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Voyager, c’est bien utile, ça fait

travailler l’imagination. Tout le reste

n’est que déceptions et fatigues.

Notre voyage à nous est entièrement

imaginaire. Voilà sa force. [Traveling

is very useful, it makes the

imagination work. Everything else is

disappointment and fatigue. Our trip

is entirely imaginary. This is its

strength.]

Céline (1952)

Voyage au bout de la nuit.

Le chemin est un hommage à

l’espace. Chaque tronçon du chemin

est en lui-même doté d’un sens et

nous invite à la halte. [The path is a

tribute to space. Each section of the

path is itself endowed with a meaning

and invites us to stop.]

Kundera (1990)

L’immortalité.





Abstract

The thesis deals with control theory and related topics both in deterministic and stochas-

tic framework, with an emphasis on the analytical aspects and Hamilton-Jacobi equa-

tions. It is divided into four chapters.

The first chapter deals with periodic homogenization and singular perturbations in de-

terministic control problems. The main results concern the convergence and characteri-

zation of the limit value function and the underlying optimal trajectories, using relaxed

control limits.

The second chapter is motivated by a recent algorithm in the context of Deep Learning,

called “Deep relaxation of Stochastic Gradient Descent”, and concerns singular pertur-

bations for stochastic control problems where the new difficulty with respect to the

existing literature lies in the unboundeness of the data. The asymptotic behaviors in

this context were obtained after developing new probabilistic methods, together with

an adaptation of the viscosity instruments to problems with unbounded data. Then the

results were applied to the previously mentioned algorithm and to its extension which

also involves the optimal control of the so-called learning-rate parameter.

The third chapter is devoted to global optimization. It aims to construct a dynamic

system that asymptotically reaches the global minimum of a given function. To do this,

ideas from weak KAM theory and both deterministic and stochastic control problems

are used. The main tools to prove convergence are occupational (random) measures and

the asymptotic behavior of the solutions of Hamilton-Jacobi equations.

The last chapter provides a new method with new results for the solvability of the ergodic

equations of Hamilton-Jacobi-Bellman in the viscous case with unbounded and merely

measurable ingredients. The latter appears in various asymptotic problems present in

the literature and among those addressed in the previous chapters. The results also

extend to ergodic Mean-Field Games which are studied in the same context.





Sommario

La tesi tratta la teoria del controllo e argomenti correlati, sia in ambito deterministico

che stocastico, con enfasi sugli aspetti analitici e sulle equazioni di Hamilton-Jacobi. È

diviso in quattro capitoli.

Il primo capitolo tratta dell’omogeneizzazione periodica e delle perturbazioni singolari

in problemi di controllo deterministici. I risultati principali riguardano la convergenza

e la caratterizzazione della funzione valore limite e delle traiettorie ottimali sottostanti,

utilizzando limiti di controlli rilassati.

Il secondo capitolo è motivato da un recente algoritmo nel contesto del Deep Learning,

denominato “Deep relaxation of Stochastic Gradient Descent”, e riguarda perturbazioni

singolari per problemi di controllo stocastico dove la nuova difficoltà rispetto alla let-

teratura esistente sta nell’illimitatezza dei dati. I comportamenti asintotici in questo

contesto sono stati ottenuti dopo aver sviluppato nuovi metodi di tipo probabilistico,

insieme ad un adattamento degli strumenti di viscosità a problemi con dati illimita-

ti. Quindi i risultati sono stati applicati all’algoritmo precedentemente menzionato e

ad una sua estensione che coinvolge anche il controllo ottimo del cosiddetto parametro

learning-rate.

Il terzo capitolo è dedicato all’ottimizzazione globale. Mira a costruire un sistema di-

namico che raggiunga asintoticamente il minimo globale di una data funzione. Per fare

ciò vengono usate idee della teoria KAM debole e problemi di controllo sia determini-

stico che stocastico. I principali strumenti per dimostrare la convergenza sono misure

occupazionali (aleatorie) e il comportamento asintotico delle soluzioni di equazioni di

Hamilton-Jacobi.

L’ultimo capitolo fornisce un nuovo metodo con nuovi risultati per la risolubilità delle

equazioni ergodiche di Hamilton-Jacobi-Bellman nel caso viscoso con ingredienti illimi-

tati e meramente misurabili. Quest’ultimo compare in vari problemi asintotici presenti

in letteratura e tra quelli affrontati nei capitoli precedenti. I risultati si estendono anche

ai giochi a campo medio di tipo ergodico (ergodic Mean-Field Games) che sono studiati

nello stesso contesto.





To my family





Acknowledgements

I am forever indebted to my advisor, Martino Bardi, whose dedication and willingness to

let me explore my various interests made my Ph.D. studies rich and unforgettable. His

great mentorship and collaboration forged my experience in mathematics and I would

not have been in the position I am today without his guidance and advice.

During the preparation of this thesis, I have benefited from fruitful conversations with

faculty members of University of Padova (UNIPD). My sincere thanks go to Annalisa

Cesaroni, Markus Fischer, Pierpaolo Soravia and Tiziano Vargiolu. The strong analysis

group was one of the main reasons why I came to UNIPD. I have indeed taken advantage

of many lessons and seminars organized in the department of mathematics by the faculty

members and I hereby wish to thank them all. I would like also to thank Nicola Mazzari

for giving me the opportunity to teach; an experience that I enjoyed and made me

discover that research and teaching (education) go hand in hand. My mathematical

journey before the Ph.D. has been built with the help of many professors and researchers:

F. Bonnans, P. Carpentier, J. C. Gilbert, F. Jean, Y. Hoarau, N. Oudjane, A. Rantzer,

F. Santambrogio, I. Taimanov, H. Zidani, Y. Zhang, E. Zuazua and many others. They

have greatly contributed to my academic experience and I am grateful to each one of

them. I have also been lucky to have as reviewers for my thesis two worldwide experts

in the field: Vladimir Gaitsgory and Naoyuki Ichihara, who I warmly thank for their

positive comments and careful review.

In Padova, I have spent wonderful time with the other Ph.D. students who I thank each

and everyone of them, with a special mention for Yukihide, in addition to Alessandro

Goffi: my older academic sibling, for many helpful discussions. I also give a big shout

out to my homies worldwide: Imad whose friendship never ceased to fortify despite

the time difference and foggy promenades; Othmane for his jokes and encouragements;

Pirashanth, Billel and Wanis for the challenge in the gym and many unforgettable

moments; Adrien for the bike trips of which I enjoyed each kilometer; Augustin and

Matthieu for nice souvenirs and hikes; Paul, David and El Amine for many animated

discussions and adventures; Dario my former colleague and Claudio my former officemate

who became close friends; Soulaiman and Zakaria my long-time dear friends.

Finally, more thanks are due to my parents and sister for their help and constant

encouragement to explore my interest in mathematics since a young age. Without them,

none of this would have been possible.





Contents

Introduction 1

1 Periodic homogenization of deterministic control problems 23

1.2 Mathematical background . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.3 Main results: Limiting Relaxed Control Problems . . . . . . . . . . . . . 34

1.4 Convergence results in particular cases . . . . . . . . . . . . . . . . . . . 44

1.5 A different relaxation for uncontrolled oscillations . . . . . . . . . . . . . 50

2 Deep relaxation via singular perturbations of stochastic control prob-
lems 67

2.2 The two scale stochastic control problem . . . . . . . . . . . . . . . . . . 70

2.3 Ergodicity of the fast variables and the effective data . . . . . . . . . . . 73

2.4 The convergence theorem for the value function . . . . . . . . . . . . . . 91

2.5 Deep relaxation of controlled Stochastic Gradient Descent . . . . . . . . 101

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

3 Global optimization: an optimal control approach 121

3.1 A parameterized control problem . . . . . . . . . . . . . . . . . . . . . . 121

3.2 Degenerate Eikonal equation . . . . . . . . . . . . . . . . . . . . . . . . . 130

3.2.2 A weak KAM theorem and approximation of the critical solution 133

3.2.3 Reaching the minima via deterministic optimal control . . . . . . 138

3.2.4 On reaching the argmin in finite time . . . . . . . . . . . . . . . . 147

3.3 Stochastic approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

3.3.2 The stochastic control problem . . . . . . . . . . . . . . . . . . . 152

3.3.3 Reaching the minima via stochastic optimal control . . . . . . . . 154

3.3.3.1 The ergodic constant . . . . . . . . . . . . . . . . . . . . 155

3.3.3.2 The global minimum . . . . . . . . . . . . . . . . . . . . 161

4 The viscous ergodic problem 165

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

4.2 Survey of known results . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

4.2.1 Duality theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

4.2.2 Optimization in space of measures . . . . . . . . . . . . . . . . . . 176

4.2.3 Diffusion operators . . . . . . . . . . . . . . . . . . . . . . . . . . 177

4.3 Ergodic Poisson equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

xi



xii Contents

4.3.1 Useful reformulation and main results I . . . . . . . . . . . . . . . 185

4.3.2 Proof of the main results I . . . . . . . . . . . . . . . . . . . . . . 188

4.4 Ergodic Bellman equation . . . . . . . . . . . . . . . . . . . . . . . . . . 194

4.4.1 The primal problem . . . . . . . . . . . . . . . . . . . . . . . . . 194

4.4.2 The dual problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

4.4.3 Main results II: ergodic HJB equation . . . . . . . . . . . . . . . . 205

4.4.4 The manifold setting . . . . . . . . . . . . . . . . . . . . . . . . . 211

4.4.5 On the ergodic constant . . . . . . . . . . . . . . . . . . . . . . . 215

4.5 Ergodic Mean-Field Games . . . . . . . . . . . . . . . . . . . . . . . . . . 217

4.5.2 Preliminary results . . . . . . . . . . . . . . . . . . . . . . . . . . 223

4.5.3 Main results III: ergodic MFG system . . . . . . . . . . . . . . . . 236

4.5.4 Existence and uniqueness . . . . . . . . . . . . . . . . . . . . . . 238

4.5.5 Proofs of the main results . . . . . . . . . . . . . . . . . . . . . . 240

4.6 Conclusion and future perspectives . . . . . . . . . . . . . . . . . . . . . 248

Bibliography 251



1





Introduction

The thesis deals with control theory and related topics both in deterministic and

stochastic framework, with an emphasis on the analytical aspects. The research was

carried out mainly on Hamilton-Jacobi equations. Among the problems studied in this

regard: homogenization, singular perturbations and asymptotic approximations. One

of the main challenges that is needed in each of the latter topics is the solvability of

the ergodic problem, which is addressed in a specific chapter. The scope of this research

then extended to Mean-Field Games, with further applications to global optimization

and stochastic gradient descent. The thesis is divided into four chapters as follows:

Chapter 1 deals with periodic homogenization and singular perturbations in determin-

istic control problems where the main results concern the convergence and characteri-

zation of the value function corresponding to an optimal control problem, in addition

to the underlying optimal trajectories using limiting relaxed controls. The results are

based on the manuscript

• Homogenization of some optimal control problems and convergence of trajectories,

with M. Bardi and G. Terrone.

Chapter 2 is motivated by a recent algorithm, named “Deep relaxation of stochastic

gradient descent” in the context of Deep Learning. It concerns singular perturbations

for stochastic control problems with an additional difficulty of unboundedness (hence

lack of compactness) of the data that is usually encountered in such applications. The

asymptotic has been obtained with new methods based on probability together with an

adaptation of viscosity tools to the unbounded setting. An application to the control

of stochastic gradient descent is also shown. The results are based on the forthcoming

manuscripts

• Singular perturbations in stochastic optimal control with unbounded data, with M.

Bardi.

• Deep relaxation of controlled Stochastic Gradient Descent via singular perturbations,

with M. Bardi.
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4 Contents

Chapter 3 is devoted to global optimization. It aims at constructing strategies (dy-

namics) which asymptotically reach the global minimum of a given function. To do so,

both deterministic and stochastic control problems have been put into action. The main

tools to prove the convergence are (random) occupational measures and asymptotics of

Hamilton-Jacobi equations. The results are based on the manuscripts

• An Eikonal equation with vanishing Lagrangian arising in global optimization, with

M. Bardi. (Submitted)

• Global optimization by a limiting discounted stochastic control approach, with M.

Bardi. (In progress)

Chapter 4 provides a new method with new results for the problem of ergodic Hamilton-

Jacobi-Bellman equation in the viscous case with unbounded and measurable ingredi-

ents. The latter appears in various problems amongst those tackled in the previous

chapters. The method is based on optimization over abstract Banach spaces combined

with results from the theory of Dirichlet forms (and diffusion operators) and ultimately

solves the ergodic viscous Hamilton-Jacobi-Bellman equation in addition to ergodic

Mean-Field Games in the whole space. It is based on the manuscripts

• A viscous ergodic problem with unbounded and measurable ingredients. Part 1: HJB

equation. (Submitted)

• A viscous ergodic problem with unbounded and measurable ingredients. Part 2: Mean-

Field Games. (Submitted)

The problems tackled in the thesis required the use of a broad range of tools and

methods, among them: control theory (deterministic and stochastic), PDEs (viscosity

methods), set-valued analysis (real and stochastic), probability and stochastic analysis,

abstract optimization and asymptotic approximations.

In what follows, we present an overview and the main contributions of each chapter.

Chapter 1. Periodic homogenization of deterministic control

problems

We consider a dynamics in RN (N ∈ N\{0}) of the following type:
ẋ1(t) = f1

(
x(t), x2(t)

ε
, α1(t), α2(t)

)
ẋ2(t) = f2

(
x(t), x2(t)

ε
, α2(t)

)
x(0) = x.
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The state variable is x = (x1, x2), where x1 ∈ RN1 and x2 ∈ TN2 , with N1 + N2 = N

(N1, N2 ∈ N\{0}). The controls (α1, α2) belong to the space of measurable functions

defined on [0,+∞) and valued into compact metric spaces. Note that we assume only

the state variables x2 are oscillating, and that such components are driven by the α2

component of the control variable only.

Together with the latter dynamics we consider the cost functional

Jε (t, x, α1, α2) :=

∫ t

0

ℓ

(
s, x(s),

x2(s)

ε
, α1(s), α2(s)

)
ds+ h(x(t)),

and the associated value function

vε(t, x) := inf
(α1,α2)∈A

Jε (t, x, α1, α2)

which solves, in viscosity sense, the Hamilton-Jacobi-Bellman equation
∂tv

ε + max
(α1,α2)∈A

{
−Dx1v

ε · f1
(
x,
x2
ε
, α1, α2

)
−Dx2v

ε · f2
(
x,
x2
ε
, α2

)
−ℓ
(
t, x,

x2
ε
, α1, α2

)}
= 0 in (0,+∞)×RN

vε(0, x) = h(x) in RN .

where the Hamiltonian H(x, y, p) writes as:

H(s, x, y, p) := max
(α1,α2)∈A

{
−p1 · f1 (x, y, α1, α2)− p2 · f2(x, y, α2)− ℓ (t, x, y, α1, α2)

}
.

The homogenization problem consists in studying the limit as ε→ 0+. In the framework

of viscosity solutions of Hamilton–Jacobi equations, this type of problems have been

studied extensively in the last decades and are today very well understood. The general

approach consists in proving the existence of an effective Hamiltonian H̄(t, x, p) such

that the sequence vε(t, x) converges locally uniformly in [0,+∞)×RN , as ε goes to 0,

to v(t, x), the unique viscosity solution of the limiting Hamilton-Jacobi equation∂tv + H̄(t, x,Dv) = 0 in (0,+∞)×RN

v(0, x) = h(x) in RN .

