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Abstract

The widespread deployment of wireless communication networks in both indoor and outdoor
spaces opens the door to a variety of new opportunities and, at the same time, poses several
technical challenges. In this scenario, environment awareness represents both a new appealing side-
functionality offered by wireless systems, and a promising way to increase the quality of the
services provided to the users.

As for the former, wireless devices are intrinsically capable of sensing the propagation envi-
ronment. The estimation of the wireless channel parameters is continuously performed at the
receiver end of the communication link to properly decode the radio signals collected by the an-
tennas. This feature can be effectively exploited to gain knowledge of the surrounding space by
detecting the presence of obstacles through the analysis of the multi-path propagation effect. The
potential of this application resides in the possibility to realize indoor monitoring systems lever-
aging already deployed devices – such as Wi-Fi access points – without the need for additional
and possibly expensive hardware. The scientific community is extensively studying this oppor-
tunity, developing algorithms that target different sensing applications such as human-presence
detection and activity recognition among others. Despite the fact that several proofs of concept
are available in the literature, robust algorithms that effectively work in changing environmental
conditions are not yet available and require further investigations. The envisioned applications
recently attracted the interest of the Institute of Electrical and Electronics Engineers (IEEE) that
established a task force to develop a new version of theWi-Fi standard, named IEEE 802.11bf. The
project started in September 2020 and devices implementing this standard are expected to be com-
mercialized by 2024. The IEEE 802.11bf will enable the joint provisioning of the communication
and the sensing services to the users by the introduction of somemodifications to the physical and
medium access control layers of the protocol stack to fulfill the slightly different requirements of
the two services.

Moving to the second aspect, information about the context where the wireless devices are
operating enables reasoned management of the available network resources, guaranteeing an
adequate quality of experience to the connected users. This is especially appealing when consid-
ering the emerging fifth generation – and beyond – systems, where the network will provide both
connectivity and computation support for static and moving terminals, e.g., connected vehicles.
The European Telecommunications Standards Institute (ETSI) standardization body is actively
working on this paradigm change – named multi-access edge computing (MEC) – through the
standardization of interoperable architectures and their integration with next generations mobile
networks. In this context, the network entities need to properly handle the handover of the com-
putation service provisioning to avoid critical discontinuity issues. The exploitation of environ-
mental information in such network management processes provides a clear benefit from both
a network and a user perspective, allowing the operators to optimize the energy consumption
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while assuring a timely fulfillment of the customers’ requests. Research in this field is still open
and the scientific community is working on the identification of proper policies to decide when
and where to perform the handover of the computation services to minimize the energy network
consumption while guaranteeing adequate quality of service to the users.

This thesis makes substantial contributions to the development of new-generationwireless net-
works, since in the future environmental awareness will be one of the key enablers. The interplay
between wireless communications and sensing is discussed by detailing the design and the im-
plementation – together with the assessment of the performance – of brand-new algorithms for
environment aware networks. Throughout the thesis, in-depth theoretical analysis is combined
with advanced practical implementations and simulative evaluations. Machine and deep learn-
ing techniques are effectively exploited to extract relevant information from the huge amount of
data required to enable the integration of communication and sensing services into future wire-
less networks. The strength of the detailed approaches is the combination of learning techniques
with mathematical models that provide solid foundations for the integration of sensing and com-
munication services. Both communication-assisted sensing and sensing-assisted communication ap-
plications are presented through practical uses cases targeting cutting-edge technologies. Next-
generation Wi-Fi and cellular networks are considered as examples of respectively the former
and the latter case, showing the potential of the envisioned environment aware paradigm in both
indoor and outdoor scenarios.
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1
Introduction

The context is of paramount importance in our lives. As humans, we continuously capture side
information from the environment and use the data to gain knowledge of the context. Moreover,
we adapt our behavior to the social circumstances, and approach problems in different ways de-
pending on the people the people we are surrounded by. This bidirectional environment awareness
concept is gradually being integrated into wireless communication networks. On the one hand,
the propagation patterns of the wireless transmissions can serve as a bridge to sense the envi-
ronment, as obstacles in the scene cause characteristic signals’ reflections. On the other hand,
environmental knowledge can be exploited within the network-management processes to intelli-
gently allocate resources to the connected users, saving energy and providing adequate quality
of experience.

The former aspect – referred to as communication-assisted sensing – is gaining momentum given
the high availability of signals of opportunity that can be exploited for sensing purposes in both
indoor and outdoor spaces. In particular, the widespread adoption of the Wi-Fi technology –
with more than 16 billion of Wi-Fi-enabled devices in use around the globe [1] – opens up new
opportunities for device-free and unobtrusive indoor monitoring solutions.

As for the latter – indicated with sensing-assisted communication – cellular networks operators
are already benefitting from side knowledge to adopt strategic policies in the service delivery and
are expected to increasingly leverage such data with the advent of future generations networks.
This is key to enabling new applications such as autonomous driving and augmented/virtual/
mixed reality, that require reliable and timely network-service delivery.

Overall, several proofs of concept confirm the benefits that the communication and the sensing
services grant to each other and brought standardization entities to move toward their joint im-
plementation on future wireless networks. This is enabled by the development of new physical
(PHY) and medium access control (MAC) layers protocols and the integration of artificial intelli-
gence into the networks. In particular, machine learning (ML) techniques play an important role
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in the statistical analysis of the huge amount of data collected for this purpose and the defini-
tion of data-driven sensing and communication services. The integration of learning strategies in
next-generation networks will bring a significant paradigm shift, moving from reactive actions
– in response to the occurrence of an event – to proactive operations – based on side knowledge
gained from the data. This allows creatingmore general frameworks capable to adapt to changing
environmental conditions, as is the case when working with wireless networks. Such an aspect
is of paramount importance for the delivery of brand-new services that require the network to
guarantee adequate quality of service – in terms of transmission delay and service continuity –
to connected users moving within the network area. Learning frameworks can help in differ-
ent functions, such as network resource management, environmental monitoring, mobility, and
traffic prediction. They can be used to completely replace existing rule-based approaches or to
augment the functionalities of already implemented algorithms. Depending on the specific appli-
cation, ML techniques can be integrated at different network levels, starting from the end devices,
the access points, the network infrastructure, up to the applications in the cloud of the network,
enabling new opportunities for next generation networks [2].

The work presented in this thesis makes substantial contributions to the integration and ex-
ploitation of environmental awareness in wireless networks. Communication-assisted sensing
in Wi-Fi networks and sensing-assisted communication for cellular networks, are considered in
Part I and Part II respectively, focusing on practical use cases to show the potential of this foreseen
holistic view of communication and sensing services. Two sensing applications are considered in
Part I. At first, we design and implement a novel robust algorithm for environment- and person-
independent human activity recognition through radio waves, departing from the approaches
presented in the literature which still do not integrate such generalization capability. Next, we
put forward the first physical layer fingerprinting algorithm for multi-user multi-input, multi-
output (MIMO) devices, allowing the identification of the terminal from the information sent in
clear text for the beam formation. These two aspects of sensing through radio waves are of strate-
gic importance for next-generation Wi-Fi networks. As for the former, the Institute of Electrical
and Electronics Engineers (IEEE) is currently working on the standardization of a new version
of the standard – IEEE 802.11bf – for the integration of environmental and human sensing func-
tionalities into commercial Wi-Fi devices. The latter is a key enabler for service provisioning in
crowded networks where network administrators need to ensure the fair coexistence of devices
implementing different standards – such asWi-Fi and 3GPP new radio-based access to unlicensed
spectrum (NR-U) – while using the same portion of the radio spectrum. Part II of the thesis starts
with the design of a mobility prediction algorithm for vehicles moving within a city while being
connected to a cellular network empowered with multi-access edge computing (MEC) function-
alities. The framework is next used in combination with mathematical optimization methods for
the definition of two network resource management strategies with the objective of guaranteeing
computation service continuity to the users when changing the serving base station. This ap-
proach aims at minimizing the energy expenditure at the network side while being constrained
on specific users’ service requirements in terms of maximum allowed completion delay. Com-
mon to all the approaches presented in the thesis is the combination of mathematical analysis
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with advancedML techniques. This allows both the leveraging of the establishedmodels describ-
ingwireless communications and the exploitation of the huge amount of data that can be gathered
from the environment to increase the quality of service – communication and sensing – offered to
the connected users.

Before delving into the technical details, we give an overviewof the two aspects tackled in Part I
and Part II of the thesis, in Section 1.1 and Section 1.2 respectively. For the sake of completeness,
we also briefly introduce Wi-Fi networks in Section 1.1.1 and cellular systems in Section 1.2.1.

1.1 Communication-assisted sensing in Wi-Fi networks
The inherent ability of theWi-Fi devices to sense the propagation environment, has led researchers
to investigate the possibility of using Wi-Fi access points (APs) as environmental sensors. In fact,
Wi-Fi devices continuously estimate the parameters of the propagation environment, obtaining
information on how radio waves propagate from the transmitter to the receiver end. This infor-
mation, called channel frequency response (CFR) or channel state information (CSI), is used to
properly decode the wirelessly exchanged data, compensating for channel impairments that oth-
erwise would cause communication errors.* Themain observation underpinning the use ofWi-Fi
APs as environment sensors is that the CFR naturally encodes the presence of obstacles – e.g.,
walls, furniture, people – that are located within the propagation environments. Moreover, the
CFR is affected by hardware imperfections of both the transmitter and the receiver Wi-Fi devices.
Therefore, this information can serve as a bridge to sense the indoor environment where the com-
munication is ongoing, revealing the presence of obstacles in the scene and identifying, possibly
malicious, Wi-Fi devices transmitting in range. Such sensing capabilities allow developing mon-
itoring systems by reusing already deployed Wi-Fi devices, without the need for additional and
expensive ad-hoc sensors such as RADARs/LIDARs for environmental sensing or radio intruder
detectors for wireless channel access control.

The first proof of concept showing that Wi-Fi transmissions – in the 2.4 GHz and 5 GHz bands
– can be used as signals of opportunity to perform environmental sensing was presented in 2013
by Adib and Katabi [3]. The manuscript attracted the attention of several research groups that
started working on this newly opened research direction. A clear benefit of this approach is that
the sensing is performed without the acquisition of images of the scene – as cameras do – thus
reducing privacy issues. Different algorithms were proposed over the years, addressing various
aspects of environmental sensing including subject identification and localization, activity and
gesture recognition, and even estimation of biological signals at distance, such as the respiration
rate or the heartbeat [4]. However, the effective implementation of such sensing solutions poses
some limitations associated with the achievable sensing resolution on below 6 GHz bands and
the robustness to changing environmental conditions. To tackle the first issue – low sensing res-
olution – some recent works propose to exploit IEEE 802.11ad devices operating on the 60 GHz
band, obtaining high resolution solutions for different tasks, such as person localization [5] and

*In the rest of the thesis, the terms CSI and CFR will be used interchangeably.
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hand gestures detection [6], at the cost of lower operational range. As for the second challenge
(robustness to changing environment), in Chapter 2 of this thesis we present how to address it
– for the specific task of human activity recognition – through a learning-based algorithm that,
once trained, can be used to infer the activity in a completely different scenario, i.e., in a different
day, room and with different persons than those in the training examples. This contribution sub-
stantially departs from the literature in the field where algorithms cannot generalize to different
situations without being retrained on new data.

The exploitation of the CFR as a means to perform wireless channel access monitoring is in-
stead investigated in Chapter 3 of the thesis. We leverage the transmitter hardware inaccuracies
encoded in the CFR to devise a learning-based PHY layer fingerprinting algorithm of Wi-Fi de-
vices. In this case, the target of the sensing process is the identification of the Wi-Fi device that
is transmitting data. PHY layer fingerprinting algorithms are expected to serve as a basis for
reliable authentication techniques, reducing the latency experienced when using cryptography-
based approaches. Existing solutions for radio fingerprinting (RFP) rely on software-defined ra-
dio (SDR) devices thatmonitor the radio channel and extract characteristic features from the ongo-
ing transmissions. However, these devices require expert knowledge and ad-hoc deployments.
We instead propose to leverage existing Wi-Fi devices already present in most residential and
workspaces, introducing a new and high potential strategy to perform RFP. More than that, our
work represents the first effort toward the implementation of a RFP for devices using the multi-
usermulti-input, multi-output (MU-MIMO) transmissionmode. BeingMU-MIMOone of the key
enablers for next-generation wireless networks, this work is expected to have a high impact on
the scientific and industrial community.

The performance of the two developed communication-assisted sensing algorithms is assessed
through commercial-off-the-shelf (COTS)Wi-Fi devices implementing the IEEE 802.11ac standard.
The implementation of the experimental testbeds posed several challenges that come from the fact
that Wi-Fi manufacturers do not provide the CSI out of the shelf. The CFR is considered useless
for the final user that only requires connectivity support. This leads researchers to apply reverse
engineering approaches to effectively extract the CFR from specific commercial Wi-Fi devices.
For several years the scientific community relied on two software working with IEEE 802.11n
devices. Next, in December 2020, a new powerful tool was released allowing one to obtain the
CFR from IEEE 802.11ac devices [7]. The work presented in Chapter 2 relies on this tool. As
for the work in Chapter 3 we instead applied reverse engineering by ourselves to obtain the CFR
from feedback information provided by aWi-Fi receiver to aWi-Fi transmitter for enablingMIMO
communications.

1.1.1 Preliminaries on Wi-Fi networks
In 1997, following a seven-year development process, the IEEE released the first standard of the
802.11 series. The document specified PHY andMAC layers characteristics for wireless local area
networks (WLANs) operating on the 2.4GHz band of the unlicensed radio spectrum. Next, in 1999,
a group of telecommunication companies founded the Wi-Fi alliance to ensure interoperability
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among devices implementing the IEEE 802.11 standard [8]. Specifically, the Wi-Fi alliance owns
theWi-Fi trademark and provides certification for devices that pass specific interoperability tests.
While at its beginning theWi-Fi technologywas not able to competewith the Ethernet one in terms
of data transmission rate (2 Mb/s versus 100 Mb/s), over the years new standard releases made
Wi-Fi a very successful andwidespread communication technology, offloadingmore than the 60%
of the Internet traffic in 2021 [9]. With the IEEE 802.11a/b/g standards (1999-2003), data rates of
54 Mb/s were achieved thanks to the released of the new 5 GHz spectrum band and the use of
the orthogonal frequency-divisionmultiplexing (OFDM)modulation over 20MHz channels with
sub-channels of 312.5 KHz. OFDM entails the parallel transmission of groups of bits through the
different sub-channels thus increasing the network throughput. In 2009, the IEEE 802.11n high
throughput (HT) release – certified as Wi-Fi 4 – introduced the MIMO technology that exploits
arrays of antennas to transmit multiple data streams to the user in a parallel fashion. The MIMO
technology has been refined in 2013 with the IEEE 802.11ac very high throughput (VHT) release
– certified as Wi-Fi 5 – with the introduction of downlink (DL) MU-MIMO that enables the AP to
simultaneously transmit data streams to multiple users. These technological innovations came
together with the expansion of the OFDM modulation channel width to 40 MHz (IEEE 802.11n)
and 160 MHz (IEEE 802.11ac). Overall, devices implementing these two standards provide data
rates of up to 600 Mb/s and 7 Gb/s respectively.

Nowadays, the majority of the Wi-Fi devices implement the IEEE 802.11n/ac standards. How-
ever, as a natural consequence of the digitalization of the society, current Wi-Fi networks will
soon no longer be able to support the increasing demands for connectivity. The introduction of
the Internet of things (IoT) paradigm brought to the market a variety of connected devices for the
more diverse applications. Moreover, new emerging services are more network resources hun-
gry than already supported ones. For instance, the delivery of high-quality 4K and 8K videos
– characterized by uncompressed data rates of up to 20 Gb/s – requires the availability of high
throughput links that, together with low-latency, is also a key enabler for augmented, virtual and
mixed reality applications. All these factors will rapidly lead to the saturation of the available
license-exempt radio spectrum, thus causing the reduction of the quality of service offered to
Wi-Fi users. To prevent this from happening, the research community is designing ameliorations
to the IEEE 802.11 standards to efficiently exploit the spectrum resources nowadays available for
unlicensed use:

• Low frequencies, i.e., in the 2.4−7.125GHz range. In addition to the already available 2.4GHz
and 5 GHz bands, a new portion of the radio spectrum has been recently made available.
Specifically, in April 2021, the Federal Communication Commission allowed unlicensed de-
vices to exploit frequencies from 5.925 GHz to 7.125 GHz [10]. The European Commission
adopted an analogous decision in June 2021 with the release of 500 MHz at similar frequen-
cies (5.945 − 6.425 MHz) [11]. These new portions of the spectrum are commonly referred
to as the 6 GHz band.

• High frequencies, i.e., in the 57.24−70.20 GHz range. This is the so-called 60 GHz band and is
characterized by wider bandwidth availability. However, wireless communication at these
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frequencies is more challenging due to the higher propagation loss.
Several IEEE task groups are actively working on the standardization of theWi-Fi networks of the
future [12]. As part of this process, two amendments – namely IEEE 802.11ax and IEEE 802.11ay –
were released inMay and July 2021 respectively, and another one – the IEEE 802.11be – is in itsway
for standardization (expected in 2024). The IEEE 802.11ax high-efficiency (HE) standard –Wi-Fi 6
–works in the below 7.125GHz bands and provides solutions to improve the network efficiency in
dense deployments without bringing high improvements to the overall throughput with respect
to its predecessor [13]. In IEEE 802.11ax MU-MIMO is enabled also in the uplink (UL) direction
and Wi-Fi 6 devices use the orthogonal frequency-division multiple access (OFDMA) transmis-
sion scheme with 78.125 MHz sub-channels. While in OFDM all the channels are reserved for
one user at a time, the OFDMA scheme allows allocating groups of sub-channels to different
users that, in this way, use the channel simultaneously. The throughput improvement aspect
is being addressed by the IEEE task group working on the 802.11be extremely high throughput
(EHT) release –Wi-Fi 7 – with the promise to reach a data throughput of at least 30 Gb/s using the
below 7.125 GHz transmission bands [14], [15]. The utilization of frequencies in the 60 GHz band
is instead regulated by the IEEE 802.11ay next generation 60 GHz (NG60) standard –WiGig – that
allows achieving data rates of up to 100 Gb/s at a cost of a lower transmission range [16]. Besides
the specific standard, a common challenge for the envisioned future high density connectivity
scenarios is the fair coexistence between Wi-Fi and other communication technologies operating
on the unlicensed 5 GHz, 6 GHz and 60 GHz bands such as the 3GPP NR-U extension for fifth
generation (5G) cellular systems [17], [18].

However, the future ofWi-Fi networks is not only concernedwith better connectivity solutions.
Recently, the scientific community identified a parallel promising research direction, referred to
as Wi-Fi sensing. The shared objective of the arising works in this area is to turn Wi-Fi devices
into environmental sensors opening a plethora of new applications. For example, in a residential
scenario, Wi-Fi sensing can enable solutions for elderly care, to promptly detect critical situations
or, for assisted living, to support physically impaired people in their daily living activities. The
main idea behind Wi-Fi sensing solutions is that the changes in the propagation environment re-
flect on the frequency response of the Wi-Fi channel. These changes therefore also encode the
presence and the movement of a person and Wi-Fi environment sensing is about learning and
tracking them. The Wi-Fi CFR is continuously estimated at the receiver device to properly de-
code the transmitted information and, in turn, can be exploited to learn any changes that occur
in the physical environment, mapping them onto actionable insight about the number of peo-
ple and their activities. This new opportunity attracted the attention of the IEEE working group
that, in September 2020, established a task group to standardize the Wi-Fi sensing technology.
The new version of the standard – named IEEE 802.11bf – is expected to define modifications to
the PHY and MAC layers of the protocol stack to empower Wi-Fi devices with sensing capabili-
ties [19]. The modifications are needed as the two functions have different requirements in terms
of physical channel access. Specifically, the communication functionality requires spectrum re-
sources only when transmitting/receiving data, while sensing can be performed accurately only
providing the device with regular access to the wireless channel, i.e., by sounding the channel
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at regular time intervals. The standardization process is crucial for the widespread implementa-
tion of Wi-Fi sensing applications in the variety of devices available in the market. As for now,
researchers are constrained to handcraft ad-hoc procedures that allow extracting the CFR, being
the source of environmental information. Such procedures require performing some firmware
and driver modifications to the Wi-Fi devices thus making difficult their out-of-the-shelf imple-
mentation. With the adoption of the new IEEE standard, manufacturers will be required to pro-
duce standard-compliant Wi-Fi chips that are ready to support sensing functionalities. This will
enable the integration of already assessed sensing algorithms into newer commercial devices,
providing joint support for communication and environmental monitoring services. As a side
benefit, the standardization process will also provide the researchers with more straightforward
methodologies to obtain the CFR from which to develop new sensing applications that, in turn,
can be implemented in next-generation COTS devices.

1.2 Sensing-assisted communication for cellular networks
In a mobile network scenario, environmental information (context) refers to the data collected
from both the physical scene and the communication network. For instance, context includes ter-
minals’ locations, transmission and mobility patterns, network energy consumption and neigh-
boring cells’ load, among others. These pieces of information enable the implementation of en-
vironment aware management strategies at different functional and control blocks. For example,
based on the context, network resources can be proactively allocated to the users, thus reducing
the service discontinuity risk [20]. In this thesis, we focus on the statistical analysis and exploita-
tion of users’ mobility within the network. User’s position and mobility patterns can serve for
several purposes [21], [22]. In [23], users’ locations and content requests are used to manage a net-
work of unmanned aerial vehicles (UAVs), identifying the optimal UAVs locations, the contents
placement and the beamforming patterns to provide the users with appropriate quality of service
(QoS) and quality of experience (QoE).Moreover, the prediction of future users’ positions and net-
work metrics allows implementing proactive management strategies. Location-based prediction
of interference sources can be used within channel access protocols, while longer-term mobility
predictions can be exploited to re-route processes at the network layer [21]. Another example is
provided in [24], where short-term location estimates are utilized to perform beamforming for
5G enabled vehicles and high-speed trains. Mobility-aware caching strategies at the base stations
and at the devices are instead proposed in [25], [26]. Finally, someworks in the literature consider
mobility predictions to manage computing services in MEC enabled networks [27], [28], with the
objective of ensuring the continuity of edge computing tasks as the users change their point of
attachment to the network. This is very relevant for next-generation cellular networks, where
the infrastructure will not only provide communication functionalities, but also the support for
intensive computing tasks for moving users. The migration of a computing task from a location
to another – to follow the user’s movements – is particularly challenging, as it requires to transfer
the needed data to the new site. If not properly handled, this may lead to the introduction of
additional delays or, even worse, to service interruptions. Hence, algorithms that proactively act
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to prevent service discontinuity are gaining momentum, especially within safety-critical applica-
tions, such as telemedicine and autonomous driving, where network failures may pose a threat
to the users’ health condition and safety. Thus, environment aware strategies are expected to be
widely adopted in the near future within the process of algorithms’ design and implementation.

In Part II of this thesis we consider a vehicular scenario where users are 5G enabled vehicles
constantly connected to the cellular network and requiring support to offload computing inten-
sive tasks. In Chapter 4 we devise a learning based framework to predict the vehicles’ next point
of attachment based on the context information acquired from MIMO transmissions. Our work
stems from the intuition that mobility in vehicular networks is a highly correlated process, and
such correlation can be captured by advanced neural network designs to anticipate the evolved
node base (eNB) to which the user will connect to after the handover from the serving one. The
mobility estimates are then exploited in the design of two network computing resource manage-
ment strategies, presented in Chapter 5 and Chapter 6 respectively. The common objective of
the presented algorithms is to minimize the network energy expenditure while ensuring serving
continuity and adequate QoS/QoE to the users. The proposed strategies contribute to the ad-
vancement of the research in this field, by tackling the problem from a mathematical perspective
and providing effective solutions for efficient network resources management.

The performance of the proposed sensing-assisted communication algorithms is assessed using
emulated vehicles’ mobility traces obtained through the simulation of urban mobility (SUMO)
package for the city of Cologne [29]. The emulation reflects the habits of city dwellers, encoding
typical daily traffic patterns associated with working activities. The cellular network consists of
eNBs covering the entire area of interest and deployed ensuring an inter-distance of about 400
meters, in accordance with the envisioned topology for 5G networks.

1.2.1 Preliminaries on cellular networks
The starting point of cellular networks development can be identifiedwith the introduction of the
first commercial communication systems in the ‘80s of the past century. The systems exploited
analog technologies to transmit over the licensed portions of the radio spectrum, e.g., the 800MHz
and 900 MHz bands. Different independent systems came to the market in different countries,
bringing to the formation of a heterogeneous environment. The evolution of digital technologies
allowed the definition of a new set of standards, identified as second generation (2G) systems. In
addition to the voice transmission, 2G cellular networks provided the users with the short mes-
sage service (SMS) and the possibility to exchange e-mails. Among the 2G systems, the global sys-
tem for mobile communications (GSM) one was developed in a spirit of cooperation between the
European companies, thanks to the foundation of the European Telecommunications Standards
Institute (ETSI). In this way, GSM became an interoperable, widely accepted and robust standard.
The successful cooperation strategy continued with the foundation of the Third Generation Part-
nership Project (3GPP) at the end of 1998. Nowadays, 3GPP unites seven telecommunications
standard development organizations – from Europe, America, China, Japan, Korea and India –
with the objective to develop interoperable standards. The project allowed offering for the first
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time the roaming service, ensuring the communication service support to users that are outside
the coverage area of their regional operator. Next, universal mobile telecommunications system
(UMTS) was the first standard developed within the 3GPP project and marked a step forward to
the development of third generation (3G) systems in the 21st century, providing the users with
wireless access to the Internet at a rate of 2 Mb/s. Depending on the country, 3G systems operate
in different licensed bands in the 800 − 2, 100 MHz range. The fourth generation of cellular net-
works came with the 3GPP Releases 8-9 (2008-2010) that standardized the long term evolution of
UMTS (LTE) systems. LTE networks provides theoretical data rates of 75 Mb/s in the uplink and
300 Mb/s in the downlink by respectively using OFDM and single carrier - frequency division
multiple access (SC-FDMA) modulations, and leveraging the MIMO technology. Next, in 2013,
the 3GPP Release 10made the LTE radio-access technology fully compliant with the International
Mobile Telecommunications (IMT)-Advanced global standard initiative promoted by the Interna-
tional Telecommunications Union (ITU) [30], [31]. LTE-Advanced allows achieving theoretical
peak data rates of 1.5 Gb/s and 3 Gb/s in the uplink and downlink directions respectively, en-
abling a variety of new applications with high QoS and QoE requirements, like video streaming
and online video conferencing.

LTE-Advanced is nowadays the most adopted standard for cellular networks. However, as
for the Wi-Fi technology, the rapid digitalization of the society comes together with an increas-
ing demand for faster and more reliable access to the Internet and cellular connectivity in gen-
eral. The specific requirements for the fifth generation of cellular networks have been detailed
by ITU in [32]. Specifically, ITU identified three main connectivity scenarios that are expected to
be supported by 5G networks. At first, 5G systems will address the increasing request of multi-
media contents and data through enhanced mobile broadband (eMBB) applications. This service
requires both considerable network capacity to serve users in high density areas, and mobility
support for users’ moving at up to 500 km/s. Ultra-reliable and low latency communications
(URLLC) is the second aspect that 5G networks need to consider, providing support for, e.g., re-
mote medical surgery, self-driving cars and industry 4.0 applications. Finally, the rapid increase
of IoT solutions requires 5G networks to enable massive machine type communications (mMTC),
offering connectivity to a large number of devices transmitting small data packets. Overall, 5G
networks are expected to reach peak data rates of 20 Gb/s and latencies as small as 1 ms. These
guidelines lead to the development of a new radio access technology named 3GPPnew radio (NR),
introduced in 2019 within the 3GPP Release 15 [33] and approved by ITU in 2021 [34]. 3GPP NR
introduces several innovations such as the exploitation of new portions of the radio spectrum in
the 30− 300 GHz frequency range – the so-called millimeter wave (mmWave) band – and the in-
tegration of the massive MU-MIMO technology through the deployment of antenna arrays with
several transmitter/receiver elements (more than 100). Following the standardization of Release
16 in 2021 [35], 3GPP is nowworking on further enhancements throughRelease 17 –with expected
standardization in 2022 – and Release 18 that will introduce 5G-Advanced [36], [37]. In parallel,
the research community started envisioning the sixth generation (6G) of cellular networks that is
expected to enable widespread availability of augmented, mixed and virtual reality applications,
e-health and industry 4.0 services, with support for high mobility and density [38]. The vision
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for next-generation cellular networks is to move from inflexible architectures constrained on the
hardware to softwarized and virtualized architectures with the possibility to reprogram the differ-
ent hardware components. The virtualization of the network components is key toward sharing
the same physical infrastructure among different network operators thus optimizing the exploita-
tion of the resources based on the real-time traffic requirements. This will enable the realization
of autonomous and self-optimizing networks able to serve devices with different requirements,
starting from laptops up to power-constrained IoT terminals [39]. In this context, the O-RAN Al-
liance – established at the end of 2018 – is working toward the development of intelligent, open,
virtualized and fully interoperablemobile networks [40]. The O-RANAlliance effort is supported
by more than 160 companies around the globe, including 24 network operators, and represents a
prominent collaborative initiative for the realization of the technical standards regulating future
wireless networks.

The future of cellular networks is not only identified with faster and more reliable wireless
connections. The present architectures fail to guarantee adequate QoE to the final user when con-
sidering the above mentioned applications that are computing intensive and require support for
real-time functionalities. Such applications cannot be executed on-board on the end-devices due
to memory and energy limitations, neither on the network cloud facilities as the delay constraint
would be missed. For this reason, 5G and beyond networks are designed to bring the computing
support near to the user – i.e., at the edges of the cellular network – by empowering the eNB sites
with computing facilities accessible by the users. The new paradigm is referred to as MEC and is
expected to provide the needed support for applications requiring fast and reliable data process-
ing. This computing de-location approach allows a user to offload intensive computing jobs to
the closer MEC host (MEH), thus considerably reducing the communication delays compared to
the usage of cloud services. The computation service is delivered through the instantiation of a
virtual machine (VM) or a containers on the MEH, empowered with the sufficient memory and
computing resources to handle the user’s request. This poses several challenges associated with
the mobility of the users within the network that should be addressed with appropriate handover
procedures for the computation service. Enforced by the high potential of the innovation, ETSI
is working on the standardization of interoperable MEC architectures [41], together with their
integration with 5G – and beyond – mobile networks [42].

