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Abstract

Granular materials are deeply rooted in the long history of science and technology. Fur-

thermore, several industries process granular materials routinely, including chemical, food

and pharmaceutical industries. Handling and processing of these materials remain a major

challenge in numerous industrial applications. The main difficulty regards the mixing of

particles with different properties because of their tendency to segregate spontaneously.

Thus, the development of tools for predicting segregation is essential in order to control

and minimize the occurrence.

This research project is concerned with the numerical modelling of segregation mecha-

nisms in bulk materials for mixtures with varying degrees and types of particle dispersity,

in many industrial settings. More specifically, we first study size-driven segregation in

diluted binary mixtures. We then tackle segregation due to size differences in multi-

component and polydisperse particle systems. In these cases, the segregation equations

are fully coupled with the solid flow rheology. Since the coupling is challenging, only a few

other studies exist in this area. We then propose a new mathematical model for density-

driven segregation in binary mixtures. Unlike the previous models, in this case, we employ

a one-way coupling. Furthermore, the velocity field is determined directly from analytic

solutions rather than by solving the momentum equation. The inclusion of density differ-

ences would have led to compressible velocity fields and hence, to more complex models.

An additional chapter describes a new model for particle-size segregation that include

the compressibility of the velocity field. Wherever possible, the models are validated in

a two-way comparison among experiments and theory. In the other cases, the validation

procedure is accomplished with DEM simulations.

All theories are capable of reproducing both qualitatively and quantitatively what

happens in reality. Thus, the proposed segregation models represent a step towards a

complete and accurate description of segregation in a variety of dense granular flows.

Furthermore, the models can help engineers in developing mitigation strategies and in

rationally designing and scaling equipment, processes, and process control.
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Sommario

I materiali granulari sono profondamente radicati nella lunga storia della scienza e della

tecnologia. Essi vengono trattati quotidianamente da numerose industrie tra cui l’industria

chimica, l’industria alimentare e l’industria farmaceutica. Tuttavia, la loro manipolazione

e la loro lavorazione rimangono un importante problema in numerose applicazioni industri-

ali. Uno dei problemi più rilevanti è quello della miscelazione di particelle aventi proprietà

diverse dal momento che tendono a segregare spontaneamente. Pertanto, lo sviluppo di

strumenti per prevedere la segregazione è essenziale per controllare e ridurre al minimo il

fenomeno.

Questo progetto di ricerca riguarda la modellazione numerica dei meccanismi di seg-

regazione in materiali sfusi, per miscele con vari gradi e tipi di dispersione particellare e

applicati a diversi contesti industriali. Nello specifico, studieremo dapprima la segregazione

per dimensione in miscele binarie diluite. Successivamente tratteremo la segregazione per

taglia in sistemi di particelle multicomponenti e polidispersi. In questi casi, le equazioni

di segregazione sono accoppiate con la reologia del flusso solido in modo bidirezionale.

Poiché l’accoppiamento bidirezionale è piuttosto complesso, esistono solo pochi altri studi

a riguardo. Proporremo poi un nuovo modello matematico per descrivere la segregazione

per densità in miscele binarie. A differenza dei modelli precedenti, in questo caso uti-

lizzeremo un accoppiamento unidirezionale. Inoltre, il campo di velocità sarà determinato

direttamente da soluzioni analitiche piuttosto che risolvendo l’equazione di conservazione

della quantità di moto. L’inclusione delle differenze di densità avrebbe portato a campi

di velocità comprimibili e quindi, a modelli più complessi. Un ulteriore capitolo descrive

un nuovo modello di segregazione per taglia che include la comprimibilità del campo di

velocità. Ove possibile, i modelli saranno validati con esperimenti. Negli altri casi, la

procedura di validazione si realizzerà con simulazioni DEM.

Tutte le teorie sono in grado di riprodurre sia qualitativamente che quantitativamente

ciò che accade nella realtà. Pertanto, i modelli di segregazione proposti rappresentano

un ulteriore passo avanti verso una descrizione completa e accurata della segregazione in

una varietà di flussi granulari densi. Questi modelli possono inoltre aiutare gli ingegneri

a sviluppare strategie di mitigazione, a progettare e dimensionare razionalmente apparec-

chiature e a sviluppare più efficaci sistemi di controllo di processo.
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Chapter 1

Introduction

Granular materials represent a major object of human activities:

as measured in tons, the first material manipulated on earth is

water; the second is granular matter.

Pierre-Gilles de Gennes

1.1 Introduction to granular matter

Granular materials are defined as a collection of discrete solid grains having size larger

than one micron. Below one micron, thermal agitation is important and Brownian motion

can be seen. Above one micron, thermal agitation is negligible. As a consequence, granular

systems have to gain energy from shear, vibration or external volume forces (i.e. gravity,

electric and magnetic fields...) to remain active [1, 2].

Granular materials are widespread in nature, everyday life and industrial processes.

Classical examples of granular materials are sand, soil, snow; food products such as seeds,

rice, sugar, coffee; chemical and pharmaceutical products like pills, tablets and powders.

Examples of unit operations involving granular materials include fluidized catalytic reac-

tions (bulk chemical industry), compression of drugs into tablets (pharmaceutical indus-

try), freeze-drying (food industry), mixing and blending (cosmetic industry) and concrete

production (construction industry).

Even if granular systems are so pervasive both in nature and industry, processes involv-

ing these types of materials are often poorly understood compared to their fluid processing

counterparts. Depending on the particular flow conditions, they can exhibit a variety of

behaviours that are in many ways different from those of conventional solids, liquids and

gases [2–4]. In addition, the properties of granular materials can depend upon their history

[5]. For these reasons, granular materials have grabbed the attention of many physicists

and have led to several new theories.

Today, granular matters constitute a very multi-disciplinary field of research.
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1.2 Motivation

Granular materials are made of particles having different properties such as different sizes,

shapes and/or densities. A common industrial practice is to mix the different types of

particles before processing in order to obtain a homogeneous mixture (e.g. to produce pills)

[6]. However, granular materials tend to segregate under external agitation rather than

to mix. When segregation happens, the main implications for industries include product

rejection, variable look, variable taste, excessive blending times, customer complaints,

erratic dosage mass, poor quality control and an increase in production costs. To give

an example, Saint-Gobain Weber’s production facilities have to re-process about 100 kt

of segregated products each year, with a waste of money roughly estimated at 1 million

euros [7]. Thus, the development of tools for predicting segregation is essential in order to

control and minimize the occurrence.

A central motivation for the study of segregation in dry granular media is its impli-

cation in many industrial phenomena and the lack of fundamental research. Although

there has been considerable recent progress in developing continuum-based segregation

models [8], a fundamental understanding of the phenomenon is still lacking and industrial

applications still rely on expensive and time-consuming trial-and-error approaches.

1.3 Research objectives

We restrict ourselves to the case of segregation of dry and cohesionless mixtures of particles

differing in size and density. We present new models for both size- and density-driven

segregation. These will be incorporated into continuum descriptions involving advection

and diffusion. The purposes of the present research are:

• to improve understanding of the physical insights of the segregation phenomena and

its underlying mechanisms;

• to develop general and physically-based segregation models for predicting segregation

of bulk materials in the framework of continuum mechanics;

• to apply segregation models to different flow configurations such as flow down in-

clined planes, emptying of a storage silo and confined flows in shear cells;

• to track the evolution of the local porosity by introducing flow compressibility.

Unlike most of the models reported in the literature, in developing our models we have

favoured physical approaches, probabilistic assumptions and mathematical developments

supported by empirical observations. The proposed segregation models can help engineers

in developing mitigation strategies and in designing industrial equipment.
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1.4 Outlines

This thesis is divided into chapters that can be outlined as follow.

Chapter 2 surveys the state of the art of segregation and provides a summary descrip-

tion of the continuum theories and rheological models mostly adopted throughout the

thesis.

Chapter 3 presents a theoretical model to predict the percolation velocity in sheared

binary systems under diluted conditions whose assumptions are verified through statistical

considerations and ad-hoc DEM simulations. The model is validated experimentally for a

range of size ratios and shear rates.

Chapter 4 provides a continuum framework for predicting size-driven segregation in

multi-component granular mixtures. The standard advection-diffusion transport equation

is fully coupled with a phenomenological hydrodynamic rheological model, whereas the

segregation velocity relies on the falling probabilities and the overall mass conservation.

The model is implemented for simulating size-driven segregation in ternary mixtures dur-

ing discharge from a storage hopper and it is validated against experimental and DEM

simulation data taken from the literature.

Since real mixtures are usually polydisperse over their size, in chapter 5 we shed further

light on size-driven segregation by considering polydisperse mixtures. The evolution of

the particle size distribution is described through a Population Balance Equation (PBE)

solved numerically with the Direct Quadrature Method of Moments. To allow segregation

and micromixing to occur, the size-conditioned velocity of the particles is closed with a

segregation-remixing model. The PBE is then included in an Eulerian-Eulerian framework

and solved in a commercial Computational Fluid Dynamics (CFD) code. The model is

used to study granular flows down inclined planes. The results are compared with those

obtained from Discrete Element Method simulations.

Because the effect of large density differences may also be an important factor deter-

mining segregation, in chapter 6 we propose a continuum approach to model density-driven

segregation. We use a segregation-diffusion transport equation, constitutive relations and

a segregation velocity analogous to Stokes’ law. The model is implemented for a range of

density ratios and a range of heavy particle concentrations. The results are validated by

comparison with experimental findings.

Chapter 7 sits apart from the rest of this thesis. In there, we propose a new segregation

model where the assumption of particle incompressibility is overcome. Each class of parti-

cle is represented with an Eulerian model. The interaction between classes is represented

by drag forces. The model must be implemented and validated in future works.

The main conclusions and possible extensions to this work are summarized in chapter

8. Some of the mathematical proofs are reported in Appendix A.



Chapter 1. Introduction 4

Bibliography

[1] P. G. de Gennes. Granular matter: a tentative view. Reviews of modern physics, 71

(2):S374, 1999.

[2] I. S. Aranson and L. S. Tsimring. Patterns and collective behavior in granular media:

Theoretical concepts. Reviews of Modern Physics, 78(2):641–692, 2006.

[3] H. M. Jaeger and S. R. Nagel. Physics of the granular state. Science, pages 1523–1531,

1992.

[4] P. G. de Gennes. From rice to snow. In Nishina Memorial Lectures, pages 297–318.

Springer, 2008.

[5] L. P. Kadanoff. Built upon sand: Theoretical ideas inspired by granular flows. Reviews

of Modern Physics, 71(1):435, 1999.

[6] G. H. Ristow. Pattern formation in granular materials. Springer Science & Business

Media, 2000.

[7] N. Engblom. Segregation of powder mixtures in silos with particular reference to dry

mineral-based construction materials. PhD thesis, Åbo Akademi University, 2012.
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Chapter 2

State of the art

This chapter provides the state of the art of the physics of segregation and surveys the

recent advances in the field.

2.1 Mixing and Segregation

A poor mixing process can lead to segregation, which is the tendency of particles to sepa-

rate from the mixture. Segregation is due to many factors that can be classified as mixture

properties and process dynamics. So factors like size, density, shape, surface roughness,

as well as process vibration, shear strain and equipment geometry could determine seg-

regation. The most famous example of segregation is the Brazil nut effect whereby large

particles rise to the top of a shaken container of mixed nuts [1, 2]. Other phenomena

related to the segregation mechanism are observed in connection with the deposition of

sediments in a geological context [3]. Let us report as example landslides, rock-falls, debris

flows, pyroclastic flows and snow avalanches [4, 5]. Segregation of granular materials is fre-

quently encountered also in many industrial flows practice, including granular convection,

hopper flows and rotating drums [6, 7].

Segregation may be helpful in some situations such as in mining and stone crushing [8,

9]. Devices such as pinched sluices, Humphreys spirals and Reichert cones take advantage

of the mechanism of gravity separation both in slurries and in dry state for sorting materials

of different sizes and different densities into approximately monodisperse classes [3, 8].

Nevertheless, segregation is more often an undesired phenomenon. It may determine

hot spots and selectivity problems in reactors, it may affect the performance of a catalytic

packed bed, it may degrade the quality of a final product [10–12]. These are just a few

examples of the many adverse situations causing an increase in production costs and

wastes [13]. Thus, the development of tools for predicting segregation, not only at a small

scale but also in industrial equipment, is essential in order to control and minimize the

occurrence.

Even if segregation has been studied for nearly a century and a lot of efforts have been
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made to understand its underlying physical mechanisms [14–16], a quantitative analysis

of the phenomenon is still lacking, and much remains to be done [6, 17, 18]. Design

decisions are still made without a fundamental understanding of the phenomenon and, to

minimize the effects of segregation, process engineers still rely on empirical heuristic rules

and avoidance practices [6, 18].

2.1.1 Segregation mechanisms

Due to the huge variety of processes and handling regimes, a lot of segregation mechanisms

can be found in the literature. These include: rolling, sieving, push-away or displacement,

angle of repose, sifting or percolation, displacement or floating migration, trajectory or in-

ertia segregation, dusting or air-current segregation, fluidization or elutriation, impact or

bouncing, concentration driven displacement, agglomeration, embedding and squeeze ex-

pulsion [19–24]. Among these, the most frequent and important mechanism of segregation

is interparticle percolation [25].

Interparticle percolation is responsible for small particles to filter through the gaps

in a matrix of larger grains. Percolation occurs spontaneously if the particle size ratio

(δR = df/Dc) is smaller than 0.155 [26, 27]. For higher size ratios, it is commonly referred

to as shear-induced percolation or kinetic sieving and is due to shear or vibrations [28, 29].

Due to the strain applied across the failure zone, the larger particles will yield a space into

which a smaller particle can move downward [12, 30]. Opposed to the percolation effect,

there is squeeze expulsion. This phenomenon describes the squeeze of a particle into an

adjacent layer, mostly upward, and affects all the particles, regardless of their properties.

However, for larger and lighter particles, it is easier to rise. Combined with sieving, squeeze

expulsion determines the net percolation [3]. Depending on the flow geometry, interparticle

percolation can generate different final configurations. For instance, in a rotating drum,

fine particles accumulate at the centre of the bulk mass forming a core surrounded by the

coarser ones [31–33]. In a heap flow, the fine particles travel shorter paths because they

percolate below the flowing surface, whilst the coarser grains tend to flow at the surface

arriving and accumulating at the base of the pile [3, 34, 35].

2.1.2 Theoretical approaches to segregation

Several authors have looked at deriving new theories for predicting segregation in dense

granular flows (i.e. where there are multiple enduring frictional contacts).

The most effective driver of particle segregation is size differences. Thus, let us first

consider binary mixtures of large and small particles. The first quantitative description of

interparticle percolation was proposed by Bridgwater and coworkers [10, 36–40] and was

implemented in a convective diffusion equation. Successively, Savage and Lun [3] proposed

a new theory based on a statistical argument about the distribution of void spaces. For

the first time, they considered percolation to be a combination of two mechanisms: kinetic
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sieving and squeeze expulsion. Dolgunin and coworkers [41, 42] proposed a segregation

theory based on empirical observations. In their model, they included the effect of diffu-

sional remixing. The diffusion coefficient was determined using considerations from the

kinetic theory. They applied their theory to problems in which there were both a dense

basal avalanche and a rarefied saltation layer.

In the last decades, other theoretical models have been proposed. These models are

derived from the mixture theory under the following assumptions: every point in the

domain is simultaneously occupied by both the constituents, the pore space is incorporated

into each phase, the granular flow is incompressible and the partial properties (partial

density, partial pressure and partial velocity) are defined for each constituent. These

types of models differ from each other mainly for the definition of the interaction forces.

Gray and Thornton [43] introduced a pressure scaling for determining the proportion of

the hydrostatic load which is carried by the large and small particles. They assumed

a linear velocity-dependent drag and a grain-grain surface interaction force. Gray and

Chugunov [44] extended the latter theory by adding a remixing force that seeks to drive

a grain belonging to one phase toward the area of lower concentration. Thornton et al.

[45] and Tunuguntla et al. [46] extended the theory further by incorporating the buoyancy

effects of an interstitial fluid and a shear rate-dependent drag, respectively. They both

neglected the effect of diffusion. Note that, the models derived from the mixture theory

are of limited applicability (i.e. they are valid for a size ratio lower than two) because

they do not account for the percolation effects [46, 47].

There exist also theoretical models supported by numerical simulations. We cite as an

example the model of Fan et al. [48] that includes the effects of three different mechanisms:

advection, diffusion and shear-rate dependent segregation velocity; and the model of Hajra

et al. [49] where the segregation velocity depends on the particle size ratio. In their theory,

Bertuola et al. [50] considered the dependence of both the shear rate and the size ratio

and did not neglect the deviatoric part of the stress tensor.

Unlike binary mixtures, there exist only a few theoretical studies for size-segregation in

multi-component granular mixtures. Deng et al. [51] explored the segregation of ternary

granular materials in a gravity-driven flow. Gray and Ancey [23] extended the existing

theory for binary mixtures to the case of size segregation of an arbitrary number of dis-

crete grain-size classes. Barker et al. [52] developed a general multi-component segregation

model that is fully coupled with a solid flow rheology. To the author’s knowledge, only

Marks et al. [53] and Schlick et al. [54] mapped the entire evolution of the grain-size distri-

bution by replacing the finite number of constituents with a probability density function.

Other researchers considered the case of segregation solely due to density differences in

different devices. Khakhar et al. [55] focused on density-driven segregation in a rotating

cylinder and proposed a continuum theory based on a species balance equation. Khakhar

et al. [56] used transport equations from the kinetic theory to model the segregation of

spherical particles in a chute flow. Tripathi and Khakhar [57] derived a continuum model
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based on a theory for the motion of a single particle in a dense flow. This has a similar

structure to the size-segregation models. More recently, Xiao et al. [5] and Duan et al.

[58] proposed an expression for the interspecies momentum exchange in density bi-disperse

granular flows as an extension of ideas from kinetic theory.

To conclude, only a few studies deal with the coupled effect of size and density differ-

ences [46, 53, 59–61].

2.2 Computational modelling

Unlike regular fluids, the behaviour of solid systems is complex to understand and requires

computational models. Traditionally, particle systems have been treated as pseudo-solids

or pseudo-liquids and have been simulated with continuum modelling. However, with the

increase of computer power, discrete approaches have become popular [62]. These include

Cellular Automata (CA), Monte Carlo methods (DSMC), Contact Dynamics (CD) and

the Discrete Element Method (DEM) [6]. Here, we briefly review the Discrete Element

Method and Continuum modelling. If the Discrete Element Method simulations are useful

for describing accurately micro-mechanisms on a local scale, the continuum approach seems

to be more efficient for simulating macro scale events.

2.2.1 Review of Discrete Element Method

Cundall and Strack were the pioneers who developed the Discrete Element Method (DEM).

Since their first publication on DEM in 1979, the method has gained importance and it

has been applied to a variety of fields such as geophysics, engineering and mathematics.

In the area of particle technology, it has been employed to investigate numerous industrial

processes including powder mixing and segregation.

The method has numerous advantages: it is simple, flexible, general and it provides

information at the individual particle scale that is not accessible from physical experi-

mentation (e.g. stress information). Furthermore, the topology of particle interaction can

evolve freely and it does not require a hypothesis on the rheological behaviour of the solid

phase [62, 64–66]. However, due to the computational effort demanded, this approach

cannot be used to simulate particles in full-scale industrial equipment.

2.2.1.1 The principle of DEM

In Discrete Element Method simulations, the particle systems are treated as discontinua

assemblies of discrete spheres so that each particle is tracked at each time step. Let us

consider a spherical particle labelled i with radius Ri. The translational and rotational
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accelerations of i are given by Newton’s second law of motion [62–64, 66]:

mi
dvi
dt

=

ki
∑

j=1

Fij +migi , (2.1)

I
dωi

dt
=

ki
∑

j=1

F T
ijRi +

ki
∑

j=1

Mr , (2.2)

where vi and ωi are the linear and angular velocity, Fi is the resulting force acting between

particles i and j and it is usually decomposed into its normal and tangential components

(i.e. FN
ij and F T

ij ), gi is the gravitational acceleration, I is the moment of inertia and

F T
ijRi is the torque that causes particle i to rotate. Since the relative rotation between

particles or between a particle and a wall produces rolling resistance, sometimes also a

rotational frictional torque is incorporated into Eq. 2.2 (i.e.
∑ki

j=1Mr). For a complete

review of the different rolling resistance models see Ai et al. [67].

There exist several numerical schemes used for integrating Eqs. 2.1 and 2.2. The oldest

one was proposed by Verlet [68, 69]. In its original form, the equations for advancing the

position and the velocities of the i -th particle read:

xi (t+∆t) = 2xi (t)− xi (t−∆t) + ai(t)∆t
2 , (2.3)

θi (t+∆t) = 2θi (t)− θi (t−∆t) + αi(t)∆t
2 , (2.4)

vi(t) =
1

2∆t
[xi (t+∆t)− xi (t−∆t)] , (2.5)

ωi(t) =
1

2∆t
[θi (t+∆t)− θi (t−∆t)] , (2.6)

where xi and θi represent the particle coordinates and its rotational displacement, respec-

tively, whereas ai ≡ dvi

dt
and αi ≡ dωi

dt
are the translational and rotational acceleration.

This formulation is disadvantageous since the particle positions are given at time t+∆t,

while the velocities are given one time step behind. Furthermore, it requires storing the

particle positions for three consecutive time steps. A modified version of the Verlet algo-

rithm that tackles these deficiencies is the so-called half-step (i.e. central finite difference)

leap-frog scheme [62, 66, 69]. In this case, the translational and angular velocities are

given by:

vi

(

t+
∆t

2

)

= vi

(

t− ∆t

2

)

+ ai(t)∆t , (2.7)

ωi

(

t+
∆t

2

)

= ωi

(

t− ∆t

2

)

+ αi(t)∆t , (2.8)

whereas the particle positions are updated in accordance to:

xi (t+∆t) = xi (t) + vi

(

t+
∆t

2

)

∆t , (2.9)
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θi (t+∆t) = θi (t) + ωi

(

t+
∆t

2

)

∆t . (2.10)

Another possible method is the velocity-Verlet algorithm that provides positions, velocities

and accelerations at the same time step [69, 70]:

xi (t+∆t) = xi (t) + vi(t)∆t+ ai(t)
∆t2

2
, (2.11)

θi (t+∆t) = θi (t) + ωi(t)∆t+ αi(t)
∆t2

2
, (2.12)

vi (t+∆t) = vi(t) + [ai(t) + ai(t+∆t)]
∆t

2
, (2.13)

ωi (t+∆t) = ωi (t) + [αi(t) + αi(t+∆t)]
∆t

2
. (2.14)

In this thesis, discrete numerical simulations were performed with the molecular dynamics

platform LIGGGHTS R© PUBLIC [71, 72], which implement, by default, the velocity form

of the Verlet integration scheme.

Once the particle positions are updated, it is checked whether new contacts between a

particle and its neighbouring particles have been established. By definition, two spherical

particles are in contact if the distance between their centres, D, is less than the sum

of their radii (i.e. if D < Ri + Rj). If this is the case, the magnitude of the overlap

δ ≡ Ri +Rj −D is used for the calculation of the repulsive forces [63].

2.2.1.2 Contact modelling

Different force-displacement relationships are provided in the literature for modelling the

contact forces between interacting particles. Some of them are contact laws based upon

theoretical contact mechanics, whereas others are simplified phenomenological models [66].

Because the latter ones require lower computational time, they are the most commonly

employed by researchers. Among these models, there are the linear and non-linear springs

models, with and without dashpots.

In a general spring-dashpot model, the interparticle contact is represented as a spring

and a dashpot both in the normal and tangential directions (see Fig. 2.1). If the spring

accounts for the elastic contribution to the response, the dashpot accounts for the dissipa-

tion of energy due to plastic deformations [64]. The normal and tangential contact forces

are calculated respectively as:

FN
ij = knδnij − γnvnij , (2.15)

F T
ij = ktδtij − γtvtij , (2.16)

where kn and kt are spring elastic constants, γn and γt are viscous damping constants,

δnij and δtij are the normal and tangential displacements, and vnij and vtij are relative
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Figure 2.1: a) Normal and b) tangential components of the contact force between two interacting
particles considering a spring-dashpot model.

velocities [72]. Note that, by Newton’s third law, the force experienced by a particle j

in contact with i is: Fji = −Fij [73]. Furthermore, the tangential force is governed by

Coulomb’s condition:

|F T
ij | ≤ µFN

ij , (2.17)

with µ being the sliding friction coefficient. When the Coulomb criterion is not satisfied,

particle sliding occurs.

2.2.1.3 Choice of the contact parameters

To implement the contact models, the user has to define the contact stiffness coefficients,

the damping viscous coefficients and the coefficient of sliding friction. These parameters

are related to the intrinsic properties of the material: Young’s modulus, Poisson’s ratio,

restitution coefficient, particle intrinsic density and particle diameter. One can choose to

define the coefficients directly (i.e. by implementing the Hooke/stiffness or Hertz/stiffness

contact models). There exist some rules of thumb in order to implement suitable coef-

ficients. Otherwise, one can decide to specify the material properties instead (i.e. by

implementing the standard Hooke or Hertz contact models). The material properties can

be obtained from the literature or through particle characterization.

Table 2.1 summarizes the formulation for the stiffnesses as well as the damping coef-

ficients both for the linear and non-linear spring-dashpot model. The linear model was

first introduced by Walton and Braun [74] and it is based on a Hooke type relation [64].

The latter was firstly developed by Hertz and Mindlin [75, 76] and it is based on Hertz’s

theory [64]. Note that, in the last decades, various methods of modelling collisions and

several modification of the integral non-linear model of Mindlin have been proposed [77].

As regards the time step, it must be small enough to avoid the propagation of the

disturbance waves through the neighbourhood, but as large as possible so as to increase

the computational efficiency [62, 66]. Thus, a suitable time step has to be no greater

than the critical time step. In the case of the linear contact models, the critical time step

is related to the ratio between the particle mass and the contact stiffness governing the
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Coefficients Symbol Linear model Non-linear model

N
o
rm

a
l

Stiffness kn
16
15

√
R∗E∗

(

15m∗V 2

16
√

R∗E∗

) 1
5 4

3
E∗

√
R∗δ

Damping γn
√

4m∗kn

1+
(

π
ln(en)

)2 ≥ 0 −
√

10
3
β
√
Snm∗ ≥ 0

T
a
n
g
en

t

Stiffness kt Kn 8G∗
√
R∗δ

Damping γt γn −
√

10
3
β
√
Stm∗ ≥ 0

with Sn = 2E∗
√
R∗δ, St = 8G∗

√
R∗δ, β = ln(en)√

ln2(en)+π2
, 1

E∗
=

1−σ2
i

Ei
+

1−σ2
j

Ej
,

1
G∗

= 2(2−σi)(1+σi)
Ei

+
2(2−σj)(1+σj)

Ej
, 1

R∗
= 1

Ri
+ 1

Rj
and 1

m∗
= 1

mi
+ 1

mj

Table 2.1: The normal and tangential coefficients for the linear and non-linear spring-dashpot
models. In their formulations, E is the Young’s modulus, G is the shear modulus, σ is the Poisson
ratio and en is the coefficient of restitution [72]

particle motion [62, 78]:

tcrit = 2

√

m

kn
. (2.18)

In the case of the non-linear spring contact model, the critical time step cannot be calcu-

lated a priori, however, as a rule of thumb, it should not be greater than the 20% of the

Rayleigh time [62].

