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Abstract

Let G be a simple algebraic group over an algebraically closed field k of characteristic
zero and O be a spherical conjugacy class of G. We determine the decomposition of the
coordinate ring k[O] of O into simple G-modules.

1 Introduction

In [9] we proved the De Concini-Kac-Procesi conjecture on the quantized enveloping algebra
Uε(g) (introduced in [14]) for simple Uε(g)-modules over spherical conjugacy classes of G (we
recall that a conjugacy classO inG is called spherical if a Borel subgroup ofG has a dense orbit in
O): our main tool was the representation theory of the quantized Borel subalgebra Bε introduced
in [15].

To fix the notation, G is a complex simple simply-connected algebraic group, g its Lie alge-
bra, B a Borel subgroup of G, T a maximal torus of B, B− the Borel subgroup opposite to B,
{α1, . . . , αn} the set of simple roots with respect to the choice of (T,B). Let W be the Weyl
group of G and let us denote by si the reflection corresponding to the simple root αi: `(w) is the
length of the element w ∈ W and rk(1− w) is the rank of 1− w in the geometric representation
of W .

The representation theory of Uε(g) is related to the stratification of G given by conjugacy
classes, while the representation theory of Bε is related to the stratification {Xw | w ∈ W} of
B−, where Xw = B− ∩ BwB for every w ∈ W (each Xw is an affine variety of dimension
n + `(w)). We proved that for every spherical conjugacy class O in G, there exists w ∈ W such
that O ∩ Xw 6= ∅ and `(w) + rk(1 − w) = dimO: this then allows to prove the De Concini-
Kac-Procesi conjecture for simple Uε(g)-modules over elements in O. In fact we proved also a
result in the opposite direction, giving therefore a characterization of spherical conjugacy classes
in terms of the Weyl group ([9], Theorem 25):

letO be a conjugacy class ofG andw = w(O) be the unique element inW such thatO∩BwB
is dense in O. Then O is spherical if and only if dimO = `(w) + rk(1− w).
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Moreover w is always an involution (see [9], Remark 4, [10], Theorem 2.7). From this result
we conjectured that, for a spherical O, the decomposition of the ring C[O] of regular functions on
O (to which we refer as to the coordinate ring of O) as a G-module should be strictly related to
w(O). This is the motivation for the present paper.

We recall that C[O] is multiplicity-free, so that in order to obtain the decomposition of C[O]
into simple components one has just to determine which simple modules occur in C[O]:

C[O] ∼=
G

⊕
λ∈λ(O)

V (λ)

where for each dominant weight λ, V (λ) is the simpleG-module of highest weight λ (if λ ∈ λ(O)
we say that λ occurs in C[O]).

The decomposition of the coordinate ring C[X] for G-varieties X has been investigated by
various authors. If λ is a non-zero highest weight, and v ∈ V (λ) is a non-zero highest weight
vector, then C[G.v] is isomorphic to ⊕

n≥0
V (nλ)∗ ([44], Theorem 2). In particular this determines

C[O] for the minimal unipotent orbit of G. For a unipotent class in G (equivalently nilpotent
orbit in g) McGovern ([30], Theorem 3.1) decribes C[O] in terms of induced building blocks
from a certain Levi subgroup of G (via sheaf cohomology on G/Q, Q a parabolic subgroup of G
associated to O): it is then possible to obtain multiplicities of simple G-modules in C[O] as an
alternating sum of certain partition functions. In the same paper the author gives a formula for
C[Ô], where Ô is the simply-connected cover of O ([30], Theorem 4.1). Then in [31] there are
tables for the sets of simple modules in C[Ô] for spherical unipotent classes in the classical groups
(and conjecturally in the exceptional groups). For type F4 the monoid λ(O) has been described in
[7] for all spherical unipotent classes. For the maximal spherical unipotent class O in E8, it has
been shown in [2], Theorem 1.1, that every simple G-module occurs in C[O] (so thatO is a model
orbit). In [36], Panyushev gives tables for the sets of simple modules for (spherical) nilpotent orbits
of height 2 (and conjecturally for height 3). In [28] the author describes explicitly the structure of
principal model homogeneous spaces. For semisimple spherical classes, the description of λ(O)
may be deduced from the tables in [26]. See also [45], Théorème 3, where symmetric varieties are
considered.

The main result of this paper is the following:

Theorem. Assume O is a spherical conjugacy class in G, and let w = w(O). Then a dominant
weight λ occurs in C[O] if and only if w(λ) = −λ and λ(SO) = 1.

Here SO is a certain (finite) elementary abelian 2-subgroup of T which we determine for
every spherical conjugacy class, describing therefore explicitly λ(O): see tables 1, . . . , 26. In
particular we completely solve the problem of determining the simple modules occurring in C[O]
for unipotent classes ([22], 8.13, Remark 2), and obtain the decomposition of C[O] for conjugacy
classes of mixed elements.
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Our proof is based on the deformation result obtained by Brion in [4]. We have C[O] =
C[G/H] = C[G]H , where H is the centralizer of an element of O in G. There exists a flat
deformation of G/H to a quotient G/H0, where H0 contains the unipotent radical U− of B−. We
determine the decomposition of C[G/H0] into simple components (i.e. we determine λ(G/H0)),
relating the group H0 with H via the theory of elementary embeddings ([29], [5]). We then prove
the crucial fact that λ(O) is saturated ([34], §1.3), so that C[G/H] = C[G/H0] as G-modules.
We also determine the decomposition of the coordinate ring C[Ô] for the simply-connected cover
Ô of O, and of C[O].

The paper is structured as follows. In Section 2 we introduce the notation. In Section 3 we
recall some basic facts about spherical varieties and we prove the main theorem. In Section 4 we
determine the group SO for the spherical conjugacy classes in the various groups, determining
therefore the monoid λ(O), and also λ(Ô). In Section 5 we consider the coordinate ring C[O]
of the closure of O. It is well known that C[O] = C[O] if and only if O is normal: we list all
cases in which the spherical conjugacy class O has normal closure and we determine λ(O) for
the classes with non-normal closure. In section 6 we consider the case when G in not necessarily
simply-connected.

All the results and proofs of this article remain valid forG a simple simply-connected algebraic
group over an algebraically closed field k of characteristic zero.

Acknowledgements. It is a pleasure to thank P. Bravi and M. Brion for helpful discussions and
suggestions.

2 Preliminaries

We denote by C the complex numbers, by R the reals, by Z the integers and by N the natural
numbers.

Let A = (aij) be a finite indecomposable Cartan matrix of rank n. To A there is associated a
root system Φ, a simple Lie algebra g and a simple simply-connected algebraic group G over C.
We fix a maximal torus T of G, and a Borel subgroup B containing T : B− is the Borel subgroup
opposite to B, U (respectively U−) is the unipotent radical of B (respectively of B−). If χ is a
character of T , we still denote by χ the character of B which extends χ. We denote by h the Lie
algebra of T . Then Φ is the set of roots relative to T , and B determines the set of positive roots
Φ+, and the simple roots ∆ = {α1, . . . , αn}. We fix a total ordering on Φ+ compatible with the
height function. We shall use the numbering and the description of the simple roots in terms of
the canonical basis (e1, . . . , ek) of an appropriate Rk as in [3], Planches I-IX. For the exceptional
groups, we shall write β = (m1, . . . ,mn) for β = m1α1 + . . .+mnαn.

If γ is a character of T , we shall also denote by γ the corresponding linear form (dγ)1 on h.
The real subspace of h∗ spanned by the roots is a Euclidean space E, endowed with the scalar
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product (αi, αj) = diaij . Here {d1, . . . , dn} are relatively prime positive integers such that if D
is the diagonal matrix with entries d1, . . . , dn, then DA is symmetric. P is the weight lattice, P+

the monoid of dominant weights and W the Weyl group; si is the simple reflection associated to
αi, {ω1, . . . , ωn} are the fundamental weights, w0 is the longest element of W . In the expression
λ =

∑
i kiniωi we always assume ki’s and ni’s in N. If V is a G-module, v ∈ V , f ∈ V ∗, then

the matrix coefficient cf,v : G → C is defined by cf,v(g) = f(g.v) for g ∈ G. We consider the
action of G×G on C[G]

((g, g1).f)(c) = f(g−1cg1)

for c, g, g1 ∈ G, f ∈ C[G]. The algebraic version of the Peter-Weyl theorem gives the decompo-
sition

(2.1) C[G] =
⊕
λ∈P+

V (−w0λ)∗ ⊗ V (−w0λ)

We put Π = {1, . . . , n} and we fix a Chevalley basis {hi, i ∈ Π; eα, α ∈ Φ} of g. We shall denote
by ω̌i, for i = 1, . . . , n, the elements in h defined by αj(ω̌i) = δij (recall that ωj(hi) = δij) for
j = 1, . . . , n. As usual we put 〈x, y〉 = 2(x,y)

(y,y) .
We use the notation xα(k), hα(z), for α ∈ Φ, k ∈ C, z ∈ C∗ as in [43], [11]. For α ∈ Φ we

put Xα = {xα(k) | k ∈ C}, the root-subgroup corresponding to α, and Hα = {hα(z) | z ∈ C∗}.
For h ∈ h we put Hh = exp Ch. We identify W with N/T , where N is the normalizer of T :
given an element w ∈ W we shall denote a representative of w in N by ẇ. We choose the xα’s
so that, for all α ∈ Φ, nα = xα(1)x−α(−1)xα(1) lies in N and has image the reflection sα in W .
Then

(2.2) xα(ξ)x−α(−ξ−1)xα(ξ) = hα(ξ)nα , n2
α = hα(−1)

for every ξ ∈ C∗, α ∈ Φ ([41], Proposition 11.2.1).
We put Tw = {t ∈ T | wtw−1 = t}, T2 = {t ∈ T | t2 = 1}. In particular Tw = T2 if

w = w0 = −1.
For algebraic groups we use the notation in [19], [12]. In particular, for J ⊆ Π, ∆J = {αj |

j ∈ J}, ΦJ is the corresponding root system, WJ the Weyl group, PJ the standard parabolic
subgroup of G, LJ = T 〈Xα | α ∈ ΦJ〉 the standard Levi subgroup of PJ . For z ∈ W we put
Uz = U ∩ z−1U−z. Then the unipotent radical RuPJ of PJ is Uw0wJ

, where wJ is the longest
element of WJ . Moreover U ∩ LJ = Uw

J
is a maximal unipotent subgroup of LJ .

If Ψ is a subsystem of type Xr of Φ and H is the subgroup generated by Xα, α ∈ Ψ, we say
that H is a Xr-subgroup of G.

If X is an algebraic variety, we denote by C[X] the ring of regular functions on X . If X is
a multiplicity-free G-variety, then we denote by λ(X) the set of dominant weights occurring in
C[X], i.e. λ ∈ P+ such that C[X] contains (a copy of) V (λ). If x ∈ X we denote by G.x
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the G-orbit of x and by Gx the isotropy subgroup of x in G. If the homogeneous space G/H is
spherical, we say that H is a spherical subgroup of G.

If x is an element of a group K and H ≤ K, we shall also denote by C(x) the centralizer of
x in K, and by CH(x) the centralizer of x in H . If x, y ∈ K, then x ∼ y means that x, y are
conjugate in K. For unipotent classes in exceptional groups we use the notation in [12]. We use
the description of centralizers of involutions as in [21].

3 The main theorem

Let O be a spherical conjugacy class. Our aim is to determine λ(O). For this purpose if H is the
centralizer of an element in O, we have C[O] = C[G/H] = C[G]H and, from (2.1),

C[G]H =
⊕

λ∈λ(O)

V (−w0λ)∗ ⊗ uλ

where 0 6= uλ ∈ V (−w0λ)H ([37], Theorem 3.12). We start by considering in general a spherical
homogeneous space G/H . Without loss of generality we may assume BH dense in G. By [4],
Theorem 1, there exists a (flat) deformation of G/H to a homogeneuos (spherical) space G/H0,
where H0 contains a maximal unipotent subgroup of G (such an homogeneous space is called
horospherical, and H0 a horospherical contraction of H). An elementary embedding of G/H is
a pair (X,x) where X is a normal algebraic G-variety, x ∈ X is such that G.x is dense in X ,
Gx = H and X \G.x is a G-orbit of codimension 1 ([6], 2.2). In [4] Brion constructs a G× C∗-
variety and a flat G × C∗-morphism p : Z → C (where G acts trivially on C and C∗ acts via
homotheties) such that p−1(C∗) ∼= G/H ×C∗ and p−1(0) ∼= G/H0 ([4], Theoreme 1, [6] §3.11).
One may consider Z as an elementary embedding (Z, z) of (G×C∗)/(H × 1), with closed orbit
(G×C∗)/(H0×C∗); H×1 is the isotropy subgroup of z, H0×C∗ is the isotropy subgroup of an
element in the closed orbit ([6], proof of Corollaire 3.7). Let P = PJ be the parabolic subgroup
associated to H , P = {g ∈ G | gBH = BH}, and let L be a Levi subgroup (which we may
assume equal to LJ , by taking an appropriate conjugate of H instead of H) of P adapted to H
([6], 2.9): in particular

(3.3) P ∩H = L ∩H , L′ ≤ H

Then P × C∗ is the parabolic subgroup of G × C∗ associated to H × 1 and L × C∗ is a Levi
subgroup adapted to H × 1 ([6], Corollaire 3.7 and its proof).

By [6], Proposition 3.10, i), we have H0 ×C∗ = (RuQ× 1)(L×C∗ ∩H0 ×C∗) where Q is
the opposite parabolic subgroup of P with respect to L, so that

(3.4) H0 = (RuQ)(L ∩H0)
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We show that L ∩H = L ∩H0. Let L = CL′, where C is the connected component of the
centre of L. Then L′ is contained also in H0, by [6], Théorème 3.6.

By [6], Proposition 3.4, Z contains an open P × C∗-stable subset isomorphic to RuP ×W
where W is L× C∗-stable and meets the closed orbit, and (W, z) is an elementary embedding of
the torus (C×C∗)/(C∩H×1) ([5], proof of Lemme 4.2). Then f = p|W : W → C is a (C×C∗)-
equivariant flat morphism such that f−1(C∗) ∼= C/C ∩H ×C∗ and f−1(0) ∼= C/H0 ∩C. So the
coordinate rings of these orbits are isomorphic C-modules and it follows that the isotropy groups
of all points of W are the same. In particular

(3.5) C ∩H = C ∩H0

With the above notation we prove

Theorem 3.1 Let H be a spherical subgroup of G such that BH is dense in G and L = LJ is a
Levi subgroup adapted to H . Then H0 = RuQ (L ∩H) = 〈U−, Uw

J
, C ∩H〉.

Proof. By (3.5) we have

L ∩H0 = L′C ∩H0 = L′(C ∩H0) = L′(C ∩H) = L′C ∩H = L ∩H

so that by (3.4) we conclude. �

Definition 3.2 We put λ̃(G/H) = λ(G/H0).

Note that λ(G/H) ≤ λ̃(G/H) since BH is dense in G, and more generally Zλ(G/H) ∩ P+ ≤
λ̃(G/H) ([34], part 2 of the proof of Proposition 1.5). Moreover

(3.6) λ(G/H0) = {λ ∈ P+ | λ(T ∩H) = 1}

since
∏
j∈J Hαj ≤ H and Xαj .v−λ = v−λ if (λ, αj) = 0 (here v−λ is a lowest weight vector

of weight −λ in V (−w0λ)). Also B ∩ H ≤ P ∩ H = L ∩ H , so that B ∩ H = Uw
J

(T ∩ H).
If λ ∈ λ̃(G/H), then Fλ : BH/H → C, b−1H 7→ λ(b) is a regular function on BH/H , and
therefore a B-eigenvector of weight λ in C(G/H). In case G/H is quasi affine (as for conjugacy
classes), then Zλ(G/H)∩P+ = λ̃(G/H) since C(G/H) = Frac C[G/H], as in [34], Proposition
1.5. I do not know if Zλ(G/H) ∩ P+ = λ̃(G/H) holds in general.

Lemma 3.3 Suppose F in Frac C[G/H] is a B-eigenvector of weight λ and mλ lies in λ(G/H)
for a positive integer m. Then F lies in C[G/H].

Proof. There exists aB-eigenvector F1 ∈ C[G/H] of weightmλ. Then Fm/F1 is invariant under
B (as its weight is 0). So Fm/F1 is constant, as G/H is spherical. In other words, Fm is regular



Decomposition of C[O] 7

on G/H . We conclude that F is in C[G/H], since C[G/H] is integrally closed ([16], Lemma
1.8). �

LetO be a spherical conjugacy class ofG. We recall that w = w(O) is the unique element (an
involution) of W such that BwB ∩O is (open) dense inO. Let v be the dense B-orbit inO. Then
BGy is dense in G for any y ∈ v. The parabolic subgroup P = PJ associated to Gy coincides
with {g ∈ G | g.v = v}. Moreover v = O ∩BwB ([9], Corollary 26), and it is affine, as an orbit
of a soluble algebraic group.

We have w = w0wJ , the subset J is invariant under ϑ, where ϑ is the symmetry of Π induced
by −w0, and w0 and wJ act in the same way on ΦJ (see [10] the discussion at the end of section
3, Corollary 4.2, Remark 4.3 and Proposition 4.15).

Since all Levi subgroups of P are conjugate under RuP , we may choose y ∈ v such that the
standard Levi subgroup LJ is adapted to Gy. For the rest of this section we fix such a y, and we
put H = Gy, P = PJ , L = LJ . By Theorem 3.1, we have

(3.7) H0 = 〈U−, Uw
J
, Cy〉 = 〈U−, Uw

J
, Ty〉

and λ̃(O) = λ(G/H0).
We shall now relate H with centralizers of elements in v∩wB. By the Bruhat decomposition,

y is of the form y = uẇb, where u ∈ RuP and b ∈ B. We put x1 = u−1yu = ẇbu. By
[10], Corollary 4.13, Uw

J
(Tw)◦ ≤ C(x1). Moreover, since L′ ≤ C(y), by [10], Lemma 3.4, and

commutation of y withX±αi for i ∈ J , we get L′ ≤ C(x1) (see also the proof of [10], Proposition
4.15).

Proposition 3.4 Let x be in O ∩ wB. Then Tx = Ty and T ∩H◦ = T ∩ C(x)◦.

Proof. We observe that CTUw(x) ≤ T by the Bruhat decomposition and CTUw(y) ≤ T , since L
is adapted to C(y). Now x1 = u−1yu = yu implies

Tx1 = CT (x1) = CTUw(x1) ≤ T ∩ T u = CT (u)
Ty = CT (y) = CTUw(y) ≤ T ∩ T u−1

= CT (u−1) = CT (u)

therefore if t ∈ Ty, then t = tu ∈ Tx1 and similarly if t ∈ Tx1 , then t = tu
−1 ∈ Ty. Hence

Ty = Tx1 , and T ∩ C(y)◦ = T ∩ C(x1)◦. To conclude note that O ∩ wB is the T -orbit of x1. �

Remark 3.5 In fact CL(x) = CL(y) for every x ∈ O ∩ wB, since L′ ≤ C(x).