1.3 Thesis organization
In the next chapters, we will deepen our discussion on environment awareness in wireless net-
works bydetailing the design and implementation of novel algorithms for communication-assisted
sensing and sensing-assisted communication.

We address the first aspect in Part I, focusing on indoor Wi-Fi networks. Specifically, in Chap-
ter 2we present thework in [163] about human activity recognition through IEEE 802.11ac devices.
Chapter 3 refers to [168] where we detail the functioning of a Wi-Fi physical layer fingerprinting
algorithm that runs on off the shelf devices.
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The other way around is tacked in Part II targeting cellular networks that serve 5G-enabled ve-
hicles. Chapter 4 is about the design of a learning-based mobility prediction algorithm, referring
to [169]. In Chapter 5 we describe a mobility-aware computing services migration algorithm as
presented in [164]. A scheduler for optimal computing tasks allocation on the network facilities
is presented in Chapter 6 considering the work in [162].

Chapter 7 concludes the thesis with final remarks and suggestions for future researches.
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Part I

Communication-assisted sensing in
Wi-Fi networks

13





2
Environment- and person- independent

human activity recognition through Wi-Fi
channel state information

2.1 Introduction
With this chapter we start our journey into communication-assisted sensing algorithms by present-
ing and validating SHARP (sensing human activities through Wi-Fi radio propagation). SHARP is a
device-free human activity recognition (HAR) system for the automatic detection and classifica-
tion of human activities in indoor spaces which relies upon the analysis of scatteredWi-Fi signals.
SHARP achieves unobtrusive human sensing by leveraging the channel frequency response (CFR)
gathered by a commercial-off-the-shelf (COTS) IEEE 802.11ac router. The router is used as a sen-
sor to obtain information on moving targets. The Doppler information at the receiving end of the
Wi-Fi link is extracted and utilized to concoct an environment- and person-independent learning
based algorithm that reliably detects human activities. As stated in Section 1.1, the main intuition
underpinning the proposed algorithm is that the presence of (moving) obstacles in the propaga-
tion environment reflects on the shape of the Wi-Fi CFR by introducing characteristic variations
that can be captured by advanced machine learning (ML) strategies.

HAR systems are key elements of emerging applications for smart buildings. Among others,
they can be profitably used to optimize the buildings’ energy consumption, implement alert sys-
tems, and provide platforms for smart entertainment, etc. Also, they can be utilized to comple-
ment IT solutions for elderly care, to promptly detect critical situations or, for assisted living, to
support physically impaired people in their daily activities [43].

We stress that, although similar sensing technology has been proposed as part of prior work,
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e.g., [3], [4], [44]–[46], existing algorithms do not generalize across unseen environments and peo-
ple, for which they were not trained. The proposed system sharply departs from these previous
solutions, and improves upon them, in that it reliablyworks across different indoor environments
and people, without having to be re-trained each time the physical wireless propagation setup,
or the monitored person, change. To make this possible, SHARP features an original phase cleaning
method, which permits the extraction of micro-Doppler traces from the CFR data. Without this pro-
cedure, the phase offsets that affect anyWi-Fi transmission would be so strong to hide finer phase
variations and, in turn, would prevent the extraction of the micro-Doppler information. From the
micro-Doppler traces is is then possible to remove the components that are due to static objects
and only retain the relevant information that is connected with the human movement of interest,
leading to the desired generalization capability.

In the last decade, since the pioneering work of Adib and Katabi [3], wireless signals of op-
portunity have been extensively researched as a means to perform device-free localization and
activity recognition tasks, including pattern and gesture recognition [44], and even estimating bi-
ological signals at distance, such as the respiration rate or the heartbeat [45]. In this respect, Wi-Fi
signals are particularly appealing, due to the high availability of Wi-Fi enabled devices in most
residential and working spaces [46]. While active sensing techniques allow localizing and follow-
ing a user as she/he carries along a Wi-Fi-connected device, passive sensing approaches obtain
such information bymonitoring the changes in theWi-Fi channel, where users act as intermediate
scatterers that modify the channel frequency response (CFR) [4].

Here, we are concerned with the recognition of dynamic and coarse-grained activities per-
formed by humans in indoor spaces, such as jumping, running, walking, etc. using COTS IEEE
802.11ac routers. Human movement data is extracted from the channel state information (CSI), a
frequency estimate of the radio channel describing how the signal changes as it propagates from
the transmitter to the receiver. Note that channel estimation is continuously performed by Wi-Fi
routers for communication purposes, and specific tools allow gathering such information from
COTS devices, exploiting them for environmental sensing. So far, many approaches have been
presented, e.g., [4], [46]. However, they fail to reliably recognize human activities across different
scenarios, days or with different persons, without being re-trained with the new data. That is,
they fall short in generalizing across persons and environments.

To improve upon prior work, and offer a usable system across different setups, we design
SHARP, an original framework to extract micro-Doppler traces of human motion activity from
IEEE 802.11 routers, combining them with a learning-based algorithm that acts as a feature ex-
tractor and activity classifier. The extraction of the micro-Doppler information is enabled by a
novel phase sanitization technique, that effectively copes with the phase offsets affecting the chan-
nel CSI estimates. The proposed phase sanitization approach is a major step forward in the HAR
via Wi-Fi channels: as we show in Section 2.7.2, prior sanitization algorithms fail to provide a
sufficiently accurate phase signal and are thus ineffective to our purpose. Once available, the
Doppler shift reveals the velocities of the scattering points during the transmission events and
is not affected by static objects (furniture, walls, etc.), allowing one to gauge dynamic HAR fea-
tures. As quantified in Section 2.7, we found it to be a robust representation for environment- and
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person-independent HAR.
The present work sharply departs from the literature on HAR with Wi-Fi devices, as follows.

• We propose an originalmethod for CSI phase correction (also referred to as sanitization). The
algorithm is independently used at each receiving antenna without the need for a reference
stream. Hence, the space diversity provided by the receiving antennas can be fully exploited
for sensing purposes.

• We present and validate SHARP, an environment- and person-independent learning based
framework for HAR, which leverages the Doppler effect caused by human motion. The
information collected at the four monitoring antennas is combined to identify the activity,
regardless of the user’s position in the monitored area.

• We assess SHARP robustness to changing environmental conditions through CSI data col-
lected with commercial off-the-shelf IEEE 802.11ac devices operating on an 80 MHz fre-
quency band. It reaches an average accuracy higher than 95% in the identification of four
activities – namely walking, running, jumping and sitting – in the most challenging sce-
nario, i.e., when the person, the day and the indoor environment change with respect to
those in the training set. SHARP is validated against prior work – DeepSense [47], EI [48]
and MatNet-eCSI [49] – achieving superior generalization capabilities across subjects and
environments.

The rest of the chapter is organized as follows. The related work is reviewed in Section 2.2. In
Section 2.4 and Section 2.5, we respectively detail the processing on the CSI data and the learning
architecture for HAR, which represent the SHARP building blocks. The experimental setup is pre-
sented in Section 2.6, while the performance of the proposed approach is evaluated in Section 2.7.
Conclusions are drawn in Section 2.8.

2.2 Related work

2.2.1 CSI based human activity recognition
HAR through CSI data fromCOTSWi-Fi devices was first studied in, e.g., E-eyes [50], CARM [51].
More recently, several articles showed the effectiveness of machine learning techniques in build-
ing algorithms that distinguish human activities based on CSI features [47], [52]–[54]. However,
these works do not focus on the robustness to environmental changes and on the generalization
capability to previously unseen environments and subjects, which are key enablers for the suc-
cessful development of Wi-Fi-based sensing systems [4]. Only a few works try to address these
weaknesses. In [48], the authors use a neural network based approach to extract environment-
independent features from the CSI amplitude to recognize human movements. The performance
of their algorithm is promising, but remains below 80% in the best scenario. In [55], transfer
learning is shown to be effective to adapt the Wi-Fi-based HAR algorithm to different persons

17



and days for the same environment. The algorithm presented in [56] leverages generative ad-
versarial networks to generalize on new persons, while in [49] the matching network one-shot
learning approach [57] is proposed to bridge the gap between previously seen environments and
new ones. A recent work [58] addresses the problem of location and subject independent HAR
through a learning architecture consisting of three deep neural networks. The algorithm is trained
on the CSI amplitude collected bymonitor routers placed in different positions inside a room, and
is tested in the same room by changing the location of a single router. The approach presents a
significant performance degradation when evaluated on other datasets (going from 99% to 80%
of accuracy).

To the best of our knowledge, no work in the literature proposes a system that generalizes
well on unseen environments, days and subjects without any re-training step and using COTS
devices. In the present work, we propose an effective solution to this problem, and we consider
as benchmarks for comparison, three recent approaches from the literature, i.e., DeepSense [47],
EI [48] and MatNet-eCSI [49].

2.2.2 Exploitation of the CFR phase
Some works, e.g, [59]–[61], consider a reference antenna and use the phase differences at the
remaining ones to perform sensing. By construction, such phase difference is not affected by
systematic offsets (same value across the antennas), but it is unable to cope with offsets that are
antenna-specific. Exploiting a similar idea, in [62], the authors correct the rotation errors using
a reference signal, obtained by connecting with a cable one of the available monitoring anten-
nas with the transmitter. However, the need for a reference reduces the spatial diversity that
can be exploited for sensing purposes at the monitor station. The possibility to remove the un-
wanted phase offsets without exploiting any reference is less addressed in the literature. In [63],
the authors propose to mitigate the errors by considering the average signal over a number of
time instants, while in [64] a two-step approach is presented to estimate and remove some of the
antenna-independent offsets. A different strategy is adopted in [49], where the authors estimate
the systematic phase shift at each CFR acquisition. With their approach they remove the static
component, that is used as a reference for the algorithm, and retain the dynamic one, using it as
the input for the subsequent HAR framework.

In this work, we correct the phase offsets by devising an optimization approach that finds
the optimal CFR parameters from the raw channel data. For each CFR sample, we extract the
contributions of the different radio paths and exploit the component related to the strongest path
as a reference to correct the signal phase. This allows the removal of the non-systematic offsets that
affect the signal. As discussed above, this would be infeasible if considering as a reference a signal
extracted form a different physical measurement (either in the time or in the spatial dimension).

2.2.3 Doppler based applications
A fewworks in the literature exploit theDoppler shift computed fromWi-Fi CSI data. InQian2017_2,
[65], [66], the Doppler information is used to track the movement of a user inside an environ-
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ment. Two different monitoring devices, placed in strategic positions, are used to obtain effective
Doppler shift estimates. In [67] the authors leverage the Doppler effect for breathing detection
and people counting. The sensing system consists of one Wi-Fi access point and two universal
software radio peripherals (USRPs) monitoring the target channel and a reference one that needs
to remain stable. A sensing system consisting of a singlemonitoring station is presented in [68], to
recognize three different bodyweight exercises. In [68], the transmitter and the monitor stations
must be placed in specific positions with respect to the user, so that the activity is performed
perpendicularly to the radio link. Moreover, the detection algorithm is based on metrics that are
manually extracted from the raw CSI data and the Doppler trace. This makes the proposed ap-
proach highly activity-dependent, as the features are specifically designed to separate the three
considered physical exercises. HAR through Doppler information has been recently addressed
in [69]. The latter algorithm uses phase sanitization based on a reference antenna, followed by a
support vector machine (SVM) classifier. This strategy allows obtaining a good recognition accu-
racy (96%) on test data collected in the same environment where the algorithm is trained, proving
the effectiveness of the Doppler information for HAR purposes. Also, the system performance
is improved considering additional data from a wearable inertial measurement unit (IMU), in-
creasing the accuracy to nearly 100%. However, no performance assessment is carried out for
scenarios that are not seen at training time. SHARP outperforms [69] by exploiting an advanced
phase sanitization approach and a more powerful learning architecture. As a result, it reaches
accuracies close to 100% by only exploiting CSI data (no IMU). Moreover, SHARP generalizes to
unseen environments, by correctly recognizing the activity in at least 95.99% of the cases.

Our intuition, behind the design of SHARP, is that the Doppler shift naturally lends itself to the
separation/removal of the radio reflections coming from static objects or structures (e.g., room
walls) from those generated by moving targets (e.g., humans). If available, it can be used as a
reference signal domain to perform environment independent recognition tasks, assuming that
the environment is mostly static. Our work descends from this line of reasoning and our novelty
resides in the fact that we were, for the first time, able to extract the Doppler signal from 802.11ac
COTS devices. After that, such Doppler signal must be used in combination with dedicated pro-
cessing and learning architectures, which are the second main contribution of our present work.
In the remainder, the extraction of the Doppler is presented in detail, along with its use with
inception based neural networks.

2.3 Wi-Fi OFDM transmission model
Next, we detail the main blocks of a Wi-Fi transmission chain, deriving the expression for the
frequency response of the Wi-Fi channel that is the core of Part I of the thesis.

2.3.1 Transmitted signal model
Wi-Fi systems adopt orthogonal frequency-division multiplexing (OFDM), by transmitting the
user information over K partially overlapping and orthogonal sub-channels, with K even. Data
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over each sub-channel is modulated with a conventional digital modulation scheme (such as
QPSK, 16QAM). The input bits are grouped and mapped onto source data symbols, which are
complex numbers representing themodulation constellation points. Such constellation points are
further grouped into K elements each, i.e., the OFDM symbols. OFDM symbols are then fed to an
inverse fast Fourier transform (IFFT) block that transforms the data prior to transmitting it over
the wireless channel, in parallel, over K sub-channels with carriers spaced apart by Δf = 1/T Hz
(T is the OFDM symbol time).

The duration of an OFDM symbol is T̄ = T + TCP, where TCP is the duration of the cyclic pre-
fix, added to mitigate inter-symbol interference. Specifically, for IEEE 802.11ac the transmission
bandwidth is 80 MHz, the samples are clocked out at 80 Msps, the number of sub-channels is
K = 256, T = 1/Δf = 3.2 μs (i.e., Δf = 312.5 kHz), TCP = 0.8 μs, and, in turn, T̄ = 4 μs.

Let am = [am,−K/2, . . . , am,K/2−1] be m-th OFDM symbol, where am,k is the k-th OFDM sample.
After digital to analog conversion, the baseband OFDM signal for the m-th symbol is

xm(t) =
K/2−1∑
k=−K/2

am,kej2πkt/T, (2.1)

where k ∈ {−K/2, . . . ,K/2 − 1} is the sub-channel index. ConsideringM subsequent blocks, the
baseband signal is

x(t) =
M−1∑
m=0

xm(t)ξ(t−mT̄), (2.2)

with

ξ(t) =

1 if t ∈ [−TCP − TK/2,TK/2]
0 otherwise

, (2.3)

and the signal transmitted over the Wi-Fi channel is obtained by upconverting x(t) to the carrier
frequency fc,

stx(t) = ej2πfctx(t). (2.4)

2.3.2 Received signal model

At each receiver antenna, P signal copies are collected, due to the scatterers that the signal stx(t)
encounters (multi-path propagation). Each path p is characterized by an attenuation Ap(t) and a
delay τp(t). Neglecting the additive white Gaussian noise, the received signal srx(t) is written as

srx(t) =
P−1∑
p=0

Ap(t)stx(t− τp(t))

= ej2πfct
P−1∑
p=0

Ap(t)e−j2πfcτp(t)x(t− τp(t)),
(2.5)
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and its baseband representation y(t) is expressed as,

y(t) = srx(t)e−j2πfct. (2.6)

A rectangularwindow [mT̄,mT̄+T] is used at the receiver to collect and decode the information
carried by an OFDM symbol at a time. Without loss of generality, we assume m = 0 and hence
we omit such index from the following equations. The transmitted symbol ak is recovered by
computing the Fourier transform of the signal in the received window:

âk =
∫ T̄+T

T̄
y(t)e−j2πkt/Tdt

=

P−1∑
p=0

Ape−j2πfcτp
K/2∑

b=−K/2
abe−j2πbτp/T

∫ T̄+T

T̄
ej2π(b−k)t/Tdt

= akT
P−1∑
p=0

Ape−j2π(fc+k/T)τp ,

(2.7)

where we consider Ap and τp constant over an integration interval T. The sum in the last line
of Eq. (2.7) corresponds to the frequency response of the Wi-Fi channel,

Hk =
P−1∑
p=0

Ape−j2π(fc+k/T)τp , (2.8)

that is estimated based on the known preamble symbols. In Eq. (2.7), we consider that the path
attenuation and delay remain constant over each window, i.e., Ap(t) = Ap and τp(t) = τp. Also,
exchanging the order of integration and summation is legitimate as we deal with finite quantities,
and we used ∫ T̄+T

T̄ ej2π(b−k)t/Tdt = 0 if k ̸= b.

2.3.3 Phase offsets in the Wi-Fi channel estimates
Hardware artifacts make the CFR gathered from Wi-Fi devices slightly deviate from the model
in Eq. (2.8). These artifacts introduce offsets (rotation errors) in the phase information, among
which the most significant are [62], [70]:

• carrier frequency offset (CFO), due to the difference between the carrier frequency of the trans-
mitted signal and the one measured at the receiver. The CFO is only partially compensated
for at the receiver [64].

• sampling frequency offset (SFO), due to the imperfect synchronization of the clocks between
transmitter and receiver.

• packet detection delay (PDD), due to the time required to recover the transmitted modulated
symbols from the received signal [64].
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• phase-locked loop offset (PPO), due to the phase-locked loop (PLL), the entity responsible for
randomly generating the initial phase at the transmitter.

• phase ambiguity (PA), due to the phase difference (multiples of π) between the antennas, that
in static conditions should remain constant.

Considering these contributions, the complete expression for the phase of the p-th path in the
received signal is

θ̄p,k = −2π(fc + k/T)τp + θCFO − 2πk(τSFO + τPDD)/T+ θPPO + θPA. (2.9)

Note that, while the CFO, SFO and PDD contributions take the same value across different
antennas, the initial PLL phase (PPO) and PA are antenna specific [71], [72].

2.4 CSI data processing
At the OFDM receiver, the channel parameters (amplitudes and phases) are continuously esti-
mated for all the sub-channels. This information is computed for each received packet based on
known preamble symbols, and is collected by the CSI, a large (environment-dependent) complex
matrix describing the CFR for each sub-channel along every receiving antenna. Specifically, for
each pair of transmit and receive antennas, the CFR is a set of complex numbers Akejθk specifying
the attenuation Ak and the phase shift θk for each sub-channel k ∈ {−K/2, . . . ,K/2− 1}. Consid-
ering Eq. (2.8), the CFR estimated on packet n is written as

Hk(n) = Ak(n)ejθk(n)

=

P−1∑
p=0

Ap(n)e−j2π(fc+k/T)τp(n).
(2.10)

In our evaluation, the CFR matrix is estimated by a monitor Wi-Fi device running the Nexmon
CSI tool [73], as detailed in Section 2.6. We remark that the collected CFR slightly deviates from
the theoretical model in Eq. (2.10) due to hardware artifacts (see Section 2.3.3), which introduce
an undesired phase offset θoffs,k, i.e.,

H̄k(n) = Hk(n)eθoffs,k . (2.11)

Next, we present the steps that we implemented to clean the CFR matrix that is extracted by
the Nexmon CSI tool. Note that a new CFRmatrix is retrieved for each received packet. Thus, the
interval between subsequent acquisitions of the CFR is variable but, for the sake of exposition, in
the following analysis we assume that a new sample is available every Tc seconds, with Tc fixed.
Note that, in a real Wi-Fi network, the traffic exchanged between already deployed access points
and user devices (e.g., streaming services), can be captured and exploited for HAR recognition
purposes. When this is not possible, two Wi-Fi access points are required to recreate the setup,
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using a simple network controller to transmit packets at regular intervals and a second monitor
device to infer the CFR from these.

2.4.1 Phase sanitization
As detailed in Section 2.3.3, the undesired phase offset θoffs,k in Eq. (2.11) contains different contri-
butions. Some of them, namely, the CFO, PPO and the PA, although changing in time, have the
same value across the sub-channels in each receiving antenna. The SFO and the PDD are instead
sub-channel dependent. As for Eq. (2.9), the offset θoffs,k experienced at one receiving antenna in
sub-channel k can be expressed as

θoffs,k = −2πk(τSFO + τPDD)/T+ θCFO + θPPO + θPA. (2.12)

The main idea of our approach for phase sanitization is that the contribution of each path in
Eq. (2.11) is affected by the same phase shift θoffs,k. Hence, if wewere able to separate the different
paths, we could use (any) one of them as a reference to remove the phase offset from the CFR. In
our method, the strongest path will be used to this end, as this is the path whose parameters are
more reliably estimated at the receiver. The details are given shortly below. (Note that in the
following analysis the time index n is omitted in the interest of readability.)

Let h be the K-dimensional vector collecting the CFR information for the K sub-channels,

h = [H̄−K/2, . . . , H̄0, . . . H̄K/2−1]
T. (2.13)

To separate the Pmulti-path contributions, we define a grid of P′ possible paths with P′ > P and
solve a minimization problem to select the P components out of the P′ ones that contribute to the
CFR. We consider the following decomposition

h = Tr, (2.14)

where T = [T−K/2 . . .TK/2−1]T is an (K × P′)-dimensional matrix collecting the contributions
to the CFR that depend on the sub-channel index k, while r is a P′-dimensional column vector
representing the sub-channel independent terms. The P′-dimensional row vectorsTk are defined
though a dictionary of candidate total delays τp,tot = τp+ τSFO+ τPDD, with p ∈ {0, . . . ,P′− 1} as

Tk =
[
e−j2πkτ0,tot/T . . . e−j2πkτP′−1,tot/T

]
, (2.15)

The column vector r can instead be modeled as

r = ej(θCFO+θPPO+θPA)


A0e−j2πfcτ0

...
AP′−1e−j2πfcτP′−1

 , (2.16)

and is obtained by solving the following minimization problem
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P1 : r = argmin
r̃

||h−Tr̃||22 + λ ||r̃||1 , (2.17)

where λ > 0 is the weighing parameter for the ℓ1 regularization term in the Lasso regression. As r
reflects the sparse channel impulse response, P1 is a compressive sensing reconstruction problem
and can be solved through quadratic optimization using, e.g., [74]. The non-zero entries in the
solution r reveal the presence of a path p with corresponding total delay τp,tot.

Next, using the decomposition in Eq. (2.14), vector r, that we found solving problem P1, and
Eq. (2.15), we are able to separate the contributions of the different paths in the CFR for each
sub-channel k by applying the following Hadamard product

Xk = TT
k ◦ r. (2.18)

Xk can be rewritten by replacing the terms in Eq. (2.18), as

Xk = e−j2πk(τSFO+τPDD)/Tej(θCFO+θPPO+θPA)


A0e−j2π(fc+k/T)τ0

...
AP′−1e−j2π(fc+k/T)τP′−1

 . (2.19)

At this point, we define p∗ ∈ {0, . . . ,P′ − 1} as the position where r has the highest amplitude,
which, in turn, is associated with the strongest path. Let Xk,p∗ be the p∗-th entry of Xk. By multi-
plyingXk by the complex conjugate of Xk,p∗ , we remove the phase components that are constant
across all the paths, including the offset, obtaining

X̄k = Ap∗ej2π(fc+k/T)τp∗


A0e−j2π(fc+k/T)τ0

...
AP′−1e−j2π(fc+k/T)τP′−1

 . (2.20)

Hence, summing up the elements of X̄k (associated with the paths from p = 0 to p = P′ − 1), we
attain a CFR estimate for each of the sub-channels, where the phase offset is mitigated, as follows,

Ĥk = Âk(n)ejθ̂k(n)

= Ap∗
P′−1∑
p=0

Ape−j2π(fc+k/T)τ̂p

≃ Ap∗ej2π(fc+k/T)τp∗Hk,

(2.21)

where τ̂p = τp−τp∗ . Note that Ĥk of Eq. (2.21) represents theCFR estimate for sub-channel k, where
the phase offset has been removed and the contribution of each path is modulated according to
the amplitude and phase of path p∗.
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2.4.2 Doppler trace computation
Figure 2.1 shows how the amplitude and the phase change during a time interval of 3 seconds in
two different scenarios, i.e., an empty room (on the left) and a room with a moving person (right
plots). The presence of a human induces changes in the extracted channel parameters, which can
be exploited by HAR algorithms. However, the CFR is affected by the whole indoor multi-path
propagation environment and hence also accounts for the reflections from static objects. The
reflected signals combine differently at each sub-channel, and the delays induce sub-channel spe-
cific phase shifts (see Eq. (2.10)). Such a behavior is environment-specific and is clearly identifiable
in the amplitude plots of Figure2.1 (see the horizontal patterns in the figure). This fact does not
allow developing robust algorithms for HAR that generalize across different environments, as
the CFR is strongly affected by the room configuration itself (static objects, including walls, and
the room shape). Also, even considering the same indoor space, slight changes in the position of
the objects therein have a non-negligible effect on the measured CFR, thus making the HAR task
more challenging. As an example, Figure 2.2 shows the CFR amplitude collected in two different
days within the same empty room.
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(a) Amplitude (in dB scale), raw and sanitized phases (unwrapped) of CSI data for an empty room.
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Figure 2.1: Amplitude (in dB scale), raw and sanitized phases (unwrapped) of CSI data for an empty room
andwith a person running. Each trace is three seconds long and shows the behavior on each of themonitored
sub-channels (y-axis). Note that CSI is not available on the three central sub-channels, see Section 2.6 for
details.
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Figure 2.2: CSI amplitude (dB scale) collected in the same empty room but in two different days. Environ-
mental variations from one day to another change the multi-path channel response.

Due to these facts, in our framework we exploit the Doppler effect to obtain effective features
for environment-independent HAR. The Doppler effect corresponds to a shift in the signal phase
measured at the receiver as the geometry of the multi-path propagation changes during a trans-
mission event. The movements of the scatterers cause variations in the time taken for the signal
to reach the receiver through each of the propagation paths. This reflects in a phase shift in the
received OFDM signal and, in turn, in the CFR samples defined in Eq. (2.10). Specifically, consid-
ering path p inHk(n), its associated delay, τp(n), can be expressed as the sum of two contributions.
Let ℓp be the path length related to the initial position of the scattering point and Δp(n) be the delta
caused by the movement of the point during the transmission period nTc. We have

τp(n) =
ℓp + Δp(n)

c , (2.22)

with
Δp(n) = −

∫ nTc

0
vp(x) cosαp(x)dx, (2.23)

where vp indicates the speed of scatterer p, while cosαp results from the combination of sinusoidal
functions related to the angles of motion of the scatterer, and the angles of arrival and departure
of the signal.

The activity-related movements of a human cause complex variations in the phase, as each
bodypart acts as a scatterermoving at a specific velocity vp(x). This is revealed by theDoppler vec-
tor computed from the CFR samples through a short-time Fourier transform over N subsequent
channel estimates, i.e., during a channel observation window. These N estimates are respectively
acquired by extracting the CFR samples at the Wi-Fi monitor for N subsequent packets, collected
with sampling period Tc. The value of N is selected so that the attenuation, the velocities, and
the angles can be considered constant during the i-th observation window [iNTc, (i+1)NTc], with
i ≥ 0. This allows us to rewrite Δp(n) (Eq. (2.23)) as

Δp(n) = −vp cosαpnTc. (2.24)
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Note that, the sanitized phase expressed by Eq. (2.21) depends on τ̂p = τp − τp∗ , where τp∗ is the
propagation delay associatedwith the strongest path. Our objective corresponds to estimating the
Doppler shift vp cosαp (see Eq. (2.24)). Fortunately, we can reasonably assume that the strongest
path, p∗, refers to a static component, thus Δp∗(n) = 0 and τp∗ = ℓp∗/c, which is constant. It follows
that the term depending on p∗ in Eq. (2.21) does not alter the dynamic component of the signal,
which is entirely contained in Hk and, in turn, reveals the subject’s movements. It descends that
we are entitled to use Eq. (2.21) to track the dynamic component in the Doppler domain. We do
so by defining the K×N dimensional CFRmatrixHi associated with the i-th observation window,
with entry (k, n) referring to the CFR estimate from Eq. (2.21) obtained for OFDM sub-channel k
and packet n within the current window i, formally,

Hi =


Ĥ−K/2(iN) . . . Ĥ−K/2((i+ 1)N− 1)

...
ĤK/2−1(iN) . . . ĤK/2−1((i+ 1)N− 1)

 . (2.25)

Aparallel can be built betweenmatrix Eq. (2.25) and the signal obtained by a frequency-modulated
continuous-wave (FMCW) radar, where the sub-channel axis (row index) encodes the fast-time com-
ponent, while the time axis (column index, i.e., subsequent time estimates) serves as the slow-time
component [75]. This analogy guides us on the transformation that is to be applied to the ma-
trix to extract the desired Doppler information. Specifically, each element of the ND-dimensional
Doppler vectorDi = [di(−ND/2), . . . , di(ND/2− 1)]T is obtained as

di(u) =
K/2−1∑
k=−K/2

|F{Hi}(k, u)|2 , (2.26)

where u ∈ {−ND/2, . . . ,ND/2−1} is the Doppler index andF{·} indicates the Fourier transform
operation:

F{Hi}(k, u) =
ND−1∑
n=0

Ĥk(n)Wk(n)e−j2πnu/ND

≃ Ap∗
P′−1∑
p=0

Ape−j2π(fc+k/T)ℓ̂p/c
ND−1∑
n=0

Wk(n)ej2πn(fcv̂p cos α̂pTc/c−u/ND).

(2.27)

In 2.27,Wk is the Hanning function and the term ej2π(kv̂p cos α̂pnTc/T)/c is negligible and omitted in the
final expression. Note also that, to increase the velocity resolution, the signal can be zero-padded
out to ND samples before applying the Fourier transform.

