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Abstract

We prove a uniqueness theorem for the solutions to the initial
boundary value problems in incremental thermoelectroelasticity with
nonlinear constitutive response functions. No restriction is made on
the initial fields of deformation, electric potential, and temperature.

1 Introduction

Nowacki in [1] presented a uniqueness theorem for the solutions of the ini-
tial boundary value problems in linear thermopiezoelectricity referred to a
natural state, i.e., without initial fields.

The equations of nonlinear thermoelectroelasticity were given in Tiersten
[2]. Yang [3] then derived from [2] the equations for infinitesimal incremental
fields superposed on finite biasing fields in a thermoelectroelastic body with
no assumption on the biasing fields.

Here we extend the aforementioned Nowacki’s uniqueness theorem to the
incremental theory [3] without no restriction on the initial fields of deforma-
tion, electric potential, and temperature.

We explicitly to the theory [3], hence we rewrite from this paper formulae
and results of incremental thermoelectroelasticity by using just the same
notations.



2 Equations of Nonlinear Thermoelectroela-
sticity

Consider a thermoelectroelastic body that, in the reference configuration,
occupies a region V with boundary surface S. The motion of the body is
described by

yi = vi( X, ),

where y; denotes the present coordinates and X the reference coordinates
of material points with respect to the same Cartesian coordinate system.

Let Kij, po, fj, AL, pe, 8, n, Q@ and v respectively denote the first
Piola-Kirchoff stress tensor, the mass density in the reference configuration,
the body force per unit mass, the reference electric displacement vector, the
free charge density per unit undeformed volume, the absolute temperature,
the entropy per unit mass, the reference heat flux vector, and the body
heat source per unit mass. Then we have the following equations of motion,
electrostatics, and heat conduction written in material form with respect to
the reference configuration:

Krir + pofi = poli (1)
AL,L = PE, (2)
P = —Qr.L + poy (3)

The above equations are adjoined by constitutive relations defined by the
specification of the free energy 1 and heat flux Q)p:

Y =yY(Eun, W, 0), QL= Qr(Exn, Wi, 0, On) (4)

where
Evn = (Yj, my;, N — 0un)/2, Wy = —dum, O =0y (5

are the finite strain tensor, the reference electric potential gradient, and the
reference temperature gradient; of course, d,/n is the Kronecker delta, and
¢ is the electric potential. Hence, by using 1) the constitutive relations (4)
of [3] are deduced for Kp;, Ap, n:

o 1
Kr. = . X; e (E:E: — —E-E.5::
Li yz,ApanAL+J L,ng( 3L 9 % z]z);
0
AL = goJXL,jEj — ’OoaﬂzﬁL y (6)
_ W



Moreover, @), in (4)s is restricted by

Q0. <0. (7)
In particular, (4); includes the case in which @, is linear in ©p, that is,
QM = —I{ML(Q, WA) @L . (8)

2.1 The initial boundary value problem for a thermoe-
lectroelastic body

To describe the corresponding boundary conditions to add to the field equa-
tions (1)-(3), three partitions (S;1, Si2), @ =1, 2, 3, of the boundary surface
S = 0B can be assigned. For mechanical boundary conditions, deformation
7, and traction #; per unit undeformed area are prescribed, respectively,
on S;; and Sjy; for electric boundary conditions, electric potential ¢ and
surface-free charge A per unit undeformed area are prescribed, respectively,
on Sy and Syy; while for thermic boundary conditions, temperature  and
normal heat flux @) per unit undeformed area are prescribed, respectively,on
S31 and S3z. Hence, we can write

y;i =7, on S, KN, =K; on S (‘'mechanical’),  (9)

¢p=¢ on Sy, AN, =A on Sy, ("electric’) (10)
=60 on Ss, QN =Q on Si (‘thermic’) , (11)
SaUSp=S5, SainSp=0 (i=1,2,3), (12)

where N = (Np) is the unit exterior normal on S.

We put

Abody = (fi, PE; 7) ) (13)
Asurf = (gz’ Fi) 57 Za a) @) ) (14)
A= (Abodya Asurf) = (fza PE; 7, yi? FZH 67 Z? 57 @) . (15>

Apodys Abody, and A are said to be the (external) body-action, surface-action,
and action, respectively.
The initial conditions have the form

yi<X7 0) = fl(X>7 yZ<X)7 0) = gi(X)7
00X, 0) = h(X),  &(X,0)=I(X) (XeB, t=0),  (16)



where
T=(fi g h. 1)

are prescribed smooth functions of domain V. The initial boundary value
problem is then stated as: assigned Apoay, to find the solution (¢, 6, y;) in
B to the constitutive relations (6) and field equations (1)-(3) which satisfies
the boundary conditions (9)-(11) and initial conditions (16) for given Agyys
and I.