Remark 3.6 In general it is not true that LJ is adapted toC(x) for x ∈ O∩wB. For example ifO
is the minimal unipotent class, and u is a non-identity element inX−β , where β is the highest root,
then C(u) ≥ U−, so that there is a unique Levi subgroup of P adapted to C(u) ([6], Proposition
3.9), and this is LJ . Since u 6∈ wB, there is no element x ∈ wB such that LJ is adapted to C(x).
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From Theorem 3.1 we get

Corollary 3.7 Let O be a spherical conjugacy class, w = w(O) and x any element in O ∩ wB.
Then H0 = 〈U−, Uw

J
, Tx〉, w = w0wJ . �

By Proposition 3.4, we may put TO = Tx, for x ∈ O ∩ wB. Then TO = Ty and (Tw)◦ ≤
TO ≤ Tw by [9], step 2 in the proof of Theorem 5.

We shall need the description of the monoid of weights λ such that w(λ) = −λ. In the next
lemma we consider more generally w of the form w = w0wJ , with J ϑ-invariant.

Lemma 3.8 Let J ⊆ Π be ϑ-invariant and w = w0wJ . The dominant weight λ satisfies w(λ) =
−λ if and only if λ =

∑
i∈Π\J niωi with nϑ(i) = ni for all i ∈ Π \ J . Moreover w(λ) = −λ

implies w0(λ) = −λ.

Proof. Let λ ∈ P+, λ =
∑
niωi, ni ∈ N. For i ∈ Π \ J we have wJ (ωi) = ωi, so that

w(ωi) = −ωϑ(i).
It is clear that if λ =

∑
i∈Π\J niωi with ni = nϑ(i) for every i ∈ Π \ J , then (w + 1)(λ) = 0.

On the other hand, assume w(λ) = −λ. Then wJ (λ) = −w0λ and, by [20], Theorem 1.12 (a), we
get −w0λ = λ and (λ, αj) = 0 for every j ∈ J . Hence nj = 0 for every j ∈ J . Moreover, from
λ =

∑
i∈Π\J niωi and −w0λ = λ it follows nϑ(i) = ni for all i ∈ Π \ J . �

Remark 3.9 If S is a ϑ-orbit in Π \ J , and we put ωS =
∑

i∈S ωi then we have seen that {ωS |
S ∈ (Π \ J)/ϑ} is a basis of the monoid {λ ∈ P+ | w(λ) = −λ}, where (Π \ J)/ϑ is the set
of ϑ-orbits in Π \ J . If we also assume that w acts trivially on ΦJ (as in the case of w = w(O)),
then {ωS | S ∈ (Π \ J)/ϑ} is a basis of ker(w + 1) in E, and so a basis of the free abelian group
{λ ∈ P | w(λ) = −λ}.

We describe λ̃(O). For this purpose we denote by SO any supplement of (Tw)◦ in TO (i.e.
SO(Tw)◦ = TO). We also put P+

w = {λ ∈ P+ | w(λ) = −λ}. By Lemma 3.8 each element of
P+
w satisfies−w0λ = λ, so that in particular any subset X of P+

w is symmetric, i.e. −w0(X) = X

([32], 4.2, [10], Theorem 4.17)).

Theorem 3.10 Let O be a spherical conjugacy class, w = w(O) and let SO be any supplement
of (Tw)◦ in TO. Then

λ̃(O) = {λ ∈ P+
w | λ(SO) = 1}

Proof. By (3.6), λ̃(O) = {λ ∈ P+ | λ(TO) = 1}. Since (Tw)◦ ≤ TO, a necessary condition
for λ ∈ P+ to be in λ̃(O) is that λ(t tw) = 1 for every t ∈ T , as (Tw)◦ = {t tw | t ∈ T}. This
condition is equivalent to (w + 1)λ = 0, so that λ̃(O) ≤ P+

w . Let λ ∈ P+
w : then λ ∈ λ̃(O) ⇐⇒

λ(SO) = 1. �
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We shall prove the crucial fact that λ̃(O) = λ(O), so that the monoid λ(O) is saturated (that
is Zλ(O) ∩ P+ = λ(O), [34], Definition 1.3). In the following, x is a fixed element in O ∩ wB
and ẇ a representative of w in N such that x = ẇu, u ∈ U . If u =

∏
α∈Φ+ xα(kα), and i ∈ Π,

we say that αi occurs in x if kαi 6= 0. This is independent of the chosen total ordering on Φ+.
For the closure O of O in G, the monoid λ(O) of dominant weights occurring in C[O] is a

submonoid of λ(O). We start with

Proposition 3.11 Let λ ∈ P+. Then (1− w)λ lies in λ(O).

Proof. Let f ∈ V (λ)∗−wλ, v ∈ V (λ)λ with f(ẇ.v) = 1. Then cf,v(t−1gt) = ct.f,t.v(g) =
((1− w)λ)(t)cf,v(g) for every t ∈ T , g ∈ G. For every z, z1 ∈ U we have

cf,v(z1xz) = f(z1ẇ uz.v) = f(z1ẇ .v) = f(ẇ .v) = 1

since z1ẇ .v = ẇ .v+ v1, where v1 is a sum of weight vectors of weights strictly greater than wλ.
Therefore for every t ∈ T , z ∈ U we have

(3.8) cf,v(t−1z−1xzt) = ((1− w)λ)(t)

Since B.x is dense in O, by (3.8) the restriction of cf,v to O is a (non-zero) B-eigenvector of
weight (1− w)λ in C[O]. Hence (1− w)λ ∈ λ(O). �

Corollary 3.12 Let λ ∈ P+
w . Then 2λ lies in λ(O). �

Corollary 3.13 Let λ ∈ P+. Then (1−w)λ ∈ λ(O). If moreover λ ∈ P+
w , then 2λ lies in λ(O).

Proof. This follows from the fact that λ(O) ≤ λ(O). �

We have shown that

(3.9) 2P+
w ≤ (1− w)P+ ≤ λ(O) ≤ λ(O) ≤ λ̃(O) ≤ P+

w

We can prove that λ(O) is saturated.

Theorem 3.14 Let O be a spherical conjugacy class. Then λ(O) is saturated.

Proof. Let λ ∈ λ̃(O). We put F (b−1xb) = λ(b) for b ∈ B. We observed that F is well-defined
since CB(x) = TxUw

J
and gives rise to a B-eigenvector of weight λ in C(O). Since O is quasi

affine, we conclude that λ lies in λ(O) by Theorem 3.10, Corollary 3.13 and Lemma 3.3. �

Theorem 3.14 in particular proves Conjecture 5.12 (and 5.10 and 5.11) in [36].

To deal with λ(O), in section 5 we shall make use of
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Proposition 3.15 Let λ ∈ P+, i ∈ Π \ J be such that αi occurs in x and (λ, αi) 6= 0. Then
(1− w)λ− αi ∈ λ(O).

Proof. Since 〈λ, αi〉 6= 0, λ − αi is a weight of V (λ). We construct two matrix coefficients. We
fix a non-zero v ∈ V (λ)λ−αi . By [43], Lemma 72, there exists a (unique) vλ ∈ V (λ)λ such that
xαi(k).v = v + kvλ for every k ∈ C. Then we choose f ∈ V (λ)∗−wλ such that f(ẇ.vλ) = 1.

Since αi occurs in x = ẇ u, we have u = xαi(r)u
′, with r ∈ C∗, u′ ∈

∏
β∈Φ+\{αi}Xβ . Let

y, y1 ∈ U , and let y = xαi(k)y′, y′ ∈
∏
β∈Φ+\{αi}Xβ , then

y−1
1 xy.v = y−1

1 ẇ.v + (k + r)y−1
1 ẇ.vλ

The vector ẇ.v has weight w(λ − αi), so that y−1
1 ẇ.v is a sum of weight vectors of weight

w(λ − αi) + β, where β is a sum of simple roots with non-negative coefficients. Assume wλ =
w(λ−αi)+β for a certain β. Then w(αi) = β would be positive, a contradiction since i ∈ Π\J .
Hence f(y−1

1 ẇ.v) = 0. Similarly, y−1
1 ẇ.vλ = ẇ.vλ + v′, where v′ is a sum of weight vectors of

weights greater than wλ, hence f(y−1
1 ẇ.vλ) = f(ẇ.vλ) = 1, so that cf,v(y−1

1 xy) = k + r.
The second matrix coefficient is defined dually. We fix a non-zero f1 ∈ V (−w0λ)∗λ−αi .

There exists a (unique) fλ ∈ V (−w0λ)∗λ such that xαi(k).f1 = f1 + kfλ for every k ∈ C.
Then we choose v1 ∈ V (−w0λ)−wλ such that fλ(ẇ.v1) = 1. Let z, z1 ∈ U , z1 = xαi(k1)z′,
z′ ∈

∏
β∈Φ+\{αi}Xβ , then proceeding as before, we get cf1,v1(z−1

1 xz) = k1.
For t ∈ T , z ∈ U we obtain

(3.10) (cf,v − cf1,v1)(t−1z−1xzt) = r ((1− w)λ− αi)(t)

SinceB.x is dense inO, by (3.10) the restriction of cf,v−cf1,v1 toO is a (non-zero)B-eigenvector
of weight (1− w)λ− αi in C[O]. Hence (1− w)λ− αi ∈ λ(O). �

Corollary 3.16 Let i ∈ Π \ J be such that αi occurs in x. Then ωi + ωϑ(i) − αi lies in λ(O).

Proof. This follows from Proposition 3.15 by taking λ = ωi. �

We can deal with other homogeneuos spaces related toO. The simply-connected cover (or the
universal covering, as in [22], p. 107) Ô of O can be identified with G/H◦, since G is simply-
connected.

Corollary 3.17 Let O be a spherical conjugacy class, and let S be a supplement of (Tw)◦ in
T ∩ C(x)◦. Then λ(Ô) = {λ ∈ P+

w | λ(S) = 1} is saturated.

Proof. By [16], Corollary 2.2, Ô is quasi affine and, by [6], Proposition 5.1, 5.2, L is adapted to
H◦, so that λ̃(Ô) = λ̃(G/H◦) = {λ ∈ P+

w | λ(S) = 1}, since (Tw)◦ ≤ T ∩H◦. Let λ ∈ λ̃(Ô);
then Fλ : BH◦/H◦ → C, b−1H◦ 7→ λ(b) is a regular function on BH◦/H◦, and therefore a
B-eigenvector of weight λ in C(G/H◦). By Corollary 3.13, 2λ ∈ λ(G/H) ≤ λ(G/H◦), and we
conclude by Lemma 3.3 and Proposition 3.4. �
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Corollary 3.18 Let K be a closed subgroup of G with H◦ ≤ K ≤ N(H◦). Then λ(G/K) =
λ̃(G/K) (and λ(G/K) is saturated).

Proof. Since L is adapted to H , we get N(H) = N(H◦) = H(C ∩N(H)) by [6], Corollaire 5.2,
P is the parabolic subgroup corresponding to N(H) and L is adapted to N(H) (by the proof of
[6], Proposition 5.2 a). Clearly the same holds for K, since BH = BK.

By Corollary 3.17, λ ∈ λ(G/H◦) ⇔ λ(T ∩ H◦) = 1. We prove that λ ∈ λ(G/K) ⇔
λ(T ∩ K) = 1. In one direction λ ∈ λ(G/K) ⇒ λ(T ∩ K) = 1, since λ(G/K) ≤ λ̃(G/K).
So assume λ(T ∩ K) = 1. Then λ(T ∩ H◦) = 1, so that λ ∈ λ(G/H◦), and in particular
w0λ = −λ. Let v be a non-zero vector in V (λ)H

0
, and let v = v−λ + v′, with v−λ ∈ V (λ)−λ,

v′ ∈
∑

µ>−λ V (λ)µ: then v−λ 6= 0, since BH◦ is dense in G.
Since V (λ)H

0
is 1-dimensional, there is a character γ of K, trivial on H◦, such that k.v =

γ(k)v for k ∈ K. Since K = H◦(T ∩ K), v is K-invariant if and only if γ(T ∩ K) = 1. But
v−λ 6= 0 implies γ(k) = −λ(k) for every k ∈ T ∩ K so that v is K-invariant if and only if
λ(T ∩K) = 1, and we are done. �

Remark 3.19 In general K is not quasi affine: for instance the centralizer H of x−β(1), β the
highest root, contains U−, and T ≤ N(H). Then N(H) is epimorphic, i.e. the minimal quasi
affine subgroup of G containing N(H) is G ([16], p. 19, ex. 2). To our knowledge, it was known
that λ(G/K) is saturated for symmetric varieties G/K, due to the work of Vust, [45].

Proposition 3.20 We have

H/H◦ ∼= Ty/T ∩H◦ = Tx/T ∩ C(x)◦

Proof. We have H = H◦(H ∩ T ) = H◦Ty. Hence we get an epimorphism π : Ty → H/H◦,
inducing an isomorphism π : Ty/T ∩H◦ → H/H◦, and we conclude by Proposition 3.4. �

Corollary 3.21 If Tw is connected, then H is connected.

Proof. This follows from (Tw)◦ ≤ T ∩ C(x)◦ ≤ Tx ≤ Tw = (Tw)◦ and Proposition 3.20. �

Due to the fact that T is 2-divisible, we have the decomposition T = (Tw)◦(Sw)◦ where
Sw = {t ∈ T | tw = t−1}. Let t ∈ Tw, t = s z, with s ∈ (Tw)◦, z ∈ (Sw)◦. Then
z = t s−1 ∈ Tw ∩ (Sw)◦ ≤ Tw ∩ Sw ≤ T2, the elementary abelian 2-subgroup of T of rank n.
We note that (Tw)◦ ∩ (Sw)◦ is finite, even though in general not trivial. Therefore z ∈ T2, and
Tw ≤ (Tw)◦ T2. In particular we have

Tw = (Tw)◦(Tw ∩ (Sw)◦) = (Tw)◦(Tw ∩ T2)

and
Tx = (Tw)◦(C(x) ∩ (Sw)◦) = (Tw)◦(C(x) ∩ T2)
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Moreover every subgroupM of T2 is a complemented group (i.e. for every subgroupX ofM there
exists a subgroup Y such that X Y = M and X ∩Y = 1), hence we may find a subgroup R of T2

such that Tw = (Tw)◦×R. Then Tx = (Tw)◦×(R∩C(x)) and T∩C(x)◦ = (Tw)◦×(R∩C(x)◦).
We put SO = R ∩ C(x), SÔ = R ∩ C(x)◦. We have therefore proved

Theorem 3.22 Let O be a spherical conjugacy class, w = w(O). Then

λ(O) = {λ ∈ P+
w | λ(SO) = 1} , λ(Ô) = {λ ∈ P+

w | λ(SÔ) = 1}

�

From Proposition 3.20 it follows that H always splits over H◦: if Y is a complement of
R ∩ C(x)◦ in R ∩ C(x), then Y is a complement of H◦ in H .

4 Description of λ(O) and λ(Ô)

From our discussion it is clear that to determine λ(O) the most favourable case is when Tw is
connected, so that Tx = Tw = (Tw)◦. In this case then λ(O) = λ(Ô) = P+

w = {
∑

i∈Π\J niωi |
nϑ(i) = ni}. We note that of course we have Z(G) ≤ Tx, so that it is also straightforward to
determine λ(O) even when Tw = (Tw)◦Z(G), so that Tx = Tw. In general it is quite cum-
bersome to determine Tx. Our strategy will be to determine Tw as Tw = (Tw)◦ × R, and then
determine R ∩C(x). To deal with unipotent classes, we shall usually start from the maximal one,
(corresponding to w0), and then deal with the remaining classes by an inductive procedure. In
some cases we shall use an explicit form of an element x (in O ∩ wB), while in some other cases
we shall determine T ∩ C(x) by analizing the form of eventual involutions in Tx \ Z(G)(Tw)◦.
Note that when Tw is connected (or Tw = (Tw)◦Z(G)), it is not necessary to have an explicit
description of x ∈ O∩wB (however in certain cases it will be necessary to have such a description
in section 6).

We use the fact that if G1 ⊂ G2 are reductive algebraic groups and u is a unipotent element
in G1 such that the conjugacy class of u in G2 is spherical, then the conjugacy class of u in G1 is
spherical ([33], Corollary 2.3, Theorem 3.1).

The character group X(Tw) is isomorphic to P/(1 − w)P , since P = X(T ). Therefore Tw

is connected if and only if P/(1 − w)P is torsion free. We are reduced to calculate elementary
divisors of the endomorphism 1− w of P . We shall use the following results.

Lemma 4.1 Assume the positive roots βi, . . . , β` are long and pairwise orthogonal. Then, for
ξ1, . . . , ξ` ∈ C∗ and g = xβ1(−ξ−1

1 ) · · ·xβ`(−ξ
−1
` ) we have

gx−β1(ξ1) · · ·x−β`(ξ`)g
−1 = nβ1 · · ·nβ`hxβ1(2ξ−1

1 ) · · ·xβ`(2ξ
−1
` )

for a certain h ∈ T .
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Proof. By (2.2) we have xα(−ξ−1)x−α(ξ)xα(ξ−1) = nαhα(−ξ)xα(2ξ−1). Hence we get the
result with h = hβ1(−ξ1) · · ·hβ`(−ξ`). �

Proposition 4.2 Let α ∈ Φ. Then T sα is connected except in the following cases:

(i) G is of type A1;

(ii) G is of type Cn and α is long;

(iii) G is of type B2 and α is long.

In these cases we have T sα = (T sα)◦ × Z(G).

Proof. It is enough to determine in which cases the non-zero elementary divisor of 1− si is not 1.
Since (1− si)ωj = δijαi and αi =

∑
k aikωk, this happens only for G of type A1 and i = 1, Cn

and i = n, or B2 and i = 1 ([18], pag. 59). In these cases the non-zero elementary divisor is 2,
and T sαi = (T sαi )◦ × Z(G). �

Lemma 4.3 Let M be a connected algebraic group, S a torus of M , g a semisimple element in
CM (S). Then 〈S, g〉 is contained in a torus of M .

Proof. See [18], Corollary 22.3 B. �

Lemma 4.4 Assume K is a connected spherical subgroup of G with no non-trivial characters.
Then the monoid λ(G/K) is free.

Proof. We recall that we are assuming G simply-connected, so that by [16], Theorem 20.2,
UC[G/K] is a polynomial algebra. But UC[G/K] is the monoid algebra of λ(G/K) and the
monoid algebra is factorial if and only if λ(G/K) is free (see the proof of [32], Proposition 2). �

Lemma 4.5 Let V be a G-module, g ∈ G, such that the image Q of the endomorphism p(g) of
V is 1 dimensional for a certain polynomial p. Assume M ≤ C(g) has no non-trivial characters.
Then M acts trivially on Q.