By summing over the sub-channel axis k, in Eq. (2.26), we preclude the possibility of retrieving
ℓp taking the maximum of the Fourier transform over k. However, by definition, ℓp is constant
during a transmission slot and only depends on the position of the corresponding scattering point
inside the room. Here, we are interested in capturing the path variations (Δp(n)) caused by a
moving subject, thus the constant value ℓp is irrelevant to our HAR task.
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The non-zero entries u in the Doppler vector reveal the presence of a scatterer with associated
velocity

vp cosαp =
uc

fcTcND
, (2.28)

where c is the speed of light. Note that, we do not need to estimate vp and cosαp separately. In
fact, we are interested in finding a representative feature for the activity-related movements, i.e.,
we aim at revealing the dynamic component Δp(n) (Eq. (2.24)) of the paths in the environment.
It follows that the quantity in Eq. (2.28) is a good proxy to such dynamic components and is a
good input feature for SHARP. We recall that this feature is obtained considering time windows
consisting of N subsequent channel estimates each. In the following, we refer to Doppler trace,
or Doppler spectrogram, as the matrix obtained by stacking a number of subsequent Doppler
vectors, computed for consecutive observation windows.

As an example, in Figure 2.3we plot theDoppler spectrograms as a person performs each of the
four considered activities inside a room, compared with an empty room case. The spectrograms
show the evolution of the quantity in Eq. (2.28) over three-seconds long observation windows
and the colormap refers to the normalized amplitudes in dB. As expected, the Doppler trace re-
lated to the empty room only presents non-negligible power at the zero-velocity bin, revealing no
movement in the environment. Instead, in the presence of a moving person the power is spread
across different bins, reflecting the human-related multi-path changes.
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Figure 2.3: Doppler spectrogram expressed as vp cosαp for five different setups (from left to right: empty
room, sitting, walking, running and jumping). The quantity can be positive or negative depending on the
way the scattering points move, changing the geometry of the multi-path propagation channel.
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We stress that the main idea behind SHARP is to perform environment and person independent
activity recognition. To this end, we exploit the proprieties of the Doppler spectrogram discussed
above combined with the learning architecture detailed in the next section. The framework is
trained on a single scenario (i.e., same environment and person) and its robustness is assessed
considering different test cases. Note that the framework is used at testing time without perform-
ing any retraining, to assess its performance when the day, the person and/or the environment
change with respect to those used at training time.

2.5 Learning architecture for HAR
SHARP is conceived to fully exploit the data gathered from a commercial Wi-Fi access point, i.e.,
using amplitude and phase information from the CFR, and combining this data for the available
Nant receiving antennas. Activity recognition is performed using Nw subsequent channel esti-
mates at a time, which amounts to monitoring the channel for NwTc seconds. Note that this can
be implemented in a sliding window fashion, thus updating the activity label at every new CSI
sample.

The HAR algorithm consists of two steps.

1. First, we compute the Doppler traces from the data collected at all the receiving antennas
and we use them to obtain activity estimates though a neural-network based algorithm
(Section 2.5.1). Specifically, the machine learning based prediction chain that we build is
independently applied to the data stream coming from each of the available antennas.

2. As a result of the previous step, we obtain Nant independent predictions, one per antenna,
which are combined, in a second step, through a decision fusion method that leads to the
final activity estimate (Section 2.5.2).

We remark that an alternative approach that combines the data from the antennas (at the input
of the above decision chains), would also be possible. Such combined input data (the Doppler
traces coming from the antennas) would then be fed to a neural network to classify the activity.
We experimentally verified that this is not a viable method to obtain an environment-invariant
classifier, as the classification result depends on the antenna ordering and, in turn, on the person’s
location inside the room.

2.5.1 Activity classifier for the single antenna system
We framed the problem as a multi-class classification task with five classes (four user activities
plus empty room), tackling it through a learning-based approach. The designed neural-network
classifier takes as input the Doppler trace from a single antenna element, i.e., an Nw ×ND dimen-
sional matrix obtained by stacking Nw subsequent Doppler vectors, and returns the label of the
activity being performed. The classification architecture for the single-antenna system is shown
in Figure 2.4.
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Figure 2.4: SHARP classification architecture for a single antenna system. The input of the network consists
of 340 (about two seconds) long Doppler traces with 100 velocity bins. [CONV maps@(kernel)] blocks are
convolutional filters with stride S#, followed by ReLu activation functions.

To start with, the input is fed to a simplified Inception module with dimensional reduction.
This block extracts significant features from the Doppler trace at several scales by using layers
with different kernel sizes in a parallel fashion. The structure is inspired by the reduction block
proposed for the Inception-v4 neural network in [76], and consists of three branches combining
max-pooling (MAXPOOL) and convolutional (CONV) layers. Overall, the proposed neural net-
work has 128, 535 parameters. In the interest of obtaining a lightweight model, we do not use
the full 17 blocks Inception-v4 network which consists of 43 million parameters, but leads to
negligible performance improvements. The Nw/2×ND/2 dimensional feature maps obtained at
the output of each branch of the Inception module are concatenated and passed to the follow-
ing convolutional filter with 1 × 1 kernel, used to reduce the number of feature maps from 15 to
3. Hence, the output of such filter is flattened and passed to a fully connected (dense) layer with
five output neurons, one for each activity class. The Dropout technique is used as a regularization
strategy, randomly zeroing 20% of the elements in the flatted vector preceding the dense layer.
The Inception module was selected among other candidate learning architectures as the subject’s
movements introduce both small and large scale variations in the Doppler spectrogram (see, e.g.,
Figure 2.3). As humans, we are able to detect and visually extract patterns at different scales, but
this is not straightforward for a neural network, where each kernel captures features at a specific
scale, depending on its size. The Inception module tries to mimic such human capability by si-
multaneously processing the input through kernels having different sizes. As a consequence, in
our case, the combination of the features extracted by an Inception module is expected to better
represent the input than using a single kernel.

The classifier is trained in a supervised manner on data collected from a single indoor envi-
ronment, using the cross-entropy loss function. The Doppler traces collected from the different
antennas are used without any distinction among them, i.e., they are all added to a unique train-
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ing set, without keeping track of the antenna that generated them. Using the trained architecture
of Figure 2.4, each input trace is associatedwith the activity having the highest score in the output
five-dimensional vector, referred to as activity vector.

2.5.2 Decision fusion for the multiple antenna system
At runtime, the trained classification engine from the single antenna system is independently
applied to the Doppler stream gathered by each antenna. This returns Nant independent classi-
fication outcomes that are combined as we now explain. In detail, for each antenna we obtain a
five-dimensional activity vector (the classifier output) and an activity label, corresponding to the
largest element in the activity vector. When at least Nant − 1 activity labels agree on a certain
activity, there is a clear winner, and the Doppler trace is associated with that activity. Otherwise,
an overall decision vector is computed by summing, element-wise, the Nant activity vectors. The
trace is then associated with the activity having the highest score in this decision vector.

2.6 Experimental setup
In this section we present the experimental setup designed to train and validate SHARP. We first
introduce the CSI extraction method (Section 2.6.1), and then present the measurement scenarios
and campaigns selected for building the dataset (Section 2.6.2).

2.6.1 Nexmon extraction tool
Although most commercial Wi-Fi chipsets can potentially generate CSI data, few manufacturers
make this data available to developers and researchers, especially for modern chipsets. Hence,
the majority of the Wi-Fi-based HAR works in the literature have used outdated chipsets, for
which some CSI extraction tools have been developed over the years: widely used ones are [77],
[78], that target network interface cards implementing the IEEE 802.11n protocol. Recently, as
part of the Nexmon project [73], [79], [80], it has been released a firmware patch allowing the
extraction of CSI from specific Broadcom/Cypress Wi-Fi chipsets. Here, we use the Nexmon CSI
extraction tool presented in [7] to obtain CSI data from an Asus RT-AC86U IEEE 802.11ac Wi-Fi
router. The extraction tool is compatible with the very-high-throughput mode, defined by IEEE
802.11ac, working with a total bandwidth of 80 MHz. Each CSI sample results in complex-valued
channel information from 242 data sub-channels for each transmit-receive antennas pair. In our
experiments, with one transmitter antenna and four at the monitoring device, each CSI sample
corresponds to four vectors of 242 complex values. Although the total number of sub-channels
at 80 MHz is 256, each antenna vector has 242 components as the CFR is only provided for data
sub-channels, namely sub-channels whose indexes are {−122, . . . ,−2} and {2, . . . , 122}, i.e., no
CFR value is provided for the control sub-channels. Moreover, the values returned by the tool
on the sub-channels from −63 to 122 need an inversion on the sign, probably due to hardware
artifacts.

31



In the next sections, the Asus router that estimates the CFR is referred to asmonitor device. The
name reflects the status of the wireless interface of the router, that should be set in monitor mode
to capture the packets sent over-the-air by other access points and/or stations transmitting in its
proximity.

2.6.2 Dataset acquisition and organization
In order to analyze the effects of different room geometries and static obstacles, we collected CSI
samples in three different environments, a bedroom (Figure 2.5-a), a living room (Figure 2.5-b)
and a University laboratory (Figure 2.6), where one person moves within the area. Specifically,
we obtain data from three volunteers (a male, P1, and two females, P2, P3) while they are walking
or running around, jumping in place, or sitting somewhere in the room.

Figure 2.5: Monitored environment for (a) sets S1 - S5, bedroom with a bookcase on the middle; (b) set S6,
living room. Tx and Rx denote the transmitter and the receiver, respectively. Mj, j ∈ {1, 2, 3}, denotes the
monitor station.

We recall that, during a Wi-Fi communication, the CSI samples are computed at the receiver
side based on known packet preambles and used to estimate the channel conditions. CSI samples
can also be estimated by any othermonitor node that has access to thewireless channel, exploiting
so called “signals of opportunity”. In our setup, the CSI samples are collected by a monitor node,
implemented on an Asus router equipped with Nant = 4 antennas and running the Nexmon
firmware (see Section 2.6.1). To generate the signals of opportunity, we set up aWi-Fi transmission
link using two Netgear X4S AC2600 Wi-Fi routers, equipped with Qualcomm Atheros chipsets.
The packets are transmitted through a single antenna, by using a fixed modulation and coding
scheme (namely, MSC 4), by disenabling frame aggregation, and by setting the source rate to 173
packets per second. Since the Nexmon tool is configured for reading CSI samples on data packets
only (i.e., by neglecting the acknowledgement frames sent by the receiver), a new channel estimate
is generated every Tc ≃ 6× 10−3 s.
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Figure 2.6: Monitored environment for set S7. The desks are fully of computers and monitors. Tx and Rx
denote the transmitter and the receiver, respectively. M4 denotes the monitor station.

Figure 2.5 and Figure 2.6 display the positions of transmitter, receiver and monitor routers in
the different environments. The black boxes represent the transmitter (Tx) and the receiver (Rx),
while the red boxes labeled with Mj (with j ∈ {1, . . . , 4}) indicate the position of the monitor
station in different measurement sets. The activities are performed in the areas identified by a
color and a number. Note that in the bedroom (Figure 2.5-a), the direct path between Tx and M2
is occluded by the bookcase in the middle of the room (grey rectangle in the figure).

We performed several measurement campaigns and we grouped them into seven sets, Sjwith
j ∈ {1, ..., 7} each corresponding to a different triplet of environment-day-person. For each set,
Table 2.1 provides the position of the monitoring station (Mj), the area where the activities take
place (identified by the color), and the person performing them (Pi). We also include an indi-
cation of whether there is a direct path between the transmitter and the monitor stations. The
configuration for sets S1-S2 is the same apart from the day of measurement. Set S1 is used to
train the model, while set S2 is used to test the generalization over different days. In S3 we moni-
tor the same environment as the previous sets, but in a different day and with a different person
performing the activities. For sets S4 and S5, the person is required to move in both area 1 and
2 of the bedroom depicted in Figure 2.5-a. In these configurations, the direct path between the
transmitter and the monitor is disturbed by the bookcase. Set S6-S7 are collected in two different
days and environments. S7 represents themore challenging situation, in which no element (room,
day, person) is in common with the scenario used for the training set.

Each measurement campaign involves 120 seconds of data for each activity, plus an additional
trace of 120 seconds of data collected when the room is empty. Activities are repeated continu-
ously by the volunteers during the trace acquisition time. The campaigns have been performed
in different days through several months (April-December, 2020), resulting in a considerable time
diversity. Overall, we collected nearly 120 minutes of CSI data, consisting of the CFRs estimated
at all the four antennas of the monitor station.
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set monitor position, Mj person, Pi direct path type
S1 M1 P1 yes train-test
S2 M1 P1 yes test
S3 M1 P2 yes test
S4 M2 P1 no test
S5 M2 P2 no test
S6 M3 P1 yes test
S7 M4 P3 yes test

Table 2.1: Measurement conditions. For each set Sj we specify the position of the monitor station (Mj) (see
Figure 2.5 and Figure 2.6), the person (Pi) performing the activity, and the presence of a direct path between
the transmitter and the monitor. The last column indicates whether the set is used for training the proposed
HAR algorithm or testing its performance.

2.7 Experimental results
SHARP has been tested on the scenarios detailed in Table 2.1. The adopted communication and
processing parameters are summarized in Table 2.2 and are presented in Section 2.7.1. The per-
formance is discussed in Section 2.7.3.

communication and processing parameters
monitored channel IEEE 802.11ac ch no. 42
OFDM sample duration, T 3.2× 10−6 s
modulation and coding scheme MCS 4
channel estimates interval, Tc ≃ 6× 10−3 s
no. OFDM sub-channels,M 256 (245 used)
no. ch. estimates for Doppler computation, N 31
no. bins in a Doppler vector, ND 100
no. Doppler vectors per window, Nw 340
no. monitoring antennas, Nant 4

Table 2.2: Summary of parameters related to the communication setup, and the Doppler traces computation.

2.7.1 Pre-processing steps
We considered some pre-processing operations for extracting the features of interest from the
dataset. For each CSI sample, we divided the CFR values by the mean amplitude over the 242
monitored sub-channels to remove unwanted amplifications. Then, the phase sanitization algo-
rithm presented in Section 2.4.1 was applied, fixing λ = 10−1. We reconstructed the CFR values
on the three central sub-channels together with the other 242 using Eq. (2.20), thus obtaining a
CFR complex-valued vector (amplitudes and phases) of 245 components. The Doppler vectors
have been computed considering N = 31 subsequent sanitized CFR samples. The velocity res-
olution was increased by zero-padding the signal out to ND = 100 points before applying the
Fourier transform. A threshold was used on the resulting Doppler vectors to remove noisy con-
tributions with power smaller than 12 dB. Finally, the Doppler trace acting as input feature for the
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HAR system was built by stacking Nw = 340 consecutive Doppler vectors. The Doppler vectors
were generated for each CSI acquisition by using a sliding window mechanism. Therefore, the
complete Doppler trace lasted roughly 340 · Tc = 2 s of measurements.

2.7.2 On the selection of the phase sanitization approach

The removal of the phase offsets is necessary to obtain meaningful Doppler traces. The unwanted
offsets, and in particular the CFO, disrupt the Doppler shift information contained in the CFR
data, making its extraction impossible. Prior to developing our own phase sanitization method
(see Section 2.4.1), we investigated existing phase sanitization techniques from the literature. The
comparison between these strategies is not straightforward due to two main reasons. First, the
target phase (i.e., the one without offsets) can be hardly obtained through a mathematical model,
as the multi-path propagation is an environment-specific process that depends on many factors.
One may think of evaluating the effectiveness of a phase sanitization algorithm by developing a
simulator of the Wi-Fi channel, including the phase offsets introduced by the hardware imperfec-
tions. However, evenwith such simulator a fair comparison among the different strategies would
be difficult, as they use different reference systems for the sanitized output signal. Specifically,
the extensively adopted conjugate-multiplication between antennas (see, e.g., [44], [59]–[61]), uses
one of the antennas as the reference for the processed signal. The method in [49], instead, refers
the signal to its static component, while our proposed approach considers the strongest channel
path as the reference.

As our main objective is to develop an environment-independent algorithm for HAR, we com-
pare these phase sanitization approaches based on the quality of their features, i.e., by analyzing
their respective Doppler spectrograms. Figure 2.7 shows the Doppler spectrogram computed
from a 6 second long CFR trace and its sanitized versions using the just mentioned techniques. In
the considered time window, a person sits for the first 3 seconds and then starts running inside
the room. The “original signal” is clearly too noisy to be useful. The Doppler trace obtained with
our sanitization algorithm (see Section 2.4.1) is referred to as “ref. main path”, while the “ref.
one antenna” and “ref. static component” respectively refer to the approaches in [44] and [49].
The use of one antenna as the reference allows removing most of the phase offset contributions
in the CFR, but it also removes some relevant information related to the environmental changes.
This is due to the conjugate multiplication operation, which can lead to destructive interference
between the signal to be cleaned and the reference. On the other hand, when the reference is
the static component, the processed signal contains some noisy contributions which are proba-
bly associated with energy leakage between the static and the dynamic part. This prevents the
correct estimation of the reference used for phase sanitization. We experimentally verified that
these previous algorithms do not lead to good HAR performance. These drawbacks led us to the
development of our approach, detailed in the earlier Section 2.4.1.
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Figure 2.7: Doppler spectrograms computed from a six seconds long CFR signal, where the activity per-
formed are sitting ([0, 3] s) and running ([3, 6] s). The subfigures show theDoppler extracted from the original
signal (containing offsets) and those obtained with three phase sanitization techniques, labeled according to
the reference (ref.) used.

2.7.3 HAR algorithm training and performance assessment

The HAR algorithm presented in Section 2.5 has been trained by using the features extracted on
set S1. Specifically, 60% of the data in S1 makes up the training set, while the remaining 40%
is evenly split between the validation and the test sets. The other measurement sets, i.e., S2-S7,
are only considered in the test phase. The classification accuracy and the F1-score obtained on
each of the test sets are reported in Table 2.3. Note that, for S1, the evaluation is performed on
the test set only, i.e., on new data never seen during training. Overall, the mean recognition
accuracy is higher than 95%, reaching almost 100% when the environment and location of the
monitor node (M1) remain the same of the training data, regardless of day of measurement and
the person performing the activity (P1 or P2). We still obtain a good accuracy, around 97%, when
the direct path between the transmitter and the monitor stations is blocked (sets S4 and S5). In
this situation, the running activity is sometimes confused with the walking one, as revealed by
the F1-score associated with these classes. However, this is a reasonable limit of our approach,
as the activities are recognized by considering the velocity of different parts of the human body
(i.e., the scattering sources), which can be very similar when people walk or run in indoor spaces.
We also believe that a small confusion between the running and walking activities is admissible
in almost all the fields of application of a Wi-Fi sensing system. For example, in a residential
scenario, it is more relevant to correctly distinguish between static and dynamic activities, rather
than providing details about the type of movement.
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empty sitting walking running jumping mean

SSS1 accuracy (%) 100 100 100 100 97.93 99.59
F1-score 1 1 0.997 0.996 0.990 0.996

SSS2 accuracy (%) 100 100 100 99.28 99.64 99.78
F1-score 1 0.998 0.999 0.996 0.998 0.998

SSS3 accuracy (%) 100 100 96.64 100 100 99.33
F1-score 1 1 0.983 0.984 1 0.993

SSS4 accuracy (%) 100 100 99.84 93.27 94.63 97.55
F1-score 1 1 0.965 0.941 0.972 0.976

SSS5 accuracy (%) 100 100 98.58 84.93 99.45 96.59
F1-score 1 1 0.923 0.911 0.997 0.966

SSS6 accuracy (%) 99.76 100 100 100 99.20 99.79
F1-score 0.999 0.999 0.999 0.997 0.996 0.998

SSS7 accuracy (%) 100 100 81.24 98.71 100 95.99
F1-score 1 1 0.89 0.909 1 0.960

Table 2.3: SHARP performance. The accuracy and the F1-score are reported for each of the five classes, along
with their average value.

For testing the generality of our algorithm under different environments, we consider the mea-
surement sets S6 and S7. When the person is the same of the training data, the average HAR ac-
curacy approaches 100%while it decreases to 95.99%when both the person and the room change.
Again, the lower accuracy is achieved for the walking activity, which is wrongly classified as the
running one, as displayed in the normalized confusion matrix in Figure 2.8.

2.7.4 HAR algorithms performance comparison
In Figs. 2.9a-2.9b, SHARP is compared against three HAR systems from the literature: DeepSense
[47], EI [48] and MatNet-eCSI [49]. DeepSense and EI are used in place of the single antenna
classifier described in Section 2.5.1 (i.e., before the decision fusion step) and rely on the sole CSI
amplitude. MatNet-eCSI, instead, considers phase and amplitude information, and takes as
input their combination at all the antennas. The three approaches use different neural network
architectures. In the interest of a fair comparison, we trained them with the same portion of
the set S1 used to train SHARP. Note that MatNet-eCSI would require two training steps: the
first performed on the training scenario, whereas the second on the test scenario, to fine tune the
classification architecture to the new setup. For a fair comparison, in our evaluation we only con-
sidered the first step (using S1 data), i.e., without benefiting from additional data collected in the
test scenarios. Specifically, we respectively used the training and the validation portions of S1
as the reference and the target data for the MatNet-eCSI neural network. For the EI algorithm,
we considered the three different days containing the measurements for the training set S1 as the
different domains for its adversarial learning framework. Then, for DeepSense and EI, the deci-
sion fusion approach of Section 2.5.2 is applied at runtime to combine the output of the classifiers
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Figure 2.8: SHARP normalized confusion matrix for test set S7. Environment, day and person change with
respect to the training.

operating on the single antenna data and obtain the final activity label. As MatNet-eCSI already
takes the combination of features from all the antennas as input to its neural network classifier,
the decision fusion is not performed for this scheme.

(a) Average accuracy of SHARP compared against
the three considered approaches from the literature.

(b)Average F1-score of SHARP compared against the
three considered approaches from the literature.

Figure 2.9: SHARP performance in the worst case scenario, i.e., S7 and comparison against three HAR algo-
rithms from the literature – namely DeepSense [47], EI [48], and MatNet-eCSI [49] – for all the configura-
tions in Table 2.1.

From Figs. 2.9a-2.9b, we observe that the performance of all the considered competing algo-
rithms is in line with that of SHARP when tested on set S1, while it substantially degrades in
all the other cases, even when data are collected in the same environment used for training, but
on a different day (e.g., set S2). These results demonstrate that the sole amplitude information
(DeepSense and EI) or its combination with the phase (MatNet-eCSI) are insufficient for the

38



classifiers to generalize well across different scenarios. Indeed, as shown and discussed in Sec-
tion 2.4, the CFR amplitude and its phase are environment-dependent and are affected by small
scene variations over days, such as changes in the positioning of themonitor node, roomobstacles,
and objects. Conversely, SHARP generalizes across different days, environments and persons, by
reliably distinguishing between static and dynamic situations. This is achieved by: i) exploiting
the Doppler shift as the input feature for HAR, and ii) using the Inception module as the core
of the learning-based classifier, to automatically extract coarse- and fine-grained details from the
Doppler spectrograms.

2.8 Concluding remarks
In this chapter, SHARP, a novel low-cost system for HAR in indoor spaces has been presented
and experimentally validated. This system analyzes Wi-Fi signals scattered into the environment
and runs on COTS Wi-Fi routers, which are usually available in indoor spaces for communica-
tion purposes, thus making the deployment andmaintenance of an ad-hoc sensing infrastructure
unnecessary. The use of Wi-Fi routers as environmental sensors is enabled by the possibility
of reliably estimating the wireless channel frequency response while receiving background data
traffic.

In contrastwith previous solutions, we implemented a robustHAR system that does not require
complex and periodic calibrations, i.e., once trained, it can be used at run-time for a completely
unseen setup (new environment and individuals). SHARP revolves around the idea of processing
the CSI data gathered by amonitor access point to quantify the Doppler effect due to the presence
of moving objects over time. Indeed, the Doppler shift describes the velocity of the scattering
points (i.e., the human body parts), whose temporal trace depends on the specific activity and is
neither affected by the environment geometry, nor by static objects. A learning based algorithm,
working on the Doppler trace, has been proposed to distinguish among different activities.

Four coarse-grained human activities, i.e., sitting, walking, running and jumping are consid-
ered, together with the empty space recognition. The robustness of SHARP has been challenged
considering seven combinations of environments, access point locations, individuals and days.
In each scenario, several measurement campaigns have been conducted, using a four-antennas
IEEE 802.11ac router by Asus, operating on a frequency band of 80 MHz. Experimental results
show that our system achieves a very high accuracy in all the considered scenarios. In the most
challenging situation, i.e., when the person and the environment change with respect to those
used at training time, the average accuracy is 96%. Moreover, the system outperforms state-of-art
methods based on the analysis of the CSI amplitude and phase. Small errors are observed only
when working with unseen persons and when distinguishing between walking and running.
These errors somehow represent the fundamental limits of the approach, because they are due
to the behavioral differences among different persons, or to the movement similarities in walking
and running activities.
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3
Radio fingerprinting of MU-MIMO devices

through Wi-Fi channel state information

3.1 Introduction

As introduced in Section 1.1, the Wi-Fi CFR is not only affected by obstacles in the physical prop-
agation environment. The hardware inaccuracies of both the transmitter and the receiver devices
introduce small-scale variations in the CFR estimated at the receiver side. In this chapter, we pro-
ceed with our discussion on communication-assisted sensing applications by presenting DeepCSI,
the first physical layer fingerprinting algorithm for multi-user multi-input, multi-output (MU-
MIMO) devices. DeepCSI leverages the small-scale variations introduced in the CFR by the
hardware inaccuracies to perform physical layer fingerprinting of Wi-Fi terminals through off-
the-shelf devices such as laptops, without the need for more expensive software-defined radio
(SDR) devices.

In recent years, radio fingerprinting (RFP) has attracted significant attention as reliable and
effective spectrum-level authentication technique [81]–[87]. RFP consists in the computation of a
unique “fingerprint” of the device directly at thewaveform level, by exploiting naturally-occurring
circuitry imperfections [88]. Although RFP for physical (PHY) Wi-Fi authentication has been ex-
plored, existing approaches require SDR devices to extract RFP features. This may ultimately
prevent widespread adoption, since SDRs require expert knowledge and are usually more ex-
pensive than off-the-shelf devices. Moreover, existing work has tackled Wi-Fi fingerprinting up
to the legacy 802.11 a/g/b standards, which do not support multi-input, multi-output (MIMO)
techniques. However, newer Wi-Fi releases such as 802.11ac/ax and the upcoming 802.11be will
heavily rely on MU-MIMO techniques to deliver significantly higher throughput than previous
standards [89]–[91]. Thus, it is still unknown whether existing RFP techniques can be applied in
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the significantly more complex scenario of MU-MIMO, where inter-user interference (IUI) and
inter-stream interference (ISI) can significantly decrease the quality of the fingerprint itself.

Figure 3.1: Main operations of DeepCSI.

To fill the current research gap, in this chapter we propose DeepCSI, a brand-new technique
for RFP of Wi-Fi devices which is summarized in Figure 3.1. The core intuition behind DeepCSI
is that the circuitry imperfections in the transmitter’s radio interface will percolate onto the MU-
MIMOCSI feedback sent by the receiver to the transmitter to perform beamforming. By demodu-
lating this PHY-level feedback and performing deep learning techniques on a processed version
of the feedback, an observer can fingerprint the transmitter without the need of SDR capabili-
ties. The core concern of performing RFP without direct CSI access is that it is unknown whether
the imperfections will actually percolate onto the beamforming feedback matrix. Furthermore,
as pointed our earlier, the effect of IUI and ISI may further obscure the fingerprint, which is not
present in non-MIMO transmissions. Finally, it is crucial to evaluate our PHY fingerprinting tech-
nique as a function of different channels and different transmitter-receiver positions, since these
can significantly undermine the fingerprint [87].

To summarize, in this chapter

• we propose DeepCSI, a novel framework that leverages standard-compliant beamforming
feedback matrices to authenticate MU-MIMO Wi-Fi devices. Conversely from prior work,
DeepCSI does not require SDR technologies and can be run on any low-cost Wi-Fi device.
The core intuition behind DeepCSI is that imperfections in the transmitter’s radio circuitry
will also be present in the beamforming feedback matrix, and thus explicit CSI computation
through SDR is not needed. DeepCSI uses deep learning of the CSI vectors to learn the
device-unique imperfections located in the CSI;

• we extensively evaluate the performance of DeepCSI through a massive data collection
campaign performed in the wild with off-the-shelf equipment, where 10 Wi-Fi radios emit
MU-MIMO signals to multiple receivers located at different positions (and thus, with differ-
ent beam patterns). Experimental results indicate that DeepCSI is able to correctly identify
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the transmitter with an accuracy above 97%. Furthermore, we show that our technique
achieves accuracy of at least 46% when tested with a different channel condition, which be-
comes 73% when training on mixed position data. We evaluate the impact of the feedback
quantization error on the performance – where quantization is applied for transmission ef-
ficiency reasons as per the Wi-Fi standards [13], [92] – observing an accuracy increase of
up to 63% when changing the feedback PHY parameters. Finally, we show that DeepCSI
achieves at least 17% more accuracy than methods based on CSI phase cleaning, since the
latter partially remove the imperfections due to the hardware circuitry.

3.2 Background, related work, and challenges
Thanks to their capability of identifying transmitters without the need of computation-hungry
cryptography techniques, RFP techniques have received a significant amount of attention from
the research community [82]–[84], [86], [93]–[95]. While early work has demonstrated the feasi-
bility of RFP, it has focused on the extraction of complex hand-tailored features, which do not
scale well with the device population, or work in ad hoc propagation settings only. Among the
earliest papers in the field, Brik et al. [94] show that 99% accuracy can be achieved through offset-
based features on a device population of 130 devices. However, experiments were performed in
an anechoic chamber, which is an almost ideal propagation environment. Among the first works
on Wi-Fi-specific RFP, Vo et al. [86] propose RFP techniques that extract features from the scram-
bling seed, the level of frequency offset and transients between symbols. However, the models
achieve accuracy up to 50% on 100 devices. The authors in [82], instead, demonstrated that up to
54 ZigBee devices can be fingerprintedwith about 95% accuracy through PSK transients. More re-
cently, Zheng et al. [81] studied and evaluated in a testbed of 33 devices a model-based approach
to summarize imperfections in themodulation, timing, frequency and power amplifier noise. It is
not clear, however, whether the approach in [81] generalizes to different channel environments.

