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Abstract 

The prediction and minimization of energy consumption have become an essential part of process planning 

for the XXI century manufacturing industries due to cost-saving policies and environmental regulations. The 

ever-growing attention on energy-saving and process optimization requires a deep analysis of the production 

processes to provide more accurate predictive models: every process parameter has to be studied under a 

magnifying lens to understand its influence on energy consumption. 

Based on this background, the research work presented in this thesis is related to the development of 

predictive models for the estimation of the energy consumption in metals forming processes, and in particular, 

the study is focused on the radial-axial ring rolling (RARR) process for the production of rings. In the RARR 

process, the ring size varies from a few hundred millimeters to two or three meters depending on the 

application.  

The most common applications for rings manufactured by the ring rolling process are the heavy machinery 

industry, wind turbine towers, and rotors and bearing systems. In addition to that, although the model presented 

in this research has been developed considering the ring rolling process, additional validation steps have been 

carried out to prove their applicability also to different metal forming processes. In fact, the developed 

algorithms have been implemented in such a way that they can be easily extended also to different industrial 

processes, even not necessarily metal forming or forging. 

The research work is subdivided into various sections, as hereafter summarized. In the first section, the 

preliminary investigation relevant for the development of regression models, based on residual minimization, 

is presented and shows the limitation of this type of approach when applied to energy prediction and 

minimization of complex manufacturing processes involving geometrical and thermo-mechanical interaction 

among the considered variables. Although energy prediction models can be developed based on the first, 

second, and third-order polynomial equations, the number of equations terms is impractical for real industrial 

use, and the accuracy of the prediction drops if the model is utilized near the boundary of the training data set. 

For these reasons, after this initial assessment, the focus has been shifted towards a more complex and yet 

more accurate model, based on artificial intelligence algorithms. To define the database to be used for the 

training and validation of the implemented machine learning models, radial-axial ring rolling (RARR) finite 

element method (FEM) simulations have been implemented in the commercial software MSC Simufact 
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Forming. From both setting data and results, a data set composed of 380 rows has been developed and contains 

data relevant for the process settings, the initial and final geometries of the ring, the considered material 

properties, and, as a result, the integral of the mandrel forming force over the relevant process time (FIOT). 

The FIOT parameter allows assessing the amount of force impulse required during the process and has been 

utilized as a sort of measurement of the energy required for the forming of the ring. Up to this point the 

developed machine learning application has been utilized only for the reliable prediction of the energy 

consumption during the RARR process of flat rings and, from the results of the investigation, the Gradient 

Boosting (GB) algorithms, belonging to the ensemble category, showed the best accuracy being its maximum 

and average residuals equal to 9.03 % and 3.18 %, in a wide range of final ring outer diameters (650 mm < Df 

< 2000 mm). The developed model has been also validated by means of additional FEM simulations, not 

utilized for the training of the machine learning models, and by means of laboratory experiments, both own 

and from the literature. The own experiments have been carried out at the Net Shape Manufacturing Laboratory 

of Sogang University (Seoul, South Korea) on a small-scall ring rolling mill. The experimental verifications 

allowed achieving similar maximum and average residuals, proving once more the reliability of the developed 

GB algorithm-based machine learning solution in being able to accurately predict the energy consumption 

during the ring rolling process. Moreover, considering the complexity of the design and process parameters 

involved in the RARR process, the proposed approach can easily be extended to relatively simpler forming 

and forging processes, such as shape rolling, roll forming, or closed-die forging. 

By means of the trained Gradient Boosting (GB) algorithm, the training database has been expanded from 

the original 380 rows to 760 data and utilized as training and validation data set for the second of the developed 

machine learning model. The aim of this second model is the minimization of the energy consumption for a 

specific combination of the final shape, material, and processing temperature. To prove the reliability and, at 

the same time, demonstrate the applicability of the proposed solution also to different manufacturing processes, 

the energy minimization algorithm has been also applied to the deep drawing process, in collaboration with 

the Sogang University, to maximize the geometrical accuracy and minimize the after-forming earing, normally 

caused by the wrong design of the sheet blank (preform). 

As concerns the profiled ring rolling process, the academic literature on this topic, especially concerning 

the process set-up and control, is quite limited thus, as the first step, starting from the existing literature model 

for the flat ring and adapting it to the more complex profiled ring, a new analytical model for the prediction of 

the profiled ring evolution has been developed. The proposed model allows predicting the redistribution of the 

material from the original preform shape, which can be considered as a flat or an already profiled ring, and 

links it to the progressive variation of the ring inner and outer diameters. The proposed set-up and geometry 

prediction model has been validated against literature and own FEM and experimental results, showing its 

reliability in predicting the final geometry of the ring for a large variety of initial and final shapes, among them 

internal and external C-shape and L-shape rings. Subsequently, by following a similar approach to those 

utilized for the flat rings, the developed GB algorithm has been utilized for the prediction of the energy 

consumption of profiled rings.  
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On the other hand, as previously mentioned, the energy minimization algorithm has been applied to the flat 

ring rolling and to the deep drawing processes and, at the time this thesis is being written, is being validated 

also for the case of the profiled ring rolling process. The two completed validation, carried out on the two 

above-mentioned processes, allowed concluding that the implemented machine learning (Gradient Boosting, 

GB)-based solution is able to suggest the combination of design and process parameters that, for a specific 

final product, grants minimizing the required process energy, for the flat ring rolling process, and geometrical 

accuracy and absence of post-forming earing for the case of the deep drawing process. As concerns the energy 

minimization algorithm, the comparison between predicted (algorithm) and calculated (FEM) solutions 

showed a maximum equal to 8.95%, proving the reliability and generality of the proposed solution. 
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Chapter 1:  

Research background and implementation strategy 

1.1 The radial-axial ring rolling process 

Since most of the research work is relevant to the radial-axial ring rolling process, this initial section aims 

to provide some basics on this process in order to enhance to understandability of the research implementation 

strategy, presented in the following sub-section 1.2. The radial-axial ring rolling (RARR) is a metal forming 

process in which a circular blank is deformed both vertically and axially for producing a variety of seamless 

rings with a desired final geometry and good mechanical proprieties. The process involves 4 tools, namely 

main roll, mandrel, axial rolls, and guide rolls, as schematically reported in Fig. 1a.  

 

Figure 1 – (a) Flat and (b) profiled ring rolling process configuration. 
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The tools are common for both flat and profiled ring rolling process but, for the latter case, either the 

mandrel or the main roll present a non-flat (grooved or protruded) shape, which allows the creation of grooves 

or protrusion on the ring. 

In the RARR process, the thickness of the ring is progressively reduced by the pressure of the mandrel 

towards the main roll, as well as the height is reduced by the vertical action of the upper axial roll towards the 

lower one. By means of these two deformations, both ring thickness and height are reduced, granting an 

enlargement in the ring diameters. It must be noted that the vertical deformation carried out by the axial rolls 

is not mandatory, and, in some cases, it is only employed to control the heigh of the ring rather than reduce it. 

This is particularly true for the case of the profiled ring rolling process, Fig. 1b, where the main focus is 

oriented towards the material redistribution from the initial ring cross-section to the final flanged shape. 

The last of the tools normally available in a ring rolling are the guide rolls that help to control the circularity 

and keep the ring centered during the progress of the process, thus helping to maintain the stability of the ring 

during the process.  

The RARR process allows producing flat and flanged final rings with different finals shapes (e.g. flat, T-

shape, L-shape, C-shape). Examples of initial ring and finals rings, flat and profiled, are shown in Fig. 2. 

 
Figure 2 – Various common final (a) flat and profiled ring shapes. For the profiled rings, common final 

geometries are (b) outer L-shape ring, (c) C-shape shape ring, and (d) internal L-shape ring. 
 
Due to the precise tolerance that could be obtained, rolled rings are used in different industrial fields such 

as automotive (e.g. bearings, automobile transmissions, gears, etc.), wind power, oil, and gas generation (e.g. 

flanges, valves, etc.), and aerospace with the production of aircraft turbine engine components [1, 2]. 

In the ring rolling process a large variety of metal alloys can be employed, such as steel, aluminum, titanium 

alloys, and other special alloys (such as the Inconel material) with high performances, allowing ring 

manufacturers high manufacturing flexibility and a quick response to the market demands. 

Furthermore, the high degree of control applicable to the process through the tools of the ring rolling mill 

allows a high geometrical precision, reducing the cost of the post-operations [3, 4]. On the other hand, although 

the ring rolling process is normally carried out at a high temperature, which implies a high energy consumption 

for the initial heating-up phase of the ring preform, the high temperature and low processing time allow 

obtaining good grain microstructure (grain size pattern), thus good and uniform mechanical properties in the 

final component [5, 6].    
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1.2 Research implementation and topics organization strategy 

This research is subdivided into several sections, which all together allowed achieving the goal of defining 

efficient and precise models for the prediction and the minimization of the energy in metal forming processes.  

As previously mentioned, the energy prediction and minimization algorithms have been defined 

considering the ring rolling process but, in the final chapter of the thesis, they have been also applied to a 

different metal forming process (sheet metal deep drawing), showing the generality of the implemented 

solutions. The overall research implementation flowchart is reported in Fig. 3. 

 

 

Figure 3 – Flow chart of the research. 

 

In order to properly identify the process and design variables to consider in the variable identification phase, 

an extensive literature review has been carried out considering the most important contributions dealing with 

the ring rolling process published in the last 50 years. Considering that the different level of technology 

development and research contributions, flat ring rolling process and profiled ring rolling process has been 

analyzed in separate sections (2.1 and 2.2 respectively) to highlight the specific features of each process.  

The contributions relevant for the flat ring rolling process have been organized in two different sub-sections 

dealing with i) process set-up and control (2.1.1) and ii) force prediction and finite element modeling (2.1.2). 

Since the number of research papers dealing with the profiled ring rolling process is far lower than that of the 

flat ring rolling, they have been organized in a single sub-section (2.2). Contributions including experimental 

verifications, both from lab-scale and industrial-scale, have been added in the relevant section. Moreover, since 
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a contribution may deal with more than one subject, for instance, analytical and FEM modeling at the same 

time, the organization strategy follows a chronologic and topic ordering, showing the progressive improvement 

in the knowledge on the considered process. At the end of each one of the two sub-sections dealing with both 

flat and profiled ring rolling process, a brief state-of-the-art summary has been added to show the main 

achievement and the main limitations relevant to the topics. In addition to the literature contributions dealing 

with the ring rolling process, an additional section has been added in order to summarize the state of the art for 

energy prediction and minimization models, focusing more on those developed and applied to the metal 

forming processes. As will be highlighted in section 2.3, although energy prediction and minimization 

algorithms have indeed been applied to metal forming processes, their application is carried out in a study 

case-like fashion, making it difficult to extend them to different processes or manufacturing conditions. 

At the end of the literature survey chapter, a summary of the main aspects missing from the literature 

contribution and their link to the implemented research shall be presented, section 2.4, to enhance the 

understandability of the novelty of the research work as well as its applicability in both academia and industrial 

environments. 

The following three chapters of the thesis comprise the main research topics, relevant for the development 

of energy prediction models for flat rings (chapter 3), the analytical model for the process set-up and control 

of the geometrical expansion of profiled rings (chapter 4), and the process energy minimization, applied to flat 

rings, profiled ring and deep drawing process (chapter 5). 

In chapter 3, based on the summary of the literature investigations, the main process inputs and outputs are 

defined and considered throughout the chapter as variables for the developed energy prediction models (section 

3.1). Afterward, an initial summary of the research work concerning the process set-up and control for the flat 

ring rolling process is presented (section 3.2) and utilized for the setting of the FEM simulation models, 

summarized in section 3.3, and implemented by means of the commercial software Simufact Forming 15. 

Based on the results of the implemented FEM simulations, for a total of 380 cases ranging from 650 mm < Df 

< 2000 mm (Df : Final ring shape outer diameter), polynomial regression functions have been first defined and 

investigated in section 3.5, where their limitations in predicting the process energy are also highlighted. 

Afterward, in sections 3.6 and 3.7 the details of the implemented machine learning-based algorithms are 

presented, highlighting their differences and the requirement for pre- and post-processing as well as their 

relevant accuracy in the prediction of the integral of the mandrel forming force over the process time. 

On the other hand, chapter 4 is focused on the developed analytical model utilized for the set-up and control 

of the profiled ring rolling process. In this chapter, the analytical formulation of the above-mentioned model 

is firstly presented and discussed in detail, highlighting the importance of the volume conservation principle, 

the main roll rotational speed, and the mandrel feeding speed on the geometrical evolution of the ring. In 

addition to that, the attention is also placed on the importance of the initial ring shape (preform) on the material 

redistribution, a fact which was also highlighted in some of the investigated reference contributions, but never 

explicitly clarified from an analytical point of view. At the end of chapter 4, the Gradient Boosting method, 
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defined in section 3 as the approach which allows minimizing the prediction errors when applied for the 

estimation of the mandrel forming force integral over processing time (FIOT), has been applied also to the 

profiled ring rolling process, allowing to prove once again its reliability in the prediction of the energy 

consumption. The FIOT parameter has been considered as representive of the energy trend since the force 

integral over time manage better the instantaneous force peaks and so avoid incorrect readings. Moreover, for 

developing the predicting alghorithm, an average mandrel feeding speed has been considered, thus using the 

FIOT permits to use less variables. This second validation allows appreciating the generality of the 

implemented solution, which is not limited to the flat ring rolling process. Finally, in chapter 5, the model 

developed for the minimization of the energy consumption is firstly presented and discussed in detail and is 

afterward applied to the flat ring rolling and to the deep drawing process. For the first case, the target function 

is set to the minimization of the FIOT parameter, identified as the main source for the energy consumption in 

the process, for the latter case, the optimization is carried out considering the combinations of geometrical and 

process parameters those allow achieving geometrical accuracy of the final shape while avoiding post-forming 

earing in the edge regions of the part. Same concerning chapters 3, 4, and 5, due to the large amount of data 

and results available, only a small but still relevant fraction of the results in presented in the core of the thesis, 

whereas the remaining information is summarized in dedicated appendices and the end of the manuscript. 

In order to provide critical insight on the main achievement and results summarized in this thesis, the 

detailed comments of the results are separated from the results sections of chapters 3, 4, and 5 and are detailed 

in section 6. In this section, the interconnections between the different aspects introduced and presented in the 

previous three chapters are highlighted to show how the developed algorithms and procedure can be applied 

alone, or combined, exploiting their features to minimize the energy consumption or, in general, to optimize a 

specific user-defined multi-variable target function. 

Moreover, in section 6, a brief introduction of the on-going activities is presented to highlight the remaining 

research activities being carried out at the moment this thesis is being written and that will complete the work 

on the machine learning models for process optimization, defined and validated for the flat ring rolling process 

and the deep drawing process in section 5. 
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Chapter 2: 

Introduction, literature survey, and research needs 

Radial axial ring rolling process is a versatile forming process that allows producing annular-shaped 

products as well as profiled rings: this advanced process permits to realize a seamless product, shorten the 

production time of large-scale rings compared to other process solution, and control orientation and size of the 

grain to obtain improved mechanical properties [3-6]. Components manufactured with the RARR process are 

used in the last years in several industrial fields such as automotive, wind power, aerospace, agriculture, and 

piping [1, 2]. Therefore, to satisfy the growing market demands, several researchers investigated procedures 

and methodologies to optimize this complex process, in terms of tolerances, surfaces quality, mechanical 

properties, production cost, and time. These topics are discussed in the relevant sub-sections, both concerning 

the flat ring rolling as well as the profiled ring rolling process. 

Furthermore, the constantly growing computational power and the developments of various numerical 

simulation software aided the ring rolling process research, allowing to obtain advantages of time and cost 

compared to the experimental tests. In fact, finite element method (FEM) simulations allow studying the 

evolution of the ring and to analyze the working forces during the process time for different process 

configurations and are far less expensive than industrial-scale or lab-scale experiments. For these reasons, 

several authors also developed ad-hoc simulation programs based on both standard finite element theory or 

developed analytical models to study the ring evolution in the pre-production phase as well as the optimal 

working conditions with the aim to minimize the production defects and enhance the production performances. 

In the following paragraphs, a summary of the present literature concerning the flat and profiled ring rolling 

process aims to provide an overview of the available knowledge on process set-up, control, FEM, and force 

modeling for these processes, aiming to highlight the state-of-the-art and, at the same time, the areas where 

more studies ought to be focused. In addition to that, the following two sections are dedicated to two additional 

topics related to this research, namely the energy prediction models and machine learning models. For the 
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former, a broad literature review has been carried out in order to investigate the available literature modeling 

procedures and algorithms, even not strictly related to industrial forming processes. The latter sub-section is, 

instead, dedicated to the summary of the available categories of machine learning models to present their 

strengths and weaknesses and also to provide an overview of the state-of-the-art of their applications into 

manufacturing processes in general. 

2.1 Flat ring rolling process literature survey 

In this section, the main contributions dealing with the ring rolling process of flat rings are summarized 

starting from the most iconic and cited ones, on which most of the following contributions are based. In 

addition to that, also the most recent and most industrially relevant contributions are summarized as well. This 

section aims to provide a clear background on the RARR process of flat rings, which is also subsequently 

summarized in the last section 2.1.3. 

2.1.1 Process set-up and control 

The starting point for the modeling of the process control in the ring rolling process is most likely the work 

of Hua and Zhao [7] from 1995, where the penetration and biting-in conditions have been defined. The 

penetration conditions are regarded as the minimum thickness draft that is required to be applied to the ring 

thickness in order to achieve plastic deformation throughout the whole thickness. On the other hand, the biting-

in conditions defined the other extreme of the range, thus the maximum thickness draft that can be applied to 

the ring, beyond which the friction force becomes too high, and the ring is stuck into the deformation gap. 

From the kinematic point of view, the plastic deformation through the thickness of the ring has been 

investigated by several authors by means of the slip line theory [8], a powerful mathematic tool that allows 

calculating the force required to deform a bulk material section based on a specific set of material, geometrical 

and velocity boundary conditions. By means of the slip line theory, firstly Mamalis et al. [9] and, more recently 

Quagliato and Berti [10, 11] defined analytical models for the estimation of the strain field distribution in the 

cross-sections of flat rings with the aim of calculating the process force evolution throughout the process, on 

the basis of the material properties, considered as perfectly plastic, and the process parameters, mainly in terms 

of velocity field and mandrel feeding speed (thickness draft per ring revolution). 

Based on the initial modeling proposed by Hua and Zhao [7], several authors proposed improvements and 

further expanded it considering the mutual influence between radial and axial deformations, as hereafter 

summarized. Yan et al. [12] defined an algorithm for the definition of the mandrel feeding speed during the 

process based on a pre-selected ring growth speed, with the aim of maximizing productivity while reducing 

forming defects, such as the fishtail effect [13]. Subsequently, Guo and Yang [14] presented the first 

contribution dealing with the steady forming conditions for the radial-axial ring rolling process and introduced 

a process control algorithm that allows calculating the process parameters that grant a constant growth of the 

ring throughout the process. It is important to remark that, to achieve stability during the ring rolling process, 
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after the initial phase in which the ring is put into a steady rotation by the main roll, the expansion of its 

diameters should follow a quasi-linear law. This steady forming condition allows achieving a uniform 

redistribution of the material in the cross-section as well as avoids instability problems, such as the lack of 

circularity of the ring or excessive dynamic instability (ring oscillation and vibrations). 

Up to 2011, the most complete contribution concerning the development of algorithms for the set-up of the 

flat ring rolling process is due to Zhou et al. [15]. In their contribution, a clear correlation between the mandrel 

feeding speed and the upper axial roll feeding speed was established, allowing the definition of a range for the 

mandrel feeding speed and based on it, the calculation of the feeding speed range for the upper axial roll. 

Although this contribution defined the starting point of the identification of the so-called feasible ranges for 

the main process parameters in the ring rolling process, the consideration of a constant feeding speed for the 

mandrel remained a strong limitation. In fact, considering a constant mandrel feeding speed during the ring 

rolling process neglects the intrinsic temperature loss and relevant increase in the material flow stress of the 

ring, a fact which makes the maximum force to be reached towards the final stages of the process, where the 

ring should have already reached a shape close to its final one. To avoid this inconvenience, Berti and Quagliato 

proposed a methodology that defines two different feasible ranges for the mandrel feeding speed, one for the 

onset velocity and one for the final velocity, interpolated considering a linearly decreasing law [16]. This 

innovative approach allowed overcoming all the limitations of the previous models, allowing a steady growth 

of the ring during the process. In addition to that, the application of a higher mandrel feeding speed at the 

beginning of the process allows achieving most of the deformation in the first rounds of the process thus 

maximizing the exploit of low material flow resistance granted by the higher ring temperature. On the other 

hand, the progressive reduction of the mandrel feeding speeding allows following the natural decrease in the 

ring temperature and the consequent increase in its material flow stress. The algorithm proposed by Berti and 

Quagliato has also been utilized in the following research [17] to determine the evolution of the 3D strain field 

in the ring throughout the ring rolling process. The consideration of the evolution of the 3D strain tensor during 

the process allows recalculating the material redistribution in the ring cross-section, enhancing once more the 

capability in the estimation of the ring geometrical evolution during the process. 

As far as concerns the set-up and control of the flat ring rolling process, the analytical model proposed in 

Berti and Quagliato [16] still represents the state-of-the-art and, for this reason, it has been utilized also in this 

research for the set-up phase of the FEM simulations utilized for the creation of both training and validation 

data sets utilized for the energy prediction and minimization algorithms.  

For the sake of enhancing the understandability of the developed models, the main equations relevant for 

the above-mentioned model [16], both in terms of estimation of the ring initial preform and the calculation of 

the main roll, mandrel, and upper axial roll speed ranges, are summarized in section 3.2. 
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2.1.2 Force prediction and finite element modeling 

As concerns analytical modeling for the estimation of the process force and torque in the ring rolling 

process, some work has been carried out in the ’70s of the previous century and, more recently by two different 

research groups. The reason for this relatively low number of contributions on the analytical modeling for the 

force and torque is given by the widespread use of FEM simulations, starting from the early ’80s onwards, 

which made the estimation of these parameters easier and somehow more reliable. However, as will be also 

highlighted in this section of the thesis, an accurate estimation by FEM simulations requires an intensive pre-

processing phase, to properly set-up the FEM model, apply to correct process set-up and boundary conditions 

as well as temperature- and strain rate-dependent material properties. In fact, the utilization of FEM simulations 

for the estimation of the process in metal forming processes, and especially in the RARR process, is a double 

edge sword. On one hand, several important process outputs, such as ring geometry, strain field, stress field, 

process force, and torque, and so on can be estimated with exceptional accuracy but, on the other hand, this 

accuracy is strongly connected to a remarkably high computational time. If some simplifications are applied 

to the FEM model to reduce its computational time, or ad-hoc FEM solutions are implemented with the aim 

of reducing the number of equations to be solved by the FE solver, the resulting accuracy is not far from that 

of an analytical solution which is, instead, computed in real-time. 

In a 1973 work, Hawkyard [18] developed an analytical model, translated into operating charts, which 

linked the projected contact length between the ring and forming tools with the forming force and the rolling 

torque, parameterized with respect to the yield strength and by considering a perfectly plastic material. The 

implemented solution is based on the slip line field theory and allows a direct estimation of the radial force 

and torque, with a maximum deviation calculated in 15%, in comparison to the relevant lab-scale experiment.  

In a following work, Yang and Ryoo [19, 20] investigated the influence between the radial forming force 

and the torque transferred from the main roll to the ring during the process by defining an equivalent coefficient 

of friction. Afterward, they defined a upper bound correlation between radial force, torque, and equivalent 

coefficient of friction and investigated its influence on various ring shapes, and considering different process 

parameters. More recently, Parvizi et al. [21] and Parvizi and Abrinia [22] utilized a SLAB analysis and the 

Upper Bound method for the estimation of the radial forming force in the ring rolling process and validated 

them by comparing their results with those of FEM simulations and experiments. It is interesting to notice that 

both SLAB and Upper Bound models should define a sort of safe / non-safe region around the true solution 

but, as shown in Quagliato et al. [23] both solutions tend to strongly underestimate both experimental and FEM 

results when applied to relatively large-scale rings. This fact has been investigated in Quagliato [23] where the 

reason for the underestimation of the radial forming force has been identified in an underestimation of the 

contact length between mandrel, main roll, and the inner and outer diameters of the ring, a fact which makes 

the solutions estimated in [21, 22] to underestimate the real force values. 

Another interesting aspect is related to the fact that, in the literature, only two contributions seem to deal 

with the estimation of the axial forming forces. In the considered work by Wang [24] the Keaton’s rule [5] 
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correlating the radial and axial deformations, in terms of thickness and height drafts, has been considered to 

define an analytical model for the prediction of the axial forming force. The results of this investigation seem 

to predict a sort of lower bound of the axial forming force but, as also mentioned in the paper, they tend to 

underestimate the experimental results. In addition to that, the second contribution dealing with the estimation 

of the axial forming force is due to Kalyani et al. [25] and presents an algorithm, based on the SLAB method, 

for the estimation of both contact length between axial rolls and the ring and another one for the analytical 

estimation of the axial forming force. The prediction carried out by the former algorithm has been compared 

with the experimental results of a specific study case showing a deviation in the estimation of the maximum 

axial force equal to 16.9%. However, as demonstrated in Quagliato and Berti [26], both algorithms presented 

in [24] and [25] are affected by the same issue related to the estimation of the contact length and, for this 

reason, they both tend to underestimate the forming force. For this reason, in [26], Quagliato applied the slip 

line field theory for the estimation of the axial forming force and shown that, as was also true for the radial 

forming force, also for the case of the axial force the correct estimation of the contact length between the 

forming tools and the ring is the key aspect in the accuracy of the force estimation. 

