small. Hence
we can expand the above equation to get

1 = bτ (2 + aτ)− ω2
maxτ3b

(︃
4 + aτ

6

)︃
+ o

(︂
ω4

max

)︂
. (4.36)

Neglecting the higher order in ωmax we find

ω2
max =

6 [bτ (2 + aτ)− 1]
bτ3 (4 + aτ)

. (4.37)
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FIGURE 4.4: Numerical check for the scaling of the characteristic fre-
quency of the stochastic fluctuations describing the time series generated
with Eq. (4.1) after having fixed a = 3 and b = 5. In both panels the
blue dots are obtained numerically by searching numerically the absolute
maximum of Eq. (4.27) while changing τ = τa + δτ numerically, while
the red line is the square root behavior we analytically found in Eq. (4.38).
Panel (a): We use linear-linear scale with ωmax(τ) evaluated for τ smaller
and greater than τa. The vertical orange dashed lines indicates such criti-
cal threshold. For values of the delay greater than this, it is clear that the
frequency grows as a square root. Panel (b): Here we use a double log-
arithmic scale. On the horizontal axis we show δτ = τ − τa, whereas on
the vertical axis we show ωmax(τ = τa + δτ). For small values of δτ the
agreement is excellent, confirming the theoretical findings.

Now we can insert τ = τa + δτ and expand in δτ. Since by definition we
have that bτa (2 + aτa)− 1 = 0, it is easy to see that we get

ωmax ∼
√

δτ. (4.38)

We numerically check the scaling in Eq. (4.38). We show this in Figure 4.4,
noticing the excellent agreement between the numerical outcome and the the-
oretical findings.

Interestingly, in the discrete delay case we considered so far we can prove
that τc < τa, as shown in Appendix C.4. This means that, if we take any delay
larger than τc but smaller than τa, the asymptotic deterministic dynamics
displays damped oscillations, but the noise in the stochastic equation is not
sufficient to sustain random oscillations. Figure 4.5 confirms that, for τ = 1
(without any loss of generality), the region providing damped oscillations in
the deterministic regime and the one where stochastic amplification occurs
are nested.

4.5 Distributed delay case

The analysis carried out so far can be further developed in several directions.
For example, one may consider the effect of a distributed delay in the dynam-
ics defined by Eq. (4.1), whereby multiple states of the past contribute with
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FIGURE 4.5: Phase diagram in the a − b plane for a fixed delay (τ = 1)
characterizing the behavior of the dynamics Eq. (4.1). Within the white
area the system is unstable, whereas inside the colored one, x̄ = 0 is
asymptotically stable in the deterministic dynamics. In the blue region the
system approaches asymptotically x̄ via exponential decay, while the or-
ange one indicates an asymptotic decay with damped oscillations. Finally,
the green area shows the region where stochastic amplification occurs.
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different weights to the current state . The dynamics in this case is given by

dx(t)
dt

= −ax(t)− bI(t) +
√

Dξ(t), (4.39)

where
I(t) =

∫︂ +∞

0
dz G(z)x(t − z), (4.40)

with G(z) being a normalized memory kernel. Starting from Eq. (4.39), we
can gain analytical insight by following the same steps we presented above.

We can now replicate the same steps presented in Section 4.4 to test if
oscillations occur in the deterministic limit and then study what happens
when noisy contributions are taken into account.

So, inserting x(t) = Ceλt in Eq. (4.39) in which we set D = 0 (deterministic
limit), we get

λ = −a − b
∫︂ +∞

0
dz G(z)e−λz = −a − bG̃(λ), (4.41)

where G̃(λ) indicates the Laplace transform of the kernel. Given a functional
form for the kernel G(z), we can search whether the above equation admits
complex solutions. If so, the system will display oscillations. In particular
writing λ = α + iβ Eq. (4.41) can be split to obtain the following coupled
equations for the real and imaginary part of λ

α = −a − b
∫︂ +∞

0
dz G(z)e−αz cos(βz), (4.42)

β = b
∫︂ +∞

0
dz G(z)e−αz sin(βz). (4.43)

From the first equation we can see that in order to have α < 0, i.e., a stable
dynamics, we need that the kernel G(z) has to decay faster than e−cz with
c ∈ R and c > |α|, otherwise the integral would diverge. This implies that
the all moments of G(z), in particular the first and second ones, are finite.
This observation would be useful later in the discussion.

When noise is taken into account we know stochastic amplification might
occur. To see this, we study the spectral properties of the dynamics by com-
puting the Fourier transform of Eq. (4.39). In this way we find

iωx̂(ω) = −ax̂(ω)− bÎ(ω) +
√

Dξ̂(ω), (4.44)

where again ξ̂(ω) is such that ⟨ξ̂(ω)⟩ = 0 and ⟨ξ̂(ω)ξ̂(ω′)⟩ = δ(ω+ω′)
2π , while

Î(ω) = ˆ̄G(ω)x̂(ω), (4.45)

with ˆ̄G(ω) being the Fourier transform of Ḡ(z) = G(z)Θ (z). This because

Î(ω) =
∫︂ +∞

−∞
dt I(t)e−iωt
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=
∫︂ +∞

−∞
dt
∫︂ +∞

0
dz G(z)x(t − z)e−iωt

=
∫︂ +∞

−∞
dt
∫︂ +∞

−∞
dz

:=Ḡ(z)⏟ ⏞⏞ ⏟
G(z)Θ(z) x(

:=s⏟⏞⏞⏟
t − z)e−iωt

=
∫︂ +∞

−∞
ds x(s)e−iωs

∫︂ +∞

−∞
dz Ḡ(z)e−iωz = ˆ̄G(ω)x̂(ω). (4.46)

Thus we end up with

x̂(ω) =

√
D

a + b ˆ̄G(ω) + iω
ξ̂(ω) =

√
D

a + b Re
[︂

ˆ̄G(ω)
]︂
+ i
(︂

ω + b Im
[︂

ˆ̄G(ω)
]︂)︂ ξ̂(ω).

(4.47)
From this we can obtain easily the power-spectrum which takes the form

P(ω) =
D(︂

a + b Re
[︂

ˆ̄G(ω)
]︂)︂2

+
(︂

ω + b Im
[︂

ˆ̄G(ω)
]︂)︂2 . (4.48)

To confirm the occurrence of stochastic amplification, the power-spectrum
has to present a non-trivial peak. Therefore, as we did for the discrete delay
case, we investigate the nature of the point ω = 0. From a direct calculation
of the first derivative, but also for symmetry arguments, we can see that it is
always a stationary point of Eq. (4.48).

By computing the second derivative of Eq. (4.48) in ω = 0, we can see
that the condition for which such point is a local minimum, i.e., stochastic
amplification takes place, now reads

(1 − bµ1)
2 − b(b + a)µ2 < 0, (4.49)

where µn is the n-th moment of G(z), i.e.,

µn =
∫︂ +∞

−∞
dz znḠ(z) =

∫︂ +∞

0
dz znG(z). (4.50)

From what we said above about the stability of the deterministic solution, it
follows that all the moments are finite.

The condition displayed in Eq. (4.49) can be found by noticing that

dn

dωn
ˆ̄G(ω) =

dn

dωn

(︂
Re
[︂

ˆ̄G(ω)
]︂)︂

+ i
dn

dωn

(︂
Im
[︂

ˆ̄G(ω)
]︂)︂

. (4.51)

From the definition of Ḡ(z) we see that

dn

dωn
ˆ̄G(ω)

⃓⃓⃓⃓
ω=0

= (−i)nµn. (4.52)
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Therefore we can see that

Re
[︂

ˆ̄G(ω)
]︂ ⃓⃓⃓⃓

ω=0
= 1 and Im

[︂
ˆ̄G(ω)

]︂ ⃓⃓⃓⃓
ω=0

= 0, (4.53)

d
dω

Re
[︂

ˆ̄G(ω)
]︂ ⃓⃓⃓⃓

ω=0
= 0 and

d
dω

Im
[︂

ˆ̄G(ω)
]︂ ⃓⃓⃓⃓

ω=0
= −µ1, (4.54)

d2

dω2 Re
[︂

ˆ̄G(ω)
]︂ ⃓⃓⃓⃓

ω=0
= −µ2 and

d2

dω2 Im
[︂

ˆ̄G(ω)
]︂ ⃓⃓⃓⃓

ω=0
= 0. (4.55)

Hence, performing some algebra and using these results, we can easily obtain
the condition in Eq. (4.49).

To test the validity of Eq. (4.48), we perform numerical simulation in
which we consider a kernel with the shape of a Gamma distribution, i.e.,

G(z) =
e−z/τ

τΓ(k)

(︂ z
τ

)︂k−1
. (4.56)

From this choice it follows that

ˆ̄G(ω) =
1
τk

(︃
1
τ
+ iω

)︃−k
. (4.57)

and so the power-spectrum explicitly reads

P(ω) = D
{︃[︄

a +
b
τk

(︃
1
τ2 + ω2

)︃− k
2

cos (k arctan(ωτ))

]︄2

+

+

[︄
ω − b

τk

(︃
1
τ2 + ω2

)︃− k
2

sin (k arctan(ωτ))

]︄2}︃−1

. (4.58)

In Figure 4.6 we present the comparison of Eq. (4.58) with the power-
spectrum numerically found from an ensemble of trajectories obtained sim-
ulating the dynamics Eq. (4.39). As we can see the agreement is excellent.

The phenomenology of the asymptotic analysis is similar to the one we
found with the discrete delay. Also, it is immediate to see that Eq. (4.1) is
recovered when considering G(z) = δ(z − τ). With such kernel, we obtain
the same condition on the model parameters to have stochastic amplification
we found before.

Interestingly, however, in the distributed delay case there exists a region
of the model parameters where one can observe a non-trivial peak in the
power-spectrum even when the asymptotic dynamics does not display damped
oscillations. In Appendix C.5 we show this surprising behavior in the case
of an exponential memory kernel. By studying the deterministic behavior
of the full solution of the exponentially distributed delay, we find a region
of the parameters where the solution has a unique zero at finite times, as
shown by analytical calculations provided in Appendix C.5 where we use
the full solution of the linear delayed ordinary differential equation found in
Appendix C.2. We show then, albeit in the absence of damped oscillations,
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FIGURE 4.6: Comparison between the theoretical power-spectrum (solid
red line) in the case of distributed delay with a Gamma distribution kernel
Eq. (4.58) and the one numerically obtained as an average from 250 inde-
pendent realizations (blue dots). We used the prescription x(t) = x0 =
10−2 for t ≤ 0. Additionally, the integral in Eq. (4.40) is computed inte-
grating from 0 to 10τ and the time increment used is dt = 5 · 10−4. The
other parameters are a = 3, b = 20, τ = 0.5, k = 2 and D = 1. The clear
presence of a peak is the signature that also in this case the stochastic am-
plification phenomenon occurred.

this is still a necessary condition for the occurrence of stochastic amplification
when introducing noise. This new feature can be generalized to distributed
delays whose solutions have only a finite number of zeros.

4.6 Application: gene expression in regulatory net-
works

The results obtained so far offer theoretical insights and more natural expla-
nations for the oscillatory behavior observed in real world systems, which
often need relatively more complicated nonlinear dynamics for explaining
oscillations. The gene expression in regulatory networks provides an in-
teresting example. Experimental evidence supports oscillatory behavior in
the concentrations of mRNA, m(t), as well as protein molecules, p(t), as a
function of the time, t, within cells on long time-scales due to negative auto-
regulation mechanisms [146].

The coupled stochastic dynamics between mRNA and protein species has
been described by several models [130], [221] and time delay effects intrinsic
to transcription, translation and export processes have been considered to
gain insight in the regulatory processes [142]–[144]. For instance, a simple
formulation of the delayed dynamics of transcription and translation may
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take the form

dm(t)
dt

= αm f (p(t − τm))− µmm(t), (4.59a)

dp(t)
dt

= αpm(t − τp)− µp p(t), (4.59b)

where µm and µp are the degradation rates of the mRNA and proteins, re-
spectively, αm and αp are the maximal rates of synthesis for the two compo-
nents, τm and τp are the time delays, respectively, for the transcription and
translation processes; finally we have

f (p) =
1

1 + (p/p0)
h , (4.60)

and it is the monotonically decreasing Hill function representing the suppres-
sion of the mRNA production when the concentration of proteins increases,
and p0 is such that f (p0) = 1/2. This model and its variants are able to
predict deterministic oscillations. However, the long-time persistence of the
oscillatory dynamics is only reached for specific values of the model parame-
ters and some of those (like the Hill factor h) cannot be empirically measured
[215].

The evolution described by Eqs. (4.59a)-(4.59b) neglects the effects of in-
trinsic noise, which may play a major role at times, when the numbers of
mRNA and protein molecules within a cell are small. Thus, in order to
capture the essential features of noise in the system, we add two indepen-
dent white Gaussian noises to Eqs. (4.59a)-(4.59b) with small strength, re-
spectively, Dm and Dp. So we now have to consider the following stochastic
dynamics

dm(t)
dt

= αm f (p(t − τm))− µmm(t) +
√

Dmξm(t), (4.61a)

dp(t)
dt

= αpm(t − τp)− µp p(t) +
√︂

Dpξp(t). (4.61b)

In order to study the fluctuations around the deterministic stationary state,
we express m(t) and p(t) as

m(t) = m∗ + x(t), (4.62)
p(t) = p∗ + y(t), (4.63)

and we then linearize the deterministic part of the stochastic model around
m∗ and p∗. In this way we obtain a set of coupled Langevin equations akin
to Eq. (4.1), which read

dx(t)
dt

= αm · f̄ · y(t − τm)− µm · x(t) +
√

Dmξm(t), (4.64a)

dy(t)
dt

= αp · x(t − τp)− µp · y(t) +
√︂

Dpξp(t), (4.64b)
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where

f̄ =
d f (p)

dp

⃓⃓⃓⃓
p=p∗

. (4.65)

At this point we repeat the procedure we described in the previous sec-
tions. Hence taking the Fourier transform of Eqs. (4.64a)-(4.64b) we get

iωx̂(ω) = αm · f̄ · ŷ(ω)e−iωτm − µm · x̂(ω) +
√

Dmξ̂m(ω), (4.66a)

iωŷ(ω) = αp · x̂(ω)e−iωτp − µp · ŷ(ω) +
√︂

Dpξ̂p(ω). (4.66b)

In this way we can easily get

x̂(ω) =

(︁
iω + µp

)︁√
Dmξ̂m(ω) + αm · f̄

√︁
Dpξ̂p(ω)

−ω2 + i
(︁
µm + µp

)︁
ω + µm · µp − αpαm · f̄ e−iω(τm+τp)

, (4.67a)

ŷ(ω) =
(iω + µm)

√︁
Dpξ̂p(ω) + αp

√
Dmξ̂m(ω)

−ω2 + i
(︁
µm + µp

)︁
ω + µm · µp − αpαm · f̄ e−iω(τm+τp)

. (4.67b)

From these it is straightforward to get the two power-spectra.
The numerical simulations of the full stochastic dynamics given by Eqs. (4.61a)-

(4.61b) show sustained oscillations with a characteristic frequency, as we can
see from the examples provided in panels (a)-(b) of Figure 4.7. From these,
we can see that when the deterministic solution reaches a stationary state,
the numerical time-series display a quite regular oscillating behavior. Hence
in this case the deterministic model does not predict the presence of long-
standing oscillations, whereas the stochastic formulation is able to provide
such a picture. This is well captured by computing the power-spectrum. Pan-
els (c)-(d) of Figure 4.7 show the power spectra for the stochastic formulation
Eqs. (4.61a)-(4.61b) and the comparison with the corresponding analytical
results as obtained from the linearization of the model. Two peaks at posi-
tive frequencies, one for each power-spectrum, emerge quite generally over
a large region of the model parameters. Therefore within our setting the de-
pendence on the model parameters of the time-persistence of the fluctuations
is reduced, confirming the robustness of the oscillations.