Proof. This is clear. �

Let S = {i, ϑ(i)} be a ϑ-orbit in Π\J consisting of 2 elements. We putHS = {hαi(z)hαϑ(i)
(z−1) |

z ∈ C∗}. Let S1 be the set of ϑ-orbits in Π \ J consisting of 2 elements. Then, by Remark 3.9,
∆J ∪ {αi − αϑ(i)}S1 is a basis of ker(1− w) and

(4.11) (Tw)◦ =
∏
j∈J

Hαj ×
∏
S∈S1

HS
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We put ΨJ = {β ∈ Φ | w(β) = −β}. Then ΨJ is a root system in Im(1− w) ([40], Proposition
2), and w|Im(1−w) is −1. If K = C((Tw)◦)′, then K is semisimple with root system ΨJ and
maximal torus T (K) := T ∩K = (Sw)◦.

For each spherical (non-central) conjugacy class O we give the corresponding J and w as a
product of commuting reflections using the tables in [9]. We give tables with corresponding λ(O)
and λ(Ô) (for semisimple classes we also give the type of the centralizer of elements inO). In the
cases when λ(Ô) = λ(O), we leave a blank entry. For length reasons we shall give proofs only
for some classes. In [9] for the classical groups we gave representative of semisimple conjugacy
classes in SL(n), Sp(n) and SO(n). Here we shall give an expression in terms of exp. If g is in
Z(G), then Og = {g}, w = 1 and C[Og] = C.

4.1 Type An, n ≥ 1.

Let m =
[
n+1

2

]
, βi = ei − en+2−i, for i = 1, . . . ,m. For ` = 1, . . . ,m − 1 we put J` =

{`+ 1, . . . , n− `}, Jm = ∅. If we denote by Xi the unipotent class (2i, 1n+1−2i), then

X` ←→ J` ←→ sβ1 · · · sβ`

for ` = 1, . . . ,m (here w0 = sβ1 · · · sβm).
In this case Tw is almost always connected. There is only one case when it is not connected,

namely when n is odd, n + 1 = 2m, and w = w0. However in this case we have Tw0 =
(Tw0)◦Z(G) = (Tw0)◦ × 〈hαm(−1)〉.

In fact we have

(1− w)P =


Z〈ω1 + ωn, . . . , ω` + ωn+1−`〉 for ` = 1, . . . ,m− 1
Z〈ω1 + ωn, . . . , ωm + ωm+1〉 for ` = m, n = 2m
Z〈ω1 + ωn, . . . , ωm−1 + ωm+1, 2ωm〉 for ` = m, n+ 1 = 2m

Moreover the centerZ(G) ofG is generated by z =
∏n
i=1 hαi(ξ

i), where ξ is a primitive (n+1)-th
root of 1 in C. For n+ 1 = 2m, then z−1hαm(−1) ∈ (Tw0)◦ since ξm = −1.

4.1.1 Unipotent classes in An.

r r r r

�
��

�

��
��p pp

X1

X2

Xm−1

Xm

Unipotent classes in An, m =
[
n+1

2

]
.
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If n is even, or n odd with ` < m, then Tw is always connected. Assume n odd, ` = m. Then
Tw0 = (Tw0)◦Z(G), so that Tx = Tw0 . Moreover, the reductive part of C(x)◦ is of type Am−1,
so that (Tw0)◦ is a maximal torus of C(x)◦. Hence Z(G) 6≤ C(x)◦ and Tx ∩ C(x)◦ = (Tw0)◦.
We get

O λ(O) λ(Ô)

X`

` = 1, . . . ,m− 1

∑̀
k=1

nk(ωk + ωn−k+1)

Xm

n = 2m

m∑
k=1

nk(ωk + ωn−k+1)

Xm

n+ 1 = 2m

m−1∑
k=1

nk(ωk + ωn−k+1) + 2nmωm
m−1∑
k=1

nk(ωk + ωn−k+1) + nmωm

Table 1: λ(O), λ(Ô) for unipotent classes in An.

In particular X̂1 is a model homogeneus space for SL(2), and in fact the principal one, by [28],
3.3 (1).

4.1.2 Semisimple classes in An.

The centralizers of elements in spherical semisimple classes are of type T1A`−1An−`. Following
the notation in [9], Tables 1, 5 we get

T1A`−1An−` ←→ J` ←→ sβ1 · · · sβ`

for ` = 1, . . . ,m.
Type T1A`−1An−`. Up to a central element, the semisimple elements with centralizer of this type
are conjugate to exp(ζω̌`) = diag(e

n+1−k
n

ζIk, e
− k
n
ζIn+1−k), ζ ∈ C \ 2πiZ.

Since in all cases we have Tx = Tw, we get

O H λ(O)
exp(ζω̌`)

ζ ∈ C \ 2πiZ
` = 1, . . . ,m− 1

T1A`−1An−`
∑̀
k=1

nk(ωk + ωn−k+1)

exp(ζω̌m)
ζ ∈ C \ 2πiZ
n = 2m

T1Am−1Am

m∑
k=1

nk(ωk + ωn−k+1)

exp(ζω̌m)
ζ ∈ C \ 2πiZ
n+ 1 = 2m

T1Am−1Am−1

m−1∑
k=1

nk(ωk + ωn−k+1) + 2nmωm

Table 2: λ(O) for semisimple classes in An.
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4.2 Type Cn, n ≥ 2.

We have ω` = e1 + · · · + e` for ` = 1, . . . , n and Z(G) = 〈z〉, where z =
∏[n+1

2
]

i=1 hα2i−1(−1).
For i = 1, . . . , n we denote by Xi the unipotent class (2i, 12n−2i) and we put βi = 2ei, Ji =
{i+ 1, . . . , n} (Jn = ∅).

Then
X` ←→ J` ←→ sβ1 · · · sβ`

for ` = 1, . . . , n (here w0 = sβ1 · · · sβn).

4.2.1 Unipotent classes in Cn.

r r r r

��
��

�
���p pp

X1

X2

Xn−1

Xn

Unipotent classes in Cn

Lemma 4.6 Let w = sβ1 · · · sβ` for ` = 1, . . . , n. Then

Tw = (Tw)◦ ×R , R = 〈hα1(−1)〉 × · · · × 〈hα`(−1)〉

Proof. For ` = 1, . . . , n we have (1− w)P = Z〈2ω1, . . . , 2ω`〉. �

Proposition 4.7 For ` = 1, . . . , n we have

λ(X`) = {2n1ω1 + · · ·+ 2n`ω` | nk ∈ N}

Proof. In [9] we exhibit the element x−β1(1) · · ·x−β`(1) ∈ O ∩BwB ∩B−. By Lemma 4.1, we
can choose

x = nβ1 · · ·nβ`hxβ1(2) · · ·xβ`(2) ∈ O ∩ wB

for a certain h ∈ T . Let now t ∈ R. Then t ∈ C(x) ⇔ βi(t) = 1 for i = 1, . . . , `. But
Z〈β1, . . . , β`〉 = Z〈2ω1, . . . , 2ω`〉, so that R ≤ Tx, and Tx = Tw. �

Proposition 4.8 For ` = 1, . . . , n we have

λ(X̂`) = {2n1ω1 + · · ·+ 2n`−1ω`−1 + n`ω` | nk ∈ N}

Proof. We have R ∩ C(x)◦ = 〈hα1(−1), . . . , hα`−1
(−1)〉. In fact, for i = 1 . . . , `− 1

eαi − e−αi ∈ Cg(〈xβ1(ξ) · · ·xβ`(ξ)〉)

for every ξ ∈ C, so that hαi(−1) = exp(π(eαi−e−αi)) ∈ C(x)◦. On the other hand the reductive
part of C(x) is of type Sp(2n− 2`)×O(`), so that C(x)/C(x)◦ has order 2, and we are done.�

We get
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O λ(O) λ(Ô)

X`

` = 1, . . . , n

∑̀
i=1

2niωi
`−1∑
i=1

2niωi + n`ω`

Table 3: λ(O), λ(Ô) for unipotent classes in Cn.

4.2.2 Semisimple classes in Cn.

Let p = [n2 ]. We put γ` = e2`−1 + e2`, K` = {1, 3, . . . , 2` − 1, 2` + 1, 2` + 2, . . . , n} for
` = 1, . . . , p. Then, following the notation in [9], Tables 1, 5 we have

C`Cn−`, ` = 1, . . . , p ←→ K` ←→ sγ1 · · · sγ`
T1Cn−1 ←→ J2 ←→ sβ1sβ2

T1Ãn−1 ←→ ∅ ←→ w0

Lemma 4.9 Let w = sγ1 · · · sγ` for ` = 1, . . . , [n2 ]. Then Tw is connected.

Proof. We have (1− w)P = Z〈ω2i | i = 1, . . . , `〉. �

Type T1Ãn−1. Let H = C(exp(ω̌n)). Then H is of type T1Ãn−1. If λ = eζ/2, then exp(ζω̌n) =
diag(λIn, λ−1In) (in Sp(2n)). If ζ ∈ C, then C(exp(ζω̌n)) = H ⇔ ζ ∈ C \ 2πiZ.

For g = nβ1 · · ·nβnxβ1(1) · · ·xβn(1), the element

yζ = g exp(ζω̌n)g−1 = x−β1(eζ − 1) · · ·x−βn(eζ − 1) exp(−ζω̌n)

lies in Oexp(ζω̌n) ∩Bsβ1 · · · sβnB ∩B− if ζ ∈ C \ 2πiZ, and we conclude as for the class Xn.

Type T1Cn−1. Let z = exp(ω̌1), H = C(z). Then H is of type T1Cn−1. If λ = eζ , then
exp(ζω̌1) = diag(λ, In−1, λ

−1, In−1) = hβ1(λ). If λ ∈ C∗ \ {±1}, then C(hβ1(λ)) = H , while
C(hβ1(−1)) is of type C1Cn−1. We assume λ ∈ C∗ \ {±1}. In [9] we exhibited an element yλ in
the C2-subgroup K of G generated by the roots α1, β2, γ1, β1: yλ ∈ Ohβ1 (λ) ∩ Bsβ1sβ2B ∩ B−.
Conjugating yλ by an appropriate element from B ∩K we get

xλ = nβ1nβ2hxα1(ξ1)xβ2(ξ2)xγ1(ξ3)xβ1(ξ4) ∈ Ohβ1 (λ) ∩ wB

for a certain h ∈ T , ξi ∈ C, with ξ1 = 1 − λ, ξ2 = − 2
λ . Since Z〈α1, β2, γ1, β1〉 = Z〈α1, β2〉 =

Z〈2ω1, ω2〉 we get Txλ = (Tw)◦ × 〈hα1(−1)〉 and we conclude as in case X̂2.

Type CkCn−k, k = 1, . . . , p. Let σk = exp(πiω̌k) = diag(−Ik, In−k,−Ik, In−k), H = C(σk).
Then H is of type CkCn−k, Z(H) = C(H) = 〈σk〉 × Z(G).

For type CkCn−k, Tw is connected, hence in each case we determined Tx. We get
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O H λ(O)

exp(ζω̌n)
ζ ∈ C \ 2πiZ T1Ãn−1

n∑
k=1

2nkωk

exp(ζω̌1)
ζ ∈ C \ πiZ T1Cn−1 2n1ω1 + n2ω2

exp(πiω̌`)
` = 1, . . . , [n2 ]

C`Cn−`
∑̀
i=1

n2i ω2i

Table 4: λ(O) for semisimple classes in Cn.

4.2.3 Mixed classes in Cn.

We put p = [n2 ]. From [9], Table 4, we get

σpxαn(1) ←→ ∅ ←→ w0

σkxαn(1), k = 1, . . . , p− 1 ←→ J2k+1 ←→ sβ1 · · · sβ2k+1

σkxβ1(1), k = 1, . . . , p ←→ J2k ←→ sβ1 · · · sβ2k

Note that when n is even, then σpxβ1(1) ∼ zσpxαn(1).

Class of σpxαn(1). In [9], proof of Theorem 2.23, we exhibited an element M in Sp(2n): M ∈
Oσpxαn (1) ∩Bw0B ∩B−. The centralizer of M in B is Z(G), hence Tx = Z(G).

We give also an alternative proof. Suppose for a contradiction that Tx 6= Z(G), and let
σ ∈ Tx \ Z(G). Then we have x ∈ K = C(σ). Since the involutions in G are conjugate (up to a
central element) to σk, for a certain k ∈ {1, . . . , p}, K is of type CkCn−k.

Now x is conjugate in K to an element of the form su, with s ∈ T , u ∈ U(K), [s, u] = 1. We
have s = s1s2, u = u1u2, with s1 ∈ T (Ck), s2 ∈ T (Cn−k), u1 ∈ U(Ck), u2 ∈ T (Cn−k). Note
that s1, u1, s2 and u2 are uniquely determined, since Ck ∩ Cn−k = 1, and (u1, u2) must be in the
class (X1, 1) or (1, X1) of Ck×Cn−k. Moreover the conjugacy classes of s1u1 and s2u2 must lie
over the longest elements of the Weyl group of C2k and Cn−2k respectively. However, at least one
of u1 and u2 is 1, so that at least one of s1u1, s2u2 does not lie over w0, since no involution of Cn
lies over w0. We have therefore proved that Tx = Z(G).

Class of σ`xαn(1) ∼ σ`xβ2k`+1
(1), ` = 1, · · · , p − 1. Here ΨJ has basis {α1, . . . , α2`, β2`+1},

and K = C((Tw)◦)′ is of type C2`+1. From the construction in [9], proof of Theorem 2.23, we
can find x in K. We note that

R1 = 〈hα1(−1)〉 × · · · × 〈hα2`
(−1)〉 × 〈hβ2`+1

(−1)〉



Decomposition of C[O] 19

is another complement of (Tw)◦ in Tw, so that Tx = (Tx ∩ R1)× (Tw)◦. By the result obtained
for the mixed class of maximal dimension in C2`+1 we get

Tx = (Tw)◦ × 〈(
∏̀
i=1

hα2i−1(−1))hβ2`+1
(−1)〉 = (Tw)◦ × 〈

`+1∏
i=1

hα2i−1(−1)〉

Class of σ`xβ1(1) ∼ σ`xβ`(1), ` = 1, · · · , p. Here ΨJ has basis {α1, . . . , α2`−1, β2`}, and K
is of type C2`. From the construction in [9], proof of Theorem 2.23, we can find x in K, since
σ`xβ`(1) ∈ C2`. Arguing as before, we get that

R1 = 〈hα1(−1)〉 × · · · × 〈hα2`−1
(−1)〉 × 〈hβ2`

(−1)〉 = T2(K)

is another complement of (Tw)◦ in Tw. Then

Tx ∩R1 = Tx ∩ T2(K) = CT (K)(x) = Z(K) = 〈
∏̀
i=1

hα2i−1(−1)〉

by the results obtained for the mixed class of maximal dimension in C2` (recall that when n is
even σpxαn(−1) ∼ zσpxβ1(−1)). Hence

Tx ∩R1 = 〈
∏̀
i=1

hα2i−1(−1)〉

and

Tx = (Tw)◦ × (Tx ∩R1) = (Tw)◦ × 〈
∏̀
i=1

hα2i−1(−1)〉

In order to determine λ(Ô), by [42], IV 2.25, in all cases the index [C(x) : C(x)◦] is 2, hence,
since in all cases Tx/(Tw)◦ has order 2, we must have T ∩ C(x)◦ = (Tw)◦. We obtain

O λ(O) λ(Ô)

σpxαn(1)
n∑
i=1

niωi,

[n+1
2

]∑
i=1

n2i−1 even
n∑
i=1

niωi

σ`xαn(1)
` = 1, . . . , [n2 ]− 1

2`+1∑
i=1

niωi,

`+1∑
i=1

n2i−1 even
2`+1∑
i=1

niωi

σ`xβ1(1)
` = 1, . . . , [n2 ]

2∑̀
i=1

niωi,
∑̀
i=1

n2i−1 even
2∑̀
i=1

niωi

Table 5: λ(O), λ(Ô) for mixed classes in Cn.



20 Mauro Costantini

In particular Ôσpxαn (1) is a model homogeneus space, and in fact the principal one, by [28], 3.3
(3).

To deal with types Dn and Bn, we denote by Xi the unipotent class which in SO(s) has
canonical form (22i, 1s−4i), i = 1, . . . ,

[
s
4

]
(for s = 4m, i = m there are 2 classes of this

form: Xm and X ′m, the very even classes) and by Zi the unipotent class (3, 22(i−1), 1s−4i+1),
i = 1, . . . , 1 +

[
s−3

4

]
.

4.3 Type Dn, n ≥ 4.

Letm =
[
n
2

]
. We have ωi = e1 + · · ·+ei for i = 1, . . . , n−2, ωn−1 = 1

2(e1 + · · ·+en−1)− 1
2en,

ωn = 1
2(e1 + · · · + en). In particular P coincides with Z〈e1, . . . , en−1,

1
2(e1 + · · · + en)〉. We

put βi = e2i−1 + e2i, δi = e2i−1 − e2i for i = 1, . . . ,m. For ` = 1, . . . ,m − 1 we put
J` = {2`+ 1, . . . , n}, Jm = ∅, K` = J` ∪ {1, 3, . . . , 2`− 1} for ` = 1, . . . ,m.

4.3.1 Unipotent classes in Dn, n even, n = 2m.
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X1

X2

Xm−2

Xm−1

Xm
X ′m

Zm−2

Zm−1

Zm
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Unipotent classes in Dn, n = 2m

The center of G is 〈
∏m
i=1 hα2i−1(−1), hαn−1(−1)hαn(−1)〉. From [9] we get

Z`, ` = 1, . . . ,m ←→ J` ←→ sβ1sδ1 · · · sβ`sδ`
X`, ` = 1, . . . ,m ←→ K` ←→ sβ1 · · · sβ`
X ′m ←→ {1, 3, . . . , n− 3, n} ←→ sβ1 · · · sβm−1sαn−1

Lemma 4.10 Let w = sβ1 · · · sβ` . Then Tw is connected for ` = 1, . . . ,m− 1, and

Tw = (Tw)◦ × 〈hαn(−1)〉 = (Tw)◦Z(G) for ` = m
Tw = (Tw)◦ × 〈hαn−1(−1)〉 = (Tw)◦Z(G) for w = sβ1 · · · sβm−1sαn−1

Proof. We have

(1− w)P =


Z〈ω2, ω4, . . . , ω2`〉 for ` = 1, . . . ,m− 1
Z〈ω2, ω4, . . . , ωn−2, 2ωn〉 for ` = m

Z〈ω2, ω4, . . . , ωn−2, 2ωn−1〉 for w = sβ1 · · · sβm−1sαn−1

and we conclude. �
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Proposition 4.11 For ` = 1, . . . ,m− 1 we have λ(X̂`) = λ(X`). Moreover

λ(X̂m) =

{
m−1∑
i=1

n2i ω2i + nnωn | nk ∈ N

}

and

λ(X̂ ′m) =

{
m−1∑
i=1

n2i ω2i + nn−1ωn−1 | nk ∈ N

}

Proof. For 1 ≤ ` < m the result is clear. For ` = m, C(x) has rank m ([12], §13.1), so that∏
j∈Km Hαj is a maximal torus of C(x). By Lemma 4.3, hαn(−1) 6∈ C(x)◦. Similarly for X ′m.�

Lemma 4.12 Let w = sβ1 · · · sβ`sδ1 · · · sδ` for ` = 1, . . . ,m. Then

Tw = (Tw)◦ × 〈hα1(−1)〉 × · · · × 〈hα2`−1
(−1)〉

for ` = 1, . . . ,m− 1, and Tw = Tw0 = T2 for ` = m.

