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Abstract

We prove a uniqueness theorem for the solutions to the initial
boundary value problems in incremental thermoelectroelasticity with
nonlinear constitutive response functions. No restriction is made on
the initial fields of deformation, electric potential, and temperature.

1 Introduction

Nowacki in [1] presented a uniqueness theorem for the solutions of the ini-
tial boundary value problems in linear thermopiezoelectricity referred to a
natural state, i.e., without initial fields.

The equations of nonlinear thermoelectroelasticity were given in Tiersten
[2]. Yang [3] then derived from [2] the equations for infinitesimal incremental
fields superposed on finite biasing fields in a thermoelectroelastic body with
no assumption on the biasing fields.

Here we extend the aforementioned Nowacki’s uniqueness theorem to the
incremental theory [3] without no restriction on the initial fields of deforma-
tion, electric potential, and temperature.

We explicitly to the theory [3], hence we rewrite from this paper formulae
and results of incremental thermoelectroelasticity by using just the same
notations.
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2 Equations of Nonlinear Thermoelectroela-

sticity

Consider a thermoelectroelastic body that, in the reference configuration,
occupies a region V with boundary surface S. The motion of the body is
described by

yi = yi(XL, t) ,

where yi denotes the present coordinates and XL the reference coordinates
of material points with respect to the same Cartesian coordinate system.

Let KLj, ρo, fj, ∆L, ρE, θ, η, QL and γ respectively denote the first
Piola-Kirchoff stress tensor, the mass density in the reference configuration,
the body force per unit mass, the reference electric displacement vector, the
free charge density per unit undeformed volume, the absolute temperature,
the entropy per unit mass, the reference heat flux vector, and the body
heat source per unit mass. Then we have the following equations of motion,
electrostatics, and heat conduction written in material form with respect to
the reference configuration:

KLi,L + ρofi = ρoÿi , (1)

∆L,L = ρE , (2)

ρoθη̇ = −QL,L + ρoγ , (3)

The above equations are adjoined by constitutive relations defined by the
specification of the free energy ψ and heat flux QL:

ψ = ψ(EMN , WM , θ) , QL = QL(EMN , WM , θ, ΘM) (4)

where

EMN = (yj, Myj, N − δMN)/2 , WM = −φM , ΘM = θ, M (5)

are the finite strain tensor, the reference electric potential gradient, and the
reference temperature gradient; of course, δMN is the Kronecker delta, and
φ is the electric potential. Hence, by using ψ the constitutive relations (4)
of [3] are deduced for KLi, ∆L, η:

KLi = yi, Aρo
∂ψ

∂EAL

+ JXL, j εo(EjEi −
1

2
EiEiδji) ,

∆L = εoJXL, jEj − ρo
∂ψ

∂WL

, (6)

η = −∂ψ
θ
.
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Moreover, QL in (4)2 is restricted by

QLΘL ≤ 0 . (7)

In particular, (4)2 includes the case in which QM is linear in ΘL, that is,

QM = −κML(θ, WA) ΘL . (8)

2.1 The initial boundary value problem for a thermoe-
lectroelastic body

To describe the corresponding boundary conditions to add to the field equa-
tions (1)-(3), three partitions (Si1, Si2), i = 1, 2, 3, of the boundary surface
S = ∂B can be assigned. For mechanical boundary conditions, deformation
yi and traction ti per unit undeformed area are prescribed, respectively,
on S11 and S12; for electric boundary conditions, electric potential φ and
surface-free charge ∆ per unit undeformed area are prescribed, respectively,
on S21 and S22; while for thermic boundary conditions, temperature θ and
normal heat flux Q per unit undeformed area are prescribed, respectively,on
S31 and S32. Hence, we can write

yi = yi on S11 , KLiNL = Ki on S12 (′mechanical′) , (9)

φ = φ on S21 , ∆LNL = ∆ on S22 , (′electric′) (10)

θ = θ on S31 , QLNL = Q on S32 (′thermic′) , (11)

Si1 ∪ Si2 = S , Si1 ∩ Si2 = ∅ (i = 1, 2, 3) , (12)

where N = (NL) is the unit exterior normal on S.
We put

Abody :=
(
fi, ρE, γ

)
, (13)

Asurf :=
(
yi, Ki, φ, ∆, θ, Q

)
, (14)

A := (Abody, Asurf ) =
(
fi, ρE, γ, yi, Ki, φ, ∆, θ, Q

)
. (15)

Abody, Abody, and A are said to be the (external) body-action, surface-action,
and action, respectively.