4.7 Conclusions and future perspectives

In conclusion, we have studied the spectral properties of the solutions of
linear stochastic equations with a delay contribution. We have shown that,
under suitable conditions which we have aptly identified, the dynamics dis-
plays time-persistent stochastic oscillations, as confirmed by the peak of the
power-spectrum for strictly positive frequencies. Although the spectrum is
not reminiscent of a damped harmonic oscillator, the amplification mecha-
nism may be intuitively understood in the following terms: the white noise,
which covers all the frequencies, excites those that are naturally present in the
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FIGURE 4.7: Solutions of the deterministic model Eqs. (4.59a)-(4.59b) (red
dashed lines) versus two typical realizations obtained from the stochas-
tic dynamics (noisy blue lines) for the mRNA molecules m(t) [panel (a)]
and proteins p(t) [panel (b)] generated from the full process full process
Eqs. (4.61a)-(4.61b). Power-spectra Pm(ω) and Pp(ω) for these fluctuations
of mRNA molecules [panel (c)] and proteins [panel (d)]: each presents
a maximum occurring at ωm,max,, ωp,max, > 0, respectively. Theoretical
power-spectra (solid red lines), computed from Eqs. (4.67a)-(4.67b), are
compared to the numerical ones (blue dots) obtained from 250 indepen-
dent realization of the full process given by Eqs. (4.61a)-(4.61b). In all
four panels the parameters are αm = 33, αp = 0.225, µm = µp = 0.23,
h = 2, p0 = 10, τm = 2, τp = 3, Dm = Dp = 1 and a time increment
dt = 10−3. The initial conditions are m(t) = m0 = 10 for t ∈ [−τm, 0] and
p(t) = p0 = 10 for t ∈ [−τp, 0].
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deterministic model because of the delay. Thus, without tuning the system,
one or more characteristic frequencies are singled out in the power spectrum.

However, albeit damped oscillations caused by delay in the deterministic
regime are necessary for the emergence of random oscillations, they are not
sufficient to sustain them indefinitely. Indeed, the delay has to be larger than
a threshold in order to guarantee stochastic amplification.

Moreover, in Appendix C.5 for the distributed delay case we have shown
that it might be that noise-induced cycles, signature of the occurrence of the
stochastic amplification mechanism, can be observed even if the determinis-
tic dynamics does not approach the stationary state via damped oscillations.
We argued by studying the exact solution of the deterministic delayed ordi-
nary differential equation that such puzzling evidence can be interpreted as
follows: although the deterministic solution does not oscillate, there exists a
t̄ > 0 in which it intercepts once the stationary value, i.e., the fluctuations
become zero. Hence this resembles a single oscillation. Thus the noise might
resonate with this, providing time-persistent oscillations.

Our theoretical investigations can be straightforwardly applied to con-
sider many modifications of the general framework we presented at the be-
ginning in Section 4.2. A possible route of generalization can be pursued
when substituting the white noise in Eq. (4.1) with colored noise with a sta-
tionary non-trivial temporal correlation. Also in this case the key-steps il-
lustrated above lead to an analytic expression of the power-spectrum with
internal peaks, thus confirming the existence of sustained stochastic oscilla-
tions. Such case is discussed in details in Appendix C.6.

Another interesting natural generalization includes the study of an n− di-
mensional Ornstein-Uhlenbeck process, in which the coefficients of Eq. (4.1)
are appropriate matrices. The spectral analysis of the fluctuations can be per-
formed straightforwardly and confirms that the delay introduces new fea-
tures with respect to the original formulation: terms with delayed contribu-
tions may lead to stochastic amplification even when it is forbidden in the
non-delayed case. The detailed study of this scenario is relegated in Ap-
pendix C.7.

The oscillatory behavior found in the gene expression in regulatory net-
works provides a relevant example of the predictions based on the simple
Eq. (4.1): general model systems where the dynamics is affected by states
encountered in the past as well as noise perturbations, display persistent
oscillatory behavior in a wide region of the parameter space. This has the
potential ability to explain in a more natural way, avoiding any particular
tuning of the model parameters, the emergence of sustained oscillations in
empirical systems under quite general conditions.

In fact, it could be interesting to search for other systems for which the de-
veloped framework can be successfully employed to describe their dynam-
ics. Examples might be found when tackling the diffusion of diseases. Here
intrinsic stochasticity plays indeed an important role, since the contagious
process, for instance, is certainly not deterministic. Additionally, when con-
sidering pathogens with an incubation period, the occurrence of an infection
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in contributing to the spread of the disease starts to matter well after the mo-
ment in which the contagion took place. Hence it is clear that such dynamics
possesses clear delay effects.
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Chapter 5

Thesis Conclusions

Living systems are intrinsically affected by an huge degree of complexity:
they are made by a large number of singular entities entangled one to the
others via dense networks of interaction.

Due to this, ecological and biological systems display non-trivial behav-
iors, which have captured the interests of researchers since long time. Such
peculiar features emerge from the intertwining of the several degrees of free-
dom involved in the dynamics. However, the mechanisms leading to their
observation and the explanations shedding lights on their origins are not ob-
vious neither clear a priori. Indeed, this makes the study of these type of
systems very captivating.

In order to obtain mathematical descriptions of ecological phenomena,
quantitative predictions on the systems behaviors to be compared with data
and reliable clarifications about what leads to the origination of a given com-
plex feature, tools and techniques common in physical sciences, especially
those coming from Statistical Mechanics, are largely employed.

In this Thesis, as we argued in Chapter 1, we fully adopted a complex
systems vision of ecological and biological scenarios. Herein, we exploited
ideas, such as coarse-graining of spatial degrees of freedom or universality
and scaling-properties near the transition point, to study three different prob-
lems attracting extensively the interests of the scientific community in the last
decades.

So, in Chapter 2, we first focused on the study of species-rich ecosystems,
such as tropical rain-forests, microbial colonies or plankton communities,
where several different species coexists while competing for the consumption
of the few resources present in the environment. In order to model quanti-
tatively this type of systems, the phenomenological MacArthur’s consumer-
resource model was proposed and it soon started to take hold. However,
such framework is not able to explain the origin of the huge biodiversity
empirically observed in real natural systems. In fact, it inevitably predicts
the so-called Competitive Exclusion Principle (CEP): the number of surviv-
ing species is bounded from above by the number of resources present in the
environment, in stark contrast with empirical observations.

This implies that such a phenomenological model might be lacking in
something crucial to describe in a reliable fashion competitive communities.
An huge literature hints that such a missing factor could be provided by the
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inclusion of spatial effects, which have been thought to might help in promot-
ing biodiversity sustenance and which are completely neglected in the origi-
nal formulation. Motivated by this, we extended the model including spatial
terms. As an exemplification, we took such terms to describe the exploration
of the environment by the individuals in the form of dispersal fluxes account-
ing for chemotaxis/foraging along with diffusive motion. Nonetheless, the
approach is not limited to a specific spatial effect, but it can be generalized
to possibly account other spatially originated mechanisms. Then, in order
to deal with mean-field equations, which are amenable to perform analyti-
cal investigations, and attracted by the possibility of employing the tools of
Statistical Mechanics, we performed a coarse-graining procedure on the spa-
tial degrees of freedom we just introduced. In this way we obtained a new
quadratic term,which takes into account spatial contributions in an effective
way, with the meaning of inter- and intra-species interactions on top of the
implicit resource competition.

However, we also argued that this newly added competitive contribution
has more general and ecologically meaningful interpretations. In fact, it can
possibly be employed to capture other ecological mechanisms affecting the
ecosystem evolution, such as the presence of host-specific pathogens harm-
ful for the consumers population. We explicitly showed this having in mind
the concrete case of tree communities, hence modeling the so called Janzen-
Connel effect. Also in this case, taking into account effectively the host-
pathogens dynamics, the consumers evolution was modified by the emer-
gence of a quadratic inter- and intra-specific interaction term.

Starting from the modified framework, we analytically showed that it is
now possible to violate CEP. Performing numerical simulations, we saw that
at stationarity the number of species with a non-vanishing population size
could be larger that the number of resources itself. Moreover, under some
conditions, we could obtained an explicit criterion that allows us to state
whether all the starting species would survive or not. In the limit-case of one
resource, we were able to get an analytical condition on the model param-
eters that, if fulfilled, grants the survival of an arbitrary number of species.
This scenario fully demonstrate the power of the new framework and how it
can openly violate CEP.

Later on, we showed also how it is possible to infer, depending on the
parameters, if some species would go extinct and, if so, which ones. Again,
we found an analytical criterion, which has been tested against numerical
simulations of the model dynamics. The same result was employed to predict
the outcome of an invasion experiment, in which a new species enters in a
community in which others species already coexists together.

Finally, we retrieved illuminating insights on the shape of a remarkable
statistical pattern, the Species Abundance Distribution (SAD), which describes
how the population sizes of the surviving species are scattered. In particular,
we could uncover the emergence of power-law tails of such distributions as
well as the range of (negative) values acquired by their exponents. In other
words, we discovered that the probability of observing a species with a large
population size decreases as power-law with a certain negative exponent.
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Such a result turned out to be correct when it was compared with some em-
pirical plankton datasets.

The second ecological complex feature that captured our attention was
the self-emergence of spatial order on large scales in ecological contexts. In
fact, several landscapes around the globe amazingly display an almost reg-
ular alternation of colonized and empty spots by the vegetation. The same
behavior is observed also in theoretical investigations studying a possible
mechanism that might have led to proto-speciation. There, species emerge
as regular lumpy distributions in an abstract continuum space where each
position is thought to identify a possible characteristic identifying a species.
Both the pictures can be understood in terms of pattern formation, where
the main element of the underlying dynamics is given by the nonlocalilty of
the nonlinear interaction terms among the microscopic constituents, which
eventually shape the emerging spatial structures.

Of course pattern formation is a phenomenon which is not relegated to
ecology, but it is widely observed in other research fields. For this reason,
in Chapter 3 we devoted our efforts in the research of any universal behav-
ior shared across pattern forming systems, independently of the specific de-
tails of the process under consideration. To do so we built a generic model
accounting for nonlocal nonlinear terms displaying a supercritical bifurca-
tion, which separates the pattern forming phase to the one in which self-
organized structures can not emerge. In this way the model eventually leads
to the breaking of the translational symmetry in the stationary state. We first
showed that in this general framework the mechanism from which patterns
emerge is the instability of the homogeneous and stationary solution of the
dynamics under small perturbations, as well documented in the literature.

Subsequently, we developed a mathematical framework, based on mul-
tiple scales analysis, to uncover the spatio-temporal evolution on long and
large scales of the envelope of the emerging patterns. We discovered that, at
the onset of the supercritical bifurcation and in the weakly nonlinear regime,
the initial formation and the following evolution is determined by an uni-
versal equation. Namely, the form of this equation is model independent,
whereas the dynamics details enter in the expressions giving its coefficients,
which are naturally obtained within the proposed framework. In particu-
lar, we predicted that such an equation acquires the well-known shape of
the Ginzburg-Landau (GL) amplitude equation. This became famous from the
studies on the local Swift-Hohenberg model, which is regarded as an archety-
pal of pattern-forming dynamics. We analytically showed that GL amplitude
equation validity goes beyond such a simple model and it can be employed
to study more general dynamics, accounting also for nonlocal nonlinear con-
tributions, which have remarkable ecological (but not only) meanings. To
double-checked the quality of the result, we tested the GL amplitude equa-
tion prediction against the outcomes of numerical simulations of nonlocal
dynamics to find an excellent agreement between the two.

Thanks to this, we concluded that the behavior of patterns at the onset
of the bifurcation is universal, regardless the local or nonlocal nature of the
interaction terms. This is a result in full similarity with universality features
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at the transition point in critical phenomena studied by Statistical Mechan-
ics, where in such a regime the microscopic details do not play any role in
determining the system behavior.

Lastly, in Chapter 4 we focused on the development of a framework nat-
urally accounting for stochastic and temporal delay effects, aiming to inves-
tigate if the combination of these two contributions might lead to cyclic dy-
namics. Indeed, the evidences coming from experiments on gene expres-
sion in self-regulatory networks has spurred the investigation of noisy and
delayed systems. In fact, data resulting from such experiments show that
the time series of mRNA and protein molecules concentrations present long-
standing and almost regular oscillations in time.

For this reason, we proposed a very simple model in the form of a Langevin
dynamics accounting also for delayed contributions, on top of the explicit
noise modeling the intrinsic stochastic source. To start, we described the evo-
lution of a single dynamical variable in presence of a discrete delayed term,
which couples the evolution of the current state to one observed in the past
system history.

In the first place, we studied the asymptotic stability of the homogeneous
stationary state of the corresponding deterministic dynamics, identifying in
particular the region of the parameters space where the solution approaches
the stationary state via damped oscillations.

Later on, we took into account also the stochastic contribution of the
Langevin dynamics. We first observed numerically the emergence of almost
rhythmic dynamics in the typical time series associated to the process. Mo-
tivated by these evidences, we studied the spectral properties of such time
series and we computed the power-spectrum of the fluctuations around the
homogeneous stationary state of the deterministic dynamics.

From such expression, we obtained a condition on the model parameters
for which the power-spectrum displays a non-trivial peak, i.e., its maximum
is located in a positive and finite value. In this way the cyclic dynamics ob-
served can be interpreted as a stochastic amplification phenomenon and so
the indefinitely lasting oscillations, whose characteristic frequency are given
by the position of the peak, are explained as noise-induced cycles. We remark
that the addition of the delay drastically modify the scenario with respect to
the non-delayed version. For example, it made possible the occurrence of
this resonance phenomenon also in the case of a single dynamical variable,
which would have been impossible in non-delayed settings. All these pre-
diction were confirmed by comparing them with the outcomes of numerical
simulations.

Additionally, in the case of a discrete delay, we interestingly showed that
the presence of deterministic asymptotic oscillations is a necessary but not
sufficient condition to observed stochastic amplification, i.e., it exists a region
in the parameters space where the deterministic dynamics displays damped
oscillations, nonetheless the simple introduction of noise might be not enough
to ensure their resonance.

Continuing with a more theoretical investigation, we extended the frame-
work to account also for distributed delay contributions. They provide a
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more general description of memory effect since the evolution in such sce-
narios is influenced by a weighted average, given by a kernel, of the history
of past states. Replicating the same steps, we predicted the a similar phe-
nomenology with respect to the discrete delay scenario. In particular, also in
this case we found the conditions on the model to ensure the emergence of a
non-trivial peak in the power-spectrum.

However, studying a scenario where the kernel has an exponential form,
we uncovered that there is a region of the model parameters where the sys-
tem deterministically approaches the stationarity without damped oscilla-
tions, but the stochastic counterpart allows to the emergence of stochastic
amplification, i.e., a deterministic damped oscillatory behavior is not any-
more a necessary condition to observe noise-induced cycles. This behavior,
to the best of our knowledge, has never been predicted before and also it can
not be observed in the discrete delay case. We argued, supported by analyti-
cal calculations, that this odd behavior is due to the fact that in such a region,
the deterministic solution crossed the stationary value once, resembling in
this way a single oscillation, which will resonate with the noisy term of the
Langevin equation.

To conclude, we applied our theoretical framework to gain an insight on
the empirical observations emerging about gene expression networks, which
motivated from a biological standpoint this work. Starting from a stochas-
tic and delayed model describing the coupled temporal evolution of mRNA
and protein molecules, we shed light on the origin of oscillations empirically
observed, interpreting them as noise-induced cycles due to stochastic ampli-
fication. Remarkably, with respect to the deterministic models proposed in
the literature so far, our framework does not require any tuning of the param-
eters to predict rhythmic dynamics, making it more appealing and reliable.
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Appendix A

Appendix for Effective
Resource-Competition Model for
Species Coexistence

The contents presented in this Appendix, including the displayed figures, are
taken with permission from the Supplemental Material accompanying the
published paper [147]. Copyright (2021) by the American Physical Society.

A.1 Emergence of the quadratic competitive inter-
action term via coarse-graining

In this section, we present an argument that justifies how the quadratic in-
teraction term, emerges quite generally in the consumer-resource model al-
though it has a clear ecological interpretation by itself. In order to do so,
we apply a coarse graining procedure on a spatially extended consumer-
resource model where we consider motility terms due to diffusive motion
along with foraging or chemotactic strategies. In principle, we could also ac-
count for crowding effects which modify the motility of the consumers. Such
contributions could be modeled through the introduction of a superdiffusive
behavior at high consumers concentration.

Let us start by considering the MacArthur’s model for many species con-
suming only one resource. Thus there is no need for sub-indices for species
and resources. To include spatial contributions in the dynamics, we add flux-
terms motivated by the seminal work of Keller and Segel [182] in which the
flux of the motion of species in the environment of resources are expressed
as

Jn(x, t) = −D1(c(x, t)) ∇n(x, t) + D2(c(x, t)) n(x, t) ∇c(x, t). (A.1)

Later studies pointed that D2(c) ∼ (c + Kd)
−2 [222], where Kd is the receptor-

ligand binding dissociation constant [223]. Hence in the limit of small resource
concentration, i.e., c ≪ Kd, Eq. (A.1) can be written (up to the leading order
in c) as

Jn(x, t) = −(A1 + A2c(x, t)) ∇n(x, t) + A3 n(x, t) ∇c(x, t). (A.2)
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where A1, A2, and A3 are constants.
Therefore, the systems’ dynamics is given by

ṅσ(x, t) = n(x, t)(ασc(x, t)− βσ)−∇Jnσ(x, t), (A.3)

ċ(x, t) = s − µc(x, t)− c(x, t)∑
ρ

αρnρ(x, t). (A.4)

Notice that we replaced the Monod function with c(x, t), which is the leading
order in a small c expansion.