3 Biasing and incremental fields

In incremental theories three configurations are distinguished: the reference,
initial and present configuration.

3.1 The Reference Configuration

In the reference state the body is undeformed and free of all fields. A generic
point at this state is denoted by X with rectangular coordinates Xy. The
mass density in the reference configuration is denoted by p,.

3.2 The Initial Configuration

We put
Zody = ( z’o7 p%}v ’70) ; (17)
Ay = (70, K7, 67, 8°,8°,Q7), (18)
Ao = (Abodyu Asurf) = ( io7 POE; 707 ??7 Ff? 507 ZO? 507 @O) . (19)
bodys Aboay, and A° are said to be the (external) body-action, surface-
action, and action, respectively.

In this state the body is deformed finitely under the action of the pre-
scribed action A°. The position of the material point associated with X is
given by

Yo =Ya(X, 1),

with the Jacobian of the initial configuration denoted by
Jo = det(yg 1) -

In this state the electric potential, electric field and temperature field are
denoted by ¢°(X, t), WS = —¢°, and 0°(X, t), respectively.



The initial fields
yo =yo(X, t), ¢°=9¢°(X, 1), 0°=0°X, 1) (20)

satisfy the equations of nonlinear thermoelectroelasticity (1)-(12) under the
prescribed action A°.

In studying the incremental fields the solution to the initial state problem
is assumed known.

3.3 The Present Configuration

To the deformed body at the initial configuration, infinitesimal deformations,
electric, and thermal fields are applied. The present position of the material
point associated with X is given by y;(X, t), with electric potential ¢(X, ?)
and temperature 6(X, t).

The fields y;(X, t), o(X, t), (X, t) satisfy (1)-(3) under the action of
the external action (15).

4 Equations for the incremental fields

Let € be a small and dimensionless number. The incremental process £(y*, ¢!,
for (y, ¢, 8) superposed to the initial process (y°, ¢°, 6°) is assumed to be
infinitesimal and, therefore, we write:

Yi = 5ia(yg + Ey;) 5 QZS = ¢0 + 5¢1 s 0=0°+ 591 5 (21)

Corresponding to (21), other quantities of the present state can be written
as:

A2 A+ A (22)

where, due to nonlinearity, higher powers of € may arise. For the incremental
action we have

Aéody = ( ila leEa 71) (23)
b= (71K, 0, A 0.Q") (24)
Al = (Abodya Asurf) — ( ila p1E7 717 gzlv lev 617 Zla 517 @1) (25)

We want to derive equations governing the incremental process

(u:=y', ¢, 0.



From (21) and (22), we can further write:

EKL = E?(L—F&EII(L,
W, 2 W? +eW;, (26)
O = °L+5@1L,

where
E%r = Wa kYo — 0xL)/2, Exp = (yZ,KZ/;z,L + ?/Z,Lycly,K)/Q;
WLO = _¢?L7 Wg = _gb,lLv (27)
%:_,Om @1:_9,1L'

Substituting (21)-(27) into the constitutive relations (1)-(3), with some
very lengthy algebra, the following expression can be obtained:

K =2 6ia(KS +€K1y0) s A =AY, + Ay,
n=En’+ent, Qu = Q5 +:eQi, . (28)

where
Kjl\/[a - GMaL'yu'y,L + RLMOcQS,lL - PoAMoﬁl s

(29)
Apy = Rynytiy, v — Lyung!y + poPrif’ (30)
n' = Aarytiy, ar — Pudlyy + b (31)
QY = Arinatia,n — Bund'y + Crib' + Fan0'y . (32)
In (29)-(32),

o Giary are the effective elastic constants,
e Riu. are the effective piezoelectric constants,
e Ay, are the effective thermoelatic constants,

e L) are the effective dielectric constants,

Py are the effective pyrolectric constants,

« is related with the specific heat.