2.2.1.4 Our implementation

In this thesis, we have implemented DEM simulations to model size and density segrega-

tion in binary systems, as well as size segregation in poly-disperse mixtures. The simula-

tions have allowed us to deepen the physical insight of the systems under investigation.

Sometimes, DEM simulations have instead been used as a validation tool.

We have used an open-source DEM particle simulation software: LIGGGHTS R© PUB-

LIC [71, 72]. In LIGGGHTS, two granular models are implemented: 1) a linear spring-

dashpot model based on Hooke’s relation and 2) a non-linear model based on Hertz’s

theory. For each one, one can choose to provide directly the coefficients or the intrinsic

properties of the materials. In chapter 3 and chapter 5, we have employed the non-linear

spring-dashpot model and we have defined the material properties. On the other hand, in

chapter 6 we have employed the linear spring-dashpot model and we have directly defined

the coefficients. As a rolling resistance model, we have always employed the Constant

Directional Torque (CDT) wherein Mr is modelled as [67]:

Mr = − ωi − ωj

|ωi − ωj |
µrRrF

N
ij . (2.19)

In Eq. 2.19, Rr ≡ rirj/(ri + rj) represents the rolling radius and µr is the coefficient of

rolling friction. The direction of the torque is against the relative rotation between the two

in-contact bodies [67, 72]. Despite the CDT model can generate non-stopping oscillating

torque in pseudo-static systems, it has been used because of its simple formulation and
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low computational effort.

2.2.2 Review of continuum mechanics models

Even if granular materials are discontinuous mediums, their behaviour is commonly de-

scribed by continuum approaches. Granular materials are considered to behave like in-

compressible non-Newtonian pseudo-fluids with a peculiar rheological behaviour, and the

continuum equations used are the conservation of mass, momentum and (sometimes) gran-

ular temperature. In the following sections, we present the dynamical equations for the

solid phase and a few granular rheological models.

2.2.2.1 Conservation equations

Granular materials are two-phase systems composed of a solid phase and a fluid phase. The

solid phase consists of discrete solid particles, whereas the fluid phase fills the interstitial

space between particles [79]. If we assume that the effect of the interstitial fluid on the

solid phase is negligible (a reasonable assumption if the grains are dry and have sufficient

inertia - i.e. they are sufficiently large and dense), the macroscopic balance equations for

mass and linear momentum of the solid phase read, respectively [79, 80]:

∂ρ

∂t
+∇ · (ρu) = 0 , (2.20)

∂

∂t
(ρu) +∇ · (ρuu) = ∇ · σ + ρg , (2.21)

where ρ is the solid bulk density (or partial density) defined as the amount of solid per

unit volume of the mixture, u is the velocity field, σ is the stress tensor and g is the

gravitational acceleration.

When a granular material flows, in addition to the average velocity of the grains, there

are random velocities generated by collisions and induced by the flow itself [81]. Since the

random motion of individual particles is analogous to the thermal motion of molecules

in a dense gas, kinetic theories of rapid granular flows that extend the Chapman-Enskog

kinetic theory of dense gases have been developed [79]. The magnitude of these velocity

fluctuations, which have been regarded as granular temperature, is defined as θ ≡ 1
3〈ũ2〉,

where ũ is the fluctuating component of the velocity vector. The constitutive law for

θ is derived from the macroscopic balance equations for the translational kinetic energy

[79, 80]:

∂

∂t

[

ρ(εT + ET )
]

+∇ ·
[

ρ(εT + ET )u
]

= ∇ · (σ · u)−∇ · qT + ρg · u− zT , (2.22)

where qT is a diffusive energy flux, zT represents the rate of dissipation of mechanical

energy, εT and ET are the kinetic energies associated with the fluctuating velocity field

ũ and the average velocity field u, respectively. The equation for the conservation of
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ET ≡ 1
2〈u2〉 can be derived by taking the dot product of the velocity u with the momentum

equation (i.e. Eq. 2.21):

∂

∂t

(

ρ
1

2
〈u2〉

)

+∇ ·
(

ρu
1

2
〈u2〉

)

= u · ∇ · σ + ρg · u , (2.23)

whereas the equation for the kinetic energy εT associated with the fluctuating velocity is

obtained subtracting Eq. 2.23 from Eq. 2.22 and decomposing the stress tensor into its

spherical and deviatoric contributions (i.e. σ ≡ −pI + τ ):

∂

∂t

(

ρεT
)

+∇ ·
(

ρεTu
)

= −p∇ · u+ τ : ∇u−∇ · qT − zT . (2.24)

Introducing the definition of θ into Eq. 2.24, it yields to the general constitutive law for

the granular temperature:

3

2

∂

∂t
(ρθ) +

3

2
∇ · (ρθu) = −p∇ · u+ τ : ∇u−∇ · qT − zT . (2.25)

This set of differential equations gives p, u and θ; however, τ , qT and zT remain unknown.

For granular systems made of particles differing only by size, we can assume phase

incompressibility. Under the assumption of incompressible granular flows (i.e. the packing

density ν is constant throughout the solid domain and all particles have the same intrinsic

density ρ∗), the conservation laws for the mass, momentum and granular temperature

reduce to:

∇ · u = 0 , (2.26)

ρ

[

∂u

∂t
+ u · ∇u

]

= −∇p+∇ · τ + ρg , (2.27)

3

2
ρ

[

∂θ

∂t
+ u · ∇θ

]

= τ : ∇u−∇ · qT − zT . (2.28)

Note that, this assumption does not hold for granular systems made of particles differing

by density. The inclusion of density differences implies that the bulk velocity field is

compressible.

2.2.2.2 Granular rheology - monodisperse systems

The conservation equations have to be supplemented by constitutive relations that describe

the material characteristics, providing the closure of the stress tensor [81, 82]. Even if

different rheological models of dense granular flows have been proposed in the literature, a

unified version still lacks. In this thesis, we have employed the incompressible µ(I) rheology

proposed by the Groupement De Recherche Milieux Divisés [83] and the phenomenological

hydrodynamic model by Artoni et al. [80]. Before describing these models in detail, we

will introduce the definition of effective viscosity and Inertial number.
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The effective viscosity

Let us consider a mono-disperse granular material characterized by spherical grains of

diameter d and intrinsic density ρp. Its stress state is described by the Cauchy’s stress

tensor, σ, which may be decomposed into an isotropic and a deviatoric part:

σ = −pI + τ , (2.29)

where p is the pressure, I is the identity tensor and τ is the deviatoric stress tensor.

Closing σ, therefore, reduces to expressing constitutively τ . The closure of τ is achieved

by specifying three constitutive equations: a flow rule, an alignment condition and a

plastic yield condition [84]. Let us begin with the flow rule. If we consider incompressible

granular systems, the flow rule far from the interface between solid and air is:

∇ · u = 0 . (2.30)

The alignment condition is formulated in terms of the strain-rate tensor [84–86]

D ≡ 1

2

(

∇u+∇uT
)

(2.31)

and reads:
τ

||τ || =
D

||D|| , (2.32)

where || · || denotes the second invariant that is, by definition: || · || ≡
√

tr(·2)/2. This con-

dition states that the principal directions of τ and D must be aligned (i.e. the eigenvectors

must be parallel) [87]. The third constitutive equation, take the form of a generalized yield

condition that relates ||τ || with the pressure:

||τ || = µp , (2.33)

being µ the effective friction coefficient. Introducing the yield condition (Eq. 2.33) into

the alignment condition (Eq. 2.32) leads to a closure relation for the deviatoric stress

tensor:

τ = µp
D

||D|| . (2.34)

If we consider that for incompressible granular flows the shear rate is γ̇ = 2||D||, and if

we substitute the definition of D (i.e. Eq. 2.31), Eq. 2.34 becomes:

τ =
µp

γ̇

(

∇u+∇uT
)

, (2.35)

where, by definition, the effective viscosity, η, is:

η =
µp

γ̇
. (2.36)
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As a result, the closure of τ is achieved by closing η. For mono-disperse granular systems,

η can be determined by means of different rheological models such as the incompressible

µ(I)-rheology [83, 88], non-local rheology [89] and kinetic theories [90].

The inertial number

The non-dimensional Inertial number is a fundamental parameter used to describe the

rheology of granular materials. For a single granular material composed of nearly identical

rigid and spherical particles, the inertial number takes the form [83, 91]:

I =
dγ̇

√

p/ρ∗
. (2.37)

The Inertial number can be interpreted in terms of the ratio between two time scales:

I =
tp
tγ
. (2.38)

where tp ≡ d/
√

p/ρ∗ is a microscopic grain rearrangement time scale and tγ ≡ 1/γ̇ is a

macroscopic flow time scale [83, 92]. If the former refers to the time required by a particle

to rearrange at the microscopic length scale, the latter refers to the time required by a

grain to cross the grain underneath [83, 93].

The value of I enables the classification of the flow regimes [93]. Low inertial numbers

identify the so-called quasi-static regime of flow [94]. In this regime, the grain inertia

is not relevant [91], the macroscopic deformations are slow compared to microscopic re-

arrangement and the flow is characterized by multi-body long-lasting contacts between

neighbouring particles [95, 96]. On the other hand, large values of I correspond to the

kinetic (or collisional) regime. Here, the system is dilute and the grains interact only by

binary collisions. Since the flow properties share common features with an agitated gas,

kinetic theories have been developed to describe this regime [91, 94, 97, 98]. In between the

quasi-static and the rapid regimes, there is the intermediate (or dense inertial) regime of

flow. In the intermediate regime, the solid fraction is close to the maximum solid fraction

and continuous paths of long-lasting contacts between grains exist [91, 96]. To switch from

the quasi-static to the inertial regime, one can either increase the shear rate or decrease

the pressure [93].

The µ(I) constitutive law

The µ(I)-rheology was originally proposed by the Groupement De Recherche Milieux

Divisés [83] to describe dense granular flows under the hypothesis of flow incompressibility.

According to the µ(I)-rheology, the shear stress is proportional to the normal stress:

||τ || = µ(I)p . (2.39)

The coefficient of proportionality µ(I), which is a function of the Inertial number, is the
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friction coefficient [91]. Different friction laws have been postulated for the closure of µ(I).

In the dense flow regime (i.e. 10−3 < I < 0.3), it has been observed that the effective

friction coefficient varies almost linearly with I, starting from a minimum value, µmin [91]:

µ(I) = µmin + bI , (2.40)

where the parameters µmin and b are characteristic of the flowing material. However, the

effective friction coefficient tends to saturate for I > 0.2 [88]. Thus, the most frequently

used form for expressing µ(I) is [88]:

µ(I) = µs +
µ2 − µs
I0/I + 1

, (2.41)

where µs is the static friction coefficient, µ2 is the limiting value toward which the friction

coefficient converges at high inertial numbers, and I0 is a constant. The friction coefficient

expressed in this way is an increasing monotonic function: it starts from the critical

minimum value µs for zero shears and increases asymptotically to µ2 when I diverges.

For more complex configurations, where the flow is characterized by shears in different

directions, a 3D generalization of Eq. 2.39 is required [88, 92]. Assuming flow incompress-

ibility and isotropic pressure, the internal stress tensor in tensorial form becomes:

σij = −pδij + τij , (2.42)

where:

τij = ηγ̇ij with η =
µ(I)p

|γ̇| and, in turn, |γ̇| =
√

1

2
γ̇ij γ̇ij . (2.43)

It should be noticed that the effective viscosity diverges to infinity when the shear rate

goes to zero. Thus, the material flows only if the following condition is satisfied:

|τ | > µsp . (2.44)

Furthermore, the rheology is local since the stress depends on the local shear rate and

local pressure [93].

The phenomenological hydrodynamic model

The phenomenological hydrodynamic rheological model proposed by Artoni et al. [80] is

based on the local granular temperature definition θ(z). Thus, to close Eq. 2.28, one has

to express constitutively τ , qT and zT . We have seen that for incompressible granular

flow, τ = 2ηD = η(∇u+∇uT ) where η is the effective viscosity of the solid phase. The

viscosity is analogous to Eyring’s equation for simple liquids, where the thermodynamic

temperature is replaced by the granular temperature, and it has been scaled with particle
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diameter and bulk density. Thus, it reads [80]:

η = ρd2η0 exp

(

θ∗

θ

)

, (2.45)

where η0 is the viscosity coefficient parameter, d is the diameter of the particles, θ∗ is a

granular temperature scale. The constitutive law for θ is the one reported in Eq. 2.28.

For what concerns the energy flux, Artoni et al. [80] assumed an isotropic diffusion-like

mechanism:

qT = −k∇θ , (2.46)

where the diffusion coefficient reads k = k′ρd2. The energy dissipation rate is instead

formulated as follow [80]:

zT = µp|γ̇| . (2.47)

Note that, this rheology has been extensively used to describe the flow rheological prop-

erties in silo geometries [50, 80, 99].

2.2.2.3 Generalized rheological models

In previous paragraphs, we have stated a few granular rheological models that have been

clearly developed for predicting the flow properties of homogeneous granular systems.

However, segregating systems are made of particles differing by size and/or by density.

Segregation results in changes in the local rheology and consequently the flow [57]. Thus,

for a complete description of segregation, one has to define generalized rheological models

that account for local constituent concentration [53, 98].

The µ(I)-rheology (Section 2.2.2.2) essentially depends on the Inertial number, which

is a function of particle size and particle density. For size-segregating systems made of

discrete size classes, Rognon et al. [100] proposed a new version of the inertial number in

which the particle size is replaced with the locally-averaged diameter of the grains, d̄:

I =
d̄|γ̇|
√

p/ρ∗
. (2.48)

As in Tripathi and Khakhar [101], the locally-averaged diameter is taken to be:

d̄ =
∑

φidi , (2.49)

where φi is the local solid volume ratio of the i -th species and hence,
∑

φi = 1 in the bulk

solid domain.

Analogously, for polydisperse granular materials, we propose to replace the particle

diameter with the average diameter of the PSD, which is expressed as the ratio between
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the first- and the zeroth-order moments of the distribution:

D̄ =
M1

M0
, (2.50)

Thus, the inertial number becomes:

I =
D̄γ̇
√

p/ρ∗
. (2.51)

In density-segregating systems having same sized particles, however, I must depend on

the local density of the solid mixture:

ρ̄ =
∑

φiρi . (2.52)

Thus, the Inertial number becomes:

I =
d|γ̇|
√

p/ρ̄
. (2.53)

Note that, the inclusion of density differences implies that the bulk velocity field is com-

pressible therefore also a solid bulk viscosity must be specified (see chapter 8 for more

details).

Analogously, if we generalize the Artoni et al. rheology for the case of multi-component

systems of different sized particles, we obtain:

η = η0ρd̄
2 exp

(

θ∗

θ

)

, (2.54)

whereas, the diffusion coefficient appearing in Eq. 2.46 becomes:

k = k′ρd̄2 . (2.55)

For the case of density-driven segregation instead, applying the Artoni et al. rheology

means solving the general constitutive law for the granular temperature accounting for

particle compressibility (i.e. Eq. 2.25) and using the following diffusion coefficient:

k = k′ρ̄d2 . (2.56)

Again, in the latter case one must define also the bulk viscosity.

Note that, when only one component is present (i.e. φi = 1), all the previous Eqs.

reduce to the original formulations for mono-disperse systems.
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2.3 The segregation equation

The conservation equations for the solid phase (see Section 2.2.2.1) allow the bulk velocity

field, pressure and granular temperature to be tracked in space and time. However, mod-

elling segregation requires specifying further equations for the evolution of the different

species. Many models to describe particle segregation have been proposed in the literature

(see Section 2.1.2). These all have the general form of an advection–diffusion segregation

equation and are combined with constitutive relation for the segregation flux [15, 52].

2.3.1 Advection-diffusion segregation equation

The volume concentration of the i -th sized class, φi, which is defined as the volume of

particles of species i per unit of solid mixture volume, is described through the following

advection-diffusion segregation equation [10, 44, 48]:

∂φi
∂t

+∇ · (uφi) = −∇ · F (φi) +∇ · (D∇φi) , (2.57)

where F (φi) is the net segregation flux and D is the diffusion coefficient. These quantities

are local quantities that depend on particle concentration and velocity gradient [15]. For

an N -components system, N − 1 transport equations of this type must be solved indeed,

because of the summation constraint, the evolving composition of the N -th component

reads:

φN = 1−
N−1
∑

i=1

φi . (2.58)

The coupling between segregation and flow is achieved by solving simultaneously the

Navier-Stokes and transport equations [15]. The velocity field featured in Eq. 2.57 is

the solution of the momentum balance equation (see Eq. 2.27). The local composition of

species, solution of Eqs. 2.57 and 2.58, is in turn used to determine the local viscosity,

and hence the velocity field.

2.3.2 The segregation flux

The net segregation flux appearing in Eq. 2.57 is defined as F (φi) ≡ φivi,seg where vi,seg

is the segregation velocity. Different constitutive relations for the segregation velocity

have been proposed in the literature for the dilute limit. For non-dilute mixtures, DEM

simulations have helped uncover the dependence of vi,seg on concentration and kinematics

[15]. In this thesis, we provide new constitutive equations describing the segregation

velocity for dilute mixtures, multi-component mixtures as well as polydisperse mixtures.

These equations depend on local concentration and kinematics.
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2.3.3 Description of the free surface

As mentioned above, granular systems are a two-phase flows. The two simulated phases

are the bulk solid and the superficial ambient air. The two phases do not inter-penetrate

and are separated by the solid free surface. To describe the evolution of the free surface,

we employed the level set method, which is suitable for moving interfaces [102]. By

definition, the level set function, ψ(x, t), is a continuous step function (smoothed for

numerical reasons) that takes the values of 0 in one domain and of 1 in the other. The

isocontour ψ = 0.5 corresponds to the interface. The level set function is transported by

an advection equation:
Dψ

Dt
= 0 , (2.59)

where D · /Dt is the substantial derivative.

2.4 Conclusions

Modelling of segregation processes requires the confluence of several tools, including con-

tinuum and discrete descriptions [92]. In this chapter, we have surveyed some of the tools

employed in this project. In what follows, indeed, we will propose continuum models for

size- and density-driven segregation. The continuum model framework predictions will

then be extensively compared with results from experiments and/or DEM simulations.
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Chapter 3

Size segregation in diluted binary

mixtures

We begin our investigation by considering the size-driven segregation in a diluted binary

mixture. We provide a detailed physical insight into the mechanism of a small isolated

particle percolating through a mono-disperse bed of coarse grains when subjected to shear.

We then propose a reliable percolation model. The model predictions are compared with

experimental data and the model assumptions are verified through DEM simulations.

Parts of this chapter have been published:

S. Volpato, M. Tirapelle, and A. C. Santomaso (2020). Modelling and experimental inves-

tigation of shear-induced particle percolation in diluted binary mixtures. Physical Review

E, 102, 012902, https://doi.org/10.1103/PhysRevE.102.012902.

M. Tirapelle, S. Volpato, and A. C. Santomaso (2021). Shear-induced particle segrega-

tion in binary mixtures: Verification of a percolation theory. Particuology, 57, 214-222,

https://doi.org/10.1016/j.partic.2021.01.005.

3.1 Introduction

When strained in the presence of a gravitational field, small particles drain in a matrix

of coarse grains. This phenomenon, which is referred to as percolation, is the primary

mechanism for segregation in gravity-driven sheared flows. Percolation was first treated by

Bridgwater and co-workers [1–5]. In their work, they evaluated the amount of percolation

as a function of cell operating conditions and particle properties, and they addressed

the issue of percolation velocity [6]. As shear apparatus, they used a simple shear cell

supplied with moving lateral walls that swing backwards and forwards, and that generates

heterogeneous zones of shear [7]. Under shear, the shape of the particle bed changes

from a rectangle to a parallelogram [1], the particle layers move one over the other for
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Figure 3.1: The diagram describes the relationship between mathematical model, DEM simula-
tions and reality. After having proposed a mathematical model, we performed both experiments
and DEM simulations. The experiments, which represent the real world, allow to qualify the math-
ematical model and to validate the DEM simulations. Such simulations are then used to verify
whether the assumptions of the starting model accurately represent the reality. Note that, the
accuracy of the numerical solution is improved by a parameter sensitivity analysis.

convection, the bed dilates, and percolation takes place. They found that the amount of

percolation depends mainly on the total strain, rate of strain and diameter ratio of small

to large particles [1]. More recently, a similar experimental set-up was used by Johanson

et al. [7] to study the effect of small particle concentration on segregation and by van

der Vaart et al. [8] to quantify the asymmetric behaviour of small and large particles.

The dependence of the percolation velocity on concentrations and kinematics was instead

studied in a simulated shear box [9]. Note that, a similar shear box has also been employed

in our study.

In what follows, we first propose a simple theoretical model for predicting the percola-

tion behaviour of a fine isolated spherical particle in a shear bed of coarse particles. The

model arises from the observation of reality and it is based on statistical considerations

and probabilistic assumptions. To demonstrate the predictive capability of the model,

we further provide a validation and verification analysis. The validation procedure of the

mathematical model is accomplished by comparing the theoretical results with the experi-

mental outcomes. The verification procedure consists in verifying that the model assump-

tions are reliable. In doing so, we also made use of Discrete Element Method simulations

since they allowed us 1) to obtain data that were inaccessible to physical experimentation

such as the Voronoi particle dynamics and 2) to perform a rigorous parametric study [10].

A framework of the working procedure is shown in Fig. 3.1.
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3.2 Percolation model

For a fine particle to percolate in a bed of coarse particles, two conditions must be met.

First, the particle bed must be subjected to shear strain. Under shear, the voids within

the bed are continuously renewed and particles can move. In the absence of such a shear,

even in the presence of a gravitational field, the particles will remain in their initial posi-

tions. The second condition that must be satisfied concerns the size of the voids. More

specifically, the voids beneath the percolating particles must be great enough to host such

particles. Thus, the first step in developing a percolation model is to investigate the geo-

metrical and topological properties of the void space (e.g. size of the voids, mean particle

distance...). Once defined, one can argue about percolation time, travelled space and

percolation velocity.

3.2.1 Topology and percolation probability

The size of the voids is strictly related to the mean distance between the particles, h̄, which

is intended as the average chord length between the surface points of two neighbourhood

spheres. For an isotropic and random packing of equal-sized spherical particles having

diameter dc, it has been demonstrated that h̄ is a function of the particle diameter, the

solid volume fraction ν, and it can be expressed as [11]:

h̄ = kdc
ν

1− ν
, (3.1)

where the parameter k depends upon the geometrical properties of the particle bed. In

the case of an isotropic packing of spheres in static conditions, k is equal to 2/3 whereas, k

is expected to slightly increase when the particle bed is subjected to shear [12]. For proof

refer to Appendix A.1.

As demonstrated by Pavlovitch et al. [13], statistical mechanics provides a relationship

for the length distribution function of the distances (or chords) of a random packing of

mono-sized particles

F (h) =
1

h̄
exp

[

−h
h̄

]

, (3.2)

with h̄ being the one defined in Eq. 3.1.

The probability for a fine particle to find an aperture equal or greater than its own

diameter (h ≥ df ) in one direction is obtained by integrating Eq. 3.2 between df and

infinity:

P (h ≥ df ) =

∫ ∞

df

F (h)dh =

∫ ∞

df

1

h̄
exp

[

−h
h̄

]

dh = exp

[

−df
h̄

]

. (3.3)

However, for the fine particle to percolate through the underlying void, this condition

must be satisfied both in the two directions normal to the percolation direction (i.e. x

and y) as well as in the parallel one (i.e. z). This is because the void has to be not only
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large enough but also deep enough to receive the fine percolating particle. The falling

probability is therefore given by the composed probability of finding a void greater than

df in the three spatial directions (i.e. Px, Py and Pz). Considering such probabilities as

coming from independent events, it can be expressed as:

Pf = P (hx ≥ df ∩ hy ≥ df ∩ hz ≥ df ) = exp

[

−3

k

df
dc

ν

(1− ν)

]

. (3.4)

For a complete proof of the derivation of Eq. 3.4 refer to Appendix A.2. Note that, to

derive this result, we assumed that the powder bed remains isotropic after expansion even

if a directional shear is applied.

To sum up, a fine particle in a gravity-driven sheared flow percolates through a bed

of coarse grains when it ran into underlying voids that are great enough to host it. The

probability Pf of finding such voids becomes increasingly stronger with the decrease of

the diameter ratio: d∗ = df/dc.

3.2.2 Percolation time

Let us consider a fine particle that lies in a cage composed of coarse particles. As Fig.

3.2 shows, the fine particle may be 1) in motion inside the cage or 2) at rest at the

bottom of the cage. If it is at rest, the particle will fall again when the renewal of the bed

generates an underlying void large enough to percolate through. The percolation process

is therefore a discontinuous process characterized by the alternation of stop and go events.

The discontinuity of the process is even more evident for coarser percolating particles.

To determine the total percolation time required for a particle to travel through the

cage, both the times of stopping and falling must be considered. The time of stopping, ts,

is proportional to the size of the coarse particles, which represents the length scale of the

system, and inversely proportional to the relative velocity between two layers of coarse

particles, namely vc = γ̇dc. The time of stopping results therefore proportional to:

ts ∝
dc
γ̇dc

. (3.5)

In turn, the time of falling must be proportional to the square root of the ratio between

the distance travelled by the fine percolating particle (i.e. dc− df ) and the acceleration of

gravity:

tf ∝
√

dc − df
g

. (3.6)

This relation arises from an elementary energy balance considering that all the potential

energy of the particle is converted into kinetic energy (i.e. the dissipation due to contact

friction is neglected).
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Figure 3.2: Schematic representation of the cage used to describe the percolation mechanism.

3.2.3 Percolation velocity

To model the averaged percolation velocity of a fine isolated spherical particle, we con-

sidered the contribution of kinetic sieving and we disregarded the contribution of squeeze

expulsion. We believe that squeeze expulsion affects minimally the overall percolation

velocity when dealing with diluted binary systems in the absence of significant density

differences [14].

Using the previous definitions for the percolation time, the averaged fine percolation

velocity can be written as:

vp ∝
(dc − df ) · Pf + 0 · (1− Pf )

Pf · tf + (1− Pf ) · ts
, (3.7)

where the numerator represents the averaged space travelled by several fine particles. This

space is equal to dc − df when the fine particles fall within the cage, or to zero when they

are at rest. The two contributions are weighed by the fraction of fines that, at each

instant, meet the conditions for falling or staying. For what concerns the denominator,

it represents the average percolation time, which is the sum of the falling and stopping

times, again weighted by the corresponding occurrence probabilities. Introducing Eqs. 3.5

and 3.6 into Eq. 3.7 yields:

vp ∝
dc · γ̇ · Pf · (1− df

dc
)

Pf · γ̇ ·

√

dc · (1− df
dc
)

g
+ (1− Pf )

. (3.8)

As expected, the percolation velocity is a function of the local shear rate, the characteristic

size of the particle bed and the falling probability. Furthermore, this formulation satisfies

the zero flux condition for the limiting case df = dc. By introducing the following three

dimensionless groups (i.e. dimensionless velocity v∗p, dimensionless shear rate γ̇∗ and size



Chapter 3. Size segregation in diluted binary mixtures 36

ratio d∗):

v∗p =
vp
γ̇dc

, γ̇∗ = γ̇

√

dc
g
, d∗ =

df
dc
, (3.9)

the percolation velocity becomes, in the dimensionless form:

v∗p =
A · (1− d∗) · Pf

Pf · γ̇∗
√
1− d∗ + (1− Pf )

, (3.10)

where A is a proportionality parameter expected to be dependent on the material prop-

erties [12, 15, 16].

