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Abstract

A 2n-dimensional completely integrable system gives rise to a singular
fibration whose generic fiber is the n-torus T

n. In the classical setting, it
is possible define a transformation of π1(T

n) onto itself by parallel trans-
porting the fundamental group of a given generic fiber along a path that
winds around a singular fiber. This transformation is called monodromy
transformation [6]. Some systems give rise to a non-classical setting, in
which the path is forced to cross a codimension 1 submanifold (a wall) of
singular fibers, nonetheless a non-classical parallel transport can be de-
fined on a subgroup of the fundamental group. This gives rise to what is
known as monodromy with fractional coefficients [11].

In this article, we give a precise meaning to the non-classical paral-
lel transport. In particular we show that it is a homologic process and
not a homotopic one. We justify this statement by describing the type
of singular fibers that generate a wall that can be crossed, by describ-
ing the parallel transport in a semi-local neighbourhood of the wall of
singularities, and by producing a family of 4-dimensional examples.

Mathematics Subject Classification: 55R55 Fiberings with singularities, 37J35
Completely integrable systems, topological structure of phase space, integration meth-
ods.

Keywords: torus bundle with singularities, momentum map, fractional mon-

odromy, parallel transport, homology and homotopy.

1 Introduction

A. Notations. A completely integrable system is a 2n-dimensional symplec-
tic manifold M endowed with n Poisson-commuting functions F1, ..., Fn such
that F = (F1, ..., Fn) : M → Rn has compact level sets. The map F is
called momentum map, its image is called momentum domain M and the set
of F -regular values is called regular momentum domain Mreg. The F -preimage
Λf1,...,fn

= F−1(f1, ..., fn) of any regular value (f1, ..., fn) is isomorphic to a set
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of finitely many disjoint tori and is called regular fiber. It follows that, omitting
to consider the inessential complication of multiply connected preimages (see
[16]), the map F : Mreg = F−1(Mreg) → Mreg is a torus bundle. On the other
hand, the momentum map defines a fibration whose fibers above non-regular
values are not necessarily tori and are called singular fibers.

The Liouville-Arnol’d theorem states that around any regular fiber of a given
completely integrable system, one can always find a set of semi-local action-angle
coordinates. In [6], Duistermaat describes the obstructions to global existence
of action-angle coordinates. One of these obstructions is the monodromy of the
torus bundle F : Mreg → Mreg.

B. Classical parallel transport and monodromy. The spherical pendu-
lum [6] was the first (4-dimensional) example of a completely integrable system
with non-trivial monodromy. Its momentum domain M has an isolated singular-
ity (see Figure 1 left). Using Cushman’s argument to compute the monodromy
of the system, one chooses basic cycles a, b of the fundamental group of a generic
fiber T 2, deforms them fiberwise continuously around the isolated singularity,
and proves that the cycle a deforms into the cycle a+b while the cycle b deforms
into itself. The conclusion is that the 2-torus bundle has non-trivial monodromy.

Figure 1: Typical momentum domain and bifurcation diagram for 4-dimensional
systems appearing in connection to classical integral monodromy (left) and to
non-classical fractional monodromy (right).

After this first example, non-trivial monodromy appeared in many physical
systems [2, 15], with remarkable effects on their dynamics [7] and on their associ-
ated quantum system [3, 10, 14, 9]. All such examples share the property of hav-
ing a non-simply connected regular momentum domain where monodromy can
be computed classically and is a representation of the group π1

(
Mreg, (f̄1, ..., f̄n)

)

into GL
(
π1(Λf̄1,...,f̄n

)
)
' SL(n, Z).

In many cases the fundamental group π1

(
Mreg, (f̄1, ..., f̄n)

)
is isomorphic to

Z, the monodromy representation is hence uniquely determined by the image in
SL(n, Z) of a generator of π1

(
Mreg, (f̄1, ..., f̄n)

)
. For this reason in the literature

one often refers to the monodromy matrix associated to a completely integrable
system. We will abuse notations precisely in this sense.

A monodromy matrix can be computed as follows: choose a basis of cycles ai

(the initial basis) of the fundamental group π1(Λf̄1,...,f̄n
) = {Πja

nj

j } ' Zn of a
given regular fiber (the base fiber), transport the cycles ai fiberwise continuously
from torus to torus along a loop γ in Mreg. Observe that this can always be
done, in a non-unique way, because of the local triviality of the bundle. Once
back to the base fiber consider the cycles thus obtained. The transport of the
cycles ai has deformed them into cycles bi = Πja

nij

j (the final basis). The matrix
(nij) is an element of SL(n, Z) and is called the monodromy matrix associated

2



to the loop γ written with respect to the basis ai.
Naturally, there are many possible fiberwise continuous deformations of a

cycle along a path γ in Mreg. Each deformation is the immersion of a cylin-
der in Mreg that projects onto γ. Different fiberwise continuous deformations
yield final cycles that are homotopic. It follows that the process of fiberwise
continuous deformation defines a transport among fundamental groups of reg-
ular fibers. This justifies the word parallel transport of cycles. Moreover, the
transport depends only on the homotopy class with fixed endpoints of the path
γ within Mreg (which amounts to local flatness).