In stark contrast with early work, recent RFP papers have leveraged deep learning techniques
to fingerprint wireless devices [85], [96]–[99]. A key advantage of deep learning techniques is that
they are able to perform feature extraction and classification at the same time, thus avoiding man-
ual extraction of device-distinguishing features. For example, Das et al. [99] and Merchant et al.
[98] deep neural networks (DNNs) achievemore than 90% accuracywith a population of 7 ZigBee
devices and 30 LoRa devices. To further increase accuracy, [85], [97] proposed the introduction of
artificial impairments at the transmitter’s side. However, without compensation, this approach
inevitably increases the bit error rate (BER). The usage of complex-valued convolutional neural
networks (CNNs) has been explored by Gopalakrishnan et al. [100], while in [96] and [101] the
authors propose the usage of finite impulse response (FIR) filters to compensate for the adverse
action of the wireless channel on the fingerprinting accuracy. The key limitation of existing work
is that it is entirely based on SDRs, which is very specialized, expensive equipment that is not
widely available in common Wi-Fi networks. Moreover, to the best of our knowledge, no prior
work has tackled the issue of assessing whether RFP is feasible in MU-MIMOWi-Fi networks. In
this chapter, we address both issues at once by presenting DeepCSI, a framework that (i) can be
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run on any off-the-shelf Wi-Fi-compliant device, and (ii) can accurately fingerprint MU-MIMO
devices.

3.2.1 Challenges of MU-MIMO fingerprinting
Performing RFP of devices operating in downlink (DL) MU-MIMO mode is significantly more
challenging than RFP of devices operating with omnidirectional antennas. First, transmissions
are inevitably impaired by imperfect beamforming weights that do not accurately compensate
the wireless channel. Moreover, (i) inter-stream interference (ISI) occurs between streams trans-
mitted to the same receiver; (ii) inter-user interference (IUI) affects streams directed to different
receivers. The time-varying behavior of both ISI and IUI complicates the identification of the
device-specific imperfections. Moreover, it has been shown in prior work that the RFP process
may be adversely impacted by the presence of the wireless channel [85], [87]. This reasoning led
us to design a different approach for extracting effective radio fingerprints. Specifically, we use
the beamforming feedback matrix Ṽ described in Section 3.3.2. The matrix Ṽ is estimated based
on the very high throughput (VHT)-long training fields (LTFs) of the null data packet (NDP) that
is sent in broadcast mode without being beamformed. Moreover, the VHT-LTFs are sent over the
different antennas in subsequent time slots of 4 μs each. Therefore, the NDP and, in turn, Ṽ, are
not affected by IUI nor by ISI. However, since the feedback matrix is quantized before transmission,
quantization errors are inevitable when reconstructing the matrix. In Section 3.5, we analyze the
effect of the quantization error and investigate the generalization capability of our RFP approach
to multiple channels and beamformee positions.

3.3 The DeepCSI framework
Henceforth, we will adopt the following notation for mathematical expressions. The superscripts
T and † respectively denote the transpose and the Hermitian of a matrix, i.e., the complex conju-
gate transpose. By∠C, we refer to thematrix whose elements are the phases of the corresponding
elements in the complex-valued matrix C. diag(c1, . . . , cj) indicates the diagonal matrix with ele-
ments (c1, . . . , cj) on themain diagonal. The (c1, c2) entry ofmatrixC is denoted by [C]c1,c2 . Finally,
Ic denotes a c× c identity matrix while Ic×d is a c× dmatrix with ones on the main diagonal and
zeros elsewhere.

3.3.1 Preliminaries on MU-MIMO in Wi-Fi
In the following, wewill considerWi-Fi devices operatingwith the IEEE 802.11ac/ax standards [13],
[92]. These devices use beamforming techniques to focus the power toward the intended receiver,
thus increasing the signal-to-noise ratio (SNR). The beamforming may also compensate the effect
of the wireless channel from the transmitter (beamformer) to the receiver (beamformee). Specifically,
when both devices in the communication link are equipped with antenna arrays (MIMO system),
each pair of transmitter and receiver antennas forms a physical channel that can be exploited
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for wireless communication. This allows shaping multiple beams, referred to as spatial streams,
to transmit different signals to the beamformee, in a parallel fashion. To this end, the signals are
combined at each transmitter antenna through steering weights,W, derived from the CFRmatrix
H. The CFR needs to be estimated for every OFDM sub-channel over each pair of transmitter (TX)
and receiver (RX) antennas, thus obtaining aK×M×Nmatrix, whereM andN are respectively the
number of transmitter and receiver antennas. In Figure 3.2 we report an example of beamforming
for a 3 × 2 MIMO system. At the beamformee side, the original signals are retrieved from their
combination exploiting the fact that, ideally, [H]ℓ̄,ī[W]ℓ,i = 0 when ℓ̄ ̸= ℓ or ī ̸= i.

MIMO TX 
Beamformer

MIMO RX 
Beamformee

MIMO
Channel

[H]1,1
[H]1,2

[H]2,2

[H]2,1

[H]3,1
[H]3,2

s1 s2

r2

r1

[W]1,1

[W]1,2

[W]2,2

[W]2,1

[W]3,1

[W]3,2

Figure 3.2: Example of beamforming for a 3 × 2 MIMO system. The grey triangles represent the Wi-Fi
antennas. s1, s2 and r1, r2 stand for the transmitted and received signals respectively. W is the steering
matrix containing the weights to shape the beams whileH is the CFR matrix.

Considering the Wi-Fi OFDM transmission model detailed in Section 2.3, we can write the
expression for the CFR H describing the propagation channels between the M transmitter and
the N receiver antennas. Specifically, the (k,m, n) element ofH is

[H]k,m,n =
P−1∑
p=0

Am,n,pe−j2π(fc+k/T)τm,n,p , (3.1)

with m ∈ {0, . . . ,M− 1} and n ∈ {0, . . . ,N− 1}. By knowing H, the beamformer can generate
the steering matrix W to maximize the power sent toward the beamformee or simultaneously
send parallel data streams to multiple beamformees. These communication modes are respec-
tively referred to as single-user multi-input, multi-output (SU-MIMO) and MU-MIMO. While
IEEE 802.11n only supports SU-MIMO mode, in IEEE 802.11ac and above MU-MIMO can be en-
abled in the DL direction, i.e., at the access point (AP) side [92], while in 802.11ax MU-MIMO can
be also enabled in uplink (UL) mode [13]. DL MU-MIMO, together with wider bandwidths and
new modulation and coding schemes (MCSs), allows achieving the so called VHT enhancement.
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3.3.2 Compressed beamforming feedback
In IEEE 802.11ac/ax, DL MU-MIMO is enabled by the pre-coding and the channel sounding pro-
cedures [92]. Pre-coding linearly combines the signals to be simultaneously transmitted to the
different beamformees. This procedure shapes the beams focusing the power in the correct direc-
tions. The combination weights are antenna-specific and are computed based on channel sound-
ing performed through a NDP, transmitted without beamforming. After receiving the NDP, each
beamformee estimates H based on a VHT-LTF for each spatial stream. Next, the beamformee
feeds back the matrix to the beamformer in the form of a compressed beamforming feedback, which
is computed for each sub-channel k as follows.

Let Hk be the M × N sub-matrix of H containing the CFR samples (see Eq. (3.1)) related to
sub-channel k. Hk is first decomposed via singular value decomposition (SVD), obtaining

HT
k = UkSkZ

†
k , (3.2)

whereUk andZk are, respectively,N×N andM×M unitarymatrices, whileSk is anN×M diagonal
matrix collecting the singular values. Next, the first NSS ≤ N columns of Zk are extracted to form
the complex-valued beamforming matrixVk that is used by the beamformer to compute the pre-
codingweights for theNSS spatial streams directed to the beamformee. Note that the beamformee
can be served with at maximum NSS = N spatial streams (see Chapter 13 of [102]). Thus, the
beamformee is required to send back Vk to the beamformer. To do that efficiently, instead of
sending the complete matrix, the beamformee derives and transmits its compressed representation.
Specifically, the feedback consists of a number of angles obtained by converting Vk into polar
coordinates. The transformation is based on the iterative procedure described in Algorithm 3.1,

Algorithm 3.1Vk matrix decomposition
Input: Vk
Output: Dk,i andGk,ℓ,i for i ∈ {1, . . . ,min(NSS,M− 1)}, ℓ ∈ {i+ 1, . . . ,M}

D̃k = diag(ej∠[Vk]M,1 , . . . , ej∠[Vk]M,NSS )

Ωk = VkD̃
†
k

for i← 1 to min(NSS,M− 1)
φk,ℓ,i = ∠ [Ωk]ℓ,i with ℓ = i, . . . ,M− 1
computeDk,i through Eq. (3.3)
Ωk ← D†

k,iΩk
for ℓ← i+ 1 toM
ψk,ℓ,i = arccos

(
[Ωk]i,i√

[Ωk]2i,i+[Ωk]2ℓ,i

)
computeGk,ℓ,i through Eq. (3.4)
Ωk ← Gk,ℓ,iΩk

end for
end for
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whereDk,i andGk,ℓ,i are defined as

Dk,i =



Ii−1 0 . . . 0
0 ejφk,i,i 0 . . . ...
...

0 . . . 0
... 0 ejφk,M−1,i 0

0 . . . 0 1


, (3.3)

Gk,ℓ,i =


Ii−1 0 . . . 0
0 cosψk,ℓ,i 0 sinψk,ℓ,i ......

0 Iℓ−i−1 0
− sinψk,ℓ,i 0 cosψk,ℓ,i 0

0 . . . 0 IM−ℓ

 . (3.4)

The obtained matrices allows rewritingVk as

Vk = ṼkD̃k, (3.5)

with

Ṽk =
min(NSS,M−1)∏

i=1

(
Dk,i

M∏
l=i+1

GT
k,l,i

)
IM×NSS , (3.6)

where the products represent matrix multiplications. Note that, by construction, the last row of
the complex-valued Ṽk matrix, i.e., the feedback for theM-th transmitter antenna, consists of non-
negative real numbers. Next, the K×M×NSS beamforming matrix Ṽ is obtained by stacking the
Ṽk matrices for k ∈ {−K/2, . . . ,K/2− 1}. Thanks to this transformation, the beamformee is only
required to transmit the φ and ψ angles from which the Ṽk matrices can be reconstructed. The
beamforming performance is equivalent at the beamformee when usingVk or Ṽk to construct the
steering matrixW and, in turn, the feedback for D̃k is not sent [102]. The angles are quantized for
transmission using bφ ∈ {7, 9} bits for φ and bψ = bφ − 2 bits for ψ. Next, the quantized values
are packed into the VHT compressed beamforming frame and transmitted without encryption,
thus allowing any device that can access the wireless channel to capture the information sent by
the beamformee to the beamformer. The bφ and bψ values can be read in the VHT MIMO control
field of the frame, together with other information including the number of columns (NSS) and
rows (M) in the beamforming matrix and the channel bandwidth. At the beamformer, the φ and
ψ angles are retrieved from their quantized versions qφ = {0, . . . , 2bφ−1} and qψ = {0, . . . , 2bψ−1}
using

φ = π
( 1
2bφ +

qφ
2bφ−1

)
, (3.7)

ψ = π
( 1
2bψ+2 +

qψ
2bψ+1

)
. (3.8)
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3.3.3 DeepCSI workflow and learning architecture
Figure 3.3 summarizes how DeepCSI leverages the sounding protocol mechanism described in
Section 3.3.2 to obtain a fingerprint of the IEEE 802.11ac/ax AP (beamformer). The sounding is
triggered by the beamformer before sending data in DL MU-MIMO mode to the beamformees,
and concludeswith the transmission of the feedback angles. DeepCSI exploits the fact that the an-
gles can be easily collected by anyWi-Fi compliant device by setting theWi-Fi interface inmonitor
mode and using a network analyzer toolkit, e.g., Wireshark [103], to capture the packet containing
the feedback. Notice that DeepCSI does not require the monitor device to be authenticated with
the target AP. Once obtained the feedback angles, DeepCSI reconstructs Ṽ through Eq. (3.6).

Figure 3.3: DeepCSIworkflow. The compressed beamforming feedback computed by each beamformee as
the final step of the sounding protocol is exploited by DeepCSI to obtain a fingerprint of the beamformer.

Next, the beamforming feedback matrix is used as input for the DNN classifier depicted in Fig-
ure 3.4 to extract the radio fingerprint of the beamformer. Notice that once trained, the DNN
can be deployed and utilized in real time to authenticate the devices at the spectrum level. The
elements of the feedback matrix are fed to the DNN as follows. The I/Q components of the beam-
forming feedback are stacked into anNrow×Ncol×Nch matrix, whereNcol ≤ K identifies the num-
ber of selected OFDM sub-channels, Nrow ≤ NSS and Nch < 2M refer to the columns and rows of
Ṽ used for fingerprinting and the 2-factor is for the I/Q components. Note that the feedback for
the last transmitting antenna consists of the sole I information as, by construction, the last row
of each Ṽk (Eq. (3.6)) is composed of non-negative real values [92]. The learning architecture is
inspired from [104] and consists of a series of Nconv convolutional layers followed by selu acti-
vation function [105], and by a max-pooling layer. The output of the previous block (in blue and
green in Figure 3.4) is flattened and forward through Ndense dense layers with selu activation
function. A final dense layer with softmax activation is used for classification. Alpha-dropout
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Figure 3.4: DeepCSI learning algorithm. The I and Q components of Ṽ serves as input for a neural network
classifier that computes the beamformer fingerprint and returns, as output, the estimated Wi-Fi module ID.

layers are interposed between the dense layers. We performed hyper-parameter evaluation in
Section 3.5, and established through experiments that a good set of hyper parameters isNconv = 5
with 64 filters each, and Ndense = 2 dense layers with 128 and 64 neurons each. This architec-
ture yields a DNN containing 159,050 trainable parameters, which is relatively small compared
to state-of-the-art DNNs. The DeepCSI learning algorithm is trained in an offline fashion by back
propagating the cross-entropy loss between the module identifier (ID) predicted by the classifier
and the actual one.

3.4 Experimental setup
We evaluate the effectiveness of DeepCSI using off-the-shelf devices and through extensive exper-
imental evaluation. To this end, we set up a Wi-Fi network consisting of one AP and two stations
(STAs). The AP was implemented through a Gateworks GW6200 single board computer (SBC)
equippedwith a CompexWLE1216v5-23 IEEE 802.11acmodule, as shown in Figure 3.5. The STAs
were deployed at different positions as depicted in Figure 3.6 to generate different beam patterns
and different SNR regimes.

Two Netgear Nighthawk X4S AC2600 routers, with 2 out of 4 antennas enabled, acted as STAs
(beamformees). At the AP, M = 3 antennas were used to sound the channel for DL MU-MIMO
transmission mode and the STAs were served with NSS = 2 spatial streams each. Note that im-
plementation specific constraints prevent the use ofM = 4 for DL MU-MIMO. For the data trans-
mission between the AP and the STAs, we used channel 42, i.e., fc = 5.21 GHz with 80 MHz
bandwidth. The number of OFDM sub-channels sounded is K = 234 as the mechanism does not
consider the 14 control sub-channels and the 8 pilot ones. The AP uses the quantization parame-
ters bφ = 9 and bψ = 7 for φ and ψ feedback angles, respectively. No other sources of interference
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Figure 3.5: DLMU-MIMO enabledWi-Fi AP (beamformer). The CompexWLE1216v5-23Wi-Fi module was
mounted on a Gateworks GW6200 SBC platform. Four antennas were connected to the Wi-Fi module.

are present in the considered indoor space. We generated UDP traffic in the DL direction to in-
duce the AP to trigger the channel sounding mechanism, and collected the angles (φ,ψ) that
were sent back by the beamformees using the Wireshark network analyzed toolkit [103] running
on an off-the-shelf laptop equipped with an IEEE 802.11ac Wi-Fi card. This allows retrieving the
Ṽ beamforming feedback matrices associated with each sounding operation, and computing the
beamformer fingerprint as detailed in Section 3.3.3.

3.4.1 Dataset structure

The dataset consists of the beamforming feedback angles associated with Nmodules = 10 different
Compex Wi-Fi modules, which are the target of the proposed fingerprinting mechanism. It is
collected in an indoor environment where the three entities constituting the experimental Wi-Fi
network are placed as shown in Figure 3.6 and no obstacles are present between the AP and
the STAs. At the AP, the SBC, the antennas and the coaxial cables remain the same across all
the considered network setups, by only changing the Compex Wi-Fi module. This ensures that
the fingerprint procedure only relies on the hardware imperfections of the Wi-Fi module. We
collected 9 different measurements for each Compex module by changing the positions of the
STAs. Specifically, the beamformees are first placed in front of the beamformer, i.e., with an angle
of arrival (AoA) for the direct path of nearly zero degrees, and next moved of multiples of 10 cm
respectively to the left and to the right with respect to their initial position (see the colored stars in
Figure 3.6). These configurations allow obtaining data associated with different beam shaping for
the ongoing DL MU-MIMO transmissions. Overall, we collected 90 traces, i.e., 9 traces for each
of the 10 Compex Wi-Fi modules. Each trace contains the beamforming feedback angles sent by
the two beamformees during two minutes of data transmission. Such feedbacks can be promptly
grouped based on the beamformee identifier by applying a filter on the packets source address.
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Figure 3.6: Indoor environment configuration. The position of the AP (beamformer) remains the same for
all the acquisitions (yellow star). The beamformees are first placed in front of the AP and next, for each
new experiment, beamformees 1 and 2 are respectively moved 10 cm to the left and 10 cm to the right. The
subsequent positions of the beamformees are marked with red and blue stars respectively and labeled with
a number ∈ {1, . . . , 9}.

set
beamformees position

training testing
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

S1
S2
S3

Table 3.1: Training/testing sets used to assess the DeepCSI performance.

3.4.2 DeepCSI training and testing procedure
The DeepCSI classifier (see Figure 3.4) was trained using different PHY configurations, to eval-
uate its robustness in correctly identifying the beamformer device (the AP) as the position of the
beamformees change. Table 3.1 summarizes the different training/testing sets that were consid-
ered, where the beamformees positions are depicted in Figure 3.6. When the same positions are
considered in the training and testing phase, the first 80% of the collected data is used for train-
ing and validating the model, while the remaining 20% serves as test data. In all cases, the last
20% of training data is used for model validation. We assess the performance of DeepCSI on Ṽ

sub-matrices. This makes it possible to evaluate the impact of using (i) different groups of trans-
mitter antennas and spatial streams, and (ii) different portions of the radio spectrum. For (i), we
vary Nch and Nrow. For (ii), we pick a subset of the K available sub-channels.
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For each network configuration, DeepCSI is independently trained on the beamforming feed-
backs from the two beamformees, obtaining one trained model for each of them. In this way, we
evaluate a realistic usage scenario where each beamformee authenticates the beamformer based
on locally acquired information, without relying on some other, possibly malicious, entities. The
results considering both the beamformees are also reported for completeness.

3.5 Experimental results
DeepCSIwas experimentally evaluated on the Wi-Fi network setups of Table 3.1, evaluating the
effectiveness of the extracted beamformer fingerprint for different beamformer and beamformees
configurations. Next, we first briefly discuss the DNN hyper parameters selection process and
then present the DeepCSI performance by varying the PHY parameters of the MU-MIMO trans-
mission mode.

3.5.1 DeepCSI hyper parameters selection
Figure 3.7a and Figure 3.7b respectively evaluate the effect of tuning the number of convolutional
layers and filters for the DNN presented in Section 3.3.3. Noticeably, the accuracy remains almost
constant when varying the number of layers. Also, the accuracy increases with an increasing
number of filters, at a cost of a higher network complexity (i.e., more trainable parameters). As
a trade-off between accuracy and complexity, we selected Nconv = 5 convolutional layers with
64 filters each and kernel sizes of (1, 7) for the first three layers, (1,5) for the fourth and (1,3) for
the last one by using the elbow method [106]. The max-pooling kernels are set to (1, 2) and the
alpha-dropout between the three dense layers is applied with retain probability of 0.5 and 0.2,
respectively.
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(a) DeepCSI accuracy by varying the number of con-
volutional layers, with 64 filters each, from 2 to 7.
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(b) DeepCSI accuracy by using 5 convolutional lay-
ers and varying the number of filters in each layer,
from 16 to 256.

Figure 3.7: DeepCSI accuracy for beamformer 1, on S1 validation data, by varying the DNN parameters.
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3.5.2 DeepCSI performance using different beamformees configurations
Figs. 3.8-3.9 show the accuracy of DeepCSI in correctly identifying the beamformer among the 10
CompexWi-Fimodules in the dataset. The resultswere obtainedusing the beamforming feedback
angles from a single beamformee at a time. The confusion matrices are reported for each of the
three training/testing configurations in Table 3.1, where ID refers to the APmodule identifier. We
notice that the accuracy increases withmore spatial diversity in the training data, reaching 97.68%
and 98.37% for beamformee 1 and 2, respectively, when all the configurations are used at training
time (see Figs. 3.8a-3.9a for set S1). With sets S2 and S3, the beamformee positions at training
and testing times differ. The lowest accuracy is obtained with S3 (worst-case configuration). This
is because S3 is the set with the largest difference between training and testing positions. The
performance improves when going from S3 to S2, as the latter provides DeepCSI with a more
balanced set of positions during training, allowing the classifier to fill the knowledge gaps by
“interpolating” the patterns learned from adjacent positions. This increases the diversity among
the beams to be shaped at the beamformer side and, in turn, across the collected Ṽ matrices.
Hence, the network reuses information from similar beam patterns leading to an identification
accuracy of 73%, evenwhen the beamformee is at a position that was not contained in the training
set (see Figs. 3.8b-3.9b).
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Figure 3.8: Confusion matrices for beamformee 1, 3 TX antennas, spatial stream 0. ID in this and in the
following plots refers to the AP Wi-Fi module identifier.
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Figure 3.9: Confusion matrices, beamformee 2, 3 TX antennas, spatial stream 0.
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The same applies to Figure 3.10, where the beamforming feedback angles of both beamformees
are used to build the training set. This allows to slightly increase the DeepCSI accuracy on sets S2
and S3. However, using this technique in real-world scenarios poses security concerns associated
with the reciprocal trustworthiness of the beamformees in a Wi-Fi network.
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(c) S3. Accuracy: 49.84%

Figure 3.10: Confusion matrices, mixed beamformees, 3 TX antennas, spatial stream 0.

The impact of the number of beamformee training positions is evaluated in Figure 3.11. We
report the accuracy obtained by increasing the number of positions used at training time from
1 to 9 for set S1 and from 1 to 5 for sets S2 and S3, according to Table 3.1. In all the cases, the
accuracy increases with more beamformee positions in the training data, which confirms that the
fingerprint is more effective when high spatial diversity is present in the training data.
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Figure 3.11: DeepCSI accuracy by varying the number of training positions from the considered set (see
Table 3.1). Set S1 is trained on a maximum of 9 beamformee positions while S2 and S3 on 5.

In Figure 3.12, we evaluate the effect of swapping the beamformees used at training and testing
times for the same network configuration. We trained DeepCSI with data from a given beam-
formee and used the trained DNN model to identify the AP module from the Ṽ matrices com-
puted by a different beamformee (for the same AP module). The learned fingerprint in this case
performs poorly asmatrix Ṽ captures hardware inaccuracies of both devices, i.e., the beamformer
(the AP) and the beamformee. While a well designed learning architecture can identify with high
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accuracy the beamformer when the beamformee remains the same at training and testing times,
it hardly succeeds when these devices differ. We reasonably believe that in a real-world scenario
the impact of this will be even stronger, as the beamformees can be from different vendors and
have different hardware configurations.
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(a) Training on beamformee 1 and testing on beam-
formee 2. Accuracy: 10.35%
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(b) Training on beamformee 2 and testing on beam-
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Figure 3.12: Confusion matrices for set S1, training on one beamformee and testing on the other, 3 TX an-
tennas, spatial stream 0.

3.5.3 DeepCSI performance when varying the beamformer transmission pa-
rameters

In Figure 3.13a we compare the accuracy of DeepCSI when considering different portions of the
radio spectrum. According to the IEEE 802.11ac OFDM channels specifications [92], from the 234
sub-channels on an 80 MHz channel, we can group sub-channels belonging to two 40 MHz and
four 20 MHz channels. Therefore, from the data collected on the IEEE channel 42 at 80 MHz,
we extracted 110 sub-channels for the 40 MHz channel 38 and 54 sub-channels for the 20 MHz
channel 36, and assessed the performance of DeepCSI on these subsets. These results prove that
the accuracy increases with a larger bandwidth, especially when considering the most challeng-
ing configurations S2 and S3. Figure 3.13b evaluates the impact of increasing from 1 to 3 the
number of transmitter antennas used to compute the fingerprint. Note that the accuracy mainly
depends on the number of selected antennas and only weekly depends on their IDs. Thus, we
only show results for a single selection pattern out of the possible ones for each number of anten-
nas. The DeepCSI performance remains almost constant on set S1, while the accuracy increases
on S2 and S3 going from 1 to 3 transmitter antennas. These results confirm that exploiting to the
maximum extent the spatial diversity at the beamformer – by considering all the available OFDM
sub-channels and transmitter antennas – is key to designing a robust fingerprinting algorithm.
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(a) DeepCSI accuracy by varying the channel band-
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trix Ṽ.

Figure 3.13: DeepCSI accuracy by varying the channel bandwidth and the number of transmitter antennas,
using spatial stream 0.

3.5.4 DeepCSIperformancewhen changing the reference beamformee spatial
stream

To evaluate the effect of changing the DNN input spatial stream on the beamformer fingerprint-
ing accuracy, we consider the impact of the beamforming feedback angles quantization on the
columns of Ṽ, representing the spatial streams dimensions. From Algorithm 3.1, it follows that
the impact of the quantization error increases going from the first to the last reconstructed stream.
We verified this fact by simulating an OFDM MU-MIMO channel, considering the ray tracing
model of [107]. We obtained the channel matrixH for 48,000 transmissions in MU-MIMO mode,
and we derived Ṽ via SVD. Hence, we computed the qφ and qψ quantized angles following Al-
gorithm 3.1 and using the quantization parameters defined in the standards [13], [92]. These
operations are the same performed by the beamformees to generate the feedback. Next, we recon-
structed Ṽ from the quantized angles and evaluated the reconstruction error on each combination
of transmitter antennas and spatial streams. We plot the probability density functions (PDFs) of
the quantization error using (bψ = 5, bφ = 7) and (bψ = 7, bψ = 9) bits for quantization in Figs. 3.14a
and 3.14b. We notice the reconstruction of the second column of Ṽ, i.e., the second stream, is less
accurate than the reconstruction of the first, for all the three transmitter antennas. This is intrinsi-
cally related to the construction of the Dk,i and Gk,ℓ,i matrices from the quantized angles, and to
their combination for the computation of Ṽ (see Eq. (3.6)). Indeed, the algorithm has a recursive
structure by which the quantization error on the first stream propagates to the next ones, lead-
ing to worse approximations for the higher order columns of matrix Ṽ. The quantization error
can also be visualized from our empirical measurements. In Figure 3.15, we plot an excerpt of
the Ṽ matrix reconstructed by DeepCSI from the quantized angles obtained at the beamformee
side in static conditions. The quantization error is clearly visible for the second spatial stream
(column 2 of matrix Ṽ). Thus, the performance of DeepCSI decreases when considering as DNN
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input the data associated with the second spatial stream (Figure 3.16) instead of the first one (Fig-
ure 3.8). While on set S1 the beamformer can still be identified with high accuracy using data
from the second spatial stream, when considering sets S2 and S3 – thus reducing the number of
training positions – the beamformer fingerprint can no longer be effectively extracted, leading to
a considerable drop in the classification accuracy.
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[Ṽ]2,1
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Figure 3.14: PDF of the Ṽ quantization error using the two standard-compliant sets of values for the beam-
forming feedback angles quantization bits.
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Figure 3.16: Confusion matrices, beamformee 1, 3 TX antennas, spatial stream 1.

3.5.5 DeepCSI performance compared with learning from a processed input
DeepCSI learns beamformer-specific features directly from the I/Q samples of matrix Ṽ. As
an alternative approach, we evaluated the effect of pre-processing such I/Q data before using it
as input for the DNN. Specifically, we applied to the beamforming feedback matrices the data
cleaning algorithm presented in Section 2.4.1. As detailed in Section 2.3.3, the CFR estimated at
the beamformee on theNDP – and fromwhich Ṽ is derived – slightly deviates from the theoretical
model in Eq. (3.1) due to hardware imperfections causing undesired phase offsets. Besides the
PDD, all the other contributions to Eq. (2.12) are associated with imperfections at the transmitter
device, that in our case is the target of our fingerprinting technique, i.e., the AP. Our key intuition
is that also the beamforming feedback matrix Ṽ – derived from H as discussed in Section 3.3.2
– would be affected by the phase offsets (i)-(v). Thus, we may use the offsets cleaning algorithm
of 2.4.1 to improve its quality.
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Figure 3.17: Comparisonwith the accuracy obtained by learning the fingerprints from the processed version
of Ṽ, i.e., after applying the offsets correction (offs. corr.) in 2.4.1. Beamformee 1, 3 TX antennas, spatial
stream 0.

Along this line of reasoning, we evaluate in Figure 3.17 the impact of a preliminary offset clean-
ing phase on matrix Ṽ on the fingerprinting accuracy. The proposed DeepCSI (with no offsets
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cleaning) outperforms its version with the described offset correction capability across all the
training/testing sets. In other words, the offsets introduced by the beamformer hardware imper-
fections are strategic to reliably recognize the device, and any offset cleaning may result in their
partial removal, affecting the fingerprinting quality.