Substituting Jnσ from Eq. (A.2), we rewrite Eqs (A.3) and (A.4) as

ṅσ(x, t) = n(x, t)(ασc(x, t)− β) +

(︃
A1,σ + A2,σc(x, t)

)︃
∇2nσ(x, t)+

− A3,σ nσ(x, t) ∇2c(x, t) + (A2,σ − A3,σ)∇nσ(x, t) · ∇c(x, t), (A.5)

ċ(x, t) = s − µc(x, t)− c(x, t)∑
ρ

αρnρ(x, t). (A.6)

Next we consider the case in which the spatial variable is discrete in a
one-dimensional lattice, where each site, i, represents a patch of linear size a
with populations n(i)

σ and a resource concentration c(i). Notice that the super-
indices refer to spatial position. Therefore, we have

ṅ(i)
σ (t) = n(i)

σ (t)[αc(i)(t)− β] + [A1 + A2c(i)(t)]
[︁
n(i+1)

σ (t) + n(i−1)
σ (t)− 2n(i)

σ (t)
]︁
+

− A3n(i)
σ (t)

[︁
c(i+1)(t) + c(i−1)(t)− 2c(i)(t)

]︁
+

+ (A2 − A3)
[︁
n(i+1)

σ (t)− n(i)
σ (t)

]︁[︁
c(i+1)(t)− c(i)(t)

]︁
, (A.7)

ċ(i)(t) = s − µc(i)(t)− c(i)(t)∑
ρ

αρn(i)
ρ (t), (A.8)

where i ∈ Z indicates the lattice site or the label for the patch. Thus, this
model [Eqs. (A.7)-(A.8)] describes the migration of species from one patch to
another for the consumption of the resource.

The coarse-graining consists in eliminating the dynamical variables n(i)
σ

and c(i) corresponding to the odd positions in favour of the remaining ones
in the even positions in the same spirit as in the first step of the renormaliza-
tion group technique (see Refs. [183], [184]). The essence of the calculation
can be exemplified by considering just one species of consumers colonizing
two adjacent sites/patches i = 1, 2 with periodic boundary conditions. The
complete calculation, besides being more cumbersome, does not present any
technical difficulty and leads to the same result of inducing the quadratic
competitive interaction term, ∑ρ ϵσρnσnρ, in Eq. (2.2a). Hence, since we are
considering a single population consuming only one resource, we can now
drop the immaterial subscript for the species population. Thus the dynamics
given in Eqs. (A.7) and (A.8) can be rewritten as

ṅ(1) = n(1)(αc(1) − β) + 2A1
(︁
n(2) − n(1))︁+ (A2 − A3)

(︂
n(2)c(2) − n(1)c(1)

)︂
+
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+ (A2 + A3)
(︂

n(2)c(1) − n(1)c(2)
)︂

, (A.9)

ṅ(2) = n(2)(αc(2) − β) + 2A1
(︁
n(1) − n(2))︁+ (A2 − A3)

(︂
n(1)c(1) − n(2)c(2)

)︂
+

+ (A2 + A3)
(︂

n(1)c(2) − n(2)c(1)
)︂

, (A.10)

ċ(1) = s − µc(1) − αn(1)c(1), (A.11)

ċ(2) = s − µc(2) − αn2c(2), (A.12)

where, for convenience, we are not writing explicitly the time dependence.
In order to proceed forward, let us first define Laplace transform and its

inverse as follow

Ω̃(ω) = L [Ω(t)] (ω) =
∫︂ +∞

0
dt e−ωt Ω(t), (A.13)

Ω(t) = L−1 [︁Ω̃(ω)
]︁
(t) =

1
2πi

lim
γ→∞

∫︂ a+iγ

a−iγ
dω eωt Ω̃(ω), (A.14)

where a is such that all singularities of Ω̃(ω) are in the region ℜ (ω) < a.
Now Laplace transform of Eqs. (A.9)–(A.12) gives

ωñ(1)(ω)− n(1)(0) = −βñ(1)(ω) + αñ(1)(ω) ∗ c̃(1)(ω) + 2A1
(︁
ñ(2)(ω)− ñ(1)(ω)

)︁
+

+ (A2 − A3)
(︁
ñ(2)(ω) ∗ c̃(2)(ω)− ñ(1)(ω) ∗ c̃(1)(ω)

)︁
+

+ (A2 + A3)
(︂

ñ(2)(ω) ∗ c̃(1)(ω)− ñ(1)(ω) ∗ c̃(2)(ω)
)︂

,

(A.15)

ωñ(2)(ω)− n(2)(0) = −βñ(2)(ω) + αñ(2)(ω) ∗ c̃(2)(ω) + 2A1
(︁
ñ(1)(ω)− ñ(2)(ω)

)︁
+

+ (A2 − A3)
(︁
ñ(1)(ω) ∗ c̃(1)(ω)− ñ(2)(ω) ∗ c̃(2)(ω)

)︁
+

+ (A2 + A3)
(︂

ñ(1)(ω) ∗ c̃(2)(ω)− ñ(2)(ω) ∗ c̃(1)(ω)
)︂

,

(A.16)

ωc̃(1)(ω)− c(1)(0) = s̃(ω)− µc̃(1)(ω)− αñ(1)(ω) ∗ c̃(1)(ω), (A.17)

ωc̃(2)(ω)− c(2)(0) = s̃(ω)− µc̃(2)(ω)− αñ(2)(ω) ∗ c̃(2)(ω), (A.18)

where ni(0) and ci(0) are the initial conditions of the system and the symbol
∗ indicates the convolution of the functions in the complex plane defined as

L
[︂
n(2)(t)c(1)(t)

]︂
(ω) = ñ(2)(ω) ∗ c̃(1)(ω) =

1
2πi

lim
γ→∞

∫︂ a+iγ

a−iγ
dω′ ñ(2)(ω′)c(1)(ω−ω′)

(A.19)
We can recast Eqs. (A.15)–(A.18) as follows:

(ω + β + 2A1) ñ(1)(ω) = n(1)(0) + 2A1ñ(2)(ω) +
[︂
αñ(1)(ω) ∗ c̃(1)(ω)+

+ (A2 − A3)
(︁
ñ(2)(ω) ∗ c̃(2)(ω)− ñ(1)(ω) ∗ c̃(1)(ω)

)︁
+
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+ (A2 + A3)
(︂

ñ(2)(ω) ∗ c̃(1)(ω)− ñ(1)(ω) ∗ c̃(2)(ω)
)︂ ]︂

,

(A.20)

(ω + β + 2A1) ñ(2)(ω) = n(2)(0) + 2A1ñ(1)(ω) +
[︂
αñ(2)(ω) ∗ c̃(2)(ω)+

+ (A2 − A3)
(︁
ñ(1)(ω) ∗ c̃(1)(ω)− ñ(2)(ω) ∗ c̃(2)(ω)

)︁
+

+ (A2 + A3)
(︂

ñ(1)(ω) ∗ c̃(2)(ω)− ñ(2)(ω) ∗ c̃(1)(ω)
)︂ ]︂

,

(A.21)

(ω + µ) c̃(1)(ω) = c(1)(0) + s̃(ω)− αñ(1)(ω) ∗ c̃(1)(ω), (A.22)

(ω + µ) c̃(2)(ω) = c(2)(0) + s̃(ω)− αñ(2)(ω) ∗ c̃(2)(ω). (A.23)

Now to implement the coarse-graining procedure we employ a standard
perturbative approach where the non-linear terms, i.e., terms containing the
convolution ñ(i)(ω) ∗ c̃(j)(ω) with i, j = 1, 2, are treated as perturbation to
the linear terms. This is a procedure largely employed in the renormaliza-
tion group technique, where to advance analytically the non-linear terms are
regarded as small with respect to the linear contributions [183], [184]. To
help us in the implementation of the pertubative approach, it is convenient
to formally substitute

ñ(i)(ω) −→ δñ(i)(ω). (A.24)

in terms of the form ñ(i)(ω) ∗ c̃(j)(ω) with i, j = 1, 2, where δ is an abstract
parameter. In particular, we are now going to use it as the expansion param-
eter in order to express ñ(1)(ω) and c̃(1)(ω) in terms of ñ(2)(ω) and c̃(2)(ω)
up to terms of order δ2 performing in this way the desired coarse-graining.
Additionally we assume n(1)(0) = c(1)(0) = 0. Once this procedure has been
carried out (the calculations are straightforward and yet cumbersome, so we
avoid the full presentation of all the intermediate steps), we can plug such
expressions into Eq. (A.21). In this way we remove from the dynamics the
patch 1 by taking into account its contribution in an effective way. Neglect-
ing order δ3 terms or higher, we obtain

ωñ(2)(ω) = n2(0)−
(︄

β + 2A1 −
4A2

1
ω + β + 2A1

)︄
ñ(2)(ω)+

+ δ

{︃(︃
α − A2 + A3 +

2A1(A2 + A3)

ω + β + 2A1

)︃
ñ(2)(ω) ∗ c̃(2)(ω)+

+
2A1(A2 + A3)

ω + β + 2A1

(︃
s̃(ω)

ω + µ

)︃
∗ ñ(2)(ω)− (A2 + A3)ñ(2)(ω) ∗

(︃
s̃(ω)

ω + µ

)︃
+

+
4A2

1(α − A2 + A3)

ω + β + 2A1

(︄
ñ(2)(ω)

ω + β + 2A1

)︄
∗
(︃

s̃(ω)

ω + µ

)︃
+

−
4A2

1(A2 + A3)

ω + β + 2A1

(︄
ñ(2)(ω)

ω + β + 2A1

)︄
∗ c̃(2)(ω)− (A2 + A3)ñ(2)(ω) ∗

(︃
s̃(ω)

ω + µ

)︃
+
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+ 2A1(A2 + A3)c̃(2)(ω) ∗
(︄

ñ(2)(ω)

ω + β + 2A1

)︄
+

+ 2A1(A2 − A3)

(︃
s̃(ω)

ω + µ

)︃
∗
(︄

ñ(2)(ω)

ω + β + 2A1

)︄}︃
+

+ δ2
{︃

8A3
1α(α − A2 + A3)

ω + β + 2A1

⎡⎢⎣(︄ ñ(2)(ω)

ω + β + 2A1

)︄
∗

⎛⎜⎝
(︂

ñ(2)(ω)
ω+β+2A1

)︂
∗
(︂

s̃(ω)
ω+µ

)︂
ω + µ

⎞⎟⎠
⎤⎥⎦+

− 2A1(A2 − A3)(A2 + A3)

ω + β + 2A1

[︄(︄
ñ(2)(ω) ∗ c̃(2)(ω)

ω + β + 2A1

)︄
∗ c̃(2)(ω)

]︄
+

−
4A2

1α(A2 + A3)

ω + β + 2A1

⎡⎢⎣
⎛⎜⎝
(︂

s̃(ω)
ω+µ

)︂
∗
(︂

ñ(2)(ω)
ω+β+2A1

)︂
ω + µ

⎞⎟⎠ ∗ ñ(2)(ω)

⎤⎥⎦+

+
4A2

1(α − A2 + A3)
2

ω + β + 2A1

⎡⎢⎣(︃ s̃(ω)

ω + µ

)︃
∗

⎛⎜⎝
(︂

s̃(ω)
ω+µ

)︂
∗
(︂

ñ(2)(ω)
ω+β+2A1

)︂
ω + β + 2A1

⎞⎟⎠
⎤⎥⎦+

+
2A1(A2 − A3)(α − A2 + A3)

ω + β + 2A1

[︄(︃
s̃(ω)

ω + µ

)︃
∗
(︄

ñ(2)(ω) ∗ c̃(2)(ω)

ω + β + 2A1

)︄]︄
+

+
2A1(A2 + A3)(α − A2 + A3)

ω + β + 2A1

⎡⎣(︃ s̃(ω)

ω + µ

)︃
∗

⎛⎝ ñ(2)(ω) ∗
(︂

s̃(ω)
ω+µ

)︂
ω + β + 2A1

⎞⎠⎤⎦+

−
4A2

1(A2 + A3)(α − A2 + A3)

ω + β + 2A1

⎡⎢⎣(︃ s̃(ω)

ω + µ

)︃
∗

⎛⎜⎝ c̃(2)(ω) ∗
(︂

ñ(2)(ω)∗c̃(2)(ω)
ω+β+2A1

)︂
ω + β + 2A1

⎞⎟⎠
⎤⎥⎦+

−
4A2

1(A2 + A3)(α − A2 + A3)

ω + β + 2A1

⎡⎢⎣c̃(2)(ω) ∗

⎛⎜⎝
(︂

s̃(ω)
ω+µ

)︂
∗
(︂

ñ(2)(ω)∗c̃(2)(ω)
ω+β+2A1

)︂
ω + β + 2A1

⎞⎟⎠
⎤⎥⎦+

− 2A1(A2 + A3)
2

ω + β + 2A1

⎡⎣c̃(2)(ω) ∗

⎛⎝ ñ(2)(ω) ∗
(︂

s̃(ω)
ω+µ

)︂
ω + β + 2A1

⎞⎠⎤⎦+

+
4A2

1(A2 + A3)
2

ω + β + 2A1

⎡⎢⎣c̃(2)(ω) ∗

⎛⎜⎝ c̃(2)(ω) ∗
(︂

ñ(2)(ω)
ω+β+2A1

)︂
ω + β + 2A1

⎞⎟⎠
⎤⎥⎦+

+ 2A1α(A2 + A3)

⎡⎢⎣ñ(2)(ω) ∗

⎛⎜⎝
(︂

s̃(ω)
ω+µ

)︂
∗
(︂

ñ(2)(ω)
ω+β+2A1

)︂
ω + µ

⎞⎟⎠
⎤⎥⎦+

+ 2A1(A2 + A3)(α − A2 + A3)

⎡⎢⎣c̃(2)(ω) ∗

⎛⎜⎝
(︂

s̃(ω)
ω+µ

)︂
∗
(︂

ñ(2)(ω)
ω+β+2A1

)︂
ω + µ

⎞⎟⎠
⎤⎥⎦+
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+ (A2 + A3)(A2 − A3)

[︄
c̃(2)(ω) ∗

(︄
ñ(2)(ω) ∗ c̃(2)(ω)

ω + β + 2A1

)︄]︄
+

+ (A2 + A3)
2

⎡⎣c̃(2)(ω) ∗

⎛⎝ ñ(2)(ω) ∗
(︂

s̃(ω)
ω+µ

)︂
ω + β + 2A1

⎞⎠⎤⎦+

− 2A1(A2 + A3)
2

⎡⎢⎣c̃(2)(ω) ∗

⎛⎜⎝ c̃(2)(ω) ∗
(︂

ñ(2)(ω)
ω+β+2A1

)︂
ω + β + 2A1

⎞⎟⎠
⎤⎥⎦+

− 4A2
1α(A2 − A3)

⎡⎢⎣(︄ ñ(2)(ω)

ω + β + 2A1

)︄
∗

⎛⎜⎝
(︂

s̃(ω)
ω+µ

)︂
∗
(︂

ñ(2)(ω)
ω+β+2A1

)︂
ω + µ

⎞⎟⎠
⎤⎥⎦+

+ 2A1(A2 − A3)(α − A2 + A3)

⎡⎢⎣(︃ s̃(ω)

ω + µ

)︃
∗

⎛⎜⎝
(︂

s̃(ω)
ω+µ

)︂
∗
(︂

ñ(2)(ω)
ω+β+2A1

)︂
ω + µ

⎞⎟⎠
⎤⎥⎦+

+ (A2 − A3)(A2 + A3)

⎡⎣(︃ s̃(ω)

ω + µ

)︃
∗

⎛⎝ ñ(2)(ω) ∗
(︂

s̃(ω)
ω+µ

)︂
ω + β + 2A1

⎞⎠⎤⎦+

− 2A1(A2 − A3)(A2 + A3)

⎡⎢⎣(︃ s̃(ω)