In describing the parallel transport we have ignored one relevant fact: the
choice of a the base point of the cycles ai. It is a known fact that the first
homology group is the quotient of the fundamental group by its commutator
subgroup (the Abelianization of the fundamental group), and that the set of
loops up to homotopy without the specification of a base point is the set of
conjugacy classes in the fundamental group [5] (not a group, but a set that
submerges the Abelianization of the fundamental group).

The choice of a base point is immaterial when the topological space un-
der investigation has commutative fundamental group, in fact in that case the
fundamental group, the first homology group and the conjugacy classes of the
fundamental group are all the same set. But the base point becomes essential
when the fundamental group is non-commutative. Forgetting it, has the effect
of erasing the order of multiplication of cycles. We will show that commuting
two cycles is precisely what is needed to parallel transport through a wall of
singular values in a system with fractional monodromy, and is precisely what
makes the non-classical parallel transport a homologic process.

C. Non-classical parallel transport: cobordism through corank 1

hyperbolic singularities. The regular fibers of a completely integrable system
are n-tori, their fundamental group is commutative, and they give rise to a torus
bundle that allows the definition of parallel transport. These facts become false
in the presence of singular fibers. The existence of walls of singular fibers (and
the analysis of quantum spectra around such walls) convinced Zhilinskìı of the
existence of a fractional monodromy associated to the parallel trasport of cycles
across a wall. To compute such monodromy one needs to extend the definition
of parallel transport to these singular cases. The practical question becomes: is
it possible to parallel transport the basis cycles ai described above along a path
γ that crosses a set of singular values as that depicted in Figure 1 right? Much
efforts have been taken to answer this question [11, 12, 8]. This work is part
of such efforts, and its original contribution rests in the description of the local
geometry on which the notion of parallel transport can be extended, and the
clarification of the domain in which the transport is defined (homology cycles).

More precisely, in Section 2 we define the type of singular values that a path
γ is allowed to cross (passable singularities), we show that the singular fibers
above such singular values have non-commutative fundamental group, and we
extend the definition of parallel transport along paths that cross such values
proving two facts:

1. that the parallel transport is defined on an index 2 subgroup of the fun-
damental group,

2. that its definition requires the transport of homology cycles.
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The first fact justifies the name fractional monodromy: assume to be given a
transformation of Z2 to itself that, with respect to the canonical basis {e1, e2},
is represented by the matrix ( 1 0

1 1 ). Then the transformation on the subgroup
Z{2e1, e2}, written with respect to the basis {2e1, e2}, is represented by the
matrix ( 1 0

2 1 ). So, if a transformation can be defined on the subgroup Z{2e1, e2}
and is given by the matrix ( 1 0

1 1 ), then the corresponding transformation of Z2

with respect to the canonical basis {e1, e2} must be represented by the matrix(
1 0
1
2 1

)
.

The second fact can be otherwise stated by saying that the extension of
parallel transport through singular fibers does not correspond to the fiberwise
immersion of a cylinder but rather to a fiberwise cobordism, that is the im-
mersion of a 2-dimensional manifold whose boundary are the initial and final
cycle.

In Section 3 we describe a local model that justifies the appearance of bigger
denominators in the monodromy matrix. In Sections 4 and 5 we present 4-
dimensional completely integrable systems in which fractional monodromy can
be computed and is defined in Z(2), respectively Z(q), where Z(q) is the ring of
fractions with denominator a power of q.

2 Local model for 1
2 fractional monodromy

Let us begin by defining the type of singularities that give origin to fractional
monodromy.

Definition 1 We call passable singularity a singular value that allows the par-
allel transport of a subgroup with finite index. A passable singularity is a singular
value of the momentum map whose fiber contains only corank 1 non-degenerate
singular points of hyperbolic type, a singular value that is not a passable singu-
larity is called essential singularity.

Remark. To say the truth, every singularity allows the parallel transport of a
subgroup of the first homology group, but the subgroup that can be transported
has finite index only in the hyperbolic case.

Singularities of hyperbolic type have been introduced by Bolsinov, Matveev
and Fomenko in what we call the BMF-classification [1]. This classification
deals with corank 1 singularities for 4-dimensional Hamiltonian systems and it
has been extended by Zung [16] to any dimension. Let us briefly recall the
results in these two works.