The initial conditions have the form

yi(X, 0) = fi(X), ẏi(X), 0) = gi(X),

θ(X, 0) = h(X), φ(X, 0) = l(X) (X ∈ B, t = 0) , (16)
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where
I =

(
fi, gi, h, l

)
are prescribed smooth functions of domain V . The initial boundary value
problem is then stated as: assigned Abody, to find the solution (φ, θ, yi) in
B to the constitutive relations (6) and field equations (1)-(3) which satisfies
the boundary conditions (9)-(11) and initial conditions (16) for given Asurf

and I.

3 Biasing and incremental fields

In incremental theories three configurations are distinguished: the reference,
initial and present configuration.

3.1 The Reference Configuration

In the reference state the body is undeformed and free of all fields. A generic
point at this state is denoted by X with rectangular coordinates XN . The
mass density in the reference configuration is denoted by ρo.

3.2 The Initial Configuration

We put
Ao

body :=
(
f o

i , ρ
o
E, γ

o
)
, (17)

Ao
surf :=

(
yo

i , K
o
i , φ

o
, ∆

o
, θ

o
, Q

o
)
, (18)

Ao := (Abody, Asurf ) =
(
f o

i , ρ
o
E, γ

o, yo
i , K

o
i , φ

o
, ∆

o
, θ

o
, Q

o
)
. (19)

Ao
body, Ao

body, and Ao are said to be the (external) body-action, surface-
action, and action, respectively.

In this state the body is deformed finitely under the action of the pre-
scribed action Ao. The position of the material point associated with X is
given by

yo
α = yo

α(X, t) ,

with the Jacobian of the initial configuration denoted by

Jo = det(yo
α, L) .

In this state the electric potential, electric field and temperature field are
denoted by φo(X, t), W o

α = −φo
, α and θo(X, t), respectively.
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The initial fields

yo
α = yo

α(X, t), φo = φo(X, t), θo = θo(X, t) (20)

satisfy the equations of nonlinear thermoelectroelasticity (1)-(12) under the
prescribed action Ao.

In studying the incremental fields the solution to the initial state problem
is assumed known.

3.3 The Present Configuration

To the deformed body at the initial configuration, infinitesimal deformations,
electric, and thermal fields are applied. The present position of the material
point associated with X is given by yi(X, t), with electric potential φ(X, t)
and temperature θ(X, t).

The fields yi(X, t), φ(X, t), θ(X, t) satisfy (1)-(3) under the action of
the external action (15).

4 Equations for the incremental fields

Let ε be a small and dimensionless number. The incremental process ε(y1, φ1, θ1)
for (y, φ, θ) superposed to the initial process (yo, φo, θo) is assumed to be
infinitesimal and, therefore, we write:

yi = δiα(yo
α + εy1

α) , φ = φo + εφ1 , θ = θo + εθ1 , (21)

Corresponding to (21), other quantities of the present state can be written
as:

A ∼= Ao + εA1 , (22)

where, due to nonlinearity, higher powers of ε may arise. For the incremental
action we have

A1
body :=

(
f 1

i , ρ
1
E, γ

1
)

(23)

A1
surf :=

(
y1

i , K
1
i , φ

1
, ∆

1
, θ

1
, Q

1
)

(24)

A1 := (Abody, Asurf ) =
(
f 1

i , ρ
1
E, γ

1, y1
i , K

1
i , φ

1
, ∆

1
, θ

1
, Q

1
)

(25)

We want to derive equations governing the incremental process

(u := y1 , φ1 , θ1 ) .
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From (21) and (22), we can further write:

EKL
∼= Eo

KL + εE1
KL ,

WL
∼= W o

L + εW 1
L , (26)

ΘL
∼= Θo

L + εΘ1
L ,

where

Eo
KL = (yo

α, Ky
o
α, L − δKL)/2 , E1

KL = (yo
α, Ky

1
α, L + yo

α, Ly
1
α, K)/2 ,

W o
L = −φo

, L , W 1
L = −φ1

, L , (27)

Θo
L = −θo

, L , Θ1
L = −θ1

, L .

