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Abstract

Let G be a simple algebraic group over an algebraically closed field k of characteristic
zero and O be a spherical conjugacy class of G. We determine the decomposition of the
coordinate ring k[O] of O into simple G-modules.

1 Introduction

In [9] we proved the De Concini-Kac-Procesi conjecture on the quantized enveloping algebra
U-(g) (introduced in [14]) for simple U (g)-modules over spherical conjugacy classes of G (we
recall that a conjugacy class O in G is called spherical if a Borel subgroup of G has a dense orbit in
O): our main tool was the representation theory of the quantized Borel subalgebra B. introduced
in [15].

To fix the notation, GG is a complex simple simply-connected algebraic group, g its Lie alge-
bra, B a Borel subgroup of G, T" a maximal torus of B, B~ the Borel subgroup opposite to B,
{a1,...,an} the set of simple roots with respect to the choice of (T, B). Let W be the Weyl
group of GG and let us denote by s; the reflection corresponding to the simple root c;: £(w) is the
length of the element w € W and rk(1 — w) is the rank of 1 — w in the geometric representation
of W.

The representation theory of U (g) is related to the stratification of G given by conjugacy
classes, while the representation theory of B. is related to the stratification {X,, | w € W} of
B~, where X,, = B~ N BwbB for every w € W (each X,, is an affine variety of dimension
n + ¢(w)). We proved that for every spherical conjugacy class O in G, there exists w € W such
that O N X, # @ and {(w) + rk(1 — w) = dim O: this then allows to prove the De Concini-
Kac-Procesi conjecture for simple U (g)-modules over elements in O. In fact we proved also a
result in the opposite direction, giving therefore a characterization of spherical conjugacy classes
in terms of the Weyl group ([9], Theorem 25):

let O be a conjugacy class of G and w = w(Q) be the unique element in W such that ONBw B
is dense in O. Then O is spherical if and only if dim O = ¢(w) + rk(1 — w).
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Moreover w is always an involution (see [9], Remark 4, [10], Theorem 2.7). From this result
we conjectured that, for a spherical O, the decomposition of the ring C[O] of regular functions on
O (to which we refer as to the coordinate ring of O) as a G-module should be strictly related to
w(QO). This is the motivation for the present paper.

We recall that C[O] is multiplicity-free, so that in order to obtain the decomposition of C[O]

into simple components one has just to determine which simple modules occur in C[O]:

Clo] = P vy
AEA(O)
where for each dominant weight A, V'(\) is the simple G-module of highest weight A (if A € A(O)
we say that A occurs in C[O)]).
The decomposition of the coordinate ring C[X] for G-varieties X has been investigated by
various authors. If \ is a non-zero highest weight, and v € V() is a non-zero highest weight

vector, then C[G.v] is isomorphic to & V(nA)* ([44], Theorem 2). In particular this determines
n>0

C[O] for the minimal unipotent orbit of G. For a unipotent class in G (equivalently nilpotent
orbit in g) McGovern ([30], Theorem 3.1) decribes C[O] in terms of induced building blocks
from a certain Levi subgroup of G (via sheaf cohomology on G/Q, @ a parabolic subgroup of G
associated to O): it is then possible to obtain multiplicities of simple G-modules in C[O] as an
alternating sum of certain partition functions. In the same paper the author gives a formula for
(C[@] where O is the simply-connected cover of O ([30], Theorem 4.1). Then in [31] there are
tables for the sets of simple modules in (C[@] for spherical unipotent classes in the classical groups
(and conjecturally in the exceptional groups). For type F; the monoid A\(Q) has been described in
[7] for all spherical unipotent classes. For the maximal spherical unipotent class O in FEg, it has
been shown in [2], Theorem 1.1, that every simple G-module occurs in C[O] (so that O is a model
orbit). In [36], Panyushev gives tables for the sets of simple modules for (spherical) nilpotent orbits
of height 2 (and conjecturally for height 3). In [28] the author describes explicitly the structure of
principal model homogeneous spaces. For semisimple spherical classes, the description of A\(Q)
may be deduced from the tables in [26]. See also [45], Théoréme 3, where symmetric varieties are
considered.

The main result of this paper is the following:

Theorem. Assume O is a spherical conjugacy class in G, and let w = w(O). Then a dominant
weight X occurs in C[O] if and only if w(\) = —X and A\(Sp) = 1.

Here So is a certain (finite) elementary abelian 2-subgroup of 7" which we determine for
every spherical conjugacy class, describing therefore explicitly A(O): see tables 1,...,26. In
particular we completely solve the problem of determining the simple modules occurring in C[O)]
for unipotent classes ([22], 8.13, Remark 2), and obtain the decomposition of C[O)] for conjugacy

classes of mixed elements.
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Our proof is based on the deformation result obtained by Brion in [4]. We have C[O] =
C[G/H] = C[G)", where H is the centralizer of an element of O in G. There exists a flat
deformation of G/ H to a quotient G/ Hy, where Hy contains the unipotent radical U~ of B~. We
determine the decomposition of C[G/Hj| into simple components (i.e. we determine \(G/H))),
relating the group Hy with H via the theory of elementary embeddings ([29], [5]). We then prove
the crucial fact that A\(O) is saturated ([34], §1.3), so that C[G/H| = C|[G/H,| as G-modules.
We also determine the decomposition of the coordinate ring C[@] for the simply-connected cover
O of O, and of C[O].

The paper is structured as follows. In Section 2 we introduce the notation. In Section 3 we
recall some basic facts about spherical varieties and we prove the main theorem. In Section 4 we
determine the group S for the spherical conjugacy classes in the various groups, determining
therefore the monoid A(Q), and also A(O). In Section 5 we consider the coordinate ring C[O]
of the closure of O. It is well known that C[O] = C[0] if and only if O is normal: we list all
cases in which the spherical conjugacy class O has normal closure and we determine \(O) for
the classes with non-normal closure. In section 6 we consider the case when G in not necessarily
simply-connected.

All the results and proofs of this article remain valid for G a simple simply-connected algebraic

group over an algebraically closed field k of characteristic zero.

Acknowledgements. It is a pleasure to thank P. Bravi and M. Brion for helpful discussions and
suggestions.

2 Preliminaries

We denote by C the complex numbers, by R the reals, by Z the integers and by N the natural
numbers.

Let A = (a;;) be a finite indecomposable Cartan matrix of rank n. To A there is associated a
root system &, a simple Lie algebra g and a simple simply-connected algebraic group G over C.
We fix a maximal torus 7" of G, and a Borel subgroup B containing 7": B~ is the Borel subgroup
opposite to B, U (respectively U ™) is the unipotent radical of B (respectively of B7). If x is a
character of 7', we still denote by x the character of B which extends x. We denote by h the Lie
algebra of T'. Then @ is the set of roots relative to 7', and B determines the set of positive roots
®*, and the simple roots A = {aq,...,a,}. We fix a total ordering on ®* compatible with the
height function. We shall use the numbering and the description of the simple roots in terms of
the canonical basis (e1, . .., e;) of an appropriate R” as in [3], Planches I-IX. For the exceptional
groups, we shall write 5 = (my,...,my,) for . =mia; + ... + mpay,.

If 7 is a character of T', we shall also denote by ~ the corresponding linear form (dv); on b.

The real subspace of h* spanned by the roots is a Euclidean space F, endowed with the scalar
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product (o, aj) = dja;j. Here {dy, ..., d,} are relatively prime positive integers such that if D
is the diagonal matrix with entries d1, ..., d,, then DA is symmetric. P is the weight lattice, P"
the monoid of dominant weights and W the Weyl group; s; is the simple reflection associated to
a;, {wi,...,wy,} are the fundamental weights, wy is the longest element of WW. In the expression
A =Y, kinw; we always assume k;’s and n;’s in N. If V' is a G-module, v € V, f € V*, then
the matrix coefficient c¢,, : G — C is defined by c¢,(g9) = f(g.v) for g € G. We consider the
action of G x G on C[G]

((g:91)-)(c) = fg" " eqr)

for ¢, g, g1 € G, f € C|G]. The algebraic version of the Peter-Weyl theorem gives the decompo-
sition

2.1) ClGl = @ V(—wod)* ® V(—wo))

AepP+t
We put IT = {1, ...,n} and we fix a Chevalley basis {h;, i € II; e,, a« € ®} of g. We shall denote
by w;, fori = 1,...,n, the elements in h defined by «;(@;) = d;; (recall that w;(h;) = J;;) for
j=1,...,n. As usual we put (x,y) = %

We use the notation z (k), ho(2), fora € @, k € C, z € C* asin [43], [11]. For « € ® we
put X, = {z,(k) | k € C}, the root-subgroup corresponding to o, and H, = {hq(2) | z € C*}.
For h € h we put H, = exp Ch. We identify W with N/T', where N is the normalizer of 7"
given an element w € W we shall denote a representative of w in N by w. We choose the x,,’s
so that, for all &« € ®, ny = x4 (1)z_a(—1)z4(1) lies in N and has image the reflection s, in W.

Then

(2.2) xa(ﬁ’)x,a(—ﬁ_l)xa(f) = ha(§)na n(2)z = ha(-1)

for every £ € C*, a € ® ([41], Proposition 11.2.1).

WeputT% = {t € T | wtw™! = t}, Ty = {t € T | t* = 1}. In particular T% = Ty if
w=wy = —1.

For algebraic groups we use the notation in [19], [12]. In particular, for J C II, A; = {a |
j € J}, @ is the corresponding root system, W the Weyl group, P the standard parabolic
subgroup of G, Ly = T(X, | a € &) the standard Levi subgroup of P;. For z € W we put
U. = UN 2z~ 'U~z. Then the unipotent radical R, P; of Py is UwowJ, where w;, is the longest
element of W;. Moreover U N Lj = UwJ is a maximal unipotent subgroup of L ;.

If U is a subsystem of type X, of ® and H is the subgroup generated by X,, a € U, we say
that H is a X,-subgroup of G.

If X is an algebraic variety, we denote by C[X] the ring of regular functions on X. If X is
a multiplicity-free G-variety, then we denote by A(X) the set of dominant weights occurring in
C[X], i.e. A € P" such that C[X] contains (a copy of) V()\). If z € X we denote by G.x
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the G-orbit of x and by G, the isotropy subgroup of z in G. If the homogeneous space G/H is
spherical, we say that H is a spherical subgroup of G.

If  is an element of a group K and H < K, we shall also denote by C(z) the centralizer of
z in K, and by Cp(z) the centralizer of z in H. If x, y € K, then z ~ y means that z, y are
conjugate in K. For unipotent classes in exceptional groups we use the notation in [12]. We use

the description of centralizers of involutions as in [21].

3 The main theorem

Let O be a spherical conjugacy class. Our aim is to determine A(O). For this purpose if H is the
centralizer of an element in O, we have C[O] = C[G/H] = C[G]" and, from (2.1),

ClA)" = @ V(—wod)* @ uy
AEN(O)

where 0 # uy € V(—woA)? ([37], Theorem 3.12). We start by considering in general a spherical
homogeneous space GG/H. Without loss of generality we may assume BH dense in G. By [4],
Theorem 1, there exists a (flat) deformation of G/H to a homogeneuos (spherical) space G/ Hy,
where Hj contains a maximal unipotent subgroup of GG (such an homogeneous space is called
horospherical, and H a horospherical contraction of H). An elementary embedding of G/H is
a pair (X, z) where X is a normal algebraic G-variety, x € X is such that G.x is dense in X,
G, = H and X \ G.x is a G-orbit of codimension 1 ([6], 2.2). In [4] Brion constructs a G x C*-
variety and a flat G x C*-morphism p : Z — C (where G acts trivially on C and C* acts via
homotheties) such that p~!(C*) = G/H x C* and p~1(0) = G/H ([4], Theoreme 1, [6] §3.11).
One may consider Z as an elementary embedding (Z, z) of (G x C*)/(H x 1), with closed orbit
(G xC*)/(Hyx C*); H x 1 is the isotropy subgroup of z, Hy x C* is the isotropy subgroup of an
element in the closed orbit ([6], proof of Corollaire 3.7). Let P = P; be the parabolic subgroup
associatedto H, P = {g € G | yBH = BH}, and let L be a Levi subgroup (which we may
assume equal to Ly, by taking an appropriate conjugate of H instead of H) of P adapted to H
([6], 2.9): in particular

(3.3) PNnH=LNH , L'<H

Then P x C* is the parabolic subgroup of G x C* associated to H x 1 and L x C* is a Levi
subgroup adapted to H x 1 ([6], Corollaire 3.7 and its proof).

By [6], Proposition 3.10, i), we have Hy x C* = (R, Q x 1)(L x C* N Hy x C*) where Q is
the opposite parabolic subgroup of P with respect to L, so that

(3.4) Hy = (R,Q)(L N Hy)
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We show that LN H = L N Hy. Let L = C'L’, where C is the connected component of the
centre of L. Then L’ is contained also in Hy, by [6], Théoréme 3.6.

By [6], Proposition 3.4, Z contains an open P x C*-stable subset isomorphic to R, P x W
where W is L x C*-stable and meets the closed orbit, and (W, z) is an elementary embedding of
the torus (C'x C*) /(CNH x1) ([5], proof of Lemme 4.2). Then f = pjyy : W — Cisa (C'xC*)-
equivariant flat morphism such that f ~1(C*) = C/C N H x C* and f~1(0) = C/HyNC. So the
coordinate rings of these orbits are isomorphic C-modules and it follows that the isotropy groups

of all points of W are the same. In particular
(3.5) CNH=CnNH
With the above notation we prove

Theorem 3.1 Let H be a spherical subgroup of G such that BH is dense in G and L = Ly isa
Levi subgroup adapted to H. Then Hy = R,Q (LN H) = (U™, Uy,,C N H).

Proof. By (3.5) we have
LNHy=L'CNHy=L(CNHy)=L(CNH)=L'CNH=LNH

so that by (3.4) we conclude. [l

Definition 3.2 We put \(G/H) = \(G/Hp).

Note that \(G/H) < A\(G/H) since BH is dense in G, and more generally Z \(G/H) N P+ <
MG/ H) ([34], part 2 of the proof of Proposition 1.5). Moreover

(3.6) MG/Hy) ={ e PT | NTNH)=1}

since HjeJ H,; < Hand X0y = v_yif (A, ;) = 0 (here v_) is a lowest weight vector
of weight —Xin V(—woA)). Also BNH < PNH = LNH,sothat BNH = U, (TN H).
If A\ € N\(G/H), then F) : BH/H — C, b='H — A(b) is a regular function on BH/H, and
therefore a B-eigenvector of weight A in C(G/H). In case G/ H is quasi affine (as for conjugacy
classes), then Z A\(G/H)NP+ = X\(G/H) since C(G/H) = Frac C[G//H], as in [34], Proposition
1.5. 1 do not know if Z A\(G/H) N Pt = X\(G/H) holds in general.

Lemma 3.3 Suppose F' in Frac C[G/H] is a B-eigenvector of weight \ and m lies in \(G/H)
for a positive integer m. Then F lies in C|[G/H)|.

Proof. There exists a B-eigenvector I} € C[G/H] of weight mA. Then F" /F is invariant under
B (as its weight is 0). So F"/F} is constant, as G/ H is spherical. In other words, F'™ is regular
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on G/H. We conclude that F' is in C[G/H], since C[G/H] is integrally closed ([16], Lemma
1.8). O

Let O be a spherical conjugacy class of G. We recall that w = w(Q) is the unique element (an
involution) of W such that BwB N O is (open) dense in O. Let v be the dense B-orbit in O. Then
BG, is dense in G for any y € v. The parabolic subgroup P = P; associated to G, coincides
with {g € G | g.v = v}. Moreover v = O N BwB ([9], Corollary 26), and it is affine, as an orbit
of a soluble algebraic group.