Given a completely integrable system (M, F ), the corank of a singular point
x in M is the natural number n− rank dxF . At a corank k singular point there
are k functions Hj , linear combinations of the Fi, such that dxHj = 0. The
Hessian of the functions Hj define a commutative subalgebra in the Lie algebra
of quadratic polynomials of any maximal symplectic subspace of ker dxF , that is
any algebraic complement in ker dxF to the n − k-dimensional space generated
by the vectors XFi

. A singular point of corank k is said to be a non-degenerate
singularity if the commutative subalgebra {HessHj} has dimension k and is
hence a Cartan subalgebra.

As was shown in [16], a saturated neighbourhood of a singular fiber contain-
ing corank 1 hyperbolic type singular points is isomorphic to R

n−1
I × T n−1

α ×P
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or is doubly-covered by such space. The manifold P is one of the 2-dimensional
manifolds with boundary described in the BMF-classification and there called
letter-atoms.

The manifold P is the thickening of a graph Γ, its boundary is the disjoint
union of circles (in Figure 2 left is the thickening of the graph with one vertex
and two edges). Some of the circles in the boundary of the thickening are called
positive, the others are called negative, according to the rule that each edge
of the graph that touches a positive circle on one side must touch a negative
circle on the other side (rule (3) in page 68 of [1]). The momentum map is
the map (I1, ..., In−1, J) from R

n−1
I × T n−1

α × P to Rn
i,j , where J is a map from

P to R whose level sets are the concentric circles outlining the graph Γ in its
thickening. J monotonically increases moving towards the positive circles and
monotonically decreases moving towards the negative circles. The critical level
of J is the graph Γ, which is assumed to be at J = 0. The critical points of J
are the vertices of the graph Γ, each vertex has 4 departing edges.

From this local description it immediately follows that the momentum do-
main is assimilable to the n-dimensional ball divided in two connected compo-
nents by a codimension 1 surface of singularities (its equatorial n−1 ball, given
by the equation j = 0). The fibers at j = 0 contain non-degenerate corank 1
hyperbolic-type singular points, the regular levels are the direct product of the
T n−1

α with the concentric circles in P .

Fact 2 All the cycles parameterized by the variables α can be transported with
the classical smooth parallel transport from the fibers sitting above points in
which J is positive to fibers sitting above points in which J is negative. On the
other hand, the cycle represented by the union of positive circles in P is cobor-
dant to the cycle represented by the union of negative circles. The cobordism
between the cycles is the manifold P itself.

Remark. This cobordism eventually descends to the base of the double cover-
ing. The double covering is an essential ingredient, since it changes the number
of components in the fiber. We observed that analyzing systems with discon-
nected fibers is an inessential complication, but a neighbourhood of a passable
singularity in a systems with fractional monodromy is always covered by a sys-
tem with 2 connected components on one side of the wall of singularities and 1
component on the other side.

To clarify these two last criptic statements let us analyze the simplest but
fundamental example.
Example. This example is the local model for the codimension 1 hyperbolic
singularity that, in the BMF-classification, corresponds to the representation
÷. This is the first system of the list in [1] whose regular level-sets are con-

nected 2-tori.
The phase space of this example is RI×E2, where E2 is a Seifert circle bundle

with a singular circle of weight 2. The bundle E2 is a cylinder D2× [0, 2π] whose
upper side D2×{2π} is identified with the the lower side D2×{0} after a rotation
of π, here the base D2 is drawn in Figure 2 left. The vertical lines of the cylinder,
taken in couples, form circles. The center-line is a circle of half-length.

On the space D2 is defined a real-valued function J that can be extended to
E2. By convention, the critical level is posed at J = 0 and is the figure eight
drawn in black in Figure 2 left. The levels with J positive are two circles inside
the figure eight while the levels with J negative are circles surrounding it.
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D2
pos

negneg

D3

Figure 2: Basis of Seifert fibrations obtained fixing I = const. D2 is also a
letter-atom for the representation . Observe the labelling of the boundary
circles as positive or negative and the figure eight critical level-set.

The momentum map of this system is the function (I, J) : RI×E2 → R2 and
its image is a disk divided into two connected components (the J-positive half-
disk and the J-negative half-disk) by a codimension 1 surface of singularities
whose fibers contain corank 1 hyperbolic-type singular points. The regular
fibers are connected 2-tori, while the singular fibers are obtained by twisting
and gluing the extremes of a cylinder on the figure eight drawn in black in
Figure 2 left, and are 2-curled tori C2.

Fact 3 This local model already exposes the fact that the parallel transport is a
homologic, and not a homotopic process.