As concerns FEM modeling of the radial-axial ring rolling process of flat rings, both commercial software, 

as well as dedicated solution algorithms, have been developed over the years to achieve both accuracy in the 

prediction as well as reductions of the computational time. Since these two aspects are normally in conflict 

with each other, authors have concentrated either on high prediction accuracy or on computational time 

reduction, as hereafter summarized. 

As concerns the utilization of commercial software, Qian and Pan [27], Qian et al. [28], and Zhou [29] 

developed finite element method (FEM) models employing the ABAQUS/Explicit environment and coupled 

these numerical investigations with laboratory experiments and analytical models. The target of the developed 

models was to investigate specific interactions between the process tools and the ring during the process, such 

as the blank size (ring preform) effects [28] or to investigate the heating process of the ring preform from the 

initial blank operation to create the inner diameter to the end of the ring rolling process (multi-stage finite 

element analysis). On the other hand, ABAQUS/Explicit has also been utilized by Guo and Yang [14] for the 

validation of the developed analytical model, showing good agreement between these two solutions.  

In an interesting work focused only on FEM modeling, Wang et al. [30] defined an approach for the 

optimization of the flat ring rolling process based on a numerical solution that optimizes the control parameters 

for the ring rolling mill and obtained a reduction in the rolling time equal to 28% in comparison to traditionally 

employed approaches. Considering a different commercial software, Sun et al. [31] developed a thermo-

mechanical FEM simulation model in DEFORM-3D and investigated the effect of the process parameters on 

the quality of the resulting ring and the expansion dynamic of the process, in terms of its stability. The main 

target of this research was the definition of the optimum process parameters in the flat ring rolling process. 

It is important to highlight that, although the process optimization can be carried out by means of FEM 

simulations, an initial pre-screening operation by means of analytical models is required to limit the overall 
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computational time. If this initial pre-operation is not carried out, the time required to achieve a reasonable 

improvement in comparison to the starting point of the optimization becomes a strong limitation for academic 

research and, especially, for an industrial environment. A similar investigation on the effect of the process 

parameters on the strain field distribution in the ring during the process has been carried out by Zhou et al. [32] 

but, although accurate, it is affected by the same drawback relevant to the computational time. 

On the other hand, in an interesting work by Zhou et al. [33], the effect of the axial rolls on the process 

stability has been investigated and some process control rules have been proposed. The role of the axial rolls 

in the rolling process is not to apply deformation to the ring but, instead, to control the overall stability of the 

process. For this reason, since the analytical modeling of this interaction is not simple, FEM models provide 

useful insight on the dynamic of the process and cast light on some aspects that can be employed in the real 

production for an improvement of the control of the process. 

In addition to the two commercial FEM software mentioned above, the Simufact Forming program has 

been utilized throughout the years by several scholars in relation to the ring rolling process [10, 11, 16, 17] 

and also other for other application of forming, welding and additive manufacturing [34-41] thanks to its 

accuracy as well as for the powerful explicit solver (based of the MARC® architecture). For this reason, as 

also carried out in previous researches, this commercial simulation software has also been utilized for the 

implementation of the FEM simulations implemented in this research. 

As concerns more customized finite element approaches, Lim et al. [42] employed a material mesh and a 

computational mesh system in which the former is only utilized to transfer the node-based information from a 

time step to the following one whereas the latter is used in the actual computations. The consideration of the 

material mesh allows limiting the number of computations carried out at each integration step since it considers 

only the region of the ring where the deformation is carried out, either in the main roll-mandrel or in the axial 

rolls deformation gaps. Although this approach is promising, the pre-processing operation and the actual 

programming required to properly compute both mesh systems in all the integration steps limits the 

applicability of this approach to most of the users. 

In addition to that, Davey and Ward [43] introduced the possibility of remeshing the portion of the ring not 

subjected to deformation in the considered integration step with a coarser mesh, and to remesh them with the 

original fine mesh right before they enter the deformation gap. A similar approach has also been employed by 

Kim et al. [44], obtaining some reduction in the computational time but the procedure tends to achieve lower 

accuracies for high rolling velocities. This fact can be explained by the intrinsic nature of the explicit solver 

solution, where the time step selection is related to the inputted speeds. For the case of the ring rolling process, 

the main driving force is related to the rotational speed of the main roll, thus a higher value of this parameter 

requires a lower time step setting. For low time step values, the time required for the remeshing of the regions 

of the ring not directly subjected to deformation in the considered time step requires more time than the time 

step itself, making this approach to become impractical. 
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In addition to that, Yea et al. [45] and Kim et al. [46] introduced the self-developed program SHAPE-RR® 

and compared its performances, both in terms of estimation of the process forces and computational time, with 

the results of other commercial software showing the improvement. More specifically, in [46], the authors 

developed a specific plug-in for the developed SHAPE-RR® software to automatically calculate the process 

parameters that allow minimizing the maximum forging load. The procedure is based on the combination 

between FEM simulations and DoE analysis, based on the Taguchi technique and shown to be able to provide 

a solution that is in good agreement with the experimental results and, at the same time, allows a reduction in 

the maximum mandrel force. 

2.1.3 State-of-the-art summary 

As summarized so far, in the last five decades, the ring rolling process of flat rings has been extensively 

analyzed by different scholars from the analytical, finite element, and experimental points of view. At the 

present stage, as pointed out in the contributions of Berti and Quagliato [16], the radial-axial ring rolling 

process of flat rings can be set-up with relative ease and the influence of the chosen process parameters on the 

geometrical evolution as well as on the strains and forces developing during the process can be assessed via 

an accurate analytical solution. In addition to that, as pointed out in Quagliato [23, 26], the analytical estimation 

of the process forces, both radial and axial, is strongly influenced by the accurate estimation of the contact arc 

length created between the tools and the ring during the process and can be estimated by the slip line theory, 

as largely discussed in [11]. For these reasons, considering the extensive research work carried out between 

the years 2000 and 2018, no new contributions dealing with analytical modeling for the flat ring rolling process 

are available in the literature. On the other hand, finite element simulations still remain a useful, yet high time-

consuming technique, for the analysis of the variable involved in the ring rolling process and, for this reason, 

several commercial software are employed both in the academia as well as in the industry for the thermo-

mechanical process investigation. 

2.2 Profiled ring rolling process literature survey 

The aim of this section is remarkably different from that of the flat rings, as hereafter explained. Most 

contributions dealing with the profiled ring rolling process aimed to the investigations of the variation of the 

ring geometrical expansions when different combinations of process parameters are applied to the forming 

tools, mainly the main roll rotational speed and the mandrel feeding speed. The reasoning behind this case 

study-like is given by the fact that no contribution deals with the kinematic analysis of the influence of the 

process variables onto the geometrical expansions of the ring. For this reason, one of the main efforts of this 

research has been the definition of an analytical model able to define a correlation between these two above-

mentioned inputs and output of the process. On the other hand, the presence of several scholars dealing with 

experiments relevant for the profiled ring rolling process allowed verifying the proposed model with respect 

to various geometrical and material configurations, allowing to strengthen its generality and reliability.  
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Finally, being the literature contributions dealing with the profiled ring rolling process far less than those 

relevant for the flat ring rolling process they are all summarized in this section of the paper and are not 

separated into specific sub-sections. 

The first contribution investigating the profiled ring rolling process dates back to 1976 and is due to 

Mamalis et al. [47]. In their research, the authors investigate the effect of the rolling parameters on the spread 

of rings manufactured by employing tellurium lead and aluminum alloy. The extensive work allowed showing 

the plastic flow pattern in the cross-section of the manufactured rings and showed that the slip line field, 

estimated by the implemented algorithm, and also considered in previously mentioned researches [7, 9, 10, 11] 

is able to properly predict the real redistribution of the material in its cross-section. 

As concerns additional analytical investigations, Zhou investigated the expansion of profiled rings by 

defining an algorithm for the prediction of its wall diameter, identified as the portion of the ring where the 

deformation is applied in the mandrel-main roll deformation gap. Although the charts showing the comparison 

between experimental and FEM ring growths show a reasonable accuracy, the evolution of the inner diameter 

of the ring as well as of the flange diameter are not discussed and a quantitative investigation of the model 

accuracy is not provided. On the other hand, Qian et al. [48] investigated the above-mentioned penetration and 

biting-in conditions for the case of a C-shape (Fig. 2c) grooved ring and showed that the balance between 

penetration and sufficient ring rotation, also valid for flat rings, is a key aspect in the uniform growth of both 

wall and flange of the ring. 

Besides, most of the relatively recent contributions dealing with the profiled ring rolling process deal with 

a combination of FEM, analytical-empirical and experimental analyses, as hereafter summarized. 

In an interesting work from 2014, Berti and Monti [13] considered the whole operations required for the 

production of an industrial case relevant for a profiled ring and optimized both the initial piercing operation of 

the annular blank, namely the initial shaping into the profiled preform, as well as the profiled ring rolling 

process by means of simulations implemented in the commercial SW Simufact Forming. Besides, Hua et al. 

[49] utilized the commercial SW ABAQUS for the investigation of the deformation behavior of outer L-shape 

rings (Fig. 2b) and showed that the plastic deformation is not uniform in the cross-section of profiled rings but, 

instead, it propagates from the outer-top and -bottom surfaces to the center of the ring. Differently from the 

flat ring rolling process, in the profiled ring rolling the presence of one or more protrusions in the flanging 

tools, makes the strain, and stress fields, to be non-uniform along the ring cross-section as well as along its 

height. This issue makes it difficult to predict the plastic material redistribution in the cross-section of the ring 

but, as it will be shown in section 4 of the paper, it has been successfully modeled in the proposed algorithm. 

As concerns finite element modeling of the profiled ring rolling process, in an interesting contribution due 

by Kim et al. [50] the MSC SuperForm commercial software has been utilized for the investigation of the 

evolution of the cross-section of profiled rings showing its progressive evolution in a sort of flower-pattern, 

showing good agreement with the relevant experimental results. In addition to that, Davey and Ward [51] 

employed an arbitrary Lagrangian-Eulerian update strategy combined with the successive preconditioned 
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conjugate gradient method in order to reduce the computational time required for the solution of profiled ring 

rolling FEM models. As also carried out by the same authors in a contribution dealing with the flat ring rolling 

process [43], also in this work the authors subdivided the ring into two sections: the section being deformed in 

one of the two deformation gaps, and the section simply rotating. For the former section, a finer mesh is applied 

in order to estimate accurate results whereas in the latter a coarser mesh is considered in order to reduce the 

computational time. Although the implemented solution is in good agreement with the literature experimental 

results considered in the paper, the complexity of the profiled ring rolling process, in comparison to the flat 

one, makes the reduction of the computational time to be lower than expected. 

In recent years, Cleaver et al. [52-55] employed low flow resistance alloys and clay materials in lab-scale 

experiments in order to investigate the deformation behavior of profiled rings and also to define process 

guidelines to apply to industrial processes. Most of the work is based on well-detailed experiments and, for 

this reason, some of the experiments included in the above-mentioned contributions have been utilized in this 

research for the validation of the profiled rings geometry prediction algorithm presented in section 4. 

Furthermore, additional work has been carried out in the direction of optimizing specific industrial 

processes, in a case-study research approach, as hereafter summarized. Oh et al. [56] investigated, by means 

of both experiments and finite element simulations, the main defects arising in the profiled ring rolling process, 

such as ring undergrowth and lack of filling in certain regions of the final shape. Park et al. [57] investigated 

the effect of the process parameters and initial blank shape on the production defects of an L-shape ring utilized 

in construction machines. Besides, Lee et al. [58] utilized a case study, based on an excavator idle rim, to 

define a methodology for the multi-stage profiled ring rolling process. This concept of subdividing the process 

into several stages has been also investigated by Kim and Quagliato [59] for the case of the flat ring rolling 

process with the aim of achieving different expansion growth rates during the same ring rolling process. The 

possibility of utilizing different tools during the same process is interesting, since it allows a progressive 

shaping of the profiled shape of the ring, but its complexity is beyond the scope of the present research since 

aspects related to re-heating and microstructure changes cannot be neglected. More recently, Liang et al [60] 

investigated the influence of the preform definition for C-grooved rings to obtain a precise forming and defined 

a correlation with the so-called pulling coefficient. 

Same concerning case studies relevant for the profiled ring rolling process, Tani et al. [61] investigated the 

geometrical evolution of a profiled Ti-6Al-4V ring utilized in a turbo fan engine. Thanks to the implemented 

case-study analysis the authors could achieve a higher net-shape dimensions accuracy as well better 

mechanical properties by controlling the process parameters and their influence on the microstructure. 

Finally, as concerns contributions mainly dealing with profiled ring rolling process control, Li et al. [62] 

investigated the role of the axial rolls in the profiled ring rolling by means of FEM simulations implemented 

in ABAQUS/Explicit and defined a plug-in algorithm which calculated the instant position of the guide rolls 

during the process in order to be always in contact with the ring, thus enhancing the process stability and 

geometrical accuracy. On the other hand, Kang [63] investigated the role of the ring preform in the 
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filling/unfilling behavior of profiled rings and showed that the design of the initial ring preform is essential to 

achieve the desired final shape and avoid process defects. 

As concerns this last statement, although the initial preform shape cannot be excluded from the parameters 

influencing the geometrical accuracy of the final ring shape, as it will be shown in section 4, the influence of 

the process parameters, in terms of main roll rotational speed and mandrel feeding speed, is far greater. In fact, 

if the initial ring preform is reasonably designed, the required geometrical accuracy can be achieved by a 

careful selection of the above-mentioned process parameters. 

2.2.3 State-of-the-art summary 

As summarized in the previous sub-section, most of the contributions dealing with the ring rolling of flat 

rings are based on experimental results and can hardly be extended to different processes if the geometry or 

the process/material variables are changed. In addition to that, although some authors defined the main process 

and geometrical variables influencing this process, a clear and quantitative connection between these two 

aspects is yet to be properly established. For this reason, in this research, an analytical model for the estimation 

of the geometrical evolution of profiled rings is proposed and validated by comparing its prediction with those 

of literature experiments [51, 55, 56, 63]. In addition to that, thanks to implemented analytical and FEM 

solutions, the influence of the main process and ring dimensions (initial and final) on the geometrical evolution 

and on the energy consumption during the process have been investigated as well. 

This combined analytical-FEM investigation shall cast the light on the strong influence that processing 

parameters have on the geometrical evolution of the ring during the process which has shown to be almost 

independent of the considered material, making the kinematic assumption, on which the model has been 

developed, to be reasonably true. 

2.3 Energy prediction models literature survey 

As concerns energy estimation and starvation algorithms for industrial processes, due to the strong 

influence of the energy demand on production planning and control [64], several authors focused their attention 

on methods for the estimation and the minimization of the energy consumption, as hereafter summarized. 

Unver and Kara [65] introduced a decision support tool called HORUS 5.0 to determine the lowest energy-

consuming route within the scope of sustainable energy efficiency. Meissner et al. [66] developed an indicator 

system considering the impact of the materials, energies, and economic attributes of energy efficiency, 

concluding that, in the manufacturing sector, strategic decision-making concerning energy optimization is 

important to be competitive. Hasanbeigi et al. [67], worked on the estimation of the cost of the energy 

consumption considering a constant energy price to overcome day-by-day energy cost fluctuations.  

As concerns energy estimation in forming and forging processes, Larkiola et al. [68] investigated the role 

of energy efficiency in the rolling processes using an ANN-based approach. The application of this method 

allowed achieving an improvement estimated in 1.8% of the overall energy efficiency. Giorleo et al. [69] 
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compared simulation analyses with an industrial case to evaluate the effect of utilizing different ring preform 

geometries with the aim of reducing the total energy required during the process. However, the analysis is 

based on a single set of material properties and process parameters, thus the applicability of this procedure to 

other cases is not certain and is more focused on the fishtail defect and the material scrap reduction rather than 

on the energy estimation. In addition to that, Xinglin et al. [70] established a model for optimizing the feed 

trajectory based on the necessity to reduce surface defects for Inconel 718 alloy rings and established a model 

based on the surface response method (RSM). Allegri et al. [71] defined a main roll speed law that allows 

maintaining a constant ring angular velocity and, by means of the developed procedure, achieved a 35% 

reduction of the fishtail defect and a 9% reduction of the energy consumption. 

In addition to that, in recent years, machine learning and deep learning algorithms have been utilized for 

data monitoring, collection, and energy forecasting in the manufacturing sector in order to optimize decision-

making strategies [72] and to develop and improve manufacturing plants towards the so-called smart factory 

systems [73]. More specifically, Nguyen [74] applied an archive-based micro-genetic algorithm (AMGA) for 

the minimization of the energy required for the machining of the SKD61 material while also considering the 

influence of the adopted process conditions on surface roughness and production rate. Same concerning the 

machining process, Brillinger et al. [75] applied three different machine learning models, belonging to the 

ensemble category, namely the Decision Tree, the Random Forest, and the Boosted Random Forest, for the 

energy prediction during the process and verified the deviations by comparisons with predictions with 

industrial and experimental results. Geng et al. [76] applied machine learning algorithms, combined with 

interpretative surface structural and analytic hierarchy process, for the reduction of the energy consumption in 

ethylene production, showing good agreement with experimental results.  

Finally, Wang et al. [77] developed and applied a novel extreme learning machine integrating Monte Carlo 

algorithm for the prediction and maximization of the energy production in hydropower plants, showing how a 

relatively small initial data set can be expanded by the utilization of a well-trained algorithm, in a sort of a 

two-stage machine learning models application. This approach has been also utilized in this research, as it will 

be presented in section 5.   

2.4 Research needs and main research achievements summary 

Considering altogether the literature review presented in the previous four sub-sections, some important 

remarks must be pointed out, as hereafter summarized. 

• As concerns the flat ring rolling process, although several contributions deal with the process set-

up and control and with the energy prediction, almost all of the contributions dealt with the 

development of FEM models, which are complex to set-up and are high time consuming; 

• In addition to that, from the extensive literature review presented in this chapter, no contributions 

seem to deal with the utilization of machine learning models for the prediction of the energy 

consumption neither in the ring rolling process nor in other metal forming processes; 
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• No contributions deal with analytical modeling of the correlation between process parameters and 

kinematic expansion of profiled rings. This is a considerable issue, which affects the accuracy of 

the process set-up and limits the possibility of a deep and thorough understanding and control of 

the process; 

• Finally, when it comes to energy minimization, most of the models available in the literature have 

been developed considering either a specific process or a quite narrow process variable range and, 

for this reason, as also stated by the authors, they are not easily applied to different manufacturing 

conditions or different processes. 

These issues and missing investigations from the literature have been successfully overcome in the research 

topics presented in the following sections of the paper and allowed: 

• Proving the limitations of the utilization of polynomial regression function when utilized for the 

prediction of parameters relevant for complex thermo-mechanical process, such as the ring rolling 

process; 

• Investigating the accuracy of different machine learning models, based on different target functions 

and learning techniques, in predicting one or more process variables for the case of complex 

thermo-mechanical process, such as the ring rolling process; 

• Enhancing the understanding of the kinematic correlation between process conditions and 

geometrical expansion of the ring in the profiled ring rolling process. As it will be shown in section 

4.4, the importance of this aspect is strongly related to the connection between the main roll 

rotation, the mandrel feeding speed, and the redistribution of the material in the cross-section of the 

ring during the process, which ultimately influences its final geometrical accuracy; 

• Defining a machine learning model which can automatically augment its training dataset but 

employing a prediction algorithm, as the first stage, and afterward predict a combination of 

geometrical and process parameters those allow minimizing the required process energy when a 

certain combination of final geometry, material, and initial temperature are considered. Concerning 

this last point, in order to prove the generality of the proposed approach, the developed prediction-

minimization algorithm has been applied to i) flat ring rolling, ii) profiled ring rolling, and iii) deep 

drawing process showing its accuracy and generality, thus superseding the limitations of the 

previous models available in the literature. 

The main research achievement, and relevant performances, of the developed models and methodologies 

presented throughout the paper, can be summarized as follows: 

• The investigation of the performances of various machine learning models in predicting the 

mandrel force integral over time allowed concluding that the Gradient Boosting method, when 
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applied to the flat ring rolling process, has a maximum and average errors equal to 9.03% and 

3.18%, both when applied to FEM and experimental results not utilized during the training phase; 

• The developed process set-up and control algorithm, developed for the profiled ring rolling process, 

allows precise estimation of the material redistribution in the cross-section of rings during the 

process and, at the same time, it allowed understanding the importance of each one of the main 

process parameters on the geometrical accuracy and energy consumption during the process. As 

concerns the developed model, the accuracy has been estimated in 4.9% as the maximum error in 

the estimation of the three main diameters of the considered profiled rings, namely inner diameter, 

wall diameter, and flange diameter; 

• Thanks to the generality of the formulation of the developed process variables minimization 

algorithm, the energy consumption (in terms of FIOT parameters) for the flat and profiled ring 

rolling process, and the manufacturing quality (in terms of after-forming earing) for the deep 

drawing process could be optimized and showed the applicability of the developed solution to a 

generical metal forming process for the optimization of one or more process variables. In order to 

assess the accuracy of the predicted solutions, the results have been compared with FEM results 

showing maximum deviations equal to 8.95%. In addition to that, additional FEM analyses have 

been carried out in order to verify that the estimated combination of geometrical and process 

parameters, as estimated by the minimization algorithm, is the real minimum of the considered 

target function. This second analysis allowed concluding that the implemented solution is indeed 

capable of finding the minimum of the considered target function, for both the FIOT values (flat 

and profiled ring rolling) as well as for the deep drawing process, in terms of post-forming earing 

minimization. 
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Chapter 3 

Process energy prediction models: 

application to the flat ring rolling process 

In this chapter, a deep analysis of the process parameters involved in the ring rolling process of flat rings 

and on the geometrical evolution of the ring is presented with the aim of defining their influence on energy 

consumption. Afterward, different predictive models based on different approaches, mainly regression 

polynomial functions and machine learning, are going to be presented in order to define the optimal industrial 

solution to analyze and minimize the energy consumption in the ring rolling process of flat rings. 

In the RARR process, a preform is incrementally deformed for achieving a desired final ring. For obtaining 

a better precision of the final shape in terms of geometrical accuracy it is important to choose input for the 

process, mainly in terms of geometrical and process parameters. The literature algorithms concerning the 

choice of initial size and the calculation of the motion law ranges have been considered as the starting point 

for developing the energy consumption prediction model. In fact, in the first step, the correlation between 

process and geometry parameters has been studied for understanding the inputs to be considered in the model 

to obtain the desired output. FEM simulations of the RARR process with different conditions have been set, 

run and post-processed, to construct a database of values used in this analysis. The FEM model for the flat ring 

RARR process has been validated using a previous experiment test made in Sogang University. 

Once the inputs have been chosen, the first developed model presented is multi-variable regression, a 

statistical approach. This approach permits to predict the values of dependent variables based on the value of 

an independent variable, as it will be explained in detail in the specific paragraph 3.2. For the validation, the 

results of the regression model have been compared with the solutions provided by FEM simulations. The 

resulting equation presents an average deviation between predicted and measured results of 5.9%. The built 

regression model can have an industrial application for energy starvation, but it is limited to the small range 

set of parameters utilized for the development. To amplify the input parameters ranges it is necessary to rebuild 
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the regression equation and so provide a new regression model: in this way also the model complexity 

augments, making the model hard to use. For this reason, different approaches based on artificial intelligence 

have been considered in order to increase the input range, defined in terms of the geometrical shape of the final 

ring, also considering the average and maximum prediction error within the considered range. 

The training database considered for the energy prediction models is composed of 380 FEM simulations 

constructed considering a 650 mm < DF < 2000 mm range for the outer diameter of the final ring shape. In 

order to perform a reliable validation of the performances of the implemented prediction models, 80% of the 

380 results have been utilized for the training whereas the remaining 20% for its validation. 

In section 3.5 the polynomial regression function utilized has been presented whereas in the following 

section 3.6 the eight considered machine learning models have been summarized. The accuracy, advantages, 

and limitations of both formulations are discussed within the above-mentioned two sections. 

3.1 Process parameters identification 

The first step of this research is the identification of the significant process variables of the RARR process 

of flat rings: the following selection of process parameters has been focused and designed specifically for the 

energy predictive model development, meaning that for a different investigation different set of variables could 

be more relevant. Considering the flat ring rolling process, the process variables identified can be subdivided 

into 4 macro groups that are the speed parameters SP, initial and final ring geometries RG, material properties 

MP, and process condition PC as resumed in Fig. 4. 

  

Figure 4 – Process variable analyzed for implementing the flat ring model. 

 

Speed parameters group SP is composed of the initial and final values of main roll rotational speed, mandrel 

feeding speed, and axial roll feeding speed: with these 6 values, all the process tool speeds are settled. The 

rotational speed of the main roll is chosen from a range of previous literature studies [4, 16], while the mandrel 

speed is defined by ring and tools geometry, as well as the axial rolls speeds. All the considerations and the 

main formulations utilized will be explained in the next section 3.2. Concerning the geometrical parameters of 

the ring RG, this group is composed of initial and final values of inner diameter, outer diameter, and height: 

i) Initial/final Speed parameters (SP) 
- Main roll rotational speed; 
- Mandrel feeding speed; 
- Upper axial roll feeding speed; 
-  

ii) Material properties (MP) 
- Flow stress ( , , ) dependence; 
- Yield strength (YS) and Young’s Modulus 

(E) influence. 