3.6 Concluding remarks
In this chapter, we have proposed DeepCSI, a novel approach toWi-Fi radio fingerprintingwhich
leverages standard-compliant steering matrices to authenticate MU-MIMO Wi-Fi devices. Con-
versely from prior work, DeepCSI does not require SDR technologies. We have extensively evalu-
ated the performance of DeepCSI through a massive data collection campaign with off-the-shelf
equipment, where 10 Wi-Fi radios emit MU-MIMO signals in different positions. Experimental
results indicate that DeepCSI is able to correctly identify the transmitter with an accuracy above
97%. Besides, we have evaluated DeepCSI fingerprinting accuracy by differentiating the set of
positions for the devices at training and testing times. Our technique achieves an accuracy of
46% when tested on positions that sharply differ from those in the training set. On the other
hand, the accuracy increases to 73% when training is performed on a more balanced set of spatial
points, which allow the neural network classifier to interpolate the training patterns for the miss-
ing points, using those from adjacent training positions. Overall, we believe that DeepCSI repre-
sents a significant step forward in the way radio fingerprinting is performed in Wi-Fi networks.
Indeed, as DeepCSI runs on off-the-shelf devices, without relying on dedicated implementations
on software defined radios, makes it ready to be used in commercial Wi-Fi systems.
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Part II

Sensing-assisted communication for
cellular networks
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4
Users’ mobility prediction for mobile

networks

4.1 Introduction

Wenowmove on to the second aspect of our discussion on the interplay betweenwireless commu-
nications and sensing, being sensing-assisted communication applications. As already introduced,
we focus on the computation and exploitation of long-termmobility predictions, i.e., ranging from
one to a few seconds into the future. We target an urban scenario where users are vehicles moving
within the city while being constantly connected to the network providing both communication
and computation services. Specifically, in this chapter we detail the design and implementation
of a novel learning based algorithm that tracks the movements of a user (vehicle) and predict
its next point of attachment after the handover from the current serving cell. Next, the devised
algorithm is used within the resource allocation strategies detailed in Chapter 5 and Chapter 6.

As discussed in Section 1.2.1, fifth generation (5G) mobile networks are expected to provide
broadband access in dense areas, high communication capacity and ultra-low latency, for mov-
ing users, thanks to the introduction of, among others, millimeter wave (mmWave) communica-
tions and massive multi-input, multi-output (MIMO) technologies. Besides other benefits, the
high bandwidth available at mmWave frequencies and the antenna arrays employed for massive-
MIMO, will allow 5G networks to provide network-based positioning that, with an expected accu-
racy of less than 1 meter, will outperform that provided by the global navigation satellite system
(GNSS) (5 meters) [108]–[110]. Network based positioning was considered as an optional fea-
ture in previous generation cellular systems and was implemented mainly for emergency calls,
through different techniques [111]. Among them, the ones that provide the highest accuracy are
based on trilateration and triangulation. The former relies on time of arrival (ToA), time difference
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of arrival (TDoA) or received signal strength (RSS) metrics, while the latter exploits the angle of
arrival (AoA) of the received signals. Both of them entail the combination of the measurements
from three different evolved nodes base (eNBs). In 5G networks, the use of two dimensional
antenna arrays with the introduction of massive MIMO will enable two dimensional terminal
positioning using a single AoA measurement [112], without performing triangulation.

In this context, our idea is that 5G eNBs could independently track the connected users to esti-
mate their physical trajectories as they move through the radio cells. In a vehicular network, the
mobility is constrained to the physical connectivity structure of road links, as well as their mor-
phology. Therefore, our intuition is that vehicular mobility is a highly correlated process, which
can be effectively captured by the eNBs by observing the radio signals from their connected mo-
bile users. In the literature, this prediction task has been tackled exploiting Markov chains (MCs)
and support vector machines (SVMs), using as input the sequence of previously visited cells [113]–
[115]. Although this approach may be effective in simple scenarios, the historical information
about the sequence of serving eNBs does not suffice to provide accurate position estimates as the
number of physical trajectories increases, and this is especially true in urban environments served
by densely deployed networks. In these cases, more accurate models would be desirable. As a
solution, we propose to exploit the location information that will be provided by 5G networks.
Our approach is decentralized, as each eNB tracks its own connected users by estimating the prob-
ability distribution of the next serving eNB (taken from the set of neighboring eNBs). Learning
is carried out through recurrent and convolutional neural networks (NNs) combined with stan-
dardMCs. Once trained, the predictor returns mobility estimates, i.e., a probability vector for the
next serving eNB, from the moment a user connects to the cell to the moment it leaves it, and by
continuously improving such estimates as subsequent radio samples from this user are collected.

To the best of our knowledge, the only other work adopting a similar approach is [116], where
the authors estimate the next eNB that the user will be connected to using RSS values acquired
every 500 ms, and a recurrent neural network (RNN) as a mobility predictor. The work in [116]
is preliminary as a simple RNN design is considered, training it in a centralized fashion on a
small-scale scenario featuring 8 eNBs and 3 users moving in a grid topology over an area of
6× 6 square kilometers. Moreover, the output of such predictor is a hard decision variable cor-
responding to the identifier of the next serving eNB. The approach presented in this chapter pro-
vides significant advancements over this prior research along several dimensions: i) a real-life
mobility scenario is considered, using simulation of urbanmobility (SUMO) [29] to emulate more
than 50 thousands vehicles moving within the city of Cologne; ii) a realistic 5G network is emu-
lated, with densely deployed eNBs within the monitored area (coverage radius of 200 m, for a
total of 77 eNBs); iii) the approach is decentralized by design, i.e., a single NN-MC based predic-
tor is trained for each eNB, solving issues such as the lack of data for less represented trajectories,
and iv) our tool returns soft-predictions in the form of a probability vector over the next serv-
ing eNB. Numerical results indicate that the new serving eNB can be estimated with an accuracy
higher than 94% from four seconds before the handoff, which seems to be appropriate for proac-
tive resource management algorithms.

The rest of the chapter is organized as follows. In Section 4.2 we detail the proposed mobility
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Figure 4.1: Processing pipeline. The classification is performed in parallel by the NN block (gated recurrent
unit (GRU)-based RNN + CNN), using as input the (α, β) angles describing the trajectories, and the MC
block, exploiting the sequence of previous visited cells. The output vector of probabilities for each adjacent
eNB (pppℓ) is obtained as a combination of the two classification outputs.

prediction framework. In Section 4.3 we describe the experimental scenario considered for the
assessment of the prediction performance in Section 4.4. Concluding remarks are in Section 4.5.

4.2 Sequential learning architecture
Next, we detail the proposedmobility estimation framework. The location of a vehicle is collected
through the azimuth (α) and elevation (β) angles that describe its relative positionwith respect to the
serving eNB.We refer to a trajectory as the sequence of azimuth and elevation angles that describes
the positions of the vehicle from the time it connects to a eNB (t = 0) to the instant in which it
hands over to another eNB (t = LTs), where L is the number of samples of the complete trajectory,
collected with a sampling period of Ts seconds. Formally, an L-long trajectory is denoted by
SL ≜ (s1, s2, . . . , sL), with sℓ = (αℓ, βℓ)T. Our framework returns a new estimate every time a
new trajectory sample is gathered, with an accuracy increasing with the number of samples.

Considering that the eNB to which the user will hand over must be one among the NeNB adja-
cent eNBs, we formulate the problem as a classification task and we design a supervised learning
framework to carry it out. The classification is carried out in parallel by two blocks: i) a NN
block, consisting of a RNN (see Section 4.2.1) and a convolutional neural network (CNN) (see
Section 4.2.2), that uses as input the user trajectory samples, and ii) a final MC block (as proposed
by [114]) that exploits the sequence of previously visited cells (see Section 4.2.3). The classifi-
cation results from i) and ii) are then combined to obtain the final estimates using a parameter
that is learned as part of the training (see Section 4.2.4). The blocks are shown in Figure 4.1,
while the training process is detailed in Section 4.2.6. To complete our framework, we propose a
pre-processing algorithm to deal with possible imbalanced datasets (see Section 4.2.5), which is
key to also learn those trajectories for which there are fewer training examples.

The benefits of adopting an AoA and learning-based mobility predictor are two-fold. First,
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this approach allows preserving the user’s privacy, as we estimate the positions of the vehicles
on the eNBs without requiring them to send information such as position, speed, and direction.
This also avoids the additional network traffic that would be caused by regular exchanges of
such information between the vehicles and the eNBs. The second reason is that learning is key to
automatically capture complex road topologies and mobility behaviors, which would hardly be
represented via, e.g., first order models entailing straight motion and constant velocity.

4.2.1 GRU-based RNN for mobility feature extraction
RNN is the most used learning tool when dealing with sequential data, as RNNs are able to track
temporal correlation among input samples and allow handling inputs with different numbers of
samples [117]. An RNN is composed of one or more memory cells whose number is indicated by
the number of layers, Lrec. The temporal correlation between subsequent input samples, from
s1 to sℓ, is recorded in the values of the neurons constituting the cell internal state, hℓ, where ℓ

is the sample index. To that end, the input sequence Sℓ ≜ (s1, s2, . . . , sℓ), is fed one sample at a
time into the first layer of the RNN. In case of multiple layers, the internal state of the first layer
cell becomes the input of the second layer cell, and so on. Every time a new sample arrives, the
internal states of the RNN cells are updated based on the values of the previous states and on the
new sample. The update procedure is described by the cell update function, that defines the mem-
ory cell, whose parameters are adjusted to minimize a loss function, i.e., a user-defined distance
between the expected and the actual network output. Dropout layers can be inserted between
recurrent layers, providing network regularization by randomly zeroing some of the elements of
the input, following a Bernoulli distribution. In our implementation, we use Lrec = 2 GRUs [118]
memory cells with 20 neurons per layer, and a dropout layer with a retain probability of 0.9. For
each input sequence, we collect the internal state values of the two stacked RNN cells, each time
a new trajectory sample is processed. Note that the RNN internal state is a feature vector capturing
the most representative traits of the input time series. After applying layer normalization, this
feature vector is used by the subsequent CNN network that acts as a classifier.

4.2.2 CNN for next serving eNB prediction
A CNN consists of the cascade of layers (i.e., functions), where all or some of them use the convo-
lution operator, i.e., small-size kernels (matrices of weights), which are convolved with the entire
input data volume [117]. The result of such convolution is passed through a non-linearity, called
activation function, to produce an output activation map. The number of kernel filters employed
at one layer defines the depth of the layer output, i.e., the number of activation maps produced
for a single input, each of which captures different aspects of the input. One interesting feature
of CNNs is their parameter sharing: the kernel filters are applied to each position of the input, al-
lowing one to capture specific input peculiarities, no matter their specific location. As for RNNs,
dropout layers can be interposed between convolutional layers. We use a one dimensional CNN,
where the kernels are vectors, with Lconv = 2 convolutional layers with ReLu activation functions,
and two dropout layers with a retain probability of 0.9. Batch normalization is used after each
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convolutional layer to reduce the training time. The CNN input corresponds to the two (stacked)
final internal states extracted from theGRU-basedRNN. The output of the last convolutional layer
is then passed through a fully connected layer with SoftMax activation function that produces
an NeNB-dimensional vector, pppconvℓ ≜ (pconvℓ,1 , pconvℓ,2 , . . . , pconvℓ,NeNB), containing the probability that the
user will hand over to each of the NeNB neighboring cells after leaving the current one.

4.2.3 MC for next serving eNB prediction
MC is here used to capture the correlation in the sequence of cells that are visited by a user. Indi-
cating with cb+1,i the i-th neighbouring eNB to the current (serving) eNB, i ∈ {1, . . . ,NeNB}, and
cM = (cb−M, cb−M+1, . . . , cb) the sequence ofM+ 1 cells visited up to time t = ℓTs, each element of
the NeNB-dimensional vector pppMC

ℓ ≜ (pMC
ℓ,1 , pMC

ℓ,2 , . . . , pMC
ℓ,NeNB) is computed as follows:

pMC
ℓ,i =

∑
dataset Number(cb+1,i, cM)∑

dataset Number(cM)
, (4.1)

where Number indicates the times the sequence inside the parenthesis appears in the training
dataset. The value ofM, i.e., theMC order, used within the algorithm, results from a performance
assessment reported in Sec. 4.4.

4.2.4 Combination of CNN and MC predictors
The final NeNB-dimensional probability vector pppℓ ≜ (pℓ,1, pℓ,2, . . . , pℓ,NeNB) is obtained by combin-
ing the NN and MC estimations using a parameter γ ∈ {0, 1} as follows:

k = min{(ℓ− 1)γ, 1}, (4.2)

pppℓ = kpppconvℓ + (1− k)pppMC
ℓ . (4.3)

This combination strategy allows the network to weight differently the NN and MC estimations
as the number of gathered trajectory samples ℓ changes. Note that γ is fixed for each NN-MC
predictor and is automatically learned during training. Eq. (4.2) ensures that the combination
parameter k remains inside the range [0, 1].

4.2.5 Dealing with imbalanced datasets
In an urban scenario, the number of examples available for each of the possible trajectories in-
side a eNB’s coverage area usually differs. Using such an imbalanced dataset for training would
lead to a neural network with poor mobility prediction capabilities for those users that follow un-
der represented trajectories. To cope with this, we propose a method to artificially generate new
trajectories, so that they resemble the ones belonging to the under represented classes. This over-
sampling process is only performed on the training dataset, whose trajectories are labeled with
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the indication of the next eNB towards which the user will be moving after the handover. Based
on this label, the input data is split into different groups. The groups with cardinality less than
70% that of the most populated one undergo an oversampling process, while the others remain
unchanged. The trajectories belonging to each of these groups are further split into a number of
classes reflecting a quantization on the trajectory space, for the trajectories that lead to the same
final eNB (same group). To do this, we first obtain fixed-length trajectory representations (codes),
as standard clustering algorithms do not deal with variable length inputs. A simple and com-
mon coding method in machine learning is padding, i.e., to concatenate each input vector with
as many zeros as needed to reach a common (fixed) length. However, in our case, this is not the
best choice as the inputs have a specific physical meaning (city roads). Instead, we interpolate the
trajectories with a degree 3 polynomial function, and use the interpolated versions, i.e., the codes,
as inputs for the (unsupervised) hierarchical density-based spatial clustering of applications with
noise (HDBSCAN) algorithm [119]. For each trajectory class, we then produce artificial trajecto-
ries picking at random trajectories from the class, and addingwhite Gaussian noise with standard
deviation σ = 5× 10−4 rad to each sample. The new trajectories are assigned to the proper label
to be used in the training process. The oversampling procedure is summarized in Algorithm 4.1.

Algorithm 4.1 Oversampling procedure.
Require: trajectories inside a cell - training set
- group the trajectories based on their labels (next eNB);
- hc ← cardinality of most populated trajectory group;
for all groups with cardinality smaller than 0.7× hc
- encode the trajectories into fixed-length representations (20 samples) using degree 3 poly-
nomial interpolation;
- apply HDBSCAN to the fixed length trajectories (codes), to further split them into classes;
- new_samples_per_class← 0.7× hc

number_of_classes ;
for all classes
- generate new trajectories by adding w ∼ N (0, σ2) to new_samples_per_class trajectories
selected at random from those inside the class;

end for
end for

4.2.6 Training process
Next, we detail how the building blocks composing our solution are combined and jointly trained,
as summarized in Algorithm 4.2. First, the training trajectories are used to generate artificial
examples to balance the training dataset. Hence, from each (L-long) trajectory we extract all the
possible (L − 1) sub-trajectories of size greater than two, i.e., ([s1, s2], [s1, s2, s3], …[s1, sss2, . . . sL]).
Each of these sub-trajectories is forwarded through the NN block to obtain the probability vector
pppconvℓ for the next eNB. The sequence of previous visited cells cM is used to compute the probability
vector pppMC

ℓ that is then combined with pppconvℓ to obtain pppℓ. pppℓ is then compared with the ground
truth to determine the prediction loss. (The ground truth is a NeNB-dimensional “one hot vector”
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with the element corresponding to the actual next eNB being equal to 1, and the other ones to 0).
The loss is computed by multiplying the negative log-likelihood by an exponential penalty term
that depends on the sub-trajectory length (ℓ) and on the total length (L) of the trajectory as follows:

penalty(ℓ) = 2ℓ/L − 1. (4.4)

The backpropagation of sub-trajectory prediction losses allows the network to adjust its parame-
ters to correctly estimate the next eNB even when the complete L-long trajectory is not yet avail-
able. Through Eq. (4.4), higher penalties are assigned as the number of collected samples, ℓ, ap-
proaches L. This forces the network to become more accurate as the number of samples increases.
Every 20 epochs, the performance of the framework is assessed using the validation data. The
RNN+CNN weights and the combination parameter (γ) are extracted and saved if they outper-
form the previously saved ones in terms of validation accuracy. Otherwise, an ε-greedy approach
is adopted, see, e.g., [120]: with probability ε = 0.3 the training continues from the weights com-
puted in the last iteration, while with probability 1 − ε it restarts from the previously saved net-
work parameters. Besides, every 20 epochs the artificial training examples used to balance the
dataset are re-computed. These combined actions allow increasing the generalization capacity of
the framework as during each training round (20 epochs) the dataset is re-populated maintaining
all the real training data, while adding different artificial examples.

Algorithm 4.2 Deep learning framework: training process.
- num_epochs← 100, ε← 0.3, max_val_accuracy← 0;
for j← 1 to (num_epochs/20)
- add training trajectory examples – Section 4.2.5;
- extract training sub-trajectories;
for jj← 1 to 20
- split the set of sub-trajectories in batches with batch_size = 64 examples each;
for all batches
- forward propagate the input – Section 4.2.6;
- compute the error using penalty in Eq. (4.4);
- backpropagate the error through the network;

end for
end for
- assess prediction performance with validation set;
- val_accuracy← accuracy on the validation set;
if val_accuracy > max_val_accuracy
- save network parameters (weights, biases, γ);
- max_val_accuracy← val_accuracy;

else if random(0, 1) > ε
- restore previously saved network parameters;

end if
end for
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Figure 4.2: Deployment of the eNBs over the selected area of the city of Cologne. The eNBs are the centroids
of the Voronoi cells. The x and y coordinates are the same used in the TAPAS Cologne simulation scenario.

4.3 Experimental mobility setup

Weconsider an urban 5G scenario in the center of the city ofCologne (3, 000× 3, 000 square meters),
with 5G enabled vehicles that move around while being continuously connected to the 5G net-
work. The mobility is emulated with SUMO, an open-source traffic simulation suite that allows
generating the movement of emulated users around a predefined city road map, and extracting
the needed metrics [29]. Specifically, we use the “TAPAS Cologne” simulation scenario, which
mimics the vehicular traffic within the city for a whole day on the basis of travelling habits of the
city dwellers [121]. The vehicle density changes during the day presenting two peaks, in the time
intervals between 8-9 a.m. and 4-6 p.m., reflecting themobility due to getting to and leavingwork.
The eNBs are deployed according to the road topology: eNBs are placed at the street crosses or
along the roads, ensuring an inter-distance among nodes of around 400 m. The mobility area is
covered with convex polygonal cells, each with a 5G eNB in its center, see Figure 4.2. In detail,
the considered city region is partitioned into Voronoi cells, using the positions of the eNBs as gen-
erating points (the centroids), and considering the Euclidean distance to shape the cell edges (the
faces of the Voronoi cells). The average number of vehicles within each eNB coverage ranges from
10 to 50 depending on the position of the eNB and on the hour of the day, with velocity ranging
between 0 and 45 km/h. The proposed simulation scenario is in line with field trials, e.g., [122].

Twenty-four-hour long SUMO mobility traces with Ts = 0.25 s granularity were collected for
each of the 77 eNBs in the deployment: 70% of such data was used to train and validate the
mobility prediction algorithm, while the remaining 30% served to assess the performance of the
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proposed VM replication strategy. For such assessment, we considered vehicles v ∈ A(t) ap-
proaching the edge of the serving eNB coverage area, i.e., that are about to hand over to a new
eNB. For the following results, on average this occurs when a user is less than δ = 40 meters apart
from the radio cell’s edge.

4.3.1 Channel model for user-eNB association
For the wireless link between the vehicles and the eNB, we use the mmWave channel model
of [123], describing urban non line of sight (NLoS) scenarios. At every point in time, each vehicle
connects with the eNB providing the best communication conditions, measured in terms of path
loss (PL),

PL(d) = ρ1 + ρ210 log10(d) + η [dB], (4.5)

η ∼ N (0, σ2) [dB], (4.6)

where d is the distance between the transmitter and the receiver and N (0, σ2) represents a Gaus-
sian r.v. with zero mean and variance σ2. Considering d = 200 m, the channel parameters are
set to ρ1 = 46.61, ρ2 = 3.63 and σ = 9.83 dB, see [123]. For the handover user association, a
hysteresis mechanism, with parameter εP, is considered (see, e.g., [124]). Specifically, a handover
is performed to a new eNB only if the power received from this new eNB exceeds that received
from the serving one by an amount greater than εP = 2 dB.

4.3.2 Vehicle location information acquisition
We emulate the single eNB AoA positioning approach – that will be integrated in 5G systems – by
processing the x-y traces extracted from the SUMO simulator to obtain the angular information.
White Gaussian noise with zero mean and σ2w variance was added to the extracted data to account
for estimation errors. Specifically, indicating with heNB the height of the eNB, the azimuth (α) and
elevation (β) components of the AoA are obtained as follows, see Figure 4.3,

Δx = xuser − xeNB + w, w ∼ N (0, σ2w), (4.7)

Δy = yuser − yeNB + w, w ∼ N (0, σ2w), (4.8)

α =


arctan

(
Δy
Δx

)
, if Δx > 0

arctan
(
Δy
Δx

)
+ π, otherwise

, (4.9)

β = arctan
(√

Δx2 + Δy2
heNB

)
. (4.10)
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Figure 4.3: Azimuth (α) and elevation (β) angles that identify position of each vehicle inside the (serving)
cell. The relative coordinates of the vehicle with respect to the eNB are indicated with Δx and Δy. 90-degree
angles are drawn in violet.

We set heNB = 8 m and σw = 5/3 m in our simulations, accounting for possible positioning errors
as large as five meters (±3σw).

4.4 Prediction performance

We independently trained the proposed mobility prediction approach for each of the 77 eNBs in
the deployment. The twenty-four hour long mobility traces were labeled according to the next
serving eNB identifier and split as follows: 60% for training, 10% for validation, and 30% for the
final test. Note that, although the architecture is the same for all the eNBs, the NN weights and
the combination parameter γ are independently adjusted during the training processes, and are
in turn eNB specific.

The best order for theMCpredictor is assessed by evaluating the next cell’s prediction accuracy
obtained using MC only, for different values ofM. As can be seen from Figure 4.4 the best choice
isM = 2, as using higherMC orders does not lead to any noticeable increase in the accuracy. Note
that if the number of previously visited eNBs, m, at time t is smaller than the MC order M, the
prediction is performed by additionally training an MC with order m < M.

In Figure 4.5, we show the hard-decision accuracy obtained by averaging the results achieved
by the 77 NN+MC classifiers, grouped based on the number of eNBs in their handover set. For
comparison, we also report the accuracy achieved by the MC classifier. We do not report the
cases when the handover set contains fewer than four eNBs because they rarely occurred in our
simulations, and hence we could not collect enough data for a reliable training and assessment
in such cases. As expected, the NN+MC estimation technique outperforms the state of the art
MC classifiers, proving the effectiveness of collecting users’ positions inside the serving eNB to
estimate the next serving eNB, rather than only relying on the sequence of previously visited
eNBs. In all the cases, the average accuracy was found to be greater than 94%, starting from 4 s
before the handover and remaining above 91% until 10 s before it.
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4.5 Concluding remarks
In this chapter, we have proposed a decentralized technique for the estimation of mobility tra-
jectories in 5G vehicular networks. Our objective was to predict, with high accuracy, the next
serving eNB a few seconds before the handover actually happens. Such estimates are computed
by each eNB by processing the radio signals from its connected users. A prediction framework
combining neural networks and Markov chains is put forward, detailing its design and propos-
ing a novel training approach that effectively copes with under represented trajectories. Mobility
trajectories are collected through the SUMO mobility simulator for the city of Cologne, consid-
ering a deployment with 77 eNBs. The final results confirm the effectiveness of the proposed
approach, showing accuracies greater than 91% for predictions performed 10 seconds before the
handover. Our technique can be utilized in conjunction with resource allocation algorithms, e.g.,
to proactively allocate communication and computing tasks prior to the actual handover events.
Proactive strategies are expected to enhance the quality of service experienced by the users, while
improving the way in which network resources are assigned. In the next two chapters of the the-
sis we provide two practical application examples in the context of optimal resource allocation
for multi-access edge computing (MEC) enabled networks.
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5
Mobility-aware migration of computing

services in MEC enabled networks

5.1 Introduction

In this chapter we leverage the long-term vehicles’ mobility prediction algorithm presented in
Chapter 4 to devise a novel strategy for network computing resources management in an Internet
of vehicles (IoV) scenario, providing an example of the potential of integrating environmental in-
formation into the network management processes. Specifically, we are concerned with location
and mobility aware computing services which will play a key role in the IoV [22], [125]. Vehicles
are becoming connected entities, andwith the advent of online gaming, on demand streaming and
assisted driving services, are expected to turn into data hubs with abundant computing needs. Pi-
oneered by the Google car, the IoV is becoming the new fabric where vehicles will interact with
one another, while communicating with the network infrastructure and with the edge/cloud,
where services are provided. With 5G, connectivity, computing and caching will converge into
the so called multi-user MEC, which will offer computing power right at the network edge. In
this chapter, we tackle the problem of ensuring continuity of computing tasks as mobile users (ve-
hicles) move within a city-wide 5G network, and we do so by migrating their services as the
users change their point of attachment to the network. Past work dealt with this by exploiting
reactive approaches [51], [125]–[128], where the virtual machines (VMs) hosting the services are
migrated after the users have moved to the new radio cell. Here, we advocate the use of mobil-
ity predictions to proactively allocate computing resources, by replicating the VM on an optimal
number of neighboring locations prior to the execution of the handover. If carefully orchestrated
and implemented, the proposed proactive allocation strategies lead to relevant energy savings,
by keeping (computation) service discontinuity to a minimum. The mobility estimates are ob-

75



tained through the algorithm presented in Chapter 4 of this thesis. Next, we devise an algorithm
that select the best VM migration strategy for each vehicle at each handover event, proactively
reallocating its MEC resources to ensure MEC service continuity, while concurrently minimizing
the energy consumption at network level. The proposed VM migration strategy operates indepen-
dently at each eNB/MEC host (MEH). The mobility predictions are used within a decentralized
and online Lyapunov-based optimization technique to decide where and how many computation
resources (VMs) are to be (proactively) migrated for each vehicle. The optimal Lyapunov-based
VM migration strategy is obtained in closed form, leading to a low complexity and online tech-
nique. The algorithm outputs the number of VM replicas (how many) and the eNBs (MEHs) where
these VMs are to be migrated prior to the handover execution.

The proposed solution is numerically assessed in the real-life vehicular mobility scenario in-
troduced in Chapter 4, using SUMO [29] to emulate thousands of vehicles moving within the city
of Cologne, and simulating a realistic 5G network with densely deployed eNBs (and co-located
MEHs). Our numerical results reveal that the proposed mobility-aware VM migration strategy
achieves a low energy expenditure, i.e., close to the lower bound where each VM is replicated to
a single next MEH, by granting a service discontinuity risk close to that of the full replication strat-
egy, i.e., where VMs are replicated to all the available nextMEHs. We also assess the impact of the
predictor’s accuracy on the VM migration decisions, finding a large performance improvement
of NN+MC with respect to prior techniques.

The rest of this chapter is organized as follows. The relatedwork is reviewed in Section 5.2. The
system model is detailed in Section 5.3. In Section 5.4, the optimization problem’s formulation is
presented alongwith the online closed form solution, whereas the numerical results are presented
in Section 5.5. Concluding remarks are drawn in Section 5.6.

5.2 Related work
In wireless mobile networks, mobile users that change their serving eNB experience service con-
nectivity continuity thanks to handover procedures. The same principles apply to MEC services,
where not only the connectivity, but also the MEC offloading service process is migrated from
the current serving MEH to the MEH in the next connectivity domain. There are two main tech-
niques to handle MEC offloading service continuity in mobile networks during handovers: (i)
The VM that hosts the ongoing computation process is kept on the MEH where the MEC service
was initiated, and where resources were allocated in the first place [129]. In this case, standard
communication handover procedures ensure that the user equipment (UE) remains connected to
the serving MEH while handing off from one eNB/MEH to a new one [130]. Such approach was
proven to be inefficient in the case of frequent handovers due to the latency of and the energy
drained at the backhaul links. (ii) A second option consists of migrating the VM to a new MEH
in proximity of the UE, leading to a reduction in the communication delay and in the UE uplink
transmission power. In this chapter, we focus on this second option, although the combination
of the two approaches is also possible as we discuss in Chapter 6.

In the literature, several migration mechanisms have been proposed to determine when and
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where to migrate VMs. The majority of the approaches rely on the reactive migration of VMs, i.e.,
applied as UEs exit the coverage area of the eNB/MEH where the VM is currently hosted [131]–
[133]. Although this can be effective in handling delay tolerant services, it is inapt to manage
delay-sensitive tasks, for which proactive approaches represent a better solution [126]. Proactive
VM migration decisions can be made based on the UE-MEH distance as the sole metric [51], on
mobility predictions [127] and on joint mobility prediction and MEH availability estimates [125].
The currently proposed proactive solutions for VMmigration rely on probabilistic mobility mod-
els and, in the case of poor mobility estimates, the VM migration process can experience a major
performance degradation. To take this into account, the authors of [128] propose to proactively
replicate the VM into different neighboring MEHs, restoring service in a new MEH as the user
moves from the current eNB to the next one. However, the problem formulation in [128] entails
a computationally expensive integer linear programming optimization task that is difficult to de-
ploy in practice. Moreover, the mobility prediction model relies on historical data about user’s
movements between the radio cells, disregarding the online evolution of the user’s position inside
the serving cell. In this chapter, we propose to jointly (i) improve the reliability of mobility predic-
tions, by also including in the estimates the user’s movement inside the radio cells (see Chapter 4),
and, (ii) dynamically adapt the VM replication strategy (its overhead, intended as the number of
VM copies) based on mobility prediction estimates. This makes it possible to dynamically evalu-
ate the risk of service discontinuity given an identified set of target MEHs, by concurrently min-
imizing the cost incurred in the VM migration. In addition, we tackle the complexity issue via a
lightweight optimization framework that is solved in closed form, entailing low complexity cal-
culations. We advocate that accurate and online mobility models are key to the design of effective
MEC migration strategies during handovers. In fact, as we quantify in the numerical results of
Section 5.5, better mobility estimates lead to the replication of fewer VM instances for the same
reliability target, with a subsequent reduction in the amount of resources (memory, computation
and energy) that are employed to support the MEC services during handovers.