Proof. We have (1− w)P = Z〈2ω1, . . . , 2ω2`−1, ω2`〉 for ` = 1, . . . ,m− 1. �

Let ` = 1. Then Tw = 〈hα1(−1)〉 × (Tw)◦ = Z(G)(Tw)◦, so that Tx = Tw, hence

λ(Z1) = {2n1ω1 + n2ω2 | nk ∈ N}

Next we consider Zm. We claim that Tx = Z(G). Suppose for a contradiction that there is an
involution σ ∈ Tx \ Z(G). Then x ∈ K = C(σ), and K is the almost direct product K1K2, of
type DkDn−k, for some k = 1, . . . ,m. We get an orthogonal decomposition E = E1 ⊕ E2 and
a decomposition x = x1x2 ∈ K1K2. Then −1 = w0 = (w1, w2), where wi is the element of
the Weyl group of Ki corresponding to xi (the class of xi in Ki is spherical). It follows that each
wi = −1, and k is even. Then x1 is in the class Zk/2 of K1 and x2 in the class Z(n−k)/2 of K2.
However, the product x1x2 is then not in the class Zm of G (since in x1x2 there are two rows with
3 boxes), a contradiction. Hence Tx = Z(G) and

λ(Zm) =

{
n∑
i=1

niωi | nk ∈ N,
m∑
i=1

n2i−1 even, nn−1 + nn even

}

We now deal with Z`, ` = 2, . . . ,m − 1. Here ΨJ has basis {α1, . . . , α2`−1, β`}, and K =
C((Tw)◦)′ is of type D2` (and is simply-connected). If we denote by M the Dn−2`-subgroup
generated by {Xα | α ∈ ΦJ}, then we have

KM = C(σ) , K ∩M = 〈hαn−1(−1)hαn(−1)〉 , σ =
∏̀
i=1

hα2i−1(−1)
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Z(K) = 〈hαn−1(−1)hαn(−1)〉 × 〈σ〉

Now x ∈ K and

Tw = R× (Tw)◦ , R = 〈hα1(−1)〉 × · · · × 〈hα2`−1
(−1)〉

with R ≤ K, so that
Tx ∩R = R ∩ Z(K) = 〈σ〉

since we have already shown that Ty = Z(G) if the spherical unipotent class Oy lies above w0.
Hence

Tx = (Tw)◦ × 〈σ〉

We have proved that

Tx =

{
Z(G) for x ∈ Zm ∩ wB
(Tw)◦ × 〈

∏`
i=1 hα2i−1(−1)〉 for x ∈ Z` ∩ wB, ` = 1, . . .m− 1

Proposition 4.13 For ` = 1, . . . ,m we have

λ(Ẑ`) =

{
2∑̀
i=1

niωi | nk ∈ N

}
Proof. Let u ∈ Z`, with ` = 1, . . . ,m. If C(u)◦ = RC with R = Ru(C(u)), C connected
reductive, then C is of type C`−1Bn−2`. In particular C is always semisimple. Then we conclude
by Lemma 4.4, if ` ≥ 2. When ` = 1, then rkC(x) = n − 2, so that

∏
j∈J1

Hαj is a maximal
torus of C(x)◦. Hence hα1(−1) 6∈ C(x)◦ by Lemma 4.3, and we are done. �

We obtained

O λ(O) λ(Ô)

X`

` = 1, . . . ,m− 1

∑̀
i=1

n2i ω2i

Xm

m−1∑
i=1

n2i ω2i + 2nnωn
m−1∑
i=1

n2i ω2i + nnωn

X ′m

m−1∑
i=1

n2i ω2i + 2nn−1ωn−1

m−1∑
i=1

n2i ω2i + nn−1ωn−1

Z`
` = 1, . . . ,m− 1

2∑̀
i=1

niωi,
∑̀
i=1

n2i−1 even
2∑̀
i=1

niωi

Zm

n∑
i=1

niωi,

m∑
i=1

n2i−1 even, nn−1 + nn even
n∑
i=1

niωi

Table 6: λ(O), λ(Ô) for unipotent classes in Dn, n = 2m.

In particular Ẑm is a model homogeneus space, and in fact the principal one, by [28], 3.3 (4).
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4.3.2 Semisimple classes in Dn, n even n = 2m

Following the notation in [9], Tables 1, 5 we have

D`Dn−` ←→ J`, ` = 1, . . . ,m ←→ sβ1sδ1 · · · sβ`sδ`
T1An−1 ←→ Km, ←→ sβ1 · · · sβm
(T1An−1)′ ←→ {1, 3, . . . , n− 3, n} ←→ sβ1 · · · sβm−1sαn−1

There are two families of classes of semisimple elements with centralizer of type T1An−1: to
distinguish them we wrote T1An−1 and (T1An−1)′.

Type D1Dn−1 = T1Dn−1. Let σ1 = exp(πiω̌1), H = C(σ1). Then H is of type T1Dn−1 with
Z(H) = C(H) = exp(Cω̌1)Z(G). If we put λ = eζ , then the image of exp(ζω̌1) in SO(2n) is
diag(λ, In−1, λ

−1, In−1). We have C(exp(ζω̌1)) = H ⇐⇒ ζ ∈ C \ 2πiZ.
In this case we have

Tw = (Tw)◦Z(G)

so it is not necessary to give explicitly the form of an element in wB ∩ O.
Anyway for ζ ∈ C \ 2πiZ, we consider the element

yζ = g exp(ζω̌1)g−1

where g = x−β1(1)x−δ1(1). Now β1(exp(ζω̌1)) = δ1(exp(ζω̌1)) = eζ , so that

exp(ζω̌1)x−δ1(−1)x−β1(−1) exp(ζω̌1)−1 = x−δ1(−e−ζ)x−β1(−e−ζ)

and
yζ = x−β1(1− e−ζ)x−δ1(1− e−ζ) exp(ζω̌1)

By Lemma 4.1 we may take xζ of the form

xζ = nβ1nδ1hxβ1

(
1 + e−ζ

1− e−ζ

)
xδ1

(
1 + e−ζ

1− e−ζ

)
We have w = sβ1sδ1 , Tw = 〈hα1(−1)〉 × (Tw)◦ = Z(G)(Tw)◦, so that Txζ = Tw, hence (as

for Z1)
λ(Oexp(ζω̌1)) = {2n1ω1 + n2ω2 | nk ∈ N}

for ζ ∈ C \ 2πiZ.

Type D`Dn−`, ` = 2, . . . ,m.
Let σ` = exp(πiω̌`), H = C(σ`) (the image of σ` in SO(2n) is diag(−I`, In−`,−I`, In−`)).
Then H is of type D`Dn−`. We may take

x` = nβ1nδ1 · · ·nβ`nδ` ∈ Oσ` ∩ wB
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and clearly Tx` = Tw. It follows that

λ(Oexp(πiω̌`)) =

{
2`−1∑
i=1

2niωi + n2`ω2` | ni ∈ N

}
for ` = 2, . . . ,m− 1 and

λ(Oexp(πiω̌m)) =

{
n∑
i=1

2niωi | ni ∈ N

}

Type T1An−1.
Let z = exp(ω̌n), H = C(z). Then H is of type T1An−1, Z(H) = C(H) = exp(Cω̌n)Z(G). If
λ = eζ/2, then the image of exp(ζω̌n) in SO(2n) is diag(λIn, λ−1In).

In this case we have
Tw = (Tw)◦Z(G)

so it is not necessary to give explicitly the form of an element in wB ∩ O.
Anyway if ζ ∈ C \ 2πiZ, then C(exp(ζω̌n)) = H . Let

yζ = g exp(ζω̌n)g−1

where g = nβ1 · · ·nβmxβ1(1) · · ·xβm(1). Then

yζ ∈ Oexp(ζω̌n) ∩Bsβ1 · · · sβmB ∩B−

By Lemma 4.1 we may take xζ of the form

xζ = nβ1 · · ·nβmhxβ1(ξ) · · ·xβm(ξ)

for a certain h ∈ T , ξ = 1+eζ

1−eζ . By Lemma 4.10 we have

Tw = (Tw)◦Z(G) = (Tw)◦ × 〈hαn(−1)〉

hence Txζ = Tw and we conclude as for Xm.

Proposition 4.14 Let ζ ∈ C \ 2πiZ. Then

λ(Oexp(ζω̌n)) =

{
m−1∑
i=1

n2i ω2i + 2nnωn | nk ∈ N

}

Type (T1An−1)′. Here we consider z = exp(ω̌n−1), H = C(z). Then H is of type (T1An−1)′,
Z(H) = C(H) = exp(Cω̌n−1)Z(G). If λ = eζ/2, then the image of exp(ζω̌n−1) in SO(2n) is
diag(λIn−1, λ

−1, λ−1In−1, λ). Applying the graph automorphism of order 2 of G interchanging
αn−1 and αn, from the previous result we obtain, as for X ′m,
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Proposition 4.15 Let ζ ∈ C \ 2πiZ. Then

λ(Oexp(ζω̌n−1)) =

{
m−1∑
i=1

n2i ω2i + 2nn−1ωn−1 | nk ∈ N

}

We got

O H λ(O)
exp(ζω̌1)

ζ ∈ C \ 2πiZ T1Dn−1 2n1ω1 + n2ω2

exp(πiω̌`)
` = 2, . . . ,m− 1

D`Dn−`

2`−1∑
i=1

2niωi + n2`ω2`

exp(πiω̌m) DmDm

n∑
i=1

2niωi

exp(ζω̌n)
ζ ∈ C \ 2πiZ T1An−1

m−1∑
i=1

n2i ω2i + 2nnωn

exp(ζω̌n−1)
ζ ∈ C \ 2πiZ (T1An−1)′

m−1∑
i=1

n2i ω2i + 2nn−1ωn−1

Table 7: λ(O) for semisimple classes in Dn, n = 2m.

4.3.3 Unipotent classes in Dn, n odd, n = 2m+ 1.
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Unipotent classes in Dn, n = 2m+ 1

The center of G is 〈(
∏m
j=1 hα2j−1(−1))hαn−1(i)hαn(−i)〉. From [9] we get

Z`, ` = 1, . . . ,m ←→ J` ←→ sβ1sδ1 · · · sβ`sδ`
X`, ` = 1, . . . ,m ←→ K` ←→ sβ1 · · · sβ`

Lemma 4.16 Let w = sβ1 · · · sβ` for ` = 1, . . . ,m. Then Tw is connected.
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Proof. We have

(1− w)P =

{
Z〈ω2i | i = 1, . . . , `〉 for ` = 1, . . . ,m− 1
Z〈ω2, ω4, . . . , ωn−3, ωn−1 + ωn〉 for ` = m

�

Therefore we have λ(X`) = λ(X̂`) = P+
w for ` = 1, . . . ,m.

Lemma 4.17 Let w = sβ1 · · · sβ`sδ1 · · · sδ` for ` = 1, . . . ,m, then

Tw = (Tw)◦ × 〈hα1(−1)〉 · · · × 〈hα2`−1
(−1)〉

Proof. We have

(1− w)P =

{
Z〈2ω1, . . . , 2ω2`−1, ω2`〉 for ` = 1, . . . ,m− 1
Z〈2ω1, . . . , 2ωn−2, ωn−1 + ωn〉 for ` = m

�

For ` = 1 we get Tw = 〈hα1(−1)〉 × (Tw)◦ = Z(G)(Tw)◦, so that Tx = Tw, hence

λ(Z1) = {2n1ω1 + n2ω2 | nk ∈ N}

Next we consider Zm. We claim that

Tx = (Tw0)◦ × 〈σ〉 , σ =
m∏
i=1

hα2i−1(−1)

(in particular Tx = Z(G)(Tw0)◦).
In fact, x ∈ K = C((Tw0)◦)′, andK is theDn−1-subgroup ofG corresponding to the subsys-

tem ΨJ of all roots of orthogonal to αn−1 − αn: since αn−1 − αn = −2en, {α1, . . . , αn−2, βm}
is a basis of ΨJ , and K is simply-connected. We have

K (Tw0)◦ = C(σ) , K ∩ (Tw0)◦ = 〈hαn−1(−1)hαn(−1)〉 , σ =
m∏
i=1

hα2i−1(−1)

The restriction of w0 to RΨJ is−1 and x, as an element ofK, is in the class Z(n−1)/2 ofK. Since
we have already shown that Ty = Z(K) ifOy is the spherical unipotent class of K lying over−1,
and

Tw0 = R× (Tw0)◦ , R = 〈hα1(−1)〉 × · · · × 〈hα2m−1(−1)〉

with R ≤ K, we get
Tx ∩R = R ∩ Z(K) = 〈σ〉

hence
Tx = (Tw)◦ × 〈σ〉
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Therefore

λ(Zm) =

{
n−2∑
i=1

niωi + nn−1(ωn−1 + ωn) | nk ∈ N,
m∑
i=1

n2i−1 even

}

To deal with Z`, ` = 2, . . . ,m − 1, we may use the same argument of the case Dn with even
n and obtain

Tx = (Tw)◦ × 〈σ〉 , σ =
∏̀
i=1

hα2i−1(−1)

Therefore

λ(Z`) =

{
2∑̀
i=1

niωi | nk ∈ N,
∑̀
i=1

n2i−1 even

}
We summarize the results obtained in

Proposition 4.18 For ` = 1, . . . ,m− 1 we have

λ(Z`) =

{
2∑̀
i=1

niωi | nk ∈ N,
∑̀
i=1

n2i−1 even

}

Moreover

λ(Zm) =

{
n−2∑
i=1

niωi + nn−1(ωn−1 + ωn) | nk ∈ N,
m∑
i=1

n2i−1 even

}

For the simply-connected cover we get

Proposition 4.19 For ` = 1, . . . ,m− 1 we have

λ(Ẑ`) =

{
2∑̀
i=1

niωi | nk ∈ N

}

Moreover

λ(Ẑm) =

{
n−2∑
i=1

niωi + nn−1(ωn−1 + ωn) | nk ∈ N

}

Proof. Let u ∈ Z`, with ` = 1, . . . ,m. If C(u)◦ = RC with R = Ru(C(u)), C connected
reductive, then C is of type C`−1Bn−2`. In particular C is always semisimple. Then we conclude
by Lemma 4.4, if ` ≥ 2. When ` = 1, then rkC(x) = n − 2, so that

∏
j∈J1

Hαj is a maximal
torus of C(x)◦. Hence hα1(−1) 6∈ C(x)◦ by Lemma 4.3, and we are done. �

We got
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O λ(O) λ(Ô)

X`

` = 1, . . . ,m− 1

∑̀
i=1

n2i ω2i

Xm

m−1∑
i=1

n2i ω2i + nn−1(ωn−1 + ωn)

Z`
` = 1, . . . ,m− 1

2∑̀
i=1

niωi,
∑̀
i=1

n2i−1 even
2∑̀
i=1

niωi

Zm

n−2∑
i=1

niωi + nn−1(ωn−1 + ωn),
m∑
i=1

n2i−1 even
n−2∑
i=1

niωi + nn−1(ωn−1 + ωn)

Table 8: λ(O), λ(Ô) for unipotent classes in Dn, n = 2m+ 1.

4.3.4 Semisimple classes in Dn, n odd, n = 2m+ 1

Following the notation in [9], Tables 1, 5 we have

D`Dn−`, ` = 1, . . . ,m ←→ J` ←→ sβ1sδ1 · · · sβ`sδ`
T1An−1 ←→ Km ←→ sβ1 · · · sβm

Type D1Dn−1 = T1Dn−1.
We can use the same calculations as in the case Dn, n even and obtain

xζ = nβ1nδ2hβ1(e−ζ − 1)hδ1(e−ζ − 1) exp(ζω̌1)xβ1

(
1 + e−ζ

1− e−ζ

)
xδ1

(
1 + e−ζ

1− e−ζ

)
in Oexp(ζω̌1) ∩ wB for every ζ ∈ C \ 2πiZ.

Since Tw = 〈hα1(−1)〉 × (Tw)◦ = Z(G)(Tw)◦, we get Txζ = Tw (as for Z1) and

λ(Oexp(ζω̌1)) = {2n1ω1 + n2ω2 | nk ∈ N}

for ζ ∈ C \ 2πiZ.

Type DkDn−k, k = 2, . . . ,m. As in the case n even we may take

xk = nβ1nδ1 · · ·nβknδk ∈ Oσk ∩ wB

where σk = exp(πiω̌k). Then Tx = Tw, so that

λ(Oexp(πiω̌`)) =

{
2`−1∑
i=1

2niωi + n2`ω2` | ni ∈ N

}



Decomposition of C[O] 29

for ` = 2, . . . ,m− 1 and

λ(Oexp(πiω̌m)) =

{
n−2∑
i=1

2niωi + nn−1(ωn−1 + ωn) | ni ∈ N

}

Type T1An−1. Here we consider elements of the form exp(ζω̌n), ζ ∈ C \ 2πiZ. Note that

w exp(ζω̌n)w−1 = exp(−ζω̌n−1)

where w = sβ1 · · · sβm . Hence

λ(Oexp(ζω̌n−1)) = λ(Oexp(ζω̌n))

Proceeding as in the case n even, we may take xζ of the form

xζ = nβ1 · · ·nβmhxβ1(ξ) · · ·xβm(ξ) ∈ Oexp(ζω̌n) ∩ wB

for a certain h ∈ T , ξ = 1+eζ

1−eζ .
By Lemma 4.16, for w = sβ1 · · · sβm , Tw is connected, hence

λ(Oexp(ζω̌n)) =

{
m−1∑
i=1

n2i ω2i + nn−1(ωn−1 + ωn) | nk ∈ N

}
for ζ ∈ C \ 2πiZ.

We got

O H λ(O)
exp(ζω̌1)

ζ ∈ C \ 2πiZ T1Dn−1 2n1ω1 + n2ω2

exp(πiω̌`)
` = 2, . . . ,m− 1

D`Dn−`

2`−1∑
i=1

2niωi + n2`ω2`

exp(πiω̌m) DmDm+1

n−2∑
i=1

2niωi + nn−1(ωn−1 + ωn)

exp(ζω̌n)
ζ ∈ C \ 2πiZ T1An−1

m−1∑
i=1

n2i ω2i + nn−1(ωn−1 + ωn)

Table 9: λ(O) for semisimple classes in Dn, n = 2m+ 1.