The aim of this chapter is instead to find, for some classes of problems, a limiting

optimal control problem associated to the limiting Hamilton-Jacobi equation given by

the effective Hamiltonian H̄(t, x, p). This is a crucial issue in view of applications;
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nonetheless, to the best of our knowledge, there are few results in this direction, mostly

in the engineering literature. The first approach to homogenization of control problems

originated in the light of the so-called Levinson–Tichonov theory for ODEs and then

extended to deterministic control problems; see e.g. [33], [73], [112]. This approach

requires the limit of the fast dynamics to be governed by an algebraic equation and the

stationary points of the fast dynamics to be attractive. To treat more general situations,

other averaging techniques, have been developed; see [9], [10], [11], [12], [90]. These

results are based on the analysis of trajectories and make use of invariant measures and

occupational measure of the fast dynamics. In [155], [156], by using special measures

called limiting relaxed controls, some of these results have been interpreted in the light

of singular perturbation theory and connected to Hamilton-Jacobi-Bellman equations.

The approach in this chapter is based on the results obtained in the theory of homog-

enization of Hamilton–Jacobi equations. Our strategy consists in studying whether H̄

can be written as a Bellman Hamiltonian, and in describing the unique solution of the

limiting Hamilton-Jacobi equation as a value function of some optimal control problem.

This is indeed one of the main challenges of this chapter, since except in few cases it is

hard to find explicit formulas for the H̄ associated to an ergodic Hamiltonian. To this

scope, we require the dynamics and the costs to satisfy from time to time different struc-

ture hypotheses, as well as some controllability assumptions. We will then construct

the corresponding limiting optimal control problem as a differential inclusion obtained

by averaging the vector field with respect to limiting relaxed controls. And therefore we

shall be interested in the convergence of the trajectories, in their singular perturbation

form, as ε → 0. Indeed, after the convergence of the value function is proven, it is

natural to wonder whether the singularly perturbed trajectories do converge to some

trajectories controlled by limiting relaxed controls. It is also of much interest to consider

the converse of such result, that is, whether each trajectory driven by a limiting relaxed

control can be approximated by a sequence of singularly perturbed trajectories. The

interest of the latter lies in application in engineering or computer science, where it can

be more profitable to consider approximating dynamics instead of the real one, provided

the convergence holds true.

Main contributions of chapter 1

Let us denote by P(TN2 × A2) the set of Radon probability measures on TN2 × A2.

For any t > 0, y ∈ TN2 and α2 ∈ A2 consider the solution y(s) of
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ẏ(s) = f2(x, y(s), α2(s)), y(0) = y ∈ TN2 ,

and define a measure in P(TN2 × A2), called occupational measure, as

µt,x,y,α2 :=
1

t

∫ t

0

δ(y(s),α2(s))ds,

where δ is the Dirac’s delta.

We denote by Z(x) the set of weak star limits of these measures, i.e. the set of

measures µ ∈ P(TN2 × A2) such that

µ = lim
n→∞

µtn,x,y,α2 weak-star

for some tn → +∞, α2 ∈ A2 and y ∈ RN2 . A measure in Z(x) is called limiting

occupational measure, or limiting relaxed control.

Our first main result can be stated as follows: assuming the controlled dynamics

y(s) satisfies a strong controllability assumption, then as ε → 0, the sequence vε(t, x)

converges locally uniformly on (0,+∞)×RN to

v̄(t, x) := inf

{∫ t

0

ℓ̄(s, x(s), α1(s), µ(s))ds+ h(x(t))

}
,

where the infimum is taken over trajectories x(·) satisfying

ẋ1(t) = f̄1 (x(t), α1(t), µ(t))

ẋ2(t) = 0

α1 ∈ A1, µ(t) ∈ Z(x(t))

x(0) = x.

where we define the averaged vector field and running cost as follows:

f̄1(x, α1, µ) :=

∫
RN2×A2

f1
(
x, y, α1, α2

)
dµ(y, α2);

ℓ̄(s, x, α1, µ) :=

∫
RN2×A2

ℓ
(
s, x, y, α1, α2

)
dµ(y, α2).
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Our second main result concerns the convergence of trajectories. In particular, we

are interested in the perturbed dynamics

ẋ1(t) = f1 (x(t), y(t), α1(t), α2(t))

ẋ2(t) = f2 (x(t), y(t), α2(t))

ẏ(t) = 1
ε
f2 (x(t), y(t), α2(t))

x(0) = x, y(0) = y

where y plays the role of x2/ε in the original system, and in the relaxed dynamics

ẋ1(t) = f̄1 (x(t), α1(t), µ(t))

ẋ2(t) = 0

α1 ∈ A1, µ(t) ∈ Z(x(t))

x(0) = x.

⇔


ẋ1(t) ∈ f̄1 (x(t), A1, Z(x(t))

ẋ2(t) = 0

x(0) = x.

We show (again under the controllability assumption) that every solution to the relaxed

dynamics is an accumulation point to a sequence of the perturbed dynamics, as ε → 0,

with respect to the uniform convergence topology. And reciprocally, every accumulation

point with respect to the uniform convergence topology of a sequence of the perturbed

dynamics as ε→ 0 is a solution to the convexified relaxed dynamics
ẋ1(t) ∈ cof̄1 (x(t), A1, Z(x(t))

ẋ2(t) = 0

x(0) = x.

Chapter 2. Deep relaxation via singular perturbations of stochas-

tic control problems

Our motivation in this chapter is the Stochastic Gradient Descent algorithm in the

context of Deep Learning and Big Data analysis, where one needs to take into account

the possible unboundedness of the data and the state space. More precisely, a recent al-

gorithm for a Stochastic Gradient Descent, named Deep Relaxation, has been introduced
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in [64] and is based on the following singularly perturbed system of SDEs

dXε
s = −∇xV (Y ε

s , X
ε
s ) ds, Xε

0 = x ∈ Rn

dY ε
s = −1

ε
∇yV (Y ε

s , X
ε
s ) ds+

√
2

ε
β−1/2 dWs, Y ε

0 = y ∈ Rn.

where

V (y, x) := f(y) +
1

2γ
|x− y|2,

and f is the function to be minimized. Their main idea is that when ε → 0, the limit

in the latter system of singularly perturbed SDEs is expected to be

dX̂s =

∫
Rn

−1

γ
(Xs − y)ρ∞

β
(dy;Xs) ds, X̂0 = x ∈ Rn

where ρ∞
β

is Gibbs measure corresponding to the potential V . The latter writes as

dX̂s = −∇fγ(X̂s)ds, X̂0 = x ∈ Rn

that is the gradient descent (not stochastic) of the regularized loss function defined by

fγ := − 1

β
log (Gβ−1γ ∗ exp(−βf(x)))

where

Gβ−1γ(x) := (2πγ)−n/2 exp

(
− β

2γ
|x|2
)

is the heat kernel, and β, γ > 0 are fixed parameter. The function fγ plays the role of

a local entropy and, as γ → 0, it is a smooth approximation of f . The parameter β

corresponds in physics to the inverse of the temperature (see [144, Chapter 6]) and as

β → ∞, the heat kernel tends to Dirac measure supported on 0 (see [144, Chapter 7,

p.236]).

In the present chapter, we shall consider, in addition to the above system of singularly

perturbed SDEs, a more general class of SDEs with unbounded data with a control

parameter which plays the role of the so-called learning rate. In the previous system of

singularly perturbed SDEs, this consists of introducing a control us in the slow dynamics

dXs = −us ∇xV (Ys, Xs) ds, X0 = x ∈ Rn.

Controlling the latter parameter has been considered in [123] where it was shown that

the performance of the controlled stochastic gradient descent improves with respect to
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the classical stochastic gradient descent. Our model combines the two algorithms in [64]

and [123], that is, a Deep relaxation of controlled stochastic gradient descent.

More generally, we are interested in studying the asymptotic behavior as ε→ 0 of a

system of controlled and singularly perturbed stochastic differential equations

dXε
t = f(Xε

t , Y
ε
t , ut) dt+

√
2σε(Xε

t , Y
ε
t , ut) dWt,

dY ε
t =

1

ε
b(Xε

t , Y
ε
t ) dt+

√
2

ε
ϱ(Xε

t , Y
ε
t ) dWt,

where Xε
t ∈ Rn is the slow dynamics, Y ε

t ∈ Rm is the fast dynamics, ut is the control

taking values in a given compact set U and Wt is a multidimensional Brownian motion.

Note that f here is a drift vector field and not the loss function to be minimized (as

previously denoted). We will allow the components of the drift and the diffusion of the

slow dynamics to grow at most linearly with respect to the fast process Y , as in the

model of [64]. And while the diffusion coefficient of the process X can be degenerate

(i.e. σε = 0 is possible), the diffusion coefficient of the process Y is required to be

nondegenerate. The precise assumptions are give in Section 2.2. We carry out our

analysis in the context of stochastic optimal control problems of the form

sup
u

J(t, x, y, u) := E

[
eλ(t−T )g(Xε

T , Y
ε
T ) +

∫ T

t

ℓ(s,Xε
s , Y

ε
s , us)e

λ(s−T )ds

∣∣∣∣Xε
t = x, Y ε

t = y

]
.

Such a quantity is denoted by V ε(t, x, y) and refers to the value function which solves

in the viscosity sense a fully nonlinear parabolic degenerate PDE in (0, T )×Rn ×Rm

−V ε
t + F ε

(
t, x, y, V ε, DxV

ε,
DyV

ε

ε
,D2

xxV
ε,
D2

yyV
ε

ε
,
D2

x,yV
ε

√
ε

)
= 0,

complemented with the terminal condition V ε(T, x, y) = g(x, y), for a suitable Hamilton-

Jacobi-Bellman operator F ε.

In chapter 2, we show how our results allow us to prove such a convergence with

or without a control. This also captures the previous results in [21, 23], where the

coefficients in the slow variable are assumed to be bounded with respect to the fast

variables. Moreover, we rely in our analysis on arguments and methods sometimes

different from those in [21, 23], and borrowed from probability theory, which were key

ingredients for handling unboundedness of the data and the state domain.

There is a wide literature on singular perturbations for control systems that goes back

to [112] in the late 60’s, and also for diffusion processes, with and without control, and
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different models with fast variables have been studied since then, both in deterministic

and stochastic settings, and using methods of probability, analysis, measure theory, or

control. We refer the reader to the introduction in [21, 23], where a large but non-

exhaustive list of references on these topics are provided. Let us also mention that

our results recover in addition a large range of applications in finance, e.g. models of

pricing and trading derivative securities in financial markets with stochastic volatility,

or applications in economics and advertising as it has been done in [21, 23].

In chapter 2, we analyse the convergence of singular perturbations in the framework

of stochastic control and we rely on the associated Hamilton-Jacobi-Bellman equation.

We also insist on making assumptions that can be easily checked and which do comply

with the applications we are interested in.

Following the diagram below, we are interested in the two arrows with question

marks. We start first by embedding this system of SDEs which depends on 1
ε
in a family

of control problems that we identify through their value function V ε(t, x, y). The latter

is characterized as the unique viscosity solution to a HJB equation which depends on

ε. Then we rely on ergodicity of the fast process to construct the effective Hamiltonian

and initial data that allow us to set the limit Cauchy problem. Using methods from

homogenization and viscosity theory, we prove the convergence of V ε(t, x, y) to the

unique viscosity solution of the limit Hamilton-Jacobi equation. And only after proving

the effective Hamiltonian is of Bellman type, by means of a selection argument, we can

consider the limit PDE as a Hamilton-Jacobi-Bellman equation and we can identify its

unique viscosity solution V (t, x) with the value function of an optimal control problem

with a stochastic differential inclusion. Therefore we have the convergence of the value

function of a family of optimal control problems to a value function of another family

of control problems subject to stochastic differential inclusions (SDI).

(HJB)ε V ε(t, x, y) SDE(1
ε
)

HJ(B) V (t, x) (SDI)

Ergodicity

Effective data

Homogenization

?

Viscosity control prob

?

(Selection arg.)

Bellman Ham.

Viscosity

control prob
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To do so, we shall make use of new techniques and strategy, amongst:

• The study of the behavior of the first exit time of a stochastic process in bounded

domains as their diameter gets larger.

• A sequential construction of an effective Hamiltonian (ergodic constant in the ergodic

problem, also called cell problem) and of the initial data (long-time behavior of the

solution to an initial Cauchy problem with unbounded data in the full space).

• An adaptation of the perturbed test function method to unbounded setting in order

to prove the convergence of the value function V ε as ε→ 0.

• A control representation of the limit PDE based on a selection argument.

Main contributions of chapter 2

Our first main result is the convergence, as ε→ 0, of V ε(t, x, y) to V (t, x) solution

to an effective Hamilton-Jacobi equation, using a combination of viscosity methods to-

gether with a sequential construction of the effective data by probabilistic arguments.

Although this result is somehow expected in regards to the classical theory of homog-

enization and singular perturbations for HJB equations, our setting does not comply

with the classical assumptions (mainly because of the unboundedness of the data, and

hence lack of compactness) which prevents using directly the classical methods.

Our second main result consists in a control representation of the limit V . We show

that it is in fact the value function of a control problem subject to a stochastic differential

inclusion. This permits in particular to prove that, for a given minimization problem,

one reaches a lower value using the previously mentioned deep relaxation of controlled

stochastic gradient descent, when using the classical stochastic gradient descent.

Our third main result concerns the convergence of the controlled and singularly

perturbed trajectories in the case

lim
ε→0

σε(x, y, u) = 0, loc. uniformly,

which is the situation in the Deep Relaxation algorithm that is the main motivation

of this chapter. More precisely, given ν(·) ∈ L∞(Rm) with values in U and µx̂t the

invariant measure of the fast process, we show that every solution x̂· to the effective

dynamics
dx̂t
dt

=

∫
Rm

f(x̂t, y,ν(y))dµx̂t(y), x̂0 = x ∈ Rn
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is an accumulation point to a sequence {Xε
· }ε>0 of trajectories

dXε
t = f(Xε

t , Y
ε
t , ut) dt+

√
2σε(Xε

t , Y
ε
t , ut) dWt,

dY ε
t =

1

ε
b(Xε

t , Y
ε
t ) dt+

√
2

ε
ϱ(Xε

t , Y
ε
t ) dWt,

in the sense

lim
ε→0

E [|Xε
s − x̂s|p] = 0, a.e. s ∈ [t, T ]

for some p ∈ (0, 2]. Conversely, we show that if a given sequence of controlled processes

Xε
· converges to some (deterministic) process x· in the latter sense, for some p ∈ [1, 2],

then x· is a solution to the closed and convexified effective dynamics

dxt
dt

= co

∫
Rm

f(xt, y,ν(y))dµxt(y), x0 = x ∈ Rn

where co denotes the closed convex hull. The two effective dynamics for x̂ and x shall

be expressed in terms of differential inclusions.

Chapter 3. Global optimization: an optimal control approach

This chapter is divided into three parts. The first part provides preliminary results

on a control problem. In particular we show some estimates on the value function

depending on the viscosity coefficient, the discount factor and the time horizon. These

estimates are then used in the rest of this chapter where we show a connection between

global unconstrained optimization of a continuous function f and weak KAM theory for

an eikonal-type equation arising also in ergodic control.

Let f ∈ C(Rn) be a bounded function attaining the global minimum. Global op-

timization is concerned with the search of the minimum points, i.e., finding the set

M = argmin f . For convex smooth functions this is achieved by the gradient flow,

i.e., by following the trajectories of ẏ(s) = −∇f(y(s)) from any initial point x = y(0).