We have w = wow,, the subset .J is invariant under ¢}, where ¥ is the symmetry of II induced
by —wyp, and wg and w;, act in the same way on ®; (see [10] the discussion at the end of section
3, Corollary 4.2, Remark 4.3 and Proposition 4.15).

Since all Levi subgroups of P are conjugate under R, P, we may choose y € v such that the
standard Levi subgroup L is adapted to GG,. For the rest of this section we fix such a y, and we
put H = Gy, P = P;, L = L;. By Theorem 3.1, we have

3.7) Ho = (U",Uy,,Cy) = (U, Uy, T)

and A\(©) = \(G/Hy).

We shall now relate I with centralizers of elements in v N wB. By the Bruhat decomposition,
y is of the form y = wwb, where u € R,P and b € B. We put 1 = v 'yu = wbu. By
[10], Corollary 4.13, UwJ (T*)° < C(x1). Moreover, since L' < C(y), by [10], Lemma 3.4, and
commutation of y with X1, fori € J, we get L’ < C(x1) (see also the proof of [10], Proposition
4.15).

Proposition 3.4 Let x be in O NwB. Then T, =T, and TN H° =T N C(x)°.

Proof. We observe that Cryr, () < T by the Bruhat decomposition and Cry,, (y) < T, since L
is adapted to C(y). Now 1 = u~'yu = y* implies

Tay = Cr(21) = Cru,(11) STNT" = Cr(u)
T, = Cr(y) = Cru,(y) <TNT*  =Cr(u™') = COr(u)

therefore if t € Ty, thent = t* € T, and similarly if t € T}, then t = e T,. Hence
Ty =Ty,and T NC(y)° =T NC(x1)°. To conclude note that O N wDB is the T-orbit of 1. [

Remark 3.5 In fact Cr(x) = Cr(y) forevery x € O NwB, since L' < C(x).

Remark 3.6 In general it is not true that L ; is adapted to C'(x) for x € ONwB. For example if O
is the minimal unipotent class, and u is a non-identity element in X _g, where (3 is the highest root,
then C'(u) > U™, so that there is a unique Levi subgroup of P adapted to C(u) ([6], Proposition
3.9), and this is L;. Since u ¢ wB, there is no element = € wB such that L is adapted to C'(x).
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From Theorem 3.1 we get

Corollary 3.7 Let O be a spherical conjugacy class, w = w(Q) and x any element in O N wB.
Then Hy = (U™, UwJ,Tx>, w = Wow,. O

By Proposition 3.4, we may put Tp = T, forx € O NwB. Then Tp = T} and (T")° <
To < T by [9], step 2 in the proof of Theorem 5.
We shall need the description of the monoid of weights A such that w(A) = —A\. In the next

lemma we consider more generally w of the form w = wow,, with J J-invariant.

Lemma 3.8 Let J C II be -invariant and w = wow,. The dominant weight \ satisfies w(\) =
—Xifand only if A = ZieH\J niw; with ngy = n; for all i € 1L\ J. Moreover w()\) = —\
implies wo(A) = —\.

Proof. Let A € P, A\ = > nw;, n; € N. Fori € II'\ J we have w,(w;) = wj, so that
w(wi) = —wﬁ(i).

Itis clear that if A = >, qp j niw; with n; = ny(;) forevery ¢ € IT'\ J, then (w + 1)(A) = 0.
On the other hand, assume w(\) = —A. Then w, (\) = —woA and, by [20], Theorem 1.12 (a), we
get —woA = A and (A, ;) = 0 for every j € J. Hence n; = 0 for every j € J. Moreover, from
A= ZieH\J niw; and —woA = A it follows ny(;) = n; forall 7 € IT'\ J. O

Remark 3.9 If S is a J-orbit in IT \ J, and we put wg = > .. g w; then we have seen that {wg |
S € (IT\ J)/¥} is a basis of the monoid {\ € PT | w(\) = —\}, where (IT \ J)/¥ is the set
of J-orbits in IT \ J. If we also assume that w acts trivially on ®; (as in the case of w = w(0O)),
then {wg | S € (IT'\ J)/9¥} is a basis of ker(w + 1) in £, and so a basis of the free abelian group
{AePlw\) =-A}

We describe :\((9). For this purpose we denote by Sy any supplement of (7*)° in Tp (i.e.
So(T?)° = To). We also put P} = {\ € PT | w(\) = —\}. By Lemma 3.8 each element of
P} satisfies —woA = A, so that in particular any subset X of P} is symmetric, i.e. —wo(X) = X
([32], 4.2, [10], Theorem 4.17)).

Theorem 3.10 Let O be a spherical conjugacy class, w = w(O) and let So be any supplement
of (T")® in Tp. Then
MNO) ={re PF I A(So) =1}

Proof. By (3.6), A\(O) = {\ € PT | \(To) = 1}. Since (T%)° < Top, a necessary condition
for A € Pt to be in A(©) is that A(£t*) = 1 forevery t € T, as (T%)° = {tt* | t € T'}. This
condition is equivalent to (w + 1)\ = 0, so that A(Q) < P, Let A € P;: then A € A\(0) —
A(So) = 1. O
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We shall prove the crucial fact that \(O) = A(©), so that the monoid \(O) is saturated (that
is ZA(O) N Pt = X\(0O), [34], Definition 1.3). In the following, x is a fixed element in O N wB
and w a representative of w in IV such that x = wu, u € U. f u = [[ .o+ Za(ka), and i € II,
we say that ; occurs in z if k,, # 0. This is independent of the chosen total ordering on ®.

For the closure O of O in G, the monoid A\(O) of dominant weights occurring in C[O] is a
submonoid of A\(Q). We start with

Proposition 3.11 Let A € PT. Then (1 — w)\ lies in \(O).

Proof. Let f € V(A)* ., v € V(A with f(x.v) = 1. Then cs,(t7gt) = crpi0(g) =
(1 = w)A)(t)csw(g) forevery t € T, g € G. For every z, z; € U we have

cro(z122) = f(rwuz.v) = f(zrwv) = f(w.w) =1

since 21w .v = W .v + v1, where vy is a sum of weight vectors of weights strictly greater than wA.

Therefore for every t € T, z € U we have
(3.8) cro(t 2 ezt) = (1 —w)A)(2)

Since B.z is dense in O, by (3.8) the restriction of Cfo tO O is a (non-zero) B-eigenvector of

weight (1 — w)A in C[O]. Hence (1 — w)A € A(O). O
Corollary 3.12 Let A\ € P, Then 2 lies in \(O). O
Corollary 3.13 Let A € P*. Then (1 — w)\ € A(O). If moreover X\ € P}, then 2 lies in \(O).

Proof. This follows from the fact that A\(O) < A\(O). O

‘We have shown that

(3.9) 2P} < (1—w)P* < A(0) < \0) < MNO) < Pf

w

We can prove that A\(O) is saturated.
Theorem 3.14 Let O be a spherical conjugacy class. Then X\(O) is saturated.

Proof. Let A € A(O). We put F(b~'zb) = A(b) for b € B. We observed that F is well-defined

since Cp(z) = T,U,, and gives rise to a B-eigenvector of weight A in C(O). Since O is quasi

affine, we conclude that A lies in A(O) by Theorem 3.10, Corollary 3.13 and Lemma 3.3. O
Theorem 3.14 in particular proves Conjecture 5.12 (and 5.10 and 5.11) in [36].

To deal with A(O), in section 5 we shall make use of
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Proposition 3.15 Let A € P*, i € 11\ J be such that o; occurs in x and (\, ;) # 0. Then

(1 —w)A —a; € A(O).

Proof. Since (\, ;) # 0, A — «; is a weight of V' (\). We construct two matrix coefficients. We

fix a non-zero v € V(\)a_q,. By [43], Lemma 72, there exists a (unique) vy € V'(\)y such that

T, (k).v = v + kv for every k € C. Then we choose f € V(\)*  , such that f(w.vy) = 1.
Since a; oceurs in x = 1 u, we have u = zq,(r)u’, with 7 € C*, v’ € [[geq+\ (q,} X- Let

y,y1 € U,and lety = zq, (k)y', ¥ € [Isco+\fa,} X then
y; teyo = gy i + (k4 )y iy

The vector w.v has weight w(A — «;), so that y; Li.v is a sum of weight vectors of weight
w(\ — a;) + (B, where (3 is a sum of simple roots with non-negative coefficients. Assume w\ =
w(A— ;) + 3 for a certain 3. Then w(cy;) = [ would be positive, a contradiction since ¢ € 1T\ J.
Hence f(y; “.v) = 0. Similarly, y; “.v\ = w.v) 4 v/, where v/ is a sum of weight vectors of
weights greater than w, hence f(y; '.vy) = f(w.vy) = 1, so that ¢y, (y; *xy) = k + 7.

The second matrix coefficient is defined dually. We fix a non-zero f1 € V(—woA)3_,,,-
There exists a (unique) fy € V(—woA)} such that zo,(k).f1 = fi + kfy for every k € C.
Then we choose v1 € V(—wg\)_q such that fy(w.v1) = 1. Let 2, 21 € U, 21 = xq4,(k1)7,
2" € [1gea+\{a;} Xp- then proceeding as before, we get cy, 4, (27 w2) = Ky.

Fort € T, z € U we obtain

(3.10) (cfow— wal)(t_lz_lxzt) =r((1—w)A—a;)(t)

Since B.x is dense in O, by (3.10) the restriction of ¢ f0—Cfy 0 1O O is a (non-zero) B-eigenvector

of weight (1 — w)\ — «; in C[O]. Hence (1 — w)\ — a; € A(O). O
Corollary 3.16 Leti € 1T\ J be such that c; occurs in x. Then w; + wy(;y — ; lies in AO).

Proof. This follows from Proposition 3.15 by taking A = w;. 0

We can deal with other homogeneuos spaces related to O. The simply-connected cover (or the
universal covering, as in [22], p. 107) O of O can be identified with G /H?®, since G is simply-
connected.

Corollary 3.17 Let O be a spherical conjugacy class, and let S be a supplement of (T")° in
T N C(x)°. Then M(O) = {\ € P} | \(S) = 1} is saturated.

Proof. By [16], Corollary 2.2, Ois quasi affine and, by [6], Proposition 5.1, 5.2, L is adapted to
H°, so that A(O) = A\(G/H®) = {\ € P{ | \(S) = 1}, since (T%)° < T N H°. Let A € A\(O);
then F\ : BH°/H®° — C, b='H° + X(b) is a regular function on BH°/H®, and therefore a
B-eigenvector of weight \ in C(G/H®). By Corollary 3.13, 2X\ € A(G/H) < \(G/H®), and we
conclude by Lemma 3.3 and Proposition 3.4. O
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Corollary 3.18 Let K be a closed subgroup of G with H° < K < N(H®). Then \(G/K) =
MG/K) (and \(G/K) is saturated).

Proof. Since L is adapted to H, we get N(H) = N(H°) = H(CNN(H)) by [6], Corollaire 5.2,
P is the parabolic subgroup corresponding to N(H ) and L is adapted to N (H) (by the proof of
[6], Proposition 5.2 a). Clearly the same holds for K, since BH = BK.

By Corollary 3.17, A € AN(G/H®°) < AT N H°) = 1. We prove that A\ € \(G/K) <
MT N K) = 1. In one direction A € A\(G/K) = AT NK) = 1, since \(G/K) < \(G/K).
So assume A(T'N K) = 1. Then \(T'N H®°) = 1, so that A € A(G/H®), and in particular
woA = —A. Let v be a non-zero vector in V/(A)H", and let v = v_y + v/, with v_y € V/(A)_y,
v €37,» A V(A thenv_y # 0, since BH® is dense in G.

Since V()\)H ®is 1-dimensional, there is a character v of K, trivial on H°, such that k.v =
v(k)v for k € K. Since K = H°(T' N K), v is K-invariant if and only if v(7'N K) = 1. But
v_x # 0 implies y(k) = —A(k) for every £ € T'N K so that v is K-invariant if and only if
AT N K) =1, and we are done. O

Remark 3.19 In general K is not quasi affine: for instance the centralizer H of z_g(1), 3 the
highest root, contains U, and 7" < N(H). Then N(H) is epimorphic, i.e. the minimal quasi
affine subgroup of G containing N(H) is G ([16], p. 19, ex. 2). To our knowledge, it was known
that \(G/K) is saturated for symmetric varieties G/ K, due to the work of Vust, [45].

Proposition 3.20 We have
H/H°=T,/TNH®=T,/TNC(x)°

Proof. We have H = H°(H NT) = H°T,. Hence we get an epimorphism 7 : T, — H/H°,
inducing an isomorphism 7 : T, /7' N H® — H/H®°, and we conclude by Proposition 3.4. U

Corollary 3.21 IfT" is connected, then H is connected.

Proof. This follows from (7%)° < TNC(z)° < T, <T% = (T")° and Proposition 3.20. O

Due to the fact that 7" is 2-divisible, we have the decomposition 7' = (T%)°(S™)° where
S ={teT|tY =1t'} Lett € T% t = sz, withs € (T%)°, z € (S*)°. Then
z=tsteT®n (S*)° < T¥ N S* < Ty, the elementary abelian 2-subgroup of T of rank n.
We note that (77*)° N (S™)° is finite, even though in general not trivial. Therefore z € T5, and
T% < (T")° Ty. In particular we have

T = (T")*(T" N (5%)°) = (T*)*(T" N T3)

and
T, = (T%)°(C(z) N (5)°) = (T%)°(C(x) N'T3)
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Moreover every subgroup M of T5 is a complemented group (i.e. for every subgroup X of M there
exists a subgroup Y such that X Y = M and X NY = 1), hence we may find a subgroup R of 75
suchthat 7% = (T")°x R. Then T, = (T")° x (RNC(z)) and TNC(x)° = (T™)° x (RNC(x)°).
We put So = RN C(x), Sy = RN C(x)°. We have therefore proved

Theorem 3.22 Let O be a spherical conjugacy class, w = w(QO). Then
MO)={Ae P |X(So)=1} , XO)={re€PR[|A(Sp) =1}
O

From Proposition 3.20 it follows that H always splits over H°: if Y is a complement of
RN C(z)°in RN C(x), then'Y is a complement of H° in H.

A

4 Description of \(O) and \(O)

From our discussion it is clear that to determine A(O) the most favourable case is when T is
connected, so that T, = T% = (T%)°. In this case then A\(O) = A(O) = P} = {2 iem s niwi |
Ny = n;}. We note that of course we have Z(G) < T, so that it is also straightforward to
determine A\(O) even when TV = (T")°Z(G), so that T, = T™. In general it is quite cum-
bersome to determine 7. Our strategy will be to determine 7% as 7% = (T™)° x R, and then
determine R N C(x). To deal with unipotent classes, we shall usually start from the maximal one,
(corresponding to wy), and then deal with the remaining classes by an inductive procedure. In
some cases we shall use an explicit form of an element x (in O N wB), while in some other cases
we shall determine 7" N C'(x) by analizing the form of eventual involutions in T, \ Z(G)(T™)°.
Note that when T is connected (or 7% = (T")°Z(Q)), it is not necessary to have an explicit
description of x € ONwB (however in certain cases it will be necessary to have such a description
in section 6).

We use the fact that if Gy C G» are reductive algebraic groups and u is a unipotent element
in GG such that the conjugacy class of u in (= is spherical, then the conjugacy class of v in (71 is
spherical ([33], Corollary 2.3, Theorem 3.1).

The character group X (1) is isomorphic to P/(1 — w)P, since P = X (T'). Therefore T*
is connected if and only if P/(1 — w)P is torsion free. We are reduced to calculate elementary

divisors of the endomorphism 1 — w of P. We shall use the following results.