ω + µ

)︃
∗

⎛⎜⎝ c̃(2)(ω) ∗
(︂

ñ(2)(ω)
ω+β+2A1

)︂
ω + β + 2A1

⎞⎟⎠
⎤⎥⎦+

+ (A2 − A3)
2

[︄(︃
s̃(ω)

ω + µ

)︃
∗
(︄

ñ(2)(ω) ∗ c̃(2)(ω)

ω + β + 2A1

)︄]︄}︃
+O(δ3)

(A.25)

Since we are interested in the large-time limit, where both ṅ(2) and ċ(2)

are small, the above formula can be simplified as follows. For example, the
inverse Laplace transform of ñ(2)(ω)/(ω + ω0), with β + 2A1 ≡ ω0 > 0, is:

L−1

[︄
ñ(2)(ω)

ω + ω0

]︄
(t) =

∫︂ t

0
dt′ n(2)(t′)e−ω0(t−t′) (A.26)

=
1

ω0

(︃
n(2)(t)− n(2)(0)e−tω0 −

∫︂ t

0
dt′ ṅ(2)(t′)e−ω0(t−t′)

)︃
(A.27)

≈ n(2)(t)
ω0

(A.28)

when t ≫ ω−1
0 . Notice that we use integration by parts to reach Eq. (A.27)

from Eq. (A.26). In order to make this more formal we simply introduce a
parameter τ multiplying the time derivatives in Eqs. (A.9)–(A.12). This leads
to a simple modification of the Eq. (A.25) where all ω’s are multiplied by τ

except for the ω’s appearing as arguments of the functions ñ(2)(ω), c̃(2)(ω)



A.1. Emergence of the quadratic competitive interaction term via
coarse-graining 91

and s̃(ω). In the small τ limit, and redefining ñ(2)(ω) as

ñ′(2)(ω) ≡
[︄

1 +
(︃

2A1

β + 2A1

)︃2
]︄

ñ(2)(ω), (A.29)

we get (now we drop the super-indices)

τṅ′(t) = n′(t)
(︁
α′[c(t)]c(t)− β′)︁− ϵ′n′2(t), (A.30)

with

β′ =
(︂

C1 + δ s C2 + δ2 s2 C3

)︂ [︄
1 +

(︃
2A1

β + 2A1

)︃2
]︄−1

+O(τδ),

α′[c(t)] =
(︂

δ C4 + δ2 s C5 + δ2 C6 c(t)
)︂ [︄

1 +
(︃

2A1

β + 2A1

)︃2
]︄−1

+O(τδ),

ϵ′ = δ2s C7

[︄
1 +

(︃
2A1

β + 2A1

)︃2
]︄−2

+O(τδ2), (A.31)

where

C1 = β

(︃
β + 4A1

β + 2A1

)︃
,

C2 = − 1
µ

(︄
4A1A2

β + 2A1
+

4A2
1(α − A2 + A3)

(β + 2A1)
− (A2 + A3)

)︄
,

C3 = − 1
µ2(β + 2A1)

(︄
4A2

1(α − A2 + A3)
2

(β + 2A1)2 +
4A1A2(α − A2 + A3)

β + 2A1
+ A2

2 − A2
3

)︄
,

C4 =

(︄
α − A2 + A3 +

4A1A2

β + 2A1
−

4A2
1(A2 + A3)

(β + 2A1)2

)︄
,

C5 =
2

µ(β + 2A1)

(︄
−

4A2
1(α − A2 + A3)(A2 + A3)

(β + 2A1)2 + A2
2 + A2

3 +
2A1A2(α − 2A2)

β + 2A1

)︄
,

C6 =
1

β + 2A1

(︄
−4A1A2(A2 + A3)

β + 2A1
+

4A2
1(A2 + A3)

2

(β + 2A1)2 + A2
2 − A2

3

)︄
,

C7 =
2A1α

µ2(β + 2A1)

(︄
4A2

1(α − A2 + A3)

(β + 2A1)2 +
4A1A2

β + 2A1
− (A2 + A3)

)︄
. (A.32)

Hence, we can see from Eq. (A.30) that we ended up with a mean-field
equation for the consumer population that, on top of the classical growth
and death terms of the MacArthur’s model, contains also a quadratic com-
petitive contribution. This is exactly the term we aimed to get for our model
shown in Eqs. (2.2a)-(2.2b), here for the particular case of one species and one
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resource. Notice also that the quantity n′(t) in Eq. (A.30) is a rescaled popu-
lation density with respect to n(2)(t), as shown in Eq. (A.29), which becomes
the effective consumer concentration due to the coarse-graining procedure,
the one studied in Chapter 2.

Summarizing the main steps that led us to obtain this result, we first dis-
cretized the space assuming that the dynamics takes place in two separated
patches where locally the evolution is given by the classical MacArthur’s
consumer-resource model and, in addition to this, consumers are free to
move from one patch to the other according to the fluxes terms presented at
the beginning of this Section. Then, we explicitly implemented the coarse-
graining procedure as follows: we expressed the quantities, i.e., the con-
sumer density and the resource concentration, of patch one solely as func-
tions of the same quantities of patch two using a perturbative approach to
handle the non-linear terms. Later, we plugged the expressions for the den-
sities of consumers and resource of patch one just found into the equations
describing the evolution of the quantities at patch two. In this way, we inte-
grated the spatial degrees of freedom of patch one and we remained with the
evolution equation of consumers at patch two that depends only on resource
concentration and consumers density in the same position.

The new term in Eq. (A.30) emerged from the coarse-graining procedure
and hence it is a reminiscence of the spatial effects, capturing them in an
effective way. As a confirmation, we can see that such term vanishes when
the space does not play any significant role, for example when the system is
either well-mixed or it has a spatial extension much smaller than the spatial
scale of the diffusion. In fact, in the limit A1 ≈ 0, i.e., no diffusion, the
coefficient C7 shown in Eq. (A.32) vanishes and so, from Eq. (A.31) we have
that ϵ‘ ≈ 0.

Finally, notice that the effect of the coarse-graining leads to a “renormal-
ization” of the growth, the term linear in n, which is an expansion in the
resource concentration, c, and in the resource supply, s.

Similarly, one can extend the above derivation considering many species
competing for a single resource. The same steps can be repeated, minding
the subscripts indicating the different species. Without displaying the full
calculations, again in the small τ limit we need to redefine

ñ′
σ(ω) ≡

[︄
1 +

(︃
2A1,σ

βσ + 2A1,σ

)︃2
]︄

ñσ(ω), (A.33)

and so we get

τṅ′
σ(t) = n′

σ(t)
(︁
α′σ[c(t)]c(t)− β′

σ

)︁
− ∑

ρ

ϵ′σρn′
σ(t)n

′
ρ(t), (A.34)

with

β′
σ =

(︂
C1,σ + δ s C2,σ + δ2 s2 C3,σ

)︂ [︄
1 +

(︃
2A1,σ

βσ + 2A1,σ

)︃2
]︄−1

+O(τδ),
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α′σ[c(t)] =
(︂

δ C4,σ + δ2 s C5,σ + δ2 C6,σ c(t)
)︂ [︄

1 +
(︃

2A1,σ

βσ + 2A1,σ

)︃2
]︄−1

+O(τδ),

ϵ′σρ = δ2 s C7,σρ

[︄
1 +

(︃
2A1,σ

βσ + 2A1,σ

)︃2
]︄−1 [︄

1 +
(︃

2A1,ρ

βρ + 2A1,ρ

)︃2
]︄−1

+O(τδ2),

(A.35)

where

C1,σ = βσ

(︃
βσ + 4A1,σ

βσ + 2A1,σ

)︃
,

C2,σ = − 1
µ

(︄
4A1,σ A2,σ

(βσ + 2A1,σ)
+

4A2
1,σ(ασ − A2,σ + A3,σ)

(βσ + 2A1,σ)2 − (A2,σ + A3,σ)

)︄
,

C3,σ = − 1
µ2(βσ + 2A1,σ)

(︄
4A2

1,σ(ασ − A2,σ + A3,σ)
2

(βσ + 2A1,σ)2 + A2
2,σ − A2

3,σ+

+
4A1,σ A2,σ(ασ − A2,σ + A3,σ)

βσ + 2A1,σ

)︄
,

C4,σ =

(︄
ασ − A2,σ + A3,σ +

4A1,σ A2,σ

βσ + 2A1,σ
−

4A2
1,σ(A2,σ + A3,σ)

(βσ + 2A1,σ)2

)︄
,

C5,σ =
2

µ(βσ + 2A1,σ)

(︄
−

4A2
1,σ(ασ − A2,σ + A3,σ)(A2,σ + A3,σ)

(βσ + 2A2,σ)2 + A2
2,σ + A2

3,σ+

+
2A1,σ A2,σ(ασ − 2A2,σ)

βσ + 2A1,σ

)︄
,

C6,σ =
1

βσ + 2A1,σ

(︄
−4A1,σ A2,σ(A2,σ + A3,σ)

βσ + 2A1,σ
+

4A2
1,σ(A2,σ + A3,σ)

2

(βσ + 2A1,σ)2 + A2
2,σ − A2

3,σ

)︄
,

C7,σρ =
2A1,ραρ

µ2
(︁

βρ + 2A1,ρ
)︁ (︄4A2

1,σ(ασ − A2,σ + A3,σ)

(βσ + 2A1,σ)2 +
4A1,σ A2,σασ

βσ + 2A1,σ
− (A2,σ + A3,σ)

)︄
.

(A.36)

A.2 Emergence of the quadratic competitive inter-
action via Janzen-Connell effect

In this section, we derive our effective consumer-resource model Eqs. (2.2a)-
(2.2b) by incorporating the Janzen-Connell effect into the classical MacArthur’s
model. In this setting, the population of the species and pathogens (where



94 Appendix A. App. for Eff. Res.-Comp. Model for Species Coexistence

latter survive on the species population) along with the resource concentra-
tion co-evolve according to following coupled differential equations:

ṅσ = nσ

[︃ R

∑
i=1

ασiri(ci)− βσ

]︃
− nσ

MP

∑
a=1

A(p)
σa pa, (A.37)

ċi = µi(Λi − ci)− ri(ci)
M

∑
σ=1

nσασi, (A.38)

ṗa = pa

M

∑
ρ=1

B(p)
aρ nρ − k(p)

a p2
a, (A.39)

where pa denotes the population of the pathogens at time t, and MP is the
number of kinds of pathogens. Due to the presence of the pathogens, the
populations of the species degrade and such effect can be written as the last
term in Eq. (A.37), where the matrix A(p) describes the degradation rate of
each species population due to interaction with the surrounding pathogens.
Similarly, these interactions benefits the pathogens and are encoded in the
benefit matrix B(p) in Eq. (A.39), where each elements of this matrix corre-
sponds to the benefit rate for the pathogens. The last term in Eq. (A.39) limits
the growth of the pathogens’ population (i.e., the carrying capacity term),
where 1/k(p)

a is the carrying capacity for pathogen a.
Evidently the time-scale associated with the growth of the pathogens is

much faster than that of nσ and ci. Therefore, the pathogen dynamics (A.39)
reaches stationary state much sooner than the species and resource dynamics
(A.37) and (A.38), respectively. So by employing such time-scale separations,
the stationary solution of Eq (A.39) is given by

pa(t)
M

∑
ρ=1

B(p)
aρ nρ(t)− k(p)

a p2
a(t) = 0, (A.40)

where pa(t) is the instantaneous stationary values of pathogen for the actual
species population nσ(t).

The non-trivial solution of the above equation is

P⃗(t) = [K(p)]−1B(p)N⃗ (t), (A.41)

where K(p) = diag
[︂
k(p)

1 , k(p)
2 , . . . , k(p)

MP

]︂
is a diagonal matrix. Substituting

the instantaneous values of the pathogen populations in Eq. (A.37), we get
Eqs. (2.2a)-(2.2b) where the matrix elements ϵσρ can be identified as

ϵσρ ≡
MP

∑
a=1

A(p)
σa B(p)

aρ

k(p)
a

. (A.42)

Notice that when there are pathogens which are specific to each species in
the environment, and so MP = M, the benefit matrix B(p) and degradation
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FIGURE A.1: CCDF for the population sizes of 500 species competing for
1, 5, and 10 resources. The symbols are obtained from numerically inte-
grating Eqs. (A.43)-(A.44). The solid line is the analytical result for R = 1
given in Eq. (2.41). Clearly, we can see that there is no dependence on
the number of resources. Other parameters are ασ ∼ U (1.5, 10.0), βσ = 1,
µ = 0.001, ϵσ ∼ U (0.0001, 0.0005), ki = 5 and Λ = 1012.

matrix A(p) become diagonal which eventually leads to a diagonal form of
matrix E.

A.3 Discussion for the cases with R > 1

In this section, we give the details on the simulation for R > 1 shown in
Figures 2.4 (a), 2.6 (a) and A.3. As already mentioned in Chapter 2 that we
can compute the exact curve for surviving species when these are competing
one resource. However, such exact computation for R > 1 is not illuminating
to us. Nevertheless, one can count the number of surviving species for a
given Λi, where 1 ≤ i ≤ R by numerically integrating Eqs. (2.2a)-(2.2b).

To compare the result for R = 1 and R > 1, we do a slight modification
in our model, where we consider that all resources have same supply, i.e.,
Λi = Λ for all i. Further, we assume that the metabolic strategies ασi = ασqi,
where qi ∼ U [0, 1] is a resource dependent uniform random variable such
that ∑i qi = 1. Using this, Eqs. (2.2a)-(2.2b) (ϵσρ → 0 for σ ̸= ρ, and ϵσ ≡ ϵσσ)
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can be rewritten as follows:

ṅσ = nσ

[︃
ασ

R

∑
i=1

qiri(ci)− βσ − ϵσnσ

]︃
, (A.43)

ċi = µi(Λ − ci)− ri(ci)qi

M

∑
σ=1

ασnσ, (A.44)

where M and R, respectively, are the number of species and resources. For
convenience, we set µi = µ and βσ = 1 for all σ. Now we fix ασ for M species,
and numerically integrate the coupled dynamics (A.43)-(A.44), and count the
number of species surviving as a function for Λ for different number of re-
sources and this result is shown in Figure 2.4 (a).

Similarly, we compute the distribution of the population in Figures 2.6 (a)
and A.3 for a large number of resources. As we can see from Figure 2.4 (a)
that when Λ is sufficiently large, all initial species survive. In that case,
the population of the species in the stationary state can be written using
Eq. (A.43):

n∗
σ =

ασ ∑i qiri(c∗i )− 1
ϵσ

. (A.45)

We have checked numerically that when Λ is sufficiently large, ri(c∗i ) →
1. In that case,

n∗
σ ≈ ασ − 1

ϵσ
, (A.46)

since ∑i qi = 1. Therefore, the distribution of the population is independent
of the number of resources, and in the case when α and ϵ are distributed
uniformly, the distribution is given by Eq. (2.41). In Figure A.1, we show the
comparison of the numerical simulation for different number of resources
for Λ = 1012 and the analytical prediction given in Eq. (2.41) and we find an
excellent match between them.

A.4 SAD pattern for large number of resources

In this section, we compute the distribution of population of species when the
number of resources are very large R ≫ 1. For large number of resources, it
is difficult to obtain the exact distribution for the population. Nonetheless,
it is possible obtain the approximate distribution when we consider the case
ϵσρ → 0 for σ ̸= ρ in Eq. (2.2a).

In this case, the equation for the non-zero population sizes of M∗ surviv-
ing species in the stationary state can be obtained from Eq. (2.2a):

n∗
ρ =

1
ϵρ

(︃ R

∑
i=1

αρiri(c∗i )− 1
)︃

, (A.47)
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where 1 ≤ ρ ≤ M∗ are the species with non-zero population. Again, for
simplicity, we asume that βσ = 1.

In the above Eq. (A.47), we have to first find the distribution according to
which the numerator is distributed. We again stress that once αρi are drawn,
r(c∗i )-s are fixed numbers that only depend on the surviving species (n∗

ρ > 0).
Let us first discuss the numerator of the above equation. We define w =

h − 1, where

h =
R

∑
j=1

xjaj. (A.48)

We can write the mean and the variance of xj, respectively, as θ = ⟨xj⟩ and
ϕ2 = ⟨x2

j ⟩ − θ2 in which the angular brackets represent the average with
respect to the distribution with which α-s are distributed. Herein, xj-s and aj,
respectively, play the role of αρi and ri(ci) for a given ρ.