However, if the function f is not convex the trajectory y(·) may converge to a local

minimum or a saddle point. Several alternative algorithms have been derived to handle

non-convex optimization, such as the stochastic gradient descent, simulated annealing,

or consensus-based methods. In particular the case of non-smooth f in high dimensions

is important for the applications to machine learning, see, e.g., the recent paper [59]

and the references therein.
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In the second part of this chapter, we construct and study a Lipschitz function

v : Rn → R such that the following normalized non-smooth gradient descent dif-

ferential inclusion

ẏ(s) ∈
{
− p

|p|
, p ∈ D−v(y(s))

}
, for a.e. s > 0,

has a solution for any initial condition x = y(0) and all solutions converge to M as

t→ +∞. Here D−v is the sub-differential of the theory of viscosity solutions (see, e.g.,

[19]). The construction of such a generating function v is based on a classical problem

for Hamilton-Jacobi equations: find a constant c such that the stationary equation

H(x,Dv) = c in Rn

has a solution v. The minimal c with this property is the critical value of the Hamiltonian

H and, ifH(x, ·) is convex, it is also the value of an optimal control problem with ergodic

cost having H as its Bellman Hamiltonian. If the critical solution v is interpreted in the

viscosity sense, the problem fits in the weak KAM theory, and it is well-known that, for

H = |p|2 − f with f periodic, c = −min f [81, 127]; moreover the same holds for any

bounded f ∈ C2(Rn) by a result of Fathi and Maderna [83]. In this chapter we extend

such result to non-smooth f , provided it is Lipschitz and semiconcave. We also prove

that min f and v solving the critical equation

min f +
1

2
|∇v(x)|2 = f(x) in Rn

can be approximated in two ways: by the solution of the stationary equation

λuλ +
1

2
|Duλ|2 = f(x), x ∈ Rn,

as λ → 0+, the so-called small discount limit, as well as by the long-time limit of the

solution of the evolutive equation

∂tu+
1

2
|Du|2 = f(x), in Rn × (0,+∞), u(x, 0) = 0.

More precisely, for the evolutive equation we prove

lim
t→+∞

(u(x, t)− tmin f) = v(x) locally uniformly in Rn.

Note that the two PDE problems (stationary and evolutive) do not require the a-priori
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knowledge of min f and argmin f . Moreover we show that Duλ and Dxu(·, t) both

converge (a.e.) to Dv, therefore giving an approximation of the abovementioned non-

smooth gradient descent differential inclusion.

In the third part of this chapter we also study the approximation of v and M by

vanishing viscosity. We add to the stationary equation a term −ε∆uλ and let λ → 0+

to get the viscous critical equation

U ε − ε∆vε(x) +
1

2
|∇vε(x)|2 = f(x) in Rn,

where U ε is a constant. We prove that 0 ≤ U ε −min f ≤ Cεβ for some β > 0. Then we

define the approximate stochastic gradient descent

dXs = −∇uλ(Xs) ds+
√
2ε dWs,

and show that the trajectories converge to M in a suitable sense, for small λ and ε.

Main contributions of chapter 3

Our first main result is the convergence of the gradient descent trajectories to the

set M of minima of f . This is done after observing that v solves also the Dirichlet

problem for the eikonal equation |∇v(x)| = ℓ(x), x ∈ Rn \M

v(x) = 0, x ∈ M

with ℓ(x) :=
√
2(f(x)−min f). (In fact, our analysis of this problem requires only that

ℓ ∈ C(Rn) is bounded, non-negative, and M = {x : ℓ(x) = 0}). We exploit that the

unique solution of the latter Dirichlet problem is the value function

v(x) = inf
α(·)

∫ tx(α)

0

ℓ(yαx (s)) ds, ẏαx (s) = α(s), for s > 0, yαx (0) = x,

where α is measurable, |α(s)| ≤ 1, and tx(α) is the first time the trajectory yαx hits M.

We show that optimal trajectories exist, satisfy the gradient descent inclusion

ẏ(s) ∈
{
− p

|p|
, p ∈ D−v(y(s))

}
, for a.e. s > 0,
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and tend to M as t → +∞ under a slightly strengthened positivity condition on ℓ.

A crucial new tool for the proof are the occupational measures associated to these

functions. Finally, we give a sufficient condition for such trajectories to reach M in

finite time.

Our second main result is a stochastic approximation of the previous result. First,

we define random occupational measures by

µλ,x,α(Q) := λ

∫ ∞

0

1Q(Xs)e
−λ s ds

where Q is any Borel set of Rn, 1Q(x) is the indicator function (= 1 if x ∈ Q and = 0

otherwise), X· is a given stochastic differential equation. Then, recalling f := min
z∈Rn

f(z),

we define for δ ≥ 0 fixed, the set of quasi-minimizers (or quasi-optimal sublevel set) as

follows

Kδ := { y ∈ Rn | f(y) ≤ f + δ }

Our main result consists on constructing a stochastic dynamics X∗ such that

ρδ,ελ := µλ,x,α∗(Kc
δ) = λ

∫ ∞

0

1Kc
δ
(X∗

s )e
−λ s ds

where Kc
δ = R

n \Kδ, satisfies

lim
ε→0

lim
λ→0

P
(
ρδ,ελ > a

)
= 0, ∀ a > 0, δ > 0,

where ε is the diffusion coefficient and λ is the discount factor. This means that X∗

tends to concentrate on the global minimum of a given function f in the small-noise

limit and when the discount factor goes to zero. This is based on a discounted stochastic

control problem, together with our result on the small-noise limit of the ergodic constant

lim
ε→0

U ε = min
z∈Rn

f(z).

Chapter 4. The viscous ergodic problem

This chapter is devoted to one of the key problems that is in common with the pre-

vious three chapters and extends the existing results about it. It concerns the problem

of existence of solutions to some ergodic partial differential equations in the whole space

domain Rm with unbounded data satisfying a subexponential growth. Such problems
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take the form of

Find (c, u(·)) ∈ R×X (Rm) s.t.: F (x,∇u(x), D2u(x)) = c, in Rm

where X is a functional space (part of the unknowns) and F is either

• a linear operator of the form F := −Lu(x) + f(x), or

• a Bellman Hamiltonian of one of the two forms

F := min
α∈A

{−Lαu(x) + f(x, α) } or F := max
α∈A

{−Lαu(x) + f(x, α) }

and where L is a diffusion operator

Lφ(x) := trace(a(x)D2φ(x)) + b(x) · ∇φ(x)

and Lα is analogously defined with b := b(x, α) and a := a(x, α), and α ∈ A a compact

subset of Rk for some k > 0. Such problems arise in ergodic stochastic control, weak

KAM theory, homogenization, singular perturbations and asymptotic approximations

in partial differential equations (long-time behavior, vanishing discount factor).

The main difficulty and novelty in this setting is that we are looking for solutions in

the whole space Rm while both b and f are unbounded. An assumption which will play

an important role in the sequel is the Recurrence condition (see [141]) which writes as

lim
|x|→∞

sup
α∈A

b(x, α) · x = −∞.

Usually, we refer to c as the ergodic constant and u(·) as the corrector. The differential
operator Lα can be interpreted as the infinitesimal generator of the controlled stochastic

process

dXt = b(Xt, αt)dt+
√
2ϱ(Xt, αt)dBt

where ϱ is such that a = ϱϱ⊤ and Bt is a Wiener process. Similarly, the operator L
would correspond to the same stochastic process where we drop the dependency on the

parameter α. Note that the latter SDE should be understood in its weak sense (see e.g.

[114, 115]).

We will also provide an analogous result in the manifold setting, and derive an

estimate on the difference of two ergodic constants corresponding to two ergodic HJB

equations.
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The usual method. As we did in the previous chapters, the ergodic problem

is studied as being a limiting problem of either the long-time behavior (t → +∞) of

parabolic equations

∂tω +H(x,Dω,D2ω) = 0, in (0,+∞)×Rm

or to vanishing-discount coefficient (δ → 0) in elliptic equations

δω +H(x,Dω,D2ω) = 0, in Rm

The main questions then are the study of the limits lim
t→+∞

1
t
ω(x, t) (or lim

δ→0
δω(x)) and

lim
t→+∞

ω(x, t)−ω(x◦, t) (or lim
δ→0

ω(x)−ω(x◦)) for some fixed x◦. In our setting these limits

(in time or in the discount factor) are hard to obtain and remain, to our knowledge,

an open question. However these methods are extremely powerful and provide a better

insight on the problem (and motivates where the ergodic problem comes from). We

refer to [4] (and references therein) for many more details on the latter.

Our method in chapter 4 relies on duality tools together with the extension of the

diffusion operator L. The idea is to isolate the two terms c and f which make the PDE

in the problem in question difficult to solve and consider them as (part of) objective

functions in suitable optimization problems which are dual to each other. Then we

interpret a solution (c, u(·)) as a Lagrange multiplier of an optimization problem over

the space of measures µ with admissible set the measures solving L∗µ = 0. Provided we

can solve the latter equation, which is in fact a stationary Fokker-Planck-Kolmogorov

equation, we can describe the admissible set of the optimization problem and hence

recover existence and uniqueness of its corresponding dual variables i.e. the Lagrange

multipliers, which turn out to be the solution of the ergodic equation.

In fact, this method allows us to transpose to such a problem the information one can

get from the study of the operator L and its adjoint L∗ through a duality scheme for

suitably chosen optimization problems.

This optimization view point is not totally new since it is briefly mentioned in [7, §6.6]
and is also reminiscent of [77]. However, to our knowledge, this analysis has never been

used to address a PDE problem such as the solvability of an ergodic HJB equation in our

setting. Another interesting direction is the one considered in [5] where the problem of

uniqueness of solutions to viscous HJB is addressed via similar duality methods, unlike in

our manuscript where we use duality to prove existence only and rely rather on Liouville

type results in [22] to prove uniqueness. We would like also to mention that our method
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allows to deal with the ergodic HJB equation under weak regularity assumptions, in

particular the dependency on the space variable is assumed to be measurable only and

with a subexponential growth. Moreover our assumptions concern the coefficients of the

diffusion operator (or the underlying stochastic differential equation) which is a way of

presentation that is different from the classical references (amongst the abovementioned)

that rather rely on structural assumptions on the Hamiltonian. Finally, we show how

the method also applies for HJB equations on non-compact Riemannian manifolds, and

we extend the results to deal with ergodic Mean-Field Games in the same setting.

Main contributions of chapter 4

Our first main result concerns ergodic HJB equation when F is defined as before,

and can be informally stated as follows:

(i) (Existence) There exists a constant c◦ ∈ R such that the PDE

F (x,∇u(x), D2u(x)) = c◦

admits an almost everywhere solution u(·) ∈ W r,2
loc (R

m) with r ∈ [1,+∞) and

satisfying |u(x)| ≤ K(1 + |x|κ) where K > 0 and κ ≥ 1 that depends on the data.

(ii) (Uniqueness) If we assume moreover that b is locally Lipschitz continuous with

at most a linear growth, then u(·) is unique in W r,2
loc (R

m) with r > m
2
, up to an

additive constant. That is, if (c◦, u(·)) and (c◦, v(·)) are two solutions in the sense

of (i), then u(·)− v(·) is a constant.

Moreover, the result of (i) is valid when we replace Rm with a non-compact complete

and connected smooth Riemannian manifold of dimension m ≥ 2.

Our second main result concerns Mean-Field Games and can be informally stated

as follows:

There exists (c◦, u◦, q◦) ∈ R ×W r,2
loc (R

m) ×W s,1
loc (R

m) for any r ∈ [1,+∞), s > m, and

there exists a measurable function α◦(·) : Rm → A that solve the coupled system− trace
(
a(x,α◦(x))D

2u◦(x)
)
− b(x,α◦(x)) · ∇u◦(x) + f(x,α◦(x), q◦) = c◦

− trace
(
D2(a(x,α◦(x))q◦(x))

)
+ div

(
b(x,α◦)q◦(x)

)
= 0, a.e. in Rm

and such that
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(i) the constant c◦ is defined by c◦ =
∫
Rm f(x,α◦(x), q◦) dq◦(x),

(ii) the function α◦(·) satisfies

α◦(x) ∈ argmin
α∈A

{−Lαu◦(x) + f(x, α, q◦)}, a.e. x ∈ Rm.

We will also discuss uniqueness of the solution, show that c◦ is the critical value (at

least in the case of ergodic HJB equation) and conclude with further possible extensions

and some open problems.
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Chapter 1

Periodic homogenization of

deterministic control problems

1.1 Introduction and problem setting

Consider a dynamics in RN (N ∈ N\{0}) of the following type:
ẋ1(t) = f1

(
x(t), x2(t)

ε
, α1(t), α2(t)

)
ẋ2(t) = f2

(
x(t), x2(t)

ε
, α2(t)

)
x(0) = x.

(1.1.1)

The state variable is x = (x1, x2), where x1 ∈ RN1 and x2 ∈ RN2 , with N1 + N2 = N

(N1, N2 ∈ N\{0}). The controls (α1, α2) belong to the space A = A1×A2 of measurable

functions defined on [0,+∞) and valued into the product space A = A1×A2, with both

A1 and A2 compact metric spaces. We stress that we assume that oscillations only

affect certain components of the state variable, labeled x2, and that such components

are driven by the α2 component of the control variable only.

Together with the dynamics (1.1.1) we consider the cost functional

Jε (t, x, α1, α2) :=

∫ t

0

ℓ

(
s, x(s),

x2(s)

ε
, α1(s), α2(s)

)
ds+ h(x(t)). (1.1.2)

We will assume through this chapter that:

– The functions f1(x, y, α1, α2) : RN × RN2 × A1 × A2 → RN1 and f2(x, y, α2) :

RN × RN2 × A2 → RN2 are bounded and continuous in all their arguments and

Lipschitz–continuous in (x, y) uniformly with respect to α;

23
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– The functions ℓ(s, x, y, α1, α2) and h(x) are bounded uniformly continuous func-

tions respectively from [0,+∞)×RN ×RN2 × A1 × A2 and RN to R;

– The functions f1, f2 and ℓ are ZN2–periodic with respect to y, that is, for any

s ∈ [0,+∞), any x ∈ RN and any (α1, α2) ∈ A1 × A2, ϕ(s, x, · + k, α1, α2) =

ϕ(s, x, · , α1, α2) for any k ∈ ZN2 (for ϕ = f1, f2, ℓ).

– The state variable labeled x2 is defined on TN2 the N2-dimensional torus RN2/ZN2

via the identification:

RN2 ∋ x2 = (x12, . . . , x
N2
2 ) = (x12+m

1, . . . , xN2
2 +mN2), ∀m = (m1, . . . ,mN2) ∈ ZN2

and the distance between two elements x2 and x′2 is the one given by

dist(x2, x
′
2) := inf

m∈ZN2

|x2 − x′2 +m|

where | · | is the Euclidean distance. The latter induces a norm on TN2 that we

denote | · |
T
and define as | · |

T
: TN2 → [0,

√
N2) such that

|x2|T = dist(x2, 0) (1.1.3)

The solution t 7→ x2(t) is then obtained by taking the one in RN2 and projecting

it down to TN2 .

The value function associated to (1.1.1), (1.1.2) is

vε(t, x) := inf
(α1,α2)∈A

Jε (t, x, α1, α2) . (1.1.4)

It is well known (see, e.g. [19]) that under the previous assumptions vε solves, in viscosity

sense, the Hamilton-Jacobi-Bellman equation


∂tv

ε + max
(α1,α2)∈A

{
−Dx1v

ε · f1
(
x,
x2
ε
, α1, α2

)
−Dx2v

ε · f2
(
x,
x2
ε
, α2

)
−ℓ
(
t, x,

x2
ε
, α1, α2

)}
= 0 in (0,+∞)×RN

vε(0, x) = h(x) in RN .

(1.1.5)
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For further references, we denote by H(x, y, p) the Hamiltonian in (1.1.5):

H(s, x, y, p) := max
(α1,α2)∈A

{
−p1 · f1 (x, y, α1, α2) − p2 · f2(x, y, α2) − ℓ (t, x, y, α1, α2)

}
.

(1.1.6)

The homogenization problem consists in passing to the limit as ε → 0+. In the frame-

work of viscosity solutions of Hamilton–Jacobi equations, this type of problems have

been studied extensively in the last decades and are today very well understood. The

general approach consists in finding an effective Hamiltonian H̄(t, x, p) such that the

sequence vε(t, x) of solutions of (1.1.5) converges locally uniformly in [0,+∞)×RN , as

ε goes to 0, to v(t, x), the unique viscosity solution of∂tv + H̄(t, x,Dv) = 0 in (0,+∞)×RN

v(0, x) = h(x) in RN .
(1.1.7)

The aim of this chapter is instead to find, for some classes of problems, a limiting

optimal control problem associated to (1.1.7). This is a crucial issue in view of applica-

tions; nonetheless, to the best of our knowledge, there are few results in this direction,

mostly in the engineering literature. The first approach to homogenization of control

problems originated in the light of the so-called Levinson–Tichonov theory for ODEs

and then extended to deterministic control problems; see e.g. [33], [73], [112]. This ap-

proach requires the limit of the fast dynamics to be governed by an algebraic equation

and the stationary points of the fast dynamics to be attractive. To treat more general

situations, other averaging techniques, have been developed; see [9], [10], [11], [12], [90].