Lemma 4.1 Assume the positive roots 3;, . . ., B¢ are long and pairwise orthogonal. Then, for
&,...,4€eCrand g = a:gl(—fl_l) . 'xgz(—fg_l) we have

91_p,(&1) - 2_p,(E)g™ " = ng, - -nghag (267 - x5,(257)

foracertainh € T.
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Proof. By (2.2) we have 74 (=6 1)z _o(6)20(671) = naha(—&)z(2671). Hence we get the
result with h = hg, (—&1) - - - hg,(—&0). O

Proposition 4.2 Let o € ®. Then T*~ is connected except in the following cases:

(i) Gisoftype Ay;
(ii) G is of type Cy, and o is long;
(iii) G is of type Bo and « is long.
In these cases we have T~ = (T°*)° x Z(G).
Proof. It is enough to determine in which cases the non-zero elementary divisor of 1 — s; is not 1.
Since (1 — s;)w; = d;504 and oy; = > ;. a;pwy, this happens only for G of type A; and i = 1, C),

and i = n, or By and ¢ = 1 ([18], pag. 59). In these cases the non-zero elementary divisor is 2,
and 7% = (T%*)° x Z(Q). O

Lemma 4.3 Let M be a connected algebraic group, S a torus of M, g a semisimple element in
Cr(S). Then (S, g) is contained in a torus of M.

Proof. See [18], Corollary 22.3 B. O

Lemma 4.4 Assume K is a connected spherical subgroup of G with no non-trivial characters.

Then the monoid \(G/K) is free.

Proof. We recall that we are assuming GG simply-connected, so that by [16], Theorem 20.2,
UC|G/K] is a polynomial algebra. But YC[G /K] is the monoid algebra of A\(G/K) and the
monoid algebra is factorial if and only if A(G/K) is free (see the proof of [32], Proposition 2). (]

Lemma 4.5 Let V be a G-module, g € G, such that the image Q of the endomorphism p(g) of
V' is 1 dimensional for a certain polynomial p. Assume M < C(g) has no non-trivial characters.
Then M acts trivially on Q.

Proof. This is clear. O

Let S = {i,9(i)} be av-orbitin IT\ J consisting of 2 elements. We put Hg = {ha, (2)hay, (71 |
z € C*}. Let S; be the set of 9J-orbits in IT \ .J consisting of 2 elements. Then, by Remark 3.9,
Ay U{a; — ayg)ts, is abasis of ker(1 — w) and

(4.11) (TY)° = HHaj X H Hg

jeJ SES
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Weput U; = {8 € & | w(f) = —(}. Then ¥ is a root system in Im(1 — w) ([40], Proposition
2), and Wjim(1—w) is —1. If K = C((T")°)’, then K is semisimple with root system ¥; and
maximal torus T'(K) :=T N K = (S")°.

For each spherical (non-central) conjugacy class O we give the corresponding J and w as a
product of commuting reflections using the tables in [9]. We give tables with corresponding A(O)

~

and A\(Q) (for semisimple classes we also give the type of the centralizer of elements in O). In the
cases when A\(O) = \(O), we leave a blank entry. For length reasons we shall give proofs only
for some classes. In [9] for the classical groups we gave representative of semisimple conjugacy
classes in SL(n), Sp(n) and SO(n). Here we shall give an expression in terms of exp. If g is in

Z(G), then Oy = {g}, w =1 and C[O,4] = C.

4.1 Type A,,n > 1.
Let m = ["T“], Bi = e —epiog, fori =1,....m. For{ = 1,...,m — 1 we put J;, =
{¢+1,...,n—{}, J,, = @. If we denote by X; the unipotent class (2¢, 17172 then

X@(—)JZ%Sﬁl---SﬁZ

for{ =1,...,m (here wyg = sg, - - - 53,,)-

In this case T™ is almost always connected. There is only one case when it is not connected,
namely when n is odd, n + 1 = 2m, and w = wy. However in this case we have T"° =
(T"0)°Z(G) = (T)° % (ha,, (~1)).

In fact we have

Z{w1 + Wny -+« W + Wnt1—¢) fort=1,...,m—1
(1—w)P = Z{wi +wny -y Wim + Wmt1) for{ =m,n =2m
Z{wi + Wny .« oy Win—1 + Wint1, 2wy) forld =m,n+1=2m

Moreover the center Z(G) of G is generated by 2z = [} hq, (£'), where £ is a primitive (n+1)-th
root of 1in C. For n + 1 = 2m, then 2~ 'h,,, (—1) € (T™°)° since ™ = —1.

4.1.1 Unipotent classes in A,,.

o

X1

Unipotent classes in A,,, m = ["TH] .
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If n is even, or n odd with ¢ < m, then T is always connected. Assume n odd, ¢/ = m. Then
Tv0 = (T%0)°Z (@A), so that T,, = T"°. Moreover, the reductive part of C(z)° is of type Ay,—1,
so that (7*0)° is a maximal torus of C'(z)°. Hence Z(G) £ C(z)° and T, N C(z)° = (T™°)°.
We get

| o | A(O) | NO) |
7
Xy
(=1,....m—1 ;nk(wk+wn—k+1)
X m
n :rgm kz_lnk(wk + wWp—kt1)
X m—1 — —
nt1=2m - s (h F Wn—k41) F 2nmem 2 g (Wr + Wp—k41) + N

Table 1: A(O), A(O) for unipotent classes in A,,.

In particular X, is a model homogeneus space for SL(2), and in fact the principal one, by [28],
3.3 (D).

4.1.2 Semisimple classes in A,,.

The centralizers of elements in spherical semisimple classes are of type 171 Ay_1 A, _¢. Following
the notation in [9], Tables 1, 5 we get

TlAgflAn,g — Jg 83, S8,

fort=1,...,m.
Type T1Ay_1 A, 4. Up to a central element, the semisimple elements with centralizer of this type
are conjugate to exp(Cwy) = diag(en%—kCIk, e‘gCInH_k), ¢ € C\ 2miZ.

Since in all cases we have T, = T, we get

| o |7 ] AO) |
exp(Cwr) ¢
¢ e C\2miZ T1Ap_1A,_y an(wk + Wn—kt1)
{=1,....m-—1 k=1
exp(CWm)
(eC \ 2w, TVA—1An, an(wk + wn,k+1)
n=2m k=1
eXP(C@m) m—1
(eC \ 2w TVAp—1Am—1 Z nk(wk + wn,k+1) + 2Nmwm
n+1=2m k=1

Table 2: A\(O) for semisimple classes in A,,.
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4.2 Type C,,n > 2.

ntl
Wehave wy =e; +---+eford =1,...,nand Z(G) = (z), where z = H£:21 ] hag;, ,(—1).
For i = 1,...,n we denote by X; the unipotent class (2i, 12"_%) and we put §5; = 2¢;, J; =
{i+1,....,n} (J, = 9).
Then
Xg — Je%ggl---Sﬁé
for/ =1,...,n (here wy = sg, - -~ 53,).
4.2.1 Unipotent classes in C),.
/Xn
R Xn—l
/X2
X1
Unipotent classes in Cy,
Lemma 4.6 Letw = sg, ---sg, for{ =1,...,n. Then
T =(T")° xR , R=(ha(=1)) x X (ha,(=1))

Proof. For ¢ = 1,...,n we have (1 — w)P = Z{2w1, ..., 2wy). O

Proposition 4.7 For ¢ =1,...,n we have
MXe) = {2n1w1 + -+ + 2ngwg | ny € N}
Proof. In [9] we exhibit the element z_g, (1) ---z_g,(1) € ON BwB N B~. By Lemma 4.1, we

can choose
x=mng, ---nghxg(2) 252 € ONwB

for a certain h € T. Letnow t € R. Thent € C(x) < (;i(t) = 1fori = 1,...,¢. But
Z{B1,...,Pe) = Z{2wr,...,2w),sothat R < T,,and T,, = T". O

Proposition 4.8 For ¢ =1,...,n we have
)\(Xg) ={2n1w1 + -+ + 2ny_qwy—1 + newy | n, € N}
Proof. We have R N C(2)° = (ha,(—1),...,ha,_,(—1)). Infact,fori =1...,/ -1

Ca; = €-a; € Co((z,(§) -~ 25,(€)))

forevery £ € C, so that ho,(—1) = exp(m(eq, —€—q;)) € C(x)°. On the other hand the reductive
part of C'(x) is of type Sp(2n — 2¢) x O(¥), so that C'(x)/C(x)° has order 2, and we are done.[]
We get
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o L Mo | NO) |
X ¢ —1
{= 1,.6..,71 ;27”% ;2niwi+n[wg

Table 3: A(©), A(O) for unipotent classes in C,,.

4.2.2 Semisimple classes in C),.

Let p = [§]. Weput vy = egp—1 + ea, Ky = {1,3,...,20 — 1,20 + 1,20 + 2,...,n} for
¢ =1,...,p. Then, following the notation in [9], Tables 1, 5 we have

CoCrpy £=1,...,p «— Kp «— 5y, -5y,
T1Cp — J2 —— 53,53
T1 A, — I < wg
Lemma 4.9 Letw = s, -+~ 54, for { =1,...,[5]. Then T" is connected.
Proof. We have (1 — w)P = Z{we; | i =1,...,¢). O

Type T1 A, 1. Let H = C(exp(@y)). Then H is of type Ty A,,_1. If X = €$/2, then exp(C@y,) =
diag(\,, A™11,) (in Sp(2n)). If ¢ € C, then C(exp((wy)) = H & ¢ € C )\ 27iZ.
For g =ng, ---ng,xp,(1)---xg,(1), the element

ye = gexp(Con)g ™" = wp, (e = 1) zg, (" — 1) exp(—(in)
lies in Oexp(ca,) N Bsp, - s, BNBTif (€ C \ 27miZ, and we conclude as for the class X,.
Type T1C,,_1. Let z = exp(w1), H = C(z). Then H is of type T1C,,_1. If A = €, then
exp(Can) = diag(\, In—1, A7, Ii—1) = hg, (A). If X € C* \ {£1}, then C(hg, (\)) = H, while
C(hg, (1)) is of type C1Cy,—1. We assume A € C*\ {£1}. In [9] we exhibited an element y in

the C'y-subgroup K of G generated by the roots a, 82,71, 818 yx € Ohﬁl () N Bsg,sp, BN B™.
Conjugating y, by an appropriate element from B N K we get

Tx = ng g, ha, (§1)8,(82)+, (§3)75,(€4) € Opy () NwB

foracertainh € T, & € C,with &g =1 — A\, & = —%. Since Z{au, B2, 71, f1) = Z{au, [2) =
Z(2w1,wz) we get Ty, = (T™)° X (ha, (—1)) and we conclude as in case Xo.

Type Cr.C,_r, k=1,...,p. Let oy = exp(m’d)k) = diag(—[k, Iy, — 1, In—k)a H = C(O’k)
Then H is of type CyC—k, Z(H) = C(H) = (o}) X Z(G).

For type Ci,C,,_, T is connected, hence in each case we determined 77,. We get
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| o | H [ xO) ]
exp(Cwn) A -
ceC\omz | 1HAn-1 ; 21k
eXp(Cﬁbl) TlCn_l 2711&)1 + now29

(e C\miZ

— 7
explmw

E—Fl)( Z)g CoCrp || D noiwa
=1,...,[2] 2

Table 4: A\(O) for semisimple classes in Cy,.

4.2.3 Mixed classes in C,,.

We put p = [5]. From [9], Table 4, we get

Oy (1) — o w
kaa,L(l), E=1,...,p—1 +— Joyy1 «— SB1 """ SPakt
kaﬁl(l)’ kE=1,...,p —  Joyp 7 SB1 SBa

Note that when n is even, then opx, (1) ~ zopzq, (1).

Class of 0,24, (1). In [9], proof of Theorem 2.23, we exhibited an element M in Sp(2n): M €
Og e, (1) N BwoB N B~. The centralizer of M in B is Z(G), hence T, = Z(G).

We give also an alternative proof. Suppose for a contradiction that 7,, # Z(G), and let
o €T, \ Z(G). Then we have z € K = C(0). Since the involutions in G are conjugate (up to a
central element) to oy, for a certain k € {1,...,p}, K is of type CxC),_.

Now z is conjugate in K to an element of the form su, with s € T, u € U(K), [s,u] = 1. We
have s = 5152, u = ujug, with s; € T(Cy), s2 € T(Cp—), w1 € U(Cy), uz € T(Cy—i). Note
that s1, ug, s2 and ug are uniquely determined, since Cy, N C),—x = 1, and (u1, u2) must be in the
class (X7,1) or (1, X7) of Cf x Cp,_. Moreover the conjugacy classes of sju; and spus must lie
over the longest elements of the Weyl group of Cy;, and C',_ o respectively. However, at least one
of u1 and wus is 1, so that at least one of sju1, Sous does not lie over wy, since no involution of C,
lies over wy. We have therefore proved that T, = Z(G).

Class of oyz,, (1) ~ 0pz8,,,,,(1), £ = 1,--- ,p— 1. Here ¥ has basis {a1, ..., @, Bary1},
and K = C((T™)°) is of type C11. From the construction in [9], proof of Theorem 2.23, we
can find z in K. We note that

Ry = <ha1(_1)> XX <h062£(_1)> X <h52e+1(_1)>
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is another complement of (7*)° in T", so that T, = (T N Ry) x (T™)°. By the result obtained
for the mixed class of maximal dimension in Cop, 1 We get

¢ 0+1
Ty = (1")° x <(Hh0421'—1(_1))hﬁ2£+1(_1) °

)= (T")° x <H hazi—l(_1)>
i=1 i=1

Class of oz, (1) ~ ogwg,(1), £ = 1,---,p. Here U has basis {ai,...,az_1, B}, and K

is of type Cop. From the construction in [9], proof of Theorem 2.23, we can find x in K, since
opxg,(1) € Cyy. Arguing as before, we get that

Ry = (hay (1)) X -+ X (hay,_y (=1)) X (hpy, (=1)) = To(K)

is another complement of (7*)° in 7. Then

T,NRy=T,NT(K) = CT(K)(JZ) =Z(K)

by the results obtained for the mixed class of maximal dimension in Cy, (recall that when n is
even 0,%q, (—1) ~ zopxs (—1)). Hence

4
T,NRy = <H ha21—1(_1)>
=1
and ,
T, = (Tw)o X (Tx N Rl) - (Tw)o X <H hOéQz‘—1(_1)>
i=1

In order to determine A(O), by [42], IV 2.25, in all cases the index [C'(x) : C(z)°] is 2, hence,
since in all cases T3, /(T")° has order 2, we must have 7'N C(x)° = (T")°. We obtain

| 0 [ AO) | 9 |
n (24 n
OpZa, (1) > niwi, > mgioq even > niw;
=1 =1 =1
- (1) 20+1 /+1 2041
Loy,
n;Ws n9;_1 even n;w;
(=1,...,[3] -1 z; v z; ’ z; o
v (1) 20 7 20
0 — toh [@] Z n;wi, Z No;—1 €ven Z n;w;
_rrol2 i=1 i=1 i=1

Table 5: A(O), A\(O) for mixed classes in C,,.
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In particular @opman(l) is a model homogeneus space, and in fact the principal one, by [28], 3.3
3).

To deal with types D,, and B,,, we denote by X; the unipotent class which in SO(s) has
canonical form (2%, 15_4i), i =1,..., [i] (for s = 4m, ¢ = m there are 2 classes of this
form: X, and X! , the very even classes) and by Z; the unipotent class (3, 2201 15-4+1)
i=1,...,1+ 2]

4.3 Type D,,n > 4.

Letm = [%] Wehavew; =e1+---+e;fori=1,...,n—2, wy,_1 = %(el+-~-+en_1)—%en,
Wy, = % e1+ -+ + ey). In particular P coincides with Z(el,...,en_l,%(el + - +en)). We
put 5; = egi—1 + €25, 0; = egi—1 —eg; fori = 1,...,m. For{ = 1,...,m — 1 we put

Jo={20+1,....n}, Jp =9, K, =J,U{1,3,...,20 — 1} for{ =1,...,m.