Substituting (21)-(27) into the constitutive relations (1)-(3), with some
very lengthy algebra, the following expression can be obtained:

KMi
∼= δiα(Ko

Mα + εK1
Mα) , ∆M

∼= ∆o
M + ε∆1

M ,

η ∼= ηo + εη1 , QM
∼= Qo

M + εQ1
M . (28)

where
K1

Mα = GMαLγuγ, L +RLMαφ
1
, L − ρoΛMαθ

1 , (29)

∆1
M = RMNγuγ, N − LMNφ

1
, N + ρoPMθ

1 , (30)

η1 = ΛMγuγ, M − PMφ
1
, M + αθ1 , (31)

Q1
M = AMNαuα, N −BMNφ

1
, N + CMθ

1 + FMNθ
1
, N . (32)

In (29)-(32),

• GMαLγ are the effective elastic constants,

• RLMα are the effective piezoelectric constants,

• ΛMα are the effective thermoelatic constants,

• LMN are the effective dielectric constants,

• PM are the effective pyrolectric constants,

• α is related with the specific heat.
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Their expressions are

GKαLγ = yo
α, Mρo

∂2ψ

∂EKM∂ELN

(θo, Eo
AB, W

o
A) yo

α, L + ρo
∂ψ

∂EKL

(θo, Eo
AB, W

o
A) δαγ + gKαLγ ,

RLMγ = −ρo
∂2ψ

∂WK∂EML

(θo, Eo
AB, W

o
A) yo

γ, M + rKLγ ,

ΛMγ = − ∂2ψ

∂ELM∂θ
(θo, Eo

AB, W
o
A) yo

γ, L ,

LMN = −ρo
∂2ψ

∂WM∂WN

(θo, Eo
AB, W

o
A) + lMN ,

PM = − ∂2ψ

∂WM∂θ
(θo, Eo

AB, W
o
A) ,

α = −∂
2ψ

∂θ2
(θo, Eo

AB, W
o
A) ,

AMNγ =
∂QM

∂ELN

(θo, Eo
AB, W

o
A) yo

γ, L =: −κMNγ ,

BMN =
∂QM

∂WN

(θo, Eo
AB, W

o
A) =: κE

MN ,

C
M

=
∂QM

∂θ
(θo, Eo

AB, W
o
A) =: −κM ,

FMN =
∂QM

∂ΘN

(θo, Eo
AB, W

o
A) =: −κo

MN ,

(33)

where

gKαLγ = εoJo

[
W o

αW
o
β (XK, βXL, γ −XK, γXL, β) +W o

βW
o
γ (XK, αXL, β −XK, βXL, α)

+W o
βW

o
β (XK, γXL, α −XK, αXL, γ)/2−W o

αW
o
γXK, βXL, β

]
, (34)

rKLγ = εoJo

(
W o

αXK, αXL, γ −W o
αXK, γXL, α −W o

γXK, αXL, α

)
, lMN = εoJoXM, αXN, α .

By the last four above relations in (34) we thus have

Q1
M = −κMNαuα, N − κE

MNφ
1
, N − κMθ

1 − κo
MNθ

1
, N . (35)

We have introduced the κ-notation to allow comparison between the proof
written here and that written in [1]. The following symmetries hold:

GKαLγ = GLγKα , LMN = LNM . (36)
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4.1 Restriction on the incremental heat flux

Now we show that the restriction (7) on the heat flux (4)2, together with the
condition

QL = 0 for Θo
L = 0, thus Qo

L = 0 , (37)

implies an analogous restriction on the incremental heat flux (32), that is,

Q1
LΘ1

L ≤ 0 . (38)

Indeed, substituting

QL = Qo
L + εQ1

L , ΘL = Θo
L + εΘ1

L

in (7), we obtain (
Qo

L + εQ1
L

)(
Θo

L + εΘ1
L

)
≤ 0 , (39)

which for Θo
L = 0, by (37), yields (38).

Note that the choice (8) for the heat flux response function satisfies (37).