Their expressions are

0%

o 0
KalLy — ya,MpanKMaELN

(907 E?&B? Wfl) yg,L + pom

82,{7Z) o [0 o o
omw s Eop W Y v+ TrLy
0%

Ay = —m(eoa B, W2 Y5 1,

62¢ [0} [0} (o}
om(e , Edp, W3) + lun
0%

Py = —
M OW 00
821/1 o
a = 002 (9 EAB> WA)

(607 Exoﬁle W,?l) yz,L = THRMN~;

0Q
oWy
0Q o
CM = aQM (9 EAB7 WA) = —RMm,

0Qu

F
MN = 00y

(907 E,(ZXB> WZ) 5a'y + 9KaLy

Riyy = —p

Lyn = —p.

(907 EilB? WX)?

0Qm
OEN

AMN7 =

Bun = (0%, Efp, W3) =: K]\E/[Nv

= (0°, Eqp, W3) = —Kyn
(33)
where
JKaLy = €odo [WQOWﬁO(XK,ﬁXL,'Y — Xy X1,p) + WiWI( Xk o XL, 5 — Xk, 6X1,0)
FWEWS (X iy Xpo — X aX10) /2 — WEWE Xk 5X 1 5] (34)
riie = €odo(WeXk,aX0 — WoXin Xra — WoXkaXia) . by = eoloXaraXn,a-

By the last four above relations in (34) we thus have

We have introduced the k-notation to allow comparison between the proof
written here and that written in [1]. The following symmetries hold:

Grarty = Gryka s Lyn = Ly (36)



4.1 Restriction on the incremental heat flux

Now we show that the restriction (7) on the heat flux (4)q, together with the
condition

QL =0 for O7 =0, thus Q¢ =0, (37)
implies an analogous restriction on the incremental heat flux (32), that is,
Q10 <0. (38)
Indeed, substituting
Qr=Q7 +eQp, ©,=067+:0]

in (7), we obtain
(@7 +2Q}) (05 +<0]) <0, (39)

which for ©9 =0, by (37), yields (38).
Note that the choice (8) for the heat flux response function satisfies (37).

5 Incremental field equations
We refer to a static initial state, that is, independent of time. By substituting

(21)-(28) into (1)-(3) and (9)-(11), we find the governing equations for the
incremental fields

KJI\/[a,M + Po fci = pouaa (40)
po (0°0 + 0M°) = —Qypar + po' - (42)

Introducing the constitutive relations (29)-(32) into the incremental equa-
tions of motion (40), the equation of the electric field (41), and the heat
equation (42), for fl =0 we have

GMozL'yu'y, M+ RLMa¢,1LM - PoAMoﬁ,lM = polq, (43)
Ranytiy, Nt — Laend yag + poPrbyr = iz (44)

/{ﬁNgb,lNM + /fM@,lM + /f?wNe,lNM + KMNaUWa, NM
_9090<AM7u77M - PMQ‘S}M + O‘él) = —Po '71 . (45)



6 Uniqueness of the solution of the incremen-
tal differential equations

We follow step by step the proof of Nowacki [1] and put in evidence any
difference when it will appear.

A modified version of energy balance is needed. It follows by substituting
the virtual increments by the real increments

ou
5ua:7adt:1}adt, 5UQ,M:ua,Mdt7

ot

in the principle of virtual work
/ (£ = poiia)dua dV + [ Fobuqds = / KL, SuadV.  (46)
Vo So Vo

Thus the fundamental energy equation

/ (f(i — po{}a>va dV + Fa Ve, dS = / K]l\/[a ua:M dv (47>
Vo So Ve

is obtained, where we substitute the constitutive relations (29). Hence

/V (folz_po{)a)'va dv—i_/S Fa Vo ds = /V (GMaL’yu'y,L+RLMa¢71L_)OoAMa91) ua,M av )
(48)
thus

i(W—{—IC) = /Vo f;z}a dV—l—/SOFQUQ dS—i-/Vo (pOAMael_RLMOC¢,1L) uoé,MdV’

dt
(49)
where W is the work of deformation and IC is the kinetic energy:

1 1
W = 5 /VOGMOcL'yuOc7Mu’y,LdV7 K = 5 Lopovavadv- (50)

Now, to eliminate the term [, Pol\ 7o 0 Uq, v AV, we multiply the heat-
conduction equation (49) by 0 and integrate over V; after simple transfor-
mations we obtain

E
L, 90 Maatagav =L [ g16Y Ny as +

L o
+’1/ 0'N, dS + %ML/ 00", Ny, dS + %/ O'ug LNy dS (51
0o Jso 0o Jso go  Jse ’