From the physics of the phenomenon, we expect that the time of falling does not

significantly affect the percolation time since the falling is a much more rapid event than

the stopping. An a posteriori estimation of these times showed indeed that the time of

stopping is two orders of magnitude larger than the time of falling. Given this, Eq. 3.10

can be simplified to:

v∗p = A · (1− d∗) · Pf

(1− Pf )
. (3.11)

Notice that the above equation bears similarities to the one proposed by Bertuola et al.

[17] for predicting the percolation velocity of fine particles during hopper discharge:

v∗p = A · (1− d∗) · (1− φf ) . (3.12)

Unlike Eq. 3.11, this equation accounts for the effect of the concentration of the fine

particles φf , a contribution that disappears at infinite fine particles dilution (φf → 0).

However, Eq. 3.11 adds the probabilistic term as a substantial improvement of Bertuola

et al.’s model [17].

3.3 Experimental campaign

To accomplish model validation, we performed an experimental campaign. The experi-

ments were designed to test the model capability for a range of shear rates and diameter

ratios.

3.3.1 Materials and methods

The experiments are performed in a simple shear box that bears several similarities with

the shear cell used by Scott and Bridgwater [1]. It consists of two fixed sidewalls and two

wooden tilting sidewalls hinged at the bottom of the box. These can tilt backwards and

forwards up to 45◦ of inclination. This inclination ensures the complete renewal of the

neighbouring particles belonging to two adjacent layers when sheared. The bottom wall

consists of a transparent bumpy glass bottom. The bumpiness, which is made of polymeric

hemispheres glued in random positions, prevents the development of the hexagonal close-
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packing. To prevent the formation of a dead zone close to the bottom, the bottom wall was

also raised (this ensure a small, but not null, momentum to the bottom layer of particles).

Unlike Scott and Bridgwater’s shear box, our setup is not confined on top. To reduce

the undesired convective re-circulation loops affecting the upper layer of an unconfined

granular bed, a mobile rack with baffles penetrate the free surface.

The shear box is 0.2 m deep, 0.2 m high and the distance between the tilting walls is

0.1 m wide. We defined the coordinate system in such a way that width and depth are

oriented along the x and y axes, whereas the gravitational acceleration acts along z. Fig.

3.3 shows a schematic representation of the shear cell.

We employed binary mixtures of fine and coarse particles in dilute conditions: the

fine particles were few in number compared with the coarse particles (∼ 1:3000). At

the beginning of each experiment, we first filled the shear box with the coarse particles

(dc = 6 mm) up to a height of 60 mm. We then deposited, on the surface of the bed and

at a regular distance from each other, six fine tracer particles with diameters df varying

from 1.5 mm to 3.3 mm. We loaded a further layer of coarse particles until a total bed

height of 100 mm was reached. This prevents the fines particles to remain trapped into

the convective recirculation loops that typically develop close to the free surface. After

filling, the system was subjected to shear: the mobile walls were pushed forward and back

by hand at three different constant linear velocities corresponding to the following tilting

frequencies: f = 17, 26, 35 rpm; and hence, the following shear rates: γ̇ = 0.57, 0.87, 1.17

1/s. Because of the shear rate, which is calculated as:

γ̇ = 2 · f · tan(αmax) , (3.13)

the fine particles percolated toward the bottom of the shear box.

The percolating particles cannot be detected until they reach the bottom transparent

wall. The evolution of the bottom layer of the granular bed was recorded with a digital

camera. The time elapsed between the start of the shearing action and the arrival time

at the glass bottom of each tracer particle represents the percolation time. The (average)

percolation velocity of each percolating particle is the ratio between the distance travelled

by the particle (i.e. s̄ = 60 mm) and the average residence time t̄ corrected by its variance

σ2:

vm =
s̄

t̄

(

1 +
σ2

t̄2

)

. (3.14)

Note that all the experiments were performed in the so-called slow-frictional regime,

which is typical of granular flows in dense and confined conditions (such as those occurring

in silos or hoppers far from the outlet).
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Figure 3.3: Schematic diagram of the experimental apparatus with the coordinate system. The
four possible positions of the shear box are shown with the indication of the time t (starting from
0) after which the position is achieved. The time is expressed as a function of the period T equal
to the reciprocal of the frequency. The max inclination angle is 45o.

3.3.2 Results and discussion

The results reported in this section refer to a range of diameter ratios and a range of shear

rates. For each experimental condition, the error bars represent the standard deviation of

fifteen independent measurements.

Fig. 3.4 shows the residence time of the fine percolating particles as a function of the

dimensionless particle size for the three shear rates tested. For same-sized percolating

particles, the residence time decreases with the increase of the shear rate because of the

more frequent generation of voids. On the other hand, the residence time increases with the

size ratio: larger percolating particles remain trapped for longer under the same shearing

action. The residence time approaches zero for d∗ → 0 since tracers particles can percolate

almost undisturbed throughout the particle bed and without ever stopping.

The percolation model in Section 3.2 predicts a linear dependence of the percolation
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Figure 3.4: The experimental residence time of fine particles is plotted against d∗ at different
shear rates. The error bars represent the standard deviation of fifteen independent measurements.

velocity on the shear rate and a more complex dependence on the size ratio, which is

modulated by the probability term. Fig. 3.5 confirms that vp varies almost linearly with

the shear rate, whereas Fig. 3.6 proves that vp decreases exponentially with the size ratio.

Thus, the percolation model qualitatively agrees with experimental evidence.

The model is validated quantitatively against experimental data. Fig. 3.7 shows

the percolation velocity in dimensionless form as a function of d∗ for the three shear

rates. The experimental data (black squares) are fitted with Eq. 3.11 by using the least-

squares minimization method (solid line). The optimal values for the model parameters

are: A = 9.7 and k = 0.71. For a static and isotropic bed, k should be equal to 2/3. In our

case, k is slightly greater because of the shear. Independently by the shear rate applied,

all data collapse on the same master curve confirming that the dimensionless velocity is

independent of the shear rate.

Under shear, the particle bed is dilated with respect to its initial state. If in the static

condition the porosity is estimated to be equal to 0.39, the porosity of the sheared bed is

equal to 0.40. These estimations were done from data of particle true density, which was

measured by liquid picnometry, and bulk density, which was measured with the funnel flow

method [18]. Fig. 3.8 shows the comparison of the probabilities Pf (see Eq. 3.4) for the

static case (k=2/3, ε=0.39) and the sheared case (k=0.71, ε=0.4). It is clear that, there

exists a relative increase of Pf when a shearing action is applied. The inset of Fig. 3.8

shows that the increase δ rises with d∗. In particular, we get that δ ∼ 19% for d∗ = 0.25

and δ ∼ 47% for d∗ = 0.55. As expected, the action of the shear rate has little influence on

the percolation velocity when the size ratio is small, but it becomes significant for larger

size ratios.

We can conclude that the percolation model is suitable for predicting the segregation

behaviour of a fine isolated particle in a gravity-driven shear flow. The model is qualified
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Figure 3.6: Percolation velocity against the size ratio at three different shear rates. The error
bars represent the standard deviation of fifteen independent measurements.
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by experimental evidence, however, to increase the significance of the model, in what

follow we verify the reliability of the model assumptions.

3.4 DEM simulations

In this section, we provide discrete element simulations of the shear box. We investigate a

wide range of model parameters to determine what are the parameters that mostly affect

the percolation behaviour of a fine particle. We tuned the simulation parameters by means

of comparison with experimental findings.

3.4.1 Simulation setup

The DEM simulations were carried out using LIGGGHTS R© PUBLIC [19, 20]. We em-

ployed the non-linear spring-dashpot contact model based on the Hertz and Mindlin’ the-

ory with Constant Directional Torque rolling friction (see Section 2.2.1.2). Since we could

not experimentally measure all the material properties (e.g. Young’s modulus, friction

coefficients...), we performed a parameter sensitivity analysis.

The simulated geometry consists of a three-dimensional shear box having the same

dimensions as the real system. We bound the simulation domain with frictional walls so

that all the particles can interact with the walls. The tilting sidewalls can rotate backwards

and forward up to 45◦ while remaining parallel to each other. To produce a constant shear

rate (i.e. γ̇ ≡ v(h)/h = const), we imposed the following angular velocity, ω:

ω(t) =
arctan(γ̇ · t)

t
, (3.15)

with 0 < t < t(45◦). It is worth noticing that, despite the shear rate being held constant

throughout most of the forward and backward movement, transients necessarily occur

during the direction reversal [9]. Our simulated shear box is different from the others

simulated in the literature: unlike in van der Vaart et al. [8], we applied constant strain

rates and unlike Khola and Wassgren [9], our walls were frictional and our boundaries

were non-periodic. These choices were done in order to perfectly mimic the experimental

shear box.

3.4.2 Particle properties and input parameters

The cell was filled with spherical glass beads assumed to be monodisperse and cohesionless,

up to a bed height of 16 cm. The bed of coarse particles was generated within the cell and

let settle by gravity. To prevent the development of the regular hexagonal close packing

close to the bottom [1], the first layer of particles presented a polydisperse size distribution

(Gaussian distribution with µ = 6 mm and σ = 0.15 · µ. The standard deviation is big

enough to avoid regular packing, but it likewise ensures that the particles in the bed are
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Variable Symbol Value

Particle density (kg/m3) ρs 2540

Young’s modulus (MPa) E 26

Poisson ratio σ 0.25

Sliding friction coefficient µs 0.18

Rolling friction coefficient µr 0.005

Wall-particle friction µwp 0.18

Restitution coefficient en 0.60

Coarsest particle diameter (m) dc 0.006

Diameter ratio df/dc 0.25-0.55

Number of particles NT > 16000

Time step (s) ∆t < 1x10−5

Shear rate (s−1) γ̇ 0.567-1.167

Boundary conditions − f f f

Table 3.1: A summary of the DEM simulation parameters of the standard case.

always larger than the tracer particles). All the other grains had a diameter equal to

6 mm. The fine percolating particles were successively inserted by randomly replacing

some of the coarse grains. The fine particles were positioned at a constant distance from

the bottom (10 · dc), spaced apart to ensure diluted conditions (i.e. few fines in a bed of

coarse particles), and far enough (at least 2 dc far) from the sidewalls to minimize any

wall influence. Both bulk particles and percolating particles had the same density of 2540

kg/m3. The total amount of grains in each simulation was around 16000.

The material properties and the simulation parameters of the standard case are sum-

marized in Table 3.1. All properties are typical of glass beads, except for the elastic

Young’s modulus. The Young’s modulus E was set of the order of magnitude of MPa

instead of GPa. This reduces the computational time without significantly affecting flow

patterns, velocity profiles, shear stresses [20, 21]. Furthermore, it does not result in a

significant error in the structural analysis [22]. As concern the wall-particle friction coef-

ficient, it was imposed equal to 0.18 regardless of the type of materials in contact since

we measured µwp ≈ 0.17 ± 0.01 for wood-glass interactions and µwp ≈ 0.19 ± 0.01 for

glass-glass interactions.

The numerical time step was chosen to be at least 20% lower than the Rayleigh time.

In particular, we imposed ∆T = 0.5 · 10−5 s for d∗ = 0.25− 0.30 and ∆T = 1.0 · 10−5 s in

all the other cases.
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3.4.3 Results and discussion

3.4.3.1 Parameter tuning

To have realistic simulation results, the parameters must be calibrated. However, cali-

bration has a problem of ambiguity of the parameters’ selection [23]. Furthermore, it is

difficult to obtain all the parameters by physical experiments. Therefore, we performed a

parameter sensitivity analysis. This study was done by systematically changing the me-

chanical properties of glass beads and evaluating their impact on the percolation velocity,

considering different size ratios and 26 rpm as tilting frequency. Once the percolation ve-

locities were evaluated, a response surface regression was made for each parameter. Note

that the effect of the mutual interaction of the parameters has not been studied.

The coefficient of rolling friction is usually added to mimic the behaviour of not per-

fectly spherical particles. Here, we varied the rolling friction in the range of 0.005-0.100

which approximately match the one of the glass beads. As Fig. 3.9-a shows, the rolling

friction has no drastic influence on the percolation velocity. Neither Young’s modulus

in the range of 1 · 107-5 · 107 Pa, nor the coefficient of restitution, which was varied in

between 0.4 and 0.8, have a significant impact on the results (see Fig. 3.9-b,c). The same

conclusion can be drawn also for the variations of the Poisson ratio from 0.20 to 0.30.

(Fig. 3.9-d). According to these simulations, the shape and the mechanical properties

of the material have minimal influence on the percolating velocity. In each case indeed,

it appears from response surface regression with backwards elimination that the response

variable (namely the dimensionless percolation velocity) depends quadratically on the size

ratio but it is independent on the parameter under consideration.

What strongly influence the granular behaviour of the system are the frictional prop-

erties. As Fig. 3.10 shows, higher frictional coefficients determine an increase in the

percolation velocity. In this case, the response has a statistically significant dependence

on both sliding friction coefficient, size ratio and their interaction:

v∗p = 8.63− 34.18d∗ + 5.09µs + 35.33d∗2 − 10.33d∗µs . (3.16)

The standard deviation of the data points around the fitted values, which is equal to 0.20

(in dimensionless units since v∗p is dimensionless), and R2 = 96.5% ensure the reliability

of the model. Fig. 3.11 represents the corresponding contour map. It is interesting to see

that for a fixed d∗ the percolation velocity increases with friction. Despite this result can

be counter-intuitive at a first sight, different explanations can be found in the literature.

According to Remy et al. [21], this is due to an increase in the granular temperature with

associated an increase in diffusive mixing. For Jing et al. [24], the increase of interparticle

friction promotes the upward migration of large particles and hence, the creation of voids

that are easily filled by adjacent fines [25]. According to us, the effect of friction on

the percolation process is likely related to changes in the packing structure of the bed
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Figure 3.9: Dimensionless percolation velocity as a function of the size ratio in the case of 26 rpm
tilting frequency and for different values of (a) rolling friction, (b) Young’s modulus, (c) restitution
coefficient and (d) Poisson ratio.

subjected to shear. To verify this hypothesis, we performed dedicated simulations and

measured the bed porosity as a function of the sliding friction coefficient. Fig. 3.12 shows

an increase of the bulk porosity with increasing the friction coefficient. The lower mobility

of the coarse particles due to the increased friction at the contact points determines a less

efficient packing during the bed deposition and also during the shearing action. According

to Eq. 3.4, this implies a larger probability Pf and hence, a larger percolation velocity.

Clearly, the sliding friction coefficient is the only parameter that requires accurate tuning.

We set µs = 0.18. The adoption of µs = 0.18 is justified both from direct experimental

measurements (µs = 0.19 ± 0.01) and because µs = 0.18 corresponds exactly to the

estimated bulk porosity of ε = 0.40 (see Fig. 3.12).

The effect of changes in packing quality can also be observed in Fig. 3.13 that reports
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Figure 3.10: Effect of changes in sliding friction coefficient on the percolation velocity. The
tilting frequency used is 26 rpm.

the trends of the parameters A and k (present in Eq. 3.4) as a function of bed porosity. k

is not significantly affected by the average bed porosity and, except for the lowest value,

which corresponds to a very low inter-particle friction (Fig. 3.12), it tends to a constant

value. This is also physically accurate because k is a geometrical parameter and hence

expected to be more affected by some shear-induced anisotropy rather than changes in

the average bed porosity. On the other hand, the parameter A increases linearly with

porosity, suggesting the existence of a relationship between A and the average distance

between the particles. This effect is already incorporated into the probability term (Eq.

3.4) and hence, we suggest a dependence of A on inter-particle friction mediated by the

bulk porosity. This is also shown in Fig. 3.10 where we observe a monotonic increase

of A with the inter-particle friction coefficient (i.e. with a porosity increment). A larger

distance between particles increases the falling distance and therefore increases the overall

percolation velocity.

3.4.3.2 Percolation velocities

A full factorial design of simulations was performed for the following size ratios: d∗ =

df/dc=0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55 and for the following three different tilting

frequencies: 17, 26 and 35 rpm. A total of 21 combinations were simulated. The average

percolation velocity (i.e. the response variable) was calculated for each run as:

vp =
1

N

N
∑

j=1

vp,j , (3.17)

where vp,j is the percolation rate of the j-th particle to cross the cell and N is the number

of fine percolating grains. N was 32 for d∗ = 0.20, 0.25, 0.30, and 16 for all the other cases.
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Figure 3.11: Contour plot of dimensionless percolation velocity versus size ratio and friction
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Figure 3.12: Porosity as a function of the coefficient of sliding friction.

Fig. 3.14 shows the velocity profile as a function of size ratio for each tested shear

rate when using the parameters listed in Table 3.1 (remind that the reliability of these

parameters has been proved in §3.4.3.1). The error bars represent the standard deviation

of 16 or 32 independent measurements, which becomes larger for smaller percolating par-

ticles. As expected, the percolation velocity significantly decreases for size ratios tending

to 1 (at 5% significance level). On the other hand, smaller percolating particles has a

higher number of opportunities to find a void bigger than themselves. The percolation

velocity is then larger at high shear rates. In the inset, the same data are represented in

terms of dimensionless percolation velocity. All data collapse on the same curve since the

dimensionless percolation velocity is independent of the shear rate.

In Fig. 3.15 the simulated dimensionless velocities are fitted with the mathematical
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Figure 3.13: The parameters A (on the left axis) and k (on the right axis) are plotted as a
function of the bed porosity.

model presented in Section 3.2.3 by using the Least-squares minimization (in detail, the

Trust Region Reflective minimization algorithm of the SciPy library [26]). The optimal

values found for the parameters, considering ε = 0.40, are: A = 10.80 and k = 0.80. The

latter suggests that, as the size ratio approaches 0.80, the percolation becomes negligible

(the velocity profile converges to 0). It should be noted that k = 0.80 is slightly larger

than 2/3, the typical value that characterizes isotropic static beds. The root-mean-square

deviation (RMSD) between predicted and observed values is 0.133, showing a good quality

of the fitting.

If we compare the fitting parameters, we can see that the numerical results agree with

the experiments. The numerical model is therefore valid and can be used to accurately

predict percolation in sheared systems with dilute fines concentration in the range of the

explored shear rates.

3.4.3.3 Packing structure characterisation

The mathematical model (3.4) shows that the packing structure plays an important role

in the percolation velocity: the probability Pf is indeed a function of both local porosity ε

and bed stereo-geometry k. It is therefore important to characterize the internal packing

structure of the granular bed.

The bed porosity was computed by using the tessellation method based on the 3D

generalization of the Voronoi diagrams. By definition, a Voronoi cell around a particle is

the region of space that is much closer to that particle than to any other particle in the

system [27, 28]. Thus, the Voronoi tessellation divides the space into regular polyhedra

with flat faces and straight edges and allows the local porosity to be calculated as:

εl =
VV oro − Vp
VV oro

. (3.18)
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Figure 3.14: Percolation velocity as a function of the size ratio for three different frequencies of
tilting: 17, 26 and 35 rpm. In the inset, the dimensionless percolation velocities are reported.

In Eq. 3.18, VV oro and Vp are respectively the volume of the tessellation containing the i-th

particle and the volume of the particle itself. The latter was known, whereas VV oro was

computed in LIGGGHTS R©-PUBLIC by using Voro++, an open-source software library

[29].

In Fig. 3.16 the density distribution and the cumulative distribution of the local

porosities are reported both in static and sheared conditions. The packing condition

varies after the application of the shear: the bed porosity slightly decreases from an initial

median value of 0.42 to 0.40 indicating a contraction (settling) of the bed under shear.

Note that the medians are more representative than the means because less biased by the

outliers. The second peak of the distributions is indeed due to the over-relaxation of the

bed close to the walls while the peak at ε=1 refers to the particles at the free surface of

the bed. Both these peaks are not representative of the bulk. The porosity ε = 0.40,

which was used in the mathematical model for fitting the simulation data (Fig. 3.15), is

therefore justified and in agreement with the experimental findings.

The porosity estimated from the Voronoi tessellation is a volumetric porosity that does

not provide any information about the isotropic or anisotropic nature of the packing of

spheres [30]. Because an anisotropic packing bed could affect the percolation process, and

because the model rests on the hypothesis of perfect isotropy of the bed, the structure of

our bed of coarse glass beads was studied in detail. To establish if there was anisotropy,

a cubic region of edge length 8 cm within the powder bed was considered. For visual

reference, Fig. 3.17 shows three examples of 2-D cross-sections orthogonal to the x, y and

z directions. The porosity characteristics of XY, XZ, and YZ planes is calculated as the

ratio between the empty spaces (white pixel) and the area of the whole cross-section. To

calculate a porosity distribution for each of the three directions, the porosity was estimated

on a hundred slices along any direction. In Fig. 3.18 the respective boxplots are shown.
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Figure 3.15: Fitting of the numerical data with the mathematical model proposed by Volpato
et al. [15].

Unlike along x and y directions, the porosity along z spreads over a wider range and some

outliers appear. However, as detailed below, this difference is not statistically significant.

The assumption of isotropic packing structure on which Eq. 3.4 relies is justified below

using statistics. Firstly, Bartlett’s test of equality of variances was performed at the 0.05

significance level. Because the p-value is less than the significance level, the hypothesis of

equal variances has to be rejected: a statistically significant difference exists between the

variances of at least two independent sets of our normally distributed continuous data.

For testing the equality of the porosity in the three directions, a one-way ANOVA F-test

statistics scheme was applied assuming no equal variances. Because the p-value=0.721 is

greater than the significance level of 5%, there are no statistically significant differences

between the means. We can therefore conclude that the mean porosity is the same in

all three directions and hence, the assumption of isotropic bed under shear conditions is

justified.

3.5 Conclusions

We developed a percolation model for a small isolated particle in a gravity-driven shear

flow of coarse grains. In developing the model, we assumed that the particle bed dilates

isotropically when subjected to shear. The model captures, in a three-way comparison,

both experimental and DEM results.

To qualify the model, we performed an experimental campaign for a range of size ratios

and a range of shear rates that are characteristic of the quasi-static regime of flow [31],

namely until dimensionless shear rates of 0.15–0.20. As expected, the percolation speed

decreases exponentially when the particle size ratio increases; furthermore it is linearly

dependent on the shear rate, at least for the quasi-static regime of flow. The experimental
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Figure 3.16: Distribution (on the left) and cumulative distribution (on the right) of the bed
porosity in static (blue bars) and sheared condition (orange bars).
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Figure 3.17: Orthogonal slices for 3D visualisation of the pore structure.
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Figure 3.18: The boxplots of the bed porosity along the three directions: x, y and z.
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data are well fitted by the model for A = 9.7 and k = 0.71.

To verify the hypothesis on which the model relies, we performed DEM simulations.

We found that, in sheared conditions, the pack of grains is almost isotropic with volumetric

median porosity of 0.40 and friction coefficient equals to µs = 0.18. Also, the parameters A

and k are in close agreement with the experimental ones. This suggests that the percolation

theory relies on physically consistent assumptions and meaningful parameters. Thus,

the model can be successfully used as a closure relation for the continuum modelling of

segregation in granular flows, analogously to what was done in Bertuola et al. [17].
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Chapter 4

Size segregation in

multi-component granular

mixtures

In chapter 3, we proposed a percolation model for diluted binary mixtures and we evaluated

its validity for a range of shear rates and diameter ratios. A natural extension for the

model concerns the introduction of fine particles concentration and the generalization to

multi-component mixtures. In this chapter, we generalize the percolation model to a

multi-component mixture made up of discrete solid phases having different particle sizes

but same intrinsic density. This represents a step forward in the description of segregation

since most of the existing formulations are for binary mixtures only. The model has been

implemented in a continuum framework and fully coupled with a solid flow rheology.

Parts of this chapter have been submitted for publication:

M. Tirapelle, S. Volpato, and A. C. Santomaso. A theory for size-driven segregation in

dense multidisperse granular mixtures.

4.1 Introduction

Continuum models differ from DEM because they do not explicitly represent individ-

ual grains but rather they treat the bulk solid as a pseudo-fluid (see Section 2.2). The

standard starting point for the development of continuum models is the combination of an

advection-diffusion transport equation with appropriate rheology for the granular solid [1].

Continuum modelling for predicting segregation in binary mixtures has been implemented

many times and for several processes such as mixing in tumblers [2, 3], transport in chute

[4–6], granular avalanches [7, 8], filling and emptying of silos and hoppers [9, 10]. However,

there exist only a few studies focusing on segregation in multi-component or poly-disperse
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mixtures [11–16]. Furthermore, even in the most advanced segregation models, segrega-

tion equations and velocity field are usually uncoupled [17]. Coupling segregation and flow

field becomes of importance especially when the degree of dispersity is large and hence,

the local mobility depends on the local concentrations [1, 17].

The challenge addressed in this chapter is the development of a general multi-component

segregation model fully coupled with a rheology for the granular mixture. To validate the

model, simulations for ternary mixtures of coarse, intermediate and fine particles dur-

ing emptying of a storage hopper are performed in COMSOL Multiphysics. The model

predictions are validated against experimental data and DEM outcomes taken from the

literature. The main advantages of our model are: it is simple, it can be applied to mix-

tures made of any number of discrete solid phases that differs by size and it is potentially

applicable to any geometry and flow configuration.

4.2 Governing equations

4.2.1 Multiphase Fluid Dynamic Model

The granular material is assumed to be composed of a finite number of grain-size classes

having the same intrinsic density. The velocity field of the bulk solid is determined directly

by solving the momentum equations for incompressible granular flows (Eq. 2.27) together

with the generalized rheological model proposed by Artoni et al. [18] and derived in Section

2.2.2.3.

To describe the evolution of the free surface between bulk solid and air, we employed

the level set method (see Section 2.3.3). In particular, we employed the laminar two-phase

flow with the level set physics module of COMSOL Multiphysics. Therefore, a unique set

of conservation equations is solved throughout all domain. The density and viscosity are

described through the level set function respectively as:

ρ = ρs + (ρair − ρs)ψ , (4.1)

η = ηs + (ηair − ηs)ψ , (4.2)

where the subscripts indicate the phase of belonging. Notice that, far from the interface,

where ψ = 0, the density and viscosity are the ones of the solid phase (i.e. the ones

discussed in Section 4.2.1) while, where ψ = 1, the density and viscosity are the ones of

pure air. For air, we used the properties of air (gas) of COMSOL’s material library.

4.2.2 Segregation Equations

In quasi 2D gravity-driven flows, such as discharge from a storage hopper, the only relevant

components of the segregation flux and diffusion coefficient are the ones that act in the

direction of gravity. Furthermore, because the diffusion of grains in a polydisperse system
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is still a matter of research, D is usually treated as a constant. It has also been proved

that it is reasonable to neglect the dependence of the diffusion coefficient on a spatially

varying shear rate [19]. Thus, in a 2D gravity-driven flow, the standard advection-diffusion

segregation equation (i.e. Eq. 2.57) reduces to:

∂φi
∂t

+
∂(uφi)

∂x
+
∂(vφi)

∂z
= −∂(vi,NETφi)

∂z
+

∂

∂z

(

D∂φi
∂z

)

, (4.3)

where u and v are the horizontal and vertical components of u and vi,NET is the normal

component of the net segregation velocity, which is aligned with gravity.