Model input for flat ring model 

iii) Initial/final ring geometries (RG) 
- Inner diameter; 
- Outer diameter; 
- Height. 

 
iv) Processing conditions (PC) 

- Ring initial temperature (uniform); 
- Friction (constant); 
- Tools temperature (constant). 
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initial geometry parameters are linked to the desired final geometry by volume conservation principle: so, 1 of 

the 6 geometrical variables is redundant. The material properties group contains parameters that are 

temperature-dependent: these are Flow stress, Yield strength (YS), and Young’s modulus (YM). Once the 

initial process temperature is set, the YS value and the YM value are directly estimated from the material flow 

stress, considering a perfectly plastic flow stress model. Moreover, these 3 variables define uniquely a specific 

material at a specific temperature. The initial value of each of them has been considered as representatives: the 

materials considered in this research are steel alloy 42CrMo4, super alloy Inconel 718, and aluminum alloy 

AA6082. All these materials are largely used in the ring rolling process [18, 70, 78]. Finally, the process 

condition PC group is composed by the ring initial temperature, considered as uniform on ring volume, the 

friction value between ring and tools, and the constant tools temperature: these 3 parameters define univocally 

the ring growth condition. 

Starting from these 18 process parameters, a set of 380 different and unique RARR process cases has been 

developed, varying differently the process parameters: in the following section, the analytical process for ring 

evolution estimation and the speed laws used for calculating each process parameter will be explained. 

3.2 Flat ring rolling process set-up 

The geometrical expansion of the ring is defined by two assumptions: the empirical Keeton’s rule [5] 

presented in Eq. (1) and the volume conservation, utilized by Qian et al. [28] as an assumption for the 

calculation of the blank size starting from the dimensions of the final ring. These two assumptions permit to 

find a correlation between initial and final ring geometry and have been applied to each one of the above-

mentioned 380 cases. 

ℎ − = ℎ −  (1) 

Eq. (1) defines that the squared difference between the initial height and thickness of the ring must be the 

same as that of the final geometry. By applying this geometry evolution constancy principle, a uniform and 

stable evolution of the ring, thoughtout the whole process, can be achived. 

Concerning the main roll rotational speed , the following formula defines a range that allows establishing 

the optimal value in terms of process stability: this practical rule is suggested by Zhou et al. in [4, 32], it is a 

function of the main roll radius RR value and it is based on practical experience under the hypothesis of no 

slippage between the ring and main roll. 

1.2 ⋅ ≤ ≤ 1.4 ⋅  (2) 

Concerning mandrel speed and taking into account Berti and Quagliato [16] assumptions, initial  and 

final  mandrel speed of every set of analysis has been calculated inside the ranges: 
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⋅ ⋅ 6.55 ⋅ 10 ⋅ ( − ) ⋅  2 ⋅ < [ ] < ⋅ ⋅ ⋅  ⋅ ⋅ ( )  (3) 

⋅ ⋅ 6.55 ⋅ 10 ⋅ ( − ) ⋅  2 ⋅ ⋅ < [ ] < ⋅ ⋅ ⋅  ⋅ ⋅ ( )  (4) 

ℎ   = 1 + 1 + 1 + 1   ;    = 1 + 1 + 1 + 1   ;   = 1 + 1
 (5) 

In Eqs. (3)-(5), , ,  and  are the initial and final outer and inner radii of the ring,  and  are 

the radii of the main roll and of the mandrel, and  is the friction angle. 

During the process, also the upper and lower axial rotational rolls are involved, and their feeding speed has 

been calculated according to Eqs. (6)-(7). A complete description of the calculation and the assumptions are 

presented in Berti et al. [16]. 

0.0131 ⋅ ℎ− 2 22 < [ ] < 4 4 − 2 22  
(6) 

0.0131 ⋅ ℎ− 2 22 < [ ] < 4 4 − 2 22  
(7) 

In Eqs. (6)-(7), θ is the vertex angle of the cone,  is the frictional angle defined as =  tan  with 

 the Coulomb friction coefficient, and ,  are the initial and final distance between the vertex of the axial 

roll and the outer radius of the ring. The setting of these two distances depends on the configuration adopted 

during the process: if the ring has a small size, the axial rolls are not moving and >  , while if the ring is 

big, L is considered constant and = . 

3.3 Finite element model setting 

The aim of this research is to find the process parameters correlation to consider for developing an energy 

consumption model: in order to do this, a database has been created considering various combinations of the 

input parameters described in sections 3.1 and 3.2. Due to the numerous columns and rows contained on the 

database table that contains 380 flat RARR process combinations, the totality of the input parameters has been 

listed in a summarized Table 1. Each one of these process combinations has been set and run with a FE model, 

using the commercial SW Simufact Forming 15 specific for different forming manufacturing processes. In 

particular this software permits to simulate the considered bulk deformation process on the three dimensions 

and it relies on realistic elastoplastic material modeling. For this specific research on RARR processes, the 

finite element simulations results to be reliable and precise thanks to the possibility to use a dedicated module 
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namely “Rolling module”, allowing to represent the reality of the process and the unique process modeling 

with rigid body motions, ensures the simulation of workpiece movements very close to reality. At first, only a 

portion of the generated database has been used to implement the linear regression model, and then the total 

dataset has been used for the training and the validation of the machine learning-based force integral over time 

(FIOT): all these aspects will be presented and explained in section 3.4 and 3.5.  

As illustrated in Table 1 a total of 16 different preform rings have been combined with the considered six 

final outer diameters (DF), chosen in the range 650 mm < DF < 2000 mm. The three materials reported in 

section 3.1 and considered in the analysis have different characteristics in terms of mechanical behavior: this 

allows to extend the range of validity of the proposed study and the developed predictive model. For the 

definition of the plastic material behavior, the Hansel-Spittel flow stress model has been considered and 

reported in Eq. (8): 

= ⋅ ⋅ ⋅ ( ⋅ ) ⋅ ⋅ ⋅ ( ⋅ ) (8) 

where  is the flow stress,  the strain,  the strain rate and T is the deformation temperature. The constant 

parameters are specific for a given material: in Table 2 are reported the specific values for steel alloy 42CrMo4, 

super alloy IN-718, and aluminum alloy AlMgSi1. Thermal and mechanical material properties and flow 

curves have been taken from MATILDA® (Material Information Link and Database Service) archive, 

available in the Simufact Forming 15 database: this package permits to simulate the behavior of materials in 

forming processing at different working temperatures. The main properties of the considered materials are 

summarized in Table 3, while their trend is reported in Appendix 1. 

Table 1 – Summary of the 380 combinations.  

   42CrMo4 AlMgSi1 IN-718 
  T [°C] 900 1050 1200 300 375 450 980 1025 1070 

 [ / ] ̄  [ / ] [ ] [ ] [ ] [ ] 

2 

2.05 944.7 2000 2000 2000 -  -   -  -  -  - 
2.17 944.7 -   -  - 2000 2000 2000 2000 2000 2000 
2.24 897.7 1700 1700 1700 1700 1700 1700 1700 1700 1700 
2.55 909.3 1400 1400 1400 1400 1400 1400 1400 1400 1400 
2.56 876.2 1400 1400 1400 1400 1400 1400 1400 1400 1400 
2.75 549.3 650 650 650 650 650 650 650 650 650 
3.11 621.6 1100 1100 1100 1100 1100 1100 1100 1100 1100 
3.37 897.7 1700  - -   -  - -  -   - -  
3.60 550.9 800 800 800 800 800 800 800 800 800 
4.09 575.3 1100 1100 1100 1100 1100 1100 1100 1100 1100 
4.88 518.9 800 800 800 800 800 800 800 800 800 
5.65 490.5 650 650 650 650 650 650 650 650 650 
5.67 897.7 1700  - -   -  -  -  - -   - 
5.70 490.5 650 650 650 650 650 650 650 650 650 
5.73 490.5 650 650 650 650 650 650 650 650 650 
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   42CrMo4 AlMgSi1 IN-718 

  T [°C] 900 1050 1200 300 375 450 980 1025 1070 

 [ / ] ̄  [ / ] [ ] [ ] [ ] [ ] 

3 

2.92 944.7 2000 2000 2000  - -  -  -   -  - 
3.27 944.7 - -   - 2000 2000 2000 2000 2000 2000 
3.37 897.7 - 1700 1700 1700 1700 1700 1700 1700 1700 
3.70 1049.3 -  - 2000  - -   -  - -   - 
3.75 549.3 650 650 650 650 650 650 650 650 650 
3.82 909.3 1400 1400 1400 1400 1400 1400 1400 1400 1400 
3.83 876.2 1400 1400 1400 1400 1400 1400 1400 1400 1400 
3.85 944.5 - - 2000  -  - -   - -   - 
4.10 875.7 - - 2000  -  -  -  -  -  - 
4.50 549.3 650 650 650 650 650 650 650 650 650 
4.60 621.6 1100 1100 1100  - -  1100 1100 1100 1100 
5.15 668.7 1100 1100 1100 1100 1100 1100 1100 1100 1100 
5.25 549.3 650 650 650 650 650 650 650 650 650 
5.39 550.9 800 800 800 800 800 800 800 800 800 
5.50 549.3 650 650 650 650 650 650 650 650 650 
5.60  621.6 1100 1100 1100 1100 1100 1100 1100 1100 1100 
5.75 549.3 650 650 650 650 650 650 650 650 650 
6.00 490.5 650 650 650 650 650 650 650 650 650 
6.10 575.3 1100 1100 1100 1100 1100 1100 1100 1100 1100 
6.85 518.9 800 800 800 800 800 800 800 800 800 
7.50 510.9 650 650 650 650 650 650 650 650 650 
7.60 490.5 650 650 650 650 650 650 650 650 650 
8.50 490.5 650 650 650 650 650 650 650 650 650 

5 

4.09 575.3 1100 - - - - - - - - 

4.85 944.7 2000 2000 2000 - - - - - - 

5.43 944.7 - - - 2000 2000 2000 2000 2000 2000 
5.67 897.7 - 1700 1700 1700 1700 1700 - 1700 1700 
6.35 909.3 1400 1400 1400 1400 1400 1400 1400 1400 1400 

6.38 876.2 1400 1400 1400 1400 1400 1400 - 1400 1400 

7.30 549.3 650 650 650 650 650 650 650 650 650 

7.69 621.6 1100 1100 1100 - - - 1100 1100 1100 

8.97 550.9 800 800 800 800 800 800 800 800 800 

10.04 575.3 - 1100 1100 1100 1100 1100 1100 1100 1100 

12.12 518.9 800 800 800 800 800 800 800 800 800 

13.7 490.5 650 650 650 650 650 650 650 650 650 

14 490.5 650 650 650 650 650 650 650 650 650 

14.15 490.5 650 650 650 650 650 650 650 650 650 
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Table 2- Validity range and Hansel-Spittel flow stress model constants for the i) 42CrMo4 steel, ii) Inconel 
718 super alloy and iii) AA6082 (AlMgSi) aluminum alloy. 

Parameters 42CrMo4 IN 718 AA6082 

Temperature range for the model [°C] 800–1250 950-1100 200-530 

Strain range for the model [–] 0.05–2 0.05-2 0.05-0.9 

Strain rate range for the model [1/s] 0.01–150 0.01-150 0.01-63 

C  5290.5 10501.1 378.5 

C  -0.00370 -0.00307 -0.00492 

 -0.00033 -0.00018 -0.00011 

 0.20612 0.54398 -0.02573 

L  -8.26584e-5 -2.17606e-5 6.03612e-5 

L  0.02891 0.02376 -0.02548 

 0.000301 -2.67316e-6 0.000345 

 -0.15618 0.09746 -0.031501 

 

 
Table 3 - Ring rolling mill characteristics and general process settings. 

 
 

42CrMo4 Inconel 718 AA6082 

Initial temperature [°C] 900 1050 1200 980 1025 1070 300 375 450 

Density [kg/m3] 7847 8190 2695 

Young modulus [GPa] 129 108 84 126 120 100 58 54 51 

Yield strength [MPa] 126 50 40 216 187 161 101 82 67 

Thermal conductivity 
[W/(m·K)] 

28 29 30 29 30 31 200 208 214 

Specific heat capacity 
[J/(kg·K)] 

645 635 642 647 687 704 1032 1069 1120 

 
The tools involved and set in the FEM model have been described and represented in Fig. 1 in section 1.1: 

for this analysis, the dimensions have been considered as constant, in order to avoid the introduction of 

additional parameters in the analysis. The setting of the tools in terms of dimensions, temperature, and friction 

are reported in Table 4 and have been considered as rigid with heath transfer. The tools have been meshed with 

the 3D 8-node, first-order iso-parametric heat transfer element (MARC® element type 43) and considered 

rigid with heat transfer with both the ring and the surrounding simulated environment.  
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Friction has been calculated considering the constant shear friction described in Eq. (9) and the utilized 

friction factor reported in Table 4. 

= ⋅  (9) 

 
Table 4 - Ring rolling tools characteristic and general process condition. 

Parameters Value 

Radius of the main roll [mm] 325 

Radius of the mandrel [mm] 125 

Length of the axial rolls [mm] 595.9 

Half of cone vertex angle [°] 17.5 

Temperature of the environment [°C] 50 

Tool initial temperature [°C] 150 

Friction factor mandrel and main roll [-] 0.85 

Friction factor axial and guide rolls [-] 0.6 

 
Considering the combination of initial and final ring geometries, process parameters, material properties, 

and boundary conditions as summarized in this chapter, the whole 380 FEM simulations relevant for the flat 

RARR process analysis have been calculated and set on FE models: a summary of the obtained results from 

numerical simulations will be presented in the following section. 

3.4 Thermo-mechanical FEM models results 

In order to show a meaningful case of the 380 performed simulations, a ring evolution in terms of equivalent 

plastic strain and mandrel force of one simulation has been summarized in section 3.4.1. In addition to that, 

the accuracy of the FEM model has been demonstrated by comparing the experiments made in Sogang 

University [11] with a ring rolling laboratory machine with an equivalent numerical simulation: this validation 

will be described in 3.4.2 along with the obtained results. 

3.4.1 Numerical model simulation results 

According to the implemented numerical simulation model, as presented in section 3.3, and to the 

considered input parameters, the results of the implemented 380 FEM simulations have been exported and 

utilized in further analysis, presented from section 3.5. To provide an insight into the results of the implemented 

FEM simulations, and to prove their reliability, a concise summary of some of the results is presented in this 

section. Figure 5a-c represents the equivalent plastic strain distribution on the ring at the end of the rolling 

phase, whereas in Fig. 5d-f the evolution of the outer diameter of the ring over time is shown. The results in 

Fig. 5a-c and 5d-f are relevant for the same simulation cases and representative of final outer diameter 800 

mm, 1100 mm, and 2000 mm, for the case of 42CrMo4 steel at the initial temperature of 1200 °C. 
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Figure 5 – (a)-(c) Effective plastic strain and (d)-(f) outer diameter expansion for three case studies 
relevant for 800 mm, 1100 mm, and 2000 mm. 

Furthermore, considering the 380 simulations, the force applied by the mandrel during the RARR process 

as well as the mandrel feeding time, have been exported from FEM simulations and used for the creation of 

the training and test database for the machine learning algorithms. As a representative example, the radial 

forming forces for the three cases reported in Fig. 5 are shown in Fig. 6. Due to the large amount of data 

composing the database, they are summarized in Appendix 2.  
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As remarked in the previous paragraphs, the starting point of the research for the estimation of energy 

consumption is to utilize the amount of energy as a sort of measure of the force impulse. For the automatic 

calculation of the time integral of the force, allowing to calculate the force impulse, a script has been 

implemented in MS-Excel. The mandrel time has been used for the calculation of the impulse: in fact, the 

mandrel force gradually increases until it reaches the maximum value and, when the mandrel time is over and 

the calibration time starts, it gradually decreases until the end of the process, as shown in Fig.6. The mandrel 

time has been set by the user in the numerical simulations according to [16], whereas the calibration time could 

be adjusted to obtain a better final ring geometry accuracy. For this reason, the computational time has not 

been considered during the analysis since most of the process energy is employed during the translation 

towards the main roll of the mandrel. 

 

Figure 6 – Radial forming force relevant for the cases of Fig. 5. 

 

3.4.2 FEM validation  

Since the starting point for all the analysis relevant for the flat RARR process has been based on the results 

of the above-mentioned 380 FEM simulations, an assessment of the accuracy of the implemented solutions is 

necessary. To this aim, the experimental results summarized in Quagliato and Berti [11] have been considered, 

as hereafter reported. The experiment has been carried out on a lab-scale ring rolling machine in Sogang 

University, Fig. 7, and thanks to a metering roll and to the load cells installed on the main roll and the upper 

axial roll, the data have been recorded and exported to be used for a comparison with the FEM simulation. 

The considered ring has been manufactured with a soft alloy made of 75% lead and 25% tin (Pb75-Sn25 

alloy) under cold forming condition. The Pb75-Sn25 soft alloy has been chosen as its plastic behavior under 

severe plastic deformations at room temperature resembles that of steel at high temperature. The ring 

dimensions are summarized in Table 5 and the images of the ring before and after the ring rolling process are 

shown in Fig. 7. The same process setting has been considered in both the experiment as well as in the FEM 

numerical simulation. The model has been implemented by means of the same procedure presented in section 

3.3, as reported in Table 5, considering in this specific case a cold deformation process. 
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Figure 7– Ring rolling machine for the lab-scale experiments utilized for the developed 

FEM model validation. 
 
The comparison between FEM prediction and experimental results is shown in Fig. 9. The accuracy of the 

implemented numerical model has been demonstrated by replicating real process conditions and is represented 

in Fig. 9, where the maximum deviation between experimental and finite element model results is equal to 

0.95% for the outer diameter, and 2.15% for the radial forming force. 

 
Table 5 - Initial and final dimensions of the Pb75-Sn25 ring experiment. 

Ring geometry Value [mm] 

Outer initial diameter -  155  

Inner initial diameter -  105  

Initial thickness -  25  

Initial height - ℎ  42  

Outer final diameter -  195  

Inner final diameter -  155  

Final thickness -  20  

Final height - ℎ  36  

 

 
Figure 8 – (a) Initial and (b) final Pb75-Sn25 rings. 



 

34 

 

 

 

Figure 9 – Comparison between experimental and finite element (a) outer diameter and  
(b) radial forming force for the Pb75-Sn25 validation ring. 

3.5 Multi-variable regression model evolution 

The first approach considered during the study is the multivariable regression method. This approach is 

suitable for determining the correlation between variables. In this thesis, the theory of the regression model is 

described in 3.5.1 and the results of this approach are explained and shown in 3.5.2. 

3.5.1 Regression model definition  

The multi-variable regression is a technique that permits to predict a dependent variable Y starting by 

independent variables xi: or rather, considering two or more different variables as input of the model, it is 

possible to obtain the desired output. The model involves i dependent variables xi, shown in the following 

three-order generic Eq. (10):  

= + + + + + + ⋯ + ei (10) 

where  is the intercept,  ,  are the linear effect parameters, ,  are the quadratic effect 

parameters,  is defined as interaction effect parameters and ei is the error in correspondence with the i-th 

observation. The single coefficients b1, b2, …, bn are called regression coefficients, the x1 , x2i, . . ., xpi are the 

values assumed by the explanatory variables named predictors, and Y is the response of the model.  

In this research, the regression model has been built using the Minitab commercial software, and a stepwise 

approach has been performed to build the fit regression model: this method has been used for describing the 

connection between the variables of the ring rolling process and energy consumption. Model regression 

coefficients have been calculated by the least-squares method with the purpose of reducing the sum of the 

deviation from the regression line. 

A fit regression model is a method that permits to identify the optimal correlation between the dependent 

variables xi and the independent variable Y: this kind of regression has been chosen and applied through 

Minitab to check the effective correlation between the pre-formulated input variables and the required output, 

that in our study is the energy consumption. 
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The stepwise regression is an additional method applied to the multi-variable fit regression, allowing to 

obtain a simplification of the predictive formula. This kind of optimization allows selecting the best 

independent variables by identifying the fittest relationships between the set of predictors and the dependent 

variable: this iterative construction method identifies relationships hidden by all relevant variables of the 

model, permitting to build a final regression model with the most useful terms and to make the final equation 

less complex. To optimize the stepwise approach, several tests have been conducted, varying alpha-to-enter 

and alpha-to-remove values: the first value establishes if a term can be included in the final equation, while 

the second one defines if a term must be removed. More specifically, the stepwise approach begins from an 

empty model or a user-defined model and starts to add or remove terms: the user can eventually force terms to 

be included in the final model. The iteration stops when the variables included in the model have a p-value 

greater than Alpha-to-enter and less than Alpha-to-remove. The probability value, or also called p-value, is a 

probability measurement that shows if an observed difference has been found just by random chance: a lower 

number of p-value means a greater statistical influence of the observed difference. P-value is calculated by 

software using the deviation between the reference value, the energy in this case, and the observed value. A p-

value less than 0.05 is considered statistically significant: it means that there is a 5% probability that the results 

are random. 

Another two important values considered during the development of the multi-variable fit regression model 

are the R-squared and the Adjusted R-squared value. The first one is also known as the coefficient of multiple 

determination, and it is a statistical measure that indicates how much variation there is between data and the 

fitted regression line: R-square value range is between 0% and 100%, and usually a higher R-square value 

means that the model fits the data well. The adjusted R-squared value is a modified version of the R-squared 

measure that considers the number of independent variables: it is a useful tool to understand if a new predictor 

has enhanced or not the regression model by comparing it with the R-square value. 

3.5.2 Model development and results 

The process variables chosen for the linear multi-variable fit regression on Minitab software are 7 and are 

defined in the following Table 6. 

The Y value as above stated is the energy consumption estimated with the FEM simulations: the xi values 

have been derived from the first database composed by a final outer diameter range from 800 mm to 1700 mm 

for a total of 65 cases. After several attempts, the optimal regression model with the constructed set of data is 

a two-order equation with 22 terms, as reported in Eq. (11) and Table 7. 
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Table 6 – Process variables considered for the regression model. 

Variables Description 

 = ( ∙ )/( ∙ ℎ ) parameter for identifying the final geometry 

   = main roll rotational speed 

   = Mandrel feeding speed chosen in the middle of the reasonable range 

  = temperature 

  = Young modulus 

  = yield strength 

 = ( ∙ )/( ∙ ℎ ) parameter for identifying the initial geometry 

 =    +    +   +  +  +  +   +   +   +   +   +   +   +   +   +   +   +   +   +   +   +    

(11) 

 
Table 7 – Coefficients of the regression equation. 

  120439    95476 

  2702    -67.7 

  4311163    -2037 

  0.00785    1.974 

  138.1    1039 

 -43455    -7606 

  129980    -0.546 

  -150028    -0.617 

  148    -10.58 

  -3460    177.7 

  -50676    668 

 
Considering the stepwise optimization method, the value chosen is 0.5 for both alpha-to-enter and alpha-

to-remove: this value permits obtaining the best residuals result, simplifying the final model. The R-square 

value obtained is 99.77% and the Adjusted R-square value is 99.65%: the maximum variable p-value is 0.047. 

The graph in Fig. 10 compares the energy consumption of FEM simulations with the energy predicted by the 

regression Eq. 11. The maximum error is 21.8% while the average error is 5.09%. 

A new database has been built with an additional set of data in order to amplify the case studies range and 

as an attempt to improve the maximum error obtained in the first regression model: a total of 240 simulations 
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has been run with a final outer diameter range from 650mm to 2000mm. The  variables remain the same as 

previously used, as the multi-variable fit regression approach. After several tests, the optimal resulting 

predictive formula is a 4th-order equation composed of 89 terms: a value of 0.6 has been chosen in the stepwise 

optimization. The maximum p-value is equal to 0.47, the R-square value is 99.69%, and the Adjusted R-square 

value is 99.5%: regardless of the high value of R-square and AR-square, comparing the energy obtained 

through FE simulation and the predicted energy, the regression equation gives an average error of 15% and a 

maximum error of 137%, which is unacceptable.  

In the following Fig. 11, the comparison between the FE simulation energy and the predicted energy with 

the amplified database is shown. The high number of terms in the equation and the high maximum error make 

this regression method industrially unusable: for this reason, other predictive methods have been investigated. 

 

Figure 10 – Comparison between FEM and Fit regression prediction. 

 

 
Figure 11 – Comparison between FEM and Fit regression prediction. 
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3.6 Machine learning models definition 

Due to the complexity of the RARR process and the difficulty of finding a correlation between the process 

parameters and the energy consumption through the linear regression method, several Machine Learning 

methods have been considered and tested to achieve the aim of this research. Machine Learning, abbreviated 

as ML, is a sub-field of Artificial Intelligence and it is an algorithm that can automatically learn from input 

data in order to give the desired output: Artificial Intelligence, or AI, includes every program or device that 

perceives the environment inputs and takes correlated action to achieve the desired target successfully. 

Reported below are four of the several machine learning methods that have been considered: eight ML 

algorithms have been developed, and after the explanation of each methodology, a resume of models’ results 

will be reported, as well as a comparison of all the developed methods and final considerations. 