4.3.1 Unipotent classes in D,,, n even, n = 2m.

A

X1
Unipotent classes in D,,, n = 2m

The center of G is ([ [\ hay;_, (—1), ha,_, (—1)hq, (—1)). From [9] we get

Zp, L=1,....m «— Jy —— 88,58, 583,55,

X, £=1,....m — K, —— 83, "85,

X/, — {1,3,...,n—=3,n} «— S, 88, 150n1
Lemma 4.10 Let w = sg, - - - 5g,. Then T is connected for { = 1,...,m — 1, and

T0 = (T x {(hay(<1)) = (T"FZ(C)  fort=m
% = (T")° x (ha, 4 (=1)) = (T")°Z(G) forw = Sp1 " SBm—15an_1

Proof. We have

Z{wa,wq, . . . ,wop) fort=1,...,m—1
(1 —w)P = { Z{wa,wa, - . ,wn—2,2wy) for{ =m
Z(wa,wi, . .. ,wn—2,2wn—1) forw =sg, -85, San_,

and we conclude. O
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Proposition 4.11 For { =1,...,m — 1 we have \(X;) = \(X). Moreover

m—1
)\(Xm) = {Z N9; W + NpWn, ‘ ng € N}

i=1
and
m—1
ANX7,) = {Z N2 wa; + Np—1wn—1 | Nk, € N}
i=1

Proof. For 1 < ¢ < m the result is clear. For £ = m, C(x) has rank m ([12], §13.1), so that
[1cx,, Ha; is a maximal torus of C(x). By Lemma 4.3, hq,, (—1) ¢ C(2)°. Similarly for X;,.0]

Lemma 4.12 Let w = sg, --- 53,55, - -~ S5, for =1, ..., m. Then
T = (T%)° x (hay (=1)) X - X (a4 (=1))
fort=1,... m—1,andT® =T" =15 forf=m.

Proof. We have (1 — w)P = Z(2wy, . .., 2wap_1,wqe) for £ =1,...,m — 1. O

Let ¢ = 1. Then T" = (hq, (—1)) x (T")° = Z(G)(T™)°, so that T, = T, hence
)\(Zl) = {2n1w1 + Nowo ‘ ng € N}

Next we consider Z,,,. We claim that 7, = Z(G). Suppose for a contradiction that there is an
involution o € T, \ Z(G). Then z € K = C(0), and K is the almost direct product K1 K, of
type Dy D,,_k, for some k = 1,..., m. We get an orthogonal decomposition £ = F; ¢ E5 and
a decomposition z = x1x9 € K1Ks. Then —1 = wy = (wq, ws), where w; is the element of
the Weyl group of K; corresponding to x; (the class of z; in K; is spherical). It follows that each
w; = —1, and k is even. Then z; is in the class Zj, /; of K and x2 in the class Z(,,_y) 2 of Ks.
However, the product x1 x> is then not in the class Z,, of G (since in x1x there are two rows with

3 boxes), a contradiction. Hence 7, = Z(G) and

n m
N Zm) = {Z niw; | ng € N, Zn%_l even, n,_1 + Ny, even}
i=1 i=1
We now deal with Zy, £ = 2,...,m — 1. Here ¥ has basis {aq,...,a0_1,0¢}, and K =
C((T™)°) is of type Doy (and is simply-connected). If we denote by M the D,,_op-subgroup
generated by {X,, | o € @}, then we have
¢

KM=C(o) , KNM=(ha, ,(~Dha,(-1)) , o=]]haw.(-1)
=1
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Now x € K and
T" = R x (Tw)o ) R = <h0é1<_1)> X X <h042471(_1>>

with R < K, so that
T.NR=RNZ(K) = (o)

since we have already shown that 7}, = Z(G) if the spherical unipotent class O, lies above wy.

Hence
Tp = (T")" x ()
We have proved that
) Z(G) forz € Z,, NwB
@) x ([T hay,_, (—1)) forze ZgnwB,£=1,...m—1
Proposition 4.13 For{ =1,...,m we have

. 20
)\(Zg) = {anwz | ng € N}

i=1
Proof. Let u € Zy, with ¢ = 1,...,m. If C(u)° = RC with R = R,(C(u)), C connected
reductive, then C'is of type Cy_1 B,,_o¢. In particular C' is always semisimple. Then we conclude

by Lemma 4.4, if ¢ > 2. When ¢ = 1, then rk C'(z) = n — 2, so that ] H,, is a maximal

YISO
torus of C'(z)°. Hence hq, (—1) ¢ C(x)° by Lemma 4.3, and we are done. O
We obtained
| O | A0) \ A(0)
7
X
(=1,....m—1 2”2“"2’
1=
m—1 m—1
Xm N2i W2 + 2Npwn N2i w2i + NpWwn,
i=1 =1
m—1 m—1
X;n N2 Wi + 2Np_1Wp—1 Z n2; Wi + Np—1Wn—1
i=1 i=1
7 20 7 20
/=1 ¢ m—1 Z n;wi, Z Nn9;—1 €ven Z n;w;
geeey i—1 i—1 i=1
n m n
Zm Z niW;, Z Nn9;—1 €ven, Ny_—1 + Ny even Z n;w;
i=1 i=1 i=1

Table 6: A\(O), A(O) for unipotent classes in D,,, n = 2m.

In particular Zm is a model homogeneus space, and in fact the principal one, by [28], 3.3 (4).
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4.3.2 Semisimple classes in D,, n even n = 2m
Following the notation in [9], Tables 1, 5 we have

DyD,,_, — Jy, L=1,...,m <<— 8p,55 ‘53,56,
Ty Ap — Kp, 7 SB1 SBm
(TiA,—1) «— {L,3,....,n—=3,n} «— S8, 58,,_ 15an_1

There are two families of classes of semisimple elements with centralizer of type T1 A,—1: to
distinguish them we wrote 71 A,,_1 and (T} A, —1)’".
Type D1D,,—1 = T1 Dy 1. Let 01 = exp(miw;), H = C(01). Then H is of type 11 D,,—1 with
Z(H) = C(H) = exp(Cw1)Z(G). If we put A = €S, then the image of exp(Cw;) in SO(2n) is
diag(\, I;,—1, A7, I,,_1). We have C(exp((w1)) = H <= ¢ € C )\ 27iZ.

In this case we have

TV = (T")°Z(G)

so it is not necessary to give explicitly the form of an element in wB N O.

Anyway for ¢ € C \ 2miZ, we consider the element

ye = gexp(Can)g

where g = x_g, (1)z_s, (1). Now 31 (exp(¢@1)) = 1 (exp(Cin)) = €, so that

1

exp(Cn)a—g, (=12, (=1) exp(C01) ™ = 2, (—e ™ )z—p, (—e™)

and
Yo = T—p (1- e_c)x,(;l(l - e_C) eXp(CQI)

By Lemma 4.1 we may take z; of the form

1+e ¢ 1+e¢
T = N Ng, hiﬁﬁl 1—76_< Xy 1—76_C
We have w = sg, 55, T = (ha, (—1)) x (T")° = Z(G)(T™)°, so that T, = T, hence (as

for Z7)
AMOexp(can)) = {2n1w1 + nows | ny, € N}

for ¢ € C\ 2miZ.

Type DgDn_g, {= 2, e, Mm.
Let oy = exp(miwy), H = C(oy) (the image of o, in SO(2n) is diag(—1y, L,—¢, — Iy, In—¢)).
Then H is of type DyD,,_,. We may take

e =mngns - -ngns, € Oy, NWB
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and clearly T),, = T It follows that

20-1
AMOexp(micy)) = {Z 2niw; + ngeway | i € N}
i=1

for/{ =2,...,m—1and
)‘(Oexp(widzm)) = {Z2nzwz | n; € N}
i=1

Type T1 A, 1.
Let z = exp(wy), H = C(z). Then H is of type T1 A,,—1, Z(H) = C(H) = exp(Coy)Z(G). If
A = €¢/2, then the image of exp(Cay,) in SO(2n) is diag(Al,, A\"11,,).
In this case we have
T =(T")Z(G)

so it is not necessary to give explicitly the form of an element in wB N O.
Anyway if ¢ € C\ 27iZ, then C'(exp((wy,)) = H. Let

ye = gexp(¢wn)g!
where g = ng, ---ng, xg,(1)---xg, (1). Then
Y¢ € Ocxp(caon) N Bsp, - sp,, BN B~
By Lemma 4.1 we may take x of the form

xc =mng, -+ -ng,hxp (§) - xg,,(£)

L+e¢ By Lemma 4.10 we have
1—e$

foracertain h € T, & =
TY =(T")°Z(G) = (T")° x (ha, (=1))
hence T}, ¢ = T" and we conclude as for X,,.

Proposition 4.14 Let ¢ € C\ 2wiZ. Then

m—1
A Oexp(can)) = {Z N2; wai + 2Npwn | Ny € N}

i=1
Type (T1A,,—1)". Here we consider z = exp(w,—1), H = C(z). Then H is of type (T1 An—1)/,
Z(H) = C(H) = exp(C&y,_1)Z(G). If A = €¢/2, then the image of exp((@,_1) in SO(2n) is
diag(A\,,_1, A1, A711,, 1, \). Applying the graph automorphism of order 2 of (i interchanging

a1 and oy, from the previous result we obtain, as for X,
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Proposition 4.15 Let ¢ € C\ 2miZ. Then

A(OGXP(C‘anl)) = {

m—1

Z n9; Wi + 2Mp—_1Wn—1 | ng € N}

=1
We got
[ 0 [ H ] \©)
exp(Cwr)
ceC\omiz | TP 2n1w1 + naw
n 20—1
explmiw
= 2,p.(. : ,’rfz)— 1 DeDn—y Z; 2niw; + nogwae
1=
n
exp (i, ) Dy Dy, 3 20
=1
-1
exp(¢wn) =
ceC\omz | DA > maini + 2niy
1=
exp(Cwn—1) m—1
¢ Ep(c \;;EZ (TlAnfl)’ Zl N9; Wi + 2Np—1Wn—1
1=

Table 7: A\(O) for semisimple classes in D,,, n = 2m.

4.3.3 Unipotent classes in D,, n odd, n = 2m + 1.

The center of G'is (([ [},

Zy,
Xﬁv

)
A

X1

Unipotent classes in Dy, n = 2m + 1

=1,....m +«—— Jy
b=1,....m «— Ky

Peag; 1 (—1))hay, _; (i) ey, (—i)). From [9] we get

581581 """ 53,56,

Sp1 5B,

Lemma 4.16 Let w = sg, ---sg, for{ =1,...,m. Then T" is connected.
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Proof. We have

Zlwoi |1 =1,...,0) fort=1,...,m—1
(1-w)P =
Z{wa,wi, ... ,Wp—3,wn—1 +wy) forl=m
[l
Therefore we have A\(X;) = A(X;) = P} for¢ =1,...,m.
Lemma 4.17 Let w = sg, -+ - 53,55, - -+ S5, for { = 1,...,m, then
T =(T")° x (ha,(=1)) -+ X (hay,_, (1))
Proof. We have
(1—w)p = Z2w1, ..., 2wop_1,wap) fort=1,...,m—1
ZQ2w1, ..., 2wp_2,Wp—1 +wy) forl=m
[l

For ¢ =1 we get T" = (ho,(—1)) x (T™)° = Z(G)(T™)°, so that T, = T", hence
ANZy) = {2n1w1 + nowo ‘ ng € N}

Next we consider Z,,,. We claim that

m

Ty =(T")° x (o) , o= Hh‘a%—l(_l)
i=1
(in particular T, = Z(G)(T™°)°).
In fact, z € K = C((T™°)°)’, and K is the D,,_1-subgroup of G corresponding to the subsys-
tem W ; of all roots of orthogonal to av,—1 — ay,: since ay,—1 — ap = —2ep, {1, ..., n—2,Bm}

is a basis of U, and K is simply-connected. We have
K(T*)° =C(o), KnN(T")° = (ha,s(~Dha,(-1)), o =] has (1)

The restriction of wy to RV is —1 and , as an element of K, is in the class Z(,,_1)/; of K. Since
we have already shown that T}, = Z(K) if O, is the spherical unipotent class of K lying over —1,
and

T = Rx(T")" ,  R=(hay(=1)) X -+ X (hag,_,(=1))

with R < K, we get
T.NR=RNZ(K)= (o)

hence
T, = (T")° x (o)
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Therefore

n—2 m
AN Zm) = {Z niw; + Np—1(wn—1 +wp) | Nk € N, ani,l even}

i=1 =1

To deal with Z;, £ = 2,...,m — 1, we may use the same argument of the case D,, with even

n and obtain
4

T, = (Tw)o X <U> y 0= Hha2i71(—1)
=1

Therefore
20 Vi
AZy) = {mez |k €N, Y ngig even}
1=1 i=1

We summarize the results obtained in

Proposition 4.18 For{=1,...,m — 1 we have

20 Vi
ANZy) = {anwz | ng € N, Zn%_l even}

i=1 i=1
Moreover
n—2 m
AN Zm) = {Z niw; + Np—1(wp—1 +wp) | Nk € N, ani_l even}
i=1 i=1

For the simply-connected cover we get

Proposition 4.19 For{=1,...,m — 1 we have

20
/\(ZAg> = {anwz | ng € N}
i=1
Moreover
n—2
/\(Zm) = {Z niw;i + Np—1(Wn—1 +wn) | N € N}
i=1

Proof. Let u € Z;, with ¢ = 1,...,m. If C(u)° = RC with R = R,(C(u)), C connected
reductive, then C' is of type Cy_1 B,,_o¢. In particular C' is always semisimple. Then we conclude
by Lemma 4.4, if £ > 2. When ¢ = 1, then rk C'(x) = n — 2, so that Hje.h H,, is a maximal
torus of C'(z)°. Hence hq, (—1) € C(z)° by Lemma 4.3, and we are done. O

We got
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O | AO) AO)
l
X
(=1,....,m—1 Z;nngQZ
1=
m—1
Xm Z No; Wi + nnfl(wnfl + wn)
=1
A . 2/ ¢ 20
¢
£=1,...,m—1 Zniwi, ZnZi—l even anwl
=1 =1 =1
n—2 m n—2
Zm, Z n;w; + nn—l(wn—l + wn)p Z Nn2;—1 even Z n;w; + nn—l(wn—l + Wn)
=1 =1 =1

Table 8: A\(O), A\(O) for unipotent classes in D,,, n = 2m + 1.

4.3.4 Semisimple classesin D,,n odd,n = 2m + 1
Following the notation in [9], Tables 1, 5 we have

DyDy,_y, £=1,....m «— Jy «— 5g55 -

Type D1 Dy, 1 = T1 Dy 1.

©" 58,56,
TVA,—1 — K, <— 8353

m

We can use the same calculations as in the case D,,, n even and obtain

_ _ . 14+e ¢ 1+e ¢
Te = nﬁ1n52hﬁ1 (e < - 1)h61(€ ¢ — 1) eXp(Cwl)xﬁ <> Tsy <>

1—e¢

in Ogyp(¢cay) NwB for every ¢ € C\ 2miZ.