4.3 Flux Functions and Segregation Velocities

A number of mechanisms have been proposed in the literature for describing the segrega-

tion of dissimilar particles in granular flows (see Section 2.1.1). Here, we focus on the two

mechanisms proposed by Savage and Lun [4] which are referred to as kinetic sieving and

squeeze expulsion. For modelling kinetic sieving, we propose a generalization of the model

reported in the chapter 3. For modelling squeeze expulsion, we implement the overall mass

conservation [4]. In developing the particle size-segregation model, we assumed that 1) the

system is incompressible (i.e. the solid volume fraction or packing density, ν, is constant

in time and space) and 2) squeeze expulsion is not size preferential. The result is a new

and original expression for size-driven segregation that can be applied to multi-component

mixtures of grains.

4.3.1 Distribution of voids

We have seen that, in a dense isotropic matrix of mono-disperse spherical particles, the

mean distance between particles can be expressed as [20]:

h̄ =
2

3
d
1− ν

ν
, (4.4)

where d is the particle diameter and ν is the solid volume fraction. As a matter of

fact, there are not formulations of h̄ for the case of mixtures of particles differing in size.

Therefore, we propose the following expression for h̄ :

h̄ =
2

3
d̄
1− ν

ν
, (4.5)

where d̄ is the local average diameter. The rationale behind this is that, on average,

the mean distance between particles in a multi-component system can be linked to the

mean particle distance of an isotropic packing having particles with a diameter equal to

d̄. It is important to highlight that this assumption holds only if ν is constant, as it is

for incompressible granular flows. Bearing this in mind, the length distribution of the
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Figure 4.1: Schematic representation of a) a fine particle and b) a coarse particle percolating
through a bed of middle-sized grains. If a particle in layer A finds a beneath void space that is
large enough, it drops into layer B. Since each layer moves with different shear velocities, it could
happen that the particle centre will lie again on a void space large enough and thus the particle
will drop in layer C.

distances in the empty space of a random packing, F (h), has an exponential form of the

type [21]:

F (h) =
1

h̄
exp

(

−h
h̄

)

. (4.6)

To fall into the underlying layer of grains, a particle has to find an aperture greater than

itself. Let us consider a small particle from layer A in a bed of middle-sized grains with

diameter d̄ (see Fig. 4.1-a). If the particle finds a sufficient large void space, it percolates

in the underlying layer B. The particle will then be directed from layer B toward layer

C when its centre lies within another sufficiently large capturing void. Similarly, also a

large particle can drop from a layer into a void in the underlying layer if the void space is

large enough (see Fig. 4.1-b). We assume that, when a particle falls into the underlying

layer, independently by its own size, it covers on average a space equal to the local average

diameter d̄.

It is straightforward that smaller particles are more likely than larger particles to find

an aperture great enough to fall in. Mathematically, the probability for the i-th particle

to find an aperture greater than its own diameter in one direction is:

P (h ≥ di) =

∫ ∞

di

F (h)dh =

∫ ∞

di

1

h̄
exp

(

−h
h̄

)

dh = exp

(

−di
h̄

)

. (4.7)

The particle can percolate through the underlying voids only if the latter condition is

satisfied in the two directions normal to the percolation direction (i.e. x and y). Thus,

the falling probability is the combined effect of two independent events (i.e. Px and Py)
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and reads:

Pi = P (hx ≥ di ∩ hy ≥ di) = PxPy = exp

(

−2
3

2

di
d̄

ν

1− ν

)

. (4.8)

To conclude, Eq. 4.8 expresses the probability of the i-th particle to percolate when it

lies in an incompressible and isotropic packing of spherical particles with local average

diameter d̄ and packing density ν.

4.3.2 Kinetic sieving

Be Pi the probability for a particle of size di of finding a void space in the underlying

layer large enough to be captured in, and (1−Pi) the probability of not finding it. In the

former case, the particle will fall for a distance d̄, whereas in the latter case the particle

will stay in its own layer. The average percolation velocity must therefore be proportional

to [22]:

vp,i ∝
d̄ · Pi + 0 · (1− Pi)

tf · Pi + ts · (1− Pi)
, (4.9)

where tf and ts are the falling and stop times, respectively. According to what reported

in chapter 3, the falling time is tf ∝
√

d̄g−1, whereas the stopping time is proportional

to the inverse of the shear rate: ts ∝ γ̇−1. Since the stopping time is estimated to be two

orders of magnitude larger than the falling time, the latter can be neglected and Eq. 4.9

simplifies to:

vp,i ≃ Aγ̇d̄
Pi

(1− Pi)
, (4.10)

where A is a proportionality parameter that relies on interparticle friction mediated by

the bulk porosity [23]. As it is possible to see, the percolation velocity vp,i depends on:

local shear rate, local average diameter and local falling probability. Under the same d̄,

smaller particles percolate faster because characterized by larger Pi. On the other hand,

the same sized particle percolates faster in a bed of larger grains because of the greater

falling distance d̄. Finally, an increase of γ̇ leads to a more frequent generation of voids

and so, to a greater vp,i.

It is noteworthy that Eq. 4.10 differs from the one reported in the previous chapter

on two grounds. There, the falling space was set equal to dc − df . In dilute conditions,

this allowed satisfying the zero velocity for the limiting case df → dc. Secondly, a third

probability, Pz, is taken into account. Here, we are dealing with a more general case, the

zero flux is satisfied when φi = 1 and the falling distance is approximated as an average

value d̄. Thus, we have to resort neither to size differences nor to weighting probability

Pz.

The percolation velocities act always in the negative z-direction, thus there must be

another mechanism that gives rise to a counterflow so as to satisfy the overall mass con-

servation along z [4]. This mechanism is discussed in detail in the following section.
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4.3.3 Squeeze expulsion and net velocities

When the instantaneous forces acting on an individual particle are sufficiently imbalanced,

the particle is squeezed out from its own layer into an upper layer [4]. This mechanism,

which is referred to as squeeze expulsion, is not size-preferential and hence, its contribution

can be simply determined by the satisfaction of the overall mass conservation along z [4].

Thus, the sum of all mass fluxes must be equal to zero:

N
∑

i=1

ρivp,i + ρvSE = 0 , (4.11)

where N is the number of components in the mixture, ρi is the mass of component i

per unit volume, ρ is the overall bulk density, and vSE is the squeeze-expulsion velocity.

Since all particles have the same intrinsic density ρ∗, and since we assumed constant solid

volume fraction, we get:

ρ∗ν

N
∑

i=1

φivp,i + ρ∗νvSE = 0 , (4.12)

where φi is the volume ratio of i (i.e.
∑

φi = 1). Thus, the squeeze-expulsion velocity

shared by all components is:

vSE = −
N
∑

i=1

φivp,i . (4.13)

The net size-driven segregation velocity vi,NET of each component is made of two

contributions [4]:

vi,NET = vp,i + vSE . (4.14)

Introducing 4.10 and 4.13 into Eq. 4.14, gives:

vi,NET = Aγ̇d̄

[

Pi

(1− Pi)
−

N
∑

i=1

φi
Pi

(1− Pi)

]

, (4.15)

that becomes, in the dimensionless form:

v∗i,NET = A

[

Pi

(1− Pi)
−

N
∑

i=1

φi
Pi

(1− Pi)

]

. (4.16)

As expected, the net segregation velocity of a species relative to the mean velocity of the

bulk flow is strongly dependent on the local shear rate and mean particle diameter [4, 24].

The fluxes of the different-sized particles are asymmetric in concentration [1, 25], satisfy

a summation constraint [17]
∑

i

vi,NETφi = 0 , (4.17)

and are zero for φi = 0 and φi = 1.
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Figure 4.2: Schematic representation of the computational domain of the hopper with an initial
profile of: a) random filling method and b) industrial filling method. The measures are given in
cm.

Segregation determines a net flux of large particles migrating upwards and a net flux

of fine particles moving downwards. If the reason why fine particles move preferentially

downwards is clear and can be analytically described by the percolation model, the reason

why coarse particles migrate preferentially upwards is not fully understood. Different

explanations have been given in the literature such as the presence of an anisotropic

contact network [26], an excessive pressure taken by the large particles that drives them

to rise [26], a granular equivalent Saffman effect [27] and the presence of a buoyancy force

analogous to the Archimedes’ principle [28]. However, since the upward flux is the result

of an overall mass balance, the correctness of the mathematical formulation is not biased

by the lack of a universally accepted physical explanation [4].

4.4 Materials and methods

4.4.1 Numerical Implementation

Hoppers, silos and bins are the most common storage devices for granular material in

industrial processes. During their filling and emptying, particle segregation may occur

[29].

Here, we simulate a 2D axisymmetric hopper having 60o wall-angles with respect to the

vertical. The Cartesian coordinate system is defined with the x -axis laying horizontally

and the z -axis laying vertically and pointing downward. The hopper is filled with ternary

mixtures of particles homogeneously distributed. This means that segregation does not

occur during the filling process. The composition of the standard mixture was 25:20:55

by volume of fine, intermediate and coarse grains. To capture the evolution of the solid

free surface, we include a second phase made of ambient air on top. As in Yu and Saxén

[30], we consider for the solid phase two filling methods: the random and the industrial

filling methods. The two methods determine, respectively, a horizontal flat surface and the

formation of a powder heap within the silo. A sketch of the two configurations is reported

in Fig. 4.2. The geometry is discretized with a mesh having 2999 triangular elements and
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k′ = 2 s−1 θ∗ = 1.44 s2 m−2 η0 = 0.5 s−1 ν = 0.6 A = 50 D = 1e−6 m2 s−1

Table 4.1: Basic model parameters. The parameters of the rheological model (i.e. k′, θ∗, η0)
have been calibrated according to Artoni et al. [18], Bertuola et al. [9] and Volpato et al. [3].

normal elements size (i.e. the longest edge of the element is ≈ 1.9 mm).

The parameters employed for the bulk flow are summarized in Tab. 4.1. As it is

possible to see, k′, as well as the granular temperature scale θ∗, are set as constants. For

parameter A, we found after some trial simulations that A = 50 is a good value for the

system under consideration.

4.4.2 Boundary and Initial Conditions

At the beginning, the material within the silos is stationary, so that the velocity field is

zero everywhere within the domain. The same initial condition was imposed also for the

top ambient air. The initial value of the granular temperature was set equal to the low

value of θ = 0.12 m2s−2 for numerical reasons even if it should be strictly zero for granular

matters at rest.

As boundary conditions, no-slip behaviour was imposed at the walls, and no penetra-

tion condition u = 0 is enforced. Then, we set 1 mm/s inlet velocity for air on the open

top of the hopper. At the outlet, we imposed the atmospheric pressure. The resulting

mass flow rate is in accordance with predictions made by the Beverloo equation [31]. For

what concerns the segregation equations, we set no-flux of components through the lateral

walls. About the granular temperature equation, we imposed the thermal insulation of

the silos.

4.5 Results and discussion

4.5.1 Velocity field, granular temperature and segregation profiles

Our segregation model is built on the full coupling between segregation transport equations

and rheology for the granular mixture. In this section, we look closely at the kinematic

of the hopper discharge to ensure that the implemented rheology is appropriate. All the

figures reported in this section refer to the case of hopper discharged after industrial filling

(with heap formation) having 25:20:55 initial percentage of fine, intermediate and coarse

particles.

Fig. 4.3 shows, on top, the velocity field of the bulk solid at four different discharge

stages (i.e. M̃ is the normalized mass discharged defined as the ratio between the mass of

material discharged and the total mass initially filled within the silo) and, on the bottom,

the maps of the shear rate for the same values of M̃ . As it is possible to see, the velocity

field is characteristic of a funnel flow since there are significant velocity differences across

the width of the hopper from the central core to the sidewalls with stagnant material at
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Figure 4.3: Profiles of the bulk velocity field (on top) and of the shear rate (on bottom) at 20%,
40%, 60% and 80% of normalized mass discharge M̃ . The velocity is expressed in mm/s. The
shear rate is expressed in s−1.

the walls. In particular, the region of higher velocity extends through the orifice into the

cone of the free surface [10]. About the shear rate, in the beginning, it is higher close to the

orifice where the dynamic of the system is faster. Approaching the end of the discharge

process, the stagnant zone becomes thinner, the velocity magnitude becomes higher at

the outlet, and the shear rate becomes progressively more important near the sidewalls.

Note that, despite the presence of the initial heap, the free surface becomes v-shaped after

the beginning of the discharge process. These profiles qualitatively agree with empirical

knowledge and with DEM simulations [30].

Fig. 4.4 shows the vertical velocity profiles of the bulk solid at different bed heights

and at 20% normalized mass discharged. In addition, the inset shows the corresponding

horizontal components. Since the silo is axisymmetric, only the left half of the profiles

are reported. These velocity profiles are in qualitative agreement with the corresponding

existing results reported in the literature [10].

We can conclude that the velocity pattern, the formation of the v-shaped free-surface

as well as the mobility of the materials are sufficiently well described by the generalized

version of the Artoni et al.’s rheology [18].



Chapter 4. Size segregation in multi-component granular mixtures 66

50 40 30 20 10 0
x [mm]

5

4

3

2

1

0

v 
[m

m
/s

]

H=10 mm
H=15 mm

H=20 mm
H=25 mm

H=30 mm
H=35 mm

50 40 30 20 10 0
x [mm]

0.0

0.5

1.0

1.5

u 
[m

m
/s

]

Figure 4.4: Vertical and horizontal (inset) bulk velocity profiles of the left half of the hopper
at different bed heights for the case with industrial filling under initial mass percentage of fine,
intermediate and coarse of 25%, 20% and 55%. The profiles are for t=9s, namely after 20% of the
total mass discharge.

Fine particles diameter df 1.5 mm

Intermediate particles diameter dm 2.4 mm

Coarse particles diameter dc 3.4 mm

Intrinsic solid density ρ∗ 2285 kg/m3

Friction coefficient µ 0.5 -

Table 4.2: Particle diameters, density and effective friction coefficient [30].

4.5.2 Model validation

Experimental data for multi-component mixtures of grains exiting a silo are scarce. Here,

we compare our model predictions against independent experimental and DEM simulation

data by Yu and Saxén [30]. In their study, they focused on the size-segregation of ternary

mixtures of particles during discharge from a blast furnace hopper. The properties of the

pellets are given in Tab. 4.2. In the following figures, the symbols reflect the experimental

and DEM simulation data by Yu and Saxén [30] while the solid lines represent our model

predictions. The x -axis is the normalized mass discharged M̃ .

Fig. 4.5 shows the discharge profile of fine, intermediate and coarse particles consid-

ering 25:30:45 initial composition and the random filling method. In the beginning, the

bulk solid is well-mixed. Then, because of the shear rate, size-driven segregation takes

place. The coarse particles accumulate in the central region of the pile while fine particles

concentrate at the inclined sidewalls. Such a segregated system is advected by the mean

flow toward the hopper outlet. This determines, after 20% of normalized mass discharged,

an enrichment of coarse particles in the outflow. Approaching the end of the discharge

process, also the fine particles previously driven toward the sidewalls move toward the
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Figure 4.5: Comparisons of pellet mass fractions in hopper outflow measured in the experiments of
Yu and Saxén [30] (data points) and CFD (continuous lines) under initial mass of fine, intermediate
and coarse of 25%, 30% and 45%.

outlet. Note that, the composition of the intermediate particles at discharge remains ap-

proximatively constant during all the discharge process. All the three profiles reported in

Fig. 4.5 are in good agreement with the experimental data. The main discrepancies con-

cern the very last stage of the discharge and are mainly due to differences in wall-particle

friction coefficient. This aspect will be discussed later on.

From now on, we focus on hopper discharge after industrial filling. This means that the

solid matter forms a heap within the silo. Fig. 4.6 shows the discharge profile for a ternary

mixture having 25:20:55 percent of fine, intermediate and coarse particles, respectively. We

can see that the concentration of the three components remains constant until almost 30%

of the normalized mass is discharged. At that point, the concentration of coarse particles

slightly increases: the large particles, that were segregated in the central region of the

pile, reach the outlet. A further discharge leads to the drainage of the lateral region which

is rich in fines. Our model predictions generally agree well with the observations of Yu

and Saxén [30] until almost 80% of the total mass discharged. As discharge continues, the

model overestimates the amount of coarse particles (and thus underestimates the amount

of fine particles) at the outlet. These discrepancies may be due to the solid flow rheology

that may not describe well the velocity field near the surface (i.e. when low solid mass

remains within the system) or, more likely, due to the no-slip boundary condition imposed

at the lateral walls.

In their work, Yu and Saxén [30] changed the roughness of the wall by changing the

friction coefficient between wall and particles. They found that different wall-particle

static friction coefficients result in different discharge profiles, especially at the end of the

discharge process. As it is possible to see in Fig. 4.7, the amount of fines exiting the hopper

increases more sharply for µs,p−w = 0.5% and 0.9% than for µs,p−w = 0.01% and 0.1%.
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Figure 4.6: Comparisons of Yu and Saxén’s [30] DEM simulations (markers) with the model
(solid lines) for a hopper with industrial filling under the initial mass of fine, intermediate and
coarse of 25%, 20% and 55%.

This is because, the higher the resistance of the walls, the less is the probability of sliding

across the wall, and the greater is the extent of segregation. Since the predictions made

by our theoretical model lie in between the two limiting cases found by Yu and Saxén [30],

it is reasonable relating the discrepancies to the no-slip boundary condition. To account

for different wall-particle friction coefficients in CFD software, one could include some

resistive forces, empirical corrections or 3D-modelled rough surfaces.

To demonstrate the potentiality of the size-segregation model described in this paper,

we also considered the effect of the number of fines, keeping a constant mass ratio of

coarse and intermediate particles. Tab. 4.3 reports all the experimental concentrations

simulated.

Fig. 4.8 compares the discharge profiles between model prediction and literature data

for the case of the hopper with industrial filling and initial mixture composition of 5:24:71

of fine, intermediate and coarse particles. When the discharge process starts, the small

amount of fines moves toward the walls in the so-called stagnant zone. Thus, at discharge,

there is a reduction of fines. For what concerns the intermediate and coarse particles,

their size difference is smaller, and their relative segregation behaviour is less significant.

At the end of the discharge process, also the stagnant particles are advected by the main

flow toward the exit of the silo. This leads to an enrichment in the outflow of fine and

intermediate particles and a depletion of coarse particles. Again, the model can well

predict the segregation patterns.

The comparison for the case with 45:14:41 initial mixture composition is reported in

Fig. 4.9. Because of the higher relative amount of fine and coarse particles, the extent

of segregation is higher than before. However, we can distinguish the same patterns: the

exiting composition is almost constant at the beginning, then there is an enrichment of
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Figure 4.7: Comparisons of Yu and Saxén’s [30] DEM simulations (markers) with the model (solid
lines) for a hopper with industrial filling and considering the effect of wall-particle static friction
(µs,p−w). The initial mass of fine, intermediate and coarse are 25%, 20% and 55% respectively.
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mf% mm% mc% d̄0 [mm] Fig.

5 24 71 3.065 4.8
25 20 55 2.725 4.6
45 14 41 2.405 4.9
65 9 26 2.075 4.10

Table 4.3: Different mixtures tested. The mass ratio between intermediate and coarse particles is
kept constant, whereas the amount of fines is changed. The segregation is evaluated for a hopper
with industrial filling.
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Figure 4.8: Comparisons of Yu and Saxén’s [30] DEM simulations (markers) with the model
(solid lines) for a hopper with industrial filling under initial mass of fine, intermediate and coarse
of 5%, 24% and 71%.

coarse particles followed by an enrichment of fines. In this case, there are more significant

discrepancies between model prediction and literature data: after 70% of mass discharged,

the amount of fines exiting the hopper is underestimated while the amount of coarser is

overestimated. This is because, in our CFD simulations the resistance of the walls is lower

and, as a consequence, the lower is the extent of segregation.

In Fig. 4.10, we have reported another comparison between Yu and Saxén’s [30]

DEM simulations and our theory, but with 65:9:26 initial percentage of fine, intermediate

and coarse particles, respectively. Again, the model predictions are qualitatively and

quantitatively accurate.

We have also evaluated the effect of diameter ratio DR, which is defined as the ratio

between the coarse and the fine particles. The concentration profiles at discharge for the

case with DR = 1.30 are reported in Fig. 4.11. The diameter of fines, intermediates and

coarse are equal to dS = 2.6 mm, dM = 3.0 mm and dL = 3.4 mm. The relative concen-

trations of the components are 25:20:55 percentage by mass (i.e. as in the standard case).

In this case, the segregation behaviour is less significant than in the case characterized by

DR = 2.26 (see Fig. 4.6) due to the slighter size difference. However, we can still see a
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Figure 4.9: Comparisons of Yu and Saxén’s [30] DEM simulations (markers) with the model
(solid lines) for a hopper with industrial filling under initial mass of fine, intermediate and coarse
of 45%, 14% and 41%.
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Figure 4.10: Comparisons of Yu and Saxén’s [30] DEM simulations (markers) with the model
(solid lines) for a hopper with industrial filling under initial mass of fine, intermediate and coarse
of 65%, 9% and 26%.
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Figure 4.11: Comparisons of Yu and Saxén’s [30] DEM simulations (markers) with the model
(solid lines) for a hopper with industrial filling under initial mass of fine, intermediate and coarse
of 25%, 20% and 55%. The particle diameters are dS = 2.6 mm, dM = 3.0 mm and dL = 3.4 mm,
thus DR = 1.3.

significant increase in fines at the end of the discharge. This segregation pattern is well

captured by the segregation model.

We have evaluated the performance of the model by calculating the root-mean-square

error (RMSE) and the normalized root-mean-square error (NRMSE) for each component

of each previous figure:

RMSEi =

√

∑n
j=1 (ŷi,j − yi,j)

2

n
, (4.18)

NRMSEi =
RMSEi

ȳi
, (4.19)

where ŷi,j indicate the predicted values, n is the number of data points and ȳi is the

average experimental volume fraction of i. The results are reported in Tab. 4.4. In

short, the comparison between literature data and theory shows that the multi-component

segregation model describes generally well the segregation features.

We report in Fig. 4.12 the average diameter profiles for different mass fractions of fines

and at different stages of the discharge process. Consistently with previous experimental

observations [10, 32], segregation occurs with coarse particles in the central region where

the flow is faster, fine particles close to the sidewalls and intermediate particles in the

region sandwiched in between. The extent of segregation increase with the proceeding of

the discharge process. Furthermore, when only 5% of fines are present, segregation is less

significant: the mixture is made predominantly of intermediate and coarse particles whose

diameter ratio is low. By looking at the segregation patterns, we can also distinguish the

four main regions characteristic of a funnel flow [32, 33] that are: 1) a stagnant zone close

to the sidewalls where fine particles accumulate, 2) a mobile zone in the central core that
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Fine Intermediate Coarse

Fig. 4.5
RMSE 0.12 0.04 0.09

NRMSE 0.59 0.15 0.19

Fig. 4.8
RMSE 0.04 0.08 0.08

NRMSE 0.57 0.29 0.12

Fig. 4.6
RMSE 0.13 0.05 0.12

NRMSE 0.36 0.28 0.25

Fig. 4.9
RMSE 0.21 0.05 0.17

NRMSE 0.36 0.43 0.53

Fig. 4.10
RMSE 0.11 0.03 0.10

NRMSE 0.15 0.34 0.44

Fig. 4.11
RMSE 0.09 0.06 0.09

NRMSE 0.31 0.36 0.16

Table 4.4: Root mean square error (RMSE) and normalized root mean square error (NRMSE)
of all the comparisons.

is rich in coarse particles, 3) a linear surface flow and 4) a cross-over region.

To conclude, the model works for multi-component mixtures with different component

concentrations and different diameter ratios. As expected, the extent of segregation is

more significant for higher relative concentrations of fine and coarse particles and for higher

DR. The segregation model has only one drawback: it relies on a fitting parameter, A. As

argued by Volpato et al. [22], its value could depend on particle properties such as particle

sphericity and surface roughness therefore, a further study is required for independently

estimating A.

4.5.3 Net segregation velocities and asymmetric flux functions

Golick and Daniels [34] observed that the segregation rate is not symmetric: a fine particle

in a matrix of coarse grains segregates faster than a coarse particle in a matrix of fine

grains. Furthermore, the maximum velocity for the coarse particles occurs when there are

other coarse particles nearby rather than when they are isolated [25, 35]. This yields flux

functions that are asymmetric with respect to the local particle concentration and non-

convex with an inflexion point. To address the non-convex asymmetry of the segregation

flux, Gajjar and Gray [25] proposed a cubic law of the type:

F (φf ) = Aγφf (1− φf )(1− γφf ) , (4.20)

with γ, which represents the amount of asymmetry, bounded in between 0.5 ≤ γ ≤ 1

[25]. The values of Aγ and γ are dependent upon the actual particle properties such as

the diameter ratio itself [36]. Notice that, this formulation has been used as a practical
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Figure 4.12: Profiles of the average diameter after (by column) 20%, 40%, 60% and 80% of
normalized mass discharge M̃ . The initial mass of fine is (by row) 5%, 25%, 45% and 65%.
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example and it does not come from experimental evidence.

In this section, we show that our segregation rate, which instead has been developed

from physical insights, is asymmetric and that the maximum coarse-particle rise velocity

occurs at φcrit 6= 1. Furthermore, we show that the flux function is a singly non-convex

asymmetric function. If we expand the net segregation velocity (Eq. 4.15) for the case of a

bi-disperse granular system composed of fine and coarse particles, we obtain respectively:

vf,NET = Aγ̇d̄(1− φf )

(

Pf

1− Pf

− Pc

1− Pc

)

, (4.21)

vc,NET = − (1− φc)

(1− φf )
vf,NET . (4.22)

If we then define the odds of a particular outcome (i.e falling or not falling in our specific

case) as:

Rpf ≡ Pf

1− Pf

and Rpc ≡
Pc

1− Pc
, (4.23)

the net segregation velocity for the fine particles (Eq. 4.21) becomes:

vf,NET = Aγ̇d̄(1− φf ) (Rpf −Rpc) . (4.24)

Using a chemical similarity, we can say that the shear rate γ̇ is analogous to a kinetic

constant (since it quantifies the rate of segregation) whereas the difference Rpf − Rpc

constitutes the segregation driving force. The sign of Rpf − Rpc also determines whether

the particle is going to rise or fall with respect to the direction of gravity. Since for

bi-disperse granular materials, the segregation flux F (φi) for species i is defined as [37]:

F (φi) = vi,NETφi , (4.25)

we get:

F (φf ) = Aγ̇d̄φf (1− φf ) (Rpf −Rpc) . (4.26)

This flux function bears some similarities with Eq. 4.20 and it is well approximated

by the following quartic function:

F (φ) = A(φ4 − φ)− B(φ3 − φ2) . (4.27)

The main advantage of the latter formulation is that it relies on two parameters that

are dependent only upon the diameter ratio: A = −0.215D2
R + 0.441DR − 0.246 and

B = 0.649D2
R − 1.357DR + 0.759.

Fig. 4.13 shows the segregation flux function for three different diameter ratios: DR =

1.30, DR = 1.80 and DR = 2.26. The squared data represents our model and are fitted

to both Eq. 4.20 (solid lines) and the quartic function in Eq. 4.27 (dashed lines). For

the case of DR = 1.3, the best fitting is achieved with Eq. 4.20. However, for higher size
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Figure 4.13: Normalized segregation flux function as a function of the fine particle concentration
for binary mixtures with (from top to bottom) DR = 1.30, DR = 1.80 and DR = 2.26. The model
outcomes (squared data) are fitted with both the cubic flux function reported in Eq. 4.20 (see
[25]) and the quartic flux function (Eq. 4.27).

ratios, the trend is clearly better predicted by Eq. 4.27. This is because the parameter γ

that appears in Eq. 4.20 is physically dependent on the size ratio and quickly reaches the

limiting value of 1.