5.3 System model
We consider a vehicular network consisting of a set N of eNBs, each co-located with a MEH,
and a set V of vehicles which move following the morphological road constraints. Vehicles send
offload requests for intensive computation services to the MEHs. The computation services can
experiences a large number of handovers due to vehicle mobility and to the radio coverage range
of eNBs.

To handle the computation offloading requests and guarantee service continuity, each MEH
includes: (i) several VMs to execute the users’ services, (ii) a MEC platform, (iii) a mobility pre-
diction unit, (iv) a VMmigration control unit (including admission control), and (v) a virtualization
infrastructure. Each vehicle is associated with a specific VM in the serving MEH, which handles
the required services and that can be migrated to new MEHs tracking the vehicle’s movements.
For that, as a vehicle approaches the edges of a cell, the radio network interface service (RNIS)
running on theMEC platform informs entities (iii) and (iv) that the vehicle is about to perform the
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handover to a new radio cell. At this point, the unit running the mobility prediction algorithm
starts tracking the vehicle’s position to estimate the next point of attachment. The information is
then used by the VMmigration control unit to decide whether to migrate the user’s VM to a new
location, and in that case, in which MEHs the replication is to be performed. The VM migration
control unit has an overview of the complete mobile edge system and serves as the orchestrator.
Finally, the virtualization infrastructure provides computation, storage, and network resources
to instantiate VMs, execute offloaded services, and manage their migration process by booking
memory and computing capacities at MEHs identified by the VM migration control unit. The
MEH architecture detailed above is compliant with [41], [134].

While our system model can be considered for both live and static VM migration, in our in-
vestigation we focus on live VM migration and stateful application processes. VM migration is
ensured betweenMEHs through backhaul linkswhose data rate is assumed to be sufficiently high
so that the time required for the VMmigration can be neglected. This assumption can be relaxed,
but in the following of this chapter, we restrict the analysis to this case.

Our system model is time-dependent and operates in an online fashion. Time is slotted, with
time slots of fixed duration τ. At each time slot, a cost function representing the energy expenditure
is minimized subject to a risk constraint, seeking a good balance between energy minimization
and service continuity.

5.4 Problem formulation
Hereafter, we present the proposed online optimization algorithm to dynamically control the
number of VM replication instances that are migrated prior to a handover event and also the
MEHs destinations of such migrations. Specifically, we address the issue of VMmigration due to
off-board service computation requested by vehicles that are exiting the serving eNBs (radio) cov-
erage area and that are at a distance smaller than δmeters from the edge of the cells, i.e., vehicles
that are about to perform a handover to a new eNB. The investigated problem is formulated for
the system model described in Section 5.3 under the assumption that the considered computing
processes cannot be processed on-board on the vehicle, i.e., they must be offloaded to a MEH in
the network for their execution. This assumption is especially realistic for those applications that
require data that is not stored in the vehicle or software not installed on it. The extension of the
present analysis to the local computation of tasks is left for future work.

The set of vehicles that are about to leave the cell, i.e., that are a distance smaller than δmeters
from each edge, is here referred to as A(t). We identify as v ∈ A(t) (any) one of such vehicles.
When the VM migration control unit decides to migrate the VM handling services for vehicle v,
Mv(t) parallel migrations are performed, replicating the VM that is serving vehicle v towards the
Mv(t) distinct MEHs selected among the available next eNBs. This will allow restoring the ser-
vice computation in a new MEH in case the handover is performed. Hence, Mv(t) is an integer
indicating the number of selected MEH sites where the VM serving vehicle vwill be migrated to
in time slot t. Note that, for any vehicle at time t, there are NMEH available eNBs towards which
it can potentially hand over to and, each of them has an associated MEH. NMEH does not depend
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on the position of the user inside the cell: it is fixed and specific for each eNB, as it reflects the
underlying mobility process, i.e., the road topology and the way eNBs are deployed. So, at time t
there areNMEH MEH candidates for VMmigration andMv(t) ≤ NMEH of these are selected. Specif-
ically, Mv(t) is chosen from the set NMEH = {1, . . . ,NMEH} that contains the possible numbers of
VM replicas to be performed, Mv(t) ∈ NMEH. Most importantly, using the mobility prediction
framework of Chapter 4, each vehicle in the considered area (i.e., less than δ meters apart from
the cell’s edge), obtains a mobility-prediction vector pppv = (pv,1, . . . , pv,NMEH) of size NMEH, with∑

i pv,i = 1. The entries in the probability vector pppv are arranged in decreasing order, namely,

pv,1 > pv,2 > · · · > pv,NMEH . (5.1)

Vector pppv provides a probabilistic estimate of the next visited eNB site when leaving the current
serving one, by ranking the NMEH candidate eNBs according to their probability of being visited.
pv,i represents the probability that the vehicle will hand over to the eNB ranked as the i-th most
probable among the neighboring ones. This information is obtained by learning (at runtime) the
underlying vehicular mobility dynamics via the combined NN+MC mobility prediction model
of Section 4.2 (note that in this chapter the trajectory length index ℓ is omitted in the interest of
readability). When we select theMv(t)MEHs for VM replication, we pick eNB indices according
to the order of the corresponding probabilities pv,i, i.e., we select the most probable (pv,1) first and
add further eNBs until Mv(t) sites are picked, in the order expressed by Eq. (5.1). This means
that once pppv is obtained, the number Mv(t) of eNBs that we select is all we need to provide a
complete description of the VMmigration process. In fact, wemay alternatively use a state vector
(bv,1, . . . , bv,NMEH), where bv,i ∈ {0, 1} is a binary number indicating whether eNB i is selected or
not. However, this vector can be fully replaced (and obtained) by the information contained in
vector pppv (providing the ranking among eNBs) andMv(t) (the number of eNBs that are picked).

We define the binary function ov(t), indicating whether the VMmigration control unit decides
to migrate or not the VM serving vehicle v that is leaving the cell

ov(t) =

1, VM will be migrated
0, VM will not be migrated

. (5.2)

If ov(t) = 1, the VM serving vehicle v will undergo the replication process to guarantee service
continuity as the vehicle moves out of the eNB coverage area. If instead ov(t) = 0, the VM will
not be migrated in any MEH and the handled service will be interrupted when the handover is
performed. Being ψv(t) the energy required to perform the VM migration towards a single eNB
site, the energy consumed in the current MEH to replicate the VM to theMv(t) selected sites is

Ev(t) = Mv(t)ψv(t), (5.3)
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and it follows that the total energy consumed in time slot t for the VMs replications is

E(t) =
∑

v∈A(t)
ov(t)Ev(t). (5.4)

Let N(t) = |A(t)| be the number of vehicles that are about to leave the cell, i.e., the serving MEH,
in time slot t. We define a control action vector for the VM replication process as follows,

Ω(t) = (Ω1(t), . . . ,ΩN(t)(t)
)
, (5.5)

where Ωv(t) is the control action taken in time slot t for vehicle v ∈ A(t),

Ωv(t) = (ov(t), Mv(t)). (5.6)

The objective function that we want to minimize is the long-term average energy expenditure
associated with the migration of VMs,

lim
T→+∞

1
T

T−1∑
t=0

E [E(t)] . (5.7)

Note that only accounting for the energy cost, through Eq. (5.7), would lead to a solutionwhere
no VM replication is performed, as the energy is trivially minimized by setting ov(t) = 0, for all
v and t. Therefore, for a proper formulation, we need to account for an additional cost encoding
the fact that computing tasks may be discontinued during handovers. To this end, we define a
risk metric ζv(t) for each vehicle v, which encodes the total probability that the associated VM is
not correctly migrated, i.e., that is migrated to MEHs which will not be visited after the handover.
It follows that 0 ≤ ζv(t) ≤ 1 and for any vehicle v at time t, we define

ζv(t) = 1− ov(t)
Mv(t)∑
i=1

pv,i. (5.8)

The rationale behind Eq. (5.8) is as follows. If the VMwill not undergo the migration process, i.e.,
ov(t) = 0, the risk is ζv(t) = 1 as the vehicle v will suffer from service discontinuity. On the other
hand, when the VM migration control unit decides to migrate the VM to all the available MEHs,
i.e., toNMEH eNBs, the risk is zero, as the vehicle will hand over with probability one to one of the
available MEHs and the computing process will be resumed there. However, it may happen that
the VM migration control unit establishes to replicate the VM in the first Mv(t) < NMEH MEHs
(first Mv(t) probabilities from vector pppv), but the vehicle actually hands over to any one of the
NMEH −Mv(t) remaining MEHs, where the VM was not replicated. This occurs with probability
ζv(t) and corresponds to the case in which migration is performed to the wrong servers, i.e., after
the handover, the computing task will not be resumed by the new serving MEH, as it was not
migrated there. This risk shall be small and is here used as a constraint to counterbalance the
minimization of the energy consumption in Eq. (5.7).
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We define the average risk across all tasks in the current time slot as

ζ(t) = 1
N(t)

∑
v∈A(t)

ζv(t). (5.9)

Informally, the proposed optimization framework is constrained on the fact that the average
(long-term) risk, obtained by averaging Eq. (5.9) across multiple time slots, must be smaller than
a pre-defined threshold 0 < ξ ≤ 1. ξ is a constant that we use to control the so-called violation
probability for a processing task, i.e., the probability that the task computation will not be resumed
after handing over to a new MEH.

To enforce this constraint, we define a virtual queue Z(t) with the following update equation

Z(t+ 1) = max{Z(t) + ζ(t)− ξ, 0} , (5.10)

which is utilized to transform the long-term inequality constraint into a corresponding queue
mean rate stability problem. Hence, we must ensure that the virtual queue Z(t) is mean rate
stable, which is mathematically expressed as [135, Chapter 2]

lim
t→+∞

E[Z(t)]
t = 0. (5.11)

The optimization problem in Eq. (5.7) is now changed to account for service priorities through
an additional parameterχv(t) for each service class. For example, a service that is computationally
(and energy) expensive will be discarded more often by the optimizer due to its high energy
consumption. The priority parameter compensates for this: setting χv(t) = 0 means not to assign
any priority to the associated VM, while setting 0 < χv(t) ≤ 1 allows controlling the migration
process in case of VMs with different migration costs. It follows that Eq. (5.7) should be modified
by considering the weighted energy expenditure

F(t) =
∑

v∈A(t)
ov(t)Ev(t)(1− χv(t)), (5.12)

instead of the pure energy expenditure E(t), see Eq. (5.4).
The optimization problem for VM migration is then formulated as follows

lim
T→+∞

min
Ω(t),

t∈{0,...,T−1}

1
T

T−1∑
t=0

E[F(t)]

Subject to:

(a) lim
T→∞

E [Z(T)]
T = 0,

(b) ov(t) ∈ {0, 1}, ∀ v, t,
(c)Mv(t) ∈ NMEH, ∀ v, t,

(5.13)
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which amounts to minimizing the overall weighted energy drained by the VM migration pro-
cess (the objective function in the first line), while maintaining the average risk below constant ξ
(queue stability constraint (a)).

5.4.1 Online optimization algorithm
To design a stable and online control algorithm, we use the Lyapunov drift-plus-penalty framework,
see, e.g., [135],[136], [137]. This allows obtaining a dynamic decisionmaking system, that controls
the VM replication process in each time slot.

Given that Z(t) represents the virtual queue backlog process, the Lyapunov function is defined
as

L(Z(t)) = 1
2Z(t)

2 (5.14)

and the one-step Lyapunov drift is computed as

ΔL(Z(t)) def
= L(Z(t+ 1))− L(Z(t)). (5.15)

The expression for the Lyapunov drift-plus-penalty is then obtained by combining the average
weighted energy consumption in Eq. (5.12) and the average queue backlog in Eq. (5.15) through
a parameter V > 0 that weighs the importance of the two quantities in the minimization problem,
i.e.,

Δ(t) = ΔL(Z(t)) + VF(t). (5.16)

Theorem 1 (Upper bound on the drift-plus-penalty). Eq. (5.16) can be upper bounded as

Δ(t) ≤ 1
2 + Z(t) (ζ(t)− ξ)+ VF(t). (5.17)

Proof. Applying inequality max(x, 0)2 ≤ x2, ∀x ∈ R, to the expression of the queue evolution in
Eq. (5.10), we obtain

Z(t+ 1)2 ≤ Z(t)2 + (ζ(t)− ξ)2 + 2Z(t) (ζ(t)− ξ) , (5.18)

from which it follows that

Z(t+ 1)2 − Z(t)2 ≤ (ζ(t)− ξ)2 + 2Z(t) (ζ(t)− ξ) . (5.19)

Since, by construction, 0 ≤ ζ(t) ≤ 1 (see Eq. (5.8) and Eq. (5.9)) and 0 < ξ ≤ 1 (by definition), we
have (ζ(t)− ξ)2 ≤ 1 and

Z(t+ 1)2 − Z(t)2 ≤ 1+ 2Z(t) (ζ(t)− ξ) . (5.20)

82



It follows that

Δ(t) = ΔL(Z(t)) + VF(t)

=
1
2
[Z(t+ 1)2 − Z(t)2]+ VF(t)

≤ 1
2 + Z(t) (ζ(t)− ξ)+ VF(t).

(5.21)

The drift-plus-penalty optimization algorithm observes Z(t) in every time slot t and chooses an
action Ω(t) that minimizes the right-hand-side of the inequality in Eq. (5.17). To do so, we use the
concept of opportunistically minimizing an expectation [135, §1.8]. This is accomplished by greedily
minimizing Eq. (5.16), neglecting the constant term 1/2. Hence, the online optimization problem
is written as,

min
Ω(t)

[
Z(t) (ζ(t)− ξ)+ V

∑
v∈A(t)

ov(t)Mv(t)ψv(t)(1− χv(t))
]

Subject to:
(b) ov(t) ∈ {0, 1}, ∀ v,
(c)Mv(t) ∈ NMEH, ∀ v.

(5.22)

In the following proposition, we showhow the optimization problem in Eq. (5.22) can be solved
in closed form, leading to an efficient implementation of the solver.

Proposition 1 (Closed form solution of Eq. (5.22)). Defining function gv(Mv(t)) as

gv(Mv(t)) def
= VMv(t)ψv(t)(1− χv(t))−

Z(t)
N(t)

Mv(t)∑
i=1

pv,i, (5.23)

the optimum control action at time t for vehicle v ∈ A(t) is Ω∗
v(t) = (o∗v(t),M∗

v(t)), where

M∗
v(t) = argmin

Mv(t)∈NMEH

gv(Mv(t)), (5.24)

and

o∗v(t) =

1, if gv(M∗
v(t)) < 0

0, otherwise
. (5.25)

Proof. The minimization problem in Eq. (5.22) can be simplified by observing that term Z(t)ξ at
time t does not depend on the decision variables Ω(t). Henceforth, Eq. (5.22) can be equivalently
rewritten as

min
Ω(t)

V ∑
v∈A(t)

ov(t)Mv(t)ψv(t)(1− χv(t)) + Z(t)ζ(t)
 . (5.26)
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Using the equations for the risk Eq. (5.8) and Eq. (5.9), we obtain

min
Ω(t)

[
V
∑

v∈A(t)
ov(t)Mv(t)ψv(t)(1− χv(t))−

Z(t)
N(t)

∑
v∈A(t)

ov(t)Mv(t)∑
i=1

pv,i

], (5.27)

where the terms not depending on the optimization variables Ω(t) are omitted. Rearranging the
previous equation, we get

min
Ω(t)

∑
v∈A(t)

ov(t)
VMv(t)ψv(t)(1− χv(t))−

Z(t)
N(t)

Mv(t)∑
i=1

pv,i

 . (5.28)

It follows that Eq. (5.28) naturally decomposes across variable v, so minimizing the sum corre-
sponds to minimizing each term in isolation.
Due to this, the optimal control action Ω∗

v(t) = (o∗v(t),M∗
v(t)) is obtained from Eq. (5.28) for each

v ∈ A(t) as follows.
First, we find the optimal number of VM replications, M∗

v(t) ∈ NMEH, to be performed if the
VM migration control unit decides to migrate the VM serving vehicle v. Let gv(Mv(t)) be

gv(Mv(t)) def
= VMv(t)ψv(t)(1− χv(t))−

Z(t)
N(t)

Mv(t)∑
i=1

pv,i, (5.29)

the optimum choice forMv(t) is

M∗
v(t) = argmin

Mv(t)∈NMEH

gv(Mv(t)). (5.30)

Now, Eq. (5.28) can be re-expressed as,∑
v∈A(t)

min
ov(t)

ov(t)gv(M∗
v(t)), (5.31)

given that gv(M∗
v(t)) ∈ R and ov(t) ∈ {0, 1} the minimum in Eq. (5.31) is achieved setting

o∗v(t) =

1, if gv(M∗
v(t)) < 0

0, otherwise
. (5.32)

5.4.2 Dealingwith computation resource limitation in the neighboringMEHs
Exploiting the side information gathered from the network, the VM migration control unit at
one eNB can avoid migrating the VM associated with vehicle v when no computation resources
are left on its neighboring MEHs. This requires MEHs to periodically send their load status to
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their neighbors. With this information, the probability vectors pppv of all vehicles at time t can be
modified to consider possible resource limitations. Let Ci be the number of additional VMs that
can be instantiated on the neighboring MEH i. This MEH ranks the vehicles in the current cell
according to the probability of migrating towards it, from highest to lowest. The firstCi migration
requests (vehicles) are accepted, whereas the remaining ones are not admitted by masking their
probability vector, i.e., by assigning a zero to their probability of migrating towards MEH i, i.e.,
pv,i ← 0 if vehicle v is not admitted. This is a form of admission controlwhich is implemented prior
to computing Eq. (5.8) and running the optimization, to avoid a later rejection due to insufficient
computation resources at the MEH.

5.5 Numerical results
We consider the urban 5G scenario emulatedwith SUMO [29] detailed in Section 4.3. Additionally,
each eNBs in the 5G network is endowed with MEH functionalities. In turn, the 5G enabled
vehicles moving around the city use the 5G network to offload intensive computing tasks.

5.5.1 Energy expenditure model for VMs migration
Weuse themodel in [138], where the authors exploit CloudSim, awidely used simulator for cloud
computing infrastructures and services, to estimate the energy drained in a MEH to perform VM
migration. Following theirmodel,ψv(t) is computed as a function of the VMmemory usageW[MB]
(in megabytes) as

ψv(t) = 3600× (0.512W[MB] + 20.165) [J], (5.33)

where W[MB] depends on service type. In our numerical evaluation, we focus on three different
service types (see [139] for their memory use): optimized calculus (OC), general purpose (GP)
and hardware accelerated services requiring a GPU (GPU). The energy drained at the MEH to
perform the VM migration is computed using Eq. (5.33) and is reported in Table 5.1.

service type ψv(t)
OC 15.91 MJ
GP 79.89 MJ
GPU 221.73 MJ

parameter value
τ 3 s
ξ 10−2

V 8× 10−12

Table 5.1: Service types and simulation parameters considered in the numerical evaluation of VMmigration
strategies.

5.5.2 System parameters selection
The right part of Table 5.1 summarizes the numerical parameters. The duration of a time slot,
τ, indicates the time between two consecutive executions of the optimization algorithm for the
selection of the proper MEHs, towards which the VM is to be replicated. Note that, the user
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Figure 5.1: Energy consumption as a function of the queue backlog by varying V as a free parameter. Three
plots are shown, by varying the number of candidate eNBs (MEHs) for the handover, NMEH ∈ {4, 5, 6}.

before moving to a new cell is served by a local VM which runs inside the current (serving) cell,
our optimization process only handles when and where the current VM is migrated. Hence, the
value of τ does not affect the end-to-end latency of a URLLC bearer, but rather determines how
many migration requests are collected before triggering the migration mechanism. The rationale
is to proactively trigger the migration before a user moves to a new cell, so that the VM will be
already instantiated as the user gets there. The parameter τ is selected considering the (typical)
maximum speed of the vehicles vmax for the users approaching the cell’s edge, and a distance
parameter δ = 40 m. Specifically, the inequality τ ≤ δ/vmax is to be satisfied. This allows a vehicle
requesting a service and entering the border region of a cell (distance smaller than δwith respect
to its edge) at the beginning of a time slot τ not to suffer from service discontinuity during the
handover. In our setup, being vmax = 45 km/h, we fix τ = 3 s.

The value of the risk parameter ξ is connected with the quality of service that we would like
to guarantee to the users requiring computation offloading. We set ξ = 10−2, i.e., we require
the long-term average risk of our VM replication strategy not to exceed 10−2 (the VM should be
migrated to the wrong set of eNBs once every 100 requests, on average).

In this first part of performance evaluation, we focus on a single service type, considering
VMs for optimized calculus that require ψ = 15.91 MJ to be migrated, according to [138], [139].
The priority parameter χv(t) is set to zero for every vehicle v and time slot t (see Section 5.5.4
for the evaluation in case of multiple service types). We also consider that MEHs have enough
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computing capacity to accept all the VM migrations from neighboring MEHs, i.e., no blockage
can occur (resources limitation is considered in Section 5.5.5).

In Figure 5.1, we show the long-term average energy consumption over 1, 000 time slots and
the average size of the virtual queue Z(t) as a function of the parameter V. Each point in the
graph corresponds to a different value of V, which is varied as a free parameter in the interval
V ∈ [1.5 × 10−12, 1.5 × 10−11]. This evaluation is carried out across several eNBs, for different
values of NMEH (three examples, for NMEH = 4, 5, 6, are shown in Figure 5.1). In general, V =

8× 10−12 consistently represents a suitable choice across all the cases, as it provides a good trade-
off between energyminimization and queue size. V = 8×10−12maybe referred to as the “optimal”
point according to the elbow method [106].

The behavior of the queue backlog for V = 8× 10−12 is plotted in Figure 5.2 for NMEH = 5. As
shown in this plot, after a transient phase, the queue Z(t) stabilizes, as imposed by the mean rate
stability constraint of Eq. (5.11).
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Figure 5.2: The evolution of the virtual queue Z(t) depends on the number of times ζ(t) exceeds ξ = 10−2.
Using our approach, Eq. (5.11) holds and the queue stabilizes for increasing t.

5.5.3 Performance analysis and comparison against prior art
To assess the performance of the proposed algorithm, referred to here as optimal replication, we
compare it with the following commonly adopted strategies,

• full replication: VM serving vehicle v is migrated to all the NMEH neighboring eNBs. This
approach has been adopted in, e.g., [126].
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• single replication: VM serving vehicle v is migrated only to theMEH that is the most likely to
be visited after the handover, i.e., the MEH associated with pv,1 in Eq. (5.1). This approach
was considered in, e.g., [127].

Moreover, to assess the impact of the mobility prediction accuracy (i.e., the quality of probability
estimates pppv) on the energy and risk performance, we have run simulations using (i) our proposed
NN+MC predictor and (ii) a predictor solely based on MCs (see Section 4.2.3), as presented in,
e.g., [114].

In Figure 5.3, we show the time evolution of the total energy drained by the considered mi-
gration techniques for NMEH = 5. For a clearer visualization of the differences among them, the
cumulative energy is plotted rather than the instantaneous one.
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Figure 5.3: Total energy consumption vs time. The proposed approach considerably reduces the energy
consumption as compared to the full replication scheme, by optimizing the number of VM replications for
each submitted task.

As expected, the single replication strategy leads to the lowest energy consumption, as it repli-
cates the VM to a single MEH at all times (for every vehicle). On the contrary, the full replication
strategy leads to the highest, as it replicates the VM to all the available neighboring NMEH sites.
From this graph, we see that our approach (optimal replication) effectively reduces (bymore than
50%) the total energy drained as compared to the full replication strategy. This is possible thanks
to the careful selection of the number and destination of the replicated VM instances for each
computation task. Moreover, we underline the impact of using the combined NN+MC mobility
prediction algorithm against the simplest one based on MCs. Note that NN+MC provides more
accurate probability estimates pppv which, in turn, entail the selection of fewer next eNBs for the
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same risk target. This translates into lower energy consumption. As expected, for both full and
single replication strategies, the energy expenditure is independent of the mobility estimation
technique. In fact, with the former, mobility estimates are not used, whereas with the latter the
energy expenditure amounts to copying the VM to a single next MEH, and the energy cost of this
is the same across all the candidate sites.

The risk ζ(t) is shown in Figure 5.4 for theNN+MCandMCmobility predictors, withNMEH = 5.
For a better visualization, the plot interval is restricted to the last 300 slots towards the end of the
simulation. As expected, the risk is always zero in the full replication case. For the single repli-
cation strategy, it instead highly depends on the performance of the mobility predictor. For this
scheme, a perfect prediction, e.g., carried out by a genie, would lead to a zero risk, and in gen-
eral the better the prediction is, the lower the risk. From the numerical results, single replication
achieves an average long-term risk of 0.463 when using the MC predictor, which is decreased to
0.057 using NN+MC, due to the highest accuracy of the latter. Nevertheless, the average risk of
the single replication strategy is still at least five times higher than that of the proposed approach,
for which the average risk stabilizes to ξ = 10−2.
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Figure 5.4: Temporal evolution of the average risk ζ. Our approach is constrained to meet the risk constraint
ξ in an average sense (long-term).

In more detail, for the proposed technique, the risk is subjected to a constraint that must bemet
regardless of the accuracy of the predictor. For this reason, the average risk of the proposed opti-
mal technique in the left and right plots of Figure 5.4 behave similarly, remaining both bounded
around the same target risk ξ = 10−2. This is a good property of the proposed algorithm, whose
behavior is adjustable as a function of the user-defined average risk constraint ξ, which will be
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always met by design. Also, as seen from Figure 5.3, although the risk performance is unaffected,
a better mobility estimator translates into lower energy consumption, as thanks to it fewer repli-
cations are performed for the same risk target ξ.

As a last performancemetric, we compute the successful migration probability: we say that the
VMmigration succeedswhen the user hands over to an eNB (MEH)where its VMwas proactively
migrated into. In this case, the user resumes the computation on the new MEH without loss of
continuity. In Figure 5.5, we compare the successfulmigration rate for the single and the proposed
migration strategies. The success rate depends on the accuracy of the mobility predictor used to
estimate the probability vector over the next serving eNBs. The performance gap between MC
and NN+MC is evident for the single replication case. Instead, the proposed technique is less
sensitive to the adopted mobility estimator, as it compensates for the less accurate prediction
accuracy of MC by replicating the VM to more MEHs. As expected, full replication (not shown in
the figure) always achieves a success rate of 100%, as it sends the VM to all the neighboring MEH
sites.
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Figure 5.5: Success rate in VM migrations. Although the success rate also depends on the mobility predic-
tor’s accuracy, the proposed replication approach overtakes the problem by increasing the number of VM
replicas, by always meeting the average risk constraint ξ. The metric is obtained only considering the of-
floaded tasks, i.e., the ones for which ov(t) = 1.

5.5.4 Performance analysis for different service types
Here, we evaluate the performance of the proposed algorithm in case vehicles request different
service types and, in turn, their VMs drain a different amount of energy for their migration. We
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consider the three services introduced before, i.e., OC, GP and GPU, comparing two different
scenarios. In the first one, we set χv(t) = 0, ∀v, t. Table 5.2 (“same priority”) details the average
number of optimal (see Proposition 1) VMs migrations for this case, by grouping the vehicles
requesting the same service. Figure 5.6, left plot, shows the evolution of the average risk for each
service type. In this first scenario, the VMs with the lowest migration costs are served more often,
whereas higher cost VMs are penalized. In the second scenario, we set χv(t) = 0.8 and χv(t) = 0.4
for the GPU and GP services respectively, while set the priority parameter for OC to zero. This
allows counterbalancing the higher energy cost of GPU services, re-equalizing the risk, see the
right plot in Figure 5.6 and Table 5.2 (“different priorities”).

service type same priority different priorities
χv(t) Mv(t) χv(t) Mv(t)

OC 0 3.2 0 2.7
GP 0 2.4 0.4 2.0
GPU 0 1.7 0.8 2.1

Table 5.2: Average number of replicas for VMs handling different services.
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Figure 5.6: Temporal evolution of the risk ζ averaged for the different computing services.
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5.5.5 Impact of limited computation resources at the MEHs

In the previous sections, we have considered that the computation capacity at theMEHs is always
sufficient to accept all the incoming computation requests. Instead, in case theMEHs have limited
computation capacity, e.g., due to a system overload or to their poor dimensioning, some VM
migrations may be blocked. In Figure 5.7, we show the average risk as a function of the MEH
capacity, i.e., the number of VMs that can be simultaneously hosted at a MEH. In this evaluation,
the energy cost and the priority are respectively set to 15.91 MJ (OC) and zero for all the vehicles.
Each curve in the plot refers to a different eNB in the neighboring set. For this plot, the MEH
capacity was varied from 0 to 50 in steps of 5, the risk was averaged over 2, 000 time slots by
grouping vehicles according to their next eNB. As the capacity approaches zero, the blockage
probability and, in turn, the risk, both approach one. Instead, an increasing capacity leads to
a decreasing risk, which eventually stabilizes around the target, which is ξ = 0.01. A proper
dimensioning of the MEH capacity depends on the local amount of requests per unit time, which
is in turn linkedwith the road topology andwith the amount of vehicular traffic in the considered
area.
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Figure 5.7: Evolution of the average risk as a function of theMEHs capacity. The vehicles are grouped based
on the eNBs where they are going.
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5.6 Concluding remarks
In this chapter, we have presented a new proactive technique for online migration of computa-
tion services (VMs) for vehicular 5G networks. Our approach combines a mobility prediction
algorithm with an online optimization solver. The mobility estimates are expressed as a prob-
ability vector over the neighboring radio cells, i.e., the next vehicle’s point of attachment. The
mobility prediction algorithm, which combines neural networks and Markov chains, is indepen-
dently trained and exploited at each radio cell and the output probability vectors are utilized as
the input of a Lyapunov based online optimizer. The resulting approach, exploiting online deci-
sionmaking andmobility estimation, allows striking a good balance between the number of VMs
that are replicated (representing an energy cost for the system) and the risk of losing service con-
tinuity. Numerical results demonstrate the effectiveness of the proposed solution in comparison
with two benchmark (proactive) migration strategies from the literature. Our technique effec-
tively reduces, by more than 50%, the total energy drained as compared to replicating the VM to
all the neighboring radio cells, by keeping the risk of losing continuity of computation services
as vehicles hand over across radio cells at a (user-defined) low value.
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6
Mobility- and energy-aware computing job

scheduling in MEC enabled networks

6.1 Introduction

In this chapter we design EASE (energy-aware job scheduling at the edge), a novel policy to allo-
cate computing jobs within the network facilities, considering the same IoV scenario of the pre-
vious chapters. In Chapter 5 we proposed to proactively replicate the virtual entity handling the
computing service on neighboring MEHs thus ensuring service continuity as the user (vehicle)
moves within the network area. Here, we move a step forward by devising an online strategy for
job allocation that includes the possibility for the service to keep executing on the MEH where it
started, considering backhaul links to route the job results toward the new user’s location. The
decision on whether to move the entity executing the service on a MEH closer to the user or to
complete the computation where it started is based on energy, memory and computing power
considerations. As done in Chapter 5, we leverage the mobility predictor of Chapter 4 to estimate
the best sites where the users’ jobs can be allocated, meeting both the network’s and the users’ re-
quirements. The proposed strategy is based on single migrations of the virtual entities – instead of
their replication – as we consider eNBs equipped with energy harvesting devices and, in turn, we
are concerned with the efficient utilization of the available green energy while tolerating a small
risk on the service interruption. As quantified in Figure 5.5, by leveraging the NN+MC mobility
prediction algorithm in Chapter 4 we obtain very accurate estimates that make the interruption
of the services unlikely to happen.