1—e¢

Since T = (hq, (—1)) x (T%)° = Z(G)(T")°, we get Ty, =T (as for Z1) and

A(Oexp(car)) = {2n1w1 + naws | ny € N}
for ¢ € C\ 27iZ.
Type Dy D,,_, k = 2,...,m. As in the case n even we may take
xp =ngns, - -ngNs, € Op, NWB

where o, = exp(miwy). Then T, = T", so that

20—1
)‘(Oexp(wiwg)> = {Z 2n;w; + nopway ’ n; € N

i=1

}
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for/ =2,...,m—1and
n—2
)\(chp(ma)m)) = {Z 2nw; + 1 (wn—1 +wy) | s € N}
i=1
Type 11 A, 1. Here we consider elements of the form exp({w,,), ¢ € C\ 2miZ. Note that
wexp((@n)w_l = eXp(—CJ)n_l)
where w = sg, - - - sg,,. Hence
AOexp(can-1)) = MOexp(can))
Proceeding as in the case n even, we may take x of the form

x¢=ng, - -ng, hrg (§) - 2p,,(§) € Ocxp(¢an) NWB

14€¢
1—e¢”

By Lemma 4.16, for w = sg, - - - sg,,, T is connected, hence

foracertainh € T, £ =

m—1
)‘(Oexp(cwn)) = {Z no; wWai + nn—l(wn—l + Wn) | ng € N}
=1

for ¢ € C\ 27iZ.

We got
| 0 I @)
exp(Cwr)
¢ € C\2miZ TiDns 2n1wy + nows
- 20—1
exp(miw
(= 2,p< . ,ni) 1 | PePn-e Z; 2niw; 4 Nigewae
n—2 =
exp(ﬂiwm) Dy Dipi1 Z 2n,w; + nn—l(wn—l + Wn)
exp(Cwn) ”ii
(e é)j \ 2771-”'2 T1An— Z; n2; W2; + Np—1(Wn—1 + wn)
=

Table 9: A(O) for semisimple classes in Dy, n = 2m + 1.

44 Type B,,n > 2.

We put m = [5]. The center of G is (hq,, (—1)). Wehave w; = ey +---+e¢;fori=1,...,n—1,
wn = (e1+---+en). Weput §; = en; 1 +e;, 0; = eg; 1 —eg; fori = 1,...,m. Weputy, = ey,
My = {€—|—1,...,n}f0r£: 1,...,nand Jy, = {26—1—1,...,11},[(3 = JgU{1,3,...,2f—l}

for/ =1,...,m.
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4.4.1 Unipotent classes in B,,, n even, n = 2m.

A
Xo

X1

Unipotent classes in B,,, n = 2m.

Then
Zy, L=1,....m <— Jy <— 5p/55 - *53,55,
Xy, £=1,....m — K; «<— sp - 53,
Lemma 4.20 Let w = sg, - --5g,. Then T is connected for { = 1,...,m — 1 and, for { = m,

T = (T%)° x (ha, (~1)) = (T")° x Z(G).

Proof. We have

(1—w)P = Z{wa,wq, ... ,wap) for/{=1,...,m—1
Z{wa,wy, ... ,wp—2,2w,) forl=m
and we conclude. O
Proposition 4.21 For{=1,...,m — 1 we have

¢
)\(Xg) = {Zn%w% ’ ng € N}

i=1
Moreover

m—1
AMXp) = {Z No; woi + 2npwy | Nk € N}

=1

Proof. This follows from Lemma 4.20, since in all cases T, = T" (since T" = (T")°Z(G)). O

Proposition 4.22 For { = 1,... . m — 1 we have \(X;) = A(X;). Moreover

)\(Xm) = {aniwgi | ng € N}

=1

Proof. For ¢ = 1,...,m — 1 the group 7% is connected by Lemma 4.20, and A(X;) = \(X,).
For ¢ = m the reductive part of C(z)° is of type Cy, and so [ ;. Ha, is a maximal torus
of C(x)°. Hence h,,, (—1) ¢ C(x)° by Lemma 4.3, and we are done. O
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Lemma 4.23 Let w = sg, - -+ 53,85, -+ S5, Then

T _ (T™)° x (hay (—1)) x -+ X (hay,_,(=1)) fort=1,...,m—1
1w =Ty forfl =m

Proof. We have (1 — w)P = Z(2wy, ..., 2wap_1,wqp) for £ =1,...,m — 1. O

For { = 1and m > 2, we get T% = (hqo,(—1)) x (T™)°. In [9] we exhibit the element
z_p,(1)xz_5,(1) € ON BwB N B~. We may therefore choose

r = ngns hxg (2):651 (2)
for a certain h € T. Then hq, (—1) € C(z), so that T,, = T*. Therefore, if m > 2,
AMZ1) = {2njwy + nows | ng, € N}

Next we consider Z,,, m > 1. Let K be the subgroup generated by the long roots of G:
K is of type D,, and it is simply-connected ([42], §II 5, 5.4 (a)). In fact K = C(o), where
o =1[" hay_,(—1),and Z(K) = C(K) = Z(G) x (o). Following [9], proof of Theorem
2.11, we have x € K. But then we must have 7, = Z(K) by the results obtained for D,, (and for
Dy = Ay x Ay if m = 1), so that

n m
MNZpw) = {Z nwi | ng € N, ani_l even, Ny, even}

i=1 i=1
We now deal with Zy, £ = 2,...,m — 1. Here ¥; has basis {aq,..., 1,72}, and
C((T™)°) is of type By (and is simply-connected).
From the construction in [9], proof of Theorem 2.11, we can find z in the Doy-subgroup K of
C((T™)°)" generated by the long roots, that is the Dqy-subgroup with basis {a, ..., a1, 3¢}
(which is simply-connected). We have

By Lemma 4.23 we have
T =Rx(T")° , R=(ha(=1)) ¥ X {hay_,(=1))
and
T.NR=RNZ(K) =[] has_, (1)
i=1
since we have already shown that T}, = Z(Dy,) if the spherical unipotent class O, lies above wy

in Doy. Hence
T, = (T*)° x (o)
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Therefore
20 Vi
MNZy) = {Z niw; | ni € N, ani_l even}
=1 i=1

We summarize the results obtained in

Proposition 4.24 Let G be of type By, n =2m, m > 1. For{ =1,...,m — 1 we have

20 ¢
MZy) = {anwz | ng € N, Zn%,l even}
i=1 i—1
Moreover

n m
MNZm) = {anwl | ng € N, ani,l even, N, even}

i=1 =1

For the simply-connected cover we have

Proposition 4.25 For { < m we have

20
ANZy) = {anw2 | ni, € N}
i=1
Moreover
n
A(Zm) = {Z nwi | ng € N, ny, even}
i=1
Proof. Let u € Zy, with ¢ = 1,...,m. If C(u)° = RC with R = R,(C(u)), C connected
reductive, then C'is of type Cy_1 D,,_2¢+1. In particular C' is semisimple except when n—2¢+1 =
1, i.e. £ = m. Therefore we obtain T'N C(z)° = (T*)° for { = 2,...,m — 1 by Lemma 4.4,
since in these cases T, = (T")° x (o).

We claim that w; € A(Z;) for ¢ = 1,...,m. Letu = Tay oo (D) Tay (1) 2, (1)
which is in Z,. The image @Q of (u — 1)? in V(w;) (which is the natural module for B,,) has
dimension 1 and coincides with V' (w1)a,,. Let v be a generator of (). Then there is a character
v : C(u) — C* such that g.v = y(g)v for every g € C(u).

Now C(u) hasrank n — ¢, sothat S = {t € T | apy—2p4+2(t) = ap—o044(t) = -+ = ap(t) =
1} (which is connected) is a maximal torus of C'(u)°. If t € S, then t.v = o, (t)v = v, so that
even in the case when the reductive part of C'(u)° is not semisimple, - is the trivial character on
C(u)°. Hence C(u)°.v = .

In particular, if / = 1 and m > 2, then T'N C(x)° = (T")° and

)\(Zl) = {n1w1 + Nows | ng € N}
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We are left to deal with Z,,,. In this case we observe that taking again u = zq, (1), (1) - - - 4, (1)
in Z,,, then H,, < C(u), where y; = e;. Since 7; is short, we have Z(G) < H,,, so that
ha, (—1) € C(z)°. Therefore

A(Zm) = {Z nw; | nk € N, ny, even}
i=1

since we know that wy € A(Zy,,). O
We obtained

O | A(O) | NO) |
‘
621"‘?(%””_1 Zn%wm‘
m—1 pouy
Xm Z ng; wWa; + 2npwy, Z N9; W
2 1
= 17,‘Zim_1 anwu anz 1 even anwz
Zm Z niw;, Z Noi_1 even, n, even Z niwi, Ny even

Table 10: A\(©), A(O) for unipotent classes in B,,, n = 2m.

4.4.2 Semisimple classes in B,, n even n = 2m

Following the notation in [9], Tables 1, 5 we have

DyBy_y, £=1,....m — Jp —— 88,85 " 83,55,
DyB, gy, t=m+1,....n «—— MQ(n,g)Jrl = S8y Sy
TiA,—1 — g — W

Type D1 B,,—1 = 11 B;,—1. Consider the element 0y = exp(miw ), H = C(o1). Then H is of type
T1B,_1. If weput A\ = ¢S, then the image of exp(Cw; ) in SO(2n+1) is diag(1, X\, I,_1, \~1, I,,_1).
We have C'(exp((wy)) = H <= (¢ € C\ 2miZ.

For ¢ € C )\ 2miZ, we consider the element

ye = gexp(Con)g !

where g = 2_g, (1)2_5,(1). Now 31 (exp(Cwn)) = 81 (exp(Cw1)) = €S, so that

= L6, (_eic)x*ﬁl (_eic)

exp(Cw1)z g, (—1)z—p, (—1) exp(Cwr)
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and
Yo = T—p (1- E_C)x,(;l(l - e_C) eXp(Cwl)

By Lemma 4.1 we may take x of the form

L¢ = N1y hxﬂl (51)3}51 (52)

for certain h € T, £1, &2 € C: more precisely,
_ _ . 1+e¢ 14e™¢
w¢ = ng g hpy (e = 1hg, (67 — 1) exp(Can)zg, <1_e—g> 5, (1_6—<>
We have w = sg, s5,, and

T — <hal(_1)> X (Tw)o form > 2
- Ty = (ho, (1)) x Z(G) form =1

moreover hq, (—1) € C(z¢), since Bi(ha,(—1)) = 61(ha,(—1)) = 1, so that T}, = T*. There-

fore
{2n1w1 + nowy | nx, € N} form > 2

A Oex ) =
(Oexpcan)) {{inwl + 2nowy | ny € N} form =1
for ¢ € C\ 2miZ (as for Zy).

Type DBy, k = 2,...,n. Consider the element o}, = exp(miwy), H = C(o}) (the image
of o, in SO(2n + 1) is diag(1, — I, In—k, — Ik, In_x)). Then H is of type DyB,,_x, Z(H) =
C(H) = (o) Z(G) (in fact if k is even we have 07 = 1 and Z(H) = (o}) x Z(G), if k is odd
we have 07 = h,, (—1) and Z(H) = (o).

Let us first assume £ = 2,...,m, and let

LT =NpNg; - NG 1N,
Then x ~ hﬁ1 (i)h(gl (Z) s hﬁk (Z)hgk (Z) ~ Ofk. Now

Tw (hay (=1)) x -+ X (hag,_,(=1)) x (T™")° forl=1,...,m—1
T5 for/ =m

and clearly T,, = T™. It follows that
201
AMOexp(ricy)) = {Z 2nw; + nggway | n; € N}
i=1
for{ = 2,...,m — 1. Moreover

A Oexp(ricm)) = {Z 2nw; | n; € N}

i=1
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Letk =m+1,...,n. In[9], proof of Theorem 2.15, we introduced a certain conjugate (in
SO(2n + 1)) 7, of the image of oy, in SO(2n + 1): Z i is a representative of the element

Zn—k = Sy1 """ Syyn_py,,- Lherefore the element

L= Ny - n’Yz(n—k)-Ht

is conjugate to oy, for a certain ¢ € T'. Now we have the following generalization of Lemma 4.23

Lemma 4.26 Letw = s, ---5,, for{ =1,...,n. Then

o [T X Gy (<1) 5% {fa, (1) forf =1, 01
T =T forf=n
Proof. We have (1 — w)P = Z(2w1, ..., 2wp_1,wy) for £ < n. O

Since clearly T, = T", we get

Proposition 4.27 For{ =m+1,...,n we have

2(n—2)

AOexp(ricn) =3 D 21w + Nagn_gy41@a(n_ry+1 | ne €N
i=1

g

Type 11 A,_1. Consider the element z = exp(w,), H = C(z). Then H is of type T} A, 1,
Z(H) = C(H) = exp(Cay,) x Z(G). If we put A = ¢S, then the image of exp((@,) in
SO(2n + 1) is by = diag(1, \I,, A1 1,,). We have C(exp((wy)) = H <= ¢ € C \ ©iZ.

Let B be the image of B in SO(2n + 1). In [9], proof of Theorem 15, we exhibited an
element yy in SO(2n + 1): yy € Oy, N BwyB. The centralizer of y in B is trivial, therefore
Cp(r) = Z(G), where g is any representative of y, in G. Hence T, = Z(G) = (hq, (—1))
for any z¢ € Oexp(¢a,) N woB, so that

)\(Oexp(gwn)) = {mel | ng €N, ny even}
i=1
for ¢ € C\ miZ.

We obtained
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| 0 [ H ] @)
exp(Cwr)
¢eC\2miZ,m>2 T1Bn—y 2n1w1 + nawa
exp(Cwr)
(eC\2miZ,m=1 T1By 2niw1 + 2nows
exp(miwy) 21
= 2,p. . ,ni -1 DB Z} 2nw; + nagway
= n
exp(micm,) D,, By, Z Msew;
=1
( .~ ) 2(n—20) :
exp(miw
l= mp+ 1, .E. n DB Z; 21w + No(n—r)+1Wa(n—0)+1
1=
L n
exp(Cw
¢ EI?C(C\ ;z)Z T An— z; niw;, My even
1=

Table 11: A(O) for semisimple classes in B,,, n = 2m.

4.4.3 Mixed classes in B,, n even, n = 2m
From [9], Table 4, we get

onp (1) - - 25, (1) — o — wp

onxg (1) w5,(1), £=1,....m—1 — Mo <+ Sy - Sy,

Class of 0, z3,(1) - - - 23,,(1). We claim that T, = Z(G) forz € O NwoB.

Suppose for a contradiction that 7, # Z(G), and let o € T, \ Z(G). Then we have x €
K = C(o). Since the involutions in G are conjugate (up to a central element) to ooy, for a certain
ke{l,...,m}, K isof type Doy By, _of.

Now z is conjugate in K to an element of the form su, with s € T, u € U(K), [s,u] = 1. We
have s = s1592, u = ujug, with 81 € T(Dag), s2 € T(Bp—ak), u1 € U(Dag), us € T(Bp—_ak)
(note that u; and ug are uniquely determined, and u; must be in the classes X or X ]fz of Doy, uo
in the class X,y of B, _o;). Moreover sju; and seue must lie over the longest elements of the
Weyl group of Doy, and B,,_o respectively. We want to show that s; € Z(Dsy): this will lead to
the contradiction that syu; lies over the same element of the Weyl group of Dy over which lies
u1, and this is not the longest element of the Weyl group of Dsy. To show that s1 € Z(Dsy) we
may assume, up to the action of W, that K = C(0), where o = Hle Py, (—1).