5 Incremental field equations

We refer to a static initial state, that is, independent of time. By substituting
(21)-(28) into (1)-(3) and (9)-(11), we find the governing equations for the
incremental fields

K1
Mα, M + ρo f

1
α = ρo üα , (40)

∆1
M, M = ρ1

E , (41)

ρo (θoη̇1 + θ1η̇o) = −Q1
M, M + ρo γ

1 . (42)

Introducing the constitutive relations (29)-(32) into the incremental equa-
tions of motion (40), the equation of the electric field (41), and the heat
equation (42), for f 1

α = 0 we have

GMαLγuγ, LM +RLMαφ
1
, LM − ρoΛMαθ

1
, M = ρo üα , (43)

RMNγuγ, NM − LMNφ
1
, NM + ρoPMθ

1
M = ρ1

E , (44)

κE
MNφ

1
, NM + κMθ

1
, M + κo

MNθ
1
, NM + κMNαuα, NM

−ρoθ
o
(

ΛMγu̇γ, M − PM φ̇
1
, M + αθ̇1

)
= −ρo γ

1 . (45)

8



6 Uniqueness of the solution of the incremen-

tal differential equations

We follow step by step the proof of Nowacki [1] and put in evidence any
difference when it will appear.

A modified version of energy balance is needed. It follows by substituting
the virtual increments by the real increments

δuα =
∂uα

∂t
dt = vα dt , δuα, M = u̇α, M dt , . . .

in the principle of virtual work∫
V o

(
f 1

α − ρoüα

)
δuα dV +

∫
So
Kα δuα dS =

∫
V o

K1
Mα δuα, M dV . (46)

Thus the fundamental energy equation∫
V o

(
f 1

α − ρov̇α

)
vα dV +

∫
So
Kα vα dS =

∫
V o
K1

Mα u̇α, M dV (47)

is obtained, where we substitute the constitutive relations (29). Hence

∫
V o

(
f 1

α−ρov̇α

)
vα dV+

∫
So
Kα vα dS =

∫
V o

(
GMαLγuγ, L+RLMαφ

1
, L−ρoΛMαθ

1
)
u̇α, M dV ,

(48)
thus

d

dt

(
W+K

)
=

∫
V o
f 1

α vα dV +
∫

So
Kα vα dS+

∫
V o

(
ρoΛMαθ

1−RLMαφ
1
, L

)
u̇α, M dV ,

(49)
where W is the work of deformation and K is the kinetic energy:

W =
1

2

∫
V o
GMαLγ uα, M uγ, L dV , K =

1

2

∫
V o
ρo vαvα dV . (50)

Now, to eliminate the term
∫
V o ρoΛMαθ

1 u̇α, M dV , we multiply the heat-
conduction equation (49) by θ1 and integrate over V o; after simple transfor-
mations we obtain∫

V o
ρo θ

1 ΛMα u̇α, M dV =
κE

ML

θo

∫
So
θ1φ1

, LNM dS +

+
κL

θo

∫
So
θ1NL dS +

κo
ML

θo

∫
So
θ1θ1

, LNM dS +
κMLα

θo

∫
So
θ1uα, LNM dS (51)

+PM

∫
V o

ρo θ
1φ̇1

, M dV +
1

θo

∫
V o

ρo θ
1γ1 dV − d

dt
P − (χ + χθ + χφ + χu) ,
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where
P =

α

2θo

∫
V o

ρoθ
1 θ1 dV , (52)

χφ =
κE

ML

θo

∫
V o
θ1

, Mφ
1
, LdV , χ =

κL

θo

∫
V o
θ1

, Lθ
1 dV ,

χθ =
κo

ML

θo

∫
V o
θ1

, Mθ
1
, LdV , χu =

κo
MLα

θo

∫
V o
θ1

, Muα, LdV . (53)

Note that this equation differs from the corresponding Eq. (25) in [1] by the
terms χφ, χ and χu. Now, substituting (51) into (49), we are lead to the
equation

d

dt

(
W +K + P

)
+ (χ + χθ + χφ + χu ) =

∫
V o
f 1

α vα dV +
∫

So
Kα vα dS +

+
κE

ML

θo

∫
So
θ1φ1

, LNM dS +
κL

θo

∫
So
θ1NL dS +

κo
ML

θo

∫
So
θ1θ1

, LNM dS + (54)

+
1

θo

∫
V o

ρo θ
1γ1 dV −

∫
V o

(
RLMαφ

1
, L u̇α, M − ρoPM θ1φ̇1

, M

)
dV .

To eliminate the last term
∫
V o

(
RLMαφ

1
, L u̇α, M − ρoPM θ1φ̇1

, M

)
dV in Eq.