First, observe that the fundamental group of the curled torus C2 is non-
commutative, it is in fact generated by two elements α, β with the relation
αβ2 = β2α. Second, the levels in E2 with positive J can be guided (with
normalized-gradient flow of J) to the critical fiber C2, same for the levels with
negative J , see Figure 3. This defines two continuous maps, σ : T + → C2 and
ι : T− → C2, where T + is a level sets with J > 0, and T− is a level set with
J < 0.

Figure 3: The gradient flow of J allows the definition of maps σ from T + to C2

(left) and ι from T− to C2 (right).

The parallel transport of homotopy cycles can hence be defined on both sides
of the singular value of J up to the critical level set and gives rise to two images

Σ = σ∗(π1(T
+, •)), I = ι∗(π1(T

−, •))

of the fundamental group of a 2-torus into π1(C2, •), where • is the base point.
Denoting by a+, b+ a basis of cycles for the tori T +, by a−, b− a basis of

cycles for the tori T−, and by α, β a basis of cycles for the curled torus C2 as
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in Figure 4, one can easily see that a+ maps to α, b+ to β2, a− to αβ−1 and b−

to β2.

a+
b+b+

Α
Β a-

b-

b-

Figure 4: A basis of cycles of the fundamental group for regular fibers T + (left)
and T− (right) and for singular fibers C2. The thick dot is the base point.

It follows that both Σ and I are index two subgroups of π1(C2, •). But
the elements of Σ are all of the form αnβ2m, while those in I are of the form
(αβ−1)nβ2m . The intersection of the two subgroups is a group isomorphic to
Z, and contains all and only elements of the form β2m.

Homotopically, the only passable subgroup of π1(T
+, •) is that generated

by the element b+, which maps in β2 and can be continued in π1(T
−, •) as b−.

The scenario completely changes using homology. The main difference is that
a curled torus is a homology-torus. The two homotopy cycles α, β project to
homology cycles [α], [β] that commute.

Denoting by [a+], [b+] a basis for the first homology group of the tori T +,
and by [a−], [b−] a basis for the first homology group of the tori T−, one obtains
that [a+] maps to [α], [b+] to 2[β], [a−] to [α]− [β] and [b−] to 2[β]. Hence, the
index two subgroup of H1(T

+, Z) generated by 2[a+], [b+] maps onto the index 4
subgroup of H1(C2, Z) generated by 2[α], 2[β]. But also the index two subgroup
of H1(T

−, Z) generated by 2[a−], [b−] maps onto the same index 4 subgroup.
It follows that the parallel transport can be defined onto the index 2 sub-

group of H1(T
+, Z) generated by 2[a+], [b+]. These two cycles map respectively

to 2[α], 2[β] and can be continued in H1(T
−, Z) as 2[a−]+[b−], [b−]. To compute

monodromy one should continue the parallel transport along a path that com-
pletes the loop around an essential singularity and back to T +. This cannot be
done in a semi-local model but will be performed in the 4-dimensional systems
in Sections 4 and 5.

3 Local models for bigger denominators

The example above indicates the appearance of a 2 in the denominators of the
monodromy matrix. Bigger denominators cannot arise in completely integrable
systems possessing non-degenerate hyperbolic singularities. Without pretense
of giving a classification, we provide in this subsection a semi-local model that
explains the appearance of a monodromy matrix with coefficients in Z(q). In
this model the singularities are degenerate in the Morse-Bott sense, and are
a semi-local model for the singularities of the family of completely integrable
systems that we present in Section 5.
Example. The phase space of this example is the space RI × Eq, where Eq is
a Seifert circle bundle with a singular circle of weight q. The bundle Eq can be
obtained from the cylinder Dq × [0, 2π] identifying the upper side Dq × {2π} of
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the cylinder with its lower side Dq ×{0} after a rotation of 2π/q, here Dq is the
domain in Figure 2 right (drawn for q = 3). The vertical lines of the cylinder,
taken in q-ples, form a circle. The center-line is a circle of length 1/q.

On the space Dq is defined a function J that can be extended to Eq. The
levels J = c in Eq are the trefoil with q petals (a q-foil) when c = 0 (drawn
in black for q = 3 in Figure 2 left), are q concentric circles inside the q-foil if
c > 0, are a big circle surrounding the q-foil when c < 0. The momentum map
is the function (I, J) : RI × Eq → R2. The image of the momentum map is
a disk divided into two connected components by a codimension 1 surface of
singularities whose fibers contain corank 1 degenerate singularities. The regular
fibers are connected 2-tori, while the singular fibers are q-curled tori Cq.

β · · · q-times · · · β

β · · · q-times · · · β

α α

b

b

a a

Figure 5: The cut-and-paste representation of a q-curled torus and of a regular
2-dimensional torus.