From Eq. (A.48), we can see the mean of ⟨h⟩ = θ ∑j aj. Therefore, the
quantity v = ∑j aj(xj − θ) has zero mean zero and variance given by

⟨v2⟩ = ∑
j

a2
j ⟨(xj − θ)2⟩+ ∑

i ̸=j
aiaj⟨(xi − θ)(xj − θ)⟩

= ∑
j

a2
j ⟨(xj − θ)2⟩+ ∑

i ̸=j
aiaj⟨xixj + θ2 − θxj − θxi⟩,

= ϕ2 ∑
j

a2
j , (A.49)

where the last term in the second equality is zero since xi-s are independent.
Now, we define the rescaled sum as

S = ∑
j

bjmj, (A.50)

where bj =
aj√︂
∑j a2

j

, and mj = (xj − θ)/ϕ. In the following, we also assume

that bj ∼ 1/
√

R.
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Now the probability density function for S is

P1(S) =
1

2π

∫︂
dk eikS

R

∏
j=1

(︃ ∫︂
dmj e−ikbjmj p(mj)

)︃

=
1

2π

∫︂
dk eikS

R

∏
j=1

⟨︃
e−ikbjmj

⟩︃

≈ 1
2π

∫︂
dk eikS

R

∏
j=1

[︃
1 − k2

b2
j

2
+ . . .

]︃

≈ 1
2π

∫︂
dk eikS

[︃
1 − k2 ∑R

j=1 b2
j

2
+ . . .

]︃
≈ 1

2π

∫︂
dk eikSe−k2/2

≈ 1√
2π

e−
S2
2 , (A.51)

where ∑j b2
j = 1, and each m has zero and unit variance, and also R ≫ 1.

Since h = Sϕ
√︂

∑j a2
j + θ ∑j aj, the probability density function for z is

p1(h) ≈
1√︂

2π(∑j a2
j )ϕ

2
exp

[︃
−
(h − θ ∑j aj)

2

2(∑j a2
j )ϕ

2

]︃
(A.52)

Therefore,

p2(w) ≈ 1√︂
2π(∑j a2

j )ϕ
2

exp
[︃
−
[w − (θ ∑j aj − 1)]2

2(∑j a2
j )ϕ

2

]︃
. (A.53)

Thus, the numerator of (A.47) is typically distributed according to the
above shown Gaussian distribution. In Figure A.2 (a), we compare the dis-
tribution given in Eq. (A.53) with proper rescaling where the rescaled vari-
able is ξ = w−⟨w⟩√

Var[w]
, with the numerical simulation of the dynamics given in

Eqs. (2.2a)-(2.2b), where the solid curve is the analytical prediction and the
circles are obtained from numerical simulation. We can see that there is a
good agreement between theory and numerical simulation.
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Now, we aim to find the ratio z = w/y assuming the denominator to be
uniformly distributed such that y ∈ U (c, d) this distribution, we have

P(z) =
∫︂

dw
∫︂

dy p2(w)Q2(y)δ
(︃

z − w
y

)︃
=

1
z2

∫︂
dw

∫︂
dy |w| p2(w)Q2(y)δ

(︃
y − w

z

)︃
≈ 1

z2
√

2πΣ2

∫︂ ∞

−∞
dw |w| exp

[︃
− (w −M)2

2Σ2

]︃
Q2(w/z)

≈ 1√
2πΣ2

∫︂ ∞

−∞
dt |t| exp

[︃
− z2 (t −M/z)2

2Σ2

]︃
[Θ(t − c)− Θ(t − d)]

≈ 1

(d − c)
√

2πΣ2

∫︂ d

c
dt t exp

[︃
− z2 (t −M/z)2

2Σ2

]︃
≈ 1√

2π(d − c)z2

[︃
Σ
(︃

e−
(M−cz)2

2Σ2 − e−
(M−dz)2

2Σ2

)︃
+

√︃
π

2
M
{︃

Erf
(︃
M− cz√

2Σ

)︃
− Erf

(︃
M− dz√

2Σ

)︃}︃]︃
, (A.54)

where M = θ ∑j aj − 1 and Σ =
√︂

ϕ2 ∑j a2
j . Here θ =

∫︁
dα p(α) α, ϕ2 =∫︁

dα p(α) (α − θ)2 and aj = rj(c∗j ).
In Figure A.2 (b), we compare the above Eq. (A.54) with the numerical

simulation of the dynamics given in Eqs. (2.2a)-(2.2b), where the solid curve
is the analytical prediction and the circles are obtained from numerical sim-
ulation. Finally, we stress that in this case, either exact or numerical value of
ri(c∗i ) is difficult to obtain. Therefore, we have taken ri(c∗i ) from the numeri-
cal simulation of dynamics Eqs. (2.2a)-(2.2b).

A.5 SAD pattern with the occurrence of some species
extinctions

In this section we compute the distribution of population sizes for surviving
species starting from a pool of M species at a large-time. Here again, we
consider the case when both α and ϵ are distributed uniformly.

Now the range of the numerator of (2.23) is p = 0, q = br̃(c∗)− 1 where
r̃(c∗) is the solution of Eq. (2.25).
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FIGURE A.2: Species in the presence of large number of resources. Panel
(a): We numerically verified the Gaussian distribution given in Eq. (A.53)
with proper rescaling where the rescaled variable ξ = w−⟨w⟩√

Var[w]
. The solid

curve is given by p(ξ) = 1√
2π

exp(−ξ2/2) whereas the circles are obtained
by numerically simulating the dynamics given in Eqs. (2.2a)-(2.2b). Panel
(b): We compare the complementary cumulative function obtained from
the analytical distribution given in Eq. (A.54) with the numerical simula-
tion of the dynamics. We can see that there is a good agreement between
theory and numerical simulation. For both panels, we consider M = 1000,
R = 50, µ = 0.001, k = 5, ασ ∼ U (1.5, 5.0), ϵσ ∼ U (0.01, 0.5), βσ = 1, Λi =
1.5 × 105 for all i. As we can see from the log-scales, the SAD displays a
power-law tail with exponent −2 (since F(z) ∼ z−1).

Thus, the probability distribution of population sizes of the coexisting
species is given by

P(z) =
∫︂ q

0
dx
∫︂ d

c
dy Q1(x)Q2(y) δ

(︃
z − x

y

)︃
=

1
q(d − c)

∫︂ q

0
dx
∫︂ d

c
dy [Θ(x)− Θ(x − q)][Θ(y − c)− Θ(y − d)]δ

(︃
z − x

y

)︃

=
1

q(d − c)z2

∫︂ q

0
dx|x|

=1 since 0<q⏟ ⏞⏞ ⏟
[Θ(x)− Θ(x − q)][Θ(x/z − c)− Θ(x/z − d)]

=
1

q(d − c)z2

∫︂ q

0
dx

x⏟⏞⏞⏟
|x| [Θ(x/z − c)− Θ(x/z − d)]. (A.55)

Finally, we replace x/z by t and get

P(z) =
1

q(d − c)
[I2(c, z)− I2(d, z)], where (A.56)
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FIGURE A.3: Complementary cumulative distribution function (CCDF)
for population of coexisting species. F(z) is shown for surviving species
starting from an initial number of species M. Circles are obtained by nu-
merically integrating Eqs. (3) and (4) (see main text) for time t = 108 for
M = 500 and one resource while dashed line is the analytical predic-
tion of CCDF: F(z) =

∫︁ ∞
z dy P(y), from Eq. (A.58). Squares and dia-

monds, respectively, are the numerical simulations when the number of
resources is R = 5 and 10. All cases exhibit a similar trend. The details
of simulation for R > 1 are given in Appendix A.3. The parameters are
ασ ∈ U (1.5, 10.0), βσ = 1, µ = 0.001, ϵσ ∈ U (0.0001, 0.0005), ki = 5, and
Λ = 5 × 108.

I2(κ, z) =
∫︂ q/z

0
dt t[Θ(t − κ)] =

⎧⎪⎨⎪⎩
0 κ > q/z,

1
2z2 (q

2 − κ2z2) 0 < κ < q/z,

(A.57)

which gives

P(z) =
J2(c, z)− J2(d, z)

2z2q(d − c)
, (A.58)

where J2(κ, z) = (q2 − κ2z2)Θ(q/z − κ).
In Figure A.3 we show the comparison of the analytical result (A.58) against

the result obtained for CCDF by numerical evolving Eqs. (2.2a)-(2.2b) for a Λ
such that some of the initial number of species survive. We also show the
comparison for a large number of resource case. All these cases show the
similar trend for the population distribution.



102 Appendix A. App. for Eff. Res.-Comp. Model for Species Coexistence

A.6 Power-law tail exponents of the SAD pattern

In this section, we present an analysis on our model to show it predicts fat-
tail probability distribution for the population size. Herein, we show how
power-law tails can be observed with a possible the range of variability of
the exponent. We remark that this calculation will predict the tails of the
empirical distribution of the Plankton data shown in the main text.

We recall the ratio z = x
y and its distribution, shown also in Eq. (2.34),

reads

P(z) =
1
z2

∫︂
dx

∫︂
dy |x|Q1(x)Q2(y) δ

(︂
y − x

z

)︂
. (A.59)

In the following, we show that our extended consumer-resource model could
retrieve a range of exponents for the power-law tail of the distribution. In
order to make things transparent, let us begin our analysis from a simple
setting: Q1(x) = δ(x − x̂). Hence Eq. (A.59) reduces to

P(z) =
x̂
z2 Q2(x̂/z) [Θ(x̂ − zy−)− Θ(x̂ − zy+)] , (A.60)

where we have assumed that the random variable y takes values in the inter-
val [y−, y+] (consequentially z ∈

[︂
x̂

y+ , x̂
y−

]︂
). Suppose the distribution Q2(y) is

Q2(y) =
N
yν

, (A.61)

where the normalization constant N is given by

1 =
N

1 − ν
[y−ν+1]

⃓⃓⃓⃓y+
y−

. (A.62)

Since we would like to deal with small y (i.e., small ϵ that gives large car-
rying capacity) we can consider the limit y− → 0. In this limit N diverges if
ν ≥ 1. Therefore, we must consider ν < 1. Moreover, on a physical ground,
we expect the probability density function of y (or ϵ) to decrease monotoni-
cally as y increases. This is because of the fact that a large number of species
might have a small value of ϵ (or y) that results in a large carrying capacity
for those species. Thus, under such assumption, we get 0 ≤ ν < 1. Therefore,
Eq. (A.60) becomes

P(z) =
B

z2−ν

[︁
Θ(x̂/y− − z)− Θ(x̂/y+ − z)

]︁
. (A.63)

where B = Nx̂1−ν. Notice that the first Heaviside function gives the largest
value of z above which the distribution vanishes. Therefore, we find that the
distribution P(z) is a power-law (with a prefactor):

P(z) ∼ z−γ. (A.64)
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FIGURE A.4: Comparison of analytical result (A.64) with the numer-
ical simulation. The solid curve is theoretical prediction of the com-
plementary cumulative distribution F(z) =

∫︁ ∞
z dy P(y) obtained from

Eq. (A.64), while the blue dots are obtained numerically after having sam-
pled M = 104 independent draws from the distribution Eq. (A.61). The
parameters for the plot are x̂ = 5, y− = 10−3, y+ = 1 and ν = 0.5. Clearly,
we can see that there is an excellent match. In the plot, the dashed line is
indicated for F(z) ∼ z−γ+1, where γ = 1.5. We remark that the deviation
at a large z from the power-law is due to presence of Heaviside functions
in the prefactor of Eq. (A.63), that introduce cut-off effects.

where γ = 2− ν ∈ (1, 2]. We stress that ν = 0 corresponds to the uniform dis-
tribution that we have considered in the previous sections. In Figure A.4, we
show the comparison of the complementary cumulative distribution function
F(z) =

∫︁ ∞
z dy P(y) obtained from Eq. (A.64) with the numerical simulation

(see caption of Figure A.4 for details).
We can extend this result to a broad class of distributions Q1(x) and Q2(y)

using asymptotic analysis. Let us assume y ∈ (0, y+] and x ∈ (0, x+). This
implies that z ∈ (0, ∞). From Eq. (A.59) we have that

P(z) =
1
z2

∫︂ min{x+,zy+}

0
dx x Q1(x)Q2(x/z). (A.65)

At this point we can distinguish two cases:

1. Q2(y) is regular at y = 0 with

di

dyi Q2(y)
⃓⃓⃓⃓
y=0

= 0 for i = 0, · · · , n − 1. (A.66)

Then, in the limit of large z we write the following expansion:

Q2

(︂x
z

)︂
=

xn

zn Q(n)
2 (0) + o

(︃
1
zn

)︃
. (A.67)
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Finally, we find

P(z) ∼ 1
z2+n

<∞⏟ ⏞⏞ ⏟(︃
Q(n)

2 (0)
∫︂ x+

0
dx x1+n Q1(x)

)︃
. (A.68)

2. Q2(y) diverges at y = 0 like a power-law, i.e, Q2(y) = A
yν with ν ∈

[0, 1). Therefore, we have ( x
z → 0 as z → ∞)

P(z) ∼ 1
z2−ν

<∞⏟ ⏞⏞ ⏟(︃
A
∫︂ x+

0
dx x1−ν Q1(x)

)︃
, (A.69)

where in both Eqs. (A.68) and (A.69), the prefactors remain finite.
In all cases, the distribution P(z) displays asymptotically a power-law

tail, i.e.,

P(z) ∼ 1
zγ

for large z, (A.70)

with γ ≥ 2 in the first case and 1 < γ ≤ 2 in the second one.
From an ecological point of view, the relevant case is the second one.

Hence, the analysis we performed here indicates that the model presented
in the main text predicts distributions of population size with power-law
tails whose exponents ranges in an interval that we have shown above. In
Figure A.5, we show the comparisons of the theoretical results for two con-
crete examples, one for each case discussed in Eqs. (A.68) and (A.69), with
the reuslts of the corresponding numerical simulations. Clearly, we can see
the theory and numerical evidences have a nice agreement.
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FIGURE A.5: Comparison of theoretical prediction of Eqs. (A.68) and
(A.69) with the numerical simulations. The solid curves are the theo-
retical prediction of the complementary cumulative distribution F(z) =∫︁ ∞

z dy P(y) obtained from Eq.(A.68) [for panel (a)] and Eq. (A.69) [for
panel (b)], while blue dots are obtained from numerical simulation in
which we generated M = 104 independent draws for the numerator and
denominator by sampling the respective probability distributions (details
are given below). Panel (a): We consider the case in which the denomina-
tor of the ratio z = x/y is distributed according to a regular function at
y = 0. In concrete, we take Q2(y) = Cy3 in the interval [0, 0.1] (C is the
normalization constant) while the numerator is assumed to be uniformly
distributed in the interval [1.5, 5], i.e., Q1(x) = U (1.5, 5). Panel (b): Q2(y)
is chosen to be a power-law distribution with exponent ν = 0.3 on the
same interval [0, 0.1] while the numerator is again distributed uniformly
in the interval [1.5, 5]. As expected, a power-law for large-z is observed.
In both panels, we plot the dashed line corresponding to F(z) ∼ z−γ+1,
where γ = 5 for panel (a) and for panel (b), we find γ = 1.7 as predicted
by the theoretical investigation in Eqs. (A.68) and (A.69).
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Appendix B

Appendix for Ginzburg-Landau
amplitude equation for nonlinear
nonlocal models

This Appendix, including the displayed Figures, is taken with permission
from the published paper [190]. Copyright (2021) by the American Physical
Society.