The same seven process parameters values (Table 6) used the for the multi-variable linear regression have 

been utilized: the energy consumption is the output result, and it is still considered as the force impulse. The 

database that has been used is composed of 380 FE simulations with a final outer diameter range from 650mm 

to 2000mm: a randomly selected 80% of the simulation dataset has been used for models training and the 

remaining 20% has been considered for accuracy assessment of the trained algorithms. 

3.6.1 Multiple Linear Regression method 

Multiple Linear Regression is a Neural Network methodology used to find a correlation between multiple 

x variables and the dependent variable y: the predicted value  is calculated with the minimization of the 

Residual Sum of Squares (RSS), which is also called Cost Function. The generic Eq. (12) to calculate  and 

the RSS definition (13) are below reported. 

= + + ⋯ + = +  (12) 

RSS(w) = ( − , )  (13) 

where D is the input variables number,  are coefficients or weights, and N is the dataset size. Several 

Multiple Linear Regression algorithms exist and for this study, 3 different approaches have been considered. 

The first one is the Ridge Model: this model aims to minimize the objective function ϒ composed by the 

cost function RSS with the addition of a penalty, as defined in the following Eq. (14). 

ϒ( ) = RSS(w) +  (14) 

Where λ is called penalty hyperparameter, and it is a tuning parameter of the penalty that is adjusted during 

the model training to maximize the correlation factor between independent and dependent variables, and to 

enhance the accuracy [79]. Usually, λ has a small value: if the value is 0, the objective function is equal to the 

original multi variable regression model.  
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The second model considered is the Least Absolute Shrinkage and Selection Operator algorithm, also called 

LASSO. This approach is similar to the Ridge model with a different definition of the penalty: while in the 

Ridge algorithm the penalty is defined as the sum of squared value of weights, in the LASSO model the penalty 

consists of the sum of the absolute value of weights as stated in Eq. (15) 

ϒ( ) = 12 RSS(w) +  (15) 

The third model concerning multiple linear regression is the Elastic Net Model resumed by the following 

Eq. (16). This algorithm is a hybrid version of the Ridge model and LASSO model: in fact, it contains both 

penalties, the sum of squared weight and the sum of absolute value weight. Moreover, for this algorithm, there 

are the penalty hyperparameter λ, calculated during the training, and the parameter α, usually set by the user, 

and for this study calculated through random search method [79]. The value of α is between 0 and 1: with α 

equal to 0 the Elastic Net Model turns into the Ridge Model, while for α equal to 1 it becomes the LASSO 

algorithm. 

ϒ( ) = 12 RSS(w) + (1 − )2 +  (16) 

 

3.6.2 Kernel method 

By replacing a non-linear equation in the multiple linear regression mentioned above, a non-linear 

relationship between independent variables x and dependent variable y can be obtained. Instead of representing 

the x variables with a linear function (12), they can be explicated with the Kernel function ( , ) obtained 

by the following Eq. (17): 

, = ( ) ( ) (17) 

where ( ) is the feature function. One of the advantages of the Kernel approach is the so-called Kernel 

trick: instead of computing the coordinates of each data in a determined space, it calculates the inner products 

between images of all data pairs in the function space. The kernel function is contained in the Gram matrix, a 

positive semi-definite symmetric matrix (18) used for linear independence analysis of function: 

= = ( , ) ⋯ ( , )⋮ ⋱ ⋮( , ) ⋯ ( , )  (18) 

Two neural network regression approaches have been considered, both derived from the Kernel approach. 

The first one is the Kernel Ridge (KR) method derived from the combination of the Kernel theory (17) and 

Ridge model (14): a polynomial version of the Kernel function has been used as reported below in Eq. (19). 

( , ) = ( + )  (19) 
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where γ,c, and d are constants set during the training phase of the development through the random search 

method. The second method developed is the Support Vector Machine (SVM), [80], based on the Kernel 

approach and built with the same polynomial kernel Eq. (17). Below the main formulation is represented (20), 

with the epsilon intensive loss function used, where C is the regularization parameter, Lε the epsilon intensive 

loss function (21), and ε a constant value that defines the tolerance of error: C and ε are defined during the 

training phase.  

ϒ( ) = ( , ) + 12  (20) 

( , ) = 0 if| − | <| − | −  otherwise
 (21) 

3.6.3 Ensemble method 

The Ensemble method [81-83] is an automatic learning where different learning algorithms are applied, 

and which randomly selects sub-sets of data to improve the prediction performances: the consideration of 

multiple methods also allows to obtain better performance and flexibility than the chosen models considered 

individually. Two different ensemble methods have been considered: the Random Forest (RF) and the Gradient 

Boosting (GB), as explained below. For each model, the database has been divided into a training part, and 

into a small validation part: moreover, each model permits solving non-linear case studies. 

Random Forest RF is an ensemble learning method considered for the prediction of energy consumption: 

this algorithm builds and trains decision trees and gives an output for each one of them. Each decision tree is 

independent and not correlated: in fact, each decisional tree considers a different random subset of data from 

the main database for the training part. Moreover, each node of each tree gives a response based on a random 

interval of the dataset: so, the problem is subdivided into sub-classes, and each node response is classified by 

the accuracy compared with the true value. The final prediction of the RF model is the average of all the trees 

predictions, as resumed in equation (22): 

= 1
 (22) 

where M is the number of trees. The overall functioning of the RF algorithm could be resumed by the 

following Fig. 12. The subdivisions of the whole data set permit the reduction of the strict correlation between 

the algorithm and the training data, to obtain a more flexible model, to reduce the variance, and to perform a 

better regression. 
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Figure 12 – Random Forest schematic functioning. 

 
The second ensemble model is the Grading Boosting: this algorithm starts from a weak learner and converts 

it into a strong learner. In this study, the initial weak learner is a single decision tree (f): this first tree is trained 

and optimized to minimize the objective function ϒ( ). The following decision tree is developed with the 

results of the previous tree, considering the gradient residual of the previous tree adjusted by the learning rate 

coefficient. The two equations (23, 24) resume the iterative passage of the GB model 

ϒ( ) = ( , ) = 12 ( − ) if| − | <
| − | − 12 otherwise

 (23) 

= + ⋅   
where , = − ( , )

 
(24) 

where f is the generic M-th tree,  is the loss function and  is the learning rate, which indicates the speed 

by which the algorithm minimizes the loss function. The value of the learning rate is set during the training 

phase of the model: if a non-linear regression is required, the learning rate is not used since the optimized value 

is the minimum of the loss function. The schematic functioning of the Gradient Boosting method is resumed 

in the following Fig. 13. 
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Figure 13 – Gradient Boosting schematic functioning. 

3.6.4 Neural Network method 

Artificial Neural Network models [84-86] belong to the deep learning algorithms, a sub-field of machine 

learning, and permit to lead a non-linear regression: it is an approach inspired by the human brain, that 

simulates the brain neurons network in order to learn from a dataset of input and return a related response as 

output. A Neural network model is composed of the first input layers, multiple hidden layers, and a final output 

layer, as resumed in Fig. 14. 

 

Figure 14 – (a) Artificial Neural Network model and (b) connection between nodes. 

 
Hidden layers contain the weight function  calculated during the training phase of the NN model: 

starting from the training dataset composed of variables  multiplied by weights , the output layer 

composed by  variables are calculated via the activation function shown in Eq. (25) and schematized in Fig. 

14b. 



 

43 

 

 

= ⋅ +  (25) 

where   is the activation function. The weight matrix has been updated at each adjustment of the Neural 

Network model considering the RMSprop algorithm [87] as reported in Eq. (26) 

= − 1√ℎ ⋅ ( , )
  whereℎ = ⋅ ℎ + (1 − ) ( , )

 

(26) 

Where  is the learning rate coefficient and  is a model hyperparameter: each one of these two values has 

been set and optimized with the random search method, already used for the other machine learning method. 

The activation function  is defined as follows Eq. (27): 

( ) = 0 ≤ 0> 0 (27) 

 value it’s a threshold indicator that establishes whether a node of a certain hidden layer must be activated: 

if the activation function value exceeds a certain level then the node of the i-layer is connected to the node of 

the i+1 layer. The developed Neural Network model for RARR regression has been composed of 4 hidden 

layers with respectively 200, 100, 50, and 25 nodes. 

3.7 Energy prediction model result and validation 

The machine learning and neural network models presented in the previous section have been all 

implemented in Python scripts. Considering the length of each script, only the one that provides the best 

prediction performances in terms of maximum and average errors have been included in Appendix 3. 

Among the 380 simulations, 80% is randomly selected for the training, whereas the remaining 20% for the 

validation. For the test of the developed model has been used literature data instead of using part of the 

implemented database. In 3.7.2 the resulting models have been compared and analyzed in terms of performance 

and error. Finally, considering the model with the lesser residual result, the accuracy in the prediction of the 

force integral over time (FIOT) has been evaluated using three previously published experimental papers. 

3.7.1 Data pre-processing and machine learning algorithm training 

The 8 algorithms described in the previous 3.6 paragraphs are developed in a Windows OS environment 

utilizing the scikit-learn 0.22.2 and Keras 2.3.1 modules implemented in Anaconda Spyder environment with 

Python 3.7.4. As previously mentioned, 80% of the whole 380 simulations, corresponding to 304 data, are 

randomly selected for the training and 20%, corresponding to 76 data, for the validation.  

In the training phase, the model learns the relationship between input and output (target value). The 

validation phase is responsible for validating the results obtained in the training set. Being an iterative method, 
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if the residual is less than expected, the hyperparameters are changed and the process restarts with the training 

until the result is satisfying. In the present research, the dataset of both training and validation has been defined 

as a row of the table composed of the following data:  

1. Main roll rotational speed,  

2. Average mandrel feeding speed,  

3. Initial ring geometry,  

4. Final ring geometry,  

5. Initial ring temperature,  

6. Material yield strength,  

7. Material Young’s modulus,  

8. Force integral over the mandrel time (FIOT). 

where the first 7 are the model inputs, and the FIOT is the output. Since the input variables considered have 

different intervals and measurement units, normalization has been applied to convert them to a 0 to 1 range. 

As concerns the FIOT, due to the skewness of the data distribution, the data has been converted into log(1 

+ FIOT) before the normalization process. Similarly, the remaining parameters have also been converted by a 

box-cox transformation defined as ( .  − 1)/0.15 where x is the considered parameter. 

This procedure allows to reduce the computational burden during the training, as well as increase the 

accuracy. As previously defined, hyperparameters are the parameters not directly learned within estimators 

and that guide the learning process for a specific database. They have been obtained by applying the random 

search method aiming to maximize the correlation factor on both the training and the test data sets. The 

optimization of hyperparameter is required for obtaining the best out of the machine learning models and the 

result is a single set of high-performing hyperparameters to use for configuring the models.  

Three steps have been considered for validation and accuracy evaluation of 8 implemented models and will 

be described in the following paragraph. In the first step, the hyperparameters have been optimized, and the 

training dataset is fed once again to the model. Then, the validation data set is used by the model for validating 

the results obtained by the training set: at this point, the accuracy, in the case of untrained data, has been 

evaluated. Finally, the obtained model has been run with data coming from experimental papers and self-

developed experiments, and the accuracy has been calculated and evaluated. 

3.7.2 Model results and validation 

In the first part of the chapter, the model target has been defined and the dataset has been prepared for 

implementing the machine learning selected models and a deep learning model. Before developing the models, 

the hyperparameters have to be optimized for driving the models' training process.  

As already explained in 3.7.1, the hyperparameter optimization has been done with the random search 

method which turns out to be the best strategy for highly complex problems with noisy or discontinuous areas 

of the search space. The Random Search method has identified values of hyperparameters for each studied 
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model for reducing the risk of overfitting, and it has allowed applying the model correctly and efficiently also 

to process parameters not contained in the training and validation dataset. 

The main model results concerning the optimized hyperparameters as well as the determination factors 

(R2), relevant for the training and validation dataset, are reported in Table 8. In fact, the determination of the 

R-square score is important for obtaining a measure of the model quality and permits to evaluate the 

performances of the studied models.  

 
Table 8 - Machine learning models optimized hyperparameters and accuracy. 

Model Hyperparameters  

R2 

Train  

set 

Validation 

set 

Linear method 

Ridge = 0.6 0.920 0.855 

Lasso = 0.0005 0.921 0.852 

Elastic Net = 0.0005 , = 0.9 0.921 0.953 

Kernel method 

Kernel Ridge 
= 0.02 , = 1.0 = 3.0 , = 15.0 

0.985 0.970 

Support Vector 
Machine 

= 0.89 , = 0.03 = 1.0 , = 3.0 , = 15.0 
0.983 0.952 

Ensemble method 

Random  
Forest 

= 5000 0.995 0.971 

Gradient Boosting 
= 6900 , = 0.9 = 0.091 

0.998 0.996 

Neural Network 

method 

Artificial Neural 
Network 

= 0.9 , = 1.0 = 0.001 
0.993 0.992 

 
As shown in Table 8, the relatively low determination factor by the linear methods indicates the fact that 

the relationship between the considered input and output parameters is not linear. Concerning the Kernel 

methods, both present a high determination factor during the training phase, but the kernel ridge has been 

found to be approximately seven times faster than fitting support vector machine. In addition to that, 

considering a medium-sized database on the validation set, the kernel ridge returns a higher determination 

factor compared to SVM. The ensemble methods consist of more than one model and achieve better 

performance than any single contributing model, reducing the dispersion of the predictions and increasing the 

robustness of the response. The best results, for both training and validation datasets, have been obtained by 

the Gradient Boosting approach, and the code implemented is reported in Appendix 3: below, in Table 9, the 

model hyperparameter ranges on which the random search approach has found the optimized values are 

summarized. The number of trees M, also called N Estimators value, chosen from a set range of values, 

determines the measure of the complexity of the model, which affects its own accuracy and its stopping criteria. 

Max Depth value, Min sample value, and Min samples split value define the pruning of the model trees and 

have been all chosen from a range of values by mean of the random search approach: pruning methodology 

reduces the complexity of the model, eliminating useless leaves of developed trees and avoiding trees 

overfitting.  
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Table 9 – Hyperparameters range and result of random search optimization in Gradient Boosting. 

Model Parameters RANGE VALUES OPTIMAZED VALUES 

N_ESTIMATORS (M) 1000 / 3000 / 5000 / 7000 6900 

LEARNING RATE (η) 0.01 / 0.05 / 0.1 / 0.15 / 0.2 0.091 

MAX DEPTH 2 / 4 / 6 / 8 2 

MIN SAMPLES LEAF 11 / 13 / 15 / 17 / 19 15 

MIN SAMPLES SPLIT 6 / 8 / 10 / 12 / 14 11 
 
For a more comprehensive evaluation of the performances, the four best arising models (Kernel Ridge, 

Random Forest, Gradient Boosting, and Artificial Neural Network) are compared in Fig. 15 in terms of 

determination factors as well as the percentage residuals for the 76 cases of the validation set. 

 

Figure 15 – (a) True value vs prediction and (b) percentage. 

 
The analysis of the residuals, Fig. 15a, shows that, although the Kernel, Random Forest and Artificial 

Neural Network methods have a very high determination factor, their residuals are considerably high, 

especially for small prediction values. On the other hand, the Gradient Boosting method allows having low 

residuals for all FIOT levels. The maximum and average residuals, for the 4 methods summarized in Fig. 15, 

are reported in Table 10. 

 

Table 10 – Artificial intelligence accuracy for the validation data set. 

Model Maximum residual Average residual 

Kernel Ridge 24.28% 6.93% 

Random Forest 48.44% 13.08% 

Gradient Boosting 9.03% 3.18% 

Artificial Neural Network 43.00% 9.17% 
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In addition to that, the evaluation of the accuracy has been assessed by considering the three experimental 

ring rolling cases from the literature [14, 11, 46] and using the data for applying the three machine learning 

models and the deep learning model identified with the highest determination factor (Table 8). These 

experimental results are all relevant for experiments carried out on GH4169 nickel-based superalloy [14], the 

Pb-Sn alloy ring, also utilized for the finite element model validation [11], and AISI-304 steel alloy [46]. The 

geometrical values, the materials, and the process parameters considered are completely different from those 

used for implementing the models, and they have provided additional validation on the proposed models. True 

prediction percentage residuals for these 3 cases are summarized in Table 11. 

 
Table 11 – Artificial intelligence accuracy for the literature experimental cases 

Model [14] % Error [11] % Error [46] % Error 

Kernel Ridge 16.73 15.11 28.97 

Random Forest 8.48 13.44 24.10 

Gradient Boosting 7.01 2.09 8.00 

Artificial Neural Network 7.23 6.27 9.11 

 
The relevant process conditions for the [14, 11, 46] are different from those imputed to the FEM simulations 

utilized for the training of the developed models, where the same friction conditions have been considered in 

all the cases and reported in 3.4. Considering the accuracy results obtained with the data of the literature papers, 

the residuals are still remarkably good, and the computational time is almost real-time. So, by comparing the 

model results with the computational time of the thermo-mechanical numerical simulations, there is a 

considerable improvement from a range of 9 h to 3 days for the simulations to a few seconds with the machine 

learning model. 

Considering both the residuals presented in Table 10 and the validation results in Table 11, the Gradient 

Boosting approach returns the best result by efficiently managing the interactions and connections between 

geometry, material, and process parameters in the radial-axial ring rolling process. Models that have been built 

in order to iteratively learn from the last prediction, as the Gradient Boosting approach and the Artificial Neural 

Network model, turn out to be the most efficient: in fact, taking into account the GB model, the adjusting of 

tree response from previous tree mistake allows to optimize the output from an unbalanced database and to 

avoid random chance prediction, as reported in the results of Table 10 and 11. Even if it is faster than the GB 

model, the RF model is more influenced by the unbalanced database problem since this kind of approach 

initially provides n-trees that consider different sub-datasets. Moreover, in this research, the overfitting issue 

that generally affects Gradient boosting approaches has been minimized by using the random search approach 

for hyperparameters setting.   



 

48 

 

 

3.8 Chapter 3 summary and highlights 

Considering all the models presented in the previous sub-sections, some important remarks must be pointed 

out, as hereafter summarized. 

• The material, the geometrical attributes, and the process parameters have importance on the 

estimation of the forming force during the RARR process; 

• The use of the multivariable analysis and, in particular, of the Fit Regression approach, have 

permitted to find the relationship between a set of predictors and a continuous response using the 

ordinary least squares method. Moreover, the interaction of polynomial terms has been included, 

and the stepwise regression has been performed, with advantages on the statistical examination of 

significance for each independent variable; 

• All the inputs used for implementing the stepwise regression model have been considered on the 

final equation: this is an affirmation of the correlation between the chosen input and the desired 

FIOT output; 

• The multi-variable regression is limited when the aim is to find a useful, generalized model with 

different combinations and ranges of work. For this reason, 8 intelligence approaches have been 

studied and implemented; 

• The ensemble method grants the best accuracy in the prediction of the FIOT, the maximum residual 

being equal to 9.03% with the Gradient Boosting approach; 

• The validation of the GB model has been carried out on experimental results previously found in 

literature, where the ring geometries, materials, and process conditions were different from those 

used for the training of the model: the approach is efficient also outside of the training data set 

range;  

• The application of a machine learning model has allowed a significant reduction of the time 

required for the estimation of the energy consumption: the calculation is almost real-time, in 

comparison with FEM simulations where the computational time is between 9 h (for the 650 mm 

final outer diameter rings) and 3 days (for 2000 mm final outer diameter rings); 

• Considering a new metal forming or forging process, the presented procedure can be used for the 

implementation of an energy consumption model, with a creation of a new initial training dataset, 

specific for the analyzed process. 
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Chapter 4 

Process control, geometry, and energy prediction 

models for profiled rings 

In this chapter, the analytical model developed for the estimation of the geometrical expansion of the ring, 

along with the relevant validation regarding both the model and the implemented FEM simulation, are 

presented. In addition to that, the energy prediction model, previously developed and applied to the flat ring 

rolling process, has also been modified and applied to the case of an L-shape profiled ring. The relevant results 

are also reported in this chapter. 

 The analytical model starts from the study already presented in chapter 2 concerning the interactions 

between the process parameters of the flat ring rolling process and adapting that approach to this more complex 

production system. The analytical model for the prediction of the material plastic flow between the wall and 

the flange of rings obtained through profiled RARR process has been developed with the aim of being easy, 

fast, and precise to use in industrial applications. The energy predictive model, on the other hand, starts from 

chapter 3 assumptions and results concerning artificial intelligence approaches and generates a new specific 

predictive model. To this aim, a dataset of values has been used for the training and validation phase of the 

chosen Gradient Boosting approach. 

As stated in the introduction, the purpose is to find a model that predicts the energy consumption that is 

valid for profiled rings. To achieve this aim, it is fundamental to start by the study of the evolution of the ring 

geometries in order to understand the process and the influence of process parameters. After developing the 

analytical model, a FE model has been set to conduct simulations for the profiled ring rolling process. The 

development of the numerical model starts from the assumptions and considerations reported in section 3.3 

with the necessary adaptations. Different sets of process conditions and geometries have been considered as 

input of the analytical model and each set of data has been used as input for FEM analysis, in order to build a 
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dataset of parameters. Moreover, validations of the analytical model and FE model are carried out by 

considering previous literature experimental analysis and relative process values [13, 52, 53, 60]. 

This chapter is organized as follows: In the first section 4.1, the investigation conducted on profiled RARR 

to select the main process parameters is reported. Then in section 4.2 the process set-up and the profiled ring 

evolution are explained in order to introduce the developed analytical model for ring expansion. Section 4.3 is 

dedicated to show the FE numerical model setting on Simufact Forming software and in the following sections, 

4.4 and 4.5 the literature experimental cases considered for the analytical model validation and the FE model 

results are reported. Then, after having implemented a database of process parameters and energy consumption 

resulted from FE simulations, a process energy prediction model is developed with a Gradient Boosting 

approach as reported in section 4.6. Finally, a summary of the main step and contents of this chapter are listed 

to emphasize the key points and underline the final considerations. 

4.1 Process parameters identification 

The ring rolling process is an efficient industrial solution to achieve seamless and high-performance, 

relatively large-scale ring-shaped components, thanks to the possibility to obtain a near-net shape with a single 

step and without welding or machining requirements. The required tools for this specific process remain the 

same used on flat RARR processes as shown in Fig.1, but differently from the flat rolling rings process, on 

profiled production, the deformation of the tools is applied only to a portion of the circumferential surface of 

the ring. A different range of cross-section shapes can be obtained from profiled RARR process, varying tools 

geometries, and positions: for developing the analytical model, only 3 shapes, namely external L-shape, 

internal L-shape, and external C-shape, have been considered as shown in Fig 16. 

 

Figure 16 – Profiled shape sections considered. 

 
As shown in Fig. 17b, on a flat ring rolling process both mandrel and main roll applies a uniforms 

deformation on the internal and external circumferential surface of the ring: on the other hand, on an external 

L-shape ring rolling production the main roll works only on the upper part of the ring height (Fig. 17c), 

permitting the flange expansion on the lower part. Taking as further example internal L-shape ring production, 

the main roll act on the whole height of the ring while the mandrel deforms the ring on the upper part of the 

internal surface permitting the internal expansion of the flange, as represented in Fig. 17d. Finally, the external 

C-shape ring section can be obtained from the ring rolling process by varying the geometry of the main roll 

and adding a central flange, while the mandrel and the guide rolls remain the same as per the flat ring rolling 

process. 
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Figure 17 – (a) Schematic representation of the profiled ring rolling process and contact 
conditions between mandrel, main roll, and ring for (b) flat ring, (c) external flange profiled ring, 

and (d) internal flange in profiled rings. 
 
The external L-shape is the main geometry considered in this research and the energy prediction model will 

be developed only for this profiled ring: the other two shapes, internal L-shape and C-shape have been 

considered for the validation of analytical and FE model through comparison with previous literature data. For 

this reason, only process parameters for external L-shape geometry have been deeply investigated in order to 

build a database of values: the other ring sections can be easily applied to the analytical model, FE simulation, 

and energy predictive model through the appropriate adaptations.  

As in the case of the flat RARR process (chapter 3), the process parameters have been subdivided into the 

same macro-groups, namely speed parameters SP, initial and final ring geometries (RG), material properties 

(MP), and process conditions (PC) as resumed in Fig. 18. This underlines the similarity of flat (section 3.1) 

and profiled process parameters analysis, with the difference that, for profiled version, the number of process 

parameters is higher. 
 

 

Figure 18 – Process variable analyzed for implementing the profiled external L-shape ring model. 

i) Initial/final Speed parameters (SP) 
- Main roll wall rotational speed; 
- Main roll flange rotational speed; 
- Mandrel feeding speed; 
- Upper axial roll feeding speed; 

 
 

ii) Material properties (MP) 
- Flow stress ( , , ) dependence; 
- Yield strength (YS) and Young’s Modulus 

(E) influence. 

Ext. L-shape Ring Model input 

iii) Initial/final ring geometries (RG) 
- Inner diameter; 
- Outer wall diameter; 
- Wall height; 
- Outer flange diameter; 
- Flange height. 

 
iv) Processing conditions (PC) 

- Ring initial temperature (uniform); 
- Friction (constant); 
- Tools temperature (constant). 
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Concerning the speed parameters (SP), the composition is similar to the flat ring version, with the difference 

that main roll initial and final speeds have two different values for the wall section and for the flange section 

and thus a total of 8-speed parameters have been considered. For calculating main roll, mandrel and axial roll 

speeds, the same considerations of section 3.1 are valid with the necessary adaptions, and the main formulation 

adopted will be reported in the following section.  