4.4 Type Bn, n ≥ 2.

We put m = [n2 ]. The center of G is 〈hαn(−1)〉. We have ωi = e1 + · · ·+ ei for i = 1, . . . , n− 1,
ωn = 1

2(e1+· · ·+en). We put βi = e2i−1+e2i, δi = e2i−1−e2i for i = 1, . . . ,m. We put γ` = e`,
M` = {` + 1, . . . , n} for ` = 1, . . . , n and J` = {2` + 1, . . . , n}, K` = J` ∪ {1, 3, . . . , 2` − 1}
for ` = 1, . . . ,m.
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4.4.1 Unipotent classes in Bn, n even, n = 2m.
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Zm−1
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Unipotent classes in Bn, n = 2m.

Then
Z`, ` = 1, . . . ,m ←→ J` ←→ sβ1sδ1 · · · sβ`sδ`
X`, ` = 1, . . . ,m ←→ K` ←→ sβ1 · · · sβ`

Lemma 4.20 Let w = sβ1 · · · sβ` . Then Tw is connected for ` = 1, . . . ,m − 1 and, for ` = m,
Tw = (Tw)◦ × 〈hαn(−1)〉 = (Tw)◦ × Z(G).

Proof. We have

(1− w)P =

{
Z〈ω2, ω4, . . . , ω2`〉 for ` = 1, . . . ,m− 1
Z〈ω2, ω4, . . . , ωn−2, 2ωn〉 for ` = m

and we conclude. �

Proposition 4.21 For ` = 1, . . . ,m− 1 we have

λ(X`) =

{∑̀
i=1

n2i ω2i | nk ∈ N

}

Moreover

λ(Xm) =

{
m−1∑
i=1

n2i ω2i + 2nnωn | nk ∈ N

}

Proof. This follows from Lemma 4.20, since in all cases Tx = Tw (since Tw = (Tw)◦Z(G)). �

Proposition 4.22 For ` = 1, . . . ,m− 1 we have λ(X̂`) = λ(X`). Moreover

λ(X̂m) =

{
m∑
i=1

n2i ω2i | nk ∈ N

}

Proof. For ` = 1, . . . ,m− 1 the group Tw is connected by Lemma 4.20, and λ(X̂`) = λ(X`).
For ` = m the reductive part of C(x)◦ is of type Cm and so

∏
j∈Km Hαj is a maximal torus

of C(x)◦. Hence hαn(−1) 6∈ C(x)◦ by Lemma 4.3, and we are done. �
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Lemma 4.23 Let w = sβ1 · · · sβ`sδ1 · · · sδ` . Then

Tw =

{
(Tw)◦ × 〈hα1(−1)〉 × · · · × 〈hα2`−1

(−1)〉 for ` = 1, . . . ,m− 1
Tw0 = T2 for ` = m

Proof. We have (1− w)P = Z〈2ω1, . . . , 2ω2`−1, ω2`〉 for ` = 1, . . . ,m− 1. �

For ` = 1 and m ≥ 2, we get Tw = 〈hα1(−1)〉 × (Tw)◦. In [9] we exhibit the element
x−β1(1)x−δ1(1) ∈ O ∩BwB ∩B−. We may therefore choose

x = nβ1nδ1hxβ1(2)xδ1(2)

for a certain h ∈ T . Then hα1(−1) ∈ C(x), so that Tx = Tw. Therefore, if m ≥ 2,

λ(Z1) = {2n1ω1 + n2ω2 | nk ∈ N}

Next we consider Zm, m ≥ 1. Let K be the subgroup generated by the long roots of G:
K is of type Dn and it is simply-connected ([42], §II 5, 5.4 (a)). In fact K = C(σ), where
σ =

∏m
i=1 hα2i−1(−1), and Z(K) = C(K) = Z(G) × 〈σ〉. Following [9], proof of Theorem

2.11, we have x ∈ K. But then we must have Tx = Z(K) by the results obtained for Dn (and for
D2 = A1 ×A1 if m = 1), so that

λ(Zm) =

{
n∑
i=1

niωi | nk ∈ N,
m∑
i=1

n2i−1 even, nn even

}
We now deal with Z`, ` = 2, . . . ,m − 1. Here ΨJ has basis {α1, . . . , α2`−1, γ2`}, and

C((Tw)◦)′ is of type B2` (and is simply-connected).
From the construction in [9], proof of Theorem 2.11, we can find x in the D2`-subgroup K of

C((Tw)◦)′ generated by the long roots, that is the D2`-subgroup with basis {α1, . . . , α2`−1, β`}
(which is simply-connected). We have

Z(K) = Z(G)× 〈σ〉 , σ =
∏̀
i=1

hα2i−1(−1)

By Lemma 4.23 we have

Tw = R× (Tw)◦ , R = 〈hα1(−1)〉 × · · · × 〈hα2`−1
(−1)〉

and

Tx ∩R = R ∩ Z(K) =
∏̀
i=1

hα2i−1(−1)

since we have already shown that Ty = Z(D2`) if the spherical unipotent class Oy lies above w0

in D2`. Hence
Tx = (Tw)◦ × 〈σ〉
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Therefore

λ(Z`) =

{
2∑̀
i=1

niωi | nk ∈ N,
∑̀
i=1

n2i−1 even

}
We summarize the results obtained in

Proposition 4.24 Let G be of type Bn, n = 2m, m ≥ 1. For ` = 1, . . . ,m− 1 we have

λ(Z`) =

{
2∑̀
i=1

niωi | nk ∈ N,
∑̀
i=1

n2i−1 even

}

Moreover

λ(Zm) =

{
n∑
i=1

niωi | nk ∈ N,
m∑
i=1

n2i−1 even, nn even

}

�

For the simply-connected cover we have

Proposition 4.25 For ` < m we have

λ(Ẑ`) =

{
2∑̀
i=1

niωi | nk ∈ N

}

Moreover

λ(Ẑm) =

{
n∑
i=1

niωi | nk ∈ N, nn even

}

Proof. Let u ∈ Z`, with ` = 1, . . . ,m. If C(u)◦ = RC with R = Ru(C(u)), C connected
reductive, thenC is of typeC`−1Dn−2`+1. In particularC is semisimple except when n−2`+1 =
1, i.e. ` = m. Therefore we obtain T ∩ C(x)◦ = (Tw)◦ for ` = 2, . . . ,m − 1 by Lemma 4.4,
since in these cases Tx = (Tw)◦ × 〈σ〉.

We claim that ω1 ∈ λ(Ẑ`) for ` = 1, . . . ,m. Let u = xαn−2`+2
(1)xαn−2`+4

(1) · · ·xαn(1)
which is in Z`. The image Q of (u − 1)2 in V (ω1) (which is the natural module for Bn) has
dimension 1 and coincides with V (ω1)αn . Let v be a generator of Q. Then there is a character
γ : C(u)→ C∗ such that g.v = γ(g)v for every g ∈ C(u).

Now C(u) has rank n− `, so that S = {t ∈ T | αn−2`+2(t) = an−2`+4(t) = · · · = αn(t) =
1} (which is connected) is a maximal torus of C(u)◦. If t ∈ S, then t.v = αn(t)v = v, so that
even in the case when the reductive part of C(u)◦ is not semisimple, γ is the trivial character on
C(u)◦. Hence C(u)◦.v = v.

In particular, if ` = 1 and m ≥ 2, then T ∩ C(x)◦ = (Tw)◦ and

λ(Ẑ1) = {n1ω1 + n2ω2 | nk ∈ N}
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We are left to deal withZm. In this case we observe that taking again u = xα2(1)xα4(1) · · ·xαn(1)
in Zm, then Hγ1 ≤ C(u), where γ1 = e1. Since γ1 is short, we have Z(G) ≤ Hγ1 , so that
hαn(−1) ∈ C(x)◦. Therefore

λ(Ẑm) =

{
n∑
i=1

niωi | nk ∈ N, nn even

}

since we know that ω1 ∈ λ(Ẑm). �

We obtained

O λ(O) λ(Ô)

X`

` = 1, . . . ,m− 1

∑̀
i=1

n2i ω2i

Xm

m−1∑
i=1

n2i ω2i + 2nnωn
m∑
i=1

n2i ω2i

Z`
` = 1, . . . ,m− 1

2∑̀
i=1

niωi,
∑̀
i=1

n2i−1 even
2∑̀
i=1

niωi

Zm

n∑
i=1

niωi,

m∑
i=1

n2i−1 even, nn even
n∑
i=1

niωi, nn even

Table 10: λ(O), λ(Ô) for unipotent classes in Bn, n = 2m.

4.4.2 Semisimple classes in Bn, n even n = 2m

Following the notation in [9], Tables 1, 5 we have

D`Bn−`, ` = 1, . . . ,m ←→ J` ←→ sβ1sδ1 · · · sβ`sδ`
D`Bn−`, ` = m+ 1, . . . , n ←→ M2(n−`)+1 ←→ sγ1sγ2 · · · sγ2(n−`)+1

T1An−1 ←→ ∅ ←→ w0

TypeD1Bn−1 = T1Bn−1. Consider the element σ1 = exp(πiω̌1),H = C(σ1). ThenH is of type
T1Bn−1. If we put λ = eζ , then the image of exp(ζω̌1) in SO(2n+1) is diag(1, λ, In−1, λ

−1, In−1).
We have C(exp(ζω̌1)) = H ⇐⇒ ζ ∈ C \ 2πiZ.

For ζ ∈ C \ 2πiZ, we consider the element

yζ = g exp(ζω̌1)g−1

where g = x−β1(1)x−δ1(1). Now β1(exp(ζω̌1)) = δ1(exp(ζω̌1)) = eζ , so that

exp(ζω̌1)x−δ1(−1)x−β1(−1) exp(ζω̌1)−1 = x−δ1(−e−ζ)x−β1(−e−ζ)
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and
yζ = x−β1(1− e−ζ)x−δ1(1− e−ζ) exp(ζω̌1)

By Lemma 4.1 we may take xζ of the form

xζ = nβ1nδ1hxβ1(ξ1)xδ1(ξ2)

for certain h ∈ T , ξ1, ξ2 ∈ C: more precisely,

xζ = nβ1nδ1hβ1(e−ζ − 1)hδ1(e−ζ − 1) exp(ζω̌1)xβ1

(
1 + e−ζ

1− e−ζ

)
xδ1

(
1 + e−ζ

1− e−ζ

)
We have w = sβ1sδ1 , and

Tw =

{
〈hα1(−1)〉 × (Tw)◦ for m ≥ 2
T2 = 〈hα1(−1)〉 × Z(G) for m = 1

moreover hα1(−1) ∈ C(xζ), since β1(hα1(−1)) = δ1(hα1(−1)) = 1, so that Tx = Tw. There-
fore

λ(Oexp(ζω̌1)) =

{
{2n1ω1 + n2ω2 | nk ∈ N} for m ≥ 2
{2n1ω1 + 2n2ω2 | nk ∈ N} for m = 1

for ζ ∈ C \ 2πiZ (as for Z1).

Type DkBn−k, k = 2, . . . , n. Consider the element σk = exp(πiω̌k), H = C(σk) (the image
of σk in SO(2n + 1) is diag(1,−Ik, In−k,−Ik, In−k)). Then H is of type DkBn−k, Z(H) =
C(H) = 〈σk〉Z(G) (in fact if k is even we have σ2

k = 1 and Z(H) = 〈σk〉 × Z(G), if k is odd
we have σ2

k = han(−1) and Z(H) = 〈σk〉).
Let us first assume k = 2, . . . ,m, and let

x = nβ1nδ1 · · ·nβknδk

Then x ∼ hβ1(i)hδ1(i) · · ·hβk(i)hδk(i) ∼ σk. Now

Tw =

{
〈hα1(−1)〉 × · · · × 〈hα2`−1

(−1)〉 × (Tw)◦ for ` = 1, . . . ,m− 1
T2 for ` = m

and clearly Tx = Tw. It follows that

λ(Oexp(πiω̌`)) =

{
2`−1∑
i=1

2niωi + n2`ω2` | ni ∈ N

}

for ` = 2, . . . ,m− 1. Moreover

λ(Oexp(πiω̌m)) =

{
n∑
i=1

2niωi | ni ∈ N

}
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Let k = m + 1, . . . , n. In [9], proof of Theorem 2.15, we introduced a certain conjugate (in
SO(2n + 1)) Żn−k of the image of σk in SO(2n + 1): Żn−k is a representative of the element
Zn−k = sγ1 · · · sγ2(n−k)+1

. Therefore the element

x = nγ1 · · ·nγ2(n−k)+1
t

is conjugate to σk for a certain t ∈ T . Now we have the following generalization of Lemma 4.23

Lemma 4.26 Let w = sγ1 · · · sγ` for ` = 1, . . . , n. Then

Tw =

{
(Tw)◦ × 〈hα1(−1)〉 × · · · × 〈hα`−1

(−1)〉 for ` = 1, . . . , n− 1
Tw0 = T2 for ` = n

Proof. We have (1− w)P = Z〈2ω1, . . . , 2ω`−1, ω`〉 for ` < n. �

Since clearly Tx = Tw, we get

Proposition 4.27 For ` = m+ 1, . . . , n we have

λ(Oexp(πiω̌`)) =


2(n−`)∑
i=1

2niωi + n2(n−`)+1ω2(n−`)+1 | n` ∈ N


�

Type T1An−1. Consider the element z = exp(ω̌n), H = C(z). Then H is of type T1An−1,
Z(H) = C(H) = exp(Cω̌n) × Z(G). If we put λ = eζ , then the image of exp(ζω̌n) in
SO(2n+ 1) is bλ = diag(1, λIn, λ−1In). We have C(exp(ζω̌n)) = H ⇐⇒ ζ ∈ C \ πiZ.

Let B be the image of B in SO(2n + 1). In [9], proof of Theorem 15, we exhibited an
element yλ in SO(2n + 1): yλ ∈ Obλ ∩ Bw0B. The centralizer of yλ in B is trivial, therefore
CB(ỹλ) = Z(G), where ỹλ is any representative of yλ in G. Hence Txζ = Z(G) = 〈hαn(−1)〉
for any xζ ∈ Oexp(ζω̌n) ∩ w0B, so that

λ(Oexp(ζω̌n)) =

{
n∑
i=1

niωi | nk ∈ N, nn even

}

for ζ ∈ C \ πiZ.

We obtained
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O H λ(O)
exp(ζω̌1)

ζ ∈ C \ 2πiZ,m ≥ 2
T1Bn−1 2n1ω1 + n2ω2

exp(ζω̌1)
ζ ∈ C \ 2πiZ,m = 1

T1B1 2n1ω1 + 2n2ω2

exp(πiω̌`)
` = 2, . . . ,m− 1

D`Bn−`

2`−1∑
i=1

2niωi + n2`ω2`

exp(πiω̌m) DmBm

n∑
i=1

2niωi

exp(πiω̌`)
` = m+ 1, . . . , n

D`Bn−`

2(n−`)∑
i=1

2niωi + n2(n−`)+1ω2(n−`)+1

exp(ζω̌n)
ζ ∈ C \ πiZ T1An−1

n∑
i=1

niωi, nn even

Table 11: λ(O) for semisimple classes in Bn, n = 2m.

4.4.3 Mixed classes in Bn, n even, n = 2m

From [9], Table 4, we get

σnxβ1(1) · · ·xβm(1) ←→ ∅ ←→ w0

σnxβ1(1) · · ·xβ`(1), ` = 1, . . . ,m− 1 ←→ M2`+1 ←→ sγ1 · · · sγ2`+1

Class of σnxβ1(1) · · ·xβm(1). We claim that Tx = Z(G) for x ∈ O ∩ w0B.
Suppose for a contradiction that Tx 6= Z(G), and let σ ∈ Tx \ Z(G). Then we have x ∈

K = C(σ). Since the involutions in G are conjugate (up to a central element) to σ2k, for a certain
k ∈ {1, . . . ,m}, K is of type D2kBn−2k.

Now x is conjugate in K to an element of the form su, with s ∈ T , u ∈ U(K), [s, u] = 1. We
have s = s1s2, u = u1u2, with s1 ∈ T (D2k), s2 ∈ T (Bn−2k), u1 ∈ U(D2k), u2 ∈ T (Bn−2k)
(note that u1 and u2 are uniquely determined, and u1 must be in the classes Xk or X ′k of D2k, u2

in the class Xm−k of Bn−2k). Moreover s1u1 and s2u2 must lie over the longest elements of the
Weyl group of D2k and Bn−2k respectively. We want to show that s1 ∈ Z(D2k): this will lead to
the contradiction that s1u1 lies over the same element of the Weyl group of D2k over which lies
u1, and this is not the longest element of the Weyl group of D2k. To show that s1 ∈ Z(D2k) we
may assume, up to the action of W , that K = C(σ), where σ =

∏k
i=1 hα2i−1(−1).

In T there is a W -orbit {σn, zσn}, where z = hαn(−1), due to the fact that the long roots
of Bn form a Dn-subgroup of Bn: its center is 〈σn〉 × Z(G). Since D2k ∩ Bn−2k = Z(G) and
s1s2 ∼ σn we have only the following possibilities for (s1, s2): (σ, σσn), (σz, σσnz), (σz, σσn),
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(σ, σσnz). In each case we have s1 ∈ Z(D2k) = 〈z, σ〉. We have therefore proved that Tx =
Z(G), so that

λ(Oσnxβ1 (1)···xβm (1)) =

{
n∑
i=1

niωi | nk ∈ N, nn even

}
Moreover, by the results for the class Xm in Dn, n = 2m, it follows that the centralizer of
σnxβ1(1) · · ·xβm(1) in G is not connected, hence C(x) = C(x)◦ × Z(G) and C(x)◦ ∩ T = 1,

λ(Ôσnxβ1 (1)···xβm (1)) =

{
n∑
i=1

niωi | nk ∈ N

}

Class of σnxβ1(1) · · ·xβ`(1), ` = 1, · · · ,m− 1.
Here ΨJ has basis {α1, . . . , α2`, γ2`+1}, andK = C((Tw)◦)′ is of typeB2`+1 (and is simply-

connected). From the construction in [9], proof of Theorem 2.23, we can find x of the form
x = x1h, with h ∈ T , x1 ∈ K, x1 in the class of σ2`+1xβ1(1) · · ·xβ`(1) (which is the mixed class
of maximal dimension in B2`+1). By Lemma 4.33 we have

Tw = R× (Tw)◦ , R = 〈hα1(−1)〉 × · · · × 〈hα2`
(−1)〉 ≤ T (K)

(Tw)◦ = Hα2`+2
× · · · ×Hαn , Tx = (Tx ∩R)× (Tw)◦

and
Tx ∩R ≤ Tx ∩ T (K) = CT (K)(x) = CT (K)(x1)

and by the results for the mixed class of maximal dimension in B2`+1 (see next subsection), we
have CT (K)(x1) = Z(K) = 〈hγ2`+1

(−1)〉 = 〈hαn(−1)〉. Hence

Tx ∩R ≤ 〈hαn(−1)〉 ∩R = 1

and Tx = (Tw)◦. Therefore

λ(Ôρnxβ1 (1)···xβ` (1)) = λ(Oρnxβ1 (1)···xβ` (1)) =

{
2`+1∑
i=1

niωi | nk ∈ N

}
We obtained

O λ(O) λ(Ô)

σnxβ1(1) · · ·xβ`(1)
` = 1, · · · ,m− 1

2`+1∑
i=1

niωi

σnxβ1(1) · · ·xβm(1)
n∑
i=1

niωi, nn even
n∑
i=1

niωi

Table 12: λ(O), λ(Ô) for mixed classes in Bn, n = 2m.