These results are based on the analysis of trajectories and make use of invariant mea-

sures and occupational measure of the fast dynamics. In [155], [156], by using special

measures called limiting relaxed controls, some of these results have been interpreted

in the light of singular perturbation theory.

The approach in this chapter is based on the results obtained in the theory of homog-

enization of Hamilton–Jacobi equations. Our strategy consists in studying whether H̄

can be written as a Bellman Hamiltonian, and consequently in describing the unique so-

lution of (1.1.7) as a value function of some optimal control problem. This is indeed one

of the main challenges of this chapter, since except in few cases it is hard to find explicit

formulas for the H̄ associated to an ergodic Hamiltonian. To this scope, we require the

dynamics and the costs to satisfy from time to time different structure hypotheses, as

well as some controllability assumptions.

We describe next the structure and main results in the chapter. In Section 1.2 we
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recall how the theory of singular perturbation can be applied to periodic homogenization

of Hamilton-Jacobi-Bellman equation, and we establish our first homogenization results.

We prove in Theorem 1.2.1 that if the dynamics for the oscillating variables, i.e.

ẏ(t) = f2(x, y(t), α(t)), y(0) = y, x frozen (1.1.8)

is just controllable in bounded time then a general weak convergence result holds;

namely, the upper and lower semilimits of vε are respectively a viscosity subsolution

and supersolution of the limiting problem (1.1.7). If instead (1.1.8) is controllable in

a stronger sense (see formula (1.3.1)) then, in Section 1.3, and by adapting a result

in [156] we are able to represent the limiting optimal control problem as a differen-

tial inclusion obtained by averaging the vector field with limiting relaxed controls (see

Theorem 1.3.1). The particular case in which f2 is independent of the slow variable

is considered in Section 1.4.1 (see Theorem 1.4.1). A different situation is studied

in Section 1.4.2 where we assume the two components of the vector field f1 and f2

are driven only by α1 and α2 respectively. This partially decoupled structure combined

with some controllability assumption on the vector field f2 (see formula (1.4.12)) allows

to represent the unique solution of the effective Cauchy problem as a value function of

a dynamics for x1 controlled by (α1, y) ∈ A1 × TN2 (see Theorem 1.4.2). In Section

1.3.2 we are interested in the convergence of the trajectories (1.1.1), in their singular

perturbation form, as ε → 0. After the convergence of the value function is proven,

it is a natural question to wonder whether the singularly perturbed trajectories (1.2.1)

do converge to trajectories of the form (1.3.3) with limiting relaxed controls. It is also

of much interest to consider the converse of such result, that is, whether each trajec-

tory of the form (1.3.3) with limiting relaxed controls can be indeed approximated by

a sequence of singularly perturbed trajectories (1.1.1) (see Theorem 1.3.2 and Theorem

1.3.3). The interest of the latter lies in application in engineering or computer science,

where it can be more profitable to consider approximating dynamics instead of the real

one, provided the convergence holds true. In Section 1.5 we consider the case in which

f2 does not depend on the control and, for any x, the dynamics ẏ(t) = f2(x, y(t)) has

a unique invariant measure µx. Under these assumptions we discuss a relaxation proce-

dure to average the dynamics and the cost functional, which is rather different from that

considered in Section 1.3. We prove first a weak convergence result (see Theorem 1.5.1).

Then, in the case in which the unique invariant measure is independent on the slow

state, we establish in Section 1.5.2 local uniform convergence of the value function as

well as a representation for the limiting control problem (see Corollary 1.5.1). And in

the same vein as in Section 1.3.2, the convergence of trajectories holds true again in
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this context. A simplified expression for the limiting dynamics is provided in Section

1.5.3 where a decoupling assumption is made on f1 and the running cost. In agreement

with our results in Section 1.3, we represent the unique solution of the effective Cauchy

problem as a value function of a dynamics obtained by averaging the original vector

field f and the running cost ℓ with the unique invariant measure (see Corollary 1.5.4).

We conclude this chapter by an appendix in Section 1.6 where we provide the proof of

upper-semicontinuity of the set-valued map of occupational measures (limiting relaxed

controls), and where we also study an example in which the effective Hamiltonian is

not regular enough to guarantee the uniform convergence. The example consists of an

homogenization problem which is ergodic, but whose value function does not converge

uniformly on compact sets; it is obtained by slightly modifying a counterexample to

homogenization presented in [4] and is useful to check some of the assumptions made

to prove our results. Let us finally mention that similar results can be extended to the

stochastic case and will be tackled in Chapter 2.

1.2 Mathematical background

1.2.1 Homogenization as a singular perturbation

The approach in this chapter is based on the results obtained in the theory of ho-

mogenization and singular perturbation of Hamilton–Jacobi equations. In fact, our

homogenization problem can be seen as a singular perturbation problem in RN × RN2

by introducing the fast variable y = x2/ε. Then, the dynamics (1.1.1) becomes

ẋ1(t) = f1 (x(t), y(t), α1(t), α2(t))

ẋ2(t) = f2 (x(t), y(t), α2(t))

ẏ(t) = 1
ε
f2 (x(t), y(t), α2(t))

x(0) = x, y(0) = y

(1.2.1)

and the cost functional to be considered is

J (t, x, y, α1, α2) :=

∫ t

0

ℓ (s, x(s), y(s), α1(s), α2(s)) ds+ h(x(t)).
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If we look for a solution of (1.1.5) of the form vε(t, x) = uε(t, x, x2/ε), then u
ε(t, x, y)

solves
∂tu

ε +H

(
t, x, y,Dx1u

ε,

(
Dx2u

ε +
1

ε
Dyu

ε

))
= 0 in (0,+∞)×RN ×RN2

uε(0, x, y) = h(x) in RN ×RN2 ,

(1.2.2)

where H is defined in (1.1.6). The value function

uε(t, x, y) = inf
(α1,α2)∈A

J(t, x, y, α1, α2)

for the control system (1.2.1) is the unique viscosity solution of (1.2.2).

The definition of the effective Hamiltonian H̄ is related with a property of H, called

ergodicity, extensively studied in [3], [4]. For completeness and further references, we

recall briefly its definition. Consider, for fixed t̄ ∈ (0,+∞) and x̄, p̄ ∈ RN , the cell

problem:

λ+H (t̄, x̄, y, p̄1, p̄2 +Dχ) = 0, χ periodic. (1.2.3)

It is well known that there exists at most one value λ ∈ R such that (1.2.3) has a

continuous viscosity solution χ; see, e.g. [127], [78], [79]. In general, there may be no

pairs (λ, χ) with χ continuous solving (1.2.3). We say that H is ergodic at (t̄, x̄, p̄) if

sup
{
λ
∣∣∣ (1.2.3) has a subsolution

}
= inf

{
λ
∣∣∣ (1.2.3) has a supersolution

}
=: λ̄.

In this case, we set H̄(t̄, x̄, p̄) = −λ̄. Equivalent definitions of ergodicity, based on

alternative formulations of the cell problem will be considered in the sequel.

Ergodicity is, in general, not sufficient for homogenization, in fact the effective Hamil-

tonian H̄ will be only continuous; consequently the comparison principle for the effective

Cauchy problem (1.1.7) and then the uniform convergence of uε may not hold. In gen-

eral, only a weak convergence result can be shown; see [4, Proposition 2.6] and [3,

Theorem 1]:

Proposition 1.2.1. Let uε be the solution of (1.2.2). Assume that the Hamiltonian H

defined in (1.1.6) is ergodic. Then the upper semilimit of uε, defined as

ū∗(t, x) := lim sup
(t′,x′)→(t,x)

ε→0

sup
y
uε(t′, x′, y), if t > 0

ū∗(0, x) := lim sup
(t′,x′)→(0,x)

t′>0

ū∗(t, x), if t = 0,
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(resp. the lower semilimit u∗, defined replacing lim sup with lim inf and sup with inf) is

a viscosity subsolution (resp. supersolution) of the effective problem (1.1.7).

Under extra assumptions, more regularity with respect to x can be established for

H̄ and then uniform convergence of uε to u, unique solution of (1.1.7) can be proved.

Remark 1.2.1. The semilimits of vε(t, x) are defined in a slightly different way: the

upper semilimit of vε is

v̄∗(t, x) := lim sup
(t′,x′)→(t,x)

ε→0

vε(t′, x′), if t > 0

v̄∗(0, x) := lim sup
(t′,x′)→(0,x)

t′>0

v̄∗(t, x), if t = 0;

the lower semilimit v∗ is defined analogously, with lim inf in place of lim sup. If we look

for a solution of (1.1.5) of the form vε(t, x) = uε(t, x, x2/ε), then

v∗
(
t, x
)
= lim inf

(t′,x′)→(t,x)
ε→0

vε
(
t′, x′

)
= lim inf

(t′,x′)→(t,x)
ε→0

uε
(
t′, x′,

x′2
ε

)
≥ lim inf

(t′,x′)→(t,x)
ε→0

inf
y
uε
(
t′, x′, y

)
= u∗(t, x)

and similarly v̄∗ ≤ ū∗. Moreover, it has been proved (see [4, Theorem 2.7]) that there

exist a minimal (l.s.c.) subsolution u♯ and a maximal (u.s.c.) supersolution u♯ of (1.1.7).

We conclude:

u♯ ≤ u∗ ≤ v∗ ≤ v̄∗ ≤ ū∗ ≤ u♯ in [0,+∞)×RN . (1.2.4)

In particular, if uε(t, x, y) converges locally uniformly in (0,+∞) × RN × RN2 to a

function u(t, x) then u∗ = ū∗ = u in [0,+∞)×RN . Since uε is periodic in y, then also

vε(t, x) converges uniformly to the same function u.

For any fixed x ∈ RN the fast subsystem of (1.2.1) is

ẏ(t) = f2 (x, y(t), α2(t)) , y(0) = y. (1.2.5)

Definition 1.2.1. The system (1.2.5) is said bounded time controllable if there exists

T > 0 such that, for any y, y′ ∈ RN2 there exists a control a2 ∈ A2 such that the

corresponding solution of (1.2.5) satisfies y(t′) = y′ for some t′ ≤ T .

In the following Lemma we recall for later use two important consequences of bounded

time controllability. The first is a sufficient condition for ergodicity; the second is that
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the effective Hamiltonian can be represented as an optimal average cost of an ergodic

control problem for the fast subsystem.

Lemma 1.2.1. Let t̄ ∈ (0,+∞) and x̄, p̄ = (p̄1, p̄2) ∈ RN . Assume that (1.2.5) is

bounded time controllable for x = x̄. Then the Hamiltonian H defined in (1.1.6) is

ergodic at (t̄, x̄, p̄). Moreover

H̄(t̄, x̄, p̄) = sup
α1∈A1
α2∈A2

lim sup
t→+∞

{
1

t

∫ t

0

−p̄1 · f1
(
x̄, y(s), α1, α2(s)

)
− p̄2 · f2(x̄, y(s), α2(s)) −ℓ

(
t̄, x̄, y(s), α1, α2(s)

)
ds
∣∣∣ y(·) solves (1.2.5)

}
. (1.2.6)

Proof. The statement of this Lemma is a particular case of [4, Theorem 6.1]. Consider

the δ-cell problem

δwδ +H
(
t̄, x̄, y, p̄1, p̄2 +Dywδ

)
= 0 in RN2 , wδ periodic. (1.2.7)

For fixed y, y′ ∈ RN2 , the assumed bounded time controllability and the Dynamic Pro-

gramming Principle for wδ imply the estimate δwδ(y)− δwδ(y
′) ≤ C(1− e−δT ) for some

C > 0 independent of δ and T as in Definition 1.2.1. Then,

lim
δ→0+

|δwδ(y)− δwδ(y
′)| = 0 uniformly in y, y′ ∈ RN2 .

This in turn implies that {wδ − wδ(0)} is an equicontinuous and equibounded net.

Therefore, up to subsequence, wδ−wδ(0) converges uniformly to a limit χ. By stability,

χ solves the true cell problem (1.2.3) with λ = H̄(t̄, x̄, p̄1, p̄2). Then H is ergodic at

(t̄, x̄, p̄1, p̄2) and

δwδ(y) → −H̄(t̄, x̄, p̄1, p̄2) as δ → 0, uniformly in y.

Thus, formula (1.2.6) can be proved as Proposition VII.1.3 in [19].

1.2.2 A weak convergence result for HJB equation

Let us denote by TN2 the N2-dimensional torus RN2/ZN2 and by P(TN2 × A2) the

set of Radon probability measures on TN2 × A2. For any t > 0, y ∈ RN2 and α2 ∈ A2

consider the solution y(s) of (1.2.5), and define a measure in P(TN2 × A2), called
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occupational measure, as

µt,x,y,α2 :=
1

t

∫ t

0

δ(y(s),α2(s))ds,

where δ is the Dirac’s delta.

We denote by Z(x) the set of weak star limits of these measures, i.e. the set of

measures µ ∈ P(TN2 × A2) such that

µ = lim
n→∞

µtn,x,y,α2 weak-star

for some tn → +∞, α2 ∈ A2 and y ∈ RN2 . A measure in Z(x) is called limiting

occupational measure, or limiting relaxed control. See [2], [90], [156] for details.

Proposition 1.2.2. If the system (1.2.5) is bounded time controllable then Z(x) is a

non-empty convex and compact subset of P(TN2×A2) in the sense of weak star topology.

Proof. See [156, Theorem 1.3].

Moreover, we have the following lemma whose proof is postponed to the appendix

§1.6.

Lemma 1.2.2. If the system (1.2.5) is bounded time controllable, then the multifunc-

tion x ⇝ Z(x) is upper semicontinuous1. This holds in particular under the stronger

controllability assumption (1.3.1).

For any x ∈ RN , any µ ∈ Z(x) and any α1 ∈ A1 we define the averaged vector field

and running cost as follows:

f̄1(x, α1, µ) :=

∫
RN2×A2

f1
(
x, y, α1, α2

)
dµ(y, α2);

f̄2(x, µ) :=

∫
RN2×A2

f2(x, y, α2)dµ(y, α2);

ℓ̄(s, x, α1, µ) :=

∫
RN2×A2

ℓ
(
s, x, y, α1, α2

)
dµ(y, α2).

The functions above inherit boundedness and uniform continuity from f1, f2 and ℓ

respectively. Moreover f̄1 and f̄2 are Lipschitz–continuous in x uniformly with respect

to (α1, µ) and µ respectively; see [19].

1Definition (see [15, Definition 1.1.1]) A set valued map F from X to Y , Hausdorff topological
spaces, is said to be upper semicontinuous at x◦ ∈ X if for any open N containing F(x◦), there exists
a neighborhood M of x◦ such that F(M) ⊂ N . We say that F is upper semicontinuous if it is so at
every x◦ ∈ X.
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Take tn → +∞, α2 ∈ A2 and y ∈ TN2 as initial state for (1.2.5) and let y(·) be the

corresponding solution. Observe that,

f̄2

(
x,

1

tn

∫ tn

0

δ(y(s),α2(s))ds

)
=

1

tn

∫ tn

0

f̄2(x, δ(y(s),α2(s)))ds

=
1

tn

∫ tn

0

f2(x, y(s), α2(s))ds =
1

tn
(y(tn)− y(0)) (1.2.8)

y(tn) being the projection on TN2 of the solution to (1.2.5), and using the norm defined

in (1.1.3), we have
1

tn
|y(tn)− y(0)|

T
≤

√
N2

tn

which yields, after sending n→ +∞,

f̄2(x, µ) = 0 for any x ∈ RN , µ ∈ Z(x). (1.2.9)

In the following Theorem we establish a weak convergence result for the semilimits

of solutions of the associated singular perturbation problem (1.2.2). It also provides an

explicit expression for the effective Hamiltonian in terms of the averaged vector field

and running cost.