Regarding ring geometries parameters (RG), for the external L-shape ring, the initial and final inner 

diameters have been considered the same as in the flat ring case. On the other side, for the outer diameter and 

ring height, specific values for the flange section and the wall section have been considered, for a total of 10 

parameters. By considering and applying the volume conservation principle, the initial and final geometries 

are correlated, therefore one of the geometrical values is redundant. Moreover, it should be noted that the 

analysis conducted for developing a profiled ring analytical model permits to consider as initial ring geometries 

both flat and profiled version. The last two macro-group, namely Material properties MP and Process condition 

PC are identical to the flat ring analysis conducted in section 3.1, with the same consideration: so, 3 parameters 

have been considered both for MP and PC macro-group. Concerning ring material, differently from flat 

analysis, only 2 materials have been considered, namely the 42CrMo4 steel alloy and Inconel 718 super alloy. 

Overall, a total of 24 process parameters have been identified for defining the external L-shape profiled 

RARR process: in the following section, the main passages and formulations used for calculating the values 

of each process parameter and develop the analytical model for the profiled ring will be explained. 

4.2 Profiled ring rolling process set-up and analytical model 

The annular portion of the ring where both mandrel and main roll operate can be considered as a sub-part 

of the ring, called ring wall, where the contact and process conditions are the same as a flat ring rolling process 

[4, 7, 16]: so, the same considerations and limit conditions considered for flat ring rolling must be applied, in 

order to achieve the full plastic deformation along the ring wall thickness. In other words, the contact condition, 

the main roll speed law, and the speeds of the tools are the same considered for flat ring rolling explicated in 

section 3.2. Considering a linearly decreasing mandrel speed as in the flat ring rolling process, the range limits 

of the mandrel feeding speeds have been calculated with Eqs. (6)-(8), while the main roll wall rotational speed 

has been calculated with Eq. (5): this means that the expansion of the wall section is controlled and has the 

same expansion behavior of a flat ring. 

The flange section expansion on the other hand is free since it is not controlled by any tools: in fact, the 

translation of the mandrel towards the main roll during the process cause a circumferential expansion of the 

ring as in flat RARR, and a radial expansion of the flange, since there is lower plastic flow resistance. In Fig. 

19 the deformation directions of external and internal L-shape and profiled ring rolling processes are shown, 

to clarify the above-mentioned consideration. 

As in flat ring analysis, the volume conservation principle permits defining the amount of material that is 

displaced from the wall to the flange section during the mandrel progress, after deducting the circumferential 
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volume expansion on the wall section. In order to do that, the time required for a complete rotation of a ring 

section must be calculated first. Eq. (28-1) defines the time for a complete rotation, and Eq. (28-2) defines the 

total time of the subsequent complete rotation. 

 

Figure 19 – Plastic deformation along the circumferential and radial (flange) directions, caused by 
the motions of the mandrel and the main roll, for (a) outer flange and (b) inner flange. 

 

= 2 ,( )  (28-1) 

= 2 ,( ) +  (28-2) 

where ,  and ,  are the initial wall radius and the new wall radius after the passage through the 

deformation gap, and  and  are respectively radius and rotational speed of the main roll. In the developed 

analytical model, the new process time  is continuously updated in order to calculate the required time for 

each step and the total mandrel time: this permits also to calculate the evolution of the wall thickness  as 

shown in Eq. (29): obviously, at the initial time the thickness is coincident with the initial wall thickness ,  

and it is equal to the final desired wall thickness at the final mandrel time. 

( ) = , − ( ) = , − , − , 2 + , ⋅  (29) 

where  is the mandrel feeding speed,  is the mandrel time and  is the considered revolution time. 

Considering two consecutive periods of a complete revolution, namely the i-revolution and the i+1 revolution, 

and assuming a uniform evolution of the wall thickness between different complete rotation, the average 

thickness of ring wall at the i+1 revolution have been calculated via double integration of Eq. (29) as reported 

in Eq. (30) 

̄ , = , − ,2 ( − ) + , − ,6 −−  (30) 
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where ̄ ,  is the average thickness of the ring wall, representative of the incremental evolution of each ring 

slice. Then, the preform ring wall volume ,  has been calculated as reported in Eq. (31-1), and the updated 

ring wall volume ,  at the next i-revolution as in Eq. (31-2). 

, = , − , ℎ + ℎ  (31-1) 

, = , − , ℎ + ℎ  (31-2) 

where ,  and ,  are the wall outer and inner radius of the blank ring and ,  and ,  are the updated 

wall outer and inner radius and finally ℎ  and ℎ  are the wall and flange height respectively. In the event of a 

flat blank ring, the ,  value is equal to the outer ring diameter and the volume calculated at Eq. (31-1) is the 

total blank volume. Moreover, in this research the height of the wall and the flange ℎ  and ℎ  have been 

considered as constant during the whole process: this means that the axial rolls control only the height 

deformations [17] and that the total height of the profiled ring does not change. Considering that deformation 

is only applied on the wall section of the ring, the ring wall volume variation can be calculated as in Eq. (32). 

, = 2 ℎ ̄ , − ̄ , , − ̄ , − ̄ ,2   ℎ  = ( /2)ℎ / ℎ + ℎ  

(32) 

where  is a geometrical factor that considers the relationship between the flange height and the wall height 

values. In fact, higher flange height to wall height ratios leads to a lower material flow resistance in the 

circumferential direction, instead of the radial direction. Combining equations (29), (31-2), and (32) it is 

possible to calculate the average radius of the ring wall ,  at the i+1 revolution, as reported in Eq. (33) 

, = , − ,2 ̄ , ℎ + ℎ  (33) 

The average radius of the ring wall  represent the spatial averaging across the circumference of the ring, 

of the wall cross-section radius: it has been represented in the middle cross-section of the ring wall in Fig. 20. 

 
Figure 20 – Flanged ring diameters identification on a generic ring cross-section. 
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From the average radius of the ring wall ,  at the i-th+1 revolution, it has been calculated the inner 

and outer wall radii of the ring, as shown in Eq. (34-1) and Eq. (34-2): 

, = , − ̄ ,2  (34-1) 

, = , + ̄ ,2  (34-2) 

With these two geometrical parameters, the wall volume at the i-th+1 revolution has been calculated 

according to Eqs. (31). This permits also to estimate the volume variation from the i-th period to the i-th+1 

period: considering the already mentioned volume conservation assumption, the ring wall volume variation 

has been considered as the material portion that has moved to the flange section and can be calculated as shown 

in the following Eq. (35): 

, = , − ,ℎ + ,  (35) 

By means of this set of equations, the profiled ring geometrical evolution can be predicted from the ring 

preform at the instant to, through consecutive instant ti and ti+1, to the final mandrel time tm. The algorithm has 

been implemented on an Excel spreadsheet to provide a fast and easy instrument to check the ring evolution 

during the process and to calculate all the necessary data to implement and control a numerical simulation 

model. 

4.3 Finite element model implementation 

For the verification of the developed algorithm, numerical simulations have been carried out and literature 

experiments have been used, since the experimental verification was not possible with a laboratory test. The 

numerical simulations have been run by utilizing the commercial software Simufact Forming 16. The 

explanation of the model set is presented in 4.3.1, whereas the validation of the FEM model is described in 

4.3.2, by comparing experimental papers and FEM literature results with the analytical and FEM results. The 

accuracy verification of the flanged ring expansion prediction algorithm has been carried out by two different 

separate instigations that reinforce the validity of the proposed model and are described in 4.3.3. 

4.3.1 Model setting 

In order to further investigate the effect of the profiled ring rolling parameters on the geometrical evolution 

of the ring and also on the energy consumption, FEM simulations have been implemented in Simufact Forming. 

In addition to that, the FEM solutions have been also utilized to determine the accuracy in the prediction of 

the geometrical expansions of profiled rings, and, for this reason, it has been validated against literature FEM 

and experimental results. The general simulation settings defined in this section have been considered in all 

the implemented FEM simulations relevant for the profiled ring rolling process, with the exception of the 

process parameters, which vary from case to case. 
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In order to analyze the influence of the mesh size on the simulations results, four different mesh studies 

have been conducted for identifying the best compromise between accuracy and computational time. The result 

of this analysis has been detected in i) 1 element every 1˚ for the circumferential direction, ii)1 element every 

2.5mm for the radial direction and iii) 1 element every 2.5 mm for the vertical direction. In the same way, as 

flat ring rolling process, the tools have been considered as rigid with heat transfer and meshed with 3D 

arbitrarily distorted 8-nodes first order isoparametric, heat transfer element (MARC® element type 43).  A 

representation of the implemented FEM model is shown in Fig. 21. 

 
Figure 21 – Thermo-mechanical finite element simulation model implementation. 

 
Considering both the FEM simulations and the literature cases that have been used for the validation, the 

friction has been modeled considering the shear friction law, described in section 3.3. During the contact 

process between the tools and the ring, friction is involved, and in order to overcome the discontinuity of 

friction when relative velocity is zero, a nonlinear arctangent smoothing function, based on the relative sliding 

velocity between contact bodies, has been defined adopting a threshold of 0.001 mm/s for the relative velocity 

below which sticking is simulated. 

The employed solver for the simulations is the Multifrontal Massively Parallel sparse direct Solver 

(MUMPS), which implements a direct method based on a multifrontal approach, which performs a Gaussian 

factorization. The kinematics of deformation is formulated according to the updated Lagrangian approach for 

the estimation of the node displacement calculation. The updated Lagrangian approach is particularly indicated 

in case of large deformation such as the case of both circumferential and flange growths in the profiled ring 

rolling.  

The setting of the materials and the boundary conditions are the same employed on the experimental papers 

considered for validating the FEM model: in this manner, the simulation is as close as possible to experimental 

conditions and thus the validity of the model can be effectively verified. On the other hand, for the validation 

of the implemented algorithm have been considered two materials already used for the flat ring rolling FEM 

simulations, namely the steel (42CrMo4) and Inconel 718 super alloy, as it will be presented in 4.3.3. 
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4.3.2 Validation of the FEM model 

In order to enhance the reliability of the model validation, the developed numerical model has been priory 

validated by comparing its results with literature experiments, and the detailed results comparison is presented 

here below. For obtaining a validation as complete as possible, the FEM results have been validated by 

considering different initial shapes of the ring, such as rectangular section and profiled preform [13], and 

different final shapes such as inner L-flange [52], outer L-flange [53], and C-grooved rings [60]. The first 

experiment considered has been conducted starting from a profiled preform, as shown in Fig. 22a with the aim 

to obtain an external L-shape, shown in Fig. 22b.  

 

Figure 22 – (a) Initial and (b) final geometry of the authors’ validation case (Monti and Berti [13]). 
 
The ring rolling machine dimensions, and the process settings relevant for both the real production as well 

as for the implemented FEM model are reported in Table 12.  

 
Table 12 - Ring rolling mill dimensions, initial and final ring geometries, and process settings for the 

authors’ validation cases [13]. 

Parameters Value 

Main-roll radius [mm] 100 

Mandrel radius [mm] 50 

Guide rolls radius [mm] 75 

Initial ring temperature [°C] 1240 

Initial tools temperature [°C] 400 

Friction coefficient  0.15 

Main-roll rotational speed [rad/s] 6.28 

Initial ~ Final mandrel feeding speed [mm/s] 1 ~ 0.58 
 
This first experiment allows an accurate and detailed validation of the developed FEM simulation model, 

since the material and the process conditions are similar to those used for investigating the accuracy of the 
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implemented algorithm and that will be described in 4.3.3. In fact, the material used for the experiment is the 

42CrMo4 steel and the friction, as well as the process setting, are the same considered in [13]. Moreover, 

considering as an initial blank a profiled preform, as shown in Fig. 22a, the model allows showing the reliability 

of the proposed algorithm in predicting the geometrical expansion of flanged rings also for a different type of 

initial preform shape. 

Concerning the validation of the FEM model with inner L-shape geometry, since both radial force and 

initial/final geometries of the ring are available, the FEM results concerning the radial forming force and the 

experimental results relevant for the geometry of the ring, in terms of inner and outer wall radii and flange 

radius, have been compared with the relevant analytical and FEM results obtained.  

The material considered in this validation is the BS EN 12588 lead, where the stress-strain has been 

evaluated by the authors of the paper [52] with a tensile test and the response results have been found to be 

similar to hot forming aluminum or steel. In Fig. 23 is represented the true stress-strain curves at 0.2/s and 

0.02/s and flow stress interpolation curves for the lead alloy and used for predicting the force with the 

Hollomon Eq. (36). 

=   (36) 

where represents the applied true stress on the material,  is the true strain, and K is the strength coefficient. 

The simulation has been set with the same mesh and solver described in 4.3.1. In the Table 13 are 

summarized the ring rolling mill dimensions, the initial and final ring geometries and the process conditions 

relevant for the validation.  
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Table 13 - Ring rolling mill dimensions, initial and final ring geometries, process settings for the validation 
case, and external L-shape ring representation [52]. 

Parameters Literature case [52] 

Main-roll radius [mm] 100 
Mandrel radius [mm] 45 

Initial ring outer diameter [mm] 196 
Initial ring wall thickness [mm] 41.5 

Initial ring flange thickness [mm] 41.5 

Initial ring height [mm] 46.5 
Final ring wall thickness [mm] 15.1 

Final ring flange thickness [mm] 30.2 
Final ring wall height [mm] 17.55 

Final ring flange height [mm] 23.25 
Diameter A [mm] 270 
Diameter B [mm] 239.8 
Diameter C [mm] 209.6 

Thickness reduction per rev. [%] 4 

Final shape schematic reference 

 

 

 
Figure 23 – True stress-strain curves at 0.2/s and 0.02/s and flow stress interpolation curves for 

the BS EN 12588 lead alloy [52]. 
 
Concerning the validation of the FEM model with outer L-shape geometry, the only result reported in the 

considered paper [53] is the geometrical expansion of the ring. Due to this, the comparison has been carried 

out between the final diameters of the cited paper [53] on one side, and the modeled analytical and FEM results 

on the other. Same way as reported in [52], the mesh and solver has been chosen as described in 4.3.1 and the 

material involved is the BS EN 12588 lead. Table 14 includes the main ring rolling mill dimensions, the initial 

and final ring geometries, the process settings for the validation and a representation of the final internal L-

shape of the ring.  
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Table 14 - Ring rolling mill dimensions, initial and final ring geometries, process settings for the validation 
case, and internal L-shape ring representation [53]. 

Parameters Literature case [53] 

Main-roll radius [mm] 100 

Mandrel radius [mm] 45 

Initial ring outer diameter [mm] 222.6 

Initial ring wall thickness [mm] 40.1 

Initial ring flange thickness [mm] 40.1 

Initial ring height [mm] 44.4 

Final ring wall thickness [mm] 15 

Final ring flange thickness [mm] 18 

Final ring wall height [mm] 26.4 

Final ring flange height [mm] 18 

Diameter A [mm] 396 

Diameter B [mm] 376 

Diameter C [mm] 346 

Thickness reduction per rev. [%] 1 

Final shape schematic reference 

 

 
Concerning the validation of the FEM model with double L-shape (C-shape) geometry, the experimental 

research used as reference is by Liang et al. [60]. The ring is defined as a double-symmetric L-shape grooved 

ring, as shown in Table 15, and is manufactured with the Inconel 718 superalloy, also utilized in this thesis for 

the flat ring analysis and in the finite element investigation cases presented in the following section (4.3.3). 

Also for this validation, the principal values concerning the ring rolling mill dimensions, the initial and final 

geometries, and the process settings are summarized in Table 15. 
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Table 15 - Ring rolling mill dimensions, initial and final ring geometries, process settings for the validation 
cases, and C-shape ring representation [60]. 

Parameters Value 

Main-roll radius [mm] 570 
Mandrel radius [mm] 150 

Guide rolls radius [mm] 150 

Initial ring temperature [°C] 1000 
Tools temperature [°C] 150 

Friction coefficient  0.3 
Initial ring outer diameter [mm] 756.4 

Initial ring inner diameter [mm] 456.4 
Initial ring height [mm] 223.1 

Final ring wall thickness [mm] 60.8 

Final ring flange thickness [mm] 101.5 
Final ring wall height [mm] 82.5 
Final ring total height [mm] 223.1 

Diameter A [mm] 1164.3 

Diameter B [mm] 1082.9 
Diameter C [mm] 961.3 

Main-roll rotational speed [rad/s] 1.1 
Mandrel feeding speed [mm/s] 0.3 

Final shape schematic reference 

 

 

4.3.3 FEM investigation cases set up 

The proposed flanged ring expansion prediction algorithm has been investigated in detail with two different 

analyses that are named, for simplicity and convenience, investigation A and B. In this paragraph, the two 

investigations' settings, objectives, and reasons will be presented. 

The main aim of investigation A is to analyze and to understand the influence of the speeds of the tools on 

the setting choice of the model and in the definition of the geometry. For doing this investigation, three different 

initial and final ring configurations have been coupled with three different main roll rotational speeds. For each 

main roll rotational speed, three initial and final mandrel feeding speed sets have been considered. 

The final ring outer flange covers a range from ~500 mm to ~1100 mm and the three main roll rotational 

speeds that were chosen are 2 rad/s, 3 rad/s, and 4 rad/s. The mandrel feeding speeds have been calculated by 

the Eqs. (3)-(5) described in 3.2, and for each combination of geometry and main roll rotational speed, the 

lower range, the middle, and the upper on the range values were considered. In total, 27 simulations have been 

run and all the initial and final ring geometries, the main roll rotational speeds, the mandrel feeding speeds, 
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and the process parameters are summarized in Table 16. All the simulations have been defined to maintain the 

same gear ratio between the ring and the tools, thus the outer diameters of the mandrel and main roll have been 

changed according to the initial geometry of the considered ring.  

 
Table 16 - Initial and final ring geometries, the main roll rotational speeds, the mandrel feeding speeds, and 

the process parameters settings for investigation A. 

Parameters Ring#1A 

Main-roll radius [mm] 270 

Mandrel radius [mm] 90 

Initial ring outer diam. [mm] 235 

Initial ring wall thickness [mm] 90 

Initial ring height [mm] 145 

Final ring wall thickness [mm] 54 

Final ring flange thickness [mm] 72 

Final ring outer flange diam. [mm] 564 

Final ring outer wall diam. [mm] 528 

Final ring internal diam. [mm] 420 

Sub-case numbering A1-1 A1-2 A1-3 A1-4 A1-5 A1-6 A1-7 A1-8 A1-9 

Main-roll rotational speed [rad/s] 2 3 4 

Initial mandrel feeding speed [mm/s] 0.26 1.88 3.33 0.4 2.86 5.08 0.54 3.85 6.84 

Final mandrel feeding speed [mm/s] 0.16 1.75 3.19 0.24 2.68 4.86 0.33 3.6 6.54 

Mandrel active time [s] 139 19.2 10.8 90 12.6 7.08 66.7 9.34 5.26 

Total process time [s] 160 25.2 15.2 105 16.8 12.3 74.5 13.9 9.8 

 

Parameters Ring#2A 

Main-roll radius [mm] 375 

Mandrel radius [mm] 125 

Initial ring outer diam. [mm] 325 

Initial ring wall thickness [mm] 120 

Initial ring height [mm] 145 

Final ring wall thickness [mm] 72 

Final ring flange thickness [mm] 96 

Final ring outer flange diam. [mm] 802 

Final ring outer wall diam. [mm] 754 

Final ring internal diam. [mm] 610 

Sub-case numbering A2-1 A2-2 A2-3 A2-4 A2-5 A2-6 A2-7 A2-8 A2-9 

Main-roll rotational speed [rad/s] 2 3 4 

Initial mandrel feeding speed [mm/s] 0.35 2.7 4.8 0.5 4 7.2 0.7 5.5 9.7 

Final mandrel feeding speed [mm/s] 0.2 2.4 4.37 0.3 3.6 6.65 0.4 4.9 8.9 

Mandrel active time [s] 140 18.15 10.21 98 12.25 6.79 70 8.91 5.05 

Total process time [s] 158 22.9 15.2 108 16.5 11.2 76.3 13.6 9.7 
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Parameters Ring#3A 

Main-roll radius [mm] 490 

Mandrel radius [mm] 165 

Initial ring outer diam. [mm] 425 

Initial ring wall thickness [mm] 160 

Initial ring height [mm] 145 

Final ring wall thickness [mm] 96 

Final ring flange thickness [mm] 128 

Final ring outer flange diam. [mm] 1011 

Final ring outer wall diam. [mm] 947 

Final ring internal diam. [mm] 755 

Sub-case numbering A3-1 A3-2 A3-3 A3-4 A3-5 A3-6 A3-7 A3-8 A3-9 

Main-roll rotational speed [rad/s] 2 3 4 

Initial mandrel feeding speed [mm/s] 0.46 3.45 6.14 0.7 5.26 9.37 0.94 7.08 12.59 

Final mandrel feeding speed [mm/s] 0.28 3.22 5.87 0.43 4.92 8.96 0.58 6.62 12.05 

Mandrel active time [s] 139.5 18.55 10.42 91.34 12.16 6.83 67.92 9.04 5.08 

Total process time [s] 159.5 24.5 15.2 97.8 16.5 11.7 76.2 14.5 9.7 

 
The second analysis, called investigation B, aims to understand the performances of the proposed developed 

algorithm on the prediction of different flange expansion, considering the same initial preform shape. For doing 

this analysis, 3 different initial geometries have been considered, and for each geometry, 3 different 

percentages of flange reduction, for a total of 9 rings. The initial and final geometries for the considered rings, 

the geometry of the ring rolling mill, and additional process settings relevant for each case are shown in Table 

17.  

In Table 17, the wall thickness reduction is defined as the percentage reduction of the initial wall of the ring 

because of the deformation carried out by the mandrel. Besides, the flange protrusion from the initial wall 

thickness represents the percentage increase in the flange thickness from the initial wall thickness. 

Investigation A has been carried out considering the Inconel 718 super alloy whereas, for investigation B, 

the 42CrMo4 steel alloy has been additionally considered. For the latter case, the kinematic process settings, 

obtained by applying the proposed algorithm, have been kept constant and only the initial temperature of the 

ring has been changed according to the higher processing temperature for the 42CrMo4 steel alloy under hot 

forming conditions. In the FEM simulations, the ring has been set with an initial temperature equal to 1030 °C 

for the Inconel 718 rings and 1200 °C for the 42CrMo4 rings, respectively. 

The material properties have been acquired from the material library available in Simufact Forming 16, 

directly originated from the MATILDA® (Material Information Link and Database Service) archive. 

Concerning the plastic behavior, the Hasel-Spittel flow stress model [88], Eq. (37) has been utilized and the 

model constants for the two above-mentioned materials are reported in Table 18. 

= ( ⋅ ) ( ⋅ ) ⋅ ( ⋅ )
 (37) 
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Table 17 - Ring rolling mill dimensions, initial and final ring geometries, and process settings for the 
investigation B. 

Parameters Ring 

#1B 

Ring 

#2B 

Ring 

#3B 

Ring 

#4B 

Ring 

#5B 

Ring 

#6B 

Ring 

#7B 

Ring 

#8B 

Ring 

#9B 

Main-roll radius [mm] 270 375 490 

Mandrel radius [mm] 90 125 165 

Wall thickness reduction [%] 
70% 60% 50% 70% 60% 50% 70% 60% 50% 

Flange protrusion from initial 
wall thickness [%] 

10% 20% 30% 10% 20% 30% 10% 20% 30% 

Initial ring outer diam. [mm] 
235 325 425 

Initial ring wall thickness 
[mm] 

90 120 160 

Initial ring height [mm] 
145 145 145 

Final ring flange thickness 
[mm] 

72 96 128 

Final ring wall thickness 
[mm] 

63 54 45 84 72 60 112 96 80 

Final ring outer flange diam. 
[mm] 

519 564 619 712 802 852 926 1011 1106 

Final ring outer wall diam. 
[mm] 

501 528 565 688 754 780 894 947 1010 

Final ring internal diam. 
[mm] 

375 420 475 520 610 660 670 755 850 

Final ring flange height [mm] 
50 

Final ring wall height [mm] 
95 

Main-roll rotational speed 
[rad/s] 

4 4 4 4 4 4 4 4 4 

Initial mandrel feeding speed 
[mm/s] 

6.88 6.84 6.79 9.8 9.7 9.72 12.67 12.6 12.52 

Final mandrel feeding speed 
[mm/s] 

6.82 6.54 6.16 9.6 8.9 8.67 12.6 12.05 11.38 

Mandrel active time [s] 3.92 5.26 6.63 3.67 5.05 6.17 3.79 5.08 6.39 

Total process time [s] 5 6.5 8 5 6.5 7.5 4.5 6.5 8 
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Table 18 - Material constants and validity range for the Inconel 718 and 42CrMo4.  

Parameter Inconel 718 42CrMo4 

Temperature range for the model [°C] 950 ~ 1100 800 ~ 1250 

Strain range for the model [–] 0.05 ~ 2 0.05 ~ 2 

Strain rate range for the model [1/s] 0.01 ~ 150 0.01 ~ 150 

 10501.100 5290.5 

 -0.0030755 -0.0036967 

 -0.0001815 -0.0003340 

 0.543976 0.206120 

 -2.17606e-5 -8.26584e-5 

 0.0237644 0.0289085 

 -2.67316e-6 0.0003007 

 0.0974653 -0.1561810 
 
Finally, for both investigations A and B, the friction has been set according to the shear friction law already 

described in 3.3, with the m=0.85 for the contact between the main roll and mandrel with the ring whereas 

m=0.6 for the contact between axial rolls and guide rolls with the ring. 