In T there is a W-orbit {0, zoy, }, where z = h,,, (—1), due to the fact that the long roots
of By, form a D,,-subgroup of B,,: its center is (0,,) X Z(G). Since Doy, N B,,_or = Z(G) and

5182 ~ o, we have only the following possibilities for (s1, s2): (0,00,), (02,00,2), (02,004,),
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(0,00n,2). In each case we have s; € Z(Dayi) = (z,0). We have therefore proved that T, =
Z(@G), so that

n

/\(Oo'nftﬁl(l)“'xﬁm(l)) = {Z nwi | ng € N, ny, even}
i=1

Moreover, by the results for the class X, in D,, n = 2m, it follows that the centralizer of

onxs, (1) -2, (1) in G is not connected, hence C'(z) = C(z)° x Z(G) and C(z)°NT =1,

)\(@Unl'ﬁl (1)‘..;587”(1)) = {Z Nn;W; ‘ ng € N}
=1

Class of o, 25,(1)---2,(1),£=1,--- ,m— 1.

Here W ; has basis {aq, . .., age, Y2041}, and K = C((T™)°)" is of type Bag1 (and is simply-
connected). From the construction in [9], proof of Theorem 2.23, we can find = of the form
x = x1h,withh € T, 21 € K, x1 inthe class of ogp 128, (1) - - - £5,(1) (Which is the mixed class
of maximal dimension in Bsyy1). By Lemma 4.33 we have

T = Rx (T")° | R={(hay(~1)) x -+ x (hay,(~1)) < T(K)
(1) = H

Q2042

x---xHy, , Tpy=(T;NR)x (T

and
T, NR<T,NT(K) = Cr)(r) = Cr)(z1)

and by the results for the mixed class of maximal dimension in Bsyy (see next subsection), we
have CT(K)(CL‘l) = Z(K) = (hyy,,,(—1)) = (ha, (—1)). Hence

TN R < (ha,(—1))NR=1
and T,, = (T")°. Therefore

A

20+1
MOpap, (1)25,1) = MOppag, (1)-25,(1) = {Z niw; | ny € N}
=1

We obtained

| 0 | o | O

onzp, (1) ,(1) S niws
=1

(=1, ,m—1

2
n n
onzs (1) g, (1) Z n;W;, Ny €Ven Z ;Wi
1=1 i=1

Table 12: A(O), A(O) for mixed classes in By, n = 2m.

In particular o is a model homogeneus space, and in fact the principal one, by

[28], 3.3 (2).

onzgy (1) 2, (1)
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4.4.4 Unipotent classes in B,,, n odd, n = 2m + 1.

Zm+1

Zs . Xm

Z

X1

Unipotent classes in By, n = 2m + 1

Then

Zy — Jy, L=1,...,m <«— 8g/ 55 ‘53,55,

Iyl —— O —— W = SB,56; """ SBm S6m San

Xy — Ky (=1,...,m <— sg - 53,
Lemma 4.28 Let w = sg, ---sg, for{ =1,...,m. Then T" is connected.
Proof. For{ = 1,...,m we have (1 — w)P = Z{B1,...,Pe) = Z{wa | i =1,...,¢). O
Proposition 4.29 For{ =1,...,m we have

¢
)\(Xg) = )\(Xg) = {Z n9; Wy | ng € N}
i=1
Proof. This follows from Lemma 4.28. ]
Lemma 4.30 Let w = sg, --- 53,55, - - 85, for £ = 1,...,m. Then
T = (T%)° X (ha, (=1)) x -+ X (hay,_, (—1))

Proof. For / = 1,...,m we have (1 — w)P = Z(2wy, . .., 2wap_1, wap). O

For ¢ =1wegetT" = (hqo,(—1)) x (T"")°. In [9] we exhibit the element x_g, (1)z_5,(1) €
O N BwB N B~. We may therefore choose x = ng,ns, hxg, (2)xs,(2) for a certain h € T. Then
ha,(—1) € C(z), so that T, = T™.

Next we consider Z,,,41. We claim that T, = Z(G). Suppose for a contradiction that there is
an involution o € T, \ Z(G). Then x € K = C(0), and K is the almost direct product K; Ko,
of type Dy B,,_, forsome k = 1, ..., n. We get an orthogonal decomposition & = F; & F» and
a decomposition z = x1x9 € K1Ks. Then —1 = wy = (wq, ws), where w; is the element of
the Weyl group of K; corresponding to x; (the class of x; in K is spherical). It follows that each
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w; = —1, and k is even. Then x1 is in the class Zy, /o of K and x5 in the class Z,,, 11/ of Ko.
However, the product z; 2 is not in the class Z,, 1 of G (since in x1x9 there are two rows with 3
boxes), a contradiction. Hence T, = Z(G).

We now deal with Zy, ¢ = 2, ... ,m. Here ¥ has basis {aq, ..., a_1,72¢}, and C((T™)°)
is of type By,. From the construction in [9], proof of Theorem 2.11, we can find x in the
Dyy-subgroup K of C((T")°)" generated by the long roots, that is the Dyy-subgroup with ba-
sis {au, ..., a1, 0¢}. We have

V4
Z(K) = Z(G) x { Hham A
=1

By Lemma 4.30, T,, = (T")° x (T, N R), where R = (hqa,(—1)) X --+ X (hqy,_,(—1)) < K.
Since x lies in the maximal spherical unipotent class of Dy, from the result obtained for this class,
wehave T, "R = RN Z(K) = (o), hence T, = (T")° x (o). We have proved

Proposition 4.31 For{ =1,...,m we have

20 J4
Zy) = Zniwi | ng € N, ani,l even
i=1 i=1
Moreover

AN Zms1) = {Z niw; | ng € Ny ny even}

=1
For the simply-connected cover we obtain

Proposition 4.32 For{ =1,...,m we have

20
= {anwl | ng € N}
i=1
Moreover

Zmt1) {anwl | ng € N}

Proof. Letu € Z;, with¢/ =1,... ., m+ 1. If C(u)° = RC with R = R,(C(u)), C' connected
reductive, then C is of type Cy_ 1Dn or+1 ([12], §13.1). In particular C' is semisimple since
n — 20 + 1 is even. Hence \(Z;) is free by Lemma 4.4.

For { = m + 1, we have Z(G) £ C(x)°. In fact, we can take u = x4, (1)Ta4(1) - - - Zq, (1)
in Zp41. Then S = Hy, Hy, - - - Hy,,_, is a maximal torus of C'(u)°, and since Z(G) NS = {1},
we get C(u) = C(u)° x Z(G) by Lemma 4.3. We are left to deal with £ = 1. However for each
¢, the image @ of (u — 1)? in V/(w;) (which is the natural module for B,,) has dimension 1, so
C(u)° acts trivially on @ by Lemma 4.5, and w; € A\(Zy). O

We summarize the results obtained in
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%) @) @)
L
X
— Z T2 W2
{=1,....m '
i=1
20 l 20
Zy
Z n;Ws;, Z Nn9;—1 €ven Z n;w;
£=1,....m , ' ,
=1 =1 i=1
n
Zm+1 Doy nw;, Ny even Z n;w;
=1

Table 13: A(©), A(O) for unipotent classes in By, n = 2m + 1.

In particular Zm+1 is a model homogeneus space, and in fact the principal one, by [28], 3.3 (2).

In section 5, we shall determine the decomposition of the coordinate ring of the closure O
of O = Z,,+1. For this purpose we shall use the fact that if x € O N wyB, then a,,_1 occurs
in z (see the discussion before Proposition 3.11). In [9], proof of Theorem 12, we exhibit an
element v in the corresponding class in SO(2n + 1). Working in SO(2n + 1), we find that v =
Wa, ,(—1)WoZa,_,(—1)u for a certain representative wy of wo, u, v € [[geq+\fa, 3} Xp-
Then

= (u'tq, ,(~1)) " 'v'tq, ,(=1) = woza, , (~2)u”

for a certain u” € [] BedH\{an_1} Xg. The calculation is reduced to determining the first upper

off-diagonal of upper unipotent n x n matrices X, Y such that ' X~'Y = —X, where X is the
n X n matrix with diagonal equal to (—1,0,...,0), first upper off-diagonal equal to (1,1,...,1),
first lower off-diagonal equal to (—1, —1, ..., —1) and zero elsewhere.

4.4.5 Semisimple classesin B,,,n odd n = 2m + 1

Following the notation in [9], Tables 1, 5 we get

DyB,_¢, £=1,...,m — Jy —— 53,55, " 583,55,
DyB,_y, t=m+1,....n +— Mg(n_g)_’_l = Sy8y Sy o
Ty A, — «——  Wo

Type D1 B,,—1 = T1 B,,—1. Consider the element 04 = exp(miwn ), H = C(o1). Then H is of type
T1B,,_1. If we put A = ¢S, then the image of exp(Cw1) in SO(2n+1) is diag(1, A, I,—1, A™1, I,_1).
We have C(exp((w;)) = H <= ¢ € C\ 27iZ.

For ¢ € C )\ 2miZ, we consider the element

ye = gexp(Can)g !
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where g = z_g,(1)z_5,(1). Now £ (exp((w1)) = 61(exp(Ci1)) = €S, and we may take z¢ of
the form
_ _ . 1+e ¢ 1+e ¢
w¢ = ng g hgy (e = 1hg, (67 — 1) exp(Can)zp, <1_e—g) 5, (1_e—<>

We have w = sg,55,, T" = (hq, (—1)) x (T"™)°. Then hq, (—1) € C(z¢), since B1(ha, (—1)) =
01(ha, (—1)) = 1, so that T,, = T*. Therefore

)‘(Oexp(@h)) = {2n1w1 + Nows ‘ ng € N}

for ¢ € C\ 27iZ (as for Zy).

Type DBy, k= 2,...,n.

Consider the element o, = exp(miwy), H = C(0y) (the image of o1 in SO(2n + 1) is
diag(1, —Ix, In—k, —Ig, In—x)). Then H is of type Dy Bk, Z(H) = C(H) = (0})Z(G) (in
fact if k is even we have 07 = 1 and Z(H) = (ox) x Z(G), if k is odd we have 07 = hy, (—1)
and Z(H) = (oy)). For our purposes it is enough to deal with the elements oy

Assume k = 2,...,m, and let
T ="Np Ngy * NG TG,
Then x ~ hg, (i)hs, (i) - - - hg, (i)hs, (i) ~ of. Now

T% = (hay (<1) x - x (hag,_, (~1)) x (T)°

Q2¢—1

and clearly T, = T™. It follows that

201
AMOexp(micy)) = {Z 2niw; + nggwae | i € N}

i=1
for{ =2,...,m.

Assume k =m+1,...,n.
In [9], proof of Theorem 2.15, we considered a certain conjugate (in SO(2n + 1)) Zn_ 1 of the

image of oy, in SO(2n + 1): Z,_, is a representative of the element Z,,_j, = 8y, =~ Sy, .-

Therefore the element
L=Nyy 'n72(n—k)+1t

is conjugate to oy, for a certain ¢ € T'. Now we have the following generalization of Lemma 4.30

Lemma 4.33 Letw = s, ---5,, for{ =1,...,n. Then

T _ (T")° x (ha, (—1)) x -+ X (hq,_, (1)) forl=1,...,n—1
| Two =T forf=n
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Proof. We have (1 — w)P = Z(2wy, . .., 2wy_1,wy) For ¢ < n. O
Since clearly T, = T", we get

2(n—2)
M Oexp(micsy)) = Z 2niw;i + No(n—r)+1W2(n—e)+1 | "k € N

i=1

for{ =m+2,...,n,and

)‘(Oexp(wiwm+1)) = {Z 2nw; | ng € N}

i=1

Type 11 A, 1.

Consider the element exp(wy,), H = C(exp(wy)). Then H is of type T1A,—1, Z(H) =
C(H) = exp(Cwy,). If we put A = €S, then the image of exp((@,) in SO(2n + 1) is by =
diag(1, \I,, A\"11,,). We have C(exp((wy,)) = H <= ¢ € C\ miZ.

With the same argument used for even n we conclude that T, = Z(G) = (ha,, (1)) for any
2¢ € Oexp(can) N woB, so that

AOexp(can)) = {anwz | ng €N, ny even}

=1

for ¢ € C\ miZ.

We got
| © | 2 ] AO)
exp(Cwr)
ceC\2mz | NBnm1 2miwi + ngws
- 20—1
exp(miw
Y :p2<7 o f)TTL DB,y z; 2n;w; + Nogway
( .. ) 2(n—2) -
exp(miwy
l=m+2,....n DiBr— z; 2niWi + N2(n—0)4192(n—£)+1
1=
n
eXp(WiJJm+1) Dm+le Z 2n;w;
i=1
~ n
exp(Cw
¢ El?ég\ ;’L)Z T An— z; niw;, My €ven
-

Table 14: A(O) for semisimple classes in B,,, n = 2m + 1.
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4.4.6 Mixed classesin B,,n odd,n =2m + 1

From [9], Table 4, we get

onxs (1) 25,(1), £=1,....m «— Moy «— Sq1 " Svyaein

Class of 0,23,(1)--- 2, (1). Arguing in the same way as for the case of even n, we get T, =
Z(@). In fact here the only difference is that o, has order 4, 02 = 2, where z = h,,, (—1). Then
{on, z0, = o1} is still a W-orbit.
Hence
n
A(Oonxﬁl(l)-"mﬁm(l)) = {Z nwi | ng € N, ny, even}
i=1
Moreover we know that the centralizer of xg, (1) ---xg,, (1) in D,, is connected (since n is odd,

see Table 8), therefore C'(x) is connected, and

~

O — \O

gy (15, (1)) oy (g (1))

Class of 0,23, (1) --2g,(1), £ = 1,--- ,m — 1. Arguing as in the case of even n, we obtain
T, = (T™)°, so that

20+1
MOz, (1), (1) = MOopag, (1)-25,(1)) = {Z niw; | g € N}
=1

We got
| 10) | M0O) = \0) |
o (1) 2g,(1) =
f:ﬁl,m ,mﬁ—l ;"M

n
ontp (1) 25, (1) > " niwi, nyeven
=1

Table 15: A(O), A(O) for mixed classes in By, n = 2m + 1.

4.5 Type E;.

We put



44 Mauro Costantini

4.5.1 Unipotent classes in Fj.

34
24

Ay
Unipotent classes in Fjg

Then
Ay — {1,3,4,5,6} «— sg
241 «— {3,4,5} — 53,58,
341 «— © —— wo = Sg, ‘58,
We have
Z{ws) for w = sg,
(1 -w)P = { Z{w + wg,w2) for w = sg, 53,

Z{w1 + wg, 2wa, w3 + ws, 2wy)  for w = wy

Here Z(G) = (hay (€)hag () has (€7 has (€)), where € is a primitive 3rd-root of 1.

Class A;. By Proposition 4.2, T" is connected (in fact (1 — w)P = Z{w2)).
Class 2A;. Here T" is connected since(1 — w) P = Z{w1 + wg, w2).
Class 3A;. Since (1 — w)P = Z{w1 + ws, 2w, w3 + ws, 2wy ), we get

T = (T™)° xR, R=(hay(=1)) X (hay(=1))

and, by 4.11, (T%°)° = {ha, (t1)hag (1] ) has (t3)has (t51) | t1,t3 € C*}.

Here W ; has basis {02, 83, aq, @z}, K = C((T™)°)" is of type D4 (and is simply-connected)
and Z(K) = (hay(—1)hag(—1), has(—1)has(—1)). Since z € K and lies over the longest
element of the Weyl group of K, from the result for the maximal spherical unipotent class in Dy
wegetT, NK =Z(K).But Z(K) < (T*°)°,sothat RN Z(K) = 1,and T,, = (T")°.

We have shown that in all cases 7, = (7"")°, hence

o | A0) = X(0) |
Ay naws
244 ni (w1 + we) + nows
344 ni(wi + we) + n3(ws + ws) + nows + naws

Table 16: A\(©), A(O) for unipotent classes in Eg.
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4.5.2 Semisimple classes in Ejg

Following the notation in [9], Table 2, we have

A1As — o — Wy
D5T1 — {3,4,5} —— S5p15pB

Type A1 As.