Theorem 1.2.1. Let uε(t, x, y) be a solution of (1.2.2). If the fast subsystem (1.2.5)

is bounded time controllable then the upper and lower semilimit of uε are respectively a

supersolution and a subsolution of
∂tv + max

µ∈Z(x)
α1∈A1

{
−Dx1v · f̄1(x, α1, µ)− ℓ̄(t, x, α1, µ)

}
= 0 in (0,+∞)×RN

v(0, x) = h(x) in RN .

(1.2.10)

Proof. Put

F
(
t, x, y, p1, p2, α1, α2

)
:= −p1 · f1

(
x, y, α1, α2

)
− p2 · f2(x, y, α2) − ℓ

(
t, x, y, α1, α2

)
.

Then, according with (1.1.6), we write

H(t, x, y, p) = max
(α1,α2)∈A

F (t, x, y, p, α1, α2) .

Fix t̄ ∈ (0,+∞) and x̄, p̄ = (p̄1, p̄2) ∈ RN . By Lemma 1.2.1 H is ergodic at (t̄, x̄, p̄).

This permits to uniquely define the value H̄(t̄, x̄, p̄) for the effective Hamiltonian H̄ :

(0,+∞)×RN×RN → R. By Proposition 1.2.1 the semilimits ū∗ and u∗ are respectively
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a viscosity subsolutions and supersolution of∂tv + H̄ (t, x,Dxv) = 0 in (0,+∞)×RN

v(0, x) = h(x) in RN .

It remains to prove that

H̄(t, x, p) = H̄(t, x, p1) = max
µ∈Z(x)

α1∈A1

{
−p1 · f̄1(x, α1, µ)− ℓ̄(t, x, α1, µ)

}
. (1.2.11)

We adapt the argument of [2, Theorem 7]. Let us denote by H̃(t, x, p1) the right

hand side of (1.2.11) and set

F̃ (t, x, p, α1, µ) := −p1 · f̄1(x, α1, µ)− ℓ̄(t, x, α1, µ);

thus

H̃(t, x, p1) = max
µ∈Z(x)

α1∈A1

F̃ (t, x, p, α1, µ). (1.2.12)

Finally set

F̄α1(t, x, p, α2) := lim sup
T→+∞

{
1

T

∫ T

0

F
(
t, x, y(s), p, α1, α2(s)

)
ds
∣∣∣ y(·) solves (1.2.5)} .

By (1.2.6),

H̄(t, x, p) = sup
α1∈A1

α2∈A2

F̄α1(x, p, α2). (1.2.13)

Any µ̄ ∈ Z(x) is generated by some ȳ(·), solution of (1.2.5) corresponding to a certain

ᾱ2 ∈ A2, and some tn → +∞. We compute, as in (1.2.8),

1

tn

∫ tn

0

F
(
t, x, ȳ(s), p, α1, ᾱ2(s)

)
ds =

1

tn

∫ tn

0

F̃
(
t, x, p1, α1, δ(ȳ(s),ᾱ2(s))

)
ds

= F̃

(
t, x, p1, α1,

1

tn

∫ tn

0

δ(ȳ(s),ᾱ2(s))ds

)
. (1.2.14)

The right-hand side of the previous identity converges to F̃ (t, x, p1, α1, µ̄) as n → ∞.

Then, taking into account (1.2.13) we discover
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H̄(t, x, p) = sup
α1∈A1
α2∈A2

F̄α1(t, x, p, α2) ≥ F̄α1(t, x, p, ᾱ2)

≥ lim
n

1

tn

∫ tn

0

F
(
t, x, ȳ(s), p, α1, ᾱ2(s)

)
ds = F̃ (t, x, p1, α1, µ̄).

The previous inequality is valid for any α1 ∈ A1 and any µ̄ ∈ Z(x), then taking the

supremum over these variables and recalling (1.2.12) we get H̄(t, x, p) ≥ H̃(t, x, p1).

We now establish the opposite inequality. Fix ᾱ1 ∈ A1, an initial state y ∈ RN2 , and

a control ᾱ2 ∈ A2 and consider the corresponding solution ȳ(·) of (1.2.5). Take also a

sequence tn diverging as n goes to +∞, such that

F̄ᾱ1(t, x, p, ᾱ2) = lim
n

1

tn

∫ tn

0

F (t, x, ȳ(s), p, ᾱ1, ᾱ2(s))ds.

The support of the sequence of occupational measures 1
tn

∫ tn
0
δ(ȳ(s),ᾱ2(s))ds is uniformly

bounded, thanks to the periodicity assumption. Then it converges up to subsequences

as n→ ∞, to some µ̄ ∈ Z(x). Thus, by (1.2.14),

H̃(t, x, p1) ≥ F̃ (t, x, p1, ᾱ1, µ̄) = F̄ᾱ1(t, x, p, ᾱ2).

The previous inequality is valid for any ᾱ1 ∈ A1 and any ᾱ2 ∈ A2. Then, by taking

the supremum over these variables in both sides of the previous inequality and using

(1.2.13) we conclude that H̃(t, x, p1) ≥ H̄(t, x, p). Formula (1.2.11) is then established

and the proof is completed.

1.3 Main results: Limiting Relaxed Control Prob-

lems

1.3.1 Convergence under a strong controllability condition

The following result provides a representation of the limiting dynamics in terms of

limiting relaxed controls. It requires a stronger controllability assumption on the fast

variables.

Theorem 1.3.1. Assume that

for any x there exists ν(x) > 0 s.t.

B(0, ν(x)) ⊆ cof2(x, y, A2) for any y.
(1.3.1)



Chapter 1 - Periodic homogenization of deterministic control problems 35

Then, as ε→ 0, the sequence vε(t, x) of solutions of (1.1.5) converges locally uniformly

on (0,+∞)×RN to

v̄(t, x) := inf

{∫ t

0

ℓ̄(s, x(s), α1(s), µ(s))ds+ h(x(t))

}
, (1.3.2)

where the infimum is taken over trajectories x(·) satisfying

ẋ1(t) = f̄1 (x(t), α1(t), µ(t))

ẋ2(t) = 0

α1 ∈ A1, µ(t) ∈ Z(x(t))

x(0) = x.

(1.3.3)

Proof. By Theorem 1.2.1 the effective Hamiltonian is given by

H̄(t, x, p1) = max
µ∈Z(x)

α1∈A1

{
−p1 · f̄1(x, α1, µ)− ℓ̄(t, x, α1, µ)

}
.

It is well known (see, e.g. [152, Corollary 3.7]) that under assumption (1.3.1) the fast

subsystem (1.2.5) is small-time controllable, namely, the time t′ in Definition 1.2.1 to

reach y′ with a trajectory of (1.2.5) starting at y can be bounded by C|y−y′|/ν(x). This
implies that the true cell problem (1.2.3) is solved by a Lipschitz continuous corrector;

then H is ergodic and H̄ is Lipschitz continuous.

If we look for a solution of (1.1.5) of the form vε(t, x) = uε(t, x, x2/ε), then u
ε(t, x, y)

solves (1.2.2). By Theorem 1.2.1 the upper and lower semilimits of uε are respectively

a viscosity subsolution and supersolution of (1.2.10). Moreover, since H̄(t, x, p) is Lips-

chitz continuous, the comparison principle holds for problem (1.2.10) and uε converges

locally uniformly as ε → 0 to v(t, x), unique continuous viscosity solution of (1.2.10);

then by Remark 1.2.1 vε also converges locally uniformly on (0,+∞)×RN to the same

function.

To prove that v ≡ v̄, one has to show that v̄(t, x) solves the effective problem (1.2.10).

This can be done, as in [156], by proving that the limiting dynamics (1.3.3) admits trajec-

tories defined for any t > 0, that the value function v̄(t, x) is continuous in [0,+∞)×RN

and that the set-valued map

x 7→
{
f̄1(x, α1, µ)

∣∣∣α1 ∈ A1, µ ∈ Z(x)
}
,

is Lipschitz continuous.
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Remark 1.3.1. If the hypothesis (1.3.1) fails than homogenization may not hold. To

see this, consider the example of Section 1.6.2, in which f2(x, y, α2) = x1 + α2 and α2

varies in the interval A2 ≡ [−1, 1]; then

cof2(x, y, A2) = [x1 − 1, x1 + 1] for any y.

If |x1| ≥ 1 the condition (1.3.1) is not satisfied; we know, by Proposition 1.6.1, that

there may be no homogenization in this case. If instead |x1| < 1, the hypothesis (1.3.1)

is readily verified and according with Proposition 1.6.1 homogenization holds. Notice

that the Hamiltonian defined in (1.6.5) is coercive in this case and, using (1.6.8), we

can easily compute

H̄(x1, p1) = sup {−p1v | v ∈ [0, 2]} = 2p−1 , (1.3.4)

which is Lipschitz continuous.

1.3.2 Convergence of singularly perturbed trajectories

We start with the general case considered for the convergence of the value function,

where we assume the strong controllability condition (1.3.1) to be satisfied. We recall

for the sake of clarity and convenience of the reader the system (1.2.1) which we will

refer to as the perturbed dynamics

ẋ1(t) = f1 (x(t), y(t), α1(t), α2(t))

ẋ2(t) = f2 (x(t), y(t), α2(t))

ẏ(t) = 1
ε
f2 (x(t), y(t), α2(t))

x(0) = x, y(0) = y

(1.3.5)

and also the system (1.3.3) which we will refer to as the relaxed dynamics

ẋ1(t) = f̄1 (x(t), α1(t), µ(t))

ẋ2(t) = 0

α1 ∈ A1, µ(t) ∈ Z(x(t))

x(0) = x

(1.3.6)

where the second equation is a consequence of (1.2.9).

Remark 1.3.2. An averaged system analogous to (1.3.6) is considered in [88, equation
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(2.5)] for a different setting of singular perturbations. The latter considers the set of

limit occupational measures as defined in [90, equation (2.5)], rather than Z(x) as we do

here. But under the standing assumptions and bounded time controllability of the fast

subsystem, it is shown in [155, Theorem 1.10] (see also [156, Theorem 1.3]) that our set

Z(x) coincides with the one defined in [90, equation (2.5)] and used for the averaging

in [88, equation (2.5)].

Theorem 1.3.2. Under the same assumptions as in Theorem 1.3.1, every solution to

(1.3.6) is an accumulation point to a sequence of x-components of trajectories (1.3.5)

with respect to the uniform convergence topology.

Proof. Fix an initial position y ∈ RN2 and consider a fixed pair (x̄(·), µ̄(·)) : [0, t] →
RN ×P(TN2 ×A2) solution to the system of relaxed dynamics. We construct an optimal

control problem where the cost functional is of the form (1.1.2) with the final cost h ≡ 0

and the running cost

ℓ(s, x(s), y(s), α1(s), α2(s)) = ϕ(|x(s)− x̄(s)|p)

with p ∈ [1,+∞[, and where the function ϕ : R→ R is smooth and bounded with 0 as

its unique minimizer and such that

ϕ(0) = 0, ϕ(t) > 0, ∀ t ̸= 0.

We assume in addition that

|t| ≤ ϕ(t), ∀t ∈ [−A,A] (1.3.7)

where A > 0 is a constant to be made precise.

Note that since ℓ defined as above does not depend on (y, α2), we have ℓ = ℓ̄. Now the

value function is

vε(t, x, y) = inf
(α1,α2)∈A

∫ t

0

ϕ(|x(s)− x̄(s)|p)ds. (1.3.8)

By the previous theorem, vε(t, x, y) converges locally uniformly to v̄(t, x) defined as in

(1.3.2). Now observe that v̄(t, ·) ≥ 0 for all t, and in fact v̄(t, x) = 0 since (x̄(·), µ̄(·)) is
an admissible solution. Therefore one has

|vε(t, x, y)− v̄(t, x)| = |vε(t, x, y)| → 0, as ε→ 0
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which writes for an arbitrary small δ > 0

∃ E > 0 s.t. ∀ε ≤ E, |vε(t, x, y)| ≤ δ

2
.

Now let xε(·) be an ε/2-optimal solution to (1.3.8). Then one has

0 ≤
∫ t

0

ϕ(|xε(s)− x̄(s)|p)ds ≤ vε(t, x, y) +
ε

2
≤ δ + ε

2
. (1.3.9)

And since ε can be chosen as small as we want, we consider 0 < ε ≤ δ, and hence from

the previous inequality one gets

∀δ > 0, ∃E > 0 s.t. ∀ ε ≤ E, 0 ≤
∫ t

0

ϕ(|xε(s)− x̄(s)|p)ds ≤ δ. (1.3.10)

We claim that there exists a positive constant A such that for all ε > 0 and for all

s ∈ [0, t]

|xε(s)− x̄(s)|p ≤ A. (1.3.11)

Therefore, (1.3.10) together with (1.3.7) yield

∀δ > 0, ∃E > 0 s.t. ∀ ε ≤ E, 0 ≤
∫ t

0

|xε(s)− x̄(s)|pds ≤ δ (1.3.12)

and hence

∥xε − x̄∥Lp(0,t) → 0, as ε→ 0. (1.3.13)

Proof of the claim (1.3.11):

Denote by F :=

(
f1

f2

)
. We have for s ∈ [0, t]

|xε(s)− x̄(s)| ≤
∫ s

0

∫
RN2×A2

|F (xε(r), yε(r), αε
1(r), α

ε
2(r))− F (x̄(r), y, ᾱ1(r), α2)|dµ(y, α2)dr

≤
∫ s

0

∫
RN2×A2

|F (xε(r), yε(r), αε
1(r), α

ε
2(r))− F (x̄(r), y, αε

1(r), α
ε
2(r))|+

|F (x̄(r), y, αε
1(r), α

ε
2(r))− F (x̄(r), y, ᾱ1(r), α2)| dµ(y, α2)dr

Denote the first term by

FT (r) := |F (xε(r), yε(r), αε
1(r), α

ε
2(r))− F (x̄(r), y, αε

1(r), α
ε
2(r))|
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and the second term by

ST (r) := |F (x̄(r), y, αε
1(r), α

ε
2(r))− F (x̄(r), y, ᾱ1(r), α2)|.

By the general assumptions on f1, f2, F is Lipschitz–continuous uniformly in α, with

a Lipschitz constant denoted by K. It is also ZN2 periodic in y-variable, so for each

r ∈ (0, s) and y ∈ RN2 , one can find n ∈ Z such that |yε(r) + n − y| ≤ N2. Therefore,

one has

|FT (r)| = |F (xε(r), yε(r) + n, αε
1(r), α

ε
2(r))− F (x̄(r), y, αε

1(r), α
ε
2(r))|

≤ K(|yε(r) + n− y|+ |xε(r)− x̄(r)|)

≤ KN2 +K|xε(r)− x̄(r)|.

We also have F uniformly continuous in α, with α valued in a compact set A1 ×A2, so

∃M > 0, s.t. ∀ r ∈ (0, t), |ST (r)| ≤M

Hence,

|xε(s)− x̄(s)| ≤
∫ s

0

∫
RN2×A2

|FT (r)|+ |ST (r)| dµ(y, α2)dr

≤
∫ s

0

∫
RN2×A2

KN2 +M +K|xε(r)− x̄(r)| dµ(y, α2)dr

≤ Cs+

∫ s

0

|xε(r)− x̄(r)|dr; where C := KN2 +M,

and Grönwall inequality yields

|xε(s)− x̄(s)| ≤ sCesK , ∀ s ∈ [0, t]

≤ tCetK

Choosing any A ≥ (tCetK)p is enough to prove the claim.