Let us now consider a ternary system. In this case, the segregation flux for the fine,

intermediate and coarse particles reads respectively:

Ff = Aγ̇d̄φf

[

φmRpm

(

Rpf

Rpm
− 1

)

+ φcRpc

(

Rpf

Rpc
− 1

)]

, (4.28)

Fm = Aγ̇d̄φm

[

φfRpf

(

Rpm

Rpf

− 1

)

+ φcRpc

(

Rpm

Rpc
− 1

)]

, (4.29)

Fc = Aγ̇d̄φc

[

φfRpf

(

Rpc

Rpf

− 1

)

+ φmRpm

(

Rpc

Rpm
− 1

)]

. (4.30)

As it is possible to see, the flux functions are dependent upon the particle diameters and

the local particle concentration. Furthermore, the dependence of F on the concentration

is higher than quadratic because the concentration appears also within the odds. Fig. 4.14

shows the model-predicted F/(Aγ̇) of ternary mixture of particles for the following three

cases:

1. dS = 2.6, dM = 3.0 and dL = 3.4 mm (i.e. DR = dL/dS = 1.3),

2. dS = 1.89, dM = 2.65 and dL = 3.4 mm (i.e. DR = 1.8),

3. dS = 1.50, dM = 2.40 and dL = 3.4 mm (i.e. DR = 2.26).

As it is possible to see, at constant shear rates, the higher the size ratio, the higher the

magnitude of the flux function for a given concentration. Furthermore, there is a net flux
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function of small particles downward and a net flux function of coarse particles moving

upwards. The intermediate particle can instead segregate both upwards or downwards

according to the mixture composition. It is also interesting to see that, the amount of

asymmetry of the flux function diminishes with increasing the percentage of intermediate

particles. Furthermore, there exist a combination of concentrations at which the interme-

diate particles, on average, do not migrate (they move neither upward nor downward).

We have demonstrated that our model can well capture the concentration-dependent

asymmetry characteristic of the particle size segregation flux. Furthermore, for the case of

binary mixtures, we have proposed a further formulation for the flux function that works

for all size ratios and that does not rely on fitting parameters. This has huge potential in

improving continuum models for predicting segregation.

4.6 Conclusions

In this study, a new continuum model for size-driven segregation in multi-component

mixtures of grains has been implemented. The model is based on a full coupling between

solid flow rheology of granular materials and segregation transport equations. The main

originality of the work lies in the new closure for the segregation velocity that is based on

probabilistic assumptions.

The model is implemented for simulating the segregation behaviour of ternary mixtures

of grains during discharge from a storage hopper. The outcomes of the model are compared

with independent data taken from the literature. The model predictions are in good

agreement with experiments and DEM simulations data. Some discrepancies arise only

at the final stage of the discharge process. However, we found that these discrepancies

are due to the wall-particle friction coefficient. The model can also well predict the singly

no-convex asymmetric behaviour of the flux function.

To conclude, the model is well-suited for predicting the segregation of multi-component

granular mixtures in any geometry and flow configuration. It can be successfully applied

to a range of mixture compositions and diameter ratios, and it can well capture the

kinematic of the solid flow. The main drawback of the segregation model is that it relies

on one fitting parameter, A. Notice that, further works are required to understand on

theoretical grounds the squeeze expulsion mechanism.
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Figure 4.14: Ternary contour plots of F/(Aγ̇) for (by column) the fine, intermediate and coarse
particles when considering a ternary mixture. The flux have been predicted (by row) for three
different size ratios: DR = 1.3, DR = 1.8 and DR = 2.26.
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Chapter 5

Size segregation in polydisperse

granular mixtures

In chapter 4, we proposed a new continuum model for predicting segregation in multi-

component mixtures of particles differing by size. However, real granular systems are not

always made up of discrete size classes but are rather characterized by broad particle size

distributions [1]. Thus, in this chapter, we present a theory for modelling segregation in

polydisperse granular mixtures.

This work was done under the supervision of Dr Luca Mazzei of the University College

London (UCL).

Parts of this chapter have been published:

M. Tirapelle, A. C. Santomaso, and L. Mazzei (2022). CFD-PBE coupled model for size-

driven segregation in polydisperse granular flows. Chemical Engineering Science, 247,

117065, https://doi.org/10.1016/j.ces.2021.117065.

5.1 Introduction

Here, we propose a continuum model for segregation in polydisperse granular mixtures.

This is a particular open area of research that is very important for understanding real in-

dustrial and geophysical systems [2]. To account for particle polydispersity and to describe

the evolution in time and space of the particle size distribution, we use the Population

Balance Equation (PBE) [3]. Although in theory PBEs can be solved analytically, only

a few analytical solution strategies have been developed. Therefore, Population Balance

Equations are usually solved numerically. Many numerical methods are available, such

as the method of Laplace transforms, the method of moments, the method of weighted

residuals and the Monte Carlo method [3, 4]. The Method of Moments, or MOM, is the

most attractive one because it provides good results at a low computational cost [3]. It
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consists in tracking the lower-order moments of the distribution function with transport

equations. In its classical form, the MOM has a few drawbacks. It requires that the func-

tional form of the distribution function remain the same during the process. Furthermore,

a moment closure problem arises: for any given set of moments the modeller wishes to

track, higher-order moments feature in the transport equations [5, 6]. In the Quadrature

Method of Moments (QMOM), the closure problem is overcome via a quadrature-based

approximation of the particle size distribution. This formulation of the MOM was first de-

veloped by McGraw [7] for modelling the evolution of aerosols, and then further developed

by Marchisio and co-workers for modelling crystal growth, aggregation and breakage [8, 9].

This approach still has a few drawbacks: the reconstruction of the distribution function

from a finite set of moments is impossible unless one knows a-priori the functional form of

the Particle Size Distribution (PSD), and the computational cost is higher than in MOM

since weights and nodes have to be back-calculated from the moments of the distribution

at each time step in each cell of the computational domain [3, 10, 11]. Furthermore, when

a number of moments greater than four is tracked, the higher-order moments corrupt

leading to non-physical values of quadrature nodes [11]. To overcome the disadvantages of

the QMOM, Marchisio and Fox [12] proposed the Direct Quadrature Method of Moments

(DQMOM). This differs from the QMOM because it tracks directly the weights and nodes

of the quadrature approximation rather than tracking the moments of the PSD [3]. How-

ever, since both methods adopt the same approximation of the PSD, they are theoretically

equivalent [1]. The Finite-size domain Complete set of trial functions Method Of Moments

(FCMOM) by Strumendo and Arastoopour [10] is another promising formulation since it

does not require specific assumptions for the distribution function and it converges fast

to the solution of the PBE. It differs from the other approaches because it still solves the

PBE in terms of its lower moments, but then reconstructs the distribution function itself

[3]. However, since the FCMOM assumes that all particles, independently of their internal

properties (e.g. size), are convected with an average phase velocity, it cannot be applied

to model size-driven segregation (indeed to model size segregation, each quadrature class

must be advected with its own velocity field).

Here, we implement the version of DQMOM developed by Mazzei et al. [13], in which

the average phase velocity is replaced with a size-conditioned velocity. To determine

the size-conditioned velocities, Mazzei et al. [13] used the averaged dynamical equations

of multiphase flows, whereas we close them constitutively using a segregation-remixing

model. The transport equations obtained from the DQMOM are then integrated within

an Eulerian-Eulerian framework and solved in a Computational Fluid Dynamics (CFD)

software.

The coupled CFD-PBE model is implemented to simulate the segregation dynamics

of an inert, dry and cohesionless polydisperse powder, initially uniformly mixed, flowing

down an inclined plane. To test the accuracy of the model, we compare its results to those

of a Discrete Element Method (DEM) model. Even if the CFD-PBE model appears to be
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complex, it predicts well the evolution in time and space of the particle size distribution

for a wide range of bed depths. Its main advantage with respect to DEM is that the

required computation time is lower.

5.2 The population balance equation

The spatial and temporal evolutions of the particulate phase internal variable distribu-

tion function can be mathematically described at the mesoscopic level by the Generalized

Population Balance Equation (GPBE) [5]. In what follows, we first express the GPBE

in terms of Volume Density Function (VDF). Then, we reduce to one the dimensional-

ity of the internal state space (see Section 5.2.1) and we approximate the VDF with a

quadrature formula (see Section 5.2.3). The reduced PBE features an unclosed term: the

size-conditioned velocity. As closure relation, we use a segregation-remixing model taken

from the literature (see Section 5.2.2). The problem reduces to solving 2n transport equa-

tions for quadrature weights and weighted nodes where n is the number of classes in the

quadrature approximation.

5.2.1 The Generalized PBE

In its classical form, the population-balance equation (PBE) is expressed in terms of the

number density function, fn (ξ;x, t) [3, 13]:

∂

∂t
fn (ξ;x, t) +∇x · [fn (ξ;x, t)v] +∇ξ ·

[

fn (ξ;x, t) ξ̇
]

= Sn (ξ;x, t) , (5.1)

where x is the position vector in real space, ξ ≡ (ξ1 ..., ξn) is the internal-coordinate vector

(or property vector) and ξ̇ is the continuous rate of change in phase space [14]. In Eq.

5.1 the terms on the left-hand side are, in order: accumulation, advection in real space

due to the velocity field v and advection in the internal state space. The source term

on the right-hand side represents discontinuous jumps in phase space due to breakage,

coalescence and/or reaction [14].

If the number density function includes also the particle-velocity vector as an inter-

nal mesoscale variable, the PBE becomes the generalized population-balance equation

(GPBE):

∂

∂t
fn (v, ξ;x, t) +∇x · [fn (v, ξ;x, t)v] +∇v · [fn (v, ξ;x, t)Ap] +

∇ξ ·
[

fn (v, ξ;x, t) ξ̇
]

= Sn (v, ξ;x, t) .

(5.2)

where Ap is the continuous rate of change of particle velocity (i.e. the velocity of the

particles in the velocity subspace). Note that in the GPBE, there are never terms of

diffusion in physical spaces. However, there could be diffusion terms in the velocity phase
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(e.g. in the case of inertial particles subjected to Brownian motion) [14]. The GPBE

can also be written in terms of volume density functions, fv (v, ξ;x, t) ≡ fn (v, ξ;x, t) vp.

Multiplying the equation above by the particle volume, vp, yields [15]:

∂

∂t
fv (v, ξ;x, t) +∇x · [fv (v, ξ;x, t)v] +∇v · [fv (v, ξ;x, t)Ap] +

∇ξ ·
[

fv (v, ξ;x, t) ξ̇
]

vp = Sv (v, ξ;x, t) .

(5.3)

Note that, in this case, the source term accounts for discontinuous jumps both in the

velocity state space due to particle collisions and in the size space caused by aggregation

and breakage. Furthermore, vp is a constant with respect to v, x and t and thus, it is not

included under the sign of partial derivation [15].

To model segregation, let us consider a particle population characterized by two inter-

nal coordinates: the particle size ξ (a scalar quantity) and the particle velocity v (a vector

quantity). The volume density function fv (v, ξ;x, t) represents the volume of particles

with size ξ in the range dξ and velocity v in the range dv that are, at time t, contained

in the volume dx around x. If neither reactions nor attrition occur (i.e. ξ does not vary

continuously and the particles have zero velocity in size space), the GPBE governing the

evolution of the volume density function for the system under investigation is [13]:

∂

∂t
fv (v, ξ;x, t) +∇x · [fv (v, ξ;x, t)v] +

∇v · [fv (v, ξ;x, t)Ap (v, ξ;x, t)] = Sv (v, ξ;x, t) .

(5.4)

Solving Eq. 5.4 is extremely difficult: it is an integro-differential equation with respect to

the internal variables and its dimensionality is higher than the classical transport equations

(it is four-dimensional in its internal state space) [3, 10, 13]. To reduce the dimensionality

of the internal state space, we integrate out the coordinate v, so Eq. 5.4 reduces to:

∂

∂t
f̂v (ξ;x, t) +∇x ·

[

f̂v (ξ;x, t) ṽ(ξ;x, t)
]

= 0 , (5.5)

where, by definition, it is:

f̂v (ξ;x, t) ≡
∫

Ωv

fv (v, ξ;x, t) dv , (5.6)

f̂v (ξ;x, t) ṽ(ξ;x, t) ≡
∫

Ωv

fv (v, ξ;x, t)vdv , (5.7)

with Ωv ≡ R denoting the domain of variation of v. In the reduced PBE (Eq. 5.5), since

the particle velocity is no longer an internal coordinate, the source term vanishes because

no discontinuous jumps take place in the size space (i.e. particles neither aggregate nor

break) and f̂v (ξ;x, t) is a monovariate VDF with particle size being its only internal state
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variable. There is, however, an unclosed term: the mean velocity conditioned on the

particle size ṽ(ξ;x, t). To close ṽ one must either solve a balance equation, as done by

Mazzei et al. [13], or use a constitutive relation. In this chapter, we employ a constitutive

relation.

5.2.2 Size-conditioned velocity

In dense, gravity-driven, free-surface flows of granular avalanches with dissimilar grains,

segregation takes place. Two are the competitive mechanisms characterising segregation:

gravity-driven size segregation and diffusive remixing caused by the random motion of

the particles as they collide and shear over one another [16–18]. Gravity-driven size seg-

regation is the combination of kinetic sieving and squeeze expulsion; it results in a net

segregating flux of the smaller particles downwards and the larger particles upwards [17].

Competing against segregation, there is diffusive remixing [18]. To account for remixing,

one includes a diffusional term in the model, and therefore an associated diffusion coeffi-

cient D. Unfortunately, there is no theory on diffusion that applies to dense polydisperse

granular flows, so here we assumed that diffusion is isotropic and that D is a constant (i.e.

it does not even depend on the particle size). Particles are then conveyed by the main

solid flow, whose velocity (i.e. the Eulerian velocity of the mixture) is governed by the

dynamical equation of the mixture.

In light of these considerations, three terms contribute to the mass flux of the particles

in a gravity-driven size segregating system: 1) a segregative flux caused by kinetic sieving

and squeeze expulsion, 2) a diffusive flux responsible for remixing and 3) an advective flux

that conveys particles down-slope. We can thus write:

f̂v(ξ;x, t)ṽ(ξ;x, t) = f̂v(ξ;x, t)vs(ξ;x, t)+

f̂v(ξ;x, t)vb(x, t)−D∇xf̂v (ξ;x, t) ,
(5.8)

where vb(x, t) is the Eulerian velocity of the solid mixture and vs(ξ;x, t) is the size-

dependent segregation velocity.

If we consider a chute flow, the coordinate system has the x-, y- and z-axis in the

stream-wise, span-wise and surface normal direction, respectively. Thus, the y-component

of the segregation velocity is much smaller than the other two components (i.e. vs,y ≈ 0

is negligible) and the segregation velocity in Cartesian index notation reads:

vs(ξ;x, t) = vs,x(ξ;x, t)ex + vs,z(ξ;x, t)ez . (5.9)

To model the x- and z-components of the segregation velocity, different segregation laws

can be employed, since a general and valid description of the continuum segregation model

is still lacking. In this study, we arbitrarily choose the expression proposed by Marks et al.
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[19]:

vs,x(ξ;x, t) = γ̇

(

g · sin θ
c

)

(fc − 1) , (5.10)

vs,z(ξ;x, t) = γ̇

(

g · cos θ
c

)

(fc − 1) , (5.11)

where g is the acceleration due to gravity, θ is the angle of inclination with respect to

the horizon, γ̇ is the shear rate and c is a coefficient of inter-particle drag with unit of

1/s−2. About c, its nature is still poorly understood, so we assume that c is constant.

We also assume that the scaling factor for the multicomponent case, fc, scales with the

characteristic length of the particle, namely with the particle size ξ [19, 20]:

fc =
ξ

∫∞
0 f̂v(ξ;x, t)ξdξ

. (5.12)

Note that one could employ other forms for the percolation velocity. Introducing Eq. 5.8

in the reduced population balance equation (Eq. 5.5) gives:

∂

∂t
f̂v +∇x ·

(

f̂vvb

)

+∇x ·
(

f̂vvs

)

−D∇2
xf̂v = 0 . (5.13)

This equation governs the evolution of the monovariate VDF, f̂v (ξ;x, t). The model relies

on two parameters: the drag coefficient (i.e. c) and the diffusivity. We will see in Section

5.2.3 that, because of the inclusion of diffusion, a source term will appear in the DQMOM

transport equations.

5.2.3 Direct Quadrature Method of Moments

There are many solution methods for population balance equations such as the method

of Laplace transform, the method of moments, the method of weighted residuals and the

Monte Carlo method [3]. However, for practical needs, knowing the evolution of the first

few moments of the VDF is enough to fulfil engineering requirements [4]. Thus, in this

study, we solve the population balance equation with the direct quadrature method of

moments. The volume density function f̂v in Eq. 5.13 is approximated as a summation of

n Dirac delta functions:

f̂v ≈
n
∑

α=1

φα(x, t)δ (ξ − ξα(x, t)) , (5.14)

where n is the number of classes of the quadrature approximation, while φα and ξα are

the weights and nodes of the α-th quadrature class, respectively.

We assume that the void fraction ε ≡ 1 − ν is uniform within the solid domain and

equal to 0.37. Thus, the overall solid volume fraction is everywhere equal to ν = 0.63.

Because of this assumption, we could work in terms of void-free VDF (i.e. the sum of its
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weights is one), and so void-free quadrature weights in the quadrature formula. From now

on, we refer to f̂v as void-free VDF. Introducing the void-free VDF as expressed in Eq.

5.14 into Eq. 5.13 gives:

∂

∂t

(

n
∑

α=1

φαδ (ξ − ξα)

)

+∇x ·
(

n
∑

α=1

φαδ (ξ − ξα)vb

)

+

∇x ·
(

n
∑

α=1

φαδ (ξ − ξα)vs,α

)

−D∇2
x

(

n
∑

α=1

φαδ (ξ − ξα)

)

= 0 ,

(5.15)

where vs,α(x, t) is the segregation velocity of the particles belonging to the quadrature

class α. Since both φα(x, t) and ξα(x, t) are functions of the real space coordinates and

the time, Eq. 5.15 yields:

n
∑

α=1

[

cφα(x, t)δ (ξ − ξα)− (cφξα (x, t)− ξαc
φ
α(x, t))δ

′ (ξ − ξα)
]

=

n
∑

α=1

[

Dδ′′φα∇xξα · ∇xξα
]

,

(5.16)

where by definition it is:

∂

∂t
φα +∇x · (φαvb) +∇x · (φαvs,α)−D∇2

xφα ≡ cφα , (5.17)

∂

∂t
σα +∇x · (σαvb) +∇x · (σαvs,α)−D∇2

xσα ≡ cσα , (5.18)

with σα ≡ (φαξα) being the α-th weighted node. Complete proof of the derivation of the

DQMOM transport equations (i.e. Eqs. 5.17 and 5.18) is given in A.3 of Appendix A.

Equation 5.16 expresses the population balance equation for a monovariate population

of particles whose size-conditioned velocity is closed as reported in Section 5.2.2. The

unknown functions are φα(x, t) and ξα(x, t), namely the weights and the nodes of the

quadrature approximation. Also, the source terms cφα(x, t) and cφξα (x, t) are unknowns,

but they can be determined by computing the moment transforms of the PBE, namely

by forcing the quadrature-based VDF to agree with the first 2n integer moments of the

actual VDF [6]. By definition, the k-th order integer moment of f̂v, with f̂v approximated

as reported in Eq. 5.14, reads:

Mk ≡
∫ ∞

0
ξkf̂v (ξ;x, t) dξ ≈

n
∑

α=1

φα(x, t)ξ
k
α(x, t) . (5.19)

If we apply this transform to each term of Eq. 5.16 (for proof, refer to A.4 of Appendix
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A), we obtain a linear algebraic system in the 2n unknown source terms cφα and cφξα :

n
∑

α=1

cφαξ
k
α + k

n
∑

α=1

(cφξα − ξαc
φ
α)ξ

k−1
α =

k(k − 1)

n
∑

α=1

Dφαξk−2
α ∇xξα · ∇xξα , k ∈ [0, 2n− 1] .

(5.20)

If we employ a two-node quadrature approximation, we obtain four source terms:































cφ1 (x, t) = −6(χ1 − χ2)(ξ1 − ξ2)
−2 ,

cφξ1 (x, t) = [2χ2(2ξ1 + ξ2)− 2χ1(ξ1 + 2ξ2)](ξ1 − ξ2)
−2 ,

cφ2 (x, t) = −cφ1 (x, t) ,
cφξ2 (x, t) = −cφξ1 (x, t) ,

(5.21)

where the subscript 1 or 2 indicates the quadrature class, and χα is equal to:

χα ≡ Dφα∇xξα · ∇xξα . (5.22)

Once the source terms are known, solving the PBE reduces to solving Eqs. 5.17 and 5.18

for each quadrature class. If one wants to track directly the evolution in time and space

of the quadrature nodes instead of the weighted nodes, the transport equation would be:

∂

∂t
ξα + vb · ∇xξα + vs,α · ∇xξα −D∇2

xξα = cξα , (5.23)

with the source term equal to:

cξα ≡ cσα − cφαξα + 2D∇xφα · ∇xξα
φα

. (5.24)

This is formally demonstrated in A.3 of Appendix A.

As explained in Mazzei [6], the diffusive terms generate the source terms. In our

case, spatial diffusion arises in the transport equations because vα has been closed using

the segregation-remixing model, which is made of two competitive mechanisms: gravity-

driven segregation and diffusive remixing. Thus, since we have diffusion, we also have

generation. Furthermore, diffusion consents micromixing: each element can interact with

the other elements within the domain so that powders are allowed to mix also at the

microscopic length scale [6, 13].
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Figure 5.1: Schematic diagram of the CFD-PBE coupled model. The PBE is solved by adopting
the DQMOM.

5.3 Multiphase fluid dynamic model

5.3.1 CFD-PBE coupling

Process operations such as storage, conveying, mixing and sizing of particles range from

small scale (e.g. pharmaceutical industries) to large scale (e.g. minerals industries). Sim-

ulating large-scale systems via DEM may be unfeasible because of the required compu-

tational effort and time. However, to cope with a full-scale industrial system, one can

use computational fluid dynamic simulations. For this reason, we developed a segregation

CFD-PBE coupled model to be implemented in a CFD code. The flowchart of the CFD-

PBE coupled model is reported in Fig. 5.1. We simulated a two-phase system consisting of

two phases: the granular mixture flowing down an inclined plane, and the air lying above

the mixture. We used the VOF modelling approach, which allows calculating the velocity

and volume fraction profiles in the two phases. The volume fraction is uniform in the

bulk of each phase, varying only near the interface between the two phases. The velocity

field in the granular phase coincides with vb, the bulk velocity featuring in the PBE (see

Eq. 5.13). Once the segregation fluxes are obtained, the PBE is solved by adopting the

DQMOM. Since segregation determines changes in the local rheology, and consequently

the flow, the nodes and weights of the quadrature approximations are then fed back into

the CFD model and used to update the local rheology of the bulk solid at the subsequent

time step.
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5.3.2 Multifluid dynamical equations

We considered a polydisperse powder flowing down an inclined plane under gravity and

in ambient conditions. We limited our investigation to a two-dimensional incompressible

granular flow. As already mentioned, we assumed that the mean solid volume fraction

is constant within the powder bed [21]. Because of these assumptions, the polydisperse

granular material can be represented as a single continuous phase. The second phase is

instead superficial ambient air. The two phases do not interpenetrate, and mass transfer

does not occur.

As Eulerian-Eulerian multiphase model, we employed the coupled level-set and volume

of fluid (VOF) method, a numerical technique designed for immiscible fluids that allows

tracking the position of the interface. In the VOF method, pressure and velocity field are

found by solving the mass and momentum conservation equations (Eqs. 2.20 and 2.21)

with density and viscosity defined respectively as:

ρ = (1− αs)ρair + αsρs , (5.25)

η = (1− αs)ηair + αsηs , (5.26)

where αs is the volume fraction of solid. The discontinuity across the interface is smooth,

whereas, away from the interface, air and solid maintain their characteristic properties

[22, 23]. The volume fraction of the solid phase is obtained by solving the transport

equation:
∂αs

∂t
+∇ · (αsu) = 0 , (5.27)

whereas, the volume fraction of air is αair = 1−αs . As concerns the interface between air

and solid, it is captured by the level-set method (see Section 2.3.3).

5.3.3 Effective stress tensor

The closure of the effective stress tensor is achieved by the implementation of the incom-

pressible µ(I)− rheology proposed by the Groupement De Recherche Milieux Divisés [24]

since it is a well-established rheology for chute flows. As discussed in Section 2.2.2.2,

the incompressible µ(I) rheology states that the friction coefficient µ is rate-dependent

and scales with the inertial number I (see Eq. 2.41) [24, 25]. For polydisperse granular

materials, we proposed the following expression for I:

I =
D̄γ̇
√

p/ρ∗
, (5.28)

where D̄ is the average diameter of the PSD (see Eq. 2.50). Note that, to implement this

rheology in Ansys Fluent, we resorted to customized user defined functions.
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Figure 5.2: On the left: a sketch of the simulated system and the coordinate system. The blue
shaded area represents the solid phase and θ is the inclination angle of the chute. On the right: a
piece of the 2D mesh employed in the CFD simulation.

5.4 Materials and methods

5.4.1 CFD implementation

The CFD-PBE coupled model was implemented in a CFD code to predict the evolution

of the PSD of a polydisperse system flowing down an inclined plane. This section gives

detailed information about the framework and numerical scheme.

5.4.1.1 Framework

We considered a polydisperse powder flowing down an inclined plane. The angle of incli-

nation is θ = 30o with respect to the horizon and the powder is subjected to gravity. Fig.

5.2 reports a sketch of the system. The granular material is represented as a single solid

phase, with a bulk density equal to ρs = 1260 kg/m3. This choice is motivated by the fact

that the solid volume fraction is assumed uniform and constant within the powder bed.

Even though all the particles are advected within the bulk flow, we could track the down-

ward relative motion between particles of different sizes thanks to the DQMOM transport

equations (see Section 5.2.3). The primary phase, air, is represented with a density of

1.225 kg/m3 and a viscosity of 1.7894·10−5 Pa s.

5.4.1.2 Numerical scheme

To run the simulations, we used the commercial CFD code Ansys Fluent 17.2. As multi-

fluid model, we employed the coupled level-set and volume of fluid method. The primary

phase is ambient air whereas the secondary phase is the bulk solid. The solid phase is

composed of a polydisperse mixture of grains whose particle size distribution is approxi-

mated with a two-node quadrature formula. The quadrature weights and the quadrature

weighted nodes were treated as user scalars, and their transport equations (Eqs. 5.17 and
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5.18) were added to the default equations of the code. We also implemented the closure

for the solid frictional viscosity through user-defined functions.

We used the pressure-based solver, which is recommended for low-speed incompressible

flows. To convert scalar transport equations into algebraic equations that are numerically

solvable, the code adopts a finite-volume discretization scheme. For what concerns spatial

discretization, we used the Least Squares Cell-Based algorithm. We set a second-order

accurate level-set method, whereas momentum and user-defined scalars were discretized

through a first-order upwind scheme. Temporal discretization was first-order accurate and

implicit. To couple pressure and velocity, we adopted the SIMPLE (Simultaneous Solution

of Non-linearly Coupled Equations) algorithm. We then adopted the compressive interface

capturing scheme, which is particularly suitable for flows with high ratios of viscosities

between the phases. The pressure values at the cell face were interpolated by a body-force-

weighted scheme. To compute the flow variables, we used a maximum of 20 iterations for

each time step. Setting the tolerance of all the variables equal to 10−3, we usually attained

convergence within the iteration limit. The time step was set to 10−3 s.