To the best of our knowledge, this is the first attempt to designing a complete framework for
the energy efficient scheduling of computing jobs over MEHs networks, by exploiting mobility
aware procedures. The devised system provides job schedules for time slots of fixed duration,
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minimizing the carbon footprint at the network side – for the computation and communication
services – subject to job latency andmobility constraints. The proposed job scheduling policy con-
sists of two phases, the former is independently and locally executed at the eNBs (MEHs), while
the latter is implemented as a decentralized consensus process. In the first phase, each MEH
leverages estimates of the renewable (cost-free) energy, the computational power and the mem-
ory available within a prediction window to decide upon the optimal local amount of workload
to be executed, subject to users’ mobility and delay constraints. EachMEH also identifies the jobs
that should be migrated to neighboring MEHs as associated with vehicles that are approaching
the border of their current serving cell. The mobility predictor developed in [140] is used to de-
termine the desired workload to transfer to each neighboring MEH. Then, in the second phase,
the MEHs reach an agreement on the amount of workload to exchange to reduce the overall en-
ergy expenditure, while guaranteeing adequate quality of service (QoS) to the end-users. Here,
a close-to-optimal integer solution for jobs migration is derived through a consensus algorithm
followed by a rounding step, which use mobility predictions to make job migration decisions.

The proposed solution is evaluated in the real-world scenario emulated through the SUMO
software and presented in Chapter 4. Numerical results reveal that the developed allocation strat-
egy significantly reduces the carbon footprint of the edge network, with an increasing gain over
heuristic strategies when the available green energy is scarce. At the same time, it properly allo-
cates workload to the processing units according to their specific computing power, by delivering
better QoS to the users with respect to heuristic solutions and meeting delay constraints. When
possible, service migrations also follow the UE during handovers.

The related work is analyzed in the next Section 6.2, whereas the solution workflow is pre-
sented in Section 6.3, where we also detail the remaining sections of the chapter.

6.2 Related work
The resource allocation problem in a MEC scenario is extensively addressed in the literature.
Among the most recent works, in [141] the authors present a job scheduler for containers man-
agement at the MEHs, aiming at reducing the network carbon footprint and its energy consump-
tion. In [142], [143], the task offloading is optimized from a user perspective, minimizing the task
completion time and the related energy expenditure. However, these approaches consider static
users and, in turn, are not suitable for IoV scenarios, where the users – vehicles – move within the
network area. In this chapter, we consider that jobs are generated by vehicles in an urban area,
devising EASE, a scheduling algorithm to guarantee service continuity. The mobility manage-
ment is a key aspect towards the effective implementation of MEC assisted IoV networks [144].
Computation service handovers entail not only the exchange of control messages, but also the
migration of the data associated with the specific job under execution. The users’ requests are
served at a so called serving MEH through the instantiation of a virtual entity – either a VM or
a container – empowered with adequate memory and computing resources to satisfy the service
requirements [145]. Therefore, when a computing service handover is triggered, the virtual entity
must be transferred to the target MEH to allow restoring the computation from the point where
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the current serving MEH stopped. This poses several issues associated with the job latency con-
straints and the network energy migration costs. A paper addressing the latency challenge, and
proposing strategies to reduce the migration time is [146]. The main focus is on how to migrate
the virtual entity, by defining protocols to transfer the container/VM from the current location to
the target one. Machen et al. [147] propose a layered framework to migrate applications encapsu-
lated either in VMs or containers, showing a reduction in the service downtime. The authors of
[148] leverage the layered nature of the storage system to reduce the overhead in the container file
system synchronization between the serving and the target MEHs. We stress that, the just men-
tioned approaches are reactive, i.e., the service migration is performed after the user has moved
to the new MEH site. This results in an unavoidable processing delay due to the time required
for the virtual entity re-instantiation at the newMEH. EASE is instead a proactive approach, as the
virtual entity is migrated before the handover event occurs, thus reducing the service interruption
time.

Proactive methods require the MEC orchestrator to predict the user’s next point of attachment
to trigger themigration process in advance. Some recentworks in the literature show the effective-
ness of such a strategy but (i) they fail to provide a complete framework to optimally allocate the
computing jobs within the network entities while considering energy, memory and computing
power constraints, and (ii) they rely on a centralized orchestrator that computes the best policy
to adopt knowing the state of all the network entities. Among them, in [132], the authors ex-
ploit the vehicle velocity and its direction to decide if and where, i.e., in which target MEH, the
virtual entity should be migrated to ensure service continuity. Campolo et al. [149] exploit the
pre-planned vehicle’s routes to proactivelymigrate theMEH container following the user’smove-
ments. In [131], the authors design an optimal decision policy to decide whether to migrate the
virtual entity to the target MEH, or to keep the job execution on the first serving MEH. However,
they consider a simple mobility model, using Markov chain based predictions, which is deemed
inapt to prove the effectiveness of their solution in a real-world setup. A different approach is pre-
sented in [128], where the user’s virtual entity is replicated to multiple neighboring MEHs before
the handover event occurs. The authors suggest usingmobility estimates to place the replicas, but
leave this for future study. The last point is addressed in [140], where the authors integrate ac-
curate mobility predictions into a VM replication strategy, towards reducing the network energy
consumption. Rago et al. [150] use predictions on user locations and task requests to optimally
and proactively allocate jobs on the available MEHs. In [151], the authors use mobility estimates
to allocate users’ jobs through a recursive procedure based on genetic algorithms with the sole
objective of minimizing the latency (energy consumption is not addressed). In [152], user mobil-
ity predictions are instead used to allocate sufficient resources to each users’ job, to ensure the
completion of the process within the eNB coverage region. In [153], the MEC service migration
process and the physical route for the user to get to the destination are jointly optimized. The
problem is solved through a multi-agent deep reinforcement learning approach to meet the job
delay requirements with minimum migration cost and travel time. In perin2021towards, the au-
thors study the problem of managing the energy coming from renewable sources to minimize the
electricity drained from the power grid. However, unlike what we do with EASE in the present
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work, they disregard the mobility aspect. Moreover, they distribute the whole model predictive
control (MPC) solution, resulting in a high computational burden, while EASE performs a prelim-
inary local phase, to reduce the complexity.

The work in this chapter sharply depart from the existing literature by proposing EASE, an
energy- andmobility-aware, distributed and proactive scheduling framework for computing jobs
allocation and virtual entity migration, with the objective of minimizing the carbon footprint of
the MEH network. This is achieved combining local policies with a decentralized consensus al-
gorithm, thus obviating the need for an orchestrator.

6.3 Solution workflow
The optimization objective of EASE amounts to minimizing the energy drained from the power
grid – considering as cost free the energy that eachMEH collects from renewable energy resources
– while meeting memory, processing constraints and accounting for the user mobility process. A
high level diagram of EASE is presented in Figure 6.1. The scheduler operates according to two
optimization phases: 1) local phase (left of the diagram): a predictive control phase, performed
locally at each MEH node, and 2) distributed phase (right): a collaborative optimization based
on distributed consensus (solved via message passing). In phase 1, the MEHs locally control the
ongoing computations, estimating the local processing capacity and energy availability within
a given prediction horizon. At the same time, the local algorithm assesses the amount of work-
load that should bemigrated (“desiredworkloadmigration estimation”) to the neighboringMEH
nodes, predicts insufficient local resources (“MEH resource estimation”), and accounts for mobil-
ity estimates (“next MEH prediction”), i.e., the vehicle that generated the job request is about to
hand over to a neighboring radio cell.

With phase 2, taking the desired workload to be migrated from phase 1 as input (“neighbors’
resource information”), the MEHs collectively reach an agreement (“workload migration agree-
ment”) about how many and which jobs are to be actually migrated, as well as about the target
MEH for their migration (“job selection and migration”).

After step 2, each node updates its local state equations with the new jobs generated by the
vehicles under coverage and those received from the neighbors, and goes back to step 1.

The remainder of this chapter is organized as follows. The system model is presented in the
next Section 6.4. A first problem formulation for the optimal scheduling is detailed in Section 6.5.
The final scheduling solution, composed of the two phases (local and distributed) is presented in
Section 6.6. The performance assessment is reported in Section 6.7 and final remarks are provided
in Section 6.8.

6.4 System model
Time t is discrete and evolves according to slots of fixed duration τ, i.e., t = 0, τ, 2τ, . . . . The con-
sidered setup consists of an urban environment covered by a setN of eNBs, each co-located with
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Figure 6.1: High level diagram of EASE. The local steps are detailed on the left and provide the resource and
the desired workload migration estimates for each MEH in isolation. The distributed algorithm on the right
allows the MEH to reach a consensus on the jobs allocation and trigger their migration.

a MEH. V represents the set of vehicles moving within the city, which are constantly connected
to the nearest eNB node (providing communication support). Vehicle v ∈ V sends computing
job requests to the closest MEH, which can locally execute the required workload or offload it,
either partially or in full, to neighboring MEHs. Also, each vehicle can have a single outstand-
ing job instance (being processed) and can generate a single job request at any time slot only if
the previous request has been either fully processed or dropped by the serving MEH. For this
reason, in the following analysis we will interchangeably identify a vehicle with the associated
outstanding job to be computed. The set of neighboring eNBs to eNB i is denoted by Ni. Jobs
are executed through the instantiation of containers, which reserve the needed computing and
memory resources. In this work, containers are favoured over VMs due to their lower memory
footprint, which permits a faster migration process – a desirable feature in the considered mobile
scenario [146]. Jobs that are being executed on one MEH but associated with vehicles that are
about to leave the eNB/MEH coverage area are assessed by the migration controller. The latter
decides whether to migrate their execution to another (target) MEH, or to finish it locally and
send the processing result to the vehicle in a multi-hop fashion (from the old to the new serving
eNB). eNBs are equipped with energy harvesting devices, e.g., photovoltaic panels (PVs), whose
collected energy is managed by the system. Besides, eNBs are also connected to the power grid as
relying only upon harvested energy would be risky due to its intermittent nature. The diagram
of an eNB/MEH node is shown in Fig. 6.2.

Next, we detail the mathematical models for computing and communication services, along
with the statistical processes involved in the envisioned scenario and the system constraints. The
mathematical notation is summarized in Table 6.1.

6.4.1 Computation and communication models

Computing job parameters. At time t, each job k served by MEH i is characterized by the triplet
(Ii,k(t),Di,k(t), Si,k(t)), where i) Ii,k(t) is the residual job intensity, expressed in CPU cycles, ii)Di,k(t)
is the residual (hard) execution deadline, in seconds, i.e., the time still available to execute the job,
and iii) Si,k(t) is the remaining data to be processed, in bits. As the job is processed by the server,
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Figure 6.2: eNB/MEH node. Job requests arrive from connected vehicles vmoving within the eNB coverage
area. Containers handling the execution of the jobs are created at the serving MEH, and possibly migrated
to other MEHs in case the associated vehicles exit the eNB coverage area.

the intensity, deadline and data size decrease in accordance with the following state equations

Ii,k(t+ τ) = Ii,k(t)− wi,k(t) , (6.1)
Di,k(t+ τ) = Di,k(t)− τ , (6.2)

Si,k(t+ τ) = Si,k(t)−
Si,k(0)
Ii,k(0)

wi,k(t) , (6.3)

where wi,k(t) is the amount of workload belonging to job k and processed by MEH i during slot t.
Note that (6.1) makes it possible to rewrite (6.3) as

Si,k(t) =
Si,k(0)
Ii,k(0)

Ii,k(t), (6.4)

where the factor Si,k(0)/Ii,k(0) regulates the linear correlation between the remaining job intensity
Ii,k(t) and the data that still has to be processed for job k, Si,k(t).
Communication models. For the 5G wireless links between the eNBs and the vehicles we adopt
i) the massive-MIMO energy consumption model of [154], and ii) the mm-wave – 28 GHz – ur-
ban NLoS channel model of [123]. Specifically, from [154] the following system parameters are
obtained: i) the power needed to keep thewireless unit switched on (fixed circuit power consump-
tion), PRAN, ii) the energy required per transmitted bit via wireless links, ERANb , iii) the fixed wired
circuit power consumption, Pwired, iv) the energy expenditure for the wired backhaul links con-
necting the eNBs, Ewired

b . Note that the vehicles’ energy utilization is not involved in the schedul-
ing and, in turn, only the energy consumption at the eNB side is considered. The model in [123]
is used for the vehicle-eNB association.
Container migration model. The migration of a container requires the hosting MEH to spend
energy for freezing the status of the virtual entity and prepare the data to be sent to the target
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Symbol Meaning Unit
v ∈ V vehicle identifier (ID) and set of vehicles -
i ∈ N eNB/MEH ID and set of eNBs/MEHs -
Ni and Ni set of neighboring nodes of node i and its cardinality |Ni| -
k ∈ Ki(t) and Ki(t) job ID, set of jobs in execution at MEH i at slot t, -and its cardinality |Ki(t)|
K̂ij and K̂ij

set of jobs running on MEH i with probable next MEH j -and its cardinality
T no. of slots in the prediction horizon -
t = [0, . . . ,T] scheduling time slot index -
τ length of a scheduling slot s
Vi(t) and Ci(t) no. of results to be sent in the coverage area of eNB i at -slot t and to be routed through the backhaul network
Ik intensity of job k cyc.
Dk deadline of job k s
Sk size of job k bit
pv and pℓ job generation probability and probability that it is of type ℓ -
pi,k(t) handover prob vector for vehicle v (job k) at slot t
wi,k(t) workload of job k processed by MEH i in slot t cyc.
L (fixed) size of a container instantiated on a MEH bit
ERANb energy per bit for eNB-vehicle wireless transmissions J/bit
Ewired
b energy per bit for eNB-eNB wired transmission J/bit

σs and σd energy per bit for migration at the source (destination) MEH J/bit
Es and Ed (fixed) energy for migration at the source (destination) MEH J
EHi (t) harvested energy available at slot t J
PPVi (t) power supplied by the PV at node i, instant t W
PRAN and Pwired (fixed) power to keep the wireless (wired) unit switched on W
Pidlei (fixed) power to keep the server switched on W
Ninc

i (t) and Nout
i (t) no. of MEH incoming (outgoing) jobs at slot t -

Fi maximum computational power of server i W
Mi maximum amount of RAM available at server i bit
w̄ij desired intensity requested by MEH i to neighbor j cyc./s
m̄ji memory space requested by MEH i to neighbor j bit
P̂Hi residual green power at node i after the local scheduling W
F̂i residual computing power at node i after local scheduling W
M̂i residual RAM memory at node i after the local scheduling bit
oij optimal amount of MEH i processing load to offload to j cyc./s
õji optimal processing load to be received at MEH i from j cyc./s

Table 6.1: Summary of the symbols used within the chapter. “cyc.” stands for “CPU cycles”.

MEH for the correct re-instantiation. Hence, the targetMEHhas to spend energy to create the new
virtual entity using the received information. The energy expenditure at the two sides consists
of [155]: i) a contribution proportional to the size of the migration data, through the parameters
σs and σd respectively, plus ii) a fixed energy contribution, equal to Es for the source MEH and Ed
for the target one, respectively. Additionally, the source spends some energy for transmitting the
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data over the wired channel Ewired
b . Overall, it holds

Emigr
source(t) = σsL+ Ewired

b Sk(t) + Es, and (6.5)
Emigr
dest (t) = σdL+ Ed, (6.6)

where Sk(t) is the (variable) data size associated with job k, and L is the (fixed) container size.
According to [149], we account for a service downtime of Tmigr

k when migrating the entities. In
turn, Tmigr

k seconds are additionally removed from the job’s deadline Dk(t) at every migration
occurrence. Note that the delay associated with wired transmissions is negligible as compared to
the service downtime.

6.4.2 Statistical processes
Energy harvesting model. We refer to PPVi (t) as the power supplied by the PV co-located with
eNB/MEH i at instant t and that varies from a minimum of PPVmin to a maximum of PPVmax. Account-
ing for the power required to keep the server (Pidlei ) and the communication channels (PRAN and
Pwired) switched on, and the fixed amount of energy required for the container migration, the har-
vested energy available at eNB/MEH i for computations and data transmissions at time slot t is

EHi (t) =
(
PPVi (t)− PRAN − Pwired − Pidlei

)
τ−Ninc

i (t) (σd L+ Ed) +

−Nout
i (t)

[(
σs + Ewired

b
)
L+ Es

] (6.7)

where Ninc
i (t) and Nout

i (t) are the known number of MEH incoming and outgoing jobs at MEH i
and time t, which are scheduled at the previous step t−τ. The terms in Eqs. (6.5)-(6.6) that depend
on the data size Si,k(t) are not considered in EHi (t) as they will be integrated in the optimization
function (see Eq. (6.18)). Note that being EHi (t) a difference between the harvested energy and that
required to deliver the services, its value can be negative. EHi (t) is known for the current slot t only.
However, the developedMPC framework also needs estimates for [EHi (t+ τ), . . . ,EHi (t+ τ(T− 1))],
within the time window t+τ, . . . , t+τ(T−1), where T is the prediction horizon. These estimates
are computed by forecasting the time dependent quantities in (6.7): future values of PPVi (t+ ·) are
estimated using a Gaussian r.v. with average PPV and standard deviation σPV, estimates for the
number of incomingNinc

i (t+ ·) and outgoingNout
i (t+ ·) jobs at eNB i in slot t are obtained consid-

ering t[h!]he vehicles in the external annulus of the eNB’s coverage area. Finally, Pidlei depends
on the specific MEH characteristics at eNB i, as specified in Section 6.7.
Jobs types and arrival model. Three types of jobs are considered in this work, having different
intensities, deadlines, and data sizes and identified through the index ℓ = {1, 2, 3}. Every job type
is associated with a generation triplet (Iℓ,Dℓ, Sℓ), and a generation probability pℓ. Each vehicle
v ∈ V can submit at most one computing job at a time to the network facilities, so that a bijective
mapping vehicle-job ID can be derived. Once a job is finished or expired, the vehicle submits a
new job to the MEH with probability pv at each slot. This parameter is tuned in the simulations.
Also in this case, for predictive optimization, an estimate for the future incoming jobs is needed.
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To this purpose, a circular buffer containing the values of Ii,k/Di,k of the newly generated jobs is
kept. A fixed estimate of the average of the lastW seconds is used to predict the incoming traffic.
In perin2021towards, the authors verified that even simple predictors are still effective withMPC
if T is large enough.
Handover probabilities. Each job k is associated with a probability vector that depends on the
position of the vehicle v requesting the service. Being i the serving eNB for vehicle v, we define
pi,k(t) as theNi-dimensional vector containing the probabilities that vehicle vwill hand over to any
of the |Ni| = Ni neighboring radio cells, i.e., pi,k(t) = [pi1,k(t), pi1,k(t), . . . , piNi,k(t)], with∑j pij,k = 1.
Vector pi,k(t) is updated every time a new trajectory sample is available for the associated vehicle
v, either inside the same cell or in a new cell after performing the handover.

6.4.3 System constraints

The setKi(t), with cardinalityKi(t) = |Ki(t)|, collects the jobs being executed at time slot t at MEH
i. The following systems constraints apply
Processing capacity. Indicating with Fi the maximum computing power of server i – expressed
in CPU cycles per second – the following inequality on the sum of the workloads holds

1
τ

Ki(t)∑
k=1

wi,k(t) ≤ Fi . (6.8)

Storage capacity. BeingMi [bits] the maximum amount of RAM available at server i, the sum of
the data sizes Si,k(t) of all the active jobs at MEH imust obey

Ki(t)∑
k=1

Si,k(t) ≤Mi . (6.9)

Job execution time. In case the deadline of job k, Di,k(t), expires in the current time slot t, the job
must be processed entirely and immediately at server i and cannot be further migrated, i.e.,

wi,k(t) = Ii,k(t) if Di,k(t) ≤ τ . (6.10)

This guarantees the timely delivery of the computation result to the requesting vehicle, avoiding
that the outcome becomes useless. As Eqs. (6.8)-(6.10)may not be jointly satisfied, in the following
we will relax Eq. (6.8).
Workload conservation. Finally, note that, in general, the inequalities

0 ≤ wi,k(t) ≤ Ii,k(t), ∀ i ∈ N , ∀ k ∈ Ki(t), ∀ t (6.11)

must always hold, because of the workload conservation principle.

103



6.5 Problem formulation

6.5.1 Step 1: Local controller and resources estimation
Each MEH i ∈ N estimates wi,k(t) for every job k ∈ Ki(t) to be executed at time t: in the analysis,
wi,k(t) stands for the optimal fraction of computing intensity Ii,k(t) to be locally executed at time
slot t for the hosted job k. We define vectors wi(t), Ii(t) and Di(t) respectively collecting wi,k(t),
Ii,k(t) and Di,k(t) for all k ∈ Ki(t). As for the energy spent to transmit the processing results back
to the vehicles, Vi(t)ERANb is the (per bit) energy cost of sending the results to the Vi(t) vehicles
in the wireless coverage area, while Ci(t)Ewired

b is the energy cost entailed in routing the Ci(t)
jobs that are completed at node i and that have to be routed via the backhaul links to reach the
corresponding user (vehicle). Rk is the size of the processing result of job k, and qproci is the energy
cost of processing a unit of workload.

Given these quantities, we define two local (at node i) functions fi(·) and gi(·), as follows.

fi(wi;Vi,Ci,EH,i) = qproci 1Twi(t) + Vi(t)ERANb Rk + Ci(t)Ewired
b Rk − EHi (t) , (6.12)

gi(Ii(t);Di(t)) =
Ki(t)∑
k=1

( Ii,k(t)
Di,k(t)

)2
. (6.13)

fi(·) quantifies the difference between the total energy expenditure at node i in slot t (due to pro-
cessing and communications processes) and the energy that is locally harvested at this node.
Hence, −f(wi; ·) represents the residual cost-free energy available for the migration process in
the distributed phase. Minimizing fi(·) corresponds to maximizing the local energy available at
the node. gi(·) represents the residual processing cost, which is proportional to (Ii,k/Di,k)2. Min-
imizing gi(·) forces the node to execute the jobs, especially prioritizing those with high intensity
and whose deadline is about to expire. Note also that, due to Eq. (6.1), Ii,k(t) depends on the
optimization variable wi,k at previous time slots.

Considering a forecast optimization window of T slots into the future, and letting t = 0 be the
current time slot, the local cost function at node i over the whole time horizon is formulated by
combining fi(·) and gi(·), as

Ji
(
Wi, Ii;Di,Vi,Ci,EH

i
)
= γ

T−1∑
t=0

gi(Ii(t);Di(t)) +
T−1∑
t=0

max{fi(wi; ·), 0}2, (6.14)

where Wi, Ii and Di represent the stacks of vectors wi(t), Ii(t) and Di(t) over the considered
horizon T, respectively, while Vi, Ci and EH

i are the vectors collecting Vi(t), Ci(t) and EHi (t) for
t ∈ {0, τ, . . . , τ(T − 1)}. The coefficient γ > 0 is used to balance the processing state cost term
(gi(·)) with respect to the energy cost (fi(·)).

Remark 1. From a physical perspective, the processing energy consumption is not necessarily a quadratic
function, but it varies based on the specific computing architecture [156]. A quadratic function for fi(·)
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was chosen, as it promotes smoothness of the controller in the transitions from a slot to the next one, and
has the same curvature order of the processing state cost gi(·). Also, the max{·} function is used to make
the cost positive only when fi(·) > 0, i.e., the renewable energy is fully used and the node has to resort to
the power grid.

Next, the cost function in Eq. (6.14) is modified through the addition of a penalty term pro-
portional to two new auxiliary variables i(t) = [δFi(t), δMi(t)], to ensure that the problem does not
become infeasible when resources are scarce. Therefore, rewriting the constraints (6.8) and (6.9),
we define for each MEH the following local problem at node i,

Ploci : min
Wi,i

Ji (Wi, i; ·) + ci
T−1∑
t=0

i(t)

s.t. (6.1) - (6.3), (6.10), (6.11),
1
τ
∑
k∈Ki

wi,k(t)− δFi(t) ≤ Fi,∑
k∈Ki

Si,k(t)− δMi(t) ≤Mi,

(6.15)

where ci > 0 is the coefficient weighting the penalty variables. By solving (6.15), each MEH
obtains the optimal control wi(0) which is implemented in the current time step.

6.5.2 Step 2: workload migration

From (6.15), each server estimates its own future energy and processing resources. Specifically,
let P̂Hi be the residual available green power, possibly negative if the grid support is sought, F̂i,
and M̂i be the residual computational power, and RAMmemory at node i, respectively. Note that,
since constraints (6.8) and (6.9) are relaxed in (6.15), F̂i and M̂i can be negative. These estimates
are obtained averaging the values over the prediction horizon, excluding the current instant t = 0.
Due to this averaging operation, while in (6.15)wedealwith energy expenditures, in the following
we refer to power quantities.

The migration task presents itself as a combinatorial mixed integer programming (MIP) prob-
lem, which is non-convex and is generally difficult to solve in a distributed fashion. Thus, we use
heuristics to derive close-to-optimal solutions. In this work, the popular relax and round method
is used, which consists in solving the convex counterpart of the original problem, and rounding
the result to a feasible solution afterwards.

Based on the handover probability vector pi,k presented in Section 6.4.2, eachMEH determines
the average resource demand requested from its neighbors in the migration process. Specifically,
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the CPU cycles per second and memory space that are requested from neighbor j are

w̄ij =
∑
k∈K̂ij

Ii,k
Di,k

, and (6.16)

m̄ij =
∑
k∈K̂ij

Si,k , (6.17)

respectively, where K̂ij represents the set of jobs that are currently running at server i, associated
with vehicles that are about to exit the coverage area of the co-located eNB i and whose most
probable next eNB is co-located with MEH j. With w̄i = [w̄i1, . . . , w̄iNi ] we denote the vector
collecting the desired processing intensity per second to be sent to each of the Ni neighbors of
MEH i, computed via (6.16). We also introduce the new optimization variables oi = [oi1, . . . , oiNi ]

and õi = [õ1i, . . . , õNii] representing the optimal total amount of processing load to be sent to, and
to be received from each neighbor, respectively. The deviation from the desired w̄i to be migrated
is penalized with the l2-norm ∥w̄i − oi∥2, and the migration cost is defined as

Γi
(
oi, õi; w̄i, P̂

H
i
)
= max

{(qtxi − qproci
) 1Toi +

(qrxi + qproci
) 1Tõi − P̂Hi , 0

}
+ ρ∥oi − w̄i∥2 , (6.18)

where qproci , qtxi and qrxi are the processing, transmission and reception costs of server i (expressed
as powers), respectively. The max{·} term represents the power needed from the power grid
to migrate the jobs, whereas the quadratic term encodes the fact that the optimal oi should be
as close as possible to the desired w̄i – this corresponds to moving the jobs to the next serving
eNB. Finally, ρ > 0 is a weight that balances the importance of the two cost terms. Note that
minimizing Eq. (6.18) returns a solution oi that matches vector w̄i if the residual harvested power
is sufficient and the constraints are satisfied. Specifically, as system constraint we consider the
following variation of (6.8) and (6.9),∑

j∈Ni

(õji − oij
)
≤ min{F̂i, ξMiM̂i}+ δ̂i, ∀ i ∈ N . (6.19)

Remark 2. The meaning of this constraint is that the workload surplus that server i has during the follow-
ing time steps, i.e., the incomingworkload minus the outgoing one, should satisfy the average (long-term)
power (F̂i) and memory (M̂i) availability at node i. The coefficient ξMi relates the memory availability to
the residual computational power. This follows from the assumption of direct proportionality between the
data size Sk and the processed workload wk.

Since the general goal is to minimize the energy drained network-wide from the power grid,
a cost function that represents the global welfare and at that at the same time is amenable to a
distributed solution is the sum

Γ
(
o, õ,̂ ; w̄, P̂

H)
=
∑
i∈N

[
Γi
(
oi, õi; w̄i, P̂

H
i
)
+ ĉiδ̂

2
i
]
, (6.20)
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where ĉi > 0 is the cost coefficient associated with the penalty term δ̂2i . This leads to the con-
strained optimization problem

Pglob : min
o,õ,̂

Γ
(
o, õ,̂ ; w̄, P̂

H)
s.t. o, õ,̂ ≥ 0, (6.19),

oij = õij ∀ i, j,

(6.21)

with o, õ,̂ , w̄ and P̂
H being the vectors collecting oi, õi, δ̂i, w̄i and P̂

H
i respectively, for all theMEHs

i ∈ N . The equality oij = õij is called consensus constraint and is added to ensure that the amount
of workload exiting node i and directed to j is equal to the one that j expects to receive from i.

6.6 Final scheduling solution via local and distributed processes

6.6.1 Step 1: local MPC solution

At each MEH, the local MPC problem of (6.15) is solved over the whole horizon T [157]. MPC
uses the receding horizon technique, which consists of solving the given problem within a predic-
tionwindow of size T, applying the optimal computed control only for the current time step t = 0,
moving forward the optimization window by one time slot (τ seconds) and repeating the proce-
dure. In this way, the controller progressively adapts to new observations and estimates of the
exogenous processes. In the considered setup, at any given instant, MEH i computes the optimal
policy throughout thewhole horizon of T slots, but onlywi(0) is applied as the control action. The
exogenous processes are the future jobs and the harvested energy availability, see Section 6.4.2.