A q-curled torus has fundamental group that is a group on two generators
α, β with the relation αβq = βqα (see Figure 5). The base of the cylinder
provides a cobordism between q times a cycle in the first homology of a fiber
T + and a cycle in the first homology of a fiber T−, where T± are as in Section
2. Again, this cobordism cannot be obtained via a homotopy transformation.

Also in this case, the gradient descent of J in Eq = {I = const} defines two
continuous maps, σ : T + → Cq and ι : T− → Cq. It is possible to perform a
parallel transport of homotopy cycles on both sides of the singular value of J
up to the critical level set and obtain the images

Σ = σ∗(π1(T
+, •)), I = ι∗(π1(T

−, •))

Drawing by slightly changing Figure 4 a basis {a+, b+} of the fundamental
group of the tori T +, a basis {a−, b−} of the fundamental group of the tori T−,
and a basis {α, β} of the fundamental group of the curled torus Cq , we have
that a+ maps to α, b+ to βq, a− to αβ−1 and b− to βq. The two subgroups Σ
and I are index q subgroups of π1(Cq, •), their intersection is isomorphic to Z

and consists of elements of the form βqm.
Also in this case [α] and [β] form a basis for the first homology of the singular

fibers Cq, that are homology-tori. Denoting by [a+], [b+] a basis for the first
homology of the tori T +, and by [a−], [b−] a basis for the first homology of the
tori T−, one obtains that [a+] maps to [α], [b+] to q[β], [a−] to [α] − [β] and
[b−] to q[β]. Hence, the index q subgroup generated by q[a+], [b+] maps onto
the index q2 subgroup of H1(Cq, Z) generated by q[α], q[β]. Also the index q
subgroup of H1(T

−, Z) generated by q[a−], [b−] map onto the same index q2

8



subgroup. It follows that the parallel transport can be defined on the index q
subgroup of H1(T

+, Z) generated by q[a+], [b+]. These cycles map respectively
to q[α], q[β] and can be continued as q[a−] + [b−], [b−] in H1(T

−, Z).

4 An example with monodromy in SL(2, Z(2)).

In this Section we present a 4-dimensional system whose singularities are pre-
cisely as those described in the semi-local model of Section 2. This example,
as well as those presented in the Section 5, are the model systems that were
used to prove the existence of fractional monodromy [11, 12, 8]. Consider the
completely integrable system in which the phase space is Cz × Cw and the two
commuting functions are

J = 1
2 |z|

2 − |w|2, H =
√

2=(z2w) + 2 |z|2|w|2.

The Hamiltonian flow of J is the circle action of the 1:-2 harmonic oscillator.

4.1 The fibration defined by the momentum map

The two functions J, H define a momentum map (J, H) : C2 → R2 that has
compact and connected level sets. The image of the momentum map is depicted
in Figure 6 left (on the right is shown a neighbourhood of the origin). The
critical values of the momentum map are of three types: the origin, whose fiber
is a pinched torus, the set (− 1

2 , 0)× {0}, whose fibers are 2-curled tori, and the
points in the boundary of the momentum domain, uninteresting to us, whose
fibers are circles.

-1 -0.8 -0.6 -0.4 -0.2 0.2 0.4
J

-0.4

-0.2

0.2

0.4

H

-1 -0.8 -0.6 -0.4 -0.2 0.2 0.4
J

-0.4

-0.2

0.2

0.4

H

-0.1 -0.05 0.05 0.1
J

-0.1

-0.05

0.05

0.1

H

-0.1 -0.05 0.05 0.1
J

-0.1

-0.05

0.05

0.1

H

Figure 6: The momentum domain on the left. On the right the loop we use to
compute fractional monodromy

One way to prove these facts is to analytically describe the level sets Λj,h =
{(z, w)|J(z, w) = j, H(z, w) = h}. Assume at first that j is negative. The
condition J = j implies that |w|2 = −j + 1

2 |z|2. It follows that the norm of w
is always bigger than −j > 0. Hence, the level set J = j is isomorphic to the
manifold Cz × S1

ϑ, its embedding in the phase space C2 is given by

Cz × S1
ϑ → Cz × Cw (z, ϑ) 7→

(
z, eiϑ

√
2

2

√
|z|2 − 2j

)
.
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In the manifold Cz × S1
ϑ the levels sets H = h are given by the equation

√
|z|2 − 2j =(z2eiϑ) + |z|2(|z|2 − 2j) = h.

Assume now that j is positive, the condition J = j implies that |z|2 =
2j + 2|w|2. It follows that the norm of z is always bigger than 2j > 0. Hence,
the level set J = j is isomorphic to the manifold Cw ×S1

ϕ. Its embedding in the
phase space C2 is given by

Cw × S1
ϕ → Cz × Cw (w, ϕ) 7→ (eiϕ

√
2
√
|w|2 + j, w).