5.4.1.3 Boundary and initial conditions

The simulation domain is an inclined chute 1 m long and 3 cm high represented as a

two-dimension computational grid. The effect of the front and back walls is therefore

neglected. The mesh is uniform almost everywhere, with 15090 cells of 2 x 1 mm size (see

Fig. 5.2). We assigned a no-slip boundary condition at the bottom wall [26, 27] and 100

Pa gauge pressure at the domain upper boundary and outlet boundary. Concerning the

inflow, after several trial experiments, we saw that a good feed rate to induce a stable flow

[27] can be obtained by imposing a constant inlet velocity of 0.35 m/s for the solid phase.

In its initial state, the bulk solid is uniformly well-mixed and fill the chute height up to

H = 1.5 cm. To assign the initial conditions, we need to know the values of the n quadra-

ture weights and n quadrature nodes at time 0 and everywhere within the computational

domain. For this purpose, we had first to calculate the first 2n order moments by imple-

menting Eq. 5.19 to the volume density function of the particle size distribution (which

is known). Since the quadrature approximation is Gaussian, the quadrature nodes and

weights can be efficiently obtained from the moments of the density function by adopting

the product-difference algorithm of Gordon [7]. Fig. 5.3 shows the continuous particle

size distribution of our granular system considering 10 different size classes (in reality the

PSD is usually determined by sieve analysis and thus expressed in terms of discrete sizes)

and its two-node representation. The values of its first four integer moments are reported,

together with quadrature nodes and weights, in Tab. 5.1. Note that the zeroth-order

moment is equal to one since we are considering a void-free VDF. Finally, since the inflow

is constant and uniform, we imposed constant fluxes of the user-defined scalars at the solid

inlet.

We ran the CFD simulation assuming constant drag and diffusion coefficients. Fol-
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Figure 5.3: The simulated PSD is expressed in terms of 10 different size classes and a two-
node representation. The positions and the heights of the vertical lines represent the Dirac delta
functions of the quadrature formula.

Moments of the VDF

M0 [-] M1 [mm] M2 [mm2] M3 [mm3]

1 1.2535 1.6440 2.2346

Quadrature nodes and weights

ξ1 [mm] φ1 [-] ξ2 [mm] φ2 [-]

0.92 0.394 1.47 0.606

Table 5.1: Values of the VDF moments, quadrature nodes and weights obtained from the PSD
reported in Fig. 5.3

lowing Marks et al. [19], the diffusion coefficient had to be of the order of magnitude of

D ∼ 10−5 m2/s. About the drag coefficient, suitable values that lead to reasonable seg-

regation velocities are about c ∼ 104 − 105 s−2. Thus, we imposed D = 1.2 · 10−5 m2s−1

and c = 6 · 104 s−2. Furthermore, we set µs = 0.176, µ2 = 0.643 and I0 = 0.279.

5.4.2 DEM validation

The challenge is to validate the results of the CFD-PBE coupled model. A valuable tool to

test and calibrate continuum models when experimental observations are unfeasible (e.g.

it is difficult to measure the evolving particle-size distribution of polydisperse systems

during flow) is represented by Discrete Element Method (DEM) simulations [28]. The

3D soft-sphere simulation was implemented in LIGGGHTS R©-PUBLIC. As contact force

model, we employed the non-linear spring-dashpot model developed by Hertz and Mindlin

[29, 30] with constant directional torque (for detail refer to Section 2.2.1). We simulated

only a sector of the full geometry thus, periodic boundary conditions were imposed in

both the stream-wise (x) and span-wise (y) directions. To avoid plug flow, the bottom
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Variable Symbol Value

Particle density [kg/m3] ρ∗s 2000

Young’s modulus [MPa] E 26

Poisson ratio σ 0.25

Sliding friction coefficient µs 0.56

Rolling friction coefficient µr 0.001

Restitution coefficient en 0.60

Number of particles NT 3000

Time step [s] ∆t 1e−6

Boundary conditions − p p f

Table 5.2: A summary of the DEM simulation parameters. The Young’s modulus, Poisson ratio
and restitution coefficient are taken from Jain et al. [32].

wall must be a rough surface. To model roughness, we fixed some particles to the base

[31].

The system was filled with a total of 3000 particles, all having the same intrinsic

density (ρ∗ = 2000kg/m3). Unlike Marks et al. [19], who simulated a polydisperse mixture

of spheres distributed uniformly, we implemented a non-uniform particle size distribution

(i.e. the 10 different size classes reported in Fig. 5.3). The computational time step

was set equal to 10−6 s, smaller than the critical time step (see 2.2.1.3). The simulation

parameters and the material properties are summarized in Tab. 5.2.

The simulation was initialized with gravitational acceleration acting in the negative z-

direction (i.e. the plane is horizontal). The particles were generated within the simulation

domain and let settle by gravity. Once settled, the gravity vector was rotated to simulate

the inclination angle θ. At that point, particles started to avalanche down-slope.

5.5 Results and discussion

In this section, we report in order: the results from the CFD simulation, the results from

the DEM simulation and their comparison. In both cases, to evaluate segregation, we

divide the domain into three superimposed layers: a bottom layer, a top layer and a

middle layer sandwiched in between. Each layer is 4 mm high in the z-direction.

5.5.1 CFD-PBE coupled model simulations

Let us consider three investigation windows referred to as A, B and C that are located

close to the inlet, in the middle, and near the outlet of the domain, respectively. A visual

representation of these windows can be seen in Fig. 5.4, whereas Figs. 5.5 and 5.6 represent

the profiles of the quadrature weights and quadrature nodes in the three locations after 1

and 8 seconds, respectively. We can see that the segregation features enhance with time
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Figure 5.4: Sketch of the simulation domain. A, B and C indicate the three locations where the
quadrature weights and quadrature nodes are mapped in Figs. 5.5 and 5.6.

and along the flow direction until a steady-state configuration is reached. Furthermore,

closer to the bottom wall the flow is enriched with smaller particles.

As already mentioned, the CFD simulations give as output the values of the quadrature

weights and nodes in each computational cell of the domain. From these values, we can

obtain the cell values of the first four integer moments by implementing Eq. 5.19. Starting

from the numerical profiles of the VDF moments, we can then determine the average values

of the moment in each layer of the computational domain. As an example, Fig. 5.7 shows

the evolution in time of the first raw moment, which represents the mean particle diameter,

considering an investigation window positioned 0.8± 0.1 m from the inlet (as the inflow is

constant and homogeneous). We can distinguish three inversely graded segregated layers

characterized by finer particles at the bottom, coarser grains on top, and medium-sized

particles in between. This means that, as expected, smaller particles have, on average, a

net downward motion. Particles segregate by size and segregation is even more pronounced

at the bottom where the shear rate is higher. The corresponding average values of the two

quadrature nodes evolving in time, still for the three layers, is shown in Figs. 5.8 and 5.9.

5.5.2 DEM simulation

The DEM simulation treats a section 2 cm long and 1 cm wide of the full geometry

considered in the CFD simulation; this is because simulating the entire geometry would

require more than 1.5 · 105 particles.

Fig. 5.10 displays three snapshots of the simulation, where the different colours denote

different sized particles. At time t = 0 s particles are homogeneously distributed, whereas

at time t = 6 s the system has already reached its final steady state.

Unlike continuum models, the results of DEM simulations yield the position of each

particle at any given time. This allowed us to determine the numerical fraction of each

size class in each layer, to reconstruct the PSD in terms of volume density function (see.

Fig. 5.11), and to calculate the first four moments of the distribution. The smaller

particles collect preferentially close to the bottom, whereas the top is richer in bigger

particles. From the VDF moments, we back-calculated the two weights and two nodes of

the distribution by employing the product-difference algorithm of Gordon [33]. These are

used in the following section for model validation.
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Figure 5.5: Contour plot of (by row) the quadrature weights and quadrature nodes at t = 1s and
(by column) at the three different locations represented in Fig. 5.4.
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Figure 5.6: Contour plot of (by row) the quadrature weights and quadrature nodes at t = 8s and
(by column) at the three different locations represented in Fig. 5.4.
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Figure 5.7: Evolution of the first-order moment of the PSD in the bottom, middle and top layers
obtained by solving the CFD-PBE coupled model.

Figure 5.8: Evolution of the first quadrature node in the bottom, middle and top layer obtained
by solving the CFD-PBE coupled model.

5.5.3 Confirming the model

First, we wanted to verify that the velocity field is correctly predicted by the rheological

model. We, therefore, performed preliminary simulations both in CFD and DEM con-

sidering a monodisperse bed of particles, all having diameters equal to the mean particle

diameter of the distribution reported in Fig. 5.3 (i.e. D̄ = 1.25 mm). Fig. 5.12 shows

the streamwise velocity profile (i.e. the x component of the velocity vector as a function

of the z coordinate) of the mono-sized bed of grains at steady state in the two cases. The

velocity profiles agree, with an R-squared value of 0.994. Thus the shear rate profile, which

induces segregation, must be similar, and the two granular flows comparable.

Fig. 5.13 reports the evolution of quadrature weights (first column) and weighted
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Figure 5.9: Evolution of the second quadrature node in the bottom, middle and top layer obtained
by solving the CFD-PBE coupled model.

Figure 5.10: Snapshots from the DEM simulation. The system is filled with 3000 particles
characterized by the volume density PSD reported in Fig. 5.3. The colours denote the particle
diameter. At t = 0 s, the sample is well mixed. At time t = 6 s, the system has reached steady-state
and the segregation profile has fully developed.

nodes (second column) obtained from both our CFD-PBE coupled model (coloured lines)

and DEM simulations (black lines). The results refer to the top, middle and bottom layers

and show that segregation is less pronounced on top, where the shear rate is smaller, and

increases as the bottom wall is approached. The CFD-PBE coupled model predicts well

the evolution of both weights and weighted nodes in the middle and top layers, but not in

the bottom layer. This disagreement will be discussed in the following section.

Figs. 5.14, 5.15 and 5.16 report the PSDs and their two-node quadrature representa-

tions achieved after 6 s in the bottom, middle and top layers, respectively. The vertical

lines, whose positions and heights are the quadrature nodes and quadrature weights, rep-

resent the Dirac delta functions of the quadrature formulas. As we can see, the results

of the CFD-PBE and DEM simulations agree very well in the middle layer, and quite

well in the top layer. However, the results differ in the bottom layer. There, the positions
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Figure 5.11: Particle size distribution at t = 0 s (black line), and after 6 s (coloured lines) in the
three layers from DEM simulations.

indicate the quadrature nodes are over-estimated. Moreover, if the weight of the first node

is overestimated, the weight of the second node is underestimated.

Thus, despite our CFD-PBE coupled model works for a range of conditions, it fails

under some circumstances. The limitations of our model are not directly related to the

CFD-PBE framework but rather to the assumptions we made of: constant and isotropic

diffusion, constant drag coefficient, and uniform and constant bed porosity.

5.5.4 Discussion

In this section, we justify the observed discrepancies on theoretical grounds by examining

the assumptions we employed in the CFD-PBE model regarding diffusion, drag coefficient

and bed porosity.

In granular flows, diffusion has mainly been studied for monodisperse particle systems.

According to Utter and Behringer [34], who studied the random motion of monodisperse

grains in a two-dimensional Couette shearing experiment, the self-diffusivity is propor-

tional to the local shear rate and the square of the particle radius (i.e. D ∝ γ̇d2). In

chute flows of bidisperse disks, Berton et al. [35] observed that the diffusive process is

independent of the particle size and that the diffusion coefficient associated with each

layer increases linearly with the layer height. Since the shear rate decreases when the

height increases, being maximum at the wall, it follows that D should not depend on the

particle size and should decrease with the shear rate. This disagrees with what Utter and

Behringer [34] reported. More recently, Chassagne et al. [36] showed that the diffusion

coefficient should depend on the inertial number.

The articles just cited reveal that the process of particle diffusion in dense monodisperse

granular media is still unclear and reliable constitutive equations are unavailable. For

dense polydisperse granular media, this is all the more true [36]. This is why we decided
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Figure 5.12: Comparison of the dimensionless streamwise velocity profile as a function of z/dp
obtained with DEM and CFD simulations.

to model the process as isotropic using a constant coefficient of diffusion. To better address

the problem of inhomogeneous diffusion coefficients, one could carry out simulations based

on a classical random walk [35].

In this work, we further assumed a linear drag law with constant drag coefficient c,

even though c is expected to be a function of the Reynolds number (Re), Froude number

(Fr), particle concentration, particle size, restitution coefficient and flow depth [37, 38].

The absence of constitutive equations accounting for these dependencies [19] justifies our

modelling choice.

Finally, even if it is well-known that the packing porosity varies with the size distri-

bution of the materials involved [39], we neglected this effect. Accounting for variations

in the local porosity would require a more expensive multiphase model than the coupled

level-set and volume of fluid (VOF) method.

To prove that the inconsistency of the results is due to the assumptions we made and

not to the CFD-PBE coupling framework, we have reported in Fig. 5.17 the evolution

of weights and weighted nodes obtained at the bottom layer for different values of the

parameters D and a constant value of the drag coefficient (i.e. c = 6·104 s−1). As expected,

the higher the diffusion coefficient, the lower the degree of segregation. Analogously, Fig.

5.18 reports the evolution of weights and weighted nodes obtained at the bottom layer for

different values of the drag coefficient and same diffusion (i.e. D = 1.2 · 10−5m2s−1). At

increasing values of the drag coefficient, the segregation process becomes slower and less

pronounced. Thus, to quantitatively change the results in the bottom layer, one should

at least define drag and diffusion coefficients as functions of the bed depth.

All these considerations suggest that the main features of the CFD-PBE model are

correct; the evolution of weights and weighted nodes is well predicted for a high portion

of the flow depth. Nevertheless, to improve the accuracy of the model, in particular in the
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Figure 5.13: Evolution of the quadrature weights (on the left) and weighted nodes (on the right)
obtained from the segregation CFD-PBE coupled model (coloured lines) and the DEM simulation
(black line). The results refer to the top, middle and bottom layers.
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Figure 5.14: PSD at the bottom of the chute after t = 6 s. The red lines represent the two-
node representation obtained from the DEM simulation, while the green lines are the two-node
representation obtained from the CFD simulation.

Figure 5.15: PSD in the middle layer at t = 6 s. The red lines represent the two-node represen-
tation obtained from the DEM simulation, while the orange lines are the two-node representation
obtained from the CFD simulation.
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Figure 5.16: PSD in the top layer at t = 6 s. The red lines represent the two-node representation
obtained from the DEM simulation, while the blue lines are the two-node representation obtained
from the CFD simulation.

region close to the wall, we must describe the gravity-induced segregation process and the

shear-induced diffusion process more accurately. This requires more physical insight into

these processes and more reliable constitutive equations.

5.6 Conclusions

In this chapter, we presented a new CFD-PBE coupled model for describing segregation in

dense polydisperse granular flows. The PBE was solved with the direct quadrature method

of moments proposed by Marchisio and Fox [12]. We adopted a two-node quadrature

approximation of the particle size distribution and used a segregation-remixing model to

close the size-conditioned particle velocity. The 2n resulting transport equations were then

implemented in Ansys fluent. To track the interface between the granular medium and

air, we used the coupled level-set and VOF method. To determine the velocity field in the

granular mixture, we employed the rheological model of Jop et al. [25]. To test the model,

we modelled segregation in a granular mixture with an arbitrary polydisperse grain size

distribution flowing down an inclined plane and we compared the results to those of DEM

simulations. This geometry was chosen for its importance and simplicity but our results

should be broadly applicable to other dense granular flows.

We found that, the CFD-PBE coupled model predicts reasonably well the segregation

process. It has a considerable benefit and, unlike DEM, allows simulating large polydis-

perse powder systems with reasonable computational cost. This is a relevant step forward

for the scale-up and design of all those industrial applications that employ granular ma-

terials in large quantities as it happens, for instance, in agriculture, chemical engineering

industries and mining.
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Figure 5.17: Evolution of weights (on the left) and weighted nodes (on the right) in the bottom
layer obtained with constant drag (c = 6 · 104s−1) and different values of the parameters D using
the CFD-PBE coupled model. The solid black lines represent the DEM results and are reported
for comparison.

Figure 5.18: Evolution of weights (on the left) and weighted nodes (on the right) in the bottom
layer obtained with different values of the drag coefficient and same diffusivity (D = 10−5m2s−1)
using the CFD-PBE coupled model. The solid black lines represent the DEM results and are
reported for comparison.

Despite its advantages, the model has a few drawbacks. The employed segregation-

remixing model relies on a drag coefficient and a diffusion coefficient that we set as con-

stants. This is because, even though there are a lot of studies, results are often contro-

versial, and many fundamental questions still remain to be answered. Further research is

needed to gain a better understanding of the effect of diffusivity and drag coefficient.
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Chapter 6

Density-driven segregation

Among the different particle properties that can drive segregation, there is particle den-

sity. Unlike the previous chapters, this one focuses on density-driven segregation in dense

bidisperse mixtures of particles under non-uniform shear rates.

This work was done with the help and assistance of Dr Riccardo Artoni and Dr Patrick

Richard from the Gustave Eiffel University, in France. The experiments were carried out

in the Aggregates and Materials Processing Laboratory (GPEM) of IFSTTAR, site of

Nantes.

Parts of this chapter have been published:

M. Tirapelle, A. C. Santomaso, P. Richard, and R. Artoni (2021a). Experimental inves-

tigation and numerical modelling of density-driven segregation in an annular shear cell.

Advanced Powder Technology, 32, 1305–1317, https://doi.org/10.1016/j.apt.2021.02.020.

M. Tirapelle, A. C. Santomaso, P. Richard, and R. Artoni (2021b). Shear-driven density

segregation: an experimental study. In EPJ Web of Conferences, 249, 03021. EDP

Sciences, https://doi.org/10.1051/epjconf/202124903021.

6.1 Introduction

Granular materials composed of particles with different sizes, densities, shapes, or surface

properties may experience unexpected segregation when subjected to process vibration or

shear [1]. Even though particle size is known to be the most relevant factor determining

segregation, the effect of large density differences may also be of importance for some

industries. Because of density-driven segregation, lighter particles are likely to rise, heavier

particles sink, and the mixture un-mixes [2].

Several studies have been conducted with a view to understanding density-driven seg-

regation in dense granular flows using both experiments [3–9] and the Discrete Element

Method simulations [10–14]. Furthermore, numerous theoretical models have been re-
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ported in the literature [9, 11, 12, 14, 15]. In developing such models, two different ap-

proaches have been used. The first one, which is based on the Kinetic Theory of Granular

Flow (KTGF), predicts well segregation in the case of low or moderate solid fractions,

however, it breaks down quantitatively in the case of densely packed flows [13]. The sec-

ond type of models, which are based on a hydrodynamic balance of forces (i.e. drag and

buoyancy), can successfully reproduce gravity-driven segregation although they are phe-

nomenologically based [2, 11]. Density-driven segregation has been studied in a variety of

systems, among which there are fluidized beds [16, 17], vertically vibrated cylinders [18],

rotating cylinders [8, 19, 20], inclined chutes [10, 12, 15], split-bottom cells [7] and shear

cells [21–24].

In this chapter, we experimentally investigate density-difference-driven segregation for

a range of density ratios and a range of mixture composition. The experiments are con-

ducted in an annular shear cell with rotating bumpy bottom that yields an exponential

shear profile. The cell is similar to that used in Savage and Sayed [21] and Wildman et al.

[22]; furthermore, it has been used by May et al. [23] to study shear-driven size segregation

and by Artoni et al. [24] to assess stresses, shear localization and wall friction of confined

dense granular flows. We have chosen this geometry because of its numerous advantages.

It determines a continuous granular flow with well-defined initial and final states. More-

over, the velocity profile that develops within the powder bed decays exponentially with

depth (from the rotating shearing bottom to the top lid) determining a non-uniform shear

rate. To the author’s knowledge, nobody has studied density-driven segregation in this

type of system before.

Here, we also develop a continuum model for describing density-driven segregation of

dense granular flows that is based on a balance of forces. We use a segregation-diffusion

transport equation, constitutive relations for the closure of effective viscosity and friction

coefficient, and a segregation velocity analogous to Stokes’ law. The model, which is

validated against experimental findings, can successfully predict density-driven segregation

at different density ratios and component volumetric fractions, provided that, the degree

of exponential decay appearing in the velocity profile is correctly estimated. We have also

found that density segregation is very sensitive to the shear localization features and that,

at low load, a transverse friction coefficient may induce a three-dimensional flow pattern.

6.2 Experimental campaign

The experiments were designed to investigate density-driven segregation in binary mixtures

of equal-sized particles with different densities, for a range of density ratios, δR, and initial

mixture compositions. In this section, we provide detailed information about experimental

set-up, employed materials and measurement methods.
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Figure 6.1: (On the left) Sketch of the annular shear cell and the coordinate system. Particles
are filled in the annular region with a thickness equal to ∆R in between the two horizontal bumpy
walls. The bottom wall rotates at a rotational speed Ω; whereas on the top lid, an additional load
is applied. (On the right) Photograph of the experimental setup filled with a 50:50 mix of grains
by volume.

6.2.1 Experimental set-up and operative conditions

The experiments are performed in an annular shear cell with a rotating bottom and an

overloaded top wall. The cell is made of two coaxial poly-methyl methacrylate (PMMA)

cylinders. The smallest cylinder has outer diameter equal to 90 mm, whereas the largest

cylinder has inner diameter equal to 190 mm. The annular region is therefore 50 mm

thick. The top and bottom walls are 3D printed in poly-lactic acid (PLA). To increase

the friction between walls and grains and to reduce sliding, the walls were designed with

hemispheres of diameter 6 mm placed on a continuous random triangulation with a mean

distance of 12 mm between their edges. The bottom wall is fixed on a rotating plate that

rotates at a constant rotational speed of Ω = 23.44 rpm. The top wall is free to move

vertically, but cannot rotate. On top, a load of Mw = 1.093 kg provides confinement. A

sketch of the experimental apparatus is reported in Fig. 6.1.

The experiments are conducted with binary mixtures of same-sized spherical particles

of diameter dp ≈ 6 mm and different densities. We employed particles made of Stainless

Steel, Ceramic, Glass, filled Polyoxymethylene and Polypropylene (see Fig. 6.2). At the

beginning of each experiment, the cell is filled with a layer of light particles crowned by

an upper layer of more massive particles, for a total bed height of H = 90 mm, namely 15

particle diameters (see Fig 6.1-on the right).

Table 6.1 shows all the combinations of density ratio and heavy particle volumetric

fraction, φh,0, for which segregation has been evaluated. For each test, the amount of

grains filled in the cell, Mg, is reported in kg.
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Steel - 7.80 g/cm3 Ceramic - 3.05 g/cm3 Glass - 2.45 g/cm3

POM - 1.75 g/cm3 PP - 0.95 g/cm3

Figure 6.2: Photographs of the materials and their corresponding densities. In order: Steel,
Ceramic, Glass, filled Polyoxymethylene and Polypropylene. Their particle diameters are: 6.0 ±
0.025 mm for steel, 6.0± 1.0 mm for ceramic (however we measured d10 = 5.6 mm and d90 = 6.3
mm), 6.0 ± 0.3 mm for glass, 5.9 ± 0.1 mm for filled Polyoxymethylene and 6.0 ± 0.05 mm for
Polypropylene.

Mg [kg]

ID Heavy p. Light p. δR 10% 25% 50% 75% 90%

S-PP Steel Polypropylene 8.25 –––– –––– 5.25 7.30 8.54

S-POM Steel Filled POM 4.46 2.83 3.92 5.73 7.55 8.64

C-PP Ceramic Polypropylene 3.70 –––– –––– 2.67 3.43 3.89

G-PP Glass Polypropylene 2.59 –––– –––– 2.04 2.49 2.76

POM-PP Filled POM Polypropylene 1.85 –––– –––– 1.62 –––– ––––

G-POM Glass Filled POM 1.40 –––– –––– 2.52 –––– ––––

Table 6.1: Details of the experimental conditions. The columns report, from left to right, the
combination ID, the heavy component, the light component, their density ratio δR and φh,0. For
the tested combinations, the total mass of grains Mg filled in the cell is reported in kg.
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6.2.2 Post-processing image analysis

The segregation process is filmed through the transparent side-wall by a commercial cam-

era (a GoPro Hero 4 black) running at 0.5 or 1.5 fps. In the case of δR = 1.40, 1.85 and

2.59, indeed, the segregation process is such slow that 0.5 fps is small enough to capture

the main features of segregation. At the two sides of the camera, two homogeneous light-

emitting diodes (LED) light the system. Once taken, the images are transferred from the

camera to the computer and subjected to post-processing image analysis.

The procedure for the post-processing image analysis consists of un-distorting, crop-

ping and converting from the RGB colour space to Grey each frame. The particles are

detected thanks to the HoughCircles tool [25], which gives as output the diameters of the

particles and the coordinates of their centres. To discern heavy and light particles, the

cropped RGB images are also converted in the HSV or LAB colour-space and subjected

to threshold segmentation. These images are used as masks for discriminating between

different material types. An example of a processed frame is shown in Fig. 6.3. On the

left, we can see the frame after being undistorted. On the right, we can see the detected

particles, differentiated by type (i.e. Steel and Polypropylene).

Once the type and position of each particle in each frame is determined, the temporal

evolution of the heavy particle concentration through the depth of the cell is reconstructed.

The investigation window spans the entire height of the particle bed (H = 15dp) and is

9dp wide (i.e. small enough to reduce the effect of the wall curvature). This window is

subdivided into 15 discrete horizontal layers, each one being one particle diameter high.

The concentration of the heavy component in a given layer is calculated as the number

fraction of heavy particles having their centre within that layer. To reduce the noise in

the concentration profiles, the moving average technique is applied over time.

Figure 6.3: On the left: an example of a cropped and undistorted picture. On the right: the
draw of the detected particles distinguished for density.
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6.3 Density-driven segregation model

In this section, we propose a new continuum model for describing the density-driven

segregation of dense granular flows. The model, which is based on a balance of forces,

is similar to the segregation model previously proposed by Tripathi and Khakhar [11],

however, our formulation is characterized by a significant reduction in complexity: we

introduce neither the effective temperature nor a coupling with a rheological model for

describing the flow field.

6.3.1 Segregation velocity

Let us consider a heavy particle having diameter dp and intrinsic density ρ∗h in a medium

composed of lighter particles with the same diameter and intrinsic density ρ∗l . At steady-

state, the force of gravity is balanced by a buoyancy force and a viscous drag force:

Fg = Fb + Fd . (6.1)

If we model each term of the above formulation, we obtain:

π

6
d3pρ

∗
hg =

π

6
d3pρ̄g + 6πη

dp
2
wh , (6.2)

where g = 9.81 m/s2 is the gravitational acceleration that acts in the direction of fall, ρ̄

is the averaged intrinsic density of the solid mixture and wh is the falling (or segregation)

velocity. For a binary mixture of different density particles, and considering constant

overall solid volume fraction, ρ̄ is obtained by weighting the intrinsic density of each

component by the corresponding volumetric fraction (see Eq. 2.52):

ρ̄ = ρ∗hφh + ρ∗l φl . (6.3)

Thus, solving Eq. 6.2 for the falling velocity of the heavy particle yields:

wh =
d2pg

18η
[(1− φh) (ρ

∗
h − ρ∗l )] . (6.4)

It is worthwhile to highlight that this velocity is analogous to the terminal velocity of

a sphere that falls under gravity in a viscous medium as predicted by Stokes’ law [26].