In particular Ôσnxβ1 (1)···xβm (1) is a model homogeneus space, and in fact the principal one, by
[28], 3.3 (2).
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4.4.4 Unipotent classes in Bn, n odd, n = 2m+ 1.
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Unipotent classes in Bn, n = 2m+ 1

Then

Z` ←→ J`, ` = 1, . . . ,m ←→ sβ1sδ1 · · · sβ`sδ`
Zm+1 ←→ ∅ ←→ w0 = sβ1sδ1 · · · sβmsδmsαn
X` ←→ K`, ` = 1, . . . ,m ←→ sβ1 · · · sβ`

Lemma 4.28 Let w = sβ1 · · · sβ` for ` = 1, . . . ,m. Then Tw is connected.

Proof. For ` = 1, . . . ,m we have (1− w)P = Z〈β1, . . . , β`〉 = Z〈ω2i | i = 1, . . . , `〉. �

Proposition 4.29 For ` = 1, . . . ,m we have

λ(X̂`) = λ(X`) =

{∑̀
i=1

n2i ω2i | nk ∈ N

}

Proof. This follows from Lemma 4.28. �

Lemma 4.30 Let w = sβ1 · · · sβ`sδ1 · · · sδ` for ` = 1, . . . ,m. Then

Tw = (Tw)◦ × 〈hα1(−1)〉 × · · · × 〈hα2`−1
(−1)〉

Proof. For ` = 1, . . . ,m we have (1− w)P = Z〈2ω1, . . . , 2ω2`−1, ω2`〉. �

For ` = 1 we get Tw = 〈hα1(−1)〉× (Tw)◦. In [9] we exhibit the element x−β1(1)x−δ1(1) ∈
O ∩BwB ∩B−. We may therefore choose x = nβ1nδ1hxβ1(2)xδ1(2) for a certain h ∈ T . Then
hα1(−1) ∈ C(x), so that Tx = Tw.

Next we consider Zm+1. We claim that Tx = Z(G). Suppose for a contradiction that there is
an involution σ ∈ Tx \ Z(G). Then x ∈ K = C(σ), and K is the almost direct product K1K2,
of type DkBn−k, for some k = 1, . . . , n. We get an orthogonal decomposition E = E1 ⊕E2 and
a decomposition x = x1x2 ∈ K1K2. Then −1 = w0 = (w1, w2), where wi is the element of
the Weyl group of Ki corresponding to xi (the class of xi in Ki is spherical). It follows that each
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wi = −1, and k is even. Then x1 is in the class Zk/2 of K1 and x2 in the class Zm+1−k/2 of K2.
However, the product x1x2 is not in the class Zm+1 of G (since in x1x2 there are two rows with 3
boxes), a contradiction. Hence Tx = Z(G).

We now deal with Z`, ` = 2, . . . ,m. Here ΨJ has basis {α1, . . . , α2`−1, γ2`}, and C((Tw)◦)′

is of type B2`. From the construction in [9], proof of Theorem 2.11, we can find x in the
D2`-subgroup K of C((Tw)◦)′ generated by the long roots, that is the D2`-subgroup with ba-
sis {α1, . . . , α2`−1, β`}. We have

Z(K) = Z(G)× 〈σ〉 , σ =
∏̀
i=1

hα2i−1(−1)

By Lemma 4.30, Tx = (Tw)◦ × (Tx ∩ R), where R = 〈hα1(−1)〉 × · · · × 〈hα2`−1
(−1)〉 ≤ K.

Since x lies in the maximal spherical unipotent class ofD2`, from the result obtained for this class,
we have Tx ∩R = R ∩ Z(K) = 〈σ〉, hence Tx = (Tw)◦ × 〈σ〉. We have proved

Proposition 4.31 For ` = 1, . . . ,m we have

λ(Z`) =

{
2∑̀
i=1

niωi | nk ∈ N,
∑̀
i=1

n2i−1 even

}
Moreover

λ(Zm+1) =

{
n∑
i=1

niωi | nk ∈ N, nn even

}

For the simply-connected cover we obtain

Proposition 4.32 For ` = 1, . . . ,m we have

λ(Ẑ`) =

{
2∑̀
i=1

niωi | nk ∈ N

}
Moreover

λ(Ẑm+1) =

{
n∑
i=1

niωi | nk ∈ N

}
Proof. Let u ∈ Z`, with ` = 1, . . . ,m + 1. If C(u)◦ = RC with R = Ru(C(u)), C connected
reductive, then C is of type C`−1Dn−2`+1 ([12], §13.1). In particular C is semisimple since
n− 2`+ 1 is even. Hence λ(Ẑ`) is free by Lemma 4.4.

For ` = m + 1, we have Z(G) 6≤ C(x)◦. In fact, we can take u = xα1(1)xα3(1) · · ·xαn(1)
in Zm+1. Then S = Hω̌2Hω̌4 · · ·Hω̌n−1 is a maximal torus of C(u)◦, and since Z(G)∩S = {1},
we get C(u) = C(u)◦ × Z(G) by Lemma 4.3. We are left to deal with ` = 1. However for each
`, the image Q of (u − 1)2 in V (ω1) (which is the natural module for Bn) has dimension 1, so
C(u)◦ acts trivially on Q by Lemma 4.5, and ω1 ∈ λ(Ẑ`). �

We summarize the results obtained in
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O λ(O) λ(Ô)

X`

` = 1, . . . ,m

∑̀
i=1

n2i ω2i

Z`
` = 1, . . . ,m

2∑̀
i=1

niωi,
∑̀
i=1

n2i−1 even
2∑̀
i=1

niωi

Zm+1
∑n

i=1 niωi, nn even
n∑
i=1

niωi

Table 13: λ(O), λ(Ô) for unipotent classes in Bn, n = 2m+ 1.

In particular Ẑm+1 is a model homogeneus space, and in fact the principal one, by [28], 3.3 (2).

In section 5, we shall determine the decomposition of the coordinate ring of the closure O
of O = Zm+1. For this purpose we shall use the fact that if x ∈ O ∩ w0B, then αn−1 occurs
in x (see the discussion before Proposition 3.11). In [9], proof of Theorem 12, we exhibit an
element v in the corresponding class in SO(2n + 1). Working in SO(2n + 1), we find that v =
u′xαn−1(−1)ẇ0xαn−1(−1)u for a certain representative ẇ0 of w0, u, u′ ∈

∏
β∈Φ+\{αn−1}Xβ .

Then
x = (u′xαn−1(−1))−1vu′xαn−1(−1) = ẇ0xαn−1(−2)u′′

for a certain u′′ ∈
∏
β∈Φ+\{αn−1}Xβ . The calculation is reduced to determining the first upper

off-diagonal of upper unipotent n × n matrices X , Y such that tX−1Y = −Σ, where Σ is the
n× n matrix with diagonal equal to (−1, 0, . . . , 0), first upper off-diagonal equal to (1, 1, . . . , 1),
first lower off-diagonal equal to (−1,−1, . . . ,−1) and zero elsewhere.

4.4.5 Semisimple classes in Bn, n odd n = 2m+ 1

Following the notation in [9], Tables 1, 5 we get

D`Bn−`, ` = 1, . . . ,m ←→ J` ←→ sβ1sδ1 · · · sβ`sδ`
D`Bn−`, ` = m+ 1, . . . , n ←→ M2(n−`)+1 ←→ sγ1sγ2 · · · sγ2(n−`)+1

T1An−1 ←→ ∅ ←→ w0

TypeD1Bn−1 = T1Bn−1. Consider the element σ1 = exp(πiω̌1),H = C(σ1). ThenH is of type
T1Bn−1. If we put λ = eζ , then the image of exp(ζω̌1) in SO(2n+1) is diag(1, λ, In−1, λ

−1, In−1).
We have C(exp(ζω̌1)) = H ⇐⇒ ζ ∈ C \ 2πiZ.

For ζ ∈ C \ 2πiZ, we consider the element

yζ = g exp(ζω̌1)g−1
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where g = x−β1(1)x−δ1(1). Now β1(exp(ζω̌1)) = δ1(exp(ζω̌1)) = eζ , and we may take xζ of
the form

xζ = nβ1nδ1hβ1(e−ζ − 1)hδ1(e−ζ − 1) exp(ζω̌1)xβ1

(
1 + e−ζ

1− e−ζ

)
xδ1

(
1 + e−ζ

1− e−ζ

)
We have w = sβ1sδ1 , Tw = 〈hα1(−1)〉 × (Tw)◦. Then hα1(−1) ∈ C(xζ), since β1(hα1(−1)) =
δ1(hα1(−1)) = 1, so that Tx = Tw. Therefore

λ(Oexp(ζω̌1)) = {2n1ω1 + n2ω2 | nk ∈ N}

for ζ ∈ C \ 2πiZ (as for Z1).

Type DkBn−k, k = 2, . . . , n.
Consider the element σk = exp(πiω̌k), H = C(σk) (the image of σk in SO(2n + 1) is

diag(1,−Ik, In−k,−Ik, In−k)). Then H is of type DkBn−k, Z(H) = C(H) = 〈σk〉Z(G) (in
fact if k is even we have σ2

k = 1 and Z(H) = 〈σk〉 × Z(G), if k is odd we have σ2
k = han(−1)

and Z(H) = 〈σk〉). For our purposes it is enough to deal with the elements σk.
Assume k = 2, . . . ,m, and let

x = nβ1nδ1 · · ·nβknδk

Then x ∼ hβ1(i)hδ1(i) · · ·hβk(i)hδk(i) ∼ σk. Now

Tw = 〈hα1(−1)〉 × · · · × 〈hα2`−1
(−1)〉 × (Tw)◦

and clearly Tx = Tw. It follows that

λ(Oexp(πiω̌`)) =

{
2`−1∑
i=1

2niωi + n2`ω2` | ni ∈ N

}
for ` = 2, . . . ,m.

Assume k = m+ 1, . . . , n.
In [9], proof of Theorem 2.15, we considered a certain conjugate (in SO(2n+1)) Żn−k of the

image of σk in SO(2n + 1): Żn−k is a representative of the element Zn−k = sγ1 · · · sγ2(n−k)+1
.

Therefore the element
x = nγ1 · · ·nγ2(n−k)+1

t

is conjugate to σk for a certain t ∈ T . Now we have the following generalization of Lemma 4.30

Lemma 4.33 Let w = sγ1 · · · sγ` for ` = 1, . . . , n. Then

Tw =

{
(Tw)◦ × 〈hα1(−1)〉 × · · · × 〈hα`−1

(−1)〉 for ` = 1, . . . , n− 1
Tw0 = T2 for ` = n
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Proof. We have (1− w)P = Z〈2ω1, . . . , 2ω`−1, ω`〉 For ` < n. �

Since clearly Tx = Tw, we get

λ(Oexp(πiω̌`)) =


2(n−`)∑
i=1

2niωi + n2(n−`)+1ω2(n−`)+1 | nk ∈ N


for ` = m+ 2, . . . , n, and

λ(Oexp(πiω̌m+1)) =

{
n∑
i=1

2niωi | nk ∈ N

}

Type T1An−1.
Consider the element exp(ω̌n), H = C(exp(ω̌n)). Then H is of type T1An−1, Z(H) =

C(H) = exp(Cω̌n). If we put λ = eζ , then the image of exp(ζω̌n) in SO(2n + 1) is bλ =
diag(1, λIn, λ−1In). We have C(exp(ζω̌n)) = H ⇐⇒ ζ ∈ C \ πiZ.

With the same argument used for even n we conclude that Txζ = Z(G) = 〈hαn(−1)〉 for any
xζ ∈ Oexp(ζω̌n) ∩ w0B, so that

λ(Oexp(ζω̌n)) =

{
n∑
i=1

niωi | nk ∈ N, nn even

}

for ζ ∈ C \ πiZ.

We got

O H λ(O)
exp(ζω̌1)

ζ ∈ C \ 2πiZ T1Bn−1 2n1ω1 + n2ω2

exp(πiω̌`)
` = 2, . . . ,m

D`Bn−`

2`−1∑
i=1

2niωi + n2`ω2`

exp(πiω̌`)
` = m+ 2, . . . , n

D`Bn−`

2(n−`)∑
i=1

2niωi + n2(n−`)+1ω2(n−`)+1

exp(πiω̌m+1) Dm+1Bm

n∑
i=1

2niωi

exp(ζω̌n)
ζ ∈ C \ πiZ T1An−1

n∑
i=1

niωi, nn even

Table 14: λ(O) for semisimple classes in Bn, n = 2m+ 1.
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4.4.6 Mixed classes in Bn, n odd, n = 2m+ 1

From [9], Table 4, we get

σnxβ1(1) · · ·xβ`(1), ` = 1, . . . ,m ←→ M2`+1 ←→ sγ1 · · · sγ2`+1

Class of σnxβ1(1) · · ·xβm(1). Arguing in the same way as for the case of even n, we get Tx =
Z(G). In fact here the only difference is that σn has order 4, σ2

n = z, where z = hαn(−1). Then
{σn, zσn = σ−1

n } is still a W -orbit.
Hence

λ(Oσnxβ1 (1)···xβm (1)) =

{
n∑
i=1

niωi | nk ∈ N, nn even

}
Moreover we know that the centralizer of xβ1(1) · · ·xβm(1) in Dn is connected (since n is odd,
see Table 8), therefore C(x) is connected, and

λ(Ôσnxβ1 (1)···xβm (1)) = λ(Oσnxβ1 (1)···xβm (1))

Class of σnxβ1(1) · · ·xβ`(1), ` = 1, · · · ,m − 1. Arguing as in the case of even n, we obtain
Tx = (Tw)◦, so that

λ(Ôσnxβ1 (1)···xβ` (1)) = λ(Oσnxβ1 (1)···xβ` (1)) =

{
2`+1∑
i=1

niωi | nk ∈ N

}

We got

O λ(O) = λ(Ô)

σnxβ1(1) · · ·xβ`(1)
` = 1, · · · ,m− 1

2`+1∑
i=1

niωi

σnxβ1(1) · · ·xβm(1)
n∑
i=1

niωi, nn even

Table 15: λ(O), λ(Ô) for mixed classes in Bn, n = 2m+ 1.

4.5 Type E6.

We put
β1 = (1, 2, 2, 3, 2, 1), β2 = (1, 0, 1, 1, 1, 1)
β3 = (0, 0, 1, 1, 1, 0), β4 = (0, 0, 0, 1, 0, 0)
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4.5.1 Unipotent classes in E6.

r r r�
���

���
�
A1

2A1

3A1

Unipotent classes in E6

Then
A1 ←→ {1, 3, 4, 5, 6} ←→ sβ1

2A1 ←→ {3, 4, 5} ←→ sβ1sβ2

3A1 ←→ ∅ ←→ w0 = sβ1 · · · sβ4

We have

(1− w)P =


Z〈ω2〉 for w = sβ1

Z〈ω1 + ω6, ω2〉 for w = sβ1sβ2

Z〈ω1 + ω6, 2ω2, ω3 + ω5, 2ω4〉 for w = w0

Here Z(G) = 〈hα1(ξ)hα6(ξ−1)hα3(ξ−1)hα5(ξ)〉, where ξ is a primitive 3rd-root of 1.

Class A1. By Proposition 4.2, Tw is connected (in fact (1− w)P = Z〈ω2〉).
Class 2A1. Here Tw is connected since(1− w)P = Z〈ω1 + ω6, ω2〉.
Class 3A1. Since (1− w)P = Z〈ω1 + ω6, 2ω2, ω3 + ω5, 2ω4〉, we get

Tw0 = (Tw0)◦ ×R , R = 〈hα2(−1)〉 × 〈hα4(−1)〉

and, by 4.11, (Tw0)◦ = {hα1(t1)hα6(t−1
1 )hα3(t3)hα5(t−1

3 ) | t1, t3 ∈ C∗}.
Here ΨJ has basis {β2, β3, α4, α2}, K = C((Tw)◦)′ is of type D4 (and is simply-connected)

and Z(K) = 〈hα1(−1)hα6(−1), hα3(−1)hα5(−1)〉. Since x ∈ K and lies over the longest
element of the Weyl group of K, from the result for the maximal spherical unipotent class in D4

we get Tx ∩K = Z(K). But Z(K) ≤ (Tw0)◦, so that R ∩ Z(K) = 1, and Tx = (Tw0)◦.
We have shown that in all cases Tx = (Tw)◦, hence

O λ(O) = λ(Ô)
A1 n2ω2

2A1 n1(ω1 + ω6) + n2ω2

3A1 n1(ω1 + ω6) + n3(ω3 + ω5) + n2ω2 + n4ω4

Table 16: λ(O), λ(Ô) for unipotent classes in E6.
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4.5.2 Semisimple classes in E6

Following the notation in [9], Table 2, we have

A1A5 ←→ ∅ ←→ w0

D5 T1 ←→ {3, 4, 5} ←→ sβ1sβ2

Type A1A5.

The elements of G whose centralizer is of type A1A5 are conjugate, up to a central element, to
exp(πiω̌2) = hα1(−1)hα4(−1)hα6(−1). Let x = nβ1 · · ·nβ4 . Then x2 = hβ1(−1) · · ·hβ4(−1) =
1, and x ∼ exp(πiω̌2). Then clearly Tx = Tw0 , so that

λ(Oexp(πiω̌2)) = {n1(ω1 + ω6) + n3(ω3 + ω5) + 2n2ω2 + 2n4ω4 | nk ∈ N}

Type D5T1.

Let K = C(exp(πiω̌1)). Then C(K) = Z(K) = exp(C ω̌1) and C(exp(ζω̌1)) = K ⇔ ζ ∈
C \ 2πiZ. Since Tw is connected we get

λ(Oexp(ζω̌1)) = {n1(ω1 + ω6) + n2ω2 | nk ∈ N}

if ζ ∈ C \ 2πiZ.