In the manifold Cw × S1
ϕ, the level sets H = h are given by the equation

2
√

2(|w|2 + j)=(e2iϕw) + 4(|w|2 + j)|w|2 = h.

The level sets of the above equations, that are the sets Λj,h, can be viewed
as immersed hypersurfaces of Cz ×S1

ϑ (Cw ×S1
ϕ respectively), and can hence be

plotted in the covering Cz ×R
ϑ̃

(Cw ×Rϕ̃ respectively) as hypersurfaces which
are 2π-periodic in the last variable. The best way to visualize such hypersurfaces
is to picture the curve obtained by sectioning them with the half-plane =z =
0,<z > 0 (=w = 0,<w > 0 respectively). The result of this intersection is
drawn in Figure 7. In the j-negative case, the full level set is the manifold
obtained by rotating that curve around the R

ϑ̃
axes and lowering it of twice

the angle of rotation. In the j-positive case the full level-set is obtained by
rotating the curve around the Rϕ̃ axes, but this time the curve must be lowered
of half the angle of rotation. In the Appendix we explain how we obtained such
description.

0.5 1
Re z

Π

2 Π

Θ
1
����
2
<j<0

0.5 1
Re w

Π

2 Π

j j positive

Figure 7: Intersections between three level sets Λj,h and half-planes. Dotted is
the intersection with a level having negative h, continuous is the intersection
with a level having h = 0, dashed is the intersection with a level having positive
h.

From this representation one can easily see that all the level sets are con-
nected 2-tori except for the levels Λj,h with h ≤ 0. Let us analyze only the
troublesome levels that touch the Rϑ̃ axes (Rϕ̃ respectively) and whose graph
looks non-smooth. When − 1

2 < j < 0 the level Λj,0 can be described with cut-
and-paste topology: remove from Λj,0 the center-line z = 0, the complement
is a cylinder open at both boundary circles. The ends of the cylinder must be
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glued along the circle {0}×S1
ϑ with a 2-1 map. The resulting topological space

is a 2-curled torus.
The description changes when dealing with the case j > 0. In that case it

is still true that the complement of the center-line w = 0 is a cylinder open at
both ends, but the boundary has to be glued to the circle {0} × S1

ϕ with a 1-1
map. The topological space is a torus.

4.2 The definition and parallel transport of the cycles

Consider now a loop γ that winds around the origin once, as in Figure 6 right.
Fixing − 1

2 < j < 0, the definition of a basis of cycles a+, b+ of the fundamental
group of the fibers Λj,h with h > 0, the definition of a basis a−, b− of the
fundamental group of the fibers Λj,h with h < 0, and the definition of a basis
α, β of the fundamental group of the fibers Λj,0, can be done by pictures. In
Figure 8 we only plot the cycles a+, α, a−. The cycles b+, β, b− are orbits of the
1:-2 oscillator, hence are descending spirals winding around the ϑ̃-axes.

0.5 1 Re z

Π

2 Π
Θ a+

0.5 1 Re z

Π

2 Π
Θ Α

0.5 1 Re z

Π

2 Π
Θ a-

Figure 8: The cycles a± and α. The thick dot is the base point.

The definition of the cycles shows, as expected, that a+ maps to α, a− maps
to αβ−1. Of course, b± both map to β2.

Fixing now j > 0, one can similarly draw a basis of cycles c+, d+ of the
fundamental group of the fibers Λj,h with h > 0, c−, d− of the fundamental
group of the fibers Λj,h with h > 0, and χ, δ of the fundamental group of the
fibers Λj,0. See Figure 9.

0.5 1 Re w

Π

2 Π
j c+

0.5 1 Re w

Π

2 Π
j Χ

0.5 1 Re w

Π

2 Π
j c-

Figure 9: The cycles c± and χ. The descending part of the path c+ does not
belong to the plane <w × ϑ but winds around the ϕ-axes. The thick dot is the
base point.

In this case the images of the cycles c± and d± in π1(Λj,0) is simpler to
describe. In fact c± both map to χ and d± both map to δ.

Parallel transporting the cycles a+, b+ along the part of γ at a fixed h > 0
from level sets with j < 0 to level sets with j > 0, and expressing the final cycles
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with respect to the basis c+, d+, one obtains that a+ is homotopic to c+ and b+

is homotopic to d+ (this second fact doesn’t require a proof, since both b+, d+

are orbits of the J-action). The same process applied to the cycles a−, b− gives
that a− parallel transports to c− and b− to d−.

4.3 The fractional monodromy map

We can now compute the monodromy matrix. We make use right from the
beginning of homology cycles, since the homotopic process encounters the prob-
lems described in the Introduction.