After manipulation, we obtain the following segregation velocities for the heavy and light

components when subjected to shear in a dense bi-dispersed granular flow:

wh = k
d2pg

18η

[

ρ∗h (1− φh)

(

1− 1

δR

)]

, (6.5)

wl = k
d2pg

18η
[ρ∗l (1− φl) (1− δR)] . (6.6)
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These formulas reveal that the higher the density difference, the higher the driving force

leading to segregation. Moreover, segregation is faster when a particle is surrounded by a

larger amount of grains of the other component. The proportionality parameter k accounts

for the fact that in a binary mixture of grains, particles are not diluted. Furthermore,

different frictional properties may influence the particle flow behaviour. To model seg-

regation, those segregation velocities should be implemented within advection-diffusion

segregation equations.

6.3.2 Segregation equation

For describing the changes in the local constituent concentration due to segregation, each

species has to satisfy a transport equation (see Eq. 2.57). In an annular shear cell,

segregation is significant only along the direction of gravity thus, the advection-diffusion

segregation equation becomes:

∂φi
∂t

+
∂

∂x
uφi +

∂

∂y
vφi +

∂

∂z
wφi = −∂wiφi

∂z
+

∂

∂z

(

D∂φi
∂z

)

, (6.7)

where the subscript i can be h or l for heavy and light components, respectively, wi is

the segregation velocity (i.e. Eqs. 6.5 and 6.6), D is the diffusion coefficient and the

velocity v = (u, v, w) is the velocity of the bulk solid. Since in an annular shear cell, the

flow is basically unidirectional in the azimuthal direction θ and varies only in the vertical

z-direction, the bulk velocity reads v = (0, v(z), 0) and Eq. 6.7 reduces to a 1D transport

equation for the volume concentration:

∂φi
∂t

= −∂wiφi
∂z

+
∂

∂z

(

D∂φi
∂z

)

. (6.8)

The diffusion coefficient in Eq. 6.8 accounts for the random particle motion. It is

due to random particle collisions and it depends on local shear rate and particle diameter

[11, 27]. The dependence of D on the overburden pressure is negligible in the case of both

size and density bi-dispersed flow [28]. Thus, we express D as [27]:

D = bγ̇dp
2 , (6.9)

where b is a constant that is usually assumed to be equal to 0.041 [27]. To characterize the

shear rate γ̇, the velocity field must be known. Instead of solving the momentum equation

(the inclusion of density differences within the momentum equation would have implied

that the velocity field is compressible and would have led to more complex models), the

velocity field is determined directly from analytic solutions.

In an annular shear cell, the velocity profile of the particles in a monodisperse material

decays exponentially with the bed height so that it is well described by an exponential
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profile of the type [23, 24]:

v(z) = v1 + (v0 − v1) exp
(

−z
δ

)

, (6.10)

where v is the particles horizontal velocity, v0 and v1 are the velocities of the bottom

wall and the slip velocity at the top wall, respectively; and δ is the coefficient of the

exponential decay that depends linearly on particle size [24]. Since there is no information

in the literature, we assume that the velocity has the same profile also in the case of

density bidisperse mixtures. Owing to the non-uniformity of the velocity gradient, the

shear stress is not constant throughout the domain. To obtain the shear rate, the velocity

profile is differentiated as:

γ̇(z) =
dv

dz
=

d

dz

[

v1 + (v0 − v1) exp
(

−z
δ

)]

. (6.11)

Since the velocity profile is approximately time-independent, except for an initial transient

[23], we considered the shear rate profile time-invariant.

6.3.3 Constitutive relations

In its definition, the segregation velocity contains the effective solid viscosity, η. To close

the effective viscosity, we have implemented the law proposed by Jop et al. [29] that reads:

η(|γ̇|, p) = µ(I)p

|γ̇| , (6.12)

where µ is the friction coefficient and p is the local pressure [29]. This relation holds true in

the intermediate dense regime of flow, that is the regime observed in our experiments. The

closure of µ(I) is achieved by implementing the original µ(I)−rheology proposed by the

Groupement De Recherche Milieux Divisès [30] with µmin = tan(20.90o), µ2 = tan(32.76o)

and I0 = 0.36. As discussed in Section 2.2.2.2, the µ(I)−rheology states that the friction

coefficient is rate-dependent and scales with the inertial number I [29, 30]. For density

bidisperse granular materials, we have proposed a new expression for I as a function of

the local averaged density of the solid mixture:

I = |γ̇|dp
√

ρ̄

p
. (6.13)

The pressure, which appears in both Eq. 6.12 and Eq. 6.13, evolves in time and varies

with depth according to:

p(z, t) = pload + g

∫ H

h

ρb(z, t)dz , (6.14)
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where pload is the pressure load due to the loading force applied on the top wall and ρb(z, t)

is the bulk density. The bulk density reads:

ρb(z, t) = ρ̄(z, t)ν . (6.15)

The overall solid volume fraction, namely ν, is assumed constant and set equal to 0.6.

The assumption of being constant is reasonable since the bed is confined by an overload.

Furthermore, unlike size segregation, the local porosity does not change accordingly to the

local concentration of each species (i.e. all particles have the same diameter). Note that,

the value ν = 0.6 comes from experimental evidence.

6.3.4 Initial and boundary conditions

The continuum model is implemented in a finite element commercial code (COMSOL

multiphysics) to predict segregation driven by density in binary mixtures of particles,

for the same density ratios and initial particle concentrations that have been investigated

experimentally. The initial condition corresponds to the initial experimental configuration,

so the heavy particle concentration in space, at time t = 0, is represented with the following

step function:

φh(z, 0) =







0 0 ≤ z ≤ z̄

1 z̄ ≤ z ≤ H .
(6.16)

The location of the interface between light and heavy components, z̄, depends on the

initial mixture composition. Across z̄, the concentration jump has been smoothed with a

second-order continuous smoothing function. This guarantees the continuity of the first

and second-order derivatives and hence, avoids discontinuous solutions. Then, to ensure

that particles do not get through the upper and lower boundaries, we have imposed the

no-flux boundary condition at the top and bottom walls:

D∂φi
∂z

− wi = 0 . (6.17)

6.4 Results and discussion

This section deals with experimental results, model validation and discussion. As con-

cerns the experiments, only one repetition for each tested condition is presented even if

preliminary experiments have been performed to check the test repeatability. To validate

the model, the numerical results are compared against the experimental findings.

6.4.1 Experimental results

As a first macroscopic assessment of the evolution of segregation, we analyse the concen-

tration profiles of the heavy component in the lower layer of the investigation window.
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Figure 6.4: Evolution of the concentration profiles of the heavy grains at the bottom. The profiles
are shown for different density ratios δR. In all cases, the experiments were started by filling the
bottom half of the cell with the lighter material, and the top half of the cell with the denser
material (50% initial overall concentration). In the inset, the 8.25 and 4.46 density ratio curves are
represented on a larger scale. Note that all solid lines represent the experimental results, whereas
the dashed lines are fitted with Eq. 6.18.

The assessment is done for six different density ratios and 50:50 mixture composition of

the heavy and light components. The resulting profiles are displayed in Fig. 6.4. When

the granular material flows, all particles start diffusing and segregating: heavy grains

percolate downward, whereas light particles rise through the bed driven by the buoyant

force. The heavy particle concentration grows from 0, passes through 50% concentration,

and then reaches the steady-state. Such a system has moved from the initially segregated

configuration to a well-mixed state until re-segregating again. The driving force leading

to segregation is higher in the case of higher density ratios and dominates over diffusion.

For smaller density ratios, diffusion gains always more importance over segregation. For

this reason, the lower the δR, the lower the final φh reached (e.g. φh settles at around 73%

for δR = 1.40 and at 100% for δR = 8.25).

In order to extract some parameters describing the process dynamics, the experimental

profiles are fitted by solving the Least Squares Minimization problem with the following

hyperbolic tangent function:

f(t) =
A

2
·
[

1− tanh

(

− t− t0
τ − t0

)]

, (6.18)

where t0 and τ are, respectively, the time required to reach 50% and 88% of the final heavy

particle concentration, named A. The fitting curves are represented as dashed lines in Fig.

6.4 together with the raw data. In Fig. 6.5, the parameters A and τ of the hyperbolic

tangent function are reported as a function of the density ratio. A can be estimated with
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Figure 6.5: The fitting parameters A and τ are plotted as a function of the density ratio for
φh = 50%. The first parameter refers to the left y-axis, whereas the latter refers to the right
y-axis. The Mean Squared Errors (MSE) are also reported.

good accuracy (Mean Squared Error equal to 7.3 · 10−4) with the following function:

A = 1− 1

2 · δβR
δR > 1 , (6.19)

where β = 2.27 is an exponent characterizing the sensitivity of the final segregation state

on the density ratio. For what concerns τ , it follows an exponential decay but, as theMSE

reveals, its trend is not so accurate. In the limit of δR = 1 (i.e. when the two species have

the same density), the system is always perfectly mixed (φh = 50%) and segregation never

occurs (diffusional mixing prevents separation). On the other hand, when δR becomes

very large, the time required to reach the re-segregated state tends to 0, and segregation

happens almost instantaneously.

To see in more detail how heavy particle concentration evolves in the entire flow depth,

we have reconstructed the temporal evolution of the heavy particle concentration through

the depth of the cell. The resulting contour maps are reported from Fig. 6.6 to Fig. 6.9

for increasing volume fractions, respectively. The contour maps are characterised by 100

contour regions and, to reduce the noise, concentrations have been smoothed over time by

applying the moving average. In all cases, we can see that the time required by the heavy

particles to reach the bottom is smaller than the time required by the lighter particles to

reach the top. Furthermore, the final fully segregated state is, in general, reached faster in

the case of higher δR and for 50:50 mixture composition. Nevertheless, the time required

to reach the final configuration is higher for δR = 1.85 than for δR = 1.40, despite the

higher density ratio. This is because, for δR = 1.85, the total mass of grains is lower under

the same load and determines a thinner shear band. This proves that the segregation rate

depends on a combined effect of density ratio and loading mass. At the interface particles
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Figure 6.6: Experimental measurements of the heavy particle concentration distributions in time
and as a function of the dimensionless cell height, H∗ for φh,0 = 10% (on the left) and φh,0 = 25%
(on the right). In both cases, δR = 4.46. The colour bar refers to φh.

Pair φh,0 Mg [kg] Mw/Mg [–] Mw+Mg [kg]

C-PP 50% 2.67 0.41 3.77

G-PP 50% 2.04 0.54 3.14

G-POM 50% 2.52 0.44 3.62

Table 6.2: The segregation model has been tested for these three cases that are characterized by
a similar M̃ =Mw/Mg [-]. Mg and Mw are expressed in kg.

partially mix due to diffusion. The interface is sharper for higher δR and smoother for

lower δR where diffusive remixing competes always more against segregation.

6.4.2 Validation of the theoretical model

Rather than deforming uniformly, granular materials under shear stresses develop shear

bands, zones of intense shear close to essentially rigid regions [31]. Very little is known

about the shear band and how the microstructure of individual grains affects movements

in densely packed material [31]. Mueth et al. [31] found that at high packing density

and slow shear rate, the key characteristics of the granular microstructure determine the

shape of the velocity profile. Artoni et al. [24] demonstrated that the exponential decay

appearing in the velocity profile (i.e. the δ appearing in Eq. 6.10) is strictly related to the

ratio between the mass loaded on the system and the mass of the grains: M̃ ≡Mw/Mg.

For this reason, the segregation model is verified for three cases having a similar M̃ ,

as reported in Tab. 6.2. According to Artoni et al. [24], the values of δ are set equal to

δ = 0.18H, 0.20H and 0.22H. As it concerns k, preliminary tests showed that k = 0.5,

0.6 and 0.7 are reasonable values. The optimal values of k and δ are obtained from a

full factorial design of simulations with root-mean-square deviation as a key performance
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Figure 6.7: Experimental measurements of the heavy particle concentration distributions in time
for φh,0 = 50% at decreasing density ratio.
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Figure 6.8: Experimental measurements of the heavy particle concentration distributions in time
for φh,0 = 75% at decreasing density ratio.

indicator. The evaluation of the RMSD between experimental and simulated contour

maps (i.e. between matrices) is thus calculated as:

RMSD =

√

∑m
i=1

∑n
j=1(φij,exp − φij,num)2

m · n , (6.20)

where m and n are the matrices dimensions. Tab. 6.3 lists, for each combination, the

resulting RMSD in the case of 50:50 mixtures of Ceramic and Polypropylene, Glass and

Polypropylene and Glass and filled-POM. It is clear that the optimal combination of k

and δ (i.e. the ones that minimize the RMSD) is k = 0.7 and δ = 0.18H.

In Figs. 6.10, 6.11 and 6.12 the comparison between experimental findings and nu-

merical results, computed with the optimal combination of k and δ, are reported for 50%,

75% and 90% volumetric fraction of the heavy component, respectively. As expected,

the experimental results are much noisier than the numerical ones because of the dis-

crete nature of the real system. However, since the RMSD between experimental and
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Figure 6.9: Experimental measurements of the heavy particle concentration distributions in time
for φh,0 = 90% at decreasing density ratio.

Factors RMSD

ID k δ/H C-PP G-PP G-POM

1 0.50 0.18 0.206 0.217 0.149

2 0.50 0.20 0.254 0.252 0.162

3 0.50 0.22 0.283 0.277 0.170

4 0.60 0.18 0.182 0.194 0.130

5 0.60 0.20 0.231 0.227 0.142

6 0.60 0.22 0.262 0.252 0.150

7 0.70 0.18 0.169 0.182 0.119

8 0.70 0.20 0.213 0.209 0.130

9 0.70 0.22 0.246 0.233 0.138

Table 6.3: The results obtained from the full factorial design of experiment for: 1) C-PP, 2)
G-PP and 3) G-POM.
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numerical outcomes is always smaller than 0.18, we can conclude that they agree both

qualitatively and quantitatively. The proposed model is, therefore, able to capture the

main features of density-driven segregation in the case of densely packed flow, also for

non-homogeneous shear rates. It is also noteworthy that, numerically, we see more lighter

particles at the outer surface. This is because our one-dimensional model cannot capture

the three-dimensional recirculation pattern that develops, especially for higher M̃ , within

the real system (i.e. in reality, the wall affects the particle velocity field and creates a

radial profile).

Fig. 6.13 reports the values of the parameters A and τ achieved numerically for

a range of density ratios and 50:50 mixture composition, again considering the optimal

combination of k and δ. In there, the dashed lines refer to the experiments. The parameter

A is always well predicted by the model, however, there are some discrepancies in the

prediction of τ . This means that, even if the model can predict the degree of segregation

well for all density ratios, it sometimes fails to capture the rate of segregation. In Section

6.4.3, we will prove that this is because the dynamics of the granular flow is strictly related

to δ, which in turn is sensitive to M̃ . For instance, the cases with δR = 8.25 and δR = 4.46

are characterized by a greater M̃ and hence, δ should be higher than 0.18 in order to have

reliable results.

We have seen that to successfully seize the dynamic of the process, δ and k must be

opportunely fit. Nevertheless, independently of the process rate, the model can always

well predict the final configuration. This is proven also in Fig. 6.14, where the experi-

mental fully-developed profiles of the heavy particle concentration are compared with the

numerical ones. For all density ratios, the model can well capture the main features of

segregation: the profile is S-shaped and smooth, and the smoothness is higher for smaller

density ratios where diffusional mixing gains a quite significant improvement over segre-

gation.

6.4.3 Shear localization and velocity profile

Artoni et al. [24] showed that the velocity profile is not universal but depends on the

flow parameters. Furthermore, the exponential decay is affected by the joint effect of

normalized applied load, M̃ , and flow depth. In the limit of small M̃ , the pressure at the

bottom is low with respect to that induced by the grains, and the shear localizes in a wider

band. A decrease in the flow depth acts in the same way. In our case, the flow is always 15

particle diameters depth and hence, the only factor influencing δ is the normalized applied

weight.

To prove that the dynamics of granular flow is strictly related to the height of the shear

band, which in turn is linked to the normalized applied weight, we have performed velocity

profile measurements with monodisperse particle systems, except for the steel because too

heavy to be supported by the motor. The operating conditions were the same as for

the segregation experiments. Unlike before, the process was recorded with a high-speed
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Figure 6.10: Comparison between experimental finding (first column) and numerical results
(second column) for φh,0 = 50%. The numerical contour maps have been obtained with the optimal
combination of k and δ. The RMSD are: 0.169, 0.182 and 0.119 for δR equal to 3.70− 2.59− 1.40
respectively.
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Figure 6.11: Comparison between experimental finding (first column) and numerical results
(second column) for φh,0 = 75%. The numerical contour maps have been obtained with the
optimal combination of k and δ. The RMSD are: 0.166 and 0.176 for δR equal to 3.70 and 2.59
respectively.

camera (Phantom Miro 320S) at 24, 100 and 1000 fps. Working with different frame rates

allowed us to obtain meaningful profiles for all the flow depths. The videos were processed

with the free software ImageJ. The displacement of particles between consecutive frames

was manually tracked and the velocity profile reconstructed by connecting the segments

obtained at different frame rates.

We also carried out discrete element method (DEM) simulations to obtain the velocity

profiles of glass and steel. As contact force model, we employed the linear spring-dashpot

model based on a Hooke-type relation with CDT (Constant Directional Torque) rolling

friction. Table 6.4 shows the simulation parameters implemented, together with some

system information. The simulated annular shear cell had the same dimension as the real

one (see Fig. 6.1) and finite boundary conditions in all directions. The top and bottom

bumpy walls were represented with the same mesh used for the 3D printing of the real

ones. On the top wall, 10.72 N of loading acting on the negative z -direction was applied
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Figure 6.12: Comparison between experimental finding (first column) and numerical results
(second column) for φh,0 = 90%. The numerical contour maps have been obtained with the
optimal combination of k and δ. The RMSD are: 0.175 and 0.091 for δR equal to 3.70 and 1.40
respectively.

and the bottom wall was rotated at a constant rotational speed of 23.44 rpm. The sliding

friction coefficient between particle and wall was set equal to 0.33. Since the velocity

profile of glass agrees with the experimental one, our simulation is quantitatively valid

and the simulated profile of steel, which was impossible to determine experimentally, can

be considered trustworthy.

Fig. 6.15 shows the velocity profile thus obtained. The decay is steeper for Polypropy-

lene and slighter for steel. The difference in the decay of the velocity profile agrees with

what is reported in [24]. In the inset, the dimensionless coefficient of exponential decay is

reported as a function of Mw/Mg. As expected, the steel is characterized by a wider shear

band than lighter material under the same load. It is now evident that, consistently with

our main assumption, δ is sensitive to M̃ , and this influences the rate, but not the degree,

of segregation.
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Figure 6.13: The fitting parameters A and τ that we obtained numerically with k = 0.70 and
δ = 0.18 are plotted as a function of the density ratio for φh = 50%. The first parameter refers
to the left y-axis, whereas the latter refers to the right y-axis. The Mean Squared Errors (MSE)
are also reported. For comparison, we have drawn also the fitting of the experimental parameters
(dashed lines).

Figure 6.14: Comparison between experimental finding (dots) and numerical results (solid lines)
for φh,0 = 50% for binary mixtures having different density ratios.
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Variable Symbol Value

Particle diamater [m] dp 0.006

Intrinsic density of steel [kg/m3] ρS 7800

Intrinsic density of glass [kg/m3] ρG 2450

Normal elastic constant [N/m] kn 8.00e05

Tangential elastic constant [N/m] kt 2.29e05

Normal visco-elastic damping constant of steel [N/m] γn,S 9.61e03

Normal visco-elastic damping constant of glass [N/m] γn,G 1.71e04

Tangential visco-elastic damping constant [N/m] γt 0

Restitution coefficient en 0.70

Inter-particle friction µ 0.20

Rolling friction coefficient µr 0.005

Time step ∆t 1e− 6

Wall-particle friction µwp 0.33

Rotational speed [rpm] Ω 23.44

Loading [N] Fload -10.72

Gravity [m/s2] g -9.81

Boundary conditions − f f f

Table 6.4: A summary of the DEM simulation parameters.
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Figure 6.15: Velocity profile for the pure components. The profile for PP, POM, G and C were
obtained from experiments, whereas the one of steel by DEM simulation.
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6.5 Conclusions

For the first time, density-driven segregation has been experimentally studied in an annular

shear cell where the flow is uninterrupted and where there is no need to feed the system.

The experimental results show that two are the main factors influencing segregation: the

density ratio and the flow features. In particular, the former influences the degree of

segregation, the latter affects the rate of the segregation process. We have also shown

that, in the limit of high normalized loaded mass, a three-dimensional flow pattern develops

within the granular bed.

In this chapter, we have also provided a new density-driven segregation model with a

segregation velocity analogous to the settling velocity predicted by Stokes’ law. The model

has been implemented and validated against experimental findings. The optimal values

of the model parameters have been obtained by a full factorial design of the experiment

aimed at minimizing the RMSD. The model can well predict the degree of segregation, for

all density ratios. However, to predict accurately also the rate of the segregation process,

one should accurately model the flow field. In our case, the flow field has been modelled

using an exponential velocity profile. Thus, understanding the shear band localization

(i.e. the degree of the exponential decay) has been crucial to describe granular flow onset

and rheology [24].

The main advantage of our continuum model is that it permits analytical and fast

numerical solutions for a range of density ratios and different volumetric fractions. The

model can therefore be applied broadly for investigating and designing binary powder

systems. The only drawback is that it requires accurate knowledge of the velocity profile

since the shear localization features influence the rate of segregation. Further studies will

be aimed to better understand the shear localization patterns, evaluate the effect of the

wall friction coefficient and generalize the model to multicomponent systems with particles

differing only by density.
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Chapter 7

A theory for size-driven

segregation in compressible

granular flows

In modelling granular flows and segregation, the bulk velocity field is usually assumed

to be incompressible, though it is well known that perturbations of a granular assembly

induces density changes. In this chapter, we lay the foundations for the development of a

compressible-segregation model that accounts for granular flows compressibility.

7.1 Introduction

In modelling granular flows and segregation, the bulk velocity field is usually assumed to

be incompressible. However, real granular flows are compressible and the solid volume

fraction may vary. Accounting for particles compressibility becomes important especially

when the rapid regime of flow is approached (since the dilatancy become stronger), in

the case of mixtures characterized by very high polydispersity (i.e. packings of mixtures

of particles of different sizes are denser than packings made of monodisperse grains) and

when particles differ by density [1, 2].

Even if the inclusion of compressibility complicates the conservation equations, it re-

moves the ill-posedness of the incompressible µ(I)−rheology [3, 4]. Thus, compressibility

has been introduced as a regularizing mechanism in a few flow models. As an example,

the compressible I-dependent rheology (CIDR) proposed by Barker et al. [3] extends the

µ(I)−rheology to compressible deformations through combination with the critical-state

soil mechanics [3]. Since compressibility must be associated with sufficient dissipation,

Heyman et al. [4] introduced a bulk friction coefficient associated with volume changes.

The problem is well-posed when the bulk friction coefficient is higher than a minimum

threshold. Fannon et al. [5] applied the CIDR flow model to two forms of granular insta-

bility: an inclined plane and a plane shear. They showed that the model can quantitatively
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predict the instability properties observed experimentally. Furthermore, it performs better

than its incompressible counterpart. In the framework of the CIDR flow model, Schaeffer

et al. [6] introduced new constitutive laws for the inertial regime giving rise to the inertial

compressible I-dependent rheology (iCIDR). This model can well capture the Bagnold

scaling, a stress-strain rate relationship according to which the shear stress is proportional

to the square of the strain rate [7].

The original CIDR flow model describes a monodisperse system of spherical particles.

In this chapter, we employ a modified version of the CIDR model to describe the flow

behaviour of a multi-component granular mixture. The modified version includes changes

that consider the local averaged particle size. The full coupling between the granular flow

model and the segregation equations leads to a new size-driven segregation model. The

implementation and validation of the model are still ongoing work. Future studies will

aim to build an analogous model for density-driven segregation. To the author knowledge,

only Gray and Ancey [8] and Gilberg and Steiner [9] have modelled segregation considering

the compressibility of the granular flow, but, unlike us, the first ones did not consider

the deviatoric part of the stress tensor and the second ones resorted to the granular

temperature equation.

7.2 Multifluid dynamical equation

Let us consider a multi-component mixture of n classes of spherical particles differing by

size and an air phase surrounding the material and filling the interstitial voids. If it is

assumed that the volume fraction of the air phase can vary locally, it holds that:

n
∑

k=1

φk + φair = 1 , (7.1)

and thus, the total solid volume fraction is ν = 1 − φair. This differs from the previous

chapters where the air has always been incorporated into the particle phases. Given this,

in this Section, we propose a new compressible-segregation model.

7.2.1 Segregation modelling

We employ a multifluid modelling approach. Each size class of particles and the air have

to satisfy a separate set of conservation equations. The continuity equation for the generic

solid class k, considering neither mass transfer nor mass sources, reads:

∂

∂t
(φkρ

∗
k) +∇ · (φkρ∗kuk) = 0 , (7.2)
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where uk is the velocity field and the product (φkρ
∗
k) ≡ ρk is the partial density [10]. The

linear momentum balance equation, always for k, reads:

∂

∂t
(φkρ

∗
kuk) +∇ · (φkρ∗kukuk) = ∇ · σk + φkρ

∗
kg + Fb,k + Fk , (7.3)

where σk is the stress tensor of phase k, φkρ
∗
kg is the body force due to gravity, Fk is the

force exerted on k by air and Fb,k arise from the interaction between the bulk solid and

the single-particle phase k. Note that, segregation is the result of the interaction between

different sized particles. This interaction is given in the momentum balance due to the

interaction force [9]. In Lagrangian form, the two conservation equations reduce to:

D

Dt
uk =

1

φkρ
∗
k

[∇ · σk + Fb,k + Fk] + g . (7.4)

For mathematical proof, refer to Appendix A.5. Analogously, the two conservation equa-

tions for air are:
∂

∂t
φair +∇ · (φairuair) = 0 , (7.5)

∂

∂t
(φairuair) +∇ · (φairuairuair) =

1

ρ∗air

[

∇ · σair −
n
∑

k=1

Fk

]

+ φairg , (7.6)

and in Lagrangian form:

D

Dt
uair =

1

φairρ∗air

[

∇ · σair −
n
∑

k=1

Fk

]

+ g . (7.7)

To render these dynamical equations solvable, the effective stress tensors and the inter-

phase forces require closure.