. 1 d
P/ 011 / 011 _ _ u
P | PO O dV 4 oo | po 0tV = 2P = (X xo + X + Xa)



where

7):

230 /v paft0Mav, (52)

Xo = “ML/ OepdV, =G [ 0y,

=0 [ gy, ="M [ g v, (5
ve '

Note that this equation differs from the corresponding Eq. (25) in [1] by the
terms Xy, x and x,. Now, substituting (51) into (49), we are lead to the
equation

d _
dt(W+lC+P) (X +x0+ X6 + Xu) :/ flvadVJr/ K, v,dS +

E
Kyr 141 1 ML 1
+ 0o /SOQgALNMdS—l——/ ' Ny, /9«9 Ny dS + (54)

1
oo | ptytav = [ RLMW,L%M = PoPa 0"y ) AV
Vo Ve

To eliminate the last term [, (RLMQ¢}L U, it — PoPur 91¢}M)dv in Eq.
(54) we use the constitutive relations (30).

Finally, we use the equation of the electric field (41) with pg = 0. Mul-
tiplying the equation by ¢! and integrating over the region of the body, we
obtain

/VO A Nyp dV + /SVO AW dv = 0. (55)
Using the relations (30) and (55), after simple transformations we obtain
” AgWWEAV =
= |, (BuaatianWi + LinWAW + poPKjt(
= — [, AleNo! ds

0'Wi) — poPrc0' W) dV =

from which
/ (RKMaua,NWII( — ,OOPKQIW}() dV =
VO

:—/ Al Nptas — Lg_ @
Se

=& — —(poPx /V OWkav)

(56)
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where

1
€ = 5 Liex / WLWLav . (57)
Vo

In view of Egs. (54) and (56), we arrive at the modified energy balance

d
dt(W+K+P+5+poPK/ O'WidV) + (X + xo + Xo) =

:/ favadv+/ KovadS +

Vo Se

+’€f“/ 0'¢l N dS+/€L/ 0'N
go Jgo LM 0° Jseo L

1 .
i / po By dV — / ALNgg ds.
go Jvo Se

“QJ{L /S 00, Ny dS +  (58)

The energy balance (58) makes possible the proof of the uniqueness of the
solution.

We assume that two distinct solutions (u}, ¢*, ') and (u!, ¢, ")
satisfy Eqgs. (40)-(42) and the appropriate boundary and 1n1t1al condltlons
Their difference (4; = v}, —u”, ¢ = ¢ —¢"*, § = 01 — ") therefore satisfies
the homogeneous equations (40)—(42) and the homogeneous boundary and
initial conditions. Equation (58) holds for (i, ¢, 6).

In view of the homogeneity of the equations and the boundary conditions,
the right-hand side of Eq. (58) vanishes. Hence

d
dt<W+/C+P+5+pOPK/ OWEdV) = —(x + Xo + Xo + Xu) <0,

(59)

where the last inequality is true since by (35) and (38) we have

—(X+X9+X¢+Xu):/w@}w@}wdv- (60)

The integral in the left-hand side of Eq. (59) vanishes at the initial instant,
since the functions ;, gb 6 satisfy the homogeneous initial conditions. On
the other hand, by the inequality in (59) the left-hand side is either negative
or Zero.

Now we assume

(1) that the initial deformation y° realizes that the tensor Gpar, is
positive-definite, so that W > 0 by (50);

(2) that the tensor Ly is positive-definite, so that € > 0 by (57);

1
£ = 5LKN/ WLWLav (61)
VO

11



(3) the sufficient condition of J. Ignaczak written in [1] on pages 176-177:
assume that L;; is a known positive-definite symmetric tensor, g; = p,Pr

is a vector, and ¢ = £5% > 0; consider the function

A0, W) = (64 + 20 g W} + L, WiW;5

A is nonnegative for every real pair (', W}), provided
|gI| S C)\m

where J\,, is the smallest positive eigenvalue of the tensor L.
Under the three above assumptions, Equations (59 ) imply

;. =0, 0' =0, wi=o0,

which imply the uniqueness of the solutions of the incremental thermoe-
lectroelastic equations, i.e.,

N oY — 91//’ Wi — leu'

7 70
Moreover, from the constitutive relations we have that

1/ 1n 1/ 1n 1/ in
Kla:K Tas AL:AL7 77 :77 .
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