When j < 0 and h > 0, the smoothly varying homology cycles 2[a+] parallel
transport up to the critical fiber Λj,0 to the cycles 2[α], while the cycles [b+]
transport to the cycles 2[β]. Lifting the image from the other side, the cycle 2[α]
is the image of the cycles 2[a−] + [b−], while the cycle 2[β] is the image of [b−].
So, the parallel transport deforms the cycles 2[a+] into the cycles 2[a−] + [b−]
and [b+] to [b−].

It is not difficult to check that the cycles a± parallel transport to the cycles
c±, and it is obvious that the cycles b± parallel transport to the cycles d±. It
follows that, continuing the parallel transport to the level-sets Λj,h with j > 0
and h < 0, the cycles 2[a−] + [b−] become 2[c−] + [d−], while the cycles [b−]
transport to [d−]. Moving to the level-sets Λj,h with j > 0, h > 0, the cycles
2[c−]+ [d−] become 2[c+]+ [d+], while the cycles [d−] transport to [d+]. Closing
the path and moving back to the base fiber Λj,h with j < 0 and h > 0, one
obtains the final cycles 2[a+] + [b+] and [b+].

The conclusion is that there is an index-2 subgroup of the first homology
group Λj,h (with j < 0, h > 0), generated by 2[a+] and [b+] that can be parallel
transported along the path γ around the essential singularity in (0, 0), through
the passable singular locus (− 1

2 , 0) × 0. The parallel transport defines a map
from this subgroup onto itself that, written with respect to the basis 2[a+], [b+],
is represented by the matrix ( 1 0

1 1 ). This is what we planned to prove.

5 Examples with monodromy in SL(2, Z(q)).

Degenerate hyperbolic singularities

It is natural to extend the system in Section 4 to a q-indexed family of com-
pletely integrable systems, with q ≥ 2. Consider the 4-dimensional completely
integrable system defined in the phase space Cz × Cw and given by the two
commuting functions

J = 1
2 (|z|2 − q|w|2), H =

√
q= (zq w) + q|z|q |w|2.

These two functions define the momentum map (J, H) : C2 → R2 that
has compact and connected level sets. The image of the momentum map is
qualitatively the same as that studied in Section 4. The critical values of the
momentum map are of three types: the origin, whose fiber is a pinched torus,
the set of points (− 1

2 , 0)× {0}, whose fibers are q-curled tori Cq. The points in
the boundary of the momentum domain are uninteresting to us, their fiber is a
circle.

12



The same arguments of Section 4 allows the immersion of the level sets Λj,h

in C × S1. The immersed submanifold can be described precisely in the same
way with two differences:

1. when j is in the interval (− 1
2 , 0) the curves in Figure 7 left, when rotating,

must be lowered q-times the angle of rotation.

2. When j is positive, the curves obtained by sectioning have q hunchbacks
(instead of 2) and, rotating, must be lowered at 1/q the angle they have
been rotated, so that after one turn each hunchback is glued to the one
immediately below.

The same analysis as in Section 4 shows that the only surfaces that are not
two dimensional tori are those with h = 0 and − 1

2 < j < 0, they are generated by
rotating the curves that touch the ϑ-axes and are q-curled tori. The fundamental
group of a q-curled torus is generated by two cycles α and β that must satisfy
the relation αβq = βqα. The topology of these singular manifolds can be easily
described with cut-and-paste arguments, using the representation in Figure 5

Consider now a loop γ that winds around the origin once as in Figure 6
right. As in Section 4, the definition of the cycles b± and d± follows from the
circle action of the 1 : −q harmonic oscillator, whose Hamiltonian is J . The
cycles a± and c± are precisely those in Figures 8 and 9, with the difference in
the number of hunchbacks (that are q) in the second set of figures.

With this choice of cycles, one easily sees that a+ maps to α, while b+ maps
to βq. On the other side, a− maps onto αβ−1, while b− maps to βq. This is
precisely what happens in the semi-local model described in the Introduction.
To close the path, we observe that the cycle a+ transports to the cycle c+, the
cycle b+ transports to the cycle d+, the cycle a− transports to the cycle c−, and
the cycle b− transports to the cycle d−.

In homology, the smoothly varying homology cycles q[a+] parallel transport
up to the critical fiber Λj,0 to the cycle q[α] while the cycles [b+] transport to
the cycle q[β]. From the other side, the cycle q[α] is the image of the cycles
q[a−] + [b−], while the cycle q[β] is the image of [b−]. So, the parallel transport
deforms the cycles q[a+] into the cycles q[a−] + [b−] and [b+] to [b−].