7.2.2 The CIDR rheology

This Section report the original CIDR flow model by Barker et al. [3]. Let us consider

a monodisperse granular material. As reported in chapter 2, σ may be decomposed into

σ = −pI + τ . When dilation or compression occurs, the normal stress tensor in the

medium departs from the critical state pressure by [4]:

p = pc

(

1− µb
tr(D)

||S||

)

, (7.8)

where µb(φ) is a bulk friction coefficient associated with non-isochoric deformations (i.e.

volume changes), ||S|| is the second invariant of the deviatoric strain-rate tensor S, and

D is the total strain-rate tensor. The total strain rate tensor D (defined in Eq. 2.31) can
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be split into a deviatoric and an isotropic contribution:

D = S +
1

3
tr(D)I . (7.9)

Into matrix notation, D and S are respectively equal to:

D =
1

2







2 ∂xux ∂yux + ∂xuy ∂zux + ∂xuz

∂xuy + ∂yux 2 ∂yuy ∂zuy + ∂yuz

∂xuz + ∂zux ∂yuz + ∂zuy 2 ∂zuz






(7.10)

S =
1

2







2 (∂xux − π) ∂yux + ∂xuy ∂zux + ∂xuz

∂xuy + ∂yux 2 (∂yuy − π) ∂zuy + ∂yuz

∂xuz + ∂zux ∂yuz + ∂zuy 2 (∂zuz − π)






(7.11)

with tr(S) = 0 and π defined as:

π ≡ 1

3
tr(D) =

∂xux + ∂yuy + ∂zuz
3

=
∇ · u
3

. (7.12)

For the closure of the τ , we have to consider the alignment and yield conditions. Consid-

ering compressibility, the alignment condition reads:

τ

||τ || =
S

||S|| , (7.13)

whereas the generalized yield condition, which relates ||τ || with the critical pressure, is

equal to [11]:

||τ || = µpc . (7.14)

Introducing the yield condition (Eq. 7.14) into the alignment condition (Eq. 7.13) leads

to a closure relation for the deviatoric stress tensor:

τ = µpc
S

||S|| , (7.15)

where ||S|| is:

||S|| = 0.5
[

2(∂xux − π)2 + 2(∂yuy − π)2 + 2(∂zuz − π)2+

(

∂yux − ∂xuy)
2 + (∂zux − ∂xuz)

2 + (∂yuz − ∂zuy)
2
]0.5

.

(7.16)

Given Eq. 7.8 and Eq. 7.15, the stress–strain relationship becomes [4]:

σ = −pcI + pcµ
S

||S|| + pcµb
tr(D)

||S|| I . (7.17)
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The terms on the right-hand side represent, in order, the isotropic contribution, the devi-

atoric contribution and the non-isochoric deformations. The deviatoric contribution does

not impart volume changes, whereas the isotropic one accounts for volume changes with

identical stretching [10]. Note that, in the case of isochoric deformations (i.e. incompress-

ible granular flow), tr(D) = 0, D = S and the rheology reduces to the incompressible for-

mulation of Jop et al. [12]. Remembering that the shear rate γ̇ = 2||S|| and tr(D) = ∇·u,
the general compressibility rheology (Eq. 7.17) can be reformulated as:

σ = −pcI + η(∇u+∇uT ) +

(

ηb −
2

3
η

)

∇ · uI , (7.18)

where η and ηb denote the viscosity and the bulk viscosity of the solid, namely:

η ≡ pcµ

γ̇
, (7.19)

ηb ≡
2pcµb
γ̇

. (7.20)

Analogously to the bulk viscosity of fluids, the bulk viscosity of solids accounts for the

resistance of the solid phase against compression. The closures for critical pressure pc,

friction coefficient µ, and bulk friction coefficient µb, are discussed in Section 7.2.3.

Here, for the first time, the CIDR flow model is employed to describe multi-component

mixtures of particles differing by size. In the case of n solid phases, each k constituent

supports the phasic stress tensor σk that is a fraction of the total stress tensor σ. The

key assumption for partitioning the total stress tensor among different sized particles is

that the smallest particles support less stress than the proportion of volume they occupy.

In contrast, the large particles carry proportionately more of the load [13–17]. Following

Marks et al. [16] and Tunuguntla et al. [17], the partitioning factor is:

fk =
dαkφk

∑

k d
α
kφk

, (7.21)

where α = 2 (i.e. since we aim at distributing the force acting on a volume of particles, the

stress scales with the surface of the particle). The partitioning factors satisfy the following

constraints: they sum to unity (i.e.
∑

k fk = 1) and pure phase constituents carry all of

the stress (i.e. fk = 1). Therefore, the proportion of the stress carried out by each solid k

is:

∇ · σk = ∇ · (fkσ) . (7.22)

This rheology is included in the momentum balance of the species k (Eq. 7.4):

D

Dt
uk =

1

φkρ
∗
k

[∇ · (fkσ) + Fb,k + Fk] + g . (7.23)

Thus, the closure problem reduces to finding appropriate constitutive expressions for 1)
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granular frictional viscosity, 2) granular bulk viscosity and 3) solid pressure pertaining to

the bulk solid phase, and partitioning them:

ηk = fkη , ηb,k = fkηb and pc,k = fkpc . (7.24)

Eqs. 7.24, together with closures for pc, µ and µb, completely describe the stress state of

each solid phase. Note that, to close the dynamical equation for air one have simply to

set the bulk (or volume) viscosity and the shear (or dynamic) viscosity.

7.2.3 Critical state pressure, local friction and dilatancy law

In this study, we consider dry cohesionless multi-sized grains in the dense-inertial regime

during compressible flows. We retain the usual incompressible inertial number definition

(see Eq. 2.37) but p has been substituted with the critical state pressure pc [4, 6]:

I =
γ̇D

√

pc/ρ∗
, (7.25)

where D is the average particle diameter [18, 19]:

D =

∑

k φkdk
∑

k φk
. (7.26)

This choice does not impact the stability and well-posed criteria [4]. The inertial number

can also be written as a function of the solid volume fraction [4, 6]:

I(ν) ≡ νc − ν

a
, (7.27)

where νc corresponds to the critical volume fraction (it depends on the polydispersity

of the grain-size distribution as well as the interparticle friction [6]) and a is a constant

material parameter. Considering Eqs. 7.25 and 7.27, solving for pc leads to an equation

of state for the critical-state pressure:

pc =

(

aγ̇D
νmax − ν

)2

ρ∗ . (7.28)

The friction coefficient is rate-dependent and, therefore, it scales with the inertial

number. The most commonly used friction law was developed by Jop et al. [12] (see Eq.

2.41). To overcome the assumption of incompressibility, the variations of ν is included

within the variations of the friction coefficient:

µ(I) = µs +
µ2 − µs
aI0
νc−ν

+ 1
. (7.29)

For what concerns the bulk friction coefficient, it directly controls the amplitude of the
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pressure variations in the compressible flow. In contrast to µ, little is known about its

value and its variations [4]. However, there exists a lower threshold below which the CIDR

rheology is ill-posed [4]. To guarantee the well-posedness of the method at any inertial

number, we set as first attempt µb to be 20% higher than the minimum threshold:

µb(I) = 1.2

[

1− 7

6
µ(I)

]

. (7.30)

The bulk viscosity can play an interesting role in granular dense flows, however, since it

has never been measured so far, more work is needed [20].

7.2.4 Particle-particle interaction forces

To model the interaction forces at low inertial numbers, we assume that the force exerted

on k by the other solid classes has two contributions: 1) a grain-grain interaction force and

2) an interaction drag [16, 17]. Contributions such as lift forces or virtual mass are instead

neglected. Unlike Gray and Thornton [13] and Gray and Chugunov [14], we employ a drag

force that is inversely proportional to the shear rate so that the drag force reduces with

increasing fluctuation in local pore creation [16, 17]. The particle-particle interaction force

is therefore closed using the expression proposed by Tunuguntla et al. [17]:

Fb,k = pc∇fk −
φkρ

∗
kCD,k

γ̇
(uk − ub) , (7.31)

where CD,k is the drag coefficient. Because the exact nature of the parameter CD,k for sys-

tems characterized by long-lasting particle-particle interactions is still poorly understood,

as a first approximation, the same constant value of CD can be set for all the constituents.

Note that CD/γ̇ has dimension s−1 and
∑n

k=1 Fb,k = 0. About the bulk velocity, it is sim-

ply ub =
∑

(ukφk)/
∑

φk since all particles have the same intrinsic density. Introducing

Eq. 7.31 into Eq. 7.23 yields:

D

Dt
uk =

1

φkρ
∗
k

[

−fk∇pc +∇ · (fkτ ′) + Fk

]

− CD

γ̇
(uk − ub) + g . (7.32)

Notice that the grain-grain interaction force pc∇fk combined to the partial pressure gra-

dient −∇(fkpc), leaved −fk∇pc [14].

7.2.5 Fluid-particle interaction forces

Proper quantification of fluid–particle interactions is crucial for obtaining good model

performances [21]. Here, we consider that the interaction force between air and particle

consists of buoyancy and drag: Fk = FB
k + FD

k [22]. The buoyancy is simply defined as

−φk∇p where p is the static pressure. The drag force is instead FD
k = Kk(uair − uk),

where Kk is the fluid-solid exchange coefficient. The latter can be modelled as proposed
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by Gidaspow et al. [23]. Thus, it is:

Kk =







3
4C

′
D

φkφairρair|uk−uair |
dk

φ−2.65
air , if φair > 0.80

150φk(1−φair)ηair
φaird

2
k

+ 1.75φkρair|uk−uair |
dk

, if φair ≤ 0.80
(7.33)

where ηair is the viscosity of air and C ′
D is the drag coefficient:

C ′
D =

24

φairRek

[

1 + 0.15(φairRek)
0.678

]

. (7.34)

In the latter expression, Rek is the Reynold number at the minimum fluidized condition.

7.3 Conclusions

Granular flows are prone to dilate or contract in response to deformation [4]. This de-

termines local variation of the flow field, porosity and components distribution. For this

reason, we have speculated a new compressible-segregation model.

A modified version of the compressible inertial-dependent rheology developed by Barker

et al. [3] and regularized by Heyman et al. [4] against the Hadamard (short-wavelength)

instability is coupled with an Eulerian-Eulerian multifluid model describing a segregating

system. Despite the high computational cost, the model might allow the evolution of the

void space within the powder bed to be tracked. The model represents a starting point for

future developments in the modelling of size-driven segregation. The model should be im-

plemented and validated for simple flow geometries. It is necessary to investigate whether

its additional complexity yields predictions that more accurately capture experimental

results. Future works aim to develop an analogous model for size-driven segregation.
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Chapter 8

Conclusions and perspectives

This thesis focuses on the development of continuum segregation models in dense sheared

granular flows. All the models proposed have been validated against either experiments

or simulations, and allow a better understanding of the segregation features in different

flow configurations. The main conclusion of the work, which lies in between granular

physics and particle technology, are drawn in Section 8.1. In Section 8.2, we propose some

perspectives for future works.

8.1 Conclusions

The first part of this thesis is dedicated to segregation driven by size in different flow con-

figurations. As a first and preliminary step, we have considered diluted binary mixtures

(chapter 3). We have proposed a reliable model for a small isolated particle percolating

through a mono-disperse bed of coarse grains when subjected to shear. The model, which

arises from physical considerations and probabilistic assumptions, well captures both ex-

perimental and DEM results for a range of shear rates and diameter ratios. This theory

has been successively generalized to the case of multi-component granular mixtures made

up of discrete solid phases differing only in size (chapter 4). Such a generalized model has

been implemented in a continuum framework and fully coupled with a solid flow rheology.

To test whether the model can successfully represent the reality, we have employed data

taken from the literature concerning the discharge of ternary mixtures from a storage

hopper. It has appeared that the model can well predict segregation for almost all the

discharge process. The only discrepancies are related to the very final stage of the dis-

charge. Aware of the fact that real granular mixtures are typically polydisperse over their

size, we have also proposed a new theory for modelling segregation in polydisperse gran-

ular mixtures (chapter 5). We have tracked the evolution of the particle size distribution

in space and time by means of the DQMOM and solved the transport equations for the

weights and weighted nodes in a CFD software. Since developing an experimental setting

for segregation in polydisperse granular mixtures is very challenging, we have validated
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the model through DEM simulations. We have proven that the theoretical results are

in very good qualitative agreement with the simulation outcomes. However, the model

fails to quantitatively predict the correct evolution of the quadrature nodes under some

circumstances. It is hoped that further insights concerning drag coefficient, diffusion and

rheological behaviour of polydisperse granular systems will improve our predictions.

The second part of this thesis concerns the study of segregation in binary mixtures of

spherical particles differing not by size but by density, and still subjected to shear rate

(chapter 6). The predictions of the theoretical model have been compared with ad-hoc

experimental data. As expected, the denser particles sink to the bottom and the less dense

particles rise to the surface. Furthermore, we have shown that if the degree of segregation

is enhanced for increasing density ratios, the rate of segregation is strictly influenced by

the normalized applied load.

Finally, in chapter 7, we have offered some speculation regarding the inclusion of

compression in modelling segregation.

To conclude, we can say that the proposed models are well-suited for predicting the

segregation features of granular mixtures in nature and in industry, for several settings and

flow configurations. They can be successfully applied for a range of mixture compositions

and diameter (or density) ratios. Furthermore, they allow simulating segregation within

large granular systems with reasonable computational costs (i.e. the number of particles is

irrelevant). The only drawback of the models is that they might rely on fitting parameters

having no clear physical meaning.

8.2 Future work

Even if this work represents a further step towards a complete and accurate description of

segregation in a variety of dense granular flows, there are still several aspects that should

be pursued in future research. Some of them are mentioned here as an outlook.

In deriving our segregation models, we have focused on systems of particles differing

only by size (chapters 3, 4 and 5) or by density (chapter 6). However, it may be interesting

to adapt and implement the models to particle systems differing simultaneously in both size

and density. It would also be helpful to address the issue of segregation in more complex

systems such as irregular-shaped particles, cohesion and interaction with interstitial fluid.

Note that the interplay of size and density differences, as well as making the particles

more cohesive by modifying particle shape, texture, surface condition and/or by adding

moisture or a weak binding agent, may reduce or prevent segregation.

The widespread of polydisperse granular materials motivates further studies related to

our CFD-PBE model (chapter 5). It seems reasonable that, the main discrepancies are

related to the lack of reliable constitutive equations for the system under consideration.

Thus, to improve the model accuracy, a systematic study of the rheological behaviour of

polydisperse granular system is required.
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In addition, in Chapter 7 we have begun to consider the inclusion of compressibility

in modelling segregation. The chapter is only speculative and hence, a viable next step

would be implementing and validating the model, and evaluating whether it is generally

suitable for simulating segregation in compressible granular flows. If this is the case, it

certainly would have several applications.

Finally, it would be interesting to link continuum and discrete modelling (i.e. DEM-

CFD-based models). The connection between local and macro scale effects would be ad-

vantageous for the complete understanding of the phenomenon, for developing mitigation

strategies relevant for industry and, more in general, for finding the solution of several

particulate-based problems.





Appendix A

Mathematical proofs

A.1 Mean free distance between particles

Stereology gives a relationship to describe the mean free distance between randomly dis-

tributed neighbouring spheres. Referring to Fig. A.1, the distance between points a and

b can be expressed as:

dab = dac − dbc . (A.1)

In Eq. A.1, the distance dac is proportional to:

dac ∝
Vb
Sp

, (A.2)

where Vb is the volume of the void channel and Sp is the surface area of the packing. If

we assume a regular packing of spheres having diameter dc and being in static conditions,

dac becomes:

dac =
2

3

dc
ν
,

(A.3)

where ν is the solid volume fraction. If we generalize Eq. A.3 for the case of sheared

systems, we get:

dac = k
dc
ν
, (A.4)

where k is a parameter that takes into account the geometrical properties of the packing.

Regarding the distance dbc appearing in Eq. A.1, which is usually referred to as mean

intercept length, it is equal to:

dbc =
2

3
dc . (A.5)

The distance dab between two particles is, therefore:

dab = dac − dbc = k
dc
ν

− 2

3
dc . (A.6)

151



Appendix A. Mathematical proofs 152

Figure A.1: Schematic representation of random spheres.

If we generalized this definition for the entire packing, we get that the mean distance

between two surface points of neighbouring spheres is: h̄ = dab. Assuming that k = 2/3k′,

we obtain:

h̄ =
2

3
dc

(

k′ − ν

ν

)

. (A.7)

If the bed is isotropic and static, k′ = 1, and thus:

h̄ =
2

3
dc

(

1− ν

ν

)

. (A.8)

On the other hand, if the bed is dilated k′ must be greater than 1.
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A.2 Falling probability

The probability that the mean free distance h̄ between particles in a granular bed is greater

than the dimension of the percolating particle, df , reads:

P (h ≥ df ) = exp

(

−df
h̄

)

. (A.9)

This probability, however, guarantees that the condition is satisfied only in one direction

(let us say, for instance, x). To extend the validity in the other two directions, the

probability must be written also for the y− and z−directions:

Px = P (hx ≥ df ) = exp

[

− 1

kx

df
dc

ν

(1− ν)

]

, (A.10)

Py = P (hy ≥ df ) = exp

[

− 1

ky

df
dc

ν

(1− ν)

]

, (A.11)

Pz = P (hz ≥ df ) = exp

[

− 1

kz

df
dc

ν

(1− ν)

]

. (A.12)

If we assume that these three probabilities derive from three independent events, the global

falling probability is simply given by their product:

Pf = Px · Py · Pz . (A.13)

Substituting in Eq. A.13, the relations for Px, Py and Pz, we obtain:

Pf = exp

[

−
(

1

kx
+

1

ky
+

1

kz

)

df
dc

ν

(1− ν)

]

. (A.14)

If we also assume that the bed is homogeneously dilated in the three directions (i.e.

isotropic), we get kx = ky = kz ≡ k and hence:

Pf = exp

[

−3

k

df
dc

ν

(1− ν)

]

. (A.15)
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A.3 Derivation of the DQMOM transport equations

In this section, we aim to derive the DQMOM transport equations. The reduced Popula-

tion Balance Equation describing our segregating system reads:

∂

∂t
f̂v +∇x ·

(

f̂vvb

)

+∇x ·
(

f̂vvs

)

−D∇2
xf̂v = 0 . (A.16)

If we solve the latter by employing the direct quadrature method of moments, we obtain:

∂

∂t

(

n
∑

α=1

φαδ (ξ − ξα)

)

+∇x ·
(

n
∑

α=1

φαδ (ξ − ξα)vb

)

+

∇x ·
(

n
∑

α=1

φαδ (ξ − ξα)vs,α

)

−D∇2
x

(

n
∑

α=1

φαδ (ξ − ξα)

)

= 0 .

(A.17)

Each term of Eq. A.17 can be derived by considering that the following identity holds

true:

φα
∂ξα
∂t

=
∂(φαξα)

∂t
− ξ

∂φα
∂t

. (A.18)

Thus, the derivative of the first term yields:

∂

∂t

(

n
∑

α=1

φαδ (ξ − ξα)

)

=

n
∑

α=1

(

∂φα
∂t

δ (ξ − ξα)− φα
∂ξα
∂t

δ′ (ξ − ξα)

)

=

n
∑

α=1

(

∂φα
∂t

δ (ξ − ξα)−
∂(φαξα)

∂t
δ′ (ξ − ξα) + ξ

∂φα
∂t

δ′ (ξ − ξα)

)

,

(A.19)

where δ′ (ξ − ξα) denotes the derivative of δ (ξ − ξα) with respect to ξα. From now on, we

use the following nomenclatures for δ := δ (ξ − ξα) and its derivatives: δ′ := δ′ (ξ − ξα)

and δ′′ := δ′′ (ξ − ξα).

The other terms of Eq. A.17 are manipulated similarly. Thus, the second and third terms

of the right-hand side become, respectively:

∇x ·
(

n
∑

α=1

φαδvb

)

=

n
∑

α=1

(

∇x · (φαvb)δ − (φαvb) · ∇xξαδ
′
)

=

n
∑

α=1

(

∇x · (φαvb)δ −∇x(φαvbξα)δ
′ + ξα∇x · (φαvb)δ′

)

,

(A.20)

∇x ·
(

n
∑

α=1

φαδvs,α

)

=
n
∑

α=1

(

∇x · (φαvs,α)δ − (φαvs,α) · ∇xξαδ
′
)

=

n
∑

α=1

(

∇x · (φαvs,α)δ −∇x(φαvs,αξα)δ
′ + ξα∇x · (φαvs,α)δ′

)

,

(A.21)
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whereas, the manipulation of the diffusive term yields:

D∇2
x

(

n
∑

α=1

φαδ

)

= D
n
∑

α=1

∇x ·
(

∇xφαδ − φα∇xξαδ
′
)

=

D
n
∑

α=1

(

δ∇2
xφα − 2δ′∇xφα∇xξα − δ′φα∇2

xξα + δ′′φα∇xξα · ∇xξα
)

.

(A.22)

Using the following identity:

∇2
x(f(x)g(x)) = f(x)∇2

xg(x) + 2∇xf(x) · ∇xg(x) + g(x)∇2
xf(x) , (A.23)

the diffusive term in Eq. A.22 becomes:

D∇2
x

(

n
∑

α=1

φαδ

)

=

D
n
∑

α=1

(

δ∇2
xφα − δ′∇2

x(φαξα) + δ′ξα∇2
xφα + δ′′φα∇xξα · ∇xξα

)

.

(A.24)

Introducing all the previous results in Eq. A.17 gives:

n
∑

α=1

(

∂φα
∂t

δ − ∂(φαξα)

∂t
δ′ + ξ

∂φα
∂t

δ′ +∇x · (φαvb)δ −∇x(φαvbξα)δ
′+

ξα∇x · (φαvb)δ′ +∇x · (φαvs,α)δ −∇x(φαvs,αξα)δ
′ + ξα∇x · (φαvs,α)δ′

−Dδ∇2
xφα +Dδ′∇2

x(φαξα)−Dδ′ξα∇2
xφα −Dδ′′φα∇xξα · ∇xξα

)

= 0 .

(A.25)

If we now define the following DQMOM transport equations:

∂

∂t
φα +∇x · (φαvb) +∇x · (φαvs,α)−D∇2

xφα ≡ cφα , (A.26)

∂

∂t
σα +∇x · (σαvb) +∇x · (σαvs,α)−D∇2

xσα ≡ cσα , (A.27)

the DQMOM for the monovariate VFD describing our segregating system reads:

n
∑

α=1

[

cφα(x, t)δ − (cφξα (x, t)− ξαc
φ
α(x, t))δ

′
]

=

n
∑

α=1

[

Dδ′′φα∇xξα · ∇xξα
]

. (A.28)

It is worth noticing that, instead of tracking the weighted nodes of the quadrature approx-

imation (i.e. Eq. A.27), one could directly track the evolution of the quadrature nodes.
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In that case, the transport equation would be obtained from Eq. A.27 as follow:

φα
∂

∂t
ξα + ξα

∂

∂t
φα + (φαvb) · ∇xξα + ξα∇x · (φαvb) + (φαvs,α) · ∇xξα+

ξα∇x · (φαvs,α)−Dφα∇2
xξα − 2D∇xφα · ∇xξα −Dξα∇2

xφα = cσα ,

(A.29)

that becomes, after manipulation:

φα

[

∂

∂t
ξα + vb · ∇xξα + vs,α · ∇xξα −D∇2

xξα

]

+

ξα

[

∂

∂t
φα +∇x · (φαvb) +∇x · (φαvs,α)−D∇2

xφα

]

− 2D∇xφα · ∇xξα = cσα .

(A.30)

The second term of the left-hand side of Eq. A.30 is equal to ξαc
φ
α (see Eq. A.26) and

thus:
∂

∂t
ξα + vb · ∇xξα + vs,α · ∇xξα −D∇2

xξα = cξα , (A.31)

where:

cξα =
cσα − cφαξα + 2D∇xφα · ∇xξα

φα
. (A.32)

In conclusion, if n is the number of classes in the quadrature approximation, solving

the PBE with the DQMOM reduces to solving n transport equations for the quadrature

weights (Eq. A.26) and n transport equations for the weighted nodes (Eq. A.27) - or

alternatively n transport equations for the quadrature nodes (Eq. A.32). In Lagrangian

form, the quadrature transport equations become:

Dφα
Dt

= −φα∇x · (vb + vs,α) +D∇2
xφα + cφα , (A.33)

Dσα
Dt

= −σα∇x · (vb + vs,α) +D∇2
xσα + cσα , (A.34)

Dξα
Dt

= D∇2
xξα + cξα , (A.35)

where, by definition, it is:
D(·)
Dt

≡ ∂(·)
∂t

+ v · ∇x(·) . (A.36)
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A.4 Moment transform of the PBE

To close the source terms of the DQMOM transport equations, we apply this moment

transform

Mk ≡
∫ ∞

0
ξkf̂v (ξ;x, t) dξ ≈

n
∑

α=1

φα(x, t)ξ
k
α(x, t) (A.37)

to each term in Eq. A.28. However, before proceeding, we need to define some properties

of the Dirac’s delta function. Let us consider an arbitrary function f(x). It holds true

that:
∫ b

a

f(x)δ(x− x∗)dx = f(x∗) , x∗ ∈ (a, b) (A.38)

∫ b

a

f(x)δ′(x− x∗)dx = − df

dx
(x∗) , x∗ ∈ (a, b) (A.39)

∫ b

a

f(x)δ′′(x− x∗)dx = −
[

−d
2f

dx2
(x∗)

]

, x∗ ∈ (a, b) (A.40)

Thus, the terms in Eq. A.28 become, in order:

Mk

(

n
∑

α=1

cφαδ (ξ − ξα)

)

=
n
∑

α=1

cφα

∫ ∞

0
ξkδ (ξ − ξα) dξ =

n
∑

α=1

cφαξ
k
α , (A.41)

Mk

(

n
∑

α=1

(cφξα − ξαc
φ
α)δ

′ (ξ − ξα)

)

=

n
∑

α=1

(cφξα − ξαc
φ
α)

∫ ∞

0
ξkδ′ (ξ − ξα) dξ = −k

n
∑

α=1

(cφξα − ξαc
φ
α)ξ

k−1
α ,

(A.42)

Mk

(

n
∑

α=1

Dδ′′ (ξ − ξα)φα∇xξα · ∇xξα

)

=

n
∑

α=1

Dφα∇xξα · ∇xξα

∫ ∞

0
ξkδ′′ (ξ − ξα) dξ = k(k − 1)

n
∑

α=1

Dφαξk−2
α ∇xξα · ∇xξα .

(A.43)

At this point, the 2n unknown source terms can be easily found by solving the linear

algebraic system (or evolution equation) such obtained:

n
∑

α=1

cφαξ
k
α + k

n
∑

α=1

(cφξα − ξαc
φ
α)ξ

k−1
α =

k(k − 1)

n
∑

α=1

Dφαξk−2
α ∇xξα · ∇xξα , k ∈ [0, 2n− 1]

(A.44)

If we employ a two-node quadrature approximation, the four source terms are the one

reported in Eq. 5.21.
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A.5 Substantial derivatives

In this section, we express the momentum balance in Lagrangian form. To this end, we

start by applying the product rule to the the left hand side of Eq. 7.3, that becomes:

(φkρ
∗)
∂

∂t
uk + (φkρ

∗
kuk)∇ · uk + uk

[

∂

∂t
(φkρ

∗
k) +∇ · (φkρ∗kuk)

]

=

∇ · σk + φkρ
∗
kg + Fb,k + Fk .

(A.45)

If we substitute the mass balance (Eq. 7.2), the latter yields:

(φkρ
∗)
∂

∂t
uk + (φkρ

∗
kuk)∇ · uk = ∇ · σk + φkρ

∗
kg + Fb,k + Fk , (A.46)

and hence,

(φkρ
∗)

D

Dt
uk = ∇ · σk + φkρ

∗
kg + Fb,k + Fk , (A.47)

where D
Dt

is the definition of substantial derivative:

D

Dt
uk ≡ ∂

∂t
uk + uk∇ · uk . (A.48)
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