(54) we use the constitutive relations (30).
Finally, we use the equation of the electric field (41) with ρE = 0 . Mul-

tiplying the equation by φ1 and integrating over the region of the body, we
obtain ∫

V o
∆̇Mφ

1NM dV +
∫

SV o
∆̇MW

1
M dV = 0 . (55)

Using the relations (30) and (55), after simple transformations we obtain∫
V o

∆̇KWW 1
K dV =

=
∫

V o

(
RLMαu̇α, NW

1
K + LKNẆ

1
NW

1
K + ρoPK

d

dt
(θ1W 1

K) − ρoPKθ
1Ẇ 1

K

)
dV =

= −
∫

So
∆̇1

KNKφ
1 dS ,

from which∫
V o

(
RKMαu̇α, NW

1
K − ρoPKθ

1Ẇ 1
K

)
dV =

= −
∫

So
∆̇1

KNKφ
1 dS − d

dt
E − d

dt

(
ρoPK

∫
V o
θ1W 1

K dV
)
(56)
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where

E =
1

2
LKN

∫
V o
W 1

NW
1
K dV . (57)

In view of Eqs. (54) and (56), we arrive at the modified energy balance

d

dt

(
W +K + P + E + ρoPK

∫
V o
θ1W 1

K dV
)

+ (χ + χθ + χφ ) =

=
∫

V o
f 1

α vα dV +
∫

So
Kα vα dS +

+
κE

ML

θo

∫
So
θ1φ1

, LNM dS +
κL

θo

∫
So
θ1NL dS +

κo
ML

θo

∫
So
θ1θ1

, LNM dS + (58)

+
1

θo

∫
V o

ρo θ
1γ1 dV −

∫
So

∆̇1
KNKφ

1 dS .

The energy balance (58) makes possible the proof of the uniqueness of the
solution.

We assume that two distinct solutions (u′
i, φ

′1, θ′1) and (u′′
i , φ

′′1, θ′′1)
satisfy Eqs. (40)-(42) and the appropriate boundary and initial conditions.
Their difference (ûi = u′

i−u′′
i , φ̂ = φ′1−φ′′1, θ̂ = θ′1−θ′′1) therefore satisfies

the homogeneous equations (40)-(42) and the homogeneous boundary and
initial conditions. Equation (58) holds for (ûi, φ̂, θ̂).

In view of the homogeneity of the equations and the boundary conditions,
the right-hand side of Eq. (58) vanishes. Hence

d

dt

(
W +K + P + E + ρoPK

∫
V o
θ1W 1

K dV
)

= − (χ + χθ + χφ + χu ) ≤ 0 ,

(59)

where the last inequality is true since by (35) and (38) we have

−(χ + χθ + χφ + χu ) =
∫

V o
Q1

MΘ1
M dV . (60)

The integral in the left-hand side of Eq. (59) vanishes at the initial instant,
since the functions ûi, φ̂, θ̂ satisfy the homogeneous initial conditions. On
the other hand, by the inequality in (59) the left-hand side is either negative
or zero.

Now we assume
(1) that the initial deformation yo realizes that the tensor GMαLγ is

positive-definite, so that W ≥ 0 by (50);
(2) that the tensor LKN is positive-definite, so that E ≥ 0 by (57);

E =
1

2
LKN

∫
V o
W 1

NW
1
K dV ; (61)
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(3) the sufficient condition of J. Ignaczak written in [1] on pages 176-177:
assume that LIJ is a known positive-definite symmetric tensor, gI = ρoPI

is a vector, and c = ρoα
2θo > 0; consider the function

A(θ1, WL) = (θ1)2 + 2θ1gIW
1
I + LIJW

1
I W

1
J

A is nonnegative for every real pair (θ1, W 1
k ) , provided

|gI | ≤ cλm

where λm is the smallest positive eigenvalue of the tensor LIJ .
Under the three above assumptions, Equations (59 ) imply

ûi, L = 0, θ̂1 = 0, W 1
L = 0 ,

which imply the uniqueness of the solutions of the incremental thermoe-
lectroelastic equations, i.e.,

u′
i = u′′

i , θ1′ = θ1′′, W 1
I

′ = W 1
I

′′ .

Moreover, from the constitutive relations we have that

K1′
Iα = K1′′

Iα, ∆1
L

′ = ∆1
L

′′, η1′ = η1′′ .
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