4.4 FEM and model validation results 

The numerical simulation study cases carried out for validating the FEM model and of the developed 

analytical model have been presented in 4.3 and their results will be described in the following paragraph. The 

first part will cover the results of the 4-analysis made for validating the FEM and analytical model, and then 

all the results of the two investigations on the behavior of the implemented model will be presented. 

The first validation has been carried out by comparing a FEM result with a FEM and an experiment made 

by Monti et al. [13] in a ring rolling company. Thanks to this comparison the FEM model has been verified in 

terms of accuracy on the prediction of geometrical expansion of the ring throughout the process. Moreover, 

this analysis allows to verify the validity of the proposed analytical model in the case of a non-annular initial 

preform.  

In Fig. 24a, the mandrel force obtained during the experiment has been compared with the FEM model 

implemented in Simufact Forming 16, where the variation of the radial force can be explained by the presence 

of an initial flange on the process. As concerns the experimental results, the presence of sudden variation of 

the radial forming force is caused by several factors, among them the presence of oxidation scale forming and 

detaching from the ring surface during the production, the variation of the lubrication conditions during the 

process as well as variation of the hydraulic pressure keeping the contact between the mandrel and the ring. 

Although some deviations between experimental and FEM results can be seen from the results presented in 

Fig. 24a, the overall trend is well followed, and the average deviation is calculated in 14.8%. The average 

deviation has been calculated considering 20 points between 0s and 48s (which is the final process time) and 

comparing the experimental results with the FEM results. 
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Figure 24 – (a) Comparison between authors’ FEM and experimental results for the main roll forming 
force and (b) final ring at the end of the ring rolling process. (c) Cross-comparison of FEM, analytical 

and experimental results comparisons. 
 
The L-shape final ring obtained with the experiment is represented in Fig. 24b and the final measure 

achieved is summarized in Table 19, showing a good agreement among experimental, FEM, and analytical 

results. As concerns the material redistribution in profiled rings, even when starting from a non-annular 

preform, the maximum deviation obtained comparing the analytical model with the experiment is 4.9 % for 

final inner wall diameter. Moreover, the proposed algorithm can be utilized for an initial screening phase to 

investigate the influence of process and geometrical parameters on the geometrical expansion of the ring. The 

results accuracy of analytical and FEM solutions compared to experiment, as reported in Table 19, permits to 

rely on FEM analysis only in a further step, thus gaining time since the estimation carried out by the proposed 

algorithm is almost real-time.  

The second analysis that has been done to validate the FEM simulation model, considers a ring with an 

outer L-flange final shape [52]. For the FEM model implementation, the material properties, geometries, and 

process conditions reported in section 4.3.2 have been utilized. The comparison between the experimental and 

FEM mandrel forming force results shown a maximum deviation of 3.3 % (Fig. 25). The peak in the mandrel 

forming force noticeable around 39 mm of the evolution axis is due to the collision between the mandrel and 

one of the centering rolls, an issue that might happen in the first stages of the process. 
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Table 19 – Comparison among analytical, finite element, and experimental results for the literature case [13]. 

Models and experiment comparison 

Final ring dimensions 

Inner wall 

diameter [mm] 

Outer wall 

diameter [mm] 

Final outer 

diameter [mm] 

EXPERIMENT [13] 601 701 808 

FEM 581.8 693.4 792.4 

ANALYTICAL MODEL 571.7 681.7 796.1 

EXP vs FEM deviation [%] 3.2  1.1 1.9 

EXP vs ANALYTICAL deviation [%] 4.9 2.8 1.5 

 

 
Figure 25 – Comparison between authors’ FEM simulation result and literature [52] experiment 

and FEM results for the mandrel forming force. 
 

The inner and outer ring wall diameters and flange diameter of the experiment [52] have been analyzed and 

the FEM model and analytical calculations results have been compared, as shown in Fig. 26. This comparison 

allowed estimating the deviations in 1.05% for the ring outer wall diameter (OWD), 1.2% for the ring inner 

wall diameter (IWD), and 2.5% for the inner flange diameter (IFD). Additionally, FEM and analytical model 

results are very close during the evolution process. The good agreement between the FEM and literature 

experiments implies that the implemented FEM simulation is reliable in replicating the deformation behavior 

throughout the process. 

The third analysis that has been done for obtaining a further validation of the FEM simulation model, 

considers an inner L-shape ring [53]. The comparison between the FEM simulation model, the analytical 

model, and the literature experimental result, shown that the deviations that are minimal as reported in Fig. 27. 

In Fig. 27, the roll gap represents the distance between the mandrel and the main roll in the wall portion of the 

ring height. This comparison allowed estimating the deviations in 1.1% for the ring outer flange diameter 

(OFD), 1.4% for the ring inner wall diameter (IWD), and 0.75% for the outer wall diameter (OWD). Also in 

this third validation case, the FEM model and analytical solutions well agree both for the final values at the 

end of the process time (minimum value of the roll gap) as well as during the ring expansion process. 
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Figure 26 – Comparison between authors’ analytical and FEM solutions with the literature [52] 

experimental results for the expansion of inner flange diameter (IFD), inner wall diameter (IWD), and 
outer wall diameter (OWD), for decreasing roll gap. 

 
 

Figure 27 – Comparison between authors’ analytical and FEM solutions with the literature [53] 
experimental results for (a) the expansion of outer flange diameter (OFD), (b) inner wall diameter (IWD) 

and (c) outer wall diameter (OWD) for decreasing roll gap. 
 
The last validation is related to the experimental case presented in Liang et al. [60] for a ring with a final 

C-shape symmetric along the horizontal direction. The results have been compered and plotted in Fig. 28, and 
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the average deviations between the analytical predictions and the literature experimental results are 0.5% for 

flange diameter (OFD), 3.6 % for inner wall diameter (IWD), and 2.9% for the outer wall diameter (OWD). 

Also, in this case, the accuracy in the prediction of the ring expansion of profiled rings has been validated. 

 

Figure 28 – (a) Comparison between authors’ analytical solution and literature [60] experimental 
results for the expansion of outer flange diameter (OFD), inner wall diameter (IWD), and outer wall 

diameter (OWD) vs the process time. 

 
Finally, considering the results of the analysis described above, it is possible to conclude that the 

implemented FEM solution is capable of properly replicating the profiled ring rolling process. Therefore, with 

the aim of analyzing in detail the accuracy of the developed algorithm as well as showing some of the main 

correlations present between process settings and ring geometrical expansion, the results of the two 

investigations A and B, already introduced in 4.3.3, are presented here below and validated with FEM model.  

Regarding the results of investigation A, the 27 simulation results have been analyzed and compared with 

the analytical prediction, and a representation of the influence of the tools speeds on the accuracy of the ring 

geometry prediction algorithm and on the force integral of mandrel active time are shown in Fig. 19.  

In Fig. 19a, the dimensionless parameter on the x-axis is represented by the ratio between the average 

mandrel feeding speed and the main roll rotational speed. The maximum and average deviations between 

analytical predictions and FEM results are equal to 11.6% and 6.73%, evidence that the implemented algorithm 

is accurate for a wide range of main roll rotational speeds and relevant initial and final mandrel feeding speeds. 

The analysis of the error behavior shows that it tends to drop with increasing x-axis values (ratio between the 

average mandrel feeding speed over the main roll rotational speed). 

Considering the hot forging conditions of the process, the incremental variation during the ring evolution 

of the ring rolling process, and the above reported Eqs. (3)-(5) to define the mandrel initial and final feeding 

speed, it has been assumed that with higher main roll rotational speed, the process time necessary to reach the 

final ring geometry decreases. For this reason, the decreasing temperature has not been considered on the 

analytical model, differently as in the FEM simulations, since it has a smaller influence on the material flow 

stress. In the case of a low rotational speed of the main roll, on the other hand, the process time increases 
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causing a significant temperature drop on the ring, resulting in a variation of the material properties during the 

whole process. 

 

Figure 29 – Influence of the main roll rotational speed and initial and final mandrel feeding 
speeds on the accuracy of the ring geometry prediction algorithm and on the force integral of 

mandrel active time (results for investigation A). 

 
The values of the force impulse, defined as the integral of mandrel force over the mandrel feeding time, 

have been considered as an indicator of the algorithm performance, as represented in Fig. 29b. In the last graph 

of Fig. 29, it is important to notice that with a high main roll rotational speed and high initial and final mandrel 

feeding speeds, a minimization of the energy consumption of the whole production process occurs. This can 

be explained by the previous consideration concerning the temperature drop: in fact, with high tool speeds, the 

temperature fall is minimum and so the force required for deforming the ring is lower. Moreover, considering 

the results reported in Fig. 29, it can be noted that, for a shorter process time (higher main roll rotational speed), 

the deviation between FEM and analytical model results is smaller. Finally, it has to be mentioned that the 

analytical model estimation returns the required results in real-time, while the FEM simulations have required 

an average of 18 hours: this allows to consider the relatively small deviation of the analytical model acceptable, 

considering the huge computation time saved. 

Concerning investigation B, as already explained in 4.3.3, the 9 selected cases have been studied for 

understanding the accuracy of the application of the analytical model with different materials and considering 
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the different percentages of flange reduction. The deviation between analytical and FEM results have been 

compared and calculated at 20%, 40%, 60%, 80%, and 100% of the mandrel time, as reported in Table 20.  

Table 20 - Analytical vs FEM deviations for investigation B for Inconel 718 and 42CrMo4. 

 Analytical vs FEM solutions deviations [%] 

 Percentage of the total process time [%] 

Geometrical parameters Inconel 718 42CrMo4 

 20% 40% 60% 80% 100% 20% 40% 60% 80% 100% 

Ring 

#1B 

Inner wall Diam. [mm]  2.73 1.19 3.45 2.95 1.26 2.17 0.77 2.91 0.79 0.08 

Outer wall Diam. [mm] 1.85 0.61 2.74 2.00 1.70 2.03 0.82 0.25 0.34 1.36 

Flange Diam. [mm] 1.67 1.04 3.96 3.87 1.06 2.47 2.53 1.76 3.71 0.96 

Ring 

#2B 

Inner wall Diam. [mm]  2.17 1.28 2.29 1.29 1.02 0.25 3.06 0.57 1.42 2.71 

Outer wall Diam. [mm] 0.78 1.16 3.54 2.83 0.56 1.49 0.86 2.55 3.44 4.31 

Flange Diam. [mm] 0.61 2.02 2.50 0.93 3.26 1.33 0.54 2.04 1.32 0.21 

Ring 

#3B 

Inner wall Diam. [mm]  2.63 1.15 3.27 2.26 1.71 1.67 0.91 2.69 1.70 1.38 

Outer wall Diam. [mm] 0.24 1.28 1.63 2.31 3.46 1.14 1.24 4.03 1.74 0.89 

Flange Diam. [mm] 0.95 1.67 1.94 1.60 4.34 2.06 0.66 0.82 0.96 4.29 

Ring 

#4B 

Inner wall Diam. [mm]  2.82 2.32 1.68 0.93 0.51 2.97 1.84 0.64 1.13 1.63 

Outer wall Diam. [mm] 1.72 0.83 1.51 1.26 2.04 0.05 0.17 0.62 1.14 0.63 

Flange Diam. [mm] 2.03 4.06 3.08 2.59 0.37 2.57 2.11 3.05 3.39 0.28 

Ring 

#5B 

Inner wall Diam. [mm]  1.50 2.06 1.06 0.45 2.34 1.05 2.07 0.10 0.28 1.62 

Outer wall Diam. [mm] 0.13 0.13 0.82 1.16 0.65 0.80 1.59 0.60 1.40 0.65 

Flange Diam. [mm] 1.80 2.19 2.11 2.20 3.70 1.07 2.65 3.05 2.74 3.69 

Ring 

#6B 

Inner wall Diam. [mm]  0.07 1.54 4.39 6.05 3.23 1.02 0.86 3.01 5.41 3.45 

Outer wall Diam. [mm] 0.49 0.10 2.75 4.28 0.97 0.09 0.39 0.17 1.91 2.20 

Flange Diam. [mm] 1.54 0.68 0.28 1.09 5.34 1.08 1.26 0.16 1.18 4.73 

Ring 

#7B 

Inner wall Diam. [mm]  1.93 3.19 4.98 3.09 3.05 1.90 3.52 5.42 3.33 3.42 

Outer wall Diam. [mm] 0.57 1.69 3.00 0.91 0.19 1.95 2.35 2.29 0.40 0.74 

Flange Diam. [mm] 1.73 4.63 5.40 4.15 4.66 2.40 3.34 4.81 4.28 4.00 

Ring 

#8B 

Inner wall Diam. [mm]  3.73 4.06 2.77 0.28 3.85 0.98 1.62 0.98 1.94 1.03 

Outer wall Diam. [mm] 0.01 2.62 4.60 3.54 3.99 1.63 0.12 0.33 0.61 0.70 

Flange Diam. [mm] 0.23 3.31 3.15 4.01 2.61 0.85 0.82 0.68 1.20 3.04 

Ring 

#9B 

Inner wall Diam. [mm]  2.89 3.33 1.14 0.75 1.71 2.40 3.93 0.09 0.00 0.12 

Outer wall Diam. [mm] 2.86 1.70 0.54 1.24 0.54 0.73 1.85 0.54 0.97 0.92 

Flange Diam. [mm] 3.19 4.49 3.09 2.02 1.07 2.64 4.91 2.84 2.64 1.40 
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As shown in Table 20, the maximum and average deviations between analytical and FEM solutions are 

calculated in 6.05% and 1.94%, respectively, showing the accuracy in the estimation of the ring geometry also 

for the case of the same initial ring blank shape deformed to different final rings dimensions. 

In order to understand the influence of the material on the geometrical expansion, in Fig. 30 is reported the 

analytical prediction and the FEM solutions for Ring #9B, derived considering Inconel 718 and 42CrMo4 

materials. As can be noted, the geometrical expansion of the ring is independent of the chosen material, 

confirmation of the fact that the proposed analytical model can be used also to different materials and process 

conditions different from those utilized in this analysis. 

 

Figure 30 – (a) Comparison between analytical and FEM solutions for Ring #9B considering Inconel 718 
and 42CrMo4 materials (in the FEM). (b) Equivalent plastic strain and geometrical expansion comparison 

between Inconel 718 and 42CrMo4 materials for the Ring #9B. 
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4.5 Process energy prediction for the profiled ring rolling process 

The best performing model for energy consumption prediction, identified in the investigations relevant for 

the flat ring rolling and described in 3.7, has been used for describing and predicting the energy consumption 

in terms of force integral over time (FIOT) also in the profiled rings case. The Gradient Boosting algorithm, 

once again, has been developed in a Windows OS environment utilizing the scikit-learn 0.22.2 and Keras 2.3.1 

modules implemented in Anaconda Spyder environment with Python 3.7.4.  

A total of 50 simulations have been set and run with Simufact Forming 16. The setting of the FEM model 

has been described in the previous paragraphs 4.3.1. The flanged ring prediction algorithm has been used for 

choosing the geometry range to consider for the analysis. In Table 21 the geometry parameters, speed variables, 

material properties and chose ranges are reported. 

 
Table 21 – Ranges of variables in the dataset. 

Parameters Range of validity 

Final outer diameter wall [mm]  501 ÷ 1010  

Final height wall [mm] 95 

Final outer diameter flange [mm] 519 ÷ 1106 

Final thickness wall [mm]  45 ÷ 112  

Final height flange [mm] 50 

Final inner diameter [mm] 375 ÷ 850 

Initial outer diameter [mm] 415 ÷ 745 
Initial inner diameter [mm] 235 ÷ 425 

Initial height [mm] 145 
Initial thickness 90 ÷ 160 

Main roll speed [rad/s] 2 / 3 / 4 

Materials In-718 / 42CrMo4 
 
 The resulting data set has been divided and 80% was used for the training of the model while 20% for the 

validation. The parameters that compose the input data set of the model are: 

1. main roll rotational speed,  

2. average mandrel feeding speed,  

3. parameters that describes the variation in the shape of the ring,  

4. material yield strength,  

5. material Young’s modulus,  

6. force integral over the mandrel time (FIOT). 

As concerns the optimization of the prediction model described in 3.7, the random search method has been 

used for obtaining the parameters of the model and the results are reported in Table 22. 
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Table 22 - Hyperparameters result of random search optimization in Gradient Boosting.  

Model Parameters OPTIMAZED VALUES 

N_ESTIMATORS (M) 672 

LEARNING RATE (η) 0.0726 

MAX DEPTH 2 

MIN SAMPLES LEAF 2 

MIN SAMPLES SPLIT 4 
 
Comparing the FEM results of force integral over time with the FIOT obtained by the Gradient Boosting 

model (Fig. 31) the maximum error is 9.86 % while the average is 5.51%. The determination factor (R-square), 

also called the “goodness of fit” factor, is equal to 0.9815 and it expresses the variability in the process 

parameters explained by FIOT. The high value of the R-square shows that the considered sets of parameters 

all have a high influence on the FIOT value. As mentioned for the case of the flat ring rolling process, the 

indication of those governing parameters that have the highest influence on the considered target function is 

of key importance in order to achieve accurate prediction. At the same time, it allows avoiding considering 

low-influence parameters in the analysis, which would inevitably increase the time required for the definition 

of the training and validation data sets. Keeping that in mind, the Gradient Boosting algorithm provides the 

weights during the training phase, but if the database used as input is poor, the weights may only fit the training 

dataset. Since the development of an extended database requires a huge computational time, the model has 

been validated only in the range considered as input. 

 

Figure 31 – (a) True value vs prediction and (b) percentage. 
 
For the validation, an arbitrary ring geometry has been considered and its geometric characteristic, material 

properties, and working speeds are summarized in Table 23. The FIOT calculated by the machine learning 

model is 8748 [kN∙s], while the result of the FEM simulation is 8551.69 [kN∙s]. The maximum error is 2%. 
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Table 23 – Ring dimensions, material properties, and speeds of validation case. 

Parameters Value 

Final outer diameter wall [mm] 850 

Final wall height [mm] 95 

Final outer flange diameter [mm] 950 

Final flange height [mm] 50 

Final inner diameter [mm] 700 

Initial outer diameter [mm] 701.5 
Initial inner diameter [mm] 444.56 

Initial height [mm] 145 
Main roll speed [rad/s] 3.75 

Mandrel feeding speed [mm/s] 13.58 

Young’s modulus [GPa] 111 

Yield strength [MPa] 187 

4.6 Chapter 4 summary and highlights  

Concerning the analytical model, the FE implementation, and the energy prediction model presented in the 

previous sub-sections about profiled ring rolling process, a summary of the key points of this chapter, along 

with the main achievements, is reported. 

• Although the differences in the plastic flow of the material in the cross-section and in the 

circumferential direction, the energy prediction model developed for the flat ring rolling process 

showed a good accuracy also for the case of the profiled ring rolling. This fact is of key importance 

because it shows that the implemented solution can be extended also to different manufacturing 

processes if a proper pre-analysis is carried out to identify the governing influence the considered 

output the most (target function); 

• The absence of an analytical model for describing the geometrical expansion of the profiled rings 

has driven the current research to study and develop the first analytical model for predicting the 

ring evolution of external L-shape section ring starting from both flat or profiled blank geometry. 

The model can also be adapted to different ring sections, such as internal L-shape and external C-

shape, and also to a generic initial ring preform shape. The proposed algorithm can be used in the 

pre-production phase to analyze the various process parameters and conditions to obtain the desired 

final shape, allowing to spare precious time during the design stage and to focus on FEM 

simulations only on few pre-screened cases; 

• Moreover, the proposed algorithm can be utilized in the early design stages of the process in order 

to investigate the influence of geometry, process conditions, and parameters on the geometrical 

expansion of the ring, helping process engineers in reducing the number of FEM simulations 

required for an efficient design of the profiled ring rolling process; 
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• Besides, a FEM model has been built specifically for profiled RARR process, considering internal 

and external L-shape as well as external C-shape. Several numerical simulations have been 

conducted in order to build a dataset of process parameters values. The process settings, utilized 

for the implementation of the FEM simulations, have been determined by the implemented 

algorithm, extended from the previously developed solution for flat rings by Berti and Quagliato 

[16]; 

• Both analytical and numerical models for profiled ring rolling process have been validated through 

comparison with previous literature data and experiments. The validation has been conducted 

considering different initial and final ring cross-sections. Concerning the geometry estimation, the 

analytical model and FEM model have a maximum error respectively of 4.9% and 3.2%. Regarding 

the force estimation, the numerical model returns a maximum deviation of 14.8% with the first 

literature comparison and 3.3% with the second literature comparison; 

• Two cross-validations between analytical and FEM models’ solutions have been conducted. The 

first one investigated the influence of different tool speeds on the accuracy of the analytical model 

against the numerical model. The maximum resulting error is 11.6%: the analytical model works 

well in a wide range of tool speeds, and it has been noticed that the accuracy decreases when the 

tools’ speed decreases or, equivalently, when the process time increase. Moreover, it has been 

found that the energy consumption of the whole process decreases when the tool speeds (main roll 

rotational speed and mandrel feeding speed) are higher under the other process parameters. The 

second investigation has analyzed the influence of different materials and ring flange reduction on 

the accuracy of the analytical model, obtaining a maximum error of 6.05%. 

• A total of 50 FEM simulation of external L-shape profiled ring rolling process has been conducted 

in order to develop a database to build an energy prediction model for the profiled ring. The same 

Gradient Boosting algorithm and the same developing methodology (training and validation) of 

flat RARR analysis has been used and adapted for the flanged ring rolling process. Checking the 

error on force impulse estimation of the predictive model against the 50 FE simulations, a 

maximum error of 9.86% has been obtained. Moreover, the new machine-learning algorithm has 

been validated through comparison with a new FEM simulation, obtaining a maximum error of 2%. 
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Chapter 5 

Energy minimization model development and 

validation 

To conclude this research, the developed energy minimization model is presented here. The model has been 

applied and validated on the flat ring rolling process, and it has also been implemented for the deep drawing 

process and validated as well. The developed optimization model not only has a scientific interest but also 

industrial importance, given the ever-growing attention to process optimization and energy saving. Due to the 

complex nature of this production process and the non-linear relationship between the numerous process 

variables, a different approach from the classic direct optimization models has to be applied. To this aim, the 

Differential Evolution (DE) model has been considered, given its properties of finding the optimized solution 

on a “black box” environment and without the need for function derivates [89, 90]. The algorithm has been 

developed with Python script programming language and it is designed to work with multi-dimensional real-

valued candidate solutions. The DE-based developed model has been built in order to be easy to use for 

possible industrial applications and to give the optimized response in real-time, permitting to save time 

compared to numerical analysis. Moreover, since the DE model requires more input data than a classic gradient 

descent optimization method, a wider database of process case studies has been provided, using the developed 

energy prediction model to increase the number of combinations contained in the data set. 

In the following section 5.1, the algorithm theory will be explained, along with the advantages of the chosen 

approach. Then, in section 5.2, all the passages and considerations used to build the algorithm will be reported. 

Finally, in chapter 5.3, the obtained results and the validation of the model will be shown for both flat ring 

rolling and deep drawing processes, along with final considerations. Chapter 5.4 contains a summary of the 

key points of this last part of the research. 
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5.1 Definition of energy minimization model 

In chapter 3, the non-linear regression approaches have been used in order to develop a predictive model 

for energy consumption, and they were found to be much more accurate than linear regression approaches for 

this specific process. This might mean that a non-linear correlation exists between the chosen process 

parameters and the energy consumption described as force impulse over time. For this reason, it has been 

decided to proceed with an optimization approach that doesn’t require a defined analytical form or a 

minimization of the function derivates. The Differential Evolution model has been chosen to develop the 

energy optimization algorithm: it belongs to the evolutionary computing algorithm field, which in turn is a 

sub-field of the artificial intelligence techniques. 

Evolutionary computing is a series of algorithms designed for global optimization models, that emulate 

biological processes of evolution [91], with a population of solutions that are selected through several iterations 

until the best individual solution is found. This kind of model started to be implemented in the last century, 

with the rapidly growing computation power, and the application to industrial cases are several. Among the 

various evolutionary computing approaches, the Differential Evolution (DE) model has been chosen and 

implemented in this research. The advantage of this model over other approaches is that it allows for 

optimization of non-linear and non-differentiable objective functions requiring fewer control parameters. 

Moreover, Differential Evolution is a heuristic and stochastic model that is easy to use and implement, making 

it a valid solution for engineering and industrial applications. 

As with other evolutionary computing approaches, Differential Evolution starts with creating randomly an 

initial population of candidate solutions of the optimization problem, also called individuals, as shown in Eq. 

(38). 

, = [ , , , , ⋯ , , ] (38) 

where ,  is the population, N is the dimension of the problem, p is the number of populations, ,  is 

the m-th individual and m is the population size. Many strategies can be applied to mutate the population and 

generate new individuals. In this research, a classic mutation strategy has been introduced in the population 

considering for each solution ,  a mutant vector ,  as reported in Eq. (39): 

, = , , + ⋅ ( , − , ) (39) 

where , ,  is the target vector, defined as the best individual that optimizes the problem. F is the 

mutation factor defined by the user, and ,  and , ,  are random individuals of the population 

. Obviously, , , , , ,  and , ,  must be different individuals and the obtained mutant 

vector must be within the problem value ranges to be considered valid. After completing the mutation process, 

a crossover step is applied, mixing the mutant vector components ,   with the target vector components 

, , and generating a trial vector ,  with a binomial approach as defined in Eq. (40): 
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, = ,  ≤ CR  =
,  > CR   (40) 

where j is the j-th vector components (j ∈ [0,N]), CR is the crossover rate defined by the user,  is a 

random integer number chosen from the interval [1;N] and  is a number randomly chosen from interval 

[0;1].  