The elements of G whose centralizer is of type A; A5 are conjugate, up to a central element, to
exp(miw2) = hay (—1)hay(—1)hag(—1). Letz = ng, - - -ng,. Thenz? = hg, (1) -+~ hg, (1) =
1, and x ~ exp(miws). Then clearly T, = T"°, so that

AMOexp(ricn)) = {n1(w1 + we) + n3(ws + ws) + 2nows + 2n4wy | 1y € N}
Type D5T1.

Let K = C(exp(miwn)). Then C(K) = Z(K) = exp(Cw) and C(exp(Cur)) = K < ¢ €

C \ 27iZ. Since T" is connected we get
A Oexp(can)) = {n1(w1 + we) + nows | ny, € N}

if ( € C\ 2miZ.
We obtained

| 0 | H | MO)
exp(miws) A1 A5 || ni(wr + we) + ns(ws + ws) + 2nows + 2n4wy

exp(Cw1)
¢ € C\ 2niZ DsTh

ny (wl + (.d(;) + now39

Table 17: A(O) for semisimple classes in Eg.

4.6 Type L.
Here Z(G) = (hay(—1)has (—1)ha, (—1)). We put

ﬁl = (272737453727 1)1 62 = (01 11 17272727 1)7 /83 = (07 17 17271a070)7
Pr=az, Ps=a5 [s=a3 [r=a
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4.6.1 Unipotent classes in E’;.
4A,

(3A1)
(3A1)"

24,
Aq

Unipotent classes in E7

Then
Ay — {2,3,4,5,6,7} «—— sg
241 — {2,3,4,5,7} — 58,58,
(3141)” R {27 37 47 5} — 8181 852 8,84
(341) «— {2,5,7} T 561582583586
44, — O — wo = Sg, - 53,
We have
Z{w1) for w = sp,
(1—w)P = Z{w1,we) for w = s, 53,
Z{w1,ws, 2wy) for w = sg,58,58,
Z(2w1, 2ws, w4, we) for w = 53,53,53,53;

Class A;. By Proposition 4.2, T" is connected.
Class 2A4;. Since (1 — w)P = Z{w1,ws), T* is connected.

Class (34;)'. Note that Z(G) < (T™)°. Since (1 — w)P = Z{2w1, 2ws, w4, wg), we get
T = (T%)" x (hay (=1)) X {hag(=1))

Here U has basis {a1, ag, 02, 83}, K = C((T™)°)’ is of type D4 (and is simply-connected) and
Z(K) = (hay(—1)ha; (—1), hay(—1)has(—1)). Since z € K and lies over the longest element
of the Weyl group of K, from the result for the maximal spherical unipotent class in D4 we get
T.NK=Z(K).But Z(K) < (T%)°,sothat RN Z(K) =1,and T,, = (T")°.

Class (34;)". Since (1 — w)P = Z{w1, wg, 2wr), we have
T = (T%)° x (har (=1)) = (T")° x Z(G)

and T, =T".

Do deal with the simply-connected cover of (3A41)”, we note that the reductive part of C'(z)°
is of type Fy ([12], p. 403), so in particular has rank 4: hence S = [ | jed H a; is a maximal torus
of C(z)°. Since Z(G) £ S, it follows from Proposition 3.20 that 7' N C'(x)° = (T™)° (and
C(z) = C(x)° x Z(G)).
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Class 44;. We claim that 7, = Z(G). Suppose for a contradiction there exists an involution
o € T, \Z(G). Then z € K = C(0) and K is of type DgA; (see next subsection). By
comparison of weighted Dynkin diagrams, the unipotent spherical class of K over wg does not
correspond to the class 441 of E7 (it corresponds to the class Ao + A1), a contradiction.

Do deal with the simply-connected cover of 441, we note that the reductive part of C'(x)° is
of type C'3 ([12], p. 403), so in particular it is semisimple: by Lemma 4.4, the monoid A(4A1) is

free, and from
7
)\(4141) = {Z n;w;, N2 + N5 + Ny even}
i=1
it follows that

7
i=1
hence TN C(z)° =1and C(z) = C(z)° x Z(G).
We obtained
Lo | AO) | AO) |
Aq niwp
244 niwi + newe
(3A1)" niwi + newg + 2n7wy niwi + newg + nrwr
(3141)/ Nn1wWi + N3w3 + N4awyq + Newe
7 7
4A4 Z n;w;, N2 + N5 + ny even Z n;w;
i=1 i=1

Table 18: A\(©), A(O) for unipotent classes in Er.

In particular the simply-connected cover of 44; is a model homogeneus space, and in fact the
principal one, by [28], 3.3 (8).

Remark 4.34 From our description, it follows that C'(z) is connected for the classes A;, 24, and
(3A1)’, while for (341)"” and 4A4; we have C(z) = C(z)° x Z(QG). This also follows from the

tables in [1], where all unipotent classes are considered.

4.6.2 Semisimple classes in F;
Following the notation in [9], Table 2, we have
Ee¢Th «—— {27 3,4, 5} T 58158258

DgA; «— {2,5,7} S 561562583586
A7 — JJ —  Wp
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Let Y be the set of elements y of order 4 of T such that y? = z, where Z(G) = (z). Then Y’
is the disjoint union of 2 conjugacy classes Y7, Ya, where C(y) is of type A7 if y € Y7, of type
E¢T if y € Ya. A representative for Y] is exp(miws), one for Y5 is exp(miws).

Type A7. Here we consider K = C(exp(miwz)). Then K is of type A7, Z(K) = (exp(micq))
is of order 4. Let * = ng, ---ng,. Then 2 = hg,(—1) - hg,(—1) = 2, € wyB (and
x ~ exp(miw9)), and clearly T, = T5.

Type E¢T;. Let K = C(exp(miwr)). Then C(K) = Z(K) = (exp(Cwr)). Now exp((wr) =
1< ¢ € 4miZ, and C(exp((wr)) = K < ¢ € C\ 27miZ.

In this case we have

T = (T")°Z(G)
so it is not necessary to give explicitly the form of an element in wB N O.

Anyway, we consider the element
yc = gexp(Cur)g ™
where g = ng, ng,na, 8, (—1)x8,(—1)Ta; (—1). Now Fi(exp(Cwr)) = fa(exp(Cwr)) =
= ar(exp(¢wr)) = €, and w(wy) = —wy so that
Te = ng ng,nahxg, (§)xp, (§)ra,(§) € Ocxp(car) N Np My Nar B

for a certain h € T, with £ = }f:ﬁ .

Since T = (T")° x Z(G), we conclude that Ty, = T, as for the class (341)".

Type DgA;. The group Fr; has 2 classes of non-central involutions: O, and O, where ¢ =
exp(miwi) = hg, (—1). In fact there are 127 involutions in 7', and z is central. The W -orbit of o,
{ha(—1) | @ € 1}, consists of | @1 | = 63 elements, since if the roots o and 3 are congruent
modulo 2Z®, then 8 = +a« ([3], ex. 1, p. 242). Since oz is not of the form h,(—1), the set
{ha(=1)z | @ € ®*} is another W-orbit (the fact that oz is not conjugate to o also follows from
the discussion in section 6).

Let 7 = ng,ng,NpsNas. Then 22 = hg (—1)hgy(—1)hg,(—1)has(—1) = 1, so that x is an
involution, and clearly T, = T".

We obtained
| 0 | H | A0) |
exp(Cw
C c ((Pé(g 2;_)1,2 E6T1 niwi + Newe + 27170)7
exp(miwy) Dg Ay || 2niwy + 2nsws + nyws + ngwe
7
eXp(ﬂid)g) A7 Z 2’)7,1'(,4)1‘
i=1

Table 19: A(O) for semisimple classes in F7.
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4.7 Type Lgs.
We put

Bi=(2,3,4,6,543,2), f = (2,2,3,4,3,2,1,0), f = (0,1,1,2,2,2,1,0),
By = (07 1, 1,2, 1’07030)’ Bs = oz, B = a5, Br = a3, Pg = an

4.7.1 Unipotent classes in Eg.
4A,
3A,
24
Ay

Unipotent classes in Eg

Then
A — {1,2,3,4,5,6,7} — Sp;
2A1 A— {2737475767 7} — 8618ﬂ2
34 — {2,3,4,5} T S5B1562583505
4A; — © — Wo =8B, Sps
We have
Z{ws) for w = sg,
(1—-w)P =1 Z{wy,ws) forw = sg, sp,

Zw1,we, 2wy, 2ws)  for w = sg,53,53,53;
Class A;. By Proposition 4.2, T is connected.
Class 2A4;. Since (1 — w)P = Z{wy,ws), T" is connected.

Class 3A4;. Here U has basis {a7,as, 82,03}, K = C((T™)°)" is of type D4 and has center
(has(—1)has(—1), hay(—1)has(—1)) which is contained in (7)°. Hence T, = (T™)°.

Class 4A41. We claim that T, = 1. Suppose for a contradiction there exists an involution o € T ,.
Then x € K = C(0). From the classification of involutions of Esg, it follows that K is of type
Dg or E7A1. The class of = in K is spherical, and by the uniqueness of Bruhat decomposition, x
lies over the longest element of the Weyl group of K, which is wy. By comparison of weighted
Dynkin diagrams, the unipotent spherical class of K over wg does not correspond to the class 44

of Eg (in both cases it corresponds to the class A + A1), a contradiction.

We have shown that in all cases T, = (T")°, so that C(z) is connected, as also follows from
[12], p. 405. We have
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o ] AMO) = \(O) |
Ay ngws
241 niwi + ngws
3A1 || niw1 + news + Nrwy + nNgws
8
4A Z ;Wi
i=1

Table 20: A\(O), A(O) for unipotent classes in Ej.

In particular 44, is a model homogeneus space (see [2], Theorem 1.1), and in fact the principal
one, by [28], 3.3 (9).

4.7.2 Semisimple classes in Fg.

Following the notation in [9], Table 2, we have

A1E7 — {2’ 3’ 47 5} — 5618/625638/35
Dg — O — Wy
Type Dg. The elements of G whose centralizer is of type Dg are conjugate to exp(miwy ). Let z =
ng, - -ng. Then z? = hg (1) hg(—1) = 1. Moreover, x € woB implies z ~ exp(mic1).
Clearly T, = T"° = T5.

Type A Er. The elements of G whose centralizer is of type A; E7 are conjugate to exp(miws).
Let x = ng, ng,Nng,Na,. Then x is conjugate to hg, (i)hg, (i)hp, (1) ha, (i) =
= hay(—1)has (—1)ha, (—1)has (—1) whose centralizer is of type A; E7, hence x ~ exp(miws).
Then T, =T".

We obtained

.o [ H | AO)
exp(miwg) | A1E7 || nqwi + news + 2n7wy + 2ngws

8
eXp(ﬂ'id)l) Dg Z 2niwi
=1

Table 21: A(O) for semisimple classes in Eg.

4.8 Type F}.

We put
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4.8.1 Unipotent classes in F}.

A+ [11
4
Ay
Unipotent classes in [}
Then
Ay — {2,3,4} «— sp,
Ay — {2,3} T 88156
AT+ A — O — wp =8, "5
We have
(1= w)P = Z{wn) for w = sg,
Z{w1,2wy) forw = sg, 53,

Class A;. By Proposition 4.2, T" is connected.
Class A;. Since (1 — w)P = Z{w1, 2wy), we have T = (T%)° X (hq,(—1)). From [9], proof of
Theorem 2.12, we get

z_g, (1)xz_g,(1) €« ONBwBNB~

hence we may choose
T = ng ng,hzg (2)xs,(2)

for a certain h € T'. Since Z (031, f2) = Z{w1,2wy), we get (hq,(—1)) < T,,and T,, = T".

Since [C(x) : C(z)°] = 2 ([12], p. 401), we must have C(z) = C(x)° : (hq,(—1)) and
Cx)°NT = (TY)°.
Class A; + A;. Here T = T5. We consider the subgroup K generated by the long roots of G: K
is of type Dy and it is simply-connected ([42], §I 5, 5.4 (a)). Infact K = C((hay(—1), ha,(—1))),
and Z(K) = C(K) = (has(—1), ha,(—1)). Following [9], proof of Theorems 2.12 and 2.11,
we have € K (equivalently one can show, by using weighted Dynkin diagrams, that the class
in G of a unipotent element in the class Z; of K is precisely A; + A}). But then we must have
T, = Z(K) by the results obtained for Dy, so that

)\(Al + /11) = {nlwl + nows + 2n3ws + 2n4wy | ng € N}

By [12], p. 401, C(x) is connected. We obtained

o__| AO) [ 0 |

Al niwi

Ay niwi + 2nqwy njwi + Nawsy
A+ 1211 niwi + Nows + 2n3ws + 2n4wy

Table 22: A(©), A(O) for unipotent classes in F}.
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4.8.2 Semisimple classes in F}.
Following the notation in [9], Table 2, we have

AC3 — @ — Wy
By «— {1,2,3} «— s,

where 7 is the highest short root (1,2, 3, 2).
Type A;C5. The elements of G whose centralizer is of type A;Cj5 are conjugate to exp(miw; ).
Let

T="npg - Npy
Then 22 = hg,(—1) -+ hg,(—1) = 1, and = € woB implies z ~ exp(micw, ). Clearly T,, = Tb.

Type B,. The elements of G whose centralizer is of type B, are conjugate to exp(miwy). By

Proposition 4.2, T is connected, hence 7, = 1. Then

)‘(Oexp(wi@;)) - {TL4LU4 ‘ ng € N}

We obtained

4
eXp(Wi(IJl) A103 Z Qniwi
i=1

exp(miwy) By N4wy

Table 23: A(O) for semisimple classes in Fy.

4.8.3 Mixed class in Fj.

We put fo = exp(miwy) = has(—1). Then following [9], Table 4
Of?l:ﬁl (1) —> @ —> ’LUO

As we already recalled, G has 2 classes of involutions. More precisely, in 1" there are 15

involutions, and under the action of W they fall in the 2 classes
{ha(=1) |a € ®Tislong} , {ha(—1)|a € @ is short}

where {h,(—1) | « € ®T islong}, consists of 12 elements, since if the long roots  and 3
are congruent modulo 2Z®, then 8 = +«, while {ho(—1) | a € ®7 isshort} consists of 3
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elements: {hq,(—1), has(—1), has(—1)ha,(—1)} which are the involutions in the center of the
Dg-subgroup D of G generated by the long roots.

Suppose H is a Bs-subgroup of G. Then H has 4 (non-trivial) unipotent spherical classes, and
by comparison of weighted Dynkin diagrams, the class X corresponds to the class A; of G, the
classes X5 and Z7 to fh, and the class Z to A + fll.

Suppose H is a C3Aq-subgroup of G. Then H has 7 (non-trivial) unipotent spherical unipo-
tent classes, and by comparison of weighted Dynkin diagrams, the classes (X1,1) and (1, X7)
correspond to the class A; of G, the classes (X7, X7) and (X2, 1) to Ay, the classes (X2, X1) and
(X3,1)to Ay + A and the class (X3, X1) to As.

Now let x ~ foxp (1), z € woB. We claim that T,, = 1. Let # = x,z, be the Jordan-
Chevalley decomposition of . In particular x5 ~ f» and z,, ~ 23, (1).

Suppose for a contradiction there exists an involution o € T;,. Then z € K = C(0), with K
of type either B4 or C5A;. In both cases we have Z(K) = (o). Since the class (in G) of z,, is
spherical, the class of x,, in K is spherical, and by the uniqueness of Bruhat decomposition, x lies
over the longest element of the Weyl group of K, which is wy.

Now z is conjugate in K to an element of the form su, with s € T, u € U N K, [s,u] = 1.
Since s ~ fa, we have s € {ha,(—1), has(—1), has(—1)ha,(—1)}, and so s lies in Z (D).