6.6.2 Step 2a: distributed workload migration

In the following, the scheduling slot index t is omitted in the interest of readability. Eq. (6.21) is
a consensus problem, i.e., it entails the reaching of an agreement on the value of some variables
among multiple agents in a distributed system. In our context, the MEHs must agree on the
amount of processing load to exchange among each other. A way to solve this problem – written
as the sumof separable convex cost functions – is via the dual ascent algorithmbertsekas1999nonlinear.
Given a generic cost function ψ(x), its Lagrangian is defined as

L(x, z) = ψ(x) + zT(Ax− d) , (6.22)

where z are the Lagrange multipliers associated with the constraints Ax = d. The dual ascent
solves the problem by iteratively i) minimizing L(x, z) with respect to x (primal step), and ii)
updating the value of z (dual step). To formalize the solution of problem (6.21) via dual ascent,
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we split the local cost functions (6.18) as

Γ̃i
(
oi, õi, δ̂

)
=max

{(qtxi − qproci
) 1Toi +

(qrxi + qproci
) 1Tõi − P̂Hi , 0

}
+

+
ρ
2 ∥oi − w̄i∥2 +

ρ
2 ∥õi − w̃i∥2 + ĉiδ̂

2
i ,

(6.23)

exploiting the fact that oij = õij, and defining w̃i = {w̄ji | j ∈ Ni}. Intuitively, node i is responsible
for half of the quadratic cost from its neighbors and for half of its own local cost. For compactness,
let x = {xi = [oi, õi, δ̂i], ∀ i ∈ N} be the global optimization variable, bi = [w̄i, w̃i, 0] the tracking
target vector, and qi = [qtx

i − q
proc
i ,qrx

i + q
proc
i , 0] the linear costs vector. Moreover, we define ma-

trix Qi = I2Ni+1mi, withmi = [
ρ
2 , . . .

ρ
2 , ĉi], and the global block diagonal matrix Q, collecting each

Qi on the diagonal. With these definitions, problem (6.21) can be expressed in the following form

min
x

∑
i∈N

(
∥xi − bi∥2Qi +max

{
qT
i xi − P̂Hi , 0

})
(6.24)

s.t. A1 x ≤ d, (6.25)
A2 x = 0, (6.26)

where ∥x∥2Q = xTQx. The inequalities (6.25) collect (6.19) and the non-negativity constraintso, õ,̂ ≥ 0,
while the equalities (6.26) correspond to the consensus constraints oij = õij, ∀i ∈ N , j ∈ Ni. Here,
thematricesA1 andA2 are used to select the concerned variables, whereasd = {di = [min{F̂i, ξMiM̂i}, 0] |
i ∈ N}. We can now write the Lagrangian as

L (x,y, z) =
∑
i∈N

Γ̃i
(
xi;bi, P̂

H
i
)
+ yT (A1x− d) + zTA2x , (6.27)

where y = {yi = [λi, i ,̃ i, ϕ̂i] | i ∈ N} are the Lagrange multipliers associated with the inequality
constraints (6.25), and z = {zi = i | i ∈ N} are the multipliers associated with equalities (6.26).
Specifically, the Lagrange multipliers λi refer to constraints (6.19), i = {γij}, ĩ = {γ̃ji} and ϕ̂i to
oi ≥ 0, õi ≥ 0, and δ̂i ≥ 0, respectively, and i = {μij} to oij = õij, for every server i ∈ N , and j ∈ Ni.
Using the + sign to denote the update at the following iteration, we detail in Algorithm 6.1 the
dual ascent procedure that solves the problem

inf
x

sup
y≥0,z

L (x,y, z) . (6.28)

Algorithm 6.1 Dual ascent algorithm solving problem (6.21)
1: x+ = argminx L (x,y, z) {primal step}
2: y+ = max {y + y (A1 x+ − d) , 0} {dual update}
3: z+ = z+ zA2 x+ {dual update}

The dual update requires in this case two different forms, depending onwhether the constraint
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is an equality or an inequality one. Inequality constraints may actually be inactive, and the associ-
ated Lagrangemultiplierswould be null in this case. The parameters y and z in the algorithm tune
the stability and the convergence speed. The presented compact version of the dual ascent trans-
lates into the following local procedure, from a server perspective. Defining the vectors ĩ = {μji}
and ōi = {õij} collecting variables that are kept in memory by the neighborhoods of i, the local
Lagrangian at node i is

Li
(
oi, õi; w̄i, w̃i, P̂

H
i
)
= Γ̃i

(
oi, õi; w̄i, w̃i, P̂

H
i
)
+ λi

[
1T(õi − oi)− δ̂i

]
+

− T
i oi − T̃

i õi +
T
i oi − T̃

i õi − ϕ̂iδ̂i,
(6.29)

and the procedure is presented in Algorithm 6.2, where a fixed step size α is assumed.

Algorithm 6.2 Dual ascent from a server perspective
1: receive ĩ = {μji} from the neighbors
2: o+

i , õ
+
i , δ̂i = argminxi

Li (xi, i)

3: send õ+ji to the correspondent neighbor j
4: λ+

i = max
{
λi + α

(∑
j∈Ni

(
õ+ji − o+ij

)
− F̂i

)
, 0
}

5: ϕ̂+
i = max

{
ϕ̂i − α δ̂+i , 0

}
6: +

i = max{i − αo+
i , 0

}
7: ˜+i = max {̃i − α õ+

i , 0
}

8: receive ō+
i = {õ+ij } from the neighbors

9: +
i = i + α (o+

i − ō+
i
)

10: send μ+
ij to the correspondent neighbor j

Note that, to minimize the Lagrangian in the primal step at line 2, server i not only needs
its own Lagrange multipliers, but also the introduced ĩ, which collects the μji of neighbors j ∈ Ni.
Therefore, node imust first receive thesemultipliers from the neighborhood. Also, while updating
i in the dual step at line 9, ō+

i is needed, which collects the õ+ij variables kept by the neighborhood
of i, and which are to be received after the computation of j’s primal step (∀j ∈ Ni). Hence, this
amounts in two communication rounds among neighbors per dual ascent iteration. The dual
updates are computationally inexpensive, whereas the primal step requires to solve a local convex
subproblem, which is complicated by the max{·} operator in the cost function (6.23). Eventually,
note that an additional communication is required at the beginning of the procedure, to inform
the neighborhood about the values of w̃i.

Solution to the primal step (line 2). The solution of the local primal subproblems is computed
in closed form, distinguishing three cases. We consider the local primal subproblems in compact
form with variables xi, and collect the Lagrange multipliers of (6.29) in i = [λi1,ϕi, i ,̃ i, i ,̃ i], with
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associated variables selection matrix Ai. We split Li (xi; ·) = ui (xi) + hi (xi), so that

ui (xi) = ∥xi − bi∥2Qi +
T
i Aixi, (6.30)

hi (xi) = qT
i xi − P̂Hi . (6.31)

Proposition 2. The solution of the primal step of problem (6.21) is computed as one of the mutually
exclusive cases

i) x+
i = argminxi

ui (xi), if hi
(
x+
i
)
≤ 0, or

ii) x+
i = argminxi

ui (xi) + hi (xi), if hi
(
x+
i
)
> 0, or

iii) x+
i = argminxi

ui (xi), s.t. hi (xi) = 0.

Proof. i) and ii) correspond to the cases where the max{·} operator in (6.23) is replaced by 0 or
hi(xi), respectively. Once the optimum is computed, the feasibility check must be done: if the
minimum lies in the feasible region, the solution is accepted. However, it can also be that these
two optima are both infeasible: in this case, the optimal solution must lie on the plane hi(xi) = 0,
and a constrained problem has to be solved (case iii)).

Remark 3. It is impossible that both solutions i) and ii) are feasible, otherwise the convex function (6.23)
would have two minima, which is an absurd due to its convexity.

The solutions for each of the cases of Proposition 2 are now given in the following result.

Proposition 3. Consider the three cases of Proposition 2. Their closed form optimal solutions are expressed
as

i) x+
i = bi − 1

2 Q−1
i AT

i i

ii) x+
i = bi − 1

2 Q−1
i (AT

i i + qi)

iii) x+
i = bi − 1

2 Q−1
i

AT
i i + qT

i
2Qi

(
bi−

P̂Hi
∥qi∥2

qi

)
−AT

i i

∥qi∥2 qi



Proof. The proof is straightforward for cases i) and ii): it is sufficient to set the gradient of the
function to zero. In the third case, it is necessary to solve the constrained minimization of u(xi)

subject to h(xi) = 0. The Lagrange multipliers method can be used, where the Lagrangian of
case iii) is L′(xi, ηi) = u(xi) + ηi h(xi), and its primal solution is

inf
xi

sup
ηi
∥xi − bi∥2Qi +

T
iAixi + ηi

(
qT
ixi − P̂Hi

)
. (6.32)
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The partial derivatives with respect to xi, and ηi are

∂L′(xi, ηi)
∂xi

= 2Qi (xi − bi) + AT
i i + ηi qi, (6.33)

∂L′(xi, ηi)
∂ηi

= qT
ixi − P̂Hi . (6.34)

Setting them to zero, we obtain

xi = bi −
1
2
[Q−1

i
(AT

i i + ηi qi
)]

=
P̂Hi
∥qi∥2

qi, (6.35)

from which it is possible to derive the optimal value for the Lagrange multiplier

η∗i =

qT
i

[
2Qi

(
bi − P̂Hi

∥qi∥2qi

)
− AT

i i

]
∥qi∥2

. (6.36)

Now, plugging (6.36) into (6.35) returns the optimal value x+
i of case iii).

Remark 4. For quadratic programs it is also possible to find a condition on the step size α for which the
algorithm is ensured to converge. This only depends on the constraint matrices A1 and A2, and on the
quadratic cost matrix Q defining the curvature. Since these values do not change among the three different
primal optimization cases, a common condition can be obtained, i.e.,

α ≤ 2∥∥∥∥∥
[
A1
A2

]
Q−1

[
A1
A2

]T∥∥∥∥∥
. (6.37)

Proof. This result can be derived using proposition 2.3.2 of bertsekas1999nonlinear.

6.6.3 Step 2b: rounding to a feasible discrete solution
In this section, we show how to compute the actual discrete allocation of jobs by obtaining new
variables ori , which are the rounded versions of the oi that were previously computed through con-
sensus (see Section 6.6.2). In particular, oi contains the optimal continuous amount of workload
that each MEHwould like to send to its neighbors. Instead, its rounded version ori contains a fea-
sible allocation accounting for the facts that the number of jobs and the possible ways of allocating
them are discrete.

To compute the new ori , as an initial solution, we select the jobs from set K̂ij, whose associated
vehicle is about to migrate from eNB site i to j. The rounded ori is thus initially set to w̄i, assuming
that the minimizer of the objective function (6.18) is the vector that minimizes the quadratic term.
Then, the difference between this guess and the actual optimum obtained from the proposed dual
ascent algorithm is computed, odiffi . For every neighbor j it is now clear whether more workload
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is to be added to (in case odiffij < 0) or removed from (odiffij > 0) the initial guess orij. The jobs that
were initially scheduled for migration to node j but that are eventually retained for computation
at node i are those minimizing ∥odiffi ∥1 . Instead, new jobs are added to the migration list using
the prediction vectors pij. In detail, the added jobs are those for which the handover probabilities
towards j are maximized. A threshold εP is used to approximate the rounded solution, as the
continuous optimum oi will likely not coincide with any possible discrete approximation. The
procedure is detailed in Algorithm 6.3.

Algorithm 6.3 Job-neighbor association
Input: mobility pattern predictions matrix Pi; optimal outgoing workload amount oi; set of the
jobs Ji in execution at MEH i; tolerance threshold εP.
Output: job-neighbor association sets Zij ∀ j ∈ Ni; rounded ori .
remove jobs {k | Ii,k < ε ∨Di,k < 2} from Ji
ori ← w̄i
Zij ← K̂ij
Ji ← Ji \

⋃
j∈Ni
K̂ij

odiffi ← ori − oi {workload to be adjusted}
for all neighbors j in Ni
while odiffij > εP
k← job of Zij minimizing

∣∣∣ odiffij

∣∣∣
remove job k from Zij
orij ← orij − Ii,k/Di,k
odiffij ← odiffij − Ii,k/Di,k
add job k to Ji {make it available for other neighbors}

end while
while odiffij < −εP
take job k ∈ Ji | k ∈ argmaxpij {most probable job from i to j}
add job k to Zij
orij ← orij + Ii,k/Di,k
odiffij ← odiffij + Ii,k/Di,k
mask entry pij,k {s.t. k is not selected again}

end while
end for

6.6.4 Handling pathological cases
Since system constraints are made soft to avoid primal infeasibility, three pathological cases may
occur, namely, 1) the optimal processed workload at the current instant exceeds the computa-
tional capacity; or 2) the data size for the currently running jobs do not fit the RAM memory;
or 3) the deadline expires during the current slot, but the residual intensity is greater than zero.
A greedy algorithm is developed to handle all of them. For the first two cases, the MEH ranks
the active jobs through a double ordering criterion, considering as the first ranking criterion the
time slot when they expire, and as the second their intensity (or data size). Next, it momentar-

112



ily pauses the execution of the services starting from the last one in the ordered list, until the
resources suffice to proceed. In case 1, when pausing a job m, the amount of processed workload
becomes∑k∈Ki

wi,k − wi,m, while in case 2, the data relative to suspended jobs is deleted from the
RAM. The number of suspended jobs is the minimum such that the requirements are satisfied.
Moreover, in case 1, it is likely that, when a job is suspended, additional computational power
becomes available. In such a case, the new computational resources are assigned to the jobs that
are closest to their deadline. Case 3 is managed considering the amount of residual intensity Ii,k.
If Ii,k is smaller than a threshold ε, then the deadline is extended by a small amount, so that the
controller will privilege the execution of the corresponding job in the next slot. In this way, jobs
are allowed to finish with a little additional delay (within one slot). If, however, the amount of
residual intensity is larger than ε, the job is dropped, i.e., in this case the scheduling algorithm
failed to provide an acceptable solution.

6.7 Numerical results
The proposed job scheduling algorithm is assessed in an emulated environment featuring 5G en-
abled vehicles moving within an urban scenario. Mobility traces are obtained with SUMO [29],
an open-source traffic simulator that allows generating the movement of mobile users around a
predefined city road map. Specifically, we use the “TAPAS Cologne” scenario, which mimics the
vehicular traffic within the city of Cologne for a whole day on the basis of travelling habits of the
city dwellers [121]. The mobile network is composed of 8 eNBs endowed with MEH functional-
ities, wired connected through optical links. The mobility area is covered with hexagonal cells
with an eNB in the center, and with an inter-distance among nodes of 400 m. We generated and
collected 24h long SUMO mobility traces with 25 ms granularity, for each of the 8 eNBs in the
deployment. The first 15 hours were used to train and validate the mobility prediction algorithm,
which is taken from [140], whereas the remaining ones to assess the performance of EASE. For
the evaluation, we considered vehicles approaching the edge of the serving eNB coverage area,
i.e., that are about to hand over to a new eNB/MEH. With the considered setup, this occurs, on
average, when a user is less than 40 meters apart from the radio cell’s border. The energy con-
sumption of the MEHs is computed based on the SPECpower benchmark [156]. We selected two
different edge computing platforms, namely, an HP ProLiant DL 110 Gen 10 Plus and a Nettrix
R620 G40, obtaining two clusters of edge servers with different energy consumption, processing
speed and memory, see Table 6.2. In Table 6.3, we report the jobs intensities, deadlines, data sizes,
and generation probabilities, according to the system model of Section 6.4.2. The other system
parameters are listed in Table 6.4.

In the following analysis, we compare our solution against two heuristic strategies: the first,
termed “keep” never migrates jobs, which are always and entirely computed by the MEH that
received the job processing request in the first place, i.e., the one co-located with the serving eNB
at the time when the request was issued. The second heuristic, dubbed “migrate”, whenever a
vehicle gets close to the border of its serving eNB, always migrates the associated job to the most
probable next eNB/MEH among the eNB neighbors.
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HP ProLiant DL 110 Nettrix R620 G40
idle power Pidlei 94 W 110 W
max load power Pmax

i 299 W 468 W
computational power Fi 3.3 Gflops 7.6 Gflops
RAMmemoryMi 64 GB 256 GB

Table 6.2: Servers specifications [156].

Iℓ [Gflop] Dℓ [s] Sℓ [GB] pℓ
type 1 10 20 2 0.4
type 2 16 30 10 0.2
type 3 12 40 0.1 0.4

Table 6.3: Jobs parameters for the simulations.

Parameter Value
number of nodes |N | 8
fixed wireless circuit power consumption PRAN 50.2 W
fixed wired circuit power consumption Pwired 20 W
energy per transmitted bit via wireless link ERANb 1 nJ/bit
energy per transmitted bit via wired link Ewired

b 250 pJ/bit
PV panel minimum power PPVmin 250 W
PV panel maximum power PPVmax 400 W
PV panel average power PPV 370 W
PV panel power std σPV 10 W
containers’ size L 50 MB
weight parameters for L in (6.6) σs, σd 500 nJ/bit
fixed container migration energy expenditure Es, Ed 250 mJ
delay associated with wired transmissions Tmigr

k 2 s
window size to predict incoming trafficW 5 minutes
scheduler time slot τ 3 s
MPC horizon T {2, 5, 20}
job generation probability p 0.25
weight of the soft constraint penalty ci of (6.15) 500
weight of the soft constraint penalty ĉi of (6.21) 10
state cost γ for Eq. (6.14) 100
weight of the quadratic term of (6.21) ρ 2.5

Table 6.4: Summary of simulation parameters.

6.7.1 Edge energy consumption
The edge energy consumption is evaluated through the processing and migration power, aver-
aged across the MEHs. In Fig. 6.3a, the processing power is shown as a function of the job gener-
ation probability p. For all the strategies, a concave increase of processing power is observed for
an increasing p. The two heuristic policies perform very similarly, draining between 40 to 200 W
of power. On the other hand, EASE allows substantial savings, e.g., as much as 80 W at p = 0.5 (a
gain of 40%). Although two types of servers are used in the simulation, no significant difference
is observed regarding the energy consumption induced by the different strategies: the myopic
heuristics consume more for both server types. The average power used to migrate the jobs is
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Figure 6.3: Average processing (left) and migration (right) power dissipation of the edge servers.

shown in Fig. 6.3b. Since the “keep” strategy never migrates tasks, its job migration power is al-
ways zero. On the other hand, the strategy with the highest migration power is “migrate”, while
the optimized strategies perform in between. Concerning EASE, both processing and migration
power depend slightly on the length T of the prediction horizon. A short prediction window, i.e.,
T = 2, has a higher energy consumption due to an imprecise estimation of future resources. The
settings T = 5 and T = 20 lead to the same processing power performance, whereas T = 20 uses
more migration power (see for, e.g., p = 0.2). This reflects the fact that with T = 20 the algorithm
better captures the future system evolution, thus migrating the jobs to the next serving eNB at a
slightly higher rate.

6.7.2 Energy and job efficiency
To assess the performance of the scheduling approaches, three metrics are used, namely, i) the
energy efficiency, defined as η = Eh/Etot, i.e., the fraction of harvested (green) energy used over
the total energy drained (green plus grid energy), ii) the fraction of executed and finished jobs,
and iii) the fraction of jobs finishing in theMEH that is co-locatedwith the eNB serving the vehicle.
In Fig. 6.4a, the energy efficiency η is shown as a function of the job generation probability. All
the strategies show an almost linear decrease for increasing p. However, the absolute slope of
such decrease is larger for “keep” and “migrate” with respect to EASE. At p = 0.5, EASE allows
gaining about 7% in efficiency: the harvested energy can fully support the edge network for at
least 97% of the total energy requirement. At the same time, EASE almost never discards jobs,
while for, e.g., p ≥ 0.3, the “migrate” and “keep” strategies respectively drop 0.5% and 1.5%
of the tasks. The fraction of jobs finishing in the MEH co-located with the eNB providing the
connectivity to the vehicle remains nearly constant with respect to p. The “migrate” strategy
serves around 75% of the jobs in the same eNB/MEH where the vehicle is, while with EASE
this only occurs in about 30% of the cases. This depends on the primary goal of the proposed
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Figure 6.4: Energy efficiency with respect to the job generation probability (left) and the power generated
by the PV cells (right).

scheduling pipeline, which corresponds to reducing the carbon footprint of the edge network.
As a second-order optimization criterion, and only if feasible, EASEmigrates jobs to the next user
location (eNB). EASE with T = 20 achieves a gain over T = 5 of about 2% on this last aspect,
while T = 2 performs the best, being, however, the least energy efficient. The energy efficiency is
also evaluated varying the amount of harvested energy (Fig. 6.4b), with the PV panel generating
power in [PPVmin,PPVmax]W. EASE can entirely sustain the edge at least at 87.5% of the time when the
harvested energy is at its minimum, i.e., PPV = 250W, leading to a gain of 10%with respect to the
other strategies, resulting in a significantly reduced carbon footprint. At PPV = 400 W the gain
is lower, but EASE performs very close to complete carbon neutrality (≈ 99% of efficiency). Note
that 400W are just sufficient to self-sustain (on average) the less powerful HP ProLiant server, but
not the Nettrix computing unit at full load.

As a final consideration, from Fig. 6.4 the largest gain is achieved when either the computing
demand is high (large p) or the harvested energy is scarce. These are the caseswhere it is important
to use the available resources wisely, and EASE succeeds to do so.

6.7.3 Convergence of the dual ascent
In Fig. 6.5, the convergence speed of the proposed decentralized solution is evaluated. Specif-
ically, the cost value reached at the current iteration is compared with the optimal solution ob-
tainedwithCVXPYdiamond2016cvxpy, considering the absolute value of their ratio |Γ(x+)/Γ(x∗)|.
In the plot, the 90th percentile is shown, discarding hence 10% of outliers. Thus, whenever the
ratio settles down to approximately 1, the nodes have reached the global minimum of the cost
function. The results show that the power availability impacts the convergence speed: the more
harvested energy PPV is available, the quicker the algorithm reaches theminimum. This descends
from the fact that a high energy availability leads to a rare activation of the max term in func-
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tion (6.18). When the max term returns 0 and the constraint (6.19) is not active, the optimum is
simply given by oi = w̄i, i.e., the selected action is to follow the vehicle movements. The nodes
will be very fast in retrieving this particular solution, as the Lagrange multipliers associated with
all the constraints remain null after the first two iterations, leading to accept the solution. A simi-
lar reasoning holds for the job generation probability that determines the load of the servers. Here,
in the interest of space, we omit the associated plot as it is very similar to Fig. 6.5. Specifically,
the convergence requires more iterations as p increases. In fact, an increase in the average load
experienced by the servers activates the constraint (6.19), modifying the optimal solution or even
activating the penalties δ̂i. As it is known, the dual ascent is slow when being close to constraint
boundaries. However, as a general result, the number of iterations required to converge even
with complex initializations is between 200 and 500. The communication overhead can be eval-
uated considering that two communication rounds (of few bytes) are required per iteration (see
Algorithm 6.2). Although this may actually appear to be a high number of exchanged messages,
we remark that: i) the subsequent step of the proposed pipeline rounds the solution, and, in turn,
it is not necessary to retrieve the exact optimum, but it is sufficient to obtain a decent cost value in
the continuous domain; ii) we considered slots of τ = 3 s, which is the amount of time available
to make a migration decision. Longer time slots can be used, leaving more time to the decision
process.

6.7.4 Rounding algorithm performance
To test the performance of the rounding Algorithm 6.3, the cost function (6.20) is evaluated with
the obtained rounded solution or = {ori | i ∈ N}. The comparison is performed with the solution
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given by each server i simply following the desired w̄i, i.e., the solution corresponding to the
“migrate” strategy. Specifically, the ratio between the cost values of the “migrate” strategy and
the rounded solution is computed, considering the cases where it is energetically inefficient to
follow the desired migrations. Indeed, in the other case oi = ori = w̄i, for all servers, i.e., w̄i is the
optimal solution and it is a feasible one in the discrete domain, thus the costs are equal. As an
example, with prediction horizon T = 5, job generation probability p = 0.3, and PPV = 300 W, the
gain of using the proposed relax and round optimization procedure of EASE over the “migrate”
strategy is on average 10 folds. More in the detail, the gain has a median of 3.8, the 10th percentile
is 1.3, meaning that rarely a gain lower than 30% is observed, and the 90th percentile is 17. Hence,
often, the rounding step of EASE induces a high gain over the blind “migrate” strategy from an
energy perspective.

6.8 Concluding remarks
In this chapter, we proposed EASE, a novel strategy for online job scheduling in a MEC-enabled
network co-powered by the grid and renewable energy resources, considering an IoV scenario.
EASE tackles the problem of ensuring computing service continuity as the users move within the
resources-constrained network area. It allows deciding whether to migrate the jobs following the
UE, or to continue the execution on theMEC server where it started. This is achieved through the
alternation of a local control optimization phase, to estimate future resources, and a distributed
consensus step, to reach the migration agreement. The primary objective is the minimization of
the carbon footprint at the network side, guaranteeing adequate QoS to the moving users. Using
EASE leads to energy efficiency improvements of up to 10% over heuristic strategies, getting close
to carbon neutrality in a wide range of contexts.
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7
Concluding remarks

Future wireless networks are expected to combine communication, computing and sensing services.
The result of their joint implementation is two-fold. At first, the utilization of wireless transmis-
sions as a source of opportunity for environmental sensingwill provide the users withmonitoring
solutions at no additional costs. On the other hand, the integration of environmental information
into the network management processes will allow reducing the energy consumption – while
guaranteeing adequate quality of experience (QoE) to the users – through a better exploitation
of the available resources. The high potential of this integration motivated several studies that
brought to the development of advanced algorithms enabling both communication-assisted sensing
and sensing-assisted communication services. Moreover, the new opportunities attracted the atten-
tion of the standardization entities – IEEE for Wi-Fi networks and 3GPP for cellular networks –
that envision the release of new standards providing support for joint communication and sensing
applications. However, several challenges are still open for solutions and require further inves-
tigation by the scientific community. With this thesis, we made our contribution by designing
novel algorithms that go in the direction of enabling such paradigm change in future indoor and
outdoor wireless networks.

In Part I we focused on communication-assisted sensing applications. We targeted indoor spaces
where Wi-Fi communications are ongoing and we used Wi-Fi signals as a bridge to gain infor-
mation about the propagation environment. Specifically, we exploited the channel frequency
response (CFR) that is continuously estimated at each Wi-Fi receiver to compensate channel im-
pairments and properly decode the received data. We proposed two algorithms with different
sensing targets. The former relies on CFR variations to detect the presence of a person inside the
monitored area and recognize the movements she/he is performing. The objective of the latter al-
gorithm is instead the identification of the Wi-Fi devices that are transmitting data in range, thus
enabling spectrum access monitoring applications.

The sensing-assisted communication aspect was tackled in Part II of the thesis. Specifically, we fo-
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cused on urban scenarios where cellular networks provide connectivity and computing support
to fifth generation (5G) enabled vehicles. We devised two algorithms that use the side informa-
tion about the vehicles’ movements to efficiently allocate computing resources. The algorithms
leverage a learning based prediction tool that we designed to track vehicles’ mobility in an urban
constrained scenario. The proposed resource allocation algorithms are beneficial to both mobile
network operators and users in terms of energy saving, better resource usage and increased QoE.

To summarize, we discussed through practical use cases the benefits that wireless communica-
tions and sensing applications grant to each other. This paves the way for their joint integration and
exploitation in future environment aware networks.

7.1 Future research directions
Despite recent advancements, there are many open issues to be solved to effectively implement
joint communication and sensing systems. First, the two functions have different requirements
in terms of physical channel access. Specifically, the communication functionality requires spec-
trum resources only when transmitting/receiving data, while sensing can be performed accu-
rately only by providing the device with regular access to the wireless channel, i.e., by sounding
the channel at regular time intervals. This requires improving the channel access schemes con-
sidering the service – connectivity or sensing – specific needs. Second, the increasing number
of wirelessly connected devices operating on the licensed and unlicensed portions of the radio
spectrum – while implementing different standards – demands for sensing algorithms that are
robust to interference from other transmitting sources. Advanced spectrum access policies based
on radio fingerprinting of the transmitting devices will be of paramount importance to guarantee
fair access to the radio resources. Third, existing studies do not consider the joint exploitation of
different portions of the radio spectrum – low and high frequency bands – for sensing and com-
munication. In particular, the integration of sensing data at different frequencies is expected to
lead to an increased sensing performance, while the functional splitting of communication and
sensing on the two portions of the spectrum in an environment-aware manner will allow exploit-
ing the available resources efficiently, avoiding unwanted interferences.

One never notices what has been done.
One can only see what remains to be done.

Marie Skłodowska Curie
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Errata Corrige

Chapter 2.2.3, page 18.
[Qian2017_2] refers to publication [K. Qian, C. Wu, Z. Yang, Y. Liu, and K. Jamieson,
“Widar: Decimeter-level passive tracking via velocity monitoring with commodity Wi-Fi,”
in Proceedings of the 18th ACM International Symposium on Mobile Ad Hoc Networking
and Computing, Chennai, India, 2017.]

Chapter 6.2, page 97.
[perin2021towards] refers to publication [G. Perin, M. Berno, T. Erseghe, and M. Rossi,
“Towards sustainable edge computing through renewable energy resources and online, dis-
tributed and predictive scheduling,” IEEE Transactions on Network and Service Manage-
ment, 2021, (early access).]

Chapter 6.6.2, page 107.
[bertsekas1999nonlinear] refers to publication [D. P. Bertsekas, Nonlinear Programming,
2nd ed. Athena Scientific, 1999.]

Chapter 6.7.3, page 116.
[diamond2016cvxpy] refers to publication [S. Diamond and S. Boyd, “CVXPY: A Python-
embedded modeling language for convex optimization,” Journal of Machine Learning Re-
search, vol. 17, no. 83, pp. 1–5, 2016.]
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