We obtained

O H λ(O)
exp(πiω̌2) A1A5 n1(ω1 + ω6) + n3(ω3 + ω5) + 2n2ω2 + 2n4ω4

exp(ζω̌1)
ζ ∈ C \ 2πiZ D5T1 n1(ω1 + ω6) + n2ω2

Table 17: λ(O) for semisimple classes in E6.

4.6 Type E7.

Here Z(G) = 〈hα2(−1)hα5(−1)hα7(−1)〉. We put

β1 = (2, 2, 3, 4, 3, 2, 1), β2 = (0, 1, 1, 2, 2, 2, 1), β3 = (0, 1, 1, 2, 1, 0, 0),
β4 = α7, β5 = α5, β6 = α3, β7 = α2
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4.6.1 Unipotent classes in E7.

r rHH
HH

�
��

�
r r��
��

HHH
H

r����
A1

2A1

(3A1)′′
(3A1)′

4A1

Unipotent classes in E7

Then
A1 ←→ {2, 3, 4, 5, 6, 7} ←→ sβ1

2A1 ←→ {2, 3, 4, 5, 7} ←→ sβ1sβ2

(3A1)′′ ←→ {2, 3, 4, 5} ←→ sβ1sβ2sβ4

(3A1)′ ←→ {2, 5, 7} ←→ sβ1sβ2sβ3sβ6

4A1 ←→ ∅ ←→ w0 = sβ1 · · · sβ7

We have

(1− w)P =


Z〈ω1〉 for w = sβ1

Z〈ω1, ω6〉 for w = sβ1sβ2

Z〈ω1, ω6, 2ω7〉 for w = sβ1sβ2sβ4

Z〈2ω1, 2ω3, ω4, ω6〉 for w = sβ1sβ2sβ3sβ6

Class A1. By Proposition 4.2, Tw is connected.

Class 2A1. Since (1− w)P = Z〈ω1, ω6〉, Tw is connected.

Class (3A1)′. Note that Z(G) ≤ (Tw)◦. Since (1− w)P = Z〈2ω1, 2ω3, ω4, ω6〉, we get

Tw = (Tw)◦ × 〈hα1(−1)〉 × 〈hα3(−1)〉

Here ΨJ has basis {α1, α3, β2, β3}, K = C((Tw)◦)′ is of type D4 (and is simply-connected) and
Z(K) = 〈hα2(−1)hα7(−1), hα2(−1)hα5(−1)〉. Since x ∈ K and lies over the longest element
of the Weyl group of K, from the result for the maximal spherical unipotent class in D4 we get
Tx ∩K = Z(K). But Z(K) ≤ (Tw)◦, so that R ∩ Z(K) = 1, and Tx = (Tw)◦.

Class (3A1)′′. Since (1− w)P = Z〈ω1, ω6, 2ω7〉, we have

Tw = (Tw)◦ × 〈hα7(−1)〉 = (Tw)◦ × Z(G)

and Tx = Tw.
Do deal with the simply-connected cover of (3A1)′′, we note that the reductive part of C(x)◦

is of type F4 ([12], p. 403), so in particular has rank 4: hence S =
∏
j∈J Hαj is a maximal torus

of C(x)◦. Since Z(G) 6≤ S, it follows from Proposition 3.20 that T ∩ C(x)◦ = (Tw)◦ (and
C(x) = C(x)◦ × Z(G)).
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Class 4A1. We claim that Tx = Z(G). Suppose for a contradiction there exists an involution
σ ∈ Tx \ Z(G). Then x ∈ K = C(σ) and K is of type D6A1 (see next subsection). By
comparison of weighted Dynkin diagrams, the unipotent spherical class of K over w0 does not
correspond to the class 4A1 of E7 (it corresponds to the class A2 +A1), a contradiction.

Do deal with the simply-connected cover of 4A1, we note that the reductive part of C(x)◦ is
of type C3 ([12], p. 403), so in particular it is semisimple: by Lemma 4.4, the monoid λ( ˆ4A1) is
free, and from

λ(4A1) =

{
7∑
i=1

niωi, n2 + n5 + n7 even

}
it follows that

λ( ˆ4A1) =

{
7∑
i=1

niωi

}
hence T ∩ C(x)◦ = 1 and C(x) = C(x)◦ × Z(G).

We obtained

O λ(O) λ(Ô)
A1 n1ω1

2A1 n1ω1 + n6ω6

(3A1)′′ n1ω1 + n6ω6 + 2n7ω7 n1ω1 + n6ω6 + n7ω7

(3A1)′ n1ω1 + n3ω3 + n4ω4 + n6ω6

4A1

7∑
i=1

niωi, n2 + n5 + n7 even
7∑
i=1

niωi

Table 18: λ(O), λ(Ô) for unipotent classes in E7.

In particular the simply-connected cover of 4A1 is a model homogeneus space, and in fact the
principal one, by [28], 3.3 (8).

Remark 4.34 From our description, it follows that C(x) is connected for the classes A1, 2A1 and
(3A1)′, while for (3A1)′′ and 4A1 we have C(x) = C(x)◦ × Z(G). This also follows from the
tables in [1], where all unipotent classes are considered.

4.6.2 Semisimple classes in E7

Following the notation in [9], Table 2, we have

E6T1 ←→ {2, 3, 4, 5} ←→ sβ1sβ2sβ4

D6A1 ←→ {2, 5, 7} ←→ sβ1sβ2sβ3sβ6

A7 ←→ ∅ ←→ w0
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Let Y be the set of elements y of order 4 of T such that y2 = z, where Z(G) = 〈z〉. Then Y
is the disjoint union of 2 conjugacy classes Y1, Y2, where C(y) is of type A7 if y ∈ Y1, of type
E6T1 if y ∈ Y2. A representative for Y1 is exp(πiω̌2), one for Y2 is exp(πiω̌7).

Type A7. Here we consider K = C(exp(πiω̌2)). Then K is of type A7, Z(K) = 〈exp(πiω̌2)〉
is of order 4. Let x = nβ1 · · ·nβ7 . Then x2 = hβ1(−1) · · ·hβ7(−1) = z, x ∈ w0B (and
x ∼ exp(πiω̌2)), and clearly Tx = T2.

Type E6T1. Let K = C(exp(πiω̌7)). Then C(K) = Z(K) = 〈exp(C ω̌7)〉. Now exp(ζω̌7) =
1⇔ ζ ∈ 4πiZ, and C(exp(ζω̌7)) = K ⇔ ζ ∈ C \ 2πiZ.

In this case we have
Tw = (Tw)◦Z(G)

so it is not necessary to give explicitly the form of an element in wB ∩ O.
Anyway, we consider the element

yζ = g exp(ζω̌7)g−1

where g = nβ1nβ2nα7xβ1(−1)xβ2(−1)xα7(−1). Now β1(exp(ζω̌7)) = β2(exp(ζω̌7)) =
= α7(exp(ζω̌7)) = eζ , and w(ω7) = −ω7 so that

xζ = nβ1nβ2nα7hxβ1(ξ)xβ2(ξ)xα7(ξ) ∈ Oexp(ζω̌7) ∩ nβ1nβ2nα7B

for a certain h ∈ T , with ξ = 1+eζ

1−eζ .
Since Tw = (Tw)◦ × Z(G), we conclude that Txζ = Tw, as for the class (3A1)′′.

Type D6A1. The group E7 has 2 classes of non-central involutions: Oσ and Oσz , where σ =
exp(πiω̌1) = hβ1(−1). In fact there are 127 involutions in T , and z is central. The W -orbit of σ,
{hα(−1) | α ∈ Φ+}, consists of |Φ+ | = 63 elements, since if the roots α and β are congruent
modulo 2ZΦ, then β = ±α ([3], ex. 1, p. 242). Since σz is not of the form hα(−1), the set
{hα(−1)z | α ∈ Φ+} is another W -orbit (the fact that σz is not conjugate to σ also follows from
the discussion in section 6).

Let x = nβ1nβ2nβ3nα3 . Then x2 = hβ1(−1)hβ2(−1)hβ3(−1)hα3(−1) = 1, so that x is an
involution, and clearly Tx = Tw.

We obtained

O H λ(O)
exp(ζω̌7)

ζ ∈ C \ 2πiZ E6T1 n1ω1 + n6ω6 + 2n7ω7

exp(πiω̌1) D6A1 2n1ω1 + 2n3ω3 + n4ω4 + n6ω6

exp(πiω̌2) A7

7∑
i=1

2niωi

Table 19: λ(O) for semisimple classes in E7.
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4.7 Type E8.

We put

β1 = (2, 3, 4, 6, 5, 4, 3, 2), β2 = (2, 2, 3, 4, 3, 2, 1, 0), β3 = (0, 1, 1, 2, 2, 2, 1, 0),
β4 = (0, 1, 1, 2, 1, 0, 0, 0), β5 = α7, β6 = α5, β7 = α3, β8 = α2

4.7.1 Unipotent classes in E8.

r r r r
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A1

2A1

3A1

4A1

Unipotent classes in E8

Then
A1 ←→ {1, 2, 3, 4, 5, 6, 7} ←→ sβ1

2A1 ←→ {2, 3, 4, 5, 6, 7} ←→ sβ1sβ2

3A1 ←→ {2, 3, 4, 5} ←→ sβ1sβ2sβ3sβ5

4A1 ←→ ∅ ←→ w0 = sβ1 · · · sβ8

We have

(1− w)P =


Z〈ω8〉 for w = sβ1

Z〈ω1, ω8〉 for w = sβ1sβ2

Z〈ω1, ω6, 2ω7, 2ω8〉 for w = sβ1sβ2sβ3sβ5

Class A1. By Proposition 4.2, Tw is connected.

Class 2A1. Since (1− w)P = Z〈ω1, ω8〉, Tw is connected.

Class 3A1. Here ΨJ has basis {α7, α8, β2, β3}, K = C((Tw)◦)′ is of type D4 and has center
〈hα3(−1)hα5(−1), hα2(−1)hα3(−1)〉 which is contained in (Tw)◦. Hence Tx = (Tw)◦.

Class 4A1. We claim that Tx = 1. Suppose for a contradiction there exists an involution σ ∈ Tx.
Then x ∈ K = C(σ). From the classification of involutions of E8, it follows that K is of type
D8 or E7A1. The class of x in K is spherical, and by the uniqueness of Bruhat decomposition, x
lies over the longest element of the Weyl group of K, which is w0. By comparison of weighted
Dynkin diagrams, the unipotent spherical class of K over w0 does not correspond to the class 4A1

of E8 (in both cases it corresponds to the class A2 +A1), a contradiction.

We have shown that in all cases Tx = (Tw)◦, so that C(x) is connected, as also follows from
[12], p. 405. We have
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O λ(O) = λ(Ô)
A1 n8ω8

2A1 n1ω1 + n8ω8

3A1 n1ω1 + n6ω6 + n7ω7 + n8ω8

4A1

8∑
i=1

niωi

Table 20: λ(O), λ(Ô) for unipotent classes in E8.

In particular 4A1 is a model homogeneus space (see [2], Theorem 1.1), and in fact the principal
one, by [28], 3.3 (9).

4.7.2 Semisimple classes in E8.

Following the notation in [9], Table 2, we have

A1E7 ←→ {2, 3, 4, 5} ←→ sβ1sβ2sβ3sβ5

D8 ←→ ∅ ←→ w0

TypeD8. The elements ofG whose centralizer is of typeD8 are conjugate to exp(πiω̌1). Let x =
nβ1 · · ·nβ8 . Then x2 = hβ1(−1) · · ·hβ8(−1) = 1. Moreover, x ∈ w0B implies x ∼ exp(πiω̌1).
Clearly Tx = Tw0 = T2.

Type A1E7. The elements of G whose centralizer is of type A1E7 are conjugate to exp(πiω̌8).
Let x = nβ1nβ2nβ3nα7 . Then x is conjugate to hβ1(i)hβ2(i)hβ3(i)hα7(i) =
= hα2(−1)hα5(−1)hα7(−1)hα8(−1) whose centralizer is of type A1E7, hence x ∼ exp(πiω̌8).
Then Tx = Tw.

We obtained

O H λ(O)
exp(πiω̌8) A1E7 n1ω1 + n6ω6 + 2n7ω7 + 2n8ω8

exp(πiω̌1) D8

8∑
i=1

2niωi

Table 21: λ(O) for semisimple classes in E8.

4.8 Type F4.

We put
β1 = (2, 3, 4, 2), β2 = (0, 1, 2, 2),
β3 = (0, 1, 2, 0), β4 = (0, 1, 0, 0)
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4.8.1 Unipotent classes in F4.

r r r
��

�
�
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A1

Ã1

A1 + Ã1

Unipotent classes in F4

Then
A1 ←→ {2, 3, 4} ←→ sβ1

Ã1 ←→ {2, 3} ←→ sβ1sβ2

A1 + Ã1 ←→ ∅ ←→ w0 = sβ1 · · · sβ4

We have

(1− w)P =

{
Z〈ω1〉 for w = sβ1

Z〈ω1, 2ω4〉 for w = sβ1sβ2

Class A1. By Proposition 4.2, Tw is connected.
Class Ã1. Since (1−w)P = Z〈ω1, 2ω4〉, we have Tw = (Tw)◦×〈hα4(−1)〉. From [9], proof of
Theorem 2.12, we get

x−β1(1)x−β2(1) ∈ O ∩BwB ∩B−

hence we may choose
x = nβ1nβ2hxβ1(2)xβ2(2)

for a certain h ∈ T . Since Z〈β1, β2〉 = Z〈ω1, 2ω4〉, we get 〈hα4(−1)〉 ≤ Tx, and Tx = Tw.
Since [C(x) : C(x)◦] = 2 ([12], p. 401), we must have C(x) = C(x)◦ : 〈hα4(−1)〉 and

C(x)◦ ∩ T = (Tw)◦.

ClassA1 + Ã1. Here Tw0 = T2. We consider the subgroupK generated by the long roots ofG: K
is of typeD4 and it is simply-connected ([42], §II 5, 5.4 (a)). In factK = C(〈hα3(−1), hα4(−1)〉),
and Z(K) = C(K) = 〈hα3(−1), hα4(−1)〉. Following [9], proof of Theorems 2.12 and 2.11,
we have x ∈ K (equivalently one can show, by using weighted Dynkin diagrams, that the class
in G of a unipotent element in the class Z2 of K is precisely A1 + Ã1). But then we must have
Tx = Z(K) by the results obtained for D4, so that

λ(A1 + Ã1) = {n1ω1 + n2ω2 + 2n3ω3 + 2n4ω4 | nk ∈ N}

By [12], p. 401, C(x) is connected. We obtained

O λ(O) λ(Ô)
A1 n1ω1

Ã1 n1ω1 + 2n4ω4 n1ω1 + n4ω4

A1 + Ã1 n1ω1 + n2ω2 + 2n3ω3 + 2n4ω4

Table 22: λ(O), λ(Ô) for unipotent classes in F4.
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4.8.2 Semisimple classes in F4.

Following the notation in [9], Table 2, we have

A1C3 ←→ ∅ ←→ w0

B4 ←→ {1, 2, 3} ←→ sγ1

where γ1 is the highest short root (1, 2, 3, 2).
Type A1C3. The elements of G whose centralizer is of type A1C3 are conjugate to exp(πiω̌1).
Let

x = nβ1 · · ·nβ4

Then x2 = hβ1(−1) · · ·hβ4(−1) = 1, and x ∈ w0B implies x ∼ exp(πiω̌1). Clearly Tx = T2.

Type B4. The elements of G whose centralizer is of type B4 are conjugate to exp(πiω̌4). By
Proposition 4.2, Tw is connected, hence Tx = Tw. Then

λ(Oexp(πiω̌4)) = {n4ω4 | nk ∈ N}

We obtained

O H λ(O)

exp(πiω̌1) A1C3

4∑
i=1

2niωi

exp(πiω̌4) B4 n4ω4

Table 23: λ(O) for semisimple classes in F4.

4.8.3 Mixed class in F4.

We put f2 = exp(πiω̌4) = hα3(−1). Then following [9], Table 4

Of2xβ1 (1) ←→ ∅ ←→ w0

As we already recalled, G has 2 classes of involutions. More precisely, in T there are 15
involutions, and under the action of W they fall in the 2 classes

{hα(−1) | α ∈ Φ+ is long} , {hα(−1) | α ∈ Φ+ is short}

where {hα(−1) | α ∈ Φ+ is long}, consists of 12 elements, since if the long roots α and β
are congruent modulo 2ZΦ, then β = ±α, while {hα(−1) | α ∈ Φ+ is short} consists of 3
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elements: {hα4(−1), hα3(−1), hα3(−1)hα4(−1)} which are the involutions in the center of the
D4-subgroup D of G generated by the long roots.

SupposeH is aB4-subgroup ofG. ThenH has 4 (non-trivial) unipotent spherical classes, and
by comparison of weighted Dynkin diagrams, the class X1 corresponds to the class A1 of G, the
classes X2 and Z1 to Ã1, and the class Z2 to A1 + Ã1.

Suppose H is a C3A1-subgroup of G. Then H has 7 (non-trivial) unipotent spherical unipo-
tent classes, and by comparison of weighted Dynkin diagrams, the classes (X1, 1) and (1, X1)
correspond to the class A1 of G, the classes (X1, X1) and (X2, 1) to Ã1, the classes (X2, X1) and
(X3, 1) to A1 + Ã1 and the class (X3, X1) to A2.

Now let x ∼ f2xβ1(1), x ∈ w0B. We claim that Tx = 1. Let x = xsxu be the Jordan-
Chevalley decomposition of x. In particular xs ∼ f2 and xu ∼ xβ1(1).

Suppose for a contradiction there exists an involution σ ∈ Tx. Then x ∈ K = C(σ), with K
of type either B4 or C3A1. In both cases we have Z(K) = 〈σ〉. Since the class (in G) of xu is
spherical, the class of xu in K is spherical, and by the uniqueness of Bruhat decomposition, x lies
over the longest element of the Weyl group of K, which is w0.

Now x is conjugate in K to an element of the form su, with s ∈ T , u ∈ U ∩K, [s, u] = 1.
Since s ∼ f2, we have s ∈ {hα4(−1), hα3(−1), hα3(−1)hα4(−1)}, and so s lies in Z(D).

Let us assume K is of type B4. Then u lies in the class X1 of K, so that the class of x in K,
up to a central element of K, is the class X1 or the mixed class Oσ4xβ1 (1) (standard notation for
B4). In both cases x does not lie over w0 (see the tables 10, 12 for m = 2).