Let us assume K is of type By. Then w lies in the class X; of K, so that the class of x in K,

up to a central element of K, is the class X or the mixed class O (standard notation for

cazs (1)
Bj). In both cases x does not lie over wq (see the tables 10, 12 for m il 2).

Let us finally assume K is of type C3A;. It follows that u must be either in (X1, 1) or in
(1, X1), and s = s189, with s € T(C3), so € T(A1). We observe that T'(C3) N T(A;) =
Z(K) = (o). We claim that s2 lies in the center of A; (i.e. s = 1 or o). Up to the W -action, we
may assume o = exp (i ). Then from the fact that s € {ha,(—1), hay(—1), has(—1)ha, (—1)},
it follows that either so = 1, or s = o, and we are done. If we write u = ujug, with u; € Cs,
us € Ay, we must have that suq lies over wq in C3, and saus lies over wq in A1. But ss is central
in Aj, therefore we must have ug # 1, so that w is in the class (1, X). But then the involution
s1 does not lie over wyp (in C3), by the results on semisimple conjugacy classes of C3, see table

4: only the classes Ogyxp(cay) for ¢ € C \ 27iZ are over wy, but there are no involutions in these

Cws
classes, since exp(2miws) has order 2 (and is central).

We have therefore proved that 7, = 1. Hence

| [0) [ M0)=)(0) |

fazp, (1) Zniwi
i=1

Table 24: A\(O) for the mixed class in Fj.
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In particular Oy, 5, (1) is a model homogeneus space, and in fact the principal one, by [28], 3.3
(6), see also [28] p. 300.

4.9 Type G,.

We put ﬂl = (372)7 BQ = aj.

4.9.1 Unipotent classes in Gs.
/ A,
Ay

Unipotent classes in G2

Then
A4 — {1} — sy
Al — @  —— wo =533,

Class A1, w = sg,. By Proposition 4.2, T is connected, so
)\(Al) = {TLQU)Q | ng € N}

Class Al. We have T = T5. We claim that T, = 1. Suppose for a contradiction there exists an
involution o € T,,. Then x € K = C(o). From the classification of involutions of Gy, it follows
that K is of type A1 A;. The class of z in K is spherical, and by the uniqueness of Bruhat decom-
position, x lies over the longest element of the Weyl group of K, which is wg. By comparison of
weighted Dynkin diagrams, a unipotent element of K over wg does not correspond to the element
fll of G5 (it corresponds to the subregular class Ga(ay ), [12], p.401), a contradiction.

We got

Ay Naw2
Aq niw1 + Naw2

Table 25: A\(©), A(O) for unipotent classes in G'.

In particular Aj is a model homogeneus space, and in fact the principal one, by [28], 3.3 (5).

Using the embedding of G into SO(7), one can determine explicitly an x € O N wy B, where
0= fh. Then one can check that both a;; and a2 occur in z (see the discussion before Proposition

3.11). This fact will be used in section 5 to determine C[O)].



Decomposition of C[O] 55

4.9.2 Semisimple classes in Gs.
Following the notation in [9], Table 2, we have

Alzzh — J —  Wp
A 2 s,

where 7 is the highest short root (2, 1).

The group G2 has 1 class of involutions. However there is also a class of elements of order 3
which is spherical.
Type A, A;.

The elements of G whose centralizer is of type A; A are conjugate to exp(miws). Let

L ="NpNBy

Then 2* = hg, (—1)hg,(—1) = 1 and z € woB. Clearly T, = Tb.

Type A,. The elements of G whose centralizer is of type As are conjugate to exp(%djl). By
Proposition 4.2, T" is connected, hence 1, = T™.
We obtained

2
exp(miws) A1 Ay Z 2n;w;
=1

exp(3Flwr) | As niwi

Table 26: \(O) for semisimple classes in G.

5 The coordinate ring of O

In this section we determine the decomposition of C[O] into simple G-modules, where O is the
closure of a spherical conjugacy class. Normality of conjugacy classes’ closures has been deeply
investigated. For a survey on this topic, see [23], §8, [8], 7.9, Remark (iii). The first observation
is that the problem is reduced to unipotent conjugacy classes in G ([23], 8.1). In the following we
are interested only in spherical conjugacy classes, and I recall the facts in this context. It is known
that the closure of the minimal nilpotent orbit is always normal ([44], Theorem 2). Hesselink
([17]) proved normality for several small orbits in the classical cases and certain orbits for the
exceptional cases: namely, following the notation in [12], A1 and 24, in Eg, A1, 2A; and (3A1)"”
in E7, A1 and 24, in Eg, A; and A; in Fy, Aq in Gs.
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The classical groups have been considered in [24], [25]: for the special linear groups the
closure of every conjugacy class is normal. For the symplectic and orthogonal groups there ex-
ist conjugacy classes with non-normal closure. However every spherical conjugacy class in the
symplectic group has normal closure, since from the classification we know that the unipotent
spherical conjugacy classes have only 2 columns (see also [17], §5, Criterion 2). For special
orhogonal groups the results in [25] left open the cases of the very even unipotent classes. E.
Sommers proved that these have normal closure in [39]. Taking into account the results in [25]
and [39] it follows that every unipotent spherical conjugacy class in type D,, and B,, has normal
closure except for the maximal class Z,,, 1 in B,,, when n = 2m + 1, m > 1. From this and the
classification of spherical conjugacy classes, it follows that every spherical conjugacy class has
normal closure, except for the above mentioned class in Boy, 1.

For the exceptional groups, besides the results on the minimal orbit and Hesselink’s results,
in [27] it is shown that the orbit fll in G5 has a non-normal closure (see also [23]): here there is
bijective normalization, contrary to the case of Z,,+1 in Bay,4+1 where the closure is branched in
codimension 2. In [7] the case of type F} is completely handled, and it follows that every spherical
conjugacy class has normal closure. The same holds for Fjg, as follows from [38] where every
nilpotent orbit is considered. For the remaining nilpotent orbits in 7 and Ey, in [8], 7.9, Remark
(iii), A. Broer gives a list of orbits with normal closure. Among these there are all spherical
nilpotent orbits in F7 and Es. We may therefore state

Theorem 5.1 Let O be a spherical conjugacy class. Then O is normal except for the class Z, 1
in Bomy1 (m > 1) and the class fll in Go. O

Remark 5.2 In [13], Example 4.4, Proposition 4.5, the authors prove normal closure for nilpotent
orbits of height 2.

Remark 5.3 In [35], 6.1, normality of A/ sPh (the union of all spherical nilpotent orbits, which is

in fact the closure of the unique maximal spherical nilpotent orbit) is discussed.

Remark 5.4 From (3.9) and Corollary 3.16 it is possible to prove normality of O in certain cases.
For instance in type C,, from Table 3 we get A\(X,;) = 2P, for every unipotent class X;. From
(3.9) it follows that A\(O) = A\(O), so that O is normal.

We recall that in general C[O)] is the integral closure of C[O] in its field of fractions and that
C[O] = C[O)] if and only if O is normal ([22], Proposition and Corollary in 8.3). By Theorem
5.1, to describe the decomposition of (C[@] we are left to deal with Z,1 in Bg;,41 and with 211
in Go. We use the notation and the tables from section 4 for the cases Bay,,+1 and Gb.
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Theorem 5.5 Let O = Z, 11 in By, n=2m + 1, m > 1. Then

n
{anwl ] anl 1 even} {anwl | ny,even, n, > 2}

=1

Proof. Considering the (G-equivariant) restriction r : C[O] — C[Z,] = C[Z,], we get
{Z o niwi | Do naiet even} < XO). In particular for every even j, w; € A(O), and
for every pair of odd j, k, with 1 < j < k < n, wj + w € A(O). By Corollary 3.12,
we have 2w, € A(O). We show that w; + 2w, € A(O) for every odd j, j < n. We have
2wp—1 — Qp—1 = wp—2 + 2wy, and since o, —1 occurs in xz € wyB N O, by Corollary 3.16, we get
wn—2+ 2w, € XN(O). Let j be odd, j < n—2. Then wj + 2wy, + 2wy, —2 € A(O) since wy,_2 + 2wy,
and w; + wy,_o are in A(O).

There exists B-eigenvectors F', H in (C[@] of weights w; + 2w, + 2w, 2, 2w, o respectively.
Then F'/H is a rational function on O of weight wj + 2w, defined at least on O. However 2w, _»
is also a weight in A(Z,,), so that H is non-zero on the dense B-orbit v in Z,,,. Hence F'/H is
defined on v, and it is zero on v, since F' is zero on Z,,, w;j + 2wy, + 2wy, 2 not being in A\(Z,,). It
follows that F'/ H is defined on Z,,, so that it is a regular function on O U Z,,,. By [25], Theorem
16.2, (i), F/ H extends to O, and w; + 2wy, lies in A(O). We have shown that

2m m n
0) > {Z niwi | an’—l even} U {Z niw; | n, even, n, > 2}

i=1 i=1 i=1
We prove that also the opposite inclusion holds. Assume A = > | n;w; € A(O). Since A\(O) <
A(0O), we have n,, even. If n,, # 0 we are done. So assume n,, = 0. Lety € Z,,,11NU~ N BwB.
We observe that y; = lim, ¢ ha,, (2) "Lyha, () exists, and lies in Z,, N U~ N BwB, where
w = w(Zy,) (in [9] we give representatives for both classes in SO(2n + 1), so that this may be
checked directly). Now let ' : O — C be a highest weight vector of weight ), with F(y) = 1
Then F(y;) = 1, since A(hq,, (2)) = 1 for every z € C*. Since z1 € Z,,, NwB lies in the B-orbit
of y1, we have F(z1) # 0. Buto = [["| ha,, ,(—1) € C(z1), so that F(z1) = F(ox10) =
A(o)F(x1) implies A(0) = 1, and we are done. O

Theorem 5.6 Let O = A in Go. Then X(O) is the submonoid of \(O) generated by 2w, 3wy, wa.

Proof. We know that w; € A(O) and it follows from the proof of [27], Theorem 3.13, that
w1 € A(O). We have

2w1—a1 =w2 , 26()2—0[2:3&)1

hence, by Corollary 3.12 and 3.16, we get 2wy, 3wi, w2 € )\(@), since both o, ag occur in
x € woB N O. Suppose for a contradiction that wy + nws € A(O) for a certain n € N. There
exists B-eigenvectors F', H in (C[@] of weights w; + nwa, nws respectively. Then F'/H is a
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rational function on O of weight w; defined at least on O. However nws is also a weight in A(A;),
so that H is non-zero on the dense B-orbit v in A;. Hence F'/H is defined on v, and it is zero on
v, since F'is zero on A, because wy + nws is not in A(A;p). It follows that F'/ H is defined on A;.
But A; has normal closure, so that F'/H is defined on the closure of A, and then on O, so that

there is in C[O] a B-eigenvector of weight wy, a contradiction. O

6 The general case

Let G be as usual simply-connected, D < Z(G), G = G/D, w : G — G the canonical projection.
For g € G we put g = m(g). We give a procedure to describe the coordinate ring of Op, where Op
is a spherical conjugacy class of G. Passing to G, we have to consider the quotient G /7! (C(D)).
Let p = sv be the Jordan-Chevalley decomposition of p, w = w(O,). We may assume s € T
Let Wep = {w e W | wsw™! = zs,z € D}, and Ns.p < N such that N; p/T = W p.
Then 7~ *(Cx(p)) = C(v) N Ny pC(s). Reasoning as in [42], Corollary II, 4.4, we have a
homomorphism 7! (C%(p)) — D, g — [g, p] with kernel C(p).

Lety € Op N BwB be such that L = Ly is adapted to C(y). If H = 7 1(Cx(y)), then
MNOp) = MNG/H) ={X e P} | \(T N H) =1} by Corollary 3.18. Let x € O, NwB, z = wu,
withw € U andlet T, p = T N7~ (Cx(T)). By Proposition 3.4, we get ' N H = T, p, hence

(6.12) MOz)={ e P} | \T.p) =1}

LetTH = {t € T | wtw™! = z2t,z € D}. From the Bruhat decomposition, we get T, p < T}%.
Moreover since w is an involution, for ¢ € T we have t = wtw ™2 = 2%t, so that 22 = 1. In
particular 7~ (C(5)) = Ny, p,C(s), Tfy = T}, where Dy = D N T».
Lett € T and write t = ab, with a € (T%)°, b € (S*)°. Then wtw ™! = tz with 2 € Dy if
and only if z = b2. Since (S™)° is connected, we get TH =T gw( gwyo and
—1 = w
i ggg)(x)) ~ T;;D - % > Dy N (S¥)°
with T, = TNC(u), T p = THNC(u). In particular, if DoN(S™)° = 1, then A(Oz) = A(O;).

This equality means that = is not conjugate to zx for any z € Ds, z # 1, and this may be

directly checked in many cases, for instance in type A, or ), (and of course always holds for x
unipotent). However, to deal with orthogonal groups and Er, we determined explicitly the cases
when Dy N (S")° is non-trivial, and in each case we determined 7}, p and therefore A(Oz).

Here we just observe that if Dy N (S™)° # 1, then Dy N (S™)° = 7 /27, except possibly for
D = Z(G) in type D,, n = 2m. It turns out that in this case for exp(miwy, ), we have T, = T
and T, 7y /T = Z/27 x Z/2Z. More precisely

m

Tx7Z(G) = T;(OG) =15 <han71(i)hozn (Z)a H hOéQi—l(i)>
i=1
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so thatin G/Z(G) = PSO(2n), n = 2m,

n m
)\(Om) = {Z 2mgwy | mi € N, mp_1 + my, and ngi_l even}
k=1 i=1

We add that for SO(2n + 1), n > 1 and by = diag(1, A\,,, \"'1,,), A # *1, Oy, is a model orbit,
and in fact the principal one by [28], 3.3 (2/).
We conclude by presenting the results for F;.

6.1 Type E7, D = Z(G)

In this case Z(G) = (z), where z = hq, (—1)ha, (—1)ha, (—1) = exp(2mics) = exp(2miwy).
There are 3 elements of the Weyl group to be considered and only for w = sg, 53,53, and

w = wy we have z € (S%)°.
Class of type A7, w = wo. Here x = ng, - - -ng,,
Tg’(‘)c) = Ty (exp(mica)) = To (hay (1) has (1) has (7))
since exp(miwy) € (S%0)° = T and exp(miw)? = 2.
Proposition 6.1 Let G be of type E7, D = Z(QG), then
7
A(Om) = {Z 2nw; | ng + ns + ny even}
i=1
Proof. This follows from the fact that T, 7() = T}”(OG).
Classes of type EgT1, w = s8,58,58,, 1T = (T")° X (ha,(—1)) = (T™)° x Z(G).
We have T/ ) = T (exp(miwr)) = T (hay (—1)ha, (1)). If ¢ € C\ 27iZ, then

T¢ = ngngNahag, (§)$ﬁ2 (§)ra,(§) € OGXP(C®7) Nng,ng,na, B

for a certain h € T, with £ = %fzg, so that

TY . if ( € mZ\ 2miZ
Ty z(6) = { Z(G)

v  if¢ € C\ 7z
since a7 (exp(miwr)) = —1.
Proposition 6.2 Let G be of type E7, D = Z(QG), then

( _JAmw1 + news + 2n7wr | ny +ny even}  if ¢ € miZ\ 2miZ
exp(Cwr)” {n1wi + newe + 2ny7wr} if( € C\ miZ
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g

Addendum In [9], Remark 5, we stated that if 71 : G — G/U is the canonical projection, and
O is a spherical conjugacy class, then 7110 : O — G /U has finite fibers. This is not correct, and
one can only say that | has generically finite fibers (if w = w(0), and g € O N BwB, then
71 (gU) has | T /T, | elements, where x € O NwB).
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