B.1 Derivation of Eq. (3.29)

In this section, we show the derivation to obtain the Eq. (3.29). We begin with
substituting Eqs. (3.24)–(3.28) into Eq. (3.12) which gives

ϵ3 φ̇1 + o
(︂

ϵ3
)︂
= ϵ

(︁
Lp0

φ1
)︁
+ ϵ2

[︃
Lp0

φ2 + C(2,0)
q0

φ2
1 + C(1,1)

q0
φ1(Gq0

∗ φ1)+

+ C(0,2)
q0

(︁
Gq0

∗ φ1
)︁2
]︃
+ ϵ3

[︃
Lp0

φ3 + δLp0
φ1 + 2C(2,0)

q0
φ1φ2+

+ C(1,1)
q0

[︁
φ1(Gq0

∗ φ2) + φ2(Gq0
∗ φ1)

]︁
+ 2C(0,2)

q0
(Gq0

∗ φ1)(Gq0
∗ φ2)+

+ C(3,0)
q0

φ3
1 + C(2,1)

q0
φ2

1(Gq0
∗ φ1) + C(1,2)

q0
φ1(Gq0

∗ φ1)
2 + C(0,3)

q0
(Gq0

∗ φ1)
3
]︃

,

(B.1)

where, for convenience, we have not written the x, ξ, t dependence in φi.
Note that the expansion of Eq. (3.12) should also include all the contribu-

tions at different orders of ϵ. Therefore, we have to also take into account the
ones coming from the spatial scale separation. Using Eq. (3.25), we can see
that

∂2
x →

(︁
∂x + ϵ∂ξ

)︁2
= ∂2

x + 2ϵ∂x∂ξ + ϵ2∂2
ξ , (B.2)

and this indicates how the Laplacian operator in the Lp0
given in Eq. (B.1),

transforms and operates on both x and ξ variables.
Next ingredient we need in the following is the convolutions between the

function Gq0
(x) and φi(x, ξ, τ) that appear in Eq. (B.1):

(Gq0
∗ φi)(x, ξ, τ) =

∫︂ +∞

−∞
dy Gq0

(x − y)φi(y, ξ ′, τ) dy, (B.3)
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where ξ = ϵx and ξ ′ = ϵy. Following [199], we write the above integration
(B.3) as

(Gq0
∗ φi)(x, ξ, τ) =

∫︂ +∞

−∞
dz Gq0

(−z) φi(x + z, ξ + ϵz, τ). (B.4)

where we make a change in the integration variable from x to z = y − x.
Expanding the above equation (B.4) about the slow variable ξ, and inte-

grating term by term yields

(Gq0
∗ φi)(x, ξ, τ) =

∞

∑
n=0

ϵn

n!
(Gq0

∗ φi)n, (B.5)

where, for brevity, we define

(Gq0
∗ φi)n(x, ξ, τ) =

∫︂ +∞

−∞
dz Gq0

(−z)zn ∂n φi

∂ξn (x + z, ξ, τ). (B.6)

With these considerations, the linear operator given in Eq. (3.27) can be rewrit-
ten as

Lp0
=

∞

∑
n=0

ϵnL(n)
p0

, (B.7)

where

L(0)
p0

φi(x, ξ, τ) = D0∂2
x φi(x, ξ, τ) + C(1,0)

q0
φi(x, ξ, τ) + C(0,1)

q0

(︁
Gq0

∗ φi
)︁

0 (x, ξ, τ),
(B.8)

L(1)
p0

φi(x, ξ, τ) = 2D0∂x∂ξ φi(x, ξ, τ) + C(0,1)
q0

(Gq0
∗ φi)1(x, ξ, τ), (B.9)

L(2)
p0

φi(x, ξ, τ) = D0∂2
ξ φi(x, ξ, τ) +

1
2

C(0,1)
q0

(Gq0
∗ φi)2(x, ξ, τ), (B.10)

L(n≥3)
p0

φi(x, ξ, τ) =
1
n!

C(0,1)
q0

(Gq0
∗ φi)n(x, ξ, τ). (B.11)

Finally, we obtain Eq. (3.29) in which

H1(p0, φ1) = L(0)
p0

φ1, (B.12)

H2(p0, φ1, φ2) = L(1)
p0

φ1 + L(0)
p0

φ2 + C(2,0)
q0

φ2
1 + C(1,1)

q0
φ1(Gq0

∗ φ1)0+

+ C(0,2)
q0

(︁
Gq0

∗ φ1
)︁2

0 , (B.13)
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H3(p0, φ1, φ2) = L(0)
p0

φ3 + δL(0)
p0

φ1 + L(2)
p0

φ1 + L(1)
p0

φ2 + 2C(2,0)
q0

φ1φ2+

+ C(1,1)
q0

[φ1(Gq0
∗ φ2)0 + φ2(Gq0

∗ φ1)0] + C(3,0)
q0

φ3
1+

+ 2C(0,2)
q0

(Gq0
∗ φ1)0(Gq0

∗ φ2)0 + C(2,1)
q0

φ2
1(Gq0

∗ φ1)0C(1,2)
q0

+

+ φ1(Gq0
∗ φ1)

2
0 + C(0,3)

q0
(Gq0

∗ φ1)
3
0 + C(1,1)

q0
φ1(Gq0

∗ φ1)1+

+ 2C(0,2)
q0

(︁
Gq0

∗ φ1
)︁

0

(︁
Gq0

∗ φ1
)︁

1 . (B.14)

B.2 Derivation of Eq. (3.32)

In this section, we present the detailed derivation to obtained the Eq. (3.32).
To do so, we group the second order terms in Eq. (3.29) by comparing the left
and right-hand side, and we obtain

H2(p0, φ1, φ2) = 0 (B.15)

that can be rewritten extensively as

L(0)
p0

φ2 = −C(2,0)
q0

φ2
1 − C(1,1)

q0
φ1(Gq0

∗ φ1)0 − C(0,2)
q0

(︁
Gq0

∗ φ1
)︁2

0 −L(1)
p0

φ1.
(B.16)

In order to find the solution φ2 we need to evaluate (Gq0
∗ φ1)0 and L(1)

p0
φ1.

Using Eqs. (B.6) and (3.31), we get

(Gq0
∗ φ1)0(x, ξ, τ) =

∫︂ +∞

−∞
Gq0

(−z)
[︃

A(ϵx, τ)eikM(p0)(x+z) + Ā(ϵx, τ)e−ikM(p0)(x+z)
]︃

dz.

(B.17)

Thanks to the even nature of the function Gq0
(z), we find

(Gq0
∗ φ1)0(x, ξ, τ) = G̃q0

(kM(p0))

[︃
A(ξ, τ)eikM(p0)x + Ā(ξ, τ)e−ikM(p0)x

]︃
= G̃q0

(kM(p0))φ1(x, ξ, τ). (B.18)

Let us now evaluate L(1)
p0

φ1. Doing some algebra, we get

L(1)
p0

φ1 = C(0,1)
q0

(Gq0
∗ φ1)1 + 2D0∂x∂ξ φ1, (B.19)

where

(Gq0
∗ φ1)1(x, ξ, τ) = (∂ξ A)(ϵx, τ)eikM(p0)(x) I + (∂ξ Ā)(ϵx, τ)e−ikM(p0)(x) Ī,

(B.20)

in which the integral

I =
∫︂ +∞

−∞
Gq0

(−z)zeikM(p0)zdz = −iG̃′(kM(p0)), (B.21)
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and Ī is its complex conjugate. Therefore, L(1)
p0

φ1 becomes

L(1)
p0

φ1 = i∂ξ A(ξ, τ)eikM(p0)x λ′
p0
(kM(p0))⏞ ⏟⏟ ⏞
=0

+

+ i∂ξ Ā(ξ, τ)e−ikM(p0)x λ′
p0
(−kM(p0))⏞ ⏟⏟ ⏞

=0

= 0. (B.22)

Using Eqs. (B.18), (B.20), and (B.22) in Eq. (B.16), we finally get

L(0)
p0

φ2 = Σp0
φ2

1, (B.23)

where we define the coefficient Σp0
as

Σp0
= −C(2,0)

q0
− C(1,1)

q0
G̃q0

(kM(p0))− C(0,2)
q0

G̃q0
(kM(p0))

2. (B.24)

Clearly, Eq. (B.23) satisfies the Fredholm’s alternative since φ2
1 ̸∈ ker

(︂
L(0)

p0

)︂
.

In fact, the right-hand side of Eq. (B.23) is orthogonal to φ1, and therefore,
using Fredholm’s alternative, Eq. (B.16) admits a bounded solution. Thus,
using Eq. (3.31) in (B.23), we obtain the solution φ2(x, ξ, τ) and it is shown in
Eq. (3.32).

B.3 Derivation of Eq. (3.34): the GL amplitude equa-
tion

Here, we obtain the GL amplitude equation shown in Eq. (3.34). In the fol-
lowing, we compare the terms of third order in ϵ in the two sides of expan-
sion (3.29). Therefore, we get

φ̇1 = H3(p0, φ1, φ2) (B.25)

that can be recast as

−L(0)
p0

φ3 = −φ̇1 + δL(0)
p0

φ1 + 2C(2,0)
q0

φ1φ2 + C(1,1)
q0

[︁
φ1(Gq0

∗ φ2)0+

+ φ2(Gq0
∗ φ1)0

]︁
+ 2C(0,2)

q0
(Gq0

∗ φ1)0(Gq0
∗ φ2)0 + C(3,0)

q0
φ3

1+

+ C(2,1)
q0

φ2
1(Gq0

∗ φ1)0 + C(1,2)
q0

φ1(Gq0
∗ φ1)

2
0 + C(0,3)

q0
(Gq0

∗ φ1)
3
0+

+ C(1,1)
q0

φ1(Gq0
∗ φ1)1 + 2C(0,2)

q0

(︁
Gq0

∗ φ1
)︁

0

(︁
Gq0

∗ φ1
)︁

1 +

+ L(2)
p0

φ1 + L(1)
p0

φ2. (B.26)
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We substitute the expression of (Gq0
∗ φ2)0 [following Eqs. (B.6) and (3.32)],

δL(0)
p0

φ1, and L(2)
p0

φ1:

(Gq0
∗ φ2)0(x, ξ, τ) = Σp0

{︃
G̃q0

(2kM(p0))

λp0
(2kM(p0))

[︁
A2(ξ, τ)e2ikM(p0)x+

+ Ā2(ξ, τ)e−2ikM(p0)x]︁+ 2G̃q0
(0)

λp0
(0)

|A(ξ, τ)|2
}︃
+

+ G̃q0
(kM(p0))Λ(x, ξ, τ), (B.27)

δL(0)
p0

φ1 = v̂ ·
(︂
∇⃗pL(0)

p

)︂
|p=p0

φ1 ≡ λ̄M φ1, (B.28)

L(2)
p0

φ1 =
1
2

C(0,1)
q0

(Gq0
∗ φ1)2 + D0∂2

ξ φ1, (B.29)

in Eq. (B.26), where

(Gq0
∗ φ1)2(x, ξ, τ) = −G̃′′(kM(p0))∂

2
ξ A(ξ, τ))eikM(p0)x+

− G̃′′(−kM(p0))∂
2
ξ Ā(ξ, τ))e−ikM(p0)x. (B.30)

Notice that in arriving the above form of (Gq ∗ φ1)2(x, ξ, τ) we have used the
same strategy as in Eq. (B.20). Thus, Eq. (B.29) becomes

L(2)
p0

φ1 = −1
2

λ′′
p0
(kM(p0))∂

2
ξ A(ξ, τ))eikM(p0)x+

− 1
2

λ′′
p0
(−kM(p0))∂

2
ξ Ā(ξ, τ))e−ikM(p0)x. (B.31)

Finally, we substitute Eqs. (B.27), (B.28), (B.31), and φ1 from Eq. (3.31)
in Eq. (B.26). Since φ3 has to be bounded, the right-hand side of Eq. (B.26)
must be orthogonal to φ1 (Fredholm’s alternative). Therefore, setting the co-
efficients of eikM(p0)x in Eq. (B.26) equal to zero while noticing that L(1)

p0
φ2 +

C(1,1)
q0

φ1(Gq0
∗ φ1)1 + 2C(0,2)

q0

(︁
Gq0

∗ φ1
)︁

0

(︁
Gq0

∗ φ1
)︁

1 does not have any term
proportional to eikM(p0)x, we obtain the GL amplitude equation as shown in
Eq. (3.34), where λ̄M is given in (3.22) and the coefficient α has the following
form:

α = −
{︃

2Σp0
C(2,0)

q0

[︃
2

λp0
(0)

+
1

λp0
(2kM(p0))

]︃
+ Σp0

C(1,1)
q0

[︃
2

G̃q0
(0) + G̃q0

(kM(p0))

λp0
(0)

+

+
G̃q0

(kM(p0)) + G̃q0
(2kM(p0))

λp0
(2kM(p0))

]︃
+ 2Σp0

C(0,2)
q0

G̃q0
(kM(p0))

[︃
2G̃q0

(0)
λp0

(0)
+

+
G̃q0

(2kM(p0))

λp0
(2kM(p0))

]︃
+ 3C(3,0)

q0
+ 3C(2,1)

q0
G̃q0

(kM(p0)) + 3C(1,2)
q0

(G̃q0
(kM(p0)))

2+
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+ 3C(0,3)
q0

(G̃q0
(kM(p0)))

3
}︃

. (B.32)

B.4 Particular solutions of the GL amplitude equa-
tion

In this section, we present two interesting analytical solutions of the GL am-
plitude equation (3.34).

Let us substitute the complex amplitude A(ξ, τ):

A(ξ, τ) = |A(ξ, τ)|eiθ(ξ,τ) (B.33)

where both |A(ξ, τ)| and θ(ξ, τ) are real functions of ξ and τ, in Eq. (3.34).
Separating the real and imaginary parts, we obtain a set of coupled differ-
ential equations for the modulus |A(ξ, τ)| and the phase of the amplitude
θ(ξ, τ):

∂τ|A| = λ̄M|A| − α|A|3+

+
1
2

⃓⃓
λ′′

p0
(kM(p0))

⃓⃓ [︂
∂2

ξ |A| − |A|(∂ξθ)2
]︂

, (B.34)

|A|∂τθ =
1
2

⃓⃓
λ′′

p0
(kM(p0))

⃓⃓ [︂
2(∂ξ |A|)(∂ξθ) + |A|∂2

ξθ
]︂

, (B.35)

where, for convenience, we have dropped the arguments in both |A(ξ, τ)|
and θ(ξ, τ).

It is difficult to obtain the solution of above coupled differential for a
generic initial condition. Nonetheless, for some particular initial conditions,
the exact solution can be obtained. As a first example, we consider an initial
homogeneous condition, i.e.,

A(ξ, 0) ≡ A0eiθ0 , (B.36)

where both A0 and θ0 are independent of ξ. Therefore, the solution in this
case can be obtained as

|A(ξ, τ)| =
A0
√︁

λ̄M exp
(︁
λ̄Mτ

)︁√︂
λ̄M + A2

0α
[︁
exp

(︁
2λ̄Mτ

)︁
− 1
]︁ , (B.37)

θ(ξ, τ) = θ0, (B.38)

and they satisfy both Eq. (B.34) and (B.35) and the initial condition Eq. (B.36).
Thus, for a given initial homogeneous condition, the GL amplitude equa-
tion predicts the amplitude to be homogeneous where only the modulus |A|
evolves with time τ.

To obtain a spatial solution of the amplitude equation, we again consider
an initial homogeneous condition for the phase, i.e., θ(ξ, 0) ≡ θ0. Thus, the
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equation for the modulus of the amplitude reduces to

∂τ|A| = λ̄M|A| − α|A|3 + 1
2
|λ′′

p0
(kM(p0))|∂2

ξ |A| (B.39)

A steady solution |Ast(ξ)| of above Eq. (B.39) can be obtained by setting the
left hand side of Eq. (B.39) to 0, and we get

|Ast(ξ)| = ±
√︃

λ̄M

α
tanh

[︄
ξ

√︄
λ̄M⃓⃓

λ′′(kM(p0))
⃓⃓ ]︄ . (B.40)

as one possible solution, as shown in Ref. [67].
Since |Ast(ξ)| must be non-negative, a solution that satisfies this condition

can be constructed as

|Ast(ξ)| =
√︃

λ̄M

α
tanh

[︄
|ξ|
√︄

λ̄M⃓⃓
λ′′(kM(p0))

⃓⃓ ]︄ . (B.41)

In the above solution, we consider both solutions (B.40) depending on the
sign of the variable ξ and introduce a defect at ξ = 0, where the amplitude
becomes zero. In fact, this solution also satisfies the amplitude equation ev-
erywhere except at the defect where it changes the behavior passing from
one to the other solution displayed in Eq. (B.40).

It is possible to show analytically that the homogeneous solution of Eq. (3.34)
is linearly stable while the steady spatial one (B.40) is locally linearly unsta-
ble. In other words, the numerical spatial solution is a good approximation of
the analytical prediction only up to a finite observation time. Indeed, because
of numerical inaccuracies, at larger time scales the profile will inevitably fall
into the basin of attraction of the stationary stable solution.