Let us finally assume K is of type C3A1. It follows that u must be either in (X1, 1) or in
(1, X1), and s = s1s2, with s1 ∈ T (C3), s2 ∈ T (A1). We observe that T (C3) ∩ T (A1) =
Z(K) = 〈σ〉. We claim that s2 lies in the center of A1 (i.e. s2 = 1 or σ). Up to the W -action, we
may assume σ = exp(πiω̌1). Then from the fact that s ∈ {hα4(−1), hα3(−1), hα3(−1)hα4(−1)},
it follows that either s2 = 1, or s2 = σ, and we are done. If we write u = u1u2, with u1 ∈ C3,
u2 ∈ A1, we must have that s1u1 lies over w0 in C3, and s2u2 lies over w0 in A1. But s2 is central
in A1, therefore we must have u2 6= 1, so that u is in the class (1, X1). But then the involution
s1 does not lie over w0 (in C3), by the results on semisimple conjugacy classes of C3, see table
4: only the classes Oexp(ζω̌3) for ζ ∈ C \ 2πiZ are over w0, but there are no involutions in these
classes, since exp(2πiω̌3) has order 2 (and is central).

We have therefore proved that Tx = 1. Hence

O λ(O) = λ(Ô)

f2xβ1(1)
4∑
i=1

niωi

Table 24: λ(O) for the mixed class in F4.
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In particular Of2xβ1 (1) is a model homogeneus space, and in fact the principal one, by [28], 3.3
(6), see also [28] p. 300.

4.9 Type G2.

We put β1 = (3, 2), β2 = α1.

4.9.1 Unipotent classes in G2.

r r��
��

A1

Ã1

Unipotent classes in G2

Then
A1 ←→ {1} ←→ sβ1

Ã1 ←→ ∅ ←→ w0 = sβ1sβ2

Class A1, w = sβ1 . By Proposition 4.2, Tw is connected, so

λ(A1) = {n2ω2 | n2 ∈ N}

Class Ã1. We have Tw0 = T2. We claim that Tx = 1. Suppose for a contradiction there exists an
involution σ ∈ Tx. Then x ∈ K = C(σ). From the classification of involutions of G2, it follows
that K is of type A1Ã1. The class of x in K is spherical, and by the uniqueness of Bruhat decom-
position, x lies over the longest element of the Weyl group of K, which is w0. By comparison of
weighted Dynkin diagrams, a unipotent element of K over w0 does not correspond to the element
Ã1 of G2 (it corresponds to the subregular class G2(a1), [12], p.401), a contradiction.

We got

O λ(O) = λ(Ô)
A1 n2ω2

Ã1 n1ω1 + n2ω2

Table 25: λ(O), λ(Ô) for unipotent classes in G2.

In particular Ã1 is a model homogeneus space, and in fact the principal one, by [28], 3.3 (5).

Using the embedding of G into SO(7), one can determine explicitly an x ∈ O ∩ w0B, where
O = Ã1. Then one can check that both α1 and α2 occur in x (see the discussion before Proposition
3.11). This fact will be used in section 5 to determine C[O].
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4.9.2 Semisimple classes in G2.

Following the notation in [9], Table 2, we have

A1Ã1 ←→ ∅ ←→ w0

A2 ←→ {2} ←→ sγ1

where γ1 is the highest short root (2, 1).
The group G2 has 1 class of involutions. However there is also a class of elements of order 3

which is spherical.
Type A1Ã1.

The elements of G whose centralizer is of type A1Ã1 are conjugate to exp(πiω̌2). Let

x = nβ1nβ2

Then x2 = hβ1(−1)hβ2(−1) = 1 and x ∈ w0B. Clearly Tx = T2.

Type A2. The elements of G whose centralizer is of type A2 are conjugate to exp(2πi
3 ω̌1). By

Proposition 4.2, Tw is connected, hence Tx = Tw.
We obtained

O H λ(O)

exp(πiω̌2) A1Ã1

2∑
i=1

2niωi

exp(2πi
3 ω̌1) A2 n1ω1

Table 26: λ(O) for semisimple classes in G2.

5 The coordinate ring of O

In this section we determine the decomposition of C[O] into simple G-modules, where O is the
closure of a spherical conjugacy class. Normality of conjugacy classes’ closures has been deeply
investigated. For a survey on this topic, see [23], §8, [8], 7.9, Remark (iii). The first observation
is that the problem is reduced to unipotent conjugacy classes in G ([23], 8.1). In the following we
are interested only in spherical conjugacy classes, and I recall the facts in this context. It is known
that the closure of the minimal nilpotent orbit is always normal ([44], Theorem 2). Hesselink
([17]) proved normality for several small orbits in the classical cases and certain orbits for the
exceptional cases: namely, following the notation in [12], A1 and 2A1 in E6, A1, 2A1 and (3A1)′′

in E7, A1 and 2A1 in E8, A1 and Ã1 in F4, A1 in G2.
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The classical groups have been considered in [24], [25]: for the special linear groups the
closure of every conjugacy class is normal. For the symplectic and orthogonal groups there ex-
ist conjugacy classes with non-normal closure. However every spherical conjugacy class in the
symplectic group has normal closure, since from the classification we know that the unipotent
spherical conjugacy classes have only 2 columns (see also [17], §5, Criterion 2). For special
orhogonal groups the results in [25] left open the cases of the very even unipotent classes. E.
Sommers proved that these have normal closure in [39]. Taking into account the results in [25]
and [39] it follows that every unipotent spherical conjugacy class in type Dn and Bn has normal
closure except for the maximal class Zm+1 in Bn, when n = 2m + 1, m ≥ 1. From this and the
classification of spherical conjugacy classes, it follows that every spherical conjugacy class has
normal closure, except for the above mentioned class in B2m+1.

For the exceptional groups, besides the results on the minimal orbit and Hesselink’s results,
in [27] it is shown that the orbit Ã1 in G2 has a non-normal closure (see also [23]): here there is
bijective normalization, contrary to the case of Zm+1 in B2m+1 where the closure is branched in
codimension 2. In [7] the case of type F4 is completely handled, and it follows that every spherical
conjugacy class has normal closure. The same holds for E6, as follows from [38] where every
nilpotent orbit is considered. For the remaining nilpotent orbits in E7 and E8, in [8], 7.9, Remark
(iii), A. Broer gives a list of orbits with normal closure. Among these there are all spherical
nilpotent orbits in E7 and E8. We may therefore state

Theorem 5.1 Let O be a spherical conjugacy class. Then O is normal except for the class Zm+1

in B2m+1 (m ≥ 1) and the class Ã1 in G2. �

Remark 5.2 In [13], Example 4.4, Proposition 4.5, the authors prove normal closure for nilpotent
orbits of height 2.

Remark 5.3 In [35], 6.1, normality of N sph (the union of all spherical nilpotent orbits, which is
in fact the closure of the unique maximal spherical nilpotent orbit) is discussed.

Remark 5.4 From (3.9) and Corollary 3.16 it is possible to prove normality ofO in certain cases.
For instance in type Cn from Table 3 we get λ(X`) = 2P+

w for every unipotent class X`. From
(3.9) it follows that λ(O) = λ(O), so that O is normal.

We recall that in general C[O] is the integral closure of C[O] in its field of fractions and that
C[O] = C[O] if and only if O is normal ([22], Proposition and Corollary in 8.3). By Theorem
5.1, to describe the decomposition of C[O] we are left to deal with Zm+1 in B2m+1 and with Ã1

in G2. We use the notation and the tables from section 4 for the cases B2m+1 and G2.
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Theorem 5.5 Let O = Zm+1 in Bn, n = 2m+ 1, m ≥ 1. Then

λ(O) =

{
2m∑
i=1

niωi |
m∑
i=1

n2i−1 even

}
∪

{
n∑
i=1

niωi | nn even, nn ≥ 2

}

Proof. Considering the (G-equivariant) restriction r : C[O] → C[Zm] = C[Zm], we get{∑2m
i=1 niωi |

∑m
i=1 n2i−1 even

}
≤ λ(O). In particular for every even j, ωj ∈ λ(O), and

for every pair of odd j, k, with 1 ≤ j ≤ k < n, ωj + ωk ∈ λ(O). By Corollary 3.12,
we have 2ωn ∈ λ(O). We show that ωj + 2ωn ∈ λ(O) for every odd j, j < n. We have
2ωn−1 −αn−1 = ωn−2 + 2ωn and since αn−1 occurs in x ∈ w0B ∩O, by Corollary 3.16, we get
ωn−2 +2ωn ∈ λ(O). Let j be odd, j < n−2. Then ωj +2ωn+2ωn−2 ∈ λ(O) since ωn−2 +2ωn
and ωj + ωn−2 are in λ(O).

There exists B-eigenvectors F , H in C[O] of weights ωj + 2ωn + 2ωn−2, 2ωn−2 respectively.
Then F/H is a rational function on O of weight ωj + 2ωn defined at least on O. However 2ωn−2

is also a weight in λ(Zm), so that H is non-zero on the dense B-orbit v in Zm. Hence F/H is
defined on v, and it is zero on v, since F is zero on Zm, ωj + 2ωn + 2ωn−2 not being in λ(Zm). It
follows that F/H is defined on Zm, so that it is a regular function on O ∪ Zm. By [25], Theorem
16.2, (iii), F/H extends to O, and ωj + 2ωn lies in λ(O). We have shown that

λ(O) ≥

{
2m∑
i=1

niωi |
m∑
i=1

n2i−1 even

}
∪

{
n∑
i=1

niωi | nn even, nn ≥ 2

}

We prove that also the opposite inclusion holds. Assume λ =
∑n

i=1 niωi ∈ λ(O). Since λ(O) ≤
λ(O), we have nn even. If nn 6= 0 we are done. So assume nn = 0. Let y ∈ Zm+1∩U−∩Bw0B.
We observe that y1 := limz→0 hαn(z)−1yhαn(z) exists, and lies in Zm ∩ U− ∩ BwB, where
w = w(Zm) (in [9] we give representatives for both classes in SO(2n + 1), so that this may be
checked directly). Now let F : O → C be a highest weight vector of weight λ, with F (y) = 1.
Then F (y1) = 1, since λ(hαn(z)) = 1 for every z ∈ C∗. Since x1 ∈ Zm ∩wB lies in the B-orbit
of y1, we have F (x1) 6= 0. But σ =

∏m
i=1 hα2i−1(−1) ∈ C(x1), so that F (x1) = F (σx1σ) =

λ(σ)F (x1) implies λ(σ) = 1, and we are done. �

Theorem 5.6 LetO = Ã1 inG2. Then λ(O) is the submonoid of λ(O) generated by 2ω1, 3ω1, ω2.

Proof. We know that ω1 ∈ λ(O) and it follows from the proof of [27], Theorem 3.13, that
ω1 6∈ λ(O). We have

2ω1 − α1 = ω2 , 2ω2 − α2 = 3ω1

hence, by Corollary 3.12 and 3.16, we get 2ω1, 3ω1, ω2 ∈ λ(O), since both α1, α2 occur in
x ∈ w0B ∩ O. Suppose for a contradiction that ω1 + nω2 ∈ λ(O) for a certain n ∈ N. There
exists B-eigenvectors F , H in C[O] of weights ω1 + nω2, nω2 respectively. Then F/H is a



58 Mauro Costantini

rational function onO of weight ω1 defined at least onO. However nω2 is also a weight in λ(A1),
so that H is non-zero on the dense B-orbit v in A1. Hence F/H is defined on v, and it is zero on
v, since F is zero on A1, because ω1 +nω2 is not in λ(A1). It follows that F/H is defined on A1.
But A1 has normal closure, so that F/H is defined on the closure of A1, and then on O, so that
there is in C[O] a B-eigenvector of weight ω1, a contradiction. �

6 The general case

LetG be as usual simply-connected,D ≤ Z(G),G = G/D, π : G→ G the canonical projection.
For g ∈ G we put g = π(g). We give a procedure to describe the coordinate ring ofOp, whereOp
is a spherical conjugacy class ofG. Passing toG, we have to consider the quotientG/π−1(CG(p)).
Let p = sv be the Jordan-Chevalley decomposition of p, w = w(Op). We may assume s ∈ T .
Let Ws,D = {w ∈ W | wsw−1 = zs, z ∈ D}, and Ns,D ≤ N such that Ns,D/T = Ws,D.
Then π−1(CG(p)) = C(v) ∩ Ns,DC(s). Reasoning as in [42], Corollary II, 4.4, we have a
homomorphism π−1(CG(p))→ D, g 7→ [g, p] with kernel C(p).

Let y ∈ Op ∩ BwB be such that L = LJ is adapted to C(y). If H = π−1(CG(y)), then
λ(Op) = λ(G/H) = {λ ∈ P+

w | λ(T ∩H) = 1} by Corollary 3.18. Let x ∈ Op ∩ wB, x = ẇu,
with u ∈ U and let Tx,D = T ∩ π−1(CG(x)). By Proposition 3.4, we get T ∩H = Tx,D, hence

(6.12) λ(Ox) = {λ ∈ P+
w | λ(Tx,D) = 1}

Let TwD = {t ∈ T | wtw−1 = zt, z ∈ D}. From the Bruhat decomposition, we get Tx,D ≤ TwD .
Moreover since w is an involution, for t ∈ TwD we have t = w2tw−2 = z2t, so that z2 = 1. In
particular π−1(CG(s)) = Ns,D2C(s), TwD = TwD2

, where D2 = D ∩ T2.
Let t ∈ T and write t = ab, with a ∈ (Tw)◦, b ∈ (Sw)◦. Then wtw−1 = tz with z ∈ D2 if

and only if z = b2. Since (Sw)◦ is connected, we get TwD = TwD2∩(Sw)◦ and

π−1(CG(x))
C(x)

∼=
Tx,D
Tx

↪→
TwD
Tw
∼= D2 ∩ (Sw)◦

with Tx = Tw∩C(u), Tx,D = TwD∩C(u). In particular, ifD2∩(Sw)◦ = 1, then λ(Ox) = λ(Ox).
This equality means that x is not conjugate to zx for any z ∈ D2, z 6= 1, and this may be
directly checked in many cases, for instance in type An or Cn (and of course always holds for x
unipotent). However, to deal with orthogonal groups and E7, we determined explicitly the cases
when D2 ∩ (Sw)◦ is non-trivial, and in each case we determined Tx,D and therefore λ(Ox).

Here we just observe that if D2 ∩ (Sw)◦ 6= 1, then D2 ∩ (Sw)◦ ∼= Z/2Z, except possibly for
D = Z(G) in type Dn, n = 2m. It turns out that in this case for exp(πiω̌m), we have Tx = T2

and Tx,Z(G)/Tx ∼= Z/2Z× Z/2Z. More precisely

Tx,Z(G) = Tw0

Z(G) = T2 〈hαn−1(i)hαn(i),
m∏
i=1

hα2i−1(i)〉
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so that in G/Z(G) = PSO(2n), n = 2m,

λ(O
exp(πiω̌m)

) =

{
n∑
k=1

2mkωk | mk ∈ N, mn−1 +mn and
m∑
i=1

m2i−1 even

}

We add that for SO(2n+ 1), n ≥ 1 and bλ = diag(1, λIn, λ−1In), λ 6= ±1, Obλ is a model orbit,
and in fact the principal one by [28], 3.3 (2′).

We conclude by presenting the results for E7.

6.1 Type E7, D = Z(G)

In this case Z(G) = 〈z〉, where z = hα2(−1)hα5(−1)hα7(−1) = exp(2πiω̌2) = exp(2πiω̌7).
There are 3 elements of the Weyl group to be considered and only for w = sβ1sβ2sβ4 and

w = w0 we have z ∈ (Sw)◦.

Class of type A7, w = w0. Here x = nβ1 · · ·nβ7 ,

Tw0

Z(G) = T2 〈exp(πiω̌2)〉 = T2 〈hα2(i)hα5(i)hα7(i)〉

since exp(πiω̌2) ∈ (Sw0)◦ = T and exp(πiω̌2)2 = z.

Proposition 6.1 Let G be of type E7, D = Z(G), then

λ(O
exp(πiω̌2)

) =

{
7∑
i=1

2niωi | n2 + n5 + n7 even

}

Proof. This follows from the fact that Tx,Z(G) = Tw0

Z(G). �

Classes of type E6T1, w = sβ1sβ2sβ4 , Tw = (Tw)◦ × 〈hα7(−1)〉 = (Tw)◦ × Z(G).
We have TwZ(G) = Tw〈exp(πiω̌7)〉 = Tw〈hα1(−1)hα7(i)〉. If ζ ∈ C \ 2πiZ, then

xζ = nβ1nβ2nα7hxβ1(ξ)xβ2(ξ)xα7(ξ) ∈ Oexp(ζω̌7) ∩ nβ1nβ2nα7B

for a certain h ∈ T , with ξ = 1+eζ

1−eζ , so that

Txζ ,Z(G) =

{
TwZ(G) if ζ ∈ πiZ \ 2πiZ
Tw if ζ ∈ C \ πiZ

since α7(exp(πiω̌7)) = −1.

Proposition 6.2 Let G be of type E7, D = Z(G), then

λ(O
exp(ζω̌7)

) =

{
{n1ω1 + n6ω6 + 2n7ω7 | n1 + n7 even} if ζ ∈ πiZ \ 2πiZ
{n1ω1 + n6ω6 + 2n7ω7} if ζ ∈ C \ πiZ



60 Mauro Costantini

�

Addendum In [9], Remark 5, we stated that if π1 : G → G/U is the canonical projection, and
O is a spherical conjugacy class, then π1|O : O → G/U has finite fibers. This is not correct, and
one can only say that π1|O has generically finite fibers (if w = w(O), and g ∈ O ∩ BwB, then
π−1

1 (gU) has |Tw/Tx | elements, where x ∈ O ∩ wB).
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[13] R. CHIRIVÌ, C. DE CONCINI, A. MAFFEI, On normality of cones over symmetric varieties,
Tohoku Math. J. 58, 599–616 (2006).

[14] C. DE CONCINI, V. G. KAC Representations of Quantum Groups at Roots of One, Progress
in Math. 92, Birkhauser, 471–506 (1990).

[15] C. DE CONCINI, V. G. KAC, C. PROCESI Some Quantum Analogues of Solvable Lie
Groups, Geometry and Analysis, Tata Institute of Fundamental Research, Bombay (1995).

[16] F. D. GROSSHANS, Algebraic homogeneous spaces and invariant theory, Springer-Verlag,
Berlin Heidelberg New York (1997).

[17] W. HESSELINK, The normality of closures of orbits in a Lie algebra, Comment. Math. Helv.
54, 105–110 (1979).

[18] J.E. HUMPHREYS, Introduction to Lie Algebras and Representation Theory, Springer-
Verlag, New York (1994).

[19] J.E. HUMPHREYS, Linear Algebraic Groups, Springer-Verlag, New York (1995).

[20] J.E. HUMPHREYS, Reflection Groups and Coxeter Groups, Cambridge University Press
(1990).

[21] N. IWAHORI, Centralizers of involutions in finite Chevalley groups, In: “Seminar on alge-
braic groups and related finite groups”. LNM 131, 267–295, Springer-Verlag, Berlin Heidel-
berg New York (1970).

[22] J.C. JANTZEN, Nilpotent orbits in Representation Theory, in: “Lie Theory: Lie algebras
and representations”, Progress in Mathematics 228, Birkhäuser (2004).
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Soc. Math. France 102, 317–333 (1974).