Finally, the uniform convergence is deduced using the pointwise convergence (1.3.13)

combined with Ascoli-Arzelà theorem provided the sequence (zn)n := (xεn − x̄)n with

εn := 1/n, is uniformly bounded and equicontinuous on [0, t]. This is true thanks to

(1.3.11) which insures uniform boundedness, and to the general assumptions on f1, f2
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which guarantee the equicontinuity as follows: let 0 ≤ s1 ≤ s2 ≤ t, then

|zn(s2)− zn(s1)| ≤
∫ s2

s1

∫
RN2×A2

| F (xεn(r), yεn(r), αεn
1 (r), αεn

2 (r))−

F (x̄(r), y, ᾱ1(r), α2) | dµ(y, α2)dr

≤
∫ s2

s1

∫
RN2×A2

|FT (r)|+ |ST (r)| dµ(y, α2)dr.

≤
∫ s2

s1

C + sup
s∈[0,t]

|xεn − x̄(s)| dr = C ′|s2 − s1|,

where C ′ is a positive constant that only depends on F and on the time horizon t

following the estimates used in the proof of the claim (1.3.11).

The converse of this result is in general not true since the set of solutions of (1.3.6) is

not closed. Still, a similar result can be proved but for the following convexified relaxed

dynamics 
ẋ1(t) ∈ cof̄1 (x(t), A1, Z(x(t))

ẋ2(t) = 0

x(0) = x.

(1.3.14)

where co denotes the closure of the convex hull.

Remark 1.3.3. The system (1.3.6) can be written as a differential inclusion of the form
ẋ1(t) ∈ f̄1 (x(t), A1, Z(x(t))

ẋ2(t) = 0

x(0) = x.

(1.3.15)

And the set of solutions of the latter is dense in the set of solutions of (1.3.14) when

f̄1(·, A1, Z(·)) is Lipschitz–continuous with compact values, while it does not necessarily

holds when it is only continuous (a well-known counterexample is due to Plis [145] and

can also be found in [15, Example p. 127]). This is known as the Relaxation theorem

and is due to Filippov and Wažewski (see [15, Theorem 2.4.2]).

Before proving the converse of the previous corollary, we will need the following two

results which are respectively a regularity result for the differential inclusion (1.3.14),

and a weak version of the Relaxation theorem referred to in the above remark, since in

our case f̄1(·, A1, Z(·)) is not with compact values because its range is not closed.
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In the sequel, we set

F(x) := cof̄1(x,A1, Z(x))× {0}, (1.3.16)

and (1.3.14) writes as ẋ(t) ∈ F(x(t)), x(0) = x. Then the following proposition is a

direct consequence of Lemma 1.2.2.

Proposition 1.3.1. If the system (1.2.5) is bounded time controllable, then F is proper2

and upper semicontinuous.

Proof. If F is not proper, then F is the empty set map, that is, for each x ∈ RN ,

F(x) = ∅. This is not true, since Z(x) is nonempty thanks to Proposition 1.2.2.

Upper semicontinuity follows directly from [16, Proposition 1.4.14] since Z(x) is compact

for every x by Proposition 1.2.2 and the upper semicontinuity of the set-valued map

x⇝ Z(x).

Remark 1.3.4. Since F is upper semicontinuous, it is in particular upper hemicontinu-

ous3 (see [15, Proposition 1.4.1]). This property is a key ingredient for the Convergence

Theorem used at the end of the proof of the next Proposition.

Proposition 1.3.2. Let xn be a sequence of continuous functions solution to the dif-

ferential inclusion (1.3.15) and converging locally uniformly to a continuous function

x̄. Then x̄ solves (1.3.14). In particular, the set of solutions of (1.3.14) is closed with

respect to the uniform convergence topology.

Proof. Note first that the second statement of the proposition is a direct consequence

of the fact that if xn is a solution to (1.3.15), then it is also a solution to (1.3.14), and

closedeness of the set of solutions of the latter differential inclusion follows directly from

the first statement. In particular, we can consider without loss of generality that xn is

a solution of (1.3.14), and we denote by F the latter differential inclusion, that is:

ẋn(s) ∈ F(xn(s)), xn(0) = x ∈ RN , s ∈ [0, t] (1.3.17)

where F(x) := cof̄1(x,A1, Z(x))× {0}.
With the general assumptions on f1 together with proposition 1.2.2 and proposition

1.3.1, the set-valued function F is proper, hemicontinuous and such that F(x) is convex

and compact for each x ∈ RN .

2The set-valued map F is proper if its domain is nonempty, that is, F is not the trivial map x⇝ ∅.
3Definition (see [15, Definition 1.4.1]) Let F be a set-valued map from a Hausdorff locally convex

space X to the closed convex subsets of a Banach space Y . We say that F is upper hemicontinuous at
x◦ ∈ X if, for every p ∈ Y ∗, the function x → σ(F(x), p) := sup

y∈F(x)

⟨p, y⟩ is upper semicontinuous at

x◦.
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To prove the first statement, we follow almost the same process as for the first proof

of [15, Theorem 2.1.3]. Mainly, we will use a compactness theorem together with a

convergence result to show that, up to a subsequence, the limit of (xn, ẋn), in a sense

to be made precise, does belong to the graph of F .

Let xn be a sequence of continuous functions solution to (1.3.17). With the same

arguments as in the proof of the claim in (1.3.11), such a sequence satisfies the following

i) ∀ s ∈ [0, t], {xn(s)}n is a relatively compact subset of RN ,

ii) there exists a positive function c(·) in L1([0, t],R) such that for almost all s ∈ [0, t],

∥ẋn(s)∥ ≤ c(s).

Indeed, the second statement is insured by the following inequalities

∥ẋn(s)∥ ≤ sup
(α,µ)∈A1×Z(xn(s))

|f̄1(xn(s), α, µ)|

≤ sup
(α,µ)∈A1×Z(xn(s))

|f̄1(xn(s), α, µ)− f̄1(x̄(s), α, µ)|+ |f̄1(x̄(s), α, µ)|

The Lipschitz-continuity uniformly w.r.t. (α, µ), together with the uniform boundedness

proved in the claim (1.3.11), yield the following

|f̄1(xn(s), α, µ)− f̄1(x̄(s), α, µ)| ≤ K|xn(s)− x̄(s)| ≤ sCesK

where C is a positive constant independent of n. Thus, one has

∥ẋn(s)∥ ≤ sCesK + sup
(α,µ)∈A1×Z(xn(s))

|f̄1(x̄(s), α, µ)|

and the right-hand side of the inequality is positive and in L1([0, t],R).

Therefore by a Compactness Theorem [15, Theorem 0.3.4, p.13], we can extract a

subsequence (again denoted by) xn(·) converging to an absolutely continuous function

x(·) : [0, t] → RN in the sense that

i) xn(·) converges uniformly to x(·) over compact subsets of [0, t],

ii) ẋn(·) converges weakly to ẋ(·) in L1([0, t],RN).

And since xn already converges locally uniformly to x̄ by assumption, then x̄ ≡ x and

˙̄x ≡ ẋ. Moreover

dist((xn(s), ẋn(s)), graph(F)) = 0

that is
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for almost all s ∈ [0, t], for any neighborhood N of 0 ∈ RN × RN , there exists

n0 := n0(s,N ) such that ∀ n ≥ n0, (xn(s), ẋn(s)) ∈ graph(F) ⊂ graph(F) +N .

Finally, using a Convergence Theorem [15, Theorem 1.4.1, p. 60], we have for almost

all s ∈ [0, t], (x̄(s), ˙̄x(s)) ∈ graph(F), i.e. ˙̄x(s) ∈ F(x̄(s)). The uniform convergence

follows easily as in the proof of Theorem (1.3.2).

We are now able to state and prove the following convergence result.

Theorem 1.3.3. Under the same assumptions as in Theorem 1.3.1 , every accumulation

point with respect to the uniform convergence topology of a sequence of x-components of

trajectories (1.3.5) as ε→ 0 is an almost everywhere solution to (1.3.14).

Proof. Fix an initial position x ∈ RN and assume that a solution xε(·) to the perturbed
dynamics converges locally uniformly as ε → 0 to some x̄(·). We shall prove that x̄(·)
is a solution to the convexified relaxed dynamics (1.3.14).

Using the same notation as in the proof of Theorem 1.3.2 and following its same spirit,

we have vε(t, x, y) that converges locally uniformly to v̄(t, x). In addition, one has

0 ≤ vε(t, x, y) ≤
∫ t

0

ϕ(|xε(s)− x̄(s)|p)ds

since xε is an admissible solution (where we recall that p ≥ 1 is arbitrary chosen and

fixed). This implies that as ε→ 0, vε(t, x, y) → 0 locally uniformly, and hence v̄(t, x) =

0.

Now set xδr a δ-optimal solution for the relaxed optimal control problem. This writes

0 ≤
∫ t

0

ϕ(|xδr(s)− x̄(s)|p)ds ≤ δ

which implies that ϕ(|xδr(s)− x̄(s)|p) → 0 as δ → 0 for almost all s ∈ [0, t]. And by the

assumptions of ϕ (as in the proof of Theorem 1.3.2), one deduces |xδr(s)− x̄(s)|p → 0 as

δ → 0 for almost every s ∈ [0, t].

Now note that since xδr is a solution to (1.3.15), it is in particular a solution to (1.3.14),

and the value function of the same relaxed optimal control problem but with the dy-

namics (1.3.14) equals the value function of the one with the dynamics (1.3.15) which

is in fact v̄(t, x). The advantage of choosing (xδr)δ>0 in the set of solutions to (1.3.14) is

that we can now extract a subsequence that converges within the same set of solutions

since it is closed thanks to the proposition 1.3.2, which means that x̄ is a solution to

(1.3.14) in an almost everywhere sense.
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Remark 1.3.5. The previous two theorems hold true in particular for optimal trajecto-

ries solution of an optimal control problem. Indeed, it suffices to choose in the previous

proof for the perturbed and relaxed dynamics, the optimal ones yielded by the optimal

control problem in question.

1.4 Convergence results in particular cases

1.4.1 Fast variables independent of the slow variables

Consider now the situation in which the function f2 driving the x2 variables depends

on x2/ε but not on x. We rewrite the system (1.1.1) for the reader’s convenience:
ẋ1(t) = f1

(
x(t), x2(t)

ε
, α1(t), α2(t)

)
ẋ2(t) = f2

(
x2(t)
ε
, α2(t)

)
x(0) = x.

(1.4.1)

This simplification permits to prove homogenization without the controllability assump-

tion (1.3.1) required in Theorem 1.3.1. The value function vε(t, x), defined in (1.1.2)–

(1.1.4), solves
∂tv

ε + max
(α1,α2)∈A

{
−Dx1v

ε · f1
(
x,
x2
ε
, α1, α2

)
− ℓ
(
t, x,

x2
ε
, α1, α2

)
−Dx2v

ε · f2
(x2
ε
, α2

)}
= 0 in (0,+∞)×RN

vε(0, x) = h(x) in RN .

(1.4.2)

Observe that in this case the fast subsystem

ẏ(t) = f2 (y(t), α2(t)) , y(0) = y (1.4.3)

and consequently the set of limiting relaxed control Z(x) ≡ Z is independent of x.

Arguing as in (1.2.8) we discover

f̄2(µ) :=

∫
RN2×A2

f2(y, α2)dµ(y, α2) = 0 for any µ ∈ Z.
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Theorem 1.4.1. Assume that (1.4.3) is bounded time controllable. Then, as ε→ 0, the

sequence vε(t, x) of solutions of (1.4.2) converges locally uniformly on (0,+∞)×RN to

v̄(t, x) := inf

{∫ t

0

ℓ̄(s, x(s), α1(s), µ(s))ds+ h(x(t))

}
,

where x(·) is subject to the dynamics

ẋ1(t) = f̄1 (x(t), α1(t), µ(t))

ẋ2(t) = 0

α1 ∈ A1, µ(t) ∈ Z

x(0) = x.

(1.4.4)

Proof. By Theorem 1.2.1 the upper and lower semilimit of the sequence uε(t, x, y) of

solutions of (1.2.2) are respectively a subsolution and a supersolution of
∂tv + max

µ∈Z
α1∈A1

{
−Dx1v · f̄1(x, α1, µ)− ℓ̄(t, x, α1, µ)

}
= 0 in (0,+∞)×RN

v(0, x) = h(x) in RN .

(1.4.5)

Since f2 does not depend on x, then the effective Hamiltonian inherits fromH regular-

ity properties that guarantee the comparison principle for the effective Cauchy problem;

therefore uε converges uniformly with respect to y to the unique solution of (1.4.5) (see

[3, Proposition 2]); by Remark 1.2.1, the same conclusion holds for the sequence vε.

The set of limiting relaxed controls Z is independent of x; moreover, by Proposition

1.2.2, it is convex and compact in the weak star topology. Then, by standard results in

optimal control theory, the value function v̄(t, x) solves (1.4.5).

In this configuration, where fast variables are independent of the slow variables,

we can again deduce convergence of the singularly perturbed trajectories as in 1.3.2.

Indeed, as it has been pointed out above, the limiting relaxed control Z(x) ≡ Z is

independent of x. This implies in particular that the regularity result in Lemma 1.2.2

holds automatically and hence is not needed in the following convergence results of

trajectories whose proofs are mutatis mutandis the same as for Theorem 1.3.2 and

Theorem 1.3.3.

Corollary 1.4.1. Under the same assumptions as in Theorem 1.4.1, every solution to

(1.4.4) is an accumulation point to a sequence of trajectories (1.4.1) with respect to the

uniform convergence topology.
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Corollary 1.4.2. Under the same assumptions as in Theorem 1.4.1, every accumula-

tion point with respect to the uniform convergence topology of a sequence of trajectories

(1.4.1) as ε → 0, is a solution to the convexification of (1.4.4), that is, when f̄1 is

replaced with cof̄1.

1.4.2 Explicit limit system for a partially decoupled problem

In this section we assume that x1 and x2 are governed respectively by the components

α1 and α2 of the control variable. We further assume that the dynamics depends on the

variable x2 only through the oscillating term x2/ε:
ẋ1(t) = f1

(
x1(t),

x2(t)
ε
, α1(t)

)
ẋ2(t) = f2

(
x1(t),

x2(t)
ε
, α2(t)

)
x(0) = x ≡ (x1, x2).

(1.4.6)

We consider a running cost ℓ with the same dependence as f1, and a terminal cost

which only depends on x1. Thus the cost associated to any solution of (1.4.6) is

Jε
(
t, x1, x2, α1, α2

)
:=

∫ t

0

ℓ

(
s, x1(s),

x2(s)

ε
, α1(s)

)
ds+ h(x1(t)). (1.4.7)

The value function vε
(
t, x1, x2

)
:= inf

(α1,α2)∈A
Jε
(
t, x1, x2, α1, α2

)
solves


∂tv

ε + max
α1∈A1

{
−Dx1v

ε · f1
(
x1,

x2
ε
, α1

)
− ℓ
(
t, x1,

x2
ε
, α1

)}
+ max

α2∈A2

{
−Dx2v

ε · f2
(
x1,

x2
ε
, α2

)}
= 0 in (0,+∞)×RN

vε(0, x1, x2) = h(x1) in RN .

(1.4.8)

Let us introduce the set

Ã := {(y, α1) : [0,∞) → TN2 × A1 measurable}

and the following dynamics controlled by (y, α1) ∈ Ã:
ẋ1(t) = f1(x1(t), y(t), α1(t))

x1(0) = x1,

(y, α1) ∈ Ã;

(1.4.9)
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the associated cost functional is

J̃(t, x1, α1, y) =

∫ t

0

ℓ(s, x1(s), y(s), α1(s))ds+ h(x1(t)), (α1, y) ∈ Ã. (1.4.10)

In the next Theorem we will show that problem (1.4.9)-(1.4.10) is the appropriate limit

of problem (1.4.6)-(1.4.7). In this case the assumption to be made on f2 is weaker than

the controllability condition (1.3.1).