B.5 Numerical Methods

In this section, we discuss the method of numerical simulation to verify the
analytical prediction of the amplitude equation Eq. (3.34). As an example, we
consider the discrete nonlocal Fisher equation. To do so we consider a one
dimensional line where the spatial variable x ranges from −L to L. Then we
discretize the space creating a lattice introducing the discrete spatial variable
xi defined as follows

xi = −L + i dx where i = 1, . . . , N, (B.42)

with xN = x0 [i.e., periodic boundary condition (PBC)]. In the above equa-
tion, dx = 2L/N is the uniform spacing.
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FIGURE B.1: Comparison between theoretical prediction of the GL am-
plitude equation (3.34) with the initial condition A(ξi, 0) = |A(ξi, 0)| =
A0 = 0.05 (solid red line) and the amplitude obtained from the numer-
ical simulation (blue dashed line) for the discrete nonlocal F-KPP equa-
tion where the system is initialized in the state ϕi(ξi, 0) = ϕ(xi, ξi, 0) =

ϕ
(0)
q + 2ϵA0 cos [kM(p0)xi]. In the numerical implementation, we take

N = 3060 species equispaced along a ring of length 2L = 3, and these
are interacting among each others with an interaction kernel given by
Gq(z) = exp

(︂
− |z|

R

)︂
− b exp

(︂
− |z|

βR

)︂
. In the left panel, the amplitude is

extracted from the numerical simulation exploiting Eq. (B.48) whereas in
the right panel, we employ the truncated series (3.26) up to second order
to estimate the amplitude from the same numerical simulation. Insets in
the two plots show the zooming of the curves up to a particular range of
time τ. Both plots are shown for fixed sets of parameters p and p0. In par-
ticular, here we set R = 0.1, β = 0.5851, b = 0.6, a = 10−4, and D = 10−8.
To compute the coefficients of Eq. (3.34) we used the set p0 in which we
tuned β leaving the other parameters fixed.
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FIGURE B.2: Comparison of theoretical prediction of the GL amplitude
equation (3.34) (solid red line) with the numerical simulation (blue cir-
cles and green squares) for the discrete nonlocal F-KPP equation using
the defective steady solution Ast(ξ) (B.41) and ϕi(ξi, 0) = ϕ(xi, ξi, 0) =

ϕ
(0)
q + 2ϵAst(ξi) cos [kMp0)xi], respectively, as initial conditions. From the

numerical integration of the discrete CLV dynamics, we extract the enve-
lope of the pattern using its local maxima (circles) and minima (squares).
In the left panel, the amplitude is extracted from the numerical simulation
exploiting Eq. (B.48) whereas in the right panel, we use the truncated se-
ries (3.26) up to second order to estimate the amplitude from the same nu-
merical simulation. We show in the main plots the comparison at t = 106

of the discrete nonlocal F-KPP equation, while in the insets the compari-
son is displayed at t = 102 (a) and t = 104 (b). Clearly, we can see that
when we consider the higher-order contribution the agreement improves
at larger time. The simulated dynamics, including the interaction kernel
and the sets of parameter p and p0 used, is the same one presented in the
caption of Figure B.1, where the initial condition has been changed.
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The dynamics described by the discrete nonlocal Fisher-KPP equation
reads as

∂tϕi(t) = ϕi(t)
[︃

1 − a
N

∑
j=1

Gq (min{|i − j|dx, 2L − |i − j|dx}) ϕj(t)
]︃
+ D∆ϕi(t).

(B.43)
where the kernel respects PBC. The above equations (B.43) are supplemented
with initial conditions ϕi(t = 0) which we will discuss later.

In the above Eq. (B.43), the subscript i corresponds to i-th position along
the lattice, ϕi(t) is the value of the field at that position at time t and the
discrete Laplacian operator ∆ acting on the field ϕi is defined as

∆ϕi =
ϕi−1 − 2ϕi + ϕi+1

dx2 .

The homogeneous and stationary solution corresponding to Eq. (B.43) is
given by

ϕ
(0)
q =

1
a ∑N

j=1 Gq (min{|i − j| dx, 2L − |i − j| dx})

=
1

2a ∑
N
2 −1
j=1 Gq(j dx) + a Gq(L) + a Gq(0)

. (B.44)

Now, to understand the stability of ϕ
(0)
q , we substitute ϕj(t) ≡ ϕ

(0)
p +

δeλp(kn)t+iknxj + c.c., where 0 < δ ≪ 1 and kn = n π
L with n being an integer,

in Eq. (B.43). Therefore, we obtain the following dispersion relation (up to a
linear order in δ)

λp(kn) = −
g̃q(kn)

g̃q(0)
+ 2D

cos (kn dx)− 1
dx2 , (B.45)

where we have introduced the discrete Fourier transform as

g̃q(kn) = 2

N
2 −1

∑
j=1

cos (kn j dx) Gq(j dx)+

+ (−1)nGq(L) + Gq(0). (B.46)

In the following, we describe the recipe to obtain the amplitude of the
pattern formed near the critical hypersurface M (Figure 3.1) by numerical
simulating Eq. (B.43). We stress that the theoretical prediction of amplitude
equation [see Eq. (3.34)] does not get affected for the above discussed model.
In this case, we just replace the Fourier transform with its discrete counter-
part (B.46).

First, we consider a point p in the pattern forming region (See Figure 3.1)
and find the value of λM using Eq. (B.45), where λM = maxkn{λp(kn)}. Then
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we take the point p0, that lies on M around which we perform the expan-
sion as discussed in Section 3.5, and we compute kM(p0) and the coefficients
appearing in Eq. (3.34).

We note that in general for the continuous model shown in Eq. (3.1), the
analytical solution of the dynamics [using solution of Eq. (3.34) given initial
conditions, and Eq. (3.26)] can be written as (up to first order in ϵ)

ϕ(x, ξ, τ) ≈ ϕ
(0)
q + ϵφ1(x, ξ, τ)

≈ ϕ
(0)
q + 2ϵ|A(ξ, τ)| cos [kM(p0)x + θ(ξ, τ)] , (B.47)

where A(ξ, τ) = |A(ξ, τ)|eiθ(ξ,τ). Therefore, the analogous discrete version
of the above solution is

ϕi(ξi, τ) = ϕ(xi, ξi, τ)

≈ ϕ
(0)
q + 2ϵ|A(ξi, τ)| cos [kM(p0)xi + θ(ξi, τ)] , (B.48)

where xi corresponds to discrete spatial location of the i-th species.
Here we aim to compare the amplitude given in the Eq. (B.48) with the

numerical simulation. To do so, we use the same initial and boundary condi-
tions imposed on the solution (B.48). Finally, we verify the analytical predic-
tion for growth of the amplitude for two different initial conditions given in
Eqs. (B.37), (B.38), and (B.41) in Figures B.1 and B.2.
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Appendix C

Appendix for Stochastic
amplification in delayed and noisy
systems

C.1 Asymptotic stability and damped oscillations
from when a > −b

In this section we provide some results regarding the solution of chap: amp-
eq in the deterministic limit D = 0. Hence the dynamics is a linear delayed
differential equation that reads

dx(t)
dt

= −ax(t)− bx(t − τ). (C.1)

In all Chapter 4 we considered a > b > 0. Herein, we consider the most
general case where with a > −b and τ > 0.

The asymptotic stability of the stationary state x̄ = 0 of Eq. (C.1) can be
proved when −b < a < b with b > 0 and 0 < τ < τ∗ =

(︁
b2 − a2)︁−1/2 cos−1 (︁− a

b
)︁

[141].
Of course, the characteristic equation and its solution, displayed in Eqs. (4.9)

and (4.11), respectively, are left unchanged. Hence, the condition to observe
asymptotic damped oscillations is still

−bτeτa < −e−1 =⇒ bτeτa > e−1 (C.2)

We can immediately see that if b < 0, the above inequality will never be
satisfied. Therefore in the following we will always have b > 0.

Since −b < a < 0, when we multiply both sides of Eq. (C.2) by a we end
up with

aτeaτ <
a
eb

, (C.3)

that retrieves

τ > τc =
W
(︁ a

eb
)︁

a
, (C.4)

as in the case a > b > 0 discussed in the Chapter.
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Therefore, to sum up, in order for the deterministic dynamics to display
damped oscillations we need a > −b with b > 0 and τ > τc.

C.2 Generic solution of a linear delayed ordinary
differential equation

In this section we are going to show the full solution of a generalized version
of the deterministic delayed equation Eq. (4.1) where the discrete delay term
is substituted with a distributed counterpart. Such term is mathematically
expressed as an average over the past states acquired during the evolution
x(t − z) weighted with a kernel function G(z). So the deterministic version
of the equation now becomes

dx(t)
dt

= −ax(t)− bI(t) (C.5)

where the functional I(t) is the distributed delay taking the form

I(t) =
∫︂ +∞

0
dz G(z)x(t − z) (C.6)

where, without any loss of generality, we assume the kernel to be normalized,
i.e.,

∫︁ +∞
0 dz G(z) = 1. We can easily notice that using G(z) = δ(z − τ) we

recover the deterministic Eq. (1) of the main text.
We start by taking the Laplace transform of Eq. (C.5) obtaining

sx̃(s)− x(0) = −ax̃(s)− b
∫︂ +∞

0
dz
∫︂ +∞

0
dt G(z)e−stx(t − z)

= −ax̃(s)− b
∫︂ +∞

0
dz G(z)e−sz

∫︂ +∞

−z
du e−sux(u)

= −ax̃(s)− b
(︃∫︂ +∞

0
dz G(z)e−sz

)︃(︃∫︂ +∞

0
du e−sux(u)

)︃
+

− b
∫︂ +∞

0
dz G(z)e−sz

∫︂ 0

−z
du e−sux(u)

= −ax̃(s)− bG̃(s)x̃(s)− bJ(s) (C.7)

where x̃(s) and G̃(s) indicate the Laplace transform of x(t) and G(t), respec-
tively, x(0) = x(t = 0) is the state at time t = 0 and J(s) is defined as

J(s) =
∫︂ +∞

0
dz G(z)e−sz

∫︂ 0

−z
du e−sux(u) (C.8)

Notice that this is a functional of the past history we used as initial condition
of the system for negative times. We use an initial condition x(t) for t ∈
(−∞, 0] which is continuous and such that J(s) exists and it is finite.
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From Eq. (C.7) we find

x̃(s) =
x(0)− bJ(s)

s + a + bG̃(s)
(C.9)

If J(s) has no poles with negative real part and its zeros do not coincide with
those of the denominator of Eq. (C.9), then the poles of Eq. (C.9) are the so-
lutions of the characteristic equation of Eq. (C.5) obtained by inserting the
ansatz x(t) = Ceλt for the asymptotic solution, i.e.,

λ = −a − bG̃(λ) (C.10)

As we argued in the main text, studying the solutions λ of this equation we
can understand the asymptotic stability of the dynamics.

Finally the solution of Eq. (C.5) can be found from Eq. (C.9) by performing
the inverse Laplace transform, i.e.,

x(t) =
1

2πi
lim

γ→∞

∫︂ c+iγ

c−iγ
ds

x(0)− bG̃(s)J(s)
s + a + bG̃(s)

est

=
1

2πi
lim

γ→∞

[︃∫︂ c+iγ

c−iγ
ds

x(0)
s + a + bG̃(s)

est − b
∫︂ d+iγ

d−iγ
ds

G̃(s)J(s)
s + a + bG̃(s)

est
]︃

(C.11)

where c and d are real numbers taken such the integration paths in the com-
plex plane lie in the convergence region of the arguments of the two integrals.

In particular, to ensure the asymptotic stability of the dynamics we need
to have that all the solutions of the characteristic equation have a negative
real part, i.e., all the poles of Eq. (C.9) lie in the left half of the complex plane.
We have also to consider that J(s) could have poles lying in the convergence
region.

If the poles are simple, we can compute Eq. (C.11) using Cauchy’s inte-
gration with the residues. In this way we get (assuming for simplicity here
that J(s) does not have poles with negative real parts)

x(t) = ∑
i

x(0)− bJ(λi)

1 + bG̃′(λi)
eλit (C.12)

where the summation is performed over the solutions of the characteristic
equation Eq. (C.10). So we can see that the solution x(t) is expressed as lin-
ear combination of exponential functions. In particular, asymptotically the
stability is determined by the eigenvalue with the largest real part, which
corresponds to the analysis we discussed in the main text.
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C.3 Occurrence of stochastic amplification when
a > −b

We hereby consider the case in which −b < a < b, opposite to the case
a > b > 0 considered in Chapter 4. Here we find, independently of the
region of the parameters considered, that the condition for which ω = 0 is a
local minimum of the power-spectrum Eq. (4.27) is

bτ(2 + aτ)− 1 > 0 (C.13)

In the case a > 0 this requires

τ > τa =
−1 +

√︂
1 + a

b

a
(C.14)

If instead we have −b < a < 0 < b Eq. (C.13) gives us the condition

τa =
−1 +

√︂
1 + a

b

a
< τ <

1 +
√︂

1 + a
b

|a| = τ̄a (C.15)

In this way, when a > −b and b > 0 we need τ > τa > 0 to observe
stochastic amplification, identifying in this way a new threshold. In the next
section we will show that given a, b such that we need τ < τ∗ to ensure sta-
bility in the deterministic dynamics, we will have that τa < τ∗. Additionally,
if a < 0 we also have τ∗ > τ̄a

C.4 Order relation between the thresholds τc, τa

and τ∗

So far we found three thresholds for the parameter τ once the other two other
parameters of Eq. (4.1) are fixed with a > −b: one for the stationary deter-
ministic solution to be stable, i.e., τ < τ∗ when either −b < a < b with
b > 0 (if a > b > 0 is always stable and so such threshold does not exist
anymore), the second for the deterministic case to display oscillating solu-
tions, i.e., τ > τc, and the last for the stochastic version to ensure stochastic
amplification to occur, i.e., τ > τa.

It is natural to ask which is the order relation between these depending
on a and b. It is possible to show that we always have that τc < τa and
τc < τa < τ∗ when τ∗ exists. When a > 0 we can also show that τa < τ∗ < τ̄a.
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FIGURE C.1: Graphical proof that Eq. (C.17) is satisfied, where we used
y = a

eb . In particular we can see that W(y) > −1 +
√︁

1 + ey whenever
y > 0, whereas the second inequality holds when 0 < y < e−1, i.e., when
last term takes real values and so when τ∗ exists. The orange dashed

line correspond to y = e−1 after which
cos−1(− a

b )
|a|
√

(b/a)2−1
(hence ∗τ∗) does not

exists anymore. Hence these comparisons would be enough to conclude
that with a > 0 we have τc < τa always, but also that τc < τa < τ∗ in
the region of the parameters in which the last threshold exists, i.e., when
0 < a < b.

To do so, looking at the expression for τc, τa and τ∗ we gave in the main
text, we need to show

⏞ ⏟⏟ ⏞
for a>−b

1
a
· W

(︂ a
eb

)︂
<

for |a/b|<1⏟ ⏞⏞ ⏟
−1 +

√︂
1 + a

b

a
<

cos−1 (︁− a
b
)︁

|a|
√︁
(b/a)2 − 1

(C.16)

Let us consider first the case a > 0. In this case Eq. (C.16) is equivalent to

⏞ ⏟⏟ ⏞
for a/b>0

W
(︂ a

eb

)︂
<

for 0<a/b<1⏟ ⏞⏞ ⏟
−1 +

√︃
1 +

a
b
<

cos−1 (︁− a
b
)︁√︁

(b/a)2 − 1
(C.17)

To start, we can show these comparisons by plotting the three functions
after having defined y = a

eb . The result, which confirms that Eq. (C.16) holds
for a > 0, is displayed in Figure C.1.
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FIGURE C.2: Graphical proof that Eq. (C.17) is satisfied for −e−1 < y < 0,
where y = a

eb . Thanks to this we can conclude that τc < τa < τ∗ when
−b < a < 0 < b.

If a < 0 instead, looking at Eq. (C.16) we need to show that

W
(︂ a

eb

)︂
> −1 +

√︃
1 +

a
b
> −

cos−1 (︁− a
b
)︁√︁

(b/a)2 − 1
(C.18)

Here we are going to show this again through the graphical comparison
shown in Figure C.2. In this we defined again y = a

eb with −e−1 < y < 0
(remember that in order to have stability when a < 0 we need −b < a < 0 <
b).

In this way we shown that τc < τa < τ∗, proving that for fixed a and
b there is a range of values for the delay in which the mean-field limit of
the dynamics displays damped oscillations, however the noise is not able to
sustain them. Also in this regime the mean-field stationary solution is stable
and hence everything is well-defined.

Last we can also show by graphical comparison that for −b < a < 0 < b
we always have τ∗ < τ̄a. This is equivalent to

cos−1 (︁− a
b
)︁

|a|
√︁
(b/a)2 − 1

<
1 +

√︂
1 + a

b

|a| (C.19)

Calling q = a
b where −1 < q < 0, Eq. (C.19) can be written as

cos−1 (−q)√︂
1
q2 − 1

< 1 +
√︁

1 + q (C.20)

Figure C.3 shows that Eq. (C.20) holds, proving τ∗ < τ̄a as we wanted.