After conducting the crossover of the individual components, a final selection phase is initialized, for 

determining if the target vector or the trial vector will be included in the next population p+1. The following 

Eq. (41) summarizes the selection step procedure. 

, , = , ( , ) ≤ ( , ), ℎ  (41) 

Where ( ) is the objective function that must be optimized, and that in this research coincides with the 

developed GB energy predictive model. It is clear that, after this final selection phase, the new population will 

have the best fitting individuals. The process described above is then repeated iteratively until the maximum 

number of iterations is reached, or in other words, the maximum number of populations has been generated. 

Hereafter in Fig. 32 it is resumed the iterative process of the developed model. 

 
Figure 32 – Flowchart of the main step of the DE iterative process. 

 
In the following section, it will be reported the implementation of the DE evolution, outlining the process 

parameters considered and the algorithm constants adopted.  

5.2 Differential Evolution implemented method 

The differential evolution algorithm above described has been developed in a Windows OS environment 

utilizing the Scikit-learn 0.24.1 and Scipy 1.6.2 modules implemented with Python 3.8.8. Concerning the 

specific application of this research on the flat ring rolling process, the input parameters are the final ring 

geometry, defined as inner and outer diameter and ring height, the ring material and temperature, and the 

geometry of the tools. 
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On the other hand, the expected output parameters that minimize the energy consumption are the initial 

ring geometry, which means inner and outer diameter and ring heigh, the main roll rotational speed, and the 

mandrel feeding speed. In the following Fig. 33, the process parameters involved in the DE minimization 

model are resumed. 

 

Figure 33 – Input and Output parameters for DE energy minimization model. 

 
Moreover, the objective function used in the DE algorithm is the Gradient Boosting energy predictive model 

developed and validated in chapter 3. Finally, since this evolutionary computing model required a high number 

of values to be implemented, with the aid of the GB model 320 new case studies have been added to the already 

developed database, reaching a total of 760 cases. 

The DE method requires the user to first define three algorithm parameters, namely the population size m, 

the mutation factor F, and the crossover parameter CR. These three variables have been set equal to 15, 0.5, 

and 0.7 respectively, along with the maximum number of iterations equal to 1000. These are initial settings, 

which will be changed and/or optimized during the training process. 

Specifically, the first population has been generated by the Latin Hypercubic statistical method, which 

allows to randomly generate the individuals inside an optimized population number that maximizes the 

parameter space. Furthermore, the mutation strategy used in this research is called “best/1/bin” meaning the 

best-fitting individual is considered as the target vector during the mutation phase, that only 1 vector is 

perturbed at each iteration and that a binomial crossover is applied after the mutation. 

As it will be explained in the following section 5.3, a validation of the developed minimization algorithm 

has been conducted and reported along with final consideration on the model. 

5.3 Differential evolution model validation  

In order to demonstrate the robustness and the effective calculation of the minimum energy consumption 

with the Differential Evolution algorithm, a random ring case study (Ring#1) has been considered and 

analyzed. The input and output process parameters of the minimization model concerning this specific Ring#1 

production are summarized in Table 24. 

 
Table 24 – Input and output parameters used in DE algorithm for Ring#1. 

 Fix Input Variable Output 

Case 

Study 

DF 

[mm] 

dF 

[mm] 

hF 

[mm] 

T 

[°C] 
Material 

D0 

[mm] 

d0 

[mm] 

h0 

[mm] 

⍵M 

[rad/s] 

vmM  

[mm/s] 

Ring#1 750 570 90 1050 42CrMo4 546.52 325 110.76 4.95 5.64 
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Afterward, for validating and checking the reliability of the DE algorithm, a FEM simulation has been 

conducted with the same process conditions applied to the numerical model developed in section 3.3. The 

energy consumption resulted from the Differential Evolution is equal to 1184.91 [N∙s], while, with the FEM 

simulation, a value of 1187.58 [N∙s] has been obtained. Comparing the two results, and considering the FE 

simulation as a reference, the error of the DE minimization model is equal to 8.95%. Since in the Differential 

Evolution algorithm, the value of the energy is calculated by the Gradient Boosting model, the obtained error 

matches with the predictive error underlined in section 3.7 (9.03%). 

Further validation of the DE minimization model has then been conducted analyzing the boundary of the 

solution, checking if the output is the real minimum of the FIOT function for that specific case study. In order 

to do that, a first subdivision of the process parameters has been done, creating the geometrical parameter 

group GP and the control parameter group CP. The first group includes the output geometrical variables, 

namely the final outer and inner diameter and the final height.  

On the other hand, the average mandrel feeding speed and main roll rotational speed belong to the second 

group. Then 5 additional ring case studies have been set varying and combining the GP and CP group by plus 

and minus 15% of their values. The following Table 25 resumes the process parameters considered for all 5 

additional cases. Some of the combinations have not been considered since the initial geometries turned out to 

be too close to the final geometry. 

 
Table 25 – Initial geometrical values and tools speeds of the case studies. 

Case 

Study 

Do 

[mm] 

d0 

[mm] 

h0 

[mm] 
⍵M 

[rad/s] 

vmM  

[mm/s] 
GP CP 

Ring#1 546.52 325 110.76 4.95 5.64 1 1 

Ring#2 508.62 275 116.8 4.95 5.64 -15% 1 

Ring#3 546.52 325 110.76 4.21 4.8 1 -15% 

Ring#4 508.62 275 116.8 4.21 4.8 -15% -15% 

Ring#5 546.52 325 110.76 5.7 6.49 1 15% 

Ring#6 508.62 275 116.8 5.7 6.49 -15% 15% 
 
Then, as conducted for Ring#1, each new case study has been processed through the same FEM model, to 

obtain the energy consumption. In the following Fig. 34 the results are plotted, with the different ring settings 

on the x-axis and the energy consumption (defined as FIOT) obtained by numerical simulation in the y-axis. 

As it can be seen, the process energy of Ring#1 case turns out to be the minimum, therefore the minimization 

model has been considered valid. 



 

82 

 

 

 

Figure 34 – Verification of the prediction of the “real minimum” for the FIOT parameter.  
 
The same approach used in this research to develop a minimization model for the flat ring rolling process 

has been used for a different production system, namely the deep drawing production process. 

This sheet metal forging process starts from a blank metal sheet that is deformed in a forming die by the 

pushing force generated by the translation of a punch, as summarized in Fig. 35. The process is defined as 

“deep” drawing since the height of the final part is greater than its diameter. 

 
Figure 35 – Schematic representation of the main phases of the deep drawing process. 

 
Different shapes and heights can be obtained by changing the forming die and punch geometries, and the 

industrial application of this process are several, such as automotive and medical components, packaging, and 

electronic cases and accessories. Moreover, different metal alloys can be used such as aluminum alloy and 

stainless steel. In order to keep the sheet in the right position during the plastic deformation process, a blank 

holder is usually applied before the translation of the punch, and the force of this latter generates a radial stress 

on the locked flanged part of the final pieces. The initial shape of the sheet (blank), the punch velocity, the 
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friction between the metal sheet and forming die, and the blank-holder force are all influencing parameters on 

the final quality of the component, as well as on the possible forging defects, such as the earing defect. 

Considering this brief introduction of the deep drawing process, this last research part focused on extending 

and validating the developed optimization model to the deep drawing process and has been conducted in 

collaboration with Sogang University. In this specific case, the aim is to minimize the defects occurrences, 

optimizing both process and the geometrical parameters to either minimize or eliminate the earing at the edges 

of the formed part. This defect is caused by a combination of material anisotropy and non-uniform stress 

distribution in the corner or edges of formed parts and, if not controlled during the production, it leads to an 

expensive post-operation reworking of the part.  

The Differential Evolution algorithm, presented in the previous section of the thesis, has been trained by 

means of a dataset specifically designed for the deep drawing process but, since the target of this section is the 

validation of the algorithm, the details relevant for the database construction are not included. For the case of 

the deep drawing process, the target is defined as the minimization or elimination of the post-forming earing 

defect arising in the area close to the edges of the part and, especially, where corner radii are present. The 

considered process conditions, as well as the calculation procedure for the earing defect, are shown in Fig. 36. 

 
Figure 36 – (a) Schematic representation of the implemented deep drawing process showing the 

characteristic dimensions of the dies and (b) Earing Index definition. 
 
The considered final shape is summarized in Fig. 37a whereas the fixed input values and the predicted 

process and geometrical parameters, predicted by the Differential Evolution model, are reported in Table 26. 

As for the flat ring rolling case, in order to verify that the predicted solution is, in fact, the minimum point of 

the target function (local minimum), additional study cases have been considered by changing the blank sheer 

outer diameter in a ±15% range, as shown in Table 27. For the assessment of the results, both EI index (Fig. 

36) as well as the geometrical accuracy of the part, especially in terms of final height, have been considered. 
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Table 26 - Input and output parameters used in DE algorithm for the deep drawing validation case. 

 Fix Input Variable Output 

Case 

Study 

Final 

cup 

ϕ 

[mm] 

Height 

[mm] 

Strength 

coef. 

[MPa] 

Initial 

blank 

diam. 

[mm] 

Die 

radius 

[mm] 

Force 

[N] 

Velocity 

[mm/s] 
Friction  

Case#1 140 36~37 1200 119.35 6.155 11511.7 119.6 0.0737 
 

 

Figure 37 – (a) Final cup-shape considered in the validation case. Result of the deep drawing 
considering(b)  the predicted (optimization) process conditions and (c) non-optimized process conditions.  
 

Table 27 – Study cases implemented to verify the “real minimum” predicted by the DE algorithm. 

Case 

Study 

Initial 

blank 

diam. 

[mm] 

Die 

radius 

[mm] 

Force 

[N] 

Velocity 

[mm/s] 
Friction  

Height 

[mm] 

Earing 

[%] 
Defect 

Case#1 119.35 6.155 11511.7 119.6 0.0737 36.4 7.944 0 

Case#2 119.35 6.155 9785 101.7 0.0737 36.7 7.945 0 

Case#3 119.35 6.155 13238 137.6 0.0737 36.2 7.932 0 

Case#4 101.45 6.155 11511 101.7 0.0737 23.1 4.664 0 

Case#5 101.45 6.155 9785 137.6 0.0737 23.3 4.663 0 

Case#6 101.45 6.155 13238 119.6 0.0737 22.8 4.682 0 

Case#7 137.26 6.155 11511 137.6 0.0737 - - 1 

Case#8 137.26 6.155 9785 119.6 0.0737 - - 1 

Case#9 137.26 6.155 13238 101.7 0.0737 - - 1 
 
First of all, considering the optimized process and geometrical settings, as reported in Table 26, the cup 

shape reported in Fig. 37b shows a minimum earing defect in comparison to an example of a non-optimized 

process and geometrical parameters configuration (Fig. 37c). Moreover, by considering the results of the 

additional 8 study cases reported in Table 7, it is clear that cases #1, #2, and #3, being close to each other in 
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terms of geometrical and process settings, allows to match the cup height and to limit the earing defect, 

estimated in 7.93% for all the three above-mentioned cases. 

As concerns the cases from #4~#6, although the earing defect is less than that of the #1~#3 cases, the target 

height of the cup could not be reached. On the other hand, for the #7~#9 cases, the stress distribution at the 

edges of the blank holder leads to a too high deformation, which would lead to sheet metal fracture in the real 

production. For these reasons, #4~#6 cases have been identified as “0” in the “defect” columns, since the part 

can be produced without fracture, although the final geometry cannot be reached. On the other hand, for #7~#9 

cases, the height and magnitude of the earing defect become negligible in comparison to the fracture arising 

on the metal sheet, thus the defect column has been indicated as “1”. 

From a global perspective, the geometry and process predictions carried out by the implemented DE 

algorithm show that, for the case of the deep drawing process, the minimization of the target function, namely 

the reduction of the earing defect and the matching of the final height, is not represented by a single point but, 

instead, by a minimum locus. This fact implies that there are more than one possible set of parameters 

combinations that allow minimizing the considered target function, but they are all close to each other. From 

an analytical point of view, this fact can be interpreted as the slope at which the target function output changes 

according to the inputted parameters. For the case of the flat ring rolling process, the FIOT parameter, and the 

relevant target function, wer highly influenced by the considered input parameters. On the other hand, for the 

case of the deep drawing process, the target function changes with a lower rate, generating solutions close to 

each other (such as #1~#3 cases) to provide similar results. 

This ambiguity of the solution can be removed by reshaping the target function in order to considered 

additional parameters, such as the forming force, but, at this stage, this procedure is still being tested and could 

not be added in the current version of the thesis. 

5.4 Chapter 5 summary and highlights  

Considering the energy minimization model proposed in this chapter, and the results of the two validations 

carried out on the flat ring rolling and the deep drawing process, the important remarks relevant for this chapter 

are listed here after: 

• Due to the complex nature of the flat ring rolling process and the non-linear objective function that 

predicts the energy consumption, a non-gradient based optimization approach is required in order 

to develop an energy minimization model; 

• The Differential Evolution algorithm has been chosen, among the artificial intelligence 

optimization approaches, to build the desired minimization model;  

• The database of flat ring values has been extended by means of the developed energy prediction 

model, based on the Gradient Boosting algorithm, presented in section 3.6; 

• The combination of the energy prediction and the energy minimization algorithms reduces the time 

required for the training dataset definition in the energy minimization process. At the same time, it 
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should be noted that the energy prediction accuracy strongly influences the results of the energy 

minimization, thus much effort should be put in a proper training phase of the former in order to 

achieve a good accuracy for the latter; 

• By means of the validation analysis carried out on boundary solution points surrounding the 

predicted solution is has been possible to verify that the predicted settings allow obtaining the 

minimum of the FIOT value, considered as the target function for the optimization; 

• The same methodology applied to the flat ring rolling process for the minimization of the FIOT 

parameter has also been applied to the deep drawing process for the determination of the process 

and design parameters that allow minimizing the earing on the final product. This additional 

validation phase showed that the proposed algorithm performs well even for the case of different 

target functions and different manufacturing processes. This strengthens the generality of the 

proposed solution and, as highlighted in the following section, it serves as a starting point for future 

development.  
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Chapter 6 

Conclusions and on-going work 

Having summarized each chapter separately at their respective ends, the aim of this last section of the thesis 

is to provide a more general interpretation of the implemented algorithm from the point of view of their possible 

application into industrial environments, as well as to provide additional details on the on-going research work, 

which could not be included in this thesis. 

Considering the various energy prediction and minimization models developed considering the flat ring 

rolling process it is interesting to highlight that, although counter-intuitive, the most important part is not the 

training of the former but, instead, of the latter one. This fact is particularly true when we consider that the 

energy prediction model, if well-trained, can be utilized for the expansion of the training database for the 

energy minimization algorithm. For this reason, the design of the initial database becomes an essential part of 

the algorithm development procedure and should be thoroughly investigated in order to provide both depth as 

well width of the dataset. The depth of the database is intended as a thorough analysis of the cross-influence 

between the various parameters involved in the considered process and their influence on the target function. 

For a generic manufacturing process, dozens of input parameters can be identified but if they are coupled with 

a specific target function, only a few of them will actually have a real and tangible influence. On the other 

hand, the width is intended in terms of the ranges of the considered parameters. This aspect is important if the 

database is aimed to be extended by means of prediction algorithms, as carried out in this research for the case 

of the flat ring rolling process. Although additional data can be predicted in the original database range, if 

some predictions are attempted outside this range, the accuracy may fall dramatically, inevitably affecting the 

energy minimization prediction.  

Considering these two key points, for the case of the profiled ring rolling process, the developed analytical 

model for the estimation of the ring geometrical expansion as a consequence of the process parameters, ring 

geometry, and boundary conditions allows establishing the above-mentioned correlation required for the initial 
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design of the training dataset and has been considered as a necessary intermediate step for the extension of the 

energy prediction model from the flat to the profiled ring rolling process. 

For the case of well-established manufacturing processes, such as the deep drawing process, these input-

output correlations are available in the literature and can be directly utilized. On the other hand, for relatively 

newly developed or not-well-investigated processes, the pre-processing phase still remains the key point if 

either predictions or minimizations need to be carried out. 

In fact, the fundamental nature of machine learning algorithms is to establish a correlation between a set of 

data where various input parameters are linked to one or more outputs. Obviously, the quality of the established 

correlation depends on the capability of the implemented machine learning model in recognizing the 

connection between these parameters. At the same time, the meaningfulness of the training dataset, as well as 

of the relevant validation cases, strongly influences the overall performances and, for this reason, the algorithm 

should be well designed and implemented. 

Considering the research presented in this thesis, the developed target function minimization algorithm 

firstly developed and implemented for the case of the flat ring rolling process has shown its generality thanks 

to the validation carried out on the deep drawing process. In fact, the proposed algorithm can be extended also 

to manufacturing processes different from the metal forming, but the definition and construction of the training 

and validation datasets should be oriented towards providing data that can help the machine learning 

identifying the correlation between the parameters of interests, avoiding the consideration of low-influence 

variables. 

Regarding this last statement, the proposed algorithm is now being tested on the plastic injection molding 

process in order to identify the process parameters that allow predicting and minimizing the warpage at the 

end of the process with the aim of showing that it can be generalized also to a manufacturing process where 

material, process, and boundary conditions are completely different from the initially considered flat ring 

rolling process. In addition to that, in the three considered manufacturing processes, finite element method 

(FEM) simulations have been utilized for the definition of the training and validation database whereas for the 

case of the injection molding process finite volume method (FVM) simulations are being utilized. This 

difference in the tool utilized for the definition of the training and validation datasets shall cast light on possible 

influences of the simulation approach on the database construction accuracy, thus on both the algorithm 

prediction and minimization capabilities. 

Another important aspect that is being analyzed is the influence of the ratio between real and predicted 

values in the construction of the hybrid database utilized in the minimization algorithm. After the initial 

training phase of the prediction algorithm, based on FEM or experimental results, the trained prediction 

algorithm can be utilized for the augmentation of the initial database. This expanded database can then be 

inputted into the minimization algorithm, as also carried out for the case of the flat ring rolling process. 

However, the composition of this second database is crucial in order to minimize the computational time 

required for the definition of the initial (FEM only) training dataset. For this reason, additional tests are being 
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carried out in order to investigate the influence of the composition, both in terms of depths and width, of the 

training database in order to define rules for the minimization of the FEM (or FVM) simulations required for 

the definition of the initial database. This aspect is crucial especially for the application of the proposed 

procedures in industrial environments, where time is most likely the most important variable being considered 

in the evaluation of the performance of process investigation technique, such as the one proposed in this 

research. 
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Appendix 1 

The material properties of steel alloy 42CrMo4, super alloy Inconel 718 and aluminum alloy AA6082 after 

reported in terms of mechanical and thermal properties in Fig. 38 a, b, c, Fig. 39 d, e, f and Fig. 40 g, h, I 

respectively. 

  
Figure 38a - Young's modulus of 42CrMo4. Figure 38b - Thermal conductivity of 42CrMo4. 

 
Figure 38c - Specific heat capacity of 42CrMo4. 

 

  
Figure 39a - Young's modulus of In-718. Figure 39b - Thermal conductivity of In-718. 

 
Figure 39c - Specific heat capacity of In-718. 
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Figure 40a - Young's modulus of AA6082. Figure 40b - Thermal conductivity of AA6082. 

 
Figure 40c - Specific heat capacity of AA6082. 
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Appendix 2 
 

Initial 
outer 
diam. 

Final 
outer 
diam. 

Ring 
initial 
temp. 

Main roll 
rational 
speed 

Average 
mandrel 
feeding 
speed 

Yield 
strength 

Young's 
modulus 

Force 
integral 

over 
time 

# 

Num 

D0  

[mm] 

DF 

[mm] 

T  

[°C] 
⍵M 

[rad/s] 

vmM  

[mm/s] 

YS  

[MPa] 

YM 

[GPa] 

FIOT 

[Ns] 

1 490.5 650 1200 2 5.7 40 84 2437 

2 490.5 650 1200 3 8.5 40 84 1986 
3 490.5 650 1200 5 14.15 40 84 1107 
4 490.5 650 1200 2 5.65 40 84 2360 
5 490.5 650 1200 3 6 40 84 2104 
6 490.5 650 1200 5 13.7 40 84 1019 
7 490.5 650 1200 2 5.73 40 84 2423 
8 490.5 650 1200 3 7.6 40 84 2015 
9 490.5 650 1200 5 14 40 84 1094 

10 490.5 650 1050 2 5.7 50 108 3745 
11 490.5 650 1050 3 8.5 50 108 2958 
12 490.5 650 1050 5 14.15 50 108 1633 
13 490.5 650 1050 2 5.65 50 108 3676 
14 490.5 650 1050 3 6 50 108 3210 
15 490.5 650 1050 5 13.7 50 108 1501 
16 490.5 650 1050 2 5.73 50 108 3716 
17 490.5 650 1050 3 7.6 50 108 2912 
18 490.5 650 1050 5 14 50 108 1670 
19 490.5 650 900 2 5.7 126 129 5696 
20 490.5 650 900 3 8.5 126 129 4488 
21 490.5 650 900 5 14.15 126 129 2476 
22 490.5 650 900 2 5.65 126 129 5523 
23 490.5 650 900 3 6 126 129 4722 
24 490.5 650 900 5 13.7 126 129 2193 
25 490.5 650 900 2 5.73 126 129 5696 
26 490.5 650 900 3 7.6 126 129 4589 
27 490.5 650 900 5 14 126 129 2475 
28 510.9 650 1200 3 7.5 40 84 1318 
29 510.9 650 1050 3 7.5 50 108 1991 
30 510.9 650 900 3 7.5 126 129 3072 
31 518.9 800 1200 3 6.85 40 84 3609 
32 518.9 800 1200 2 4.88 40 84 4701 
33 518.9 800 1200 5 12.12 40 84 2092 
34 518.9 800 900 3 6.85 126 129 8261 
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# 

Num 
D0  

[mm] 
DF 

[mm] 
T  

[°C] 
⍵M 

[rad/s] 
vmM  

[mm/s] 
YS  

[MPa] 
YM 

[GPa] 
FIOT 

35 518.9 800 900 2 4.88 126 129 11700 
36 518.9 800 900 5 12.12 126 129 4909 
37 518.9 800 1050 3 6.85 50 108 5373 
38 518.9 800 1050 2 4.88 50 108 7575 
39 518.9 800 1050 5 12.12 50 108 3250 
40 549.3 650 1200 2 2.75 40 84 820 
41 549.3 650 1200 3 3.75 40 84 724 
42 549.3 650 1200 5 7.3 40 84 380 
43 549.3 650 1200 3 4.5 40 84 789 
44 549.3 650 1200 3 5.25 40 84 585 
45 549.3 650 1200 3 5.75 40 84 542 
46 549.3 650 1200 3 5.5 40 84 582 
47 549.3 650 1050 2 2.75 50 108 1400 
48 549.3 650 1050 3 3.75 50 108 1112 
49 549.3 650 1050 5 7.3 50 108 678 
50 549.3 650 1050 3 4.5 50 108 1294 
51 549.3 650 1050 3 5.25 50 108 910 
52 490.5 650 1070 2 5.7 161 100 7686 
53 490.5 650 1070 3 8.5 161 100 5880 
54 490.5 650 1070 5 14.15 161 100 3266 
55 490.5 650 1070 2 5.65 161 100 7630 
56 490.5 650 1070 3 6 161 100 6889 
57 490.5 650 1070 5 13.7 161 100 3050 
58 490.5 650 1070 2 5.73 161 100 7693 
59 490.5 650 1070 3 7.6 161 100 6623 
60 490.5 650 1070 5 14 161 100 3244 
61 510.9 650 1070 3 7.5 161 100 4073 
62 549.3 650 1070 2 2.75 161 100 3514 
63 549.3 650 1070 3 3.75 161 100 2760 
64 549.3 650 1070 5 7.3 161 100 1383 
65 549.3 650 1070 3 4.5 161 100 3364 
66 549.3 650 1070 3 5.25 161 100 1935 
67 549.3 650 1070 3 5.75 161 100 2300 
68 549.3 650 1070 3 5.5 161 100 1874 
69 490.5 650 1025 2 5.7 187 120 8626 
70 490.5 650 1025 3 8.5 187 120 6788 
71 490.5 650 1025 5 14.15 187 120 3657 
72 490.5 650 1025 2 5.65 187 120 8604 
73 490.5 650 1025 3 6 187 120 7778 
74 490.5 650 1025 5 13.7 187 120 3461 
75 490.5 650 1025 2 5.73 187 120 8648 
76 490.5 650 1025 3 7.6 187 120 7424 
77 490.5 650 1025 5 14 187 120 3662 
78 510.9 650 1025 3 7.5 187 120 4595 
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# 