Theorem 1.4.2. Assume that for any x1 ∈ RN1 the system

ẏ(t) = f2 (x1, y(t), α2(t)) , y(0) = y (1.4.11)

is bounded time controllable. Assume further that

max
α2∈A2

{−q · f2(x1, y, α2)} ≥ 0 for any x1 ∈ RN1 any y, q ∈ RN2. (1.4.12)

Then, as ε → 0, the sequence vε(t, x1, x2) of solutions of (1.4.8) converges locally uni-

formly in [0,+∞)×RN to

ṽ(t, x1) := inf
(α1,y)∈Ã

J̃(t, x1, α1, y).

where x1(·) is subject to (1.4.9).

Proof. As usual we denote by H the Hamiltonian in (1.4.8):

H(t, x1, y, p1, p2) = max
α1∈A1

{−p1 · f1(x1, y, α1)− ℓ(t, x1, y, α1)}+max
α2∈A2

{−p2 · f2(x1, y, α2)} .

This expression can be obtained by developing (1.1.6) taking into account the decoupled

structure of system (1.4.6).

We look for a solution of (1.4.8) of the form vε
(
t, x1, x2

)
= uε(t, x1,

x2

ε
). Then

uε(t, x1, y) solves
∂tu

ε +H

(
t, x1, y,Dx1u

ε,
1

ε
Dyu

ε

)
= 0 in (0,+∞)×RN

uε(0, x1, y) = h(x1) in RN .

(1.4.13)

Observe that since f1 and f2 do not depend on x2, but only on x2/ε, the dynam-

ics of x2 can be ignored in the singularly perturbed system obtained from (1.4.6) by
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introducing an extra variable y = x2/ε:
ẋ1(t) = f1 (x1(t), y(t), α1(t))

ẏ(t) = 1
ε
f2 (x1(t), y(t), α2(t))

x(0) = x, y(0) = y.

(1.4.14)

The unique solution of (1.4.13) is the value function

uε(t, x1, y) = inf
(α1,α2)∈A

J
(
t, x1, y, α1, α2

)
where the cost functional is given by

J
(
t, x1, y, α1, α2

)
:=

∫ t

0

ℓ (s, x1(s), y(s), α1(s)) ds+ h(x1(t)).

Thanks to the assumed bounded time controllability, by Lemma 1.2.1, for any t ∈
(0,+∞) and x1, p1 ∈ RN1 , H is ergodic and H̄(t, x1, p1) exists. Furthermore, by Propo-

sition 1.2.1 the semilimits of uε are respectively a supersolution and a subsolution of∂tv + H̄ (t, x1, Dx1v) = 0 in (0,+∞)×RN1

v(0, x1) = h(x1) in RN1 .
(1.4.15)

We have in this case the following explicit formula for the effective Hamiltonian:

H̄(t, x1, p1) = max
y∈RN2

H(t, x1, y, p1, 0) = max
α1∈A1

y∈RN2

{−p · f1(x1, y, α1)− ℓ(t, x1, y, α1)} .

(1.4.16)

To prove (1.4.16), we argue as in [4, Proposition 6.6]. Let t̄, x̄1 and p̄1 be fixed, and

assume by contradiction that H̄(t̄, x̄1, p̄1) < H(t̄, x̄1, y, p̄1, 0) for any y in a neighborhood

of a maximum point of H(t̄, x̄1, y, p̄1, 0). Then let wδ(y) be the solution of the δ-cell

problem (1.2.7) (with p̄2 = 0); we have

max
α2∈A2

{−Dwδ · f2(x̄1, y, α2)} = H(t̄, x̄1, y, p̄1, Dwδ)−H(t̄, x̄1, y, p̄1, 0)

= −δwδ(y)−H(t̄, x̄1, y, p̄1, 0) = H̄(t̄, x̄1, p̄1)−H(t̄, x̄1, y, p̄1, 0) + o(1) < 0 as δ → 0

in an open set. A contradiction with (1.4.12) that proves (1.4.16).
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Thus, problem (1.4.15) explicitly reads
∂tv + max

α1∈A1

y∈RN2

{−Dx1v · f1(x1, y, α1)− ℓ(t, x1, y, α1)} = 0 in (0,+∞)×RN1

v(0, x1) = h(x1) in RN1 .

(1.4.17)

Formula (1.4.16) also shows that H̄ has the same regularity in x1 as H, in particular

it satisfies the comparison principle. Then uε - and a fortiori, by Remark 1.2.1, vε -

converges locally uniformly in [0,+∞)×RN as ε → 0, to the unique viscosity solution

of (1.4.17).

Since f1(x1, ·, α1) and ℓ(t, x1, ·, α1) are Z
N2–periodic, the maximum in y in the formula

(1.4.16) for H̄ is achieved on the N2-dimensional torus TN2 . Moreover the set A1 ×TN2

of values of controls in Ã is compact. Then, by classical results in optimal control theory,

the unique solution of the problem (1.4.17) is ṽ.

Remark 1.4.1. If the hypothesis (1.4.12) is not satisfied then homogenization may

not hold. The counterexample of Section 1.6.2 fits the setting of problem (1.4.6) with

f1(x1, y, α1) = cos y+1, f2(x1, y, α2) = x1+α2, ℓ ≡ 0 and h = h(x1). Condition (1.4.12)

fails in this example because

max
|α2|≤1

−q · f2(x1, y, α2) = −qx1 + |q|

can be negative for some q ∈ R if |x1| > 1. By Proposition 1.6.1, homogenization is

not guaranteed in this case. If instead |x1| ≤ 1, then −qx1 + |q| ≥ 0; thus (1.4.12) is

satisfied and homogenization holds. By using (1.4.16) we can compute

H̄(x1, p1) = max
y∈R

−p1(cos y + 1) = 2p−1 ,

according with formula (1.3.4).

Here again we can deduce convergence of the singularly perturbed dynamics. Indeed,

the limiting relaxed control set Z(x) ≡ Z = {δy(·) : y(·) : [0,∞) → TN2} is independent

of x, and Lemma 1.2.2 automatically holds. We can hence prove the same convergence

result for trajectories as proved in Theorem 1.3.2 and Theorem 1.3.3.

Corollary 1.4.3. Under the same assumptions as in Theorem 1.4.2, every solution to

(1.4.9) is an accumulation point to a sequence of trajectories (1.4.6) with respect to the

uniform convergence topology.
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Corollary 1.4.4. Under the same assumptions as in Theorem 1.4.2, every accumula-

tion point with respect to the uniform convergence topology of a sequence of trajectories

(1.4.6) as ε→ 0, is a solution to the convexification of (1.4.9).

Finally let us conclude these two sections by the next remark on the dependency of

the limiting dynamics on the slow variables.

Remark 1.4.2. Notice that in the three cases considered in Theorem 1.3.1, Theorem

1.4.1 and Theorem 1.4.2 the limiting dynamics is always in dimension N1 being sta-

tionary with respect to x2. Moreover, in the latter case, since the dynamics depend on

x2 only through oscillations x2/ε, the limiting dynamics (1.4.9) in not influenced by the

initial state of x2.

1.5 A different relaxation for uncontrolled oscilla-

tions

We now consider the case in which the dynamics for x2 in (1.1.1) is not controlled,

that is f2 = f2
(
x, x2

ε

)
. We are dealing with

ẋ1(t) = f1

(
x(t), x2(t)

ε
, α(t)

)
ẋ2(t) = f2

(
x(t), x2(t)

ε

)
x(0) = x.

(1.5.1)

Since only the dynamics for x1 is controlled, we use the notation α ∈ A for the controls.

The value function vε(t, x) := infα∈A J
ε(t, x, α), with Jε as in (1.1.2), solves


∂tv

ε −Dx2v
ε · f2

(
x,
x2
ε

)
+max

α∈A

{
−Dx1v

ε · f1
(
x,
x2
ε
, α
)
− ℓ
(
t, x,

x2
ε
, α
)}

= 0

in (0,+∞)×RN

vε(0, x) = h(x) in RN .

(1.5.2)
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As before, we look for a solution of (1.5.2) of the form vε(t, x) = uε(t, x, x2

ε
). Then

uε(t, x, y) solves
∂tu

ε −
(
Dx2u

ε +
1

ε
Dyu

ε

)
· f2 (x, y)

+max
α∈A

{−Dx1u
ε · f1 (x, y, α)− ℓ (t, x, y, α)} = 0 in (0,+∞)×RN ×RN2

uε(0, x, y) = h(x) in RN ×RN2 .

(1.5.3)

The unique solution of the problem above is the value function

uε(t, x1, x2, y) = inf
α∈A

{∫ t

0

ℓ (s, x1(s), x2(s), y(s), α(s)) + h(x1(t), x2(t))

}
associated to the singularly perturbed dynamics obtained from (1.5.1) by introducing

the additional variable y = x2/ε:

ẋ1(t) = f1 (x1(t), x2(t), y(t), α(t))

ẋ2(t) = f2 (x1(t), x2(t), y(t))

ẏ(t) = 1
ε
f2 (x1(t), x2(t), y(t))

x(0) = (x1, x2), y(0) = y.

(1.5.4)

1.5.1 A weak convergence result

Fix x ∈ RN and consider the fast subsystem of (1.5.4):

ẏ(t) = f2(x, y(t)), y(0) = y. (1.5.5)

Given a measure µ in the set of periodic Radon probability measures on RN2 (which we

can identify with the set of Radon probability measure on the torus TN2) and a function

φ, continuous and ZN2-periodic in RN2 , we define

µ(φ) :=

∫
TN2

φ(y)dµ(y). (1.5.6)

We denote by St the semigroup associated to the dynamics:

Stφ(y) := φ(y(t)), y(·) solving (1.5.5).



52 Section 1.5 - A different relaxation for uncontrolled oscillations

Definition 1.5.1. A periodic Radon probability measure on RN2, µ, is said to be in-

variant for the dynamics (1.5.5) if

µ(Stφ) = µ(φ), for any t ≥ 0 and φ ∈ Cper(R
N2). (1.5.7)

The connection between ergodicity and invariant measure is stated in the following

Proposition quoted from [4] (see also [69] and [159]).

Proposition 1.5.1. The dynamics (1.5.5) has an invariant probability measure. The

invariant probability measure is unique if and only if

for every φ ∈ C(TN2), lim
t→+∞

1

t

∫ t

0

Ssφ(y)ds = const uniformly w.r.t. y. (1.5.8)

In this case the constant in (1.5.8) is µ(φ).

Proof. See Proposition 3.1 in [4].

To stress the fact that invariant measures of (1.5.5) may depend on the choice of x

we denote it by µx.

We expect from [4] that the effective Hamiltonian be the average of the Hamiltonian

in the y variables with respect to an ergodic measure µx. We will rewrite it as a Bellman

Hamiltonian by means of the following extended set of controls

Aex(x) := L1
(
(TN2 , µx);A

)
.

Note that Aex(x), the set of integrable functions from the measure space (TN2 , µx) to

A, contains a copy of A, given by the constant functions. Define now the average of the

vector field f1 and the running cost ℓ as follows

f̂1(x, α) :=

∫
TN2

f1(x, y, α(y)) dµx(y), ℓ̂(s, x, α) :=

∫
TN2

ℓ(s, x, y, α(y)) dµx(y), α ∈ Aex(x).

Remark 1.5.1. For any t > 0 and y ∈ RN2 consider the solution y(s) of (1.5.5) and

define the occupational measure (in P(TN2))

µt,x,y :=
1

t

∫ t

0

δy(s)ds.

Unlike the controlled case of Section 1.3, since the dynamics is now uncontrolled, occu-

pational measures are now operating just on state space. We denote by Z0(x) the set of
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measures µx ∈ P(TN2) such that

µx = lim
n→∞

µtn,x,y weak-star

for some tn → +∞ and y ∈ RN2. Although the dynamics (1.5.5) is not controlled,

in analogy with the set Z(x) of Section 1.3, the set Z0(x) can be interpreted as a set

of limiting relaxed controls. Observe that any µx ∈ Z0(x) is invariant in the sense of

Definition 1.5.1. Then, if µx is the unique invariant measure for (1.5.5), then Z0(x) =

{µx} and, arguing as in (1.2.8) we discover∫
TN2

f2(x, y) dµx(y) = 0. (1.5.9)

The following Lemma is inspired by a time-averaging result in [28].

Lemma 1.5.1. Fix t > 0, x, p ∈ RN and let H1(t, x, y, p) := max
α∈A

{−p · f1(x, y, α) −
ℓ(t, x, y, α)}. Then∫

TN2

H1(t, x, y, p) dµx(y) = sup
α∈Aex(x)

{−p · f̂1(x, α)− ℓ̂(t, x, α)}. (1.5.10)

Proof. We name I the left hand side and G the right hand side of (1.5.10). For any

ε > 0 there is αε ∈ Aex(x) such that

G ≤ −p · f̂1(x, αε)− ℓ̂(t, x, αε) + ε

= −
∫
TN2

[p · f1(x, y, αε(y)) + ℓ(t, x, y, αε(y))] dµx(y) + ε

≤ I + ε

which proves the inequality I ≥ G.

For the opposite inequality freeze t, x, p, let F (y, α) := −p · f1(x, y, α)− ℓ(t, x, y, α),

and observe that H1(y) ∈ F (y, A) for all y ∈ TN2 . Since H1 and F are continuous,

µx is finite, and A is compact, a classical selection theorem (e.g., [94, Theorem 7.1, p.

66]) implies the existence of a measurable selector, i.e., γ ∈ Aex(x) such that H1(y) =

F (y, γ(y)) for all y ∈ TN2 . Then

I = −
∫
TN2

[p · f1(x, y, γ(y)) + ℓ(t, x, y, γ(y))] dµx(y) = −p · f̂1(x, γ)− ℓ̂(t, x, γ) ≤ G,

which completes the proof.

In the next Theorem we establish an explicit expression for the effective Hamiltonian
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through invariant probability measures and a weak convergence result for the semilimits

of solutions of the associated singular perturbation problem (1.5.3).

Theorem 1.5.1. Let uε(t, x, y) be a solution of (1.5.3). Assume that for any x ∈ RN

the dynamics (1.5.5) has a unique invariant probability measure µx. Then the upper and

lower semilimit of uε(t, x, y) are respectively a subsolution and a supersolution of
∂tv + sup

α∈Aex(x)

{
−Dx1v · f̂1(x, α)− ℓ̂(t, x, α)

}
= 0 in (0,+∞)×RN

v(0, x) = h(x) in RN .

(1.5.11)

Proof. Let us denote the Hamiltonian in (1.5.3) as

G
(
t, x, y, p1, p2, q

)
= −q · f2(x, y) +G1

(
t, x, y, p1, p2

)
with

G1

(
t, x, y, p1, p2

)
= −p2 · f2(x, y) + max

α∈A
{−p1 · f1(x, y, α)− ℓ(t, x, y, α)} .

We claim that the effective Hamiltonian is

H̄
(
t̄, x̄, p̄1

)
=

∫
TN2

max
α∈A

{
−p̄1 · f1(x̄, y, α)− ℓ(t̄, x̄, y, α)

}
dµx(y). (1.5.12)

To prove the claim (1.5.12) we fix t̄ > 0, x̄ ∈ RN , p̄1 ∈ RN1 and p̄2 ∈ RN2 and

consider the evolutive cell problem

∂tw −Dyw · f2(x̄, y) +G1

(
t̄, x̄, y, p̄1, p̄2

)
= 0 in (0,+∞)×RN2

with initial condition w(0, y) = 0. Since the equation above is linear, its unique viscosity

solution is

w(t, y) =

∫ t

0

G1

(
t̄, x̄, y(s), p̄1, p̄2

)
ds

with y(·) solving (1.5.5). By hypothesis, the dynamics (1.5.5) admits a unique invariant

measure µx. Then, by Proposition 1.5.1, we have

lim
t→+∞

w(t, y)

t
= lim

t→+∞

1

t

∫ t

0

SsG1

(
t̄, x̄, y, p̄1, p̄2

)
ds = const

uniformly in y. The fact that the ratio w(t, y)/t converges to a constant in a uniform way

with respect to y, as t → +∞, guarantees that G is ergodic at (t̄, x̄, p̄1, p̄2). Moreover

the constant above gives the value of the effective Hamiltonian at (t̄, x̄, p̄1, p̄2) (see [4,
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Sect. 2.1]); we have

µx(G1) =

∫
TN2

G1

(
t̄, x̄, y, p̄1, p̄2

)
dµx(y)

=

∫
TN2

[
−p̄2 · f2(x̄, y) + max

α∈A

{
−p̄1 · f1(x̄, y, α)− ℓ(t̄, x̄, y, α)

}]
dµx(y).