C.5. Stochastic amplification without asymptotic damped oscillations 125

-1.0 -0.8 -0.6 -0.4 -0.2 0.0

0.0

0.5

1.0

1.5

2.0

FIGURE C.3: Graphical proof that Eq. (C.20) is satisfied for −1 < q < 0,
where q = a

b . Thanks to this we can conclude that τ∗ < τ̄a when −b <
a < 0 < b.

C.5 Stochastic amplification without asymptotic damped
oscillations

In this section we are going to show that the framework accounting for dis-
tributed delay can display non-trivial peaks in the power-spectrum even if
the deterministic dynamics asymptotically does not oscillate.

To do so, for the sake of concreteness, we consider an exponential memory
kernel, i.e.,

G(z) =
e−t/τ

τ
(C.21)

which of course it is the the Gamma distribution we presented in Eq. (4.56)
for k = 1.

In this case, the characteristic equation Eq. (4.41) reduces to

λ + a +
b

1 + λτ
=

τλ2 + (1 + aτ)λ + a + b
1 + λτ

= 0 (C.22)

So the roots are found to be

λ1,2 =
−(1 + aτ)±

√︁
(1 + aτ)2 − 4τ(a + b)

2τ
(C.23)

From Eq. (4.58) we can see that in the exponential case we get

P(ω) =
D(︃

a + b
1+(ωτ)2

)︃2

+

(︃
ω − bω

1+(ωτ)2

)︃2 (C.24)
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with the general condition to have a non-trivial peak becoming

(1 − bτ)2 − 2τ2b(b + a) < 0 (C.25)

since µ1 = τ and µ2 = 2τ2.
For a fixed τ, we can search for the regions of the model parameters a

and b for which the system is deterministically and asymptotically stable
(Re [λ1,2] < 0), where the dynamics displays damped oscillations (Re [λ1,2] <
0 and Im [λ1,2] ̸= 0) and when condition Eq. (C.25) is fulfilled. Doing this
for τ = 1, we obtain Figure C.4. Surprisingly, we find a region (indicated by
the black star) in which the system does not display damped oscillations but
we predict a non-trivial peak in the power-spectrum. We also check this by
computing the numerical power-spectrum for a and b in such region and we
show the result in Figure tot. As we can see a clear peak emerge in the the-
oretical power-spectrum and in the numerical one, which show an excellent
agreement, emerges, although with the parameters we chose for the simula-
tion we find real and negative values for λ1,2.

Hence to understand what is happening, we have to go beyond the simple
asymptotic analysis of the deterministic dynamics and look at the solution
we obtained in Eq. (C.11). In the exponential kernel scenario, we can see that
Eq. (C.9) becomes

x̃(s) =
x(0)− bJ(s)

τ(s − λ1)(s − λ2)
(1 + sτ) (C.26)

since G̃(s) = 1
1+sτ . Assuming that the initial condition used are such that

J(s) does not have any pole with negative real part we get that

x(t) =
1

τ (λ1 − λ2)

{︁
(1 + λ1τ) [x(0)− bJ (λ1)] eλ1t − (1 + λ2τ) [x(0)− bJ (λ2)] eλ2t}︁

(C.27)
Setting t = 0, we can see that for consistency this is a solution, i.e., we

retrieve x(t = 0) = x(0), if and only if we get

(1 + λ1τ)J(λ1) = (1 + λ2τ)J(λ2) (C.28)

Hence Eq. (C.27) is a solution only if we consider initial condition satisfying
Eq. (C.28). For example, if we assume that x(t) = x(0)ekt for k > 0, we get

J(s) =
x(0)τ

(1 + kτ)(1 + sτ)
(C.29)

and we can immediately see that Eq. (C.28) holds. So we get that

x̃(s) =
x(0)(1 + sτ)− b x(0)τ

1+kτ

τ(s − λ1)(s − λ2)
(C.30)

and we see that all its poles come from the solutions of the characteristic
equation. Thus, the solution in the time domain x(t), shown in Eq. (C.27), is
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FIGURE C.4: Phase diagram in the a− b plane characterizing the behavior
of the dynamics Eq. (4.39) with the exponential kernel Eq. (C.21) (τ = 1).
Outside the colored area the system is unstable, whereas inside the col-
ored area x̄ = 0 is asymptotically stable in the deterministic dynamics. In
the blue sub-region the system approaches asymptotically x̄ via exponen-
tial decay, while in the orange one damped oscillations can be observed.
Finally the green tells us where power-spectrum of the random fluctua-
tions presents a non-trivial peak. Interestingly, we can see that there is
a region, indicated by the black star, where we have a non trivial peak
in the power-spectrum, but the deterministic dynamics does not present
oscillations, i.e., we have stochastic amplification even without damped
oscillations.



128 Appendix C. App. for Stoch. Amp. in delay and noisy systems

●
●
●●

●●

●●

●
●●●●

●●
●
●
●●●

●●●
●
●
●●

●●
●●●●●

●●●●●●
●●

●●
●●●●●●●●●●●●●●●●●

0 2 4 6 8 10

0.00

0.01

0.02

0.03

0.04

0.05

0.06

FIGURE C.5: Comparison between the theoretical power-spectrum (solid
red line) in the case of distributed delay with an exponential kernel
Eq. (C.21) and the one numerically obtained as an average from 1000 inde-
pendent realizations (blue dots). The time increment used is dt = 5 · 10−4.
The parameters are a = 4, b = 2, τ = 1 and D = 1. The clear presence of a
peak is the signature that also in this case the stochastic amplification phe-
nomenon occurred, however we also have λ1 ≈ −1.38 and λ2 ≈ −3.62,
so the system does not show damped oscillations.

given by the following expression

x(t) =
x(0)

τ (λ1 − λ2)

{︃ [︃
(1 + λ1τ)− bτ

1 + kτ

]︃
eλ1t −

[︃
(1 + λ2τ)− bτ

1 + kτ

]︃
eλ2t
}︃

(C.31)
Assuming the system does not display asymptotic damped oscillations,

i.e., λ1,2 are real and negative, we can search if Eq. (C.31) becomes zero for
t = t∗ > 0. This gives

t∗ =
1

λ1 − λ2
ln
(︃

x(0) (1 + λ2τ)− b (1 + λ2τ) J(λ2)

x(0) (1 + λ1τ)− b (1 + λ1τ) J(λ1)

)︃
> 0 (C.32)

If we take λ1 > λ2 the above inequality reduces to

x(0) (1 + λ2τ) + Λ
x(0) (1 + λ1τ) + Λ

> 1 (C.33)

where Λ = −b(1 + λ1τ)J(λ1) = −b(1 + λ2τ)J(λ2), as we employed the
condition Eq. (C.28). We can still simplify the above inequality to obtain

1 + λ2τ

1 + λ1τ
> 1 (C.34)

In order to be true, numerator and the denominator need to have the same
sign. Moreover, since we know that λ1 > λ2, finally we get that the condition
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to have t∗ > 0 reads
λ2 < λ1 < −1

τ
(C.35)

independently of the initial condition we used. Searching the region of the
parameters space where such condition is met, we obtain Figure C.6. This
shows that the necessary condition to ensure the occurrence of stochastic am-
plification is the deterministic solution to cross the zero, even a finite number
of times. Asymptotically this is granted in the case of damped oscillations.
More in general, as we discussed in this section, one should be more careful
and consider the full solution and not simply rely on the asymptotic predic-
tions, which could cause the apparent surprising result of the presence of
a non-trivial peak in the power-spectrum when the deterministic dynamics
does not oscillate.

C.6 Dynamics affected by colored noise

In this section we investigate what happens when we substitute the white
noise appearing in Eq. (4.1) with one having non-trivial temporal autocorre-
lation at the stationarity, i.e., a colored noise. So the starting equation now
becomes

dx(t)
dt

= −ax(t)− bx(t − τ) + ζ(t) (C.36)

where the noise ζ(t) is such that it has zero mean, i.e., ⟨ζ(t)⟩ = 0, and corre-
lation depending only on the temporal distance, i.e., ⟨ζ(t)ζ(t′)⟩ = C(t − t′).

To compute the power-spectrum we replicate the same procedure we
have shown so far. So we start by taking the Fourier transform of Eq. (C.36).
In this way one gets

iωx̂(ω) = −ax̂(ω)− bx̂(ω)e−iωτ + ζ̂(ω) (C.37)

where we have ⟨ζ̂(ω)⟩ = 0 and ⟨ζ̂(ω)ζ̂(ω′)⟩ = δ(ω − ω′)Ĉ(ω), with Ĉ(ω)
being the Fourier transform of the correlation function C(t).

At this point it is easy to obtain the power-spectrum, which now it has
the form

P(ω) =
Ĉ(ω)

[a + b cos(ωτ)]2 + [ω − b sin(ωτ)]2
(C.38)

Hence we can see that the power-spectrum is the same one obtained in
Eq. (4.27) for the white noise case multiplied by the Fourier transform of the
temporal correlation affecting now the noise term.

We test this result against numerical evidences for the case in which the
correlation decays exponentially with the elapsing of the time, i.e.,

C(t) =
D

2τcorr
e−

|t|
τ (C.39)
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FIGURE C.6: Phase diagram in the a− b plane characterizing the behavior
of the dynamics Eq. (4.39) with the exponential kernel Eq. (C.21) (τ = 1).
With respect to the one shown in Figure C.4, we add the red region where
the condition Eq. (C.35) is satisfied and hence the deterministic solution
has a zero at a certain moment t∗ > 0. The region striped red and green
region (previously marked by the black star) corresponds to the region
of the parameters where deterministically we do not observe damped os-
cillation but x(t) touches the horizontal axes and at the same time the
stochastic formulation predicts the emergence of a peak in the power-
spectrum, hinting the presence of time persistent oscillations. Also in this
case we see that there is a region where Eq. (C.35) holds but not Eq. (C.25),
meaning that also the presence of zero in the deterministic evolution of the
dynamics is a necessary but not a sufficient condition to observe stochas-
tic amplification.
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FIGURE C.7: Comparison between the theoretical power-spectrum shown
in Eq. (C.38) (solid red line) and the one obtained numerically as an av-
erage of the single estimates obtained from 250 independent realizations
of the process. In this case we consider a noise with correlation as the
one displayed in Eq. (C.39). The parameters considered are a = 3, b = 5,
τ = 0.5, τcorr = 0.1 and D = 1. The simulations are performed using
a time increment dt = 10−3 with the prescription x(t) = x0 = 10−2 for
t ∈ [−τ, 0].

and so we have
Ĉ(ω) =

D

1 + (ωτcorr)
2 (C.40)

In Figure C.7 we show the agreement between analytical result and the sim-
ulation outcomes. We see that, again for the parameters choice we made,
stochastic amplification took place, as supported by the presence of a peak in
a non-zero value of ω.

C.7 Multi-dimensional delayed Ornstein-Uhlenbeck
process

In this section we show that stochastic amplification in presence of delay
takes place also in the case of multidimensional system. Of course this is not
surprising since in the non-delayed scenario it is required to deal with more
than two dynamical quantities in order to observed long-standing fluctua-
tions around the deterministic solution. However, here we show by provid-
ing a numerical example that including delay contributions stochastic ampli-
fication is more likely to be observed.

For simplicity we discuss now a two-dimensional system, but the gener-
alization to higher dimension is straightforward. So we will consider two
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coupled equation of the type of Eq. (4.1) obtaining the following dynamics

(︄
dx(t)

dt
dy(t)

dt

)︄
= A

(︃
x(t)
y(t)

)︃
+ B

(︃
x(t − τ1)
y(t − τ2)

)︃
+

D⏟ ⏞⏞ ⏟(︃√
D1 0
0

√
D2

)︃(︃
ξ1(t)
ξ2(t)

)︃
(C.41)

where ξ1,2(t) are Gaussian white noises as usual.
For simplicity we assumed the noises to be uncorrelated, i.e., the matrix D

to be diagonal. Also we could generalized even further the setting by letting
the delayed terms to have different values of delays, i.e.,

B
(︃

x(t − τ1)
y(t − τ2)

)︃
→
(︃

b11 · x(t − τ11) b12 · y(t − τ12)
b21 · x(t − τ21) b22 · y(t − τ22)

)︃
(C.42)

However, the steps of the derivation we are going to show can still be fol-
lowed and similar results can be obtained.

Let us take A to be invertible and such that x(t) and y(t) do not display
oscillations when the dynamics approach to the steady state. We also want
that the stationary solution of(︄

dx(t)
dt

dy(t)
dt

)︄
= A

(︃
x(t)
y(t)

)︃
, (C.43)

which is (x∗, y∗) = (0, 0), to be stable. To accomplish this we have therefore
to consider a matrix A with real and negative eigenvalues. This requirements
is made because now we add terms affected by time delay and the dynamics
may display oscillations. Therefore we can be sure that the oscillations are

caused by the delayed contribution described by B
(︃

x(t − τ1)
y(t − τ2)

)︃
in Eq. (C.41).

The dynamics now is(︄
dx(t)

dt
dy(t)

dt

)︄
= A

(︃
x(t)
y(t)

)︃
+ B

(︃
x(t − τ1)
y(t − τ2)

)︃
(C.44)

To observe oscillations the roots of the characteristic equation

(λ− a11 − b11e−λτ1)(λ− a22 − b22e−λτ2)− (−a12 − b12e−λτ2)(−a21 − b21e−λτ1) = 0
(C.45)

have to be complex, i.e., Im(λ) ̸= 0.
At this point we can compute the power-spectra for x(t) and y(t) with the

same procedure. So considering the Fourier transform of Eq. (C.41) we get

iω
(︃

x̂(ω)
ŷ(ω)

)︃
= A

(︃
x̂(ω)
ŷ(ω)

)︃
+ B

(︃
x̂(ω)e−iωτ1

ŷ(ω)e−iωτ2

)︃
+

(︃√
D1 0
0

√
D2

)︃(︃
ξ̂1(ω)
ξ̂2(ω)

)︃
(C.46)
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Hence we find that

x̂(ω) =

√
D1c22(ω)ξ̂1(ω) +

√
D2c12(ω)ξ̂2(ω)

c11(ω)c22(ω)− c12(ω)c21(ω)
, (C.47a)

ŷ(ω) =

√
D1c12(ω)c21(ω)ξ̂1(ω) +

√
D2c12(ω)c11(ω)ξ̂2(ω)

c12(ω)
{︁

c11(ω)c22(ω)− c12(ω)c21(ω)
}︁ , (C.47b)

where

c11(ω) = iω − a11 − b11e−iωτ1 , (C.48)

c12(ω) = a12 + b12e−iωτ2 , (C.49)

c21(ω) = a21 + b21e−iωτ1 , (C.50)

c22(ω) = iω − a22 − b22e−iωτ2 . (C.51)

From Eqs. (C.47a)-(C.47b) it is easy to get the expressions of the two power-
spectra.

To test the bounty of this results, we perform a comparison with the nu-
merical outcomes where we take

A =

(︃
−0.01 0.001
0.001 −0.02

)︃
B =

(︃
−0.4 0

0 −0.4

)︃
(C.52)

It is possible to proof that both the matrices A and A + B have real eigen-
values. Hence, when introducing non-zero delays, we can state that the so-
lutions of the characteristic equation Eq. (C.45) become complex because of
them. In other words, we are sure that the oscillations we might observe will
be due to the presence of the negative delayed feedback contribution.

Generating several independent time series for x(t) and y(t) by direct
simulation of Eq. (C.41) can numerically evaluate the power-spectra of these
two quantities. The comparison with the ones obtained from Eqs. (C.47a)
and (C.47b) is shown in Figure C.8. In both the power-spectra we can clearly
observe a peak, confirming stochastic amplification took place. For the choice
we made, this was possible only because of the presence of the time-delays.

Hence we can conclude that the addition to the framework of delayed
terms enlarge the region in the parameters space in which stochastic amplifi-
cation is observed.
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FIGURE C.8: Comparison between the theoretical power-spectra (solid
red lines) with the ones obtained averaging over 250 independent time-
series (blue dots). In panel (a) we present the result for the variable x(t),
while panel (b) refers to the component y(t). In the simulations we used
the matrices A and B presented in Eq. (C.52). The other parameters are
τ1 = τ2 = 3 and D1 = D2 = 1. The time increment is dt = 10−3 and the
prescriptions are x(t) = x0 = 10−2 and y(t) = y0 = −10−2 for t ∈ [−τ1, 0].
The agreement between theory and numerical analysis is remarkable.
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