Num 
D0  

[mm] 
DF 

[mm] 
T  

[°C] 
⍵M 

[rad/s] 
vmM  

[mm/s] 
YS  

[MPa] 
YM 

[GPa] 
FIOT 

79 549.3 650 1025 2 2.75 187 120 3955 
80 549.3 650 1025 3 3.75 187 120 3084 
81 549.3 650 1025 5 7.3 187 120 1547 
82 549.3 650 1025 3 4.5 187 120 3820 
83 549.3 650 1025 3 5.25 187 120 2207 
84 549.3 650 1025 3 5.75 187 120 2063 
85 549.3 650 1025 3 5.5 187 120 2117 
86 490.5 650 980 2 5.7 216 126 9763 
87 490.5 650 980 3 8.5 216 126 7692 
88 490.5 650 980 5 14.15 216 126 4134 
89 490.5 650 980 2 5.65 216 126 9698 
90 490.5 650 980 3 6 216 126 8729 
91 490.5 650 980 5 13.7 216 126 3920 
92 490.5 650 980 2 5.73 216 126 9695 
93 490.5 650 980 3 7.6 216 126 8205 
94 490.5 650 980 5 14 216 126 4132 
95 510.9 650 980 3 7.5 216 126 5162 
96 549.3 650 980 2 2.75 216 126 4486 
97 549.3 650 980 3 3.75 216 126 3522 
98 549.3 650 980 5 7.3 216 126 1799 
99 549.3 650 980 3 4.5 216 126 4323 

100 549.3 650 980 3 5.25 216 126 2496 
101 549.3 650 980 3 5.75 216 126 1800 
102 549.3 650 980 3 5.5 216 126 2410 
103 490.5 650 300 2 5.7 101 58 2028 
104 490.5 650 300 3 8.5 101 58 1508 
105 490.5 650 300 5 14.15 101 58 811 
106 490.5 650 300 2 5.65 101 58 1965 
107 490.5 650 300 3 6 101 58 1690 
108 490.5 650 300 5 13.7 101 58 774 
109 490.5 650 300 2 5.73 101 58 1978 
110 490.5 650 300 3 7.6 101 58 1630 
111 490.5 650 300 5 14 101 58 816 
112 510.9 650 300 3 7.5 101 58 1191 
113 549.3 650 300 2 2.75 101 58 1098 
114 549.3 650 300 3 3.75 101 58 852 
115 549.3 650 300 5 7.3 101 58 437 
116 549.3 650 300 3 4.5 101 58 926 
117 549.3 650 300 3 5.25 101 58 646 
118 549.3 650 300 3 5.75 101 58 729 
119 549.3 650 300 3 5.5 101 58 631 
120 490.5 650 375 2 5.7 82 54 1541 
121 490.5 650 375 3 8.5 82 54 1157 
122 490.5 650 375 5 14.15 82 54 617 
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# 

Num 
D0  

[mm] 
DF 

[mm] 
T  

[°C] 
⍵M 

[rad/s] 
vmM  

[mm/s] 
YS  

[MPa] 
YM 

[GPa] 
FIOT 

123 490.5 650 375 2 5.65 82 54 1487 
124 490.5 650 375 3 6 82 54 1284 
125 490.5 650 375 5 13.7 82 54 561 
126 490.5 650 375 2 5.73 82 54 1515 
127 490.5 650 375 3 7.6 82 54 1216 
128 490.5 650 375 5 14 82 54 621 
129 510.9 650 375 3 7.5 82 54 868 
130 549.3 650 375 2 2.75 82 54 789 
131 549.3 650 375 3 3.75 82 54 625 
132 549.3 650 375 5 7.3 82 54 315 
133 549.3 650 375 3 4.5 82 54 664 
134 549.3 650 375 3 5.25 82 54 477 
135 549.3 650 375 3 5.75 82 54 552 
136 549.3 650 375 3 5.5 82 54 461 
137 490.5 650 450 2 5.7 67 51 1156 
138 490.5 650 450 3 8.5 67 51 878 
139 490.5 650 450 5 14.15 67 51 460 
140 490.5 650 450 2 5.65 67 51 1144 
141 490.5 650 450 3 6 67 51 963 
142 490.5 650 450 5 13.7 67 51 404 
143 490.5 650 450 2 5.73 67 51 1150 
144 490.5 650 450 3 7.6 67 51 889 
145 490.5 650 450 5 14 67 51 471 
146 510.9 650 450 3 7.5 67 51 644 
147 549.3 650 450 2 2.75 67 51 561 
148 549.3 650 450 3 3.75 67 51 434 
149 549.3 650 450 5 7.3 67 51 224 
150 549.3 650 450 3 4.5 67 51 469 
151 549.3 650 450 3 5.25 67 51 337 
152 549.3 650 450 3 5.75 67 51 411 
153 549.3 650 450 3 5.5 67 51 330 
154 549.3 650 1050 3 5.75 50 108 828 
155 549.3 650 1050 3 5.5 50 108 883 
156 549.3 650 900 2 2.75 126 129 2422 
157 549.3 650 900 3 3.75 126 129 1876 
158 549.3 650 900 5 7.3 126 129 999 
159 549.3 650 900 3 4.5 126 129 2159 
160 549.3 650 900 3 5.25 126 129 1468 
161 549.3 650 900 3 5.75 126 129 1394 
162 549.3 650 900 3 5.5 126 129 1450 
163 550.9 800 980 2 3.60 216 126 25860 
164 550.9 800 980 3 5.39 216 126 17480 
165 550.9 800 980 5 8.97 216 126 10717 
166 550.9 800 1025 2 3.60 187 120 23194 
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# 

Num 
D0  

[mm] 
DF 

[mm] 
T  

[°C] 
⍵M 

[rad/s] 
vmM  

[mm/s] 
YS  

[MPa] 
YM 

[GPa] 
FIOT 

167 550.9 800 1025 3 5.39 187 120 15563 
168 550.9 800 1025 5 8.97 187 120 9569 
169 550.9 800 1070 2 3.60 161 100 20470 
170 550.9 800 1070 3 5.39 161 100 13837 
171 550.9 800 1070 5 8.97 161 100 8607 
172 550.9 800 300 2 3.60 101 58 5792 
173 550.9 800 300 3 5.39 101 58 4065 
174 550.9 800 300 5 8.97 101 58 2475 
175 550.9 800 375 2 3.60 82 54 4242 
176 550.9 800 375 3 5.39 82 54 3046 
177 550.9 800 375 5 8.97 82 54 1872 
178 550.9 800 450 2 3.60 67 51 3176 
179 550.9 800 450 3 5.39 67 51 2267 
180 550.9 800 450 5 8.97 67 51 1408 
181 550.9 800 1200 2 3.60 40 84 4159 
182 550.9 800 1200 3 5.39 40 84 2833 
183 550.9 800 1200 5 8.97 40 84 1880 
184 550.9 800 900 2 3.60 126 129 11471 
185 550.9 800 900 3 5.39 126 129 7788 
186 550.9 800 900 5 8.97 126 129 4882 
187 550.9 800 1050 2 3.60 50 108 7036 
188 550.9 800 1050 3 5.39 50 108 4711 
189 550.9 800 1050 5 8.97 50 108 3064 
190 518.9 800 980 3 6.85 216 126 16087 
191 518.9 800 980 2 4.88 216 126 22851 
192 518.9 800 980 5 12.12 216 126 9510 
193 518.9 800 1025 3 6.85 187 120 14343 
194 518.9 800 1025 2 4.88 187 120 20551 
195 518.9 800 1025 5 12.12 187 120 8421 
196 518.9 800 1070 3 6.85 161 100 12766 
197 518.9 800 1070 2 4.88 161 100 18296 
198 518.9 800 1070 5 12.12 161 100 7556 
199 518.9 800 300 3 6.85 101 58 2943 
200 518.9 800 300 2 4.88 101 58 4204 
201 518.9 800 300 5 12.12 101 58 1732 
202 518.9 800 375 3 6.85 82 54 2244 
203 518.9 800 375 2 4.88 82 54 3187 
204 518.9 800 375 5 12.12 82 54 1287 
205 518.9 800 450 3 6.85 67 51 1673 
206 518.9 800 450 2 4.88 67 51 2427 
207 518.9 800 450 5 12.12 67 51 953 
208 575.3 1100 1200 2 4.09 40 84 9721 
209 575.3 1100 1200 3 6.10 40 84 7296 
210 575.3 1100 1200 5 10.04 40 84 4435 
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# 

Num 
D0  

[mm] 
DF 

[mm] 
T  

[°C] 
⍵M 

[rad/s] 
vmM  

[mm/s] 
YS  

[MPa] 
YM 

[GPa] 
FIOT 

211 575.3 1100 900 2 4.09 126 129 24579 
212 575.3 1100 900 3 6.10 126 129 17360 
213 575.3 1100 900 5 4.09 126 129 7022 
214 575.3 1100 1050 2 4.09 50 108 15572 
215 575.3 1100 1050 3 6.10 50 108 11156 
216 575.3 1100 1050 5 10.04 50 108 7017 
217 621.6 1100 1200 2 3.11 40 84 9194 
218 621.6 1100 1200 3 4.60 40 84 6611 
219 621.6 1100 1200 5 7.69 40 84 4363 
220 621.6 1100 900 2 3.11 126 129 26723 
221 621.6 1100 900 3 4.60 126 129 18621 
222 621.6 1100 900 5 7.69 126 129 11802 
223 621.6 1100 1050 2 3.11 50 108 15852 
224 621.6 1100 1050 3 4.60 50 108 11134 
225 621.6 1100 1050 5 7.69 50 108 7179 
226 621.6 1100 1200 3 5.50 40 84 6997 
227 621.6 1100 900 3 5.50 126 129 18010 
228 621.6 1100 1050 3 5.50 50 108 10973 
229 668.7 1100 1200 3 5.15 40 84 4701 
230 668.7 1100 900 3 5.15 126 129 12729 
231 668.7 1100 1050 3 5.15 50 108 7690 
232 575.3 1100 980 2 4.09 216 126 56074 
233 575.3 1100 980 3 6.10 216 126 36914 
234 575.3 1100 980 5 10.04 216 126 22585 
235 621.6 1100 980 3 5.50 216 126 38001 
236 668.7 1100 980 3 5.15 216 126 25513 
237 575.3 1100 1025 2 4.09 187 120 51028 
238 575.3 1100 1025 3 6.10 187 120 34401 
239 575.3 1100 1025 5 10.04 187 120 19622 
240 621.6 1100 1025 3 5.50 187 120 34255 
241 668.7 1100 1025 3 5.15 187 120 22684 
242 575.3 1100 1070 2 4.09 161 100 47602 
243 575.3 1100 1070 3 6.10 161 100 32222 
244 575.3 1100 1070 5 10.04 161 100 19622 
245 621.6 1100 1070 3 5.50 161 100 31945 
246 668.7 1100 1070 3 5.15 161 100 20603 
247 621.6 1100 980 2 3.11 216 126 63391 
248 621.6 1100 980 3 4.60 216 126 43159 
249 621.6 1100 980 5 7.69 216 126 26510 
250 621.6 1100 1025 2 3.11 187 120 57643 
251 621.6 1100 1025 3 4.60 187 120 38980 
252 621.6 1100 1025 5 7.69 187 120 23776 
253 621.6 1100 1070 2 3.11 161 100 53141 
254 621.6 1100 1070 3 4.60 161 100 36226 
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# 

Num 
D0  

[mm] 
DF 

[mm] 
T  

[°C] 
⍵M 

[rad/s] 
vmM  

[mm/s] 
YS  

[MPa] 
YM 

[GPa] 
FIOT 

255 621.6 1100 1070 5 7.69 161 100 22366 
256 575.3 1100 300 2 4.09 101 58 9625 
257 575.3 1100 300 3 6.10 101 58 6787 

258 575.3 1100 300 5 10.04 101 58 4064 

259 621.6 1100 300 3 5.50 101 58 7357 
260 668.7 1100 300 3 5.15 101 58 5364 
261 575.3 1100 375 2 4.09 82 54 7096 
262 575.3 1100 375 3 6.10 82 54 5002 
263 575.3 1100 375 5 10.04 82 54 2985 
264 621.6 1100 375 3 5.50 82 54 5322 
265 668.7 1100 375 3 5.15 82 54 3876 
266 575.3 1100 450 2 4.09 67 51 5239 
267 575.3 1100 450 3 6.10 67 51 3671 
268 575.3 1100 450 5 10.04 67 51 2188 
269 621.6 1100 450 3 5.50 67 51 3815 
270 668.7 1100 450 3 5.15 67 51 2769 
271 621.6 1100 300 2 3.11 101 58 13867 
272 621.6 1100 375 2 3.11 82 54 10192 
273 621.6 1100 450 2 3.11 67 51 7468 
274 621.6 1100 450 3 4.60 67 51 5254 
275 876.2 1400 1200 2 2.56 40 84 8648 
276 876.2 1400 1200 3 3.83 40 84 6156 
277 876.2 1400 1200 5 6.38 40 84 4056 
278 876.2 1400 900 2 2.56 126 129 24123 
279 876.2 1400 900 3 3.83 126 129 16818 
280 876.2 1400 900 5 6.38 126 129 10666 
281 876.2 1400 1050 2 2.56 50 108 14552 
282 876.2 1400 1050 3 3.83 50 108 10045 
283 876.2 1400 1050 5 6.38 50 108 6499 
284 876.2 1400 980 2 2.56 216 126 60460 
285 876.2 1400 980 3 3.83 216 126 40873 
286 876.2 1400 1025 2 2.56 187 120 53743 
287 876.2 1400 1025 3 3.83 187 120 36857 
288 876.2 1400 1025 5 6.38 187 120 22444 
289 876.2 1400 1070 2 2.56 161 100 48502 
290 876.2 1400 1070 3 3.83 161 100 32643 
291 876.2 1400 1070 5 6.38 161 100 20622 
292 876.2 1400 300 2 2.56 101 58 12083 
293 876.2 1400 300 3 3.83 101 58 8267 
294 876.2 1400 300 5 6.38 101 58 5130 
295 876.2 1400 375 2 2.56 82 54 8909 
296 876.2 1400 375 3 3.83 82 54 6194 
297 876.2 1400 375 5 6.38 82 54 3890 
298 876.2 1400 450 2 2.56 67 51 6560 
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299 876.2 1400 450 3 3.83 67 51 4623 
300 876.2 1400 450 5 6.38 67 51 2946 
301 897.7 1700 1200 2 2.24 40 84 13339 
302 897.7 1700 1200 3 3.37 40 84 9212 
303 897.7 1700 1200 5 5.67 40 84 6121 
304 897.7 1700 900 2 2.24 126 129 37280 
305 897.7 1700 900 2 3.37 126 129 26856 
306 897.7 1700 900 2 5.67 126 129 16452 
307 897.7 1700 1050 2 2.24 50 108 22321 
308 897.7 1700 1050 3 3.37 50 108 15506 
309 897.7 1700 1050 5 5.67 50 108 9953 
310 909.3 1400 980 2 2.55 216 126 64701 
311 909.3 1400 980 3 3.82 216 126 43622 
312 909.3 1400 980 5 6.35 216 126 25855 
313 909.3 1400 1025 2 2.55 187 120 58667 
314 909.3 1400 1025 3 3.82 187 120 39087 
315 909.3 1400 1025 5 6.35 187 120 23006 
316 909.3 1400 1070 2 2.55 161 100 52436 
317 909.3 1400 1070 3 3.82 161 100 35513 
318 909.3 1400 1070 5 6.35 161 100 20578 
319 909.3 1400 300 2 2.55 101 58 11283 
320 909.3 1400 300 3 3.82 101 58 7510 
321 909.3 1400 300 5 6.35 101 58 4547 
322 909.3 1400 375 2 2.55 82 54 8120 
323 909.3 1400 375 3 3.82 82 54 5390 
324 909.3 1400 375 5 6.35 82 54 3251 
325 909.3 1400 450 2 2.55 67 51 5727 
326 909.3 1400 450 3 3.82 67 51 3801 
327 909.3 1400 450 5 6.35 67 51 2292 
328 909.3 1400 1200 2 2.55 40 84 9430 
329 909.3 1400 1200 3 3.82 40 84 6981 
330 909.3 1400 1200 5 6.35 40 84 4452 
331 909.3 1400 900 2 2.55 126 129 26813 
332 909.3 1400 900 3 3.82 126 129 18972 
333 909.3 1400 900 5 6.35 126 129 11538 
334 909.3 1400 1050 2 2.55 50 108 15832 
335 909.3 1400 1050 3 3.82 50 108 11598 
336 909.3 1400 1050 5 6.35 50 108 7214 
337 897.7 1700 980 2 2.24 216 126 96545 
338 897.7 1700 980 3 3.37 216 126 62933 
339 897.7 1700 1025 2 2.24 187 120 86951 
340 897.7 1700 1025 3 3.37 187 120 56328 
341 897.7 1700 1025 5 5.67 187 120 34848 
342 897.7 1700 1070 2 2.24 161 100 78623 
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343 897.7 1700 1070 3 3.37 161 100 51806 
344 897.7 1700 1070 5 5.67 161 100 32175 
345 897.7 1700 300 2 2.24 101 58 19138 
346 897.7 1700 300 3 3.37 101 58 13181 
347 897.7 1700 300 5 5.67 101 58 8160 
348 897.7 1700 375 2 2.24 82 54 13983 
349 897.7 1700 375 3 3.37 82 54 9749 
350 897.7 1700 375 5 5.67 82 54 6109 
351 897.7 1700 450 2 2.24 67 51 10179 
352 897.7 1700 450 3 3.37 67 51 6946 
353 897.7 1700 450 5 5.67 67 51 4563 
354 944.7 2000 1200 2 2.045 40 84 20284 
355 944.7 2000 1200 3 2.915 40 84 14014 
356 944.7 2000 1200 5 4.845 40 84 9333 
357 944.7 2000 900 2 2.045 126 129 58213 
358 944.7 2000 900 3 2.915 126 129 39562 
359 944.7 2000 900 5 4.845 126 129 25054 
360 944.7 2000 300 2 2.17 101 58 26725 
361 944.7 2000 300 3 3.27 101 58 18168 
362 944.7 2000 300 5 5.43 101 58 11060 
363 944.7 2000 375 2 2.17 82 54 19237 
364 944.7 2000 375 3 3.27 82 54 12959 
365 944.7 2000 375 5 5.43 82 54 7881 
366 944.7 2000 450 2 2.17 67 51 13580 
367 944.7 2000 450 3 3.27 67 51 9150 
368 944.7 2000 450 5 5.43 67 51 5571 
369 944.7 2000 980 2 2.17 216 126 146898 
370 944.7 2000 980 3 3.27 216 126 98706 
371 944.7 2000 980 5 5.43 216 126 61310 
372 944.7 2000 1025 2 2.17 187 120 131404 
373 944.7 2000 1025 3 3.27 187 120 89364 
374 944.7 2000 1025 5 5.43 187 120 55723 
375 944.7 2000 1070 2 2.17 161 100 127616 
376 944.7 2000 1070 3 3.27 161 100 84855 
377 944.7 2000 1070 5 5.43 161 100 52596 
378 944.7 2000 1050 2 2.045 50 108 36431 
379 944.7 2000 1050 3 2.915 50 108 23950 
380 944.7 2000 1050 5 4.845 50 108 15657 
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Appendix 3 

Gradient Boosting algorithm defined in section 3.7 

 

# -*- coding: utf-8 -*- 
""" 
@author: Net Shape Manufacturing LABoratory 
Sogang University 
Seoul, South Korea 
Refer to "https://www.kaggle.com/serigne/stacked-regressions-top-4-on-leaderboard/notebook" by Serigne; 
""" 
import matplotlib.pyplot as plt 
import numpy as np 
import pandas as pd 
pd.set_option('display.float_format', lambda x: '%.3f' % x) #Limiting floats output to 3 decimal points 
import seaborn as sns 
import warnings 
def ignore_warn(*args, **kwargs): pass 
warnings.warn = ignore_warn 
from scipy.stats import norm, skew 
from scipy.special import boxcox1p 
from sklearn.metrics import r2_score 
from sklearn.externals import joblib 
from sklearn.pipeline import make_pipeline 
from sklearn.preprocessing import MaxAbsScaler 
from sklearn.ensemble import GradientBoostingRegressor 
########################################################################## 
def model_learning():     
    print('-'*40) 
    print('Train a model for force integral') 
    print('-'*40) 
     
    # input data 
    column_names = ['D0','d0','s0','h0','DF','dF','sF','hF','T','Vs','vmM','YS','YM','ENE'] 
    # read excel file by using pandas module 
    rawdata = pd.read_excel('./Database_ALL.xlsx',  sheet_name='db global',  
                            names = column_names, skipinitialspace=True) 
    dataset = rawdata.copy() 
    # normally distribution 
    dataset['ENE'] = np.log1p(dataset['ENE']) # log1p = log(1+x) 
    sns.distplot(dataset['ENE'], fit = norm) 
    (mu, sigma) = norm.fit(dataset['ENE']) 
    # Skewed features 
    numeric_feats = dataset.dtypes[dataset.dtypes != "object"].index 
    skewed_feats=dataset[numeric_feats].apply(lambda x:skew(x.dropna())).sort_values(ascending=False) 
    print('Skew in numerical features:') 
    skewness = pd.DataFrame({'Skew' : skewed_feats}) 
    print(skewness) 
    skewness = skewness[abs(skewness) > 0.750] 
    skewness = skewness.dropna()   
    skewed_features = skewness.index 
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    lamd = 0.15 
    for feat in skewed_features: 
        dataset[feat] = boxcox1p(dataset[feat], lamd) # ( x^lamd - 1 ) / lamd 
# split the training dataset 
    train_dataset = dataset.sample(frac=0.8,random_state=0) 
    test_dataset = dataset.drop(train_dataset.index) 
     
    train_labels = train_dataset.pop('ENE') 
    test_labels = test_dataset.pop('ENE') 
     
    # model import 
    print('model loading!') 
    # hyperparameters are tuned by using random searching method 
    GBoost = make_pipeline(MaxAbsScaler(), GradientBoostingRegressor(n_estimators=6902, 
learning_rate=0.091, max_depth=2, max_features='sqrt', min_samples_leaf=15, min_samples_split=11, 
loss='huber', random_state =5)) 
    # learn the model 
    print('model learning!') 
    GBoost.fit(train_dataset,train_labels) 
    # applicate to the test dataset 
    # return the ENE value from log scale (np.log1p) 
    test_labels_G = np.expm1(test_labels.values) 
    GBoost_pred = np.expm1(GBoost.predict(test_dataset)) 
    # write the data in " ML_results.txt " 
    f = open('./ML_results.txt','w') 
    f.write('test_label\n')    
    for i in range(len(test_labels_G)): 
        f.write(str(test_labels_G[i])) 
        f.write('\n') 
    f.write('GBoost_pred\n') 
    for i in range(len(GBoost_pred)): 
        f.write(str(GBoost_pred[i]))             
        f.write('\n') 
     f.write('percenterror\n') 
    diff = GBoost_pred - test_labels_G 
    abspercentDiff = np.abs((diff/test_labels_G)*100) 
    for i in range(len(abspercentDiff)): 
        f.write(str(abspercentDiff[i]))     
        f.write('\n') 
    f.close() 
     
    # plot the prediction results for the test cases 
    plt.scatter(test_labels_G, GBoost_pred, label='Gradient Boosting') 
    plt.xlabel('True Values') 
    plt.ylabel('Predictions') 
    plt.axis('equal') 
    plt.axis('square') 
    plt.xlim([0,plt.xlim()[1]]) 
    plt.ylim([0,plt.ylim()[1]]) 
    _ = plt.plot([0, 150000], [0, 150000]) 
    plt.show() 
    # save the learning model 
    joblib.dump(GBoost, './model.joblib') 
    print('save done!') 



 

105 

 

 

########################################################################## 
def predict(): 
    print('-'*40) 
    print('Predict an Energy consumption') 
    print('-'*40) 
    '''  
    input values  : D0, d0, s0, h0 / Df, df, sf, hf / T / Vs / vmM / YS / YM 
    output value  : ENE 
    ''' 
  # load the model 
    print('load the model') 
    GBoost_model = joblib.load('./model.joblib') 
  
    print('Input the parameters!') 
    # enter the values 
    D0 = float(input(" D0 value : ")); d0_ = float(input(" d0 value : "));  
    s0 = float(input(" s0 value : ")); h0 = float(input(" h0 value : ")); 
    DF = float(input(" DF value : ")); dF_ = float(input(" dF value : ")); 
    sF = float(input(" sF value : ")); hF = float(input(" hF value : ")); 
 
    T = float(input(" T value : ")); Vs = float(input(" Vs value : ")) 
    vmM = float(input(" vmM value : "));  YS = float(input(" YS value : "));  
    YM = float(input(" YM value : ")) 
    # make pandas dataframe from a dictionary variable 
    lamd = 0.15 
    input_dict = {'D0':[boxcox1p(D0,lamd)], 'd0':[boxcox1p(d0_,lamd)], 's0':[s0], 'h0':[boxcox1p(h0,lamd)], 
                  'DF':[boxcox1p(DF,lamd)], 'dF':[boxcox1p(dF_,lamd)], 'sF':[sF], 'hF':[boxcox1p(hF,lamd)], 
                  'T':[T], 'Vs':[Vs], 'vmM':[boxcox1p(vmM,lamd)], 'YS':[YS], 'YM':[YM]} 
     
    dataset = pd.DataFrame(input_dict) 
     
    # predict the ENE 
    ENE = GBoost_model.predict(dataset) 
    ENE = np.expm1(ENE) 
    print('The energy efficiency : %f' %(ENE)) 
########################################################################## 
 if __name__ == "__main__": 
    model_learning()     
    predict() 
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