Continuing the parallel transport to the level-sets Λj,h with j > 0 and h < 0,
the cycles q[a−] + [b−] become q[c−] + [d−], while the cycles [b−] transport to
[d−]. Moving to the level-sets Λj,h with j > 0, h > 0, the cycles q[c−] + [d−]
become q[c+] + [d+], while the cycles [d−] transport to [d+]. Closing the path
and moving back to the base fiber Λj,h with j < 0 and h > 0, one obtains the
final cycles q[a+] + [b+] and [b+].

The conclusion is that there is an index-q subgroup of the first homology
group Λj,h (with j < 0, h > 0), generated by q[a+] and [b+] that can be parallel
transported along the path γ around the singular value (0, 0), through the sin-
gular locus (− 1

2 , 0)×0. The parallel transport defines a map from this subgroup
onto itself that, written with respect to the basis q[a+], [b+], is represented by
the matrix ( 1 0

1 1 ). This proves that the monodromy matrix associated to these

systems is
(

1 0
1

q
1

)
.
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6 Appendix

Here we briefly explain how we obtained the description of the levels Λj,h in
Section 4 (and 5). The proof of this last fact is a little cumbersome, it does
not help intuition, and it makes use of polar coordinates (see [13]). We write
it here for the sake of completeness. All points in {0} × S1

ϕ belong to the level
Λj,0, so the level sets Λj,h with h 6= 0 can be algebraically defined by assuming
that w = seiϑ with s 6= 0. The equations H = h becomes sin(2ϕ + ϑ) =

h

2
√

2s(s2+j)
−
√

2s = σj,h(s) which can be rewritten as

ϕ = 1
2

(
arcsin

(
σj,h(s)

)
− ϑ

)
. (1)

The function σj,h(s) is strictly decreasing from +∞ to −∞ when h is pos-
itive, and goes from −∞ back to −∞ when h is negative, changing only once
from increasing to decreasing and reaching a number less than zero at its maxi-
mum. The plot of the function σj,h(s) for h positive, zero and negative is shown
in Figure 10

min sup
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-1.5

-1

-0.5

0.5

1

1.5

2

sup

-2

-1.5

-1

-0.5

0.5

1

1.5

2

supmin

-2

-1.5

-1

-0.5

0.5

1

1.5

2

Figure 10: The qualitative graphs of the functions σj,h(s) and ρj,h(r) for h
positive, zero and negative. The interesting part of the graph is that between
-1 and 1.

Also in this case the circle {0} × S1
ϑ lays in the level set H = 0, and hence

it does not lay in any other level set. All the other levels H = h 6= 0 do not
contain z = 0. Also in this case, resorting to polar coordinates z = reiϕ, one has
that the equation H = h becomes sin(ϑ+2ϕ) = h

r2

√
r2−2j

−
√

r2 − 2j = ρj,h(r),

that is
ϑ = arcsin

(
ρj,h(r)

)
− 2ϕ. (2)

The function ρj,h has a graph that is qualitatively the same as that of σj,h.

7 Conclusions and Acknowledgements.

One natural question to ask is whether the degenerate singularities of a system
with monodromy in Z(q) can be slightly perturbed, in the family of completely
integrable systems, into non-degenerate singularities. If this perturbation was
possible, the consequence would be that fractional monodromy is not preserved
under completely integrable perturbations. It is in fact impossible that the
composition of matrices in SL(2, Z(2)) give rise to a matrix with coefficients in
Z(q) with q not a power of 2. There are hence two possibilities

1. The only fractional monodromy which is stable under completely inte-
grable perturbations is that in Z(2).
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2. The classification of singularities of non-degenerate type is not topologi-
cally exhaustive.

It is very likely that the second fact is true. Unfortunately, completely inte-
grable perturbations, that is a family of Poisson commuting functions Fi(p, q, ε)
smoothly depending on the real parameter ε is, to our knowledge, not studied
in the literature. Easier to describe is a more restrictive kind of perturbation in
which the commuting functions are J1, ..., Jn−1, H and only H is perturbed. In
the case of the functions in Section 5, we cannot find a perturbation of H so to
have a completely integrable system with non-degenerate singularities.

This work was supported by the EU network HPRN-CT-2000-0113 MASIE
– Mechanics and Symmetry in Europe. A first draft of this paper was written
during a visit at the MREID of Dunkerque, I thank the Research Center for the
hospitality. I also wish to thank Zhilinskìı and Sadovskìı for sharing with me
their ideas on fractional monodromy. My arguments in Section 4 and 5 can be
reconduced to their (and Nekhoroshev’s) idea of defining cycles by intersections
with well chosen hyperplanes [11, 12]. I also thank R. Cushman, K. Efstathiou,
and F. Fassò for enlightening discussions on the subject.
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