Taking also into account (1.5.9) we obtain (1.5.12). Then the conclusion follows from

Proposition 1.2.1 and Lemma 1.5.1.

1.5.2 Convergence for ergodic measure independent of the slow

variables

In this section we assume in addition that

the unique invariant measure µ of the system (1.5.5) is independent of x. (1.5.13)

Of course this assumption is satisfied if f2 = f2(y) is independent of x = (x1, x2).

Another interesting case is the following.

Example 1.1. Assume f2 = f2(x) is independent of y and satisfies the non-resonance

condition

f2(x) · k ̸= 0 ∀ k ∈ ZN2\{0}, x ∈ RN .

Then the unique invariant probability measure of ẏ = f2(x) is the Lebesgue measure on

TN2, for all x, by a classical result in ergodic theory.

Under the current assumption the extended control set Aex(x) = Aex is independent

of x and we set Aex := {α : [0,+∞) → Aex measurable}.

Corollary 1.5.1. Assume (1.5.13). Then the sequence vε(t, x) of solutions of (1.5.2)

converges locally uniformly in (0,+∞)×RN , as ε→ 0, to the unique viscosity solution

v of (1.5.11). Moreover

v(t, x) = inf
α∈Aex

{∫ t

0

ℓ̂ (s, x(s), α(s)) ds+ h(x(t))

}
, (1.5.14)

where x(·) is subject to 
ẋ1(t) = f̂1 (x(t), α(t))

ẋ2(t) = 0

x(0) = x.

(1.5.15)
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Proof. We look for solutions of (1.5.2) of the form vε(t, x) = uε(t, x, x2

ε
). Then uε(t, x, y)

solves (1.5.3) and by Theorem 1.5.1 the semilimits ū∗ and u∗ of uε are respectively a

supersolution and a subsolution of (1.5.11). Thanks to formula (1.5.12) we observe that

H̄ satisfies the assumptions of the comparison principle, because it is an average of H

with respect to a measure which is independent of x. Thus ū∗ and u∗ coincide and uε

converges locally uniformly in (0,+∞) × RN × RN2 to the unique solution of (1.5.11).

By Remark 1.2.1 the upper and lower semilimits of vε also coincide and we conclude that

the convergence of vε(t, x) = uε(t, x, x2

ε
) to the unique solution of (1.5.11) is uniform.

To complete the proof we observe that (1.5.11) is the Bellman equation associated to

the value function V (x, t) on the right hand side of (1.5.14). Therefore it is enough to

check that the control problem (1.5.14), (1.5.15) satisfies some basic structure conditions

that imply V continuous and solving (1.5.11) in viscosity sense. For instance, the

assumptions of Chapter III in [19] are easily verified. In particular, the continuity of ℓ̂

and f̂1 from [0,+∞)×RN ×Aex to R and from RN ×Aex to RN1 , respectively, follows

from the following argument by contradiction. Assume tn → t, xn → x and αn → α in

L1
(
(TN2 , µ);A

)
, ℓ̂(tn, xn, αn) → L, but L ̸= ℓ̂(t, x, α). We can extract a subsequence

nk such that αnk
→ α µ−almost everywhere. Then by the Dominated Convergence

Theorem ℓ̂(tnk
, xnk

, αnk
) → ℓ̂(t, x, α), a contradiction that achieves the proof.

The convergence of the trajectories can be deduced again from the convergence of

the value function as it was proved previously. The difference now is that instead of the

limiting relaxed control set Z(x) which is now nothing but the singleton {µ}, we have

to consider the extended set of controls Aex(x) for the slow dynamics. But since we are

assuming (1.5.13), the latter is independent of x and no regularity assumption of the

invariant measure is needed. This case is reminiscent of the one in section 1.4.1 and we

have the following results whose proofs are mutatis mutandis the same as for Theorem

1.3.2 and Theorem 1.3.3.

Corollary 1.5.2. Under the same assumptions as in Corollary 1.5.1, every solution to

(1.5.15) is an accumulation point with respect to the uniform convergence topology to a

sequence of trajectories of the singular perturbation system associated to (1.5.4).

Corollary 1.5.3. Under the same assumptions as in Corollary 1.5.1, every accumula-

tion point with respect to the uniform convergence topology of a sequence of trajectories

satisfying the singular perturbation system associated to (1.5.4) as ε → 0, is a solution

to the convexification of 1.5.15.

Remark 1.5.2. The same remark as in Remark (1.3.5) stands in this context.
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1.5.3 An example of simplified limit under a decoupling con-

dition

In this Section we give a representation of the solution to the effective Cauchy problem

(1.5.11) as value function of an optimal control problem, assuming that in (1.5.1)–(1.1.2)

the control variable and the oscillating term are decoupled in the dynamics for x1 and

in the running cost. This is inspired by some singular perturbation results in stochastic

control obtained in [116] and [21]. More precisely we consider
ẋ1(t) = ξ (x(t), α(t)) + η

(
x(t), x2(t)

ε

)
ẋ2(t) = f2

(
x(t), x2(t)

ε

)
x(0) = x,

(1.5.16)

Jε (t, x, α) :=

∫ t

0

[
λ (s, x(s), α(s)) + γ

(
x(s),

x2(s)

ε

)]
ds+ h(x(t)), (1.5.17)

with ξ = ξ(x, α) : RN × A → RN1 bounded and uniformly continuous, Lipschitz-

continuous uniformly with respect to α; η = η(x, y) : RN × RN2 → RN1 and γ =

γ(x, y) : RN × RN2 → R bounded and uniformly continuous and ZN2-periodic with

respect to y; λ : [0,+∞)×RN × A→ R bounded and uniformly continuous.

The value function vε(t, x) := inf
α∈A

Jε(t, x, α) solves


∂tv

ε +max
α∈A

{−Dx1v
ε · ξ(x, α)− λ(t, x, α)}

= Dx1v
ε · η

(
x,
x2
ε

)
+Dx2v

ε · f2
(
x,
x2
ε

)
+ γ

(
x,
x2
ε

)
in (0,+∞)×RN

vε(0, x) = h(x) in RN .

(1.5.18)

In this case the limit problem satisfied by the limit of vε is explicit; the following

Corollary is an immediate application of Theorem 1.5.1 and Corollary 1.5.1.

Corollary 1.5.4. Assume (1.5.13). Put

f̄1(x, α) = ξ(x, α) +

∫
TN2

η(x, y)dµ(y), ℓ̄(t, x, α) = λ(t, x, α) +

∫
TN2

γ(x, y)dµ(y).

(1.5.19)
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Then, as ε→ 0 the sequence vε(t, x) of solutions of (1.5.18) converges, locally uniformly

in (0,+∞)×RN to

v̄(t, x) = inf
α∈A

{∫ t

0

ℓ̄ (s, x(s), α(s)) + h(x(t))

}
, (1.5.20)

where x(·) is subject to 
ẋ1(t) = f̄1 (x(t), α(t))

ẋ2(t) = 0

x(0) = x.

(1.5.21)

Proof. By Theorem 1.5.1, and Corollary 1.5.1 vε(t, x) converges locally uniformly in

(0,∞)×RN to the unique solution of problem
∂tv +max

α∈A
{−Dx1v · ξ(x, α)− λ(t, x, α)}

=

∫
TN2

[
Dx1v · η (x, y) + γ (x, y)

]
dµ(y) in (0,+∞)×RN

v(0, x) = h(x) in RN .

(1.5.22)

Thanks to (1.5.19), problem (1.5.22) reads as∂tv +max
α∈A

{
−Dx1v · f̄1(x, α)− ℓ̄(t, x, α)

}
= 0 in (0,+∞)×RN

v(0, x) = h(x) in RN .
(1.5.23)

Then, by standard results in optimal control theory, the unique solution of the previous

problem is the value function v̄(t, x) defined in (1.5.20).

Remark 1.5.3. Note that Corollary 1.5.1 and 1.5.4 are in strict connection with The-

orem 1.4.1. In fact, as observed in Remark 1.5.1, since any limiting relaxed control is

invariant for the dynamics (1.5.5), if hypothesis (1.5.13) holds, the set Z0 is independent

of x and coincides with the singleton {µ}.

Remark 1.5.4. The convergence of the trajectories can be deduced from the convergence

of the value function similarly to Corollary 1.5.2 and Corollary 1.5.3 with no changes

in the proofs.
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1.6 Appendix

1.6.1 Proof of Lemma 1.2.2

To prove the upper semicontinuity of the set-valued map x ⇝ Z(x) we will follow

several steps. First we will show that, thanks to Proposition 1.2.2, it is equivalent to

prove that the latter map is outer semicontinuous4 for which a sequential characteri-

zation exists and will be useful. Then assuming the time bounded controllability (see

Definition 1.2.1), we can represent the set Z(x) in a different way that will turn out to

be handy for using the sequential characterization proven in the previous step.

Lemma 1.6.1. The set-valued map x⇝ Z(x) is upper semicontinuous if and only if it

is outer semicontinuous.

Proof. Thanks to Proposition 1.2.2, Z(x) is a compact subset of P(TN2 × A2) in the

weak star topology, and hence is locally bounded. Therefore, a result in [148, Theorem

5.19, p.160] insures that the outer semicontinuity is equivalent to the upper semiconti-

nuity defined as in [15, Definition 1.1.1.] (see the footnote in Lemma 1.2.2).

The next Lemma follows from a result in [89, Theorem 2.1], that we recall here for

consistency.

Lemma 1.6.2. Consider the control system (1.2.5) for an arbitrary fixed x ∈ RN

ẏ(t) = f2(x, y(t), α2(t)), y(0) = y

where the function f2(x, ·, ·) : (y, α2) ∈ TN2 × A2 → RN2 is continuous in (y, α2),

Lipschitz in y, A2 is a compact metric space, and the controls are Lebesgue measurable

functions. If this control system is bounded time controllable (see Definition 1.2.1), then

the corresponding limit occupational measure set Z(x) coincides with

W (x) :=

{
µ

∣∣∣∣ µ ∈ P(TN2 × A2);

∫
TN2×A2

∇ϕ(y) · f2(x, y, u)µ(dy, du) = 0 ∀ ϕ ∈ C1(TN2)

}
,

(1.6.1)

i.e., Z(x) = W (x).

Before presenting the next Lemma, we shall introduce some notation and definitions

which will be used in the sequel. For a fixed x, we shall denote by Γ(t, y0) the set of all

occupational measures defined as in §1.2.2
4Definition (see [148, Definition 5.4, p.152]) A set-valued map x ⇝ F(x) is outer semicontinuous

at xo if lim sup
x→xo

F(x) ⊂ F(xo).
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Γ(t, y0) :=
⋃

(y(·),α2(·))

{
µt,x,y0,α2

}

where µt,x,y0,α2(Q) =
1

t

∫ t

0

δ(y(s),α2(s))(Q)ds

=
1

t

∣∣{s ∈ [0, t] | (y(s), α2(s)) ∈ Q}
∣∣

where y(0) = y0, Q is any Borel set of TN2 × A2 and | · | is the Lebesgue measure.

Following [89], we shall treat the set P(TN2 × A2) as a compact metric space with a

metric ρ, which is consistent with its weak convergence topology (see, e.g., [35]) . A

sequence µk ∈ P(TN2 × A2) converges to µ ∈ P(TN2 × A2) in this metric if and only if

lim
k→∞

∫
TN2×A2

q(y, u)dµk(y, u) =

∫
TN2×A2

q(y, u)dµ(y, u)

for any continuous q(u, y) : TN2 ×A2 → R. A possible choice for such a metric ρ is the

one adopted in [89] defined as follows: ∀ µ′, µ′′ ∈ P(TN2 × A2),

ρ(µ′, µ′′) :=
∞∑
l=1

1

2l

∣∣∣∣∫
TN2×A2

ql(y, u)dµ
′(y, u)−

∫
TN2×A2

ql(y, u)dµ
′′(y, u)

∣∣∣∣ ,
where ql(·), l = 1, 2, ... is a sequence of Lipschitz continuous functions which is dense

in the unit ball of the space of continuous functions C(TN2 × A2). Therefore, one

can define the Hausdorff metric ρH on the set of subsets of P(TN2 × A2) as follows:

∀Γi ⊂ P(TN2 × A2), i = 1, 2;

ρH(Γ1,Γ2) := max

{
sup
µ∈Γ1

ρ(µ,Γ2), sup
µ∈Γ2

ρ(µ,Γ1)

}
,

where ρ(µ,Γi) := inf
µ′∈Γi

ρ(µ, µ′).

Armed with these tools, we are now ready to prove Lemma 1.6.2.

Proof. Fix an element x. Thanks to [89, Theorem 2.1 (iii)], it is sufficient to prove that

ρH(Γ(S, y
′),Γ(S, y′′)) ≤ ω(S), ∀ y′, y′′ ∈ TN2 (1.6.2)

for some ω(S), lim
S→∞

ω(S) = 0. Indeed, this insures the existence of a limit occupational

measure set Γ ≡ Z(x), as the limit of sets Γ(S, y), ∀ y ∈ TN2 , in the Hausdorff metric,

and which will turn out to be equal to W as defined in the Lemma 1.6.2 thanks to [89,

Theorem 2.1 (ii)]. To show that (1.6.2) holds, we will adapt the proof in [156, 1.5].

Fix two initial conditions y1,o, y2,o, and set Γi := Γ(S, yi,o), i = 1, 2. We will prove that
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there exists a positive constant C such that ∀ µ′′ ∈ Γ2, ρ(µ
′′,Γ1) ≤ CS−1 for S large

enough. If µ′′ ∈ Γ2, then there exists a control α2 ∈ A2 such that µ′′ = µS,y2,o,α2 . Since

the fast subsystem is bounded time controllable, ∃ T > 0 and a control uo ∈ A2 such

that the corresponding trajectory starting from y1,o meets the initial position y2,o at

some to ≤ T , i.e. yu
o
(to; y1,o) = y2,o. Define a control u ∈ A2 as

u(t) =

u
o(t), if t ≤ to

α2(t− to), if t > to

We use the corresponding trajectory yu(·; y1,o) to define µ′ := µS,y1,o,u. Since yu(·; y1,o)
and yα2(·; y2,o) agree ∀ S ≥ to, we have

ρ(µ′′,Γ1) ≤ ρ(µ′′, µ′)

=
∞∑
l=1

1

2l

∣∣∣∣∫
TN2×A2

ql(y, u)dµ
′(y, u)−

∫
TN2×A2

ql(y, u)dµ
′′(y, u)

∣∣∣∣
=

1

S

∞∑
l=1

1

2l

∣∣∣∣∫ S

0

ql

(
yu(t; y1,o), u(t)

)
dt−

∫ S

0

ql

(
yα2(t; y2,o), α2(t)

)
dt

∣∣∣∣
≤ 1

S

∞∑
l=1

1

2l

(∫ to

0

∣∣∣∣ql(yu(t; y1,o), u(t))∣∣∣∣dt+ ∫ S

S−to

∣∣∣∣ql(yα2(t; y2,o), α2(t)

)∣∣∣∣dt)
≤ 2toL

S
≤ 2TL

S

where L =
∞∑
l=1

1
2l
∥ql∥∞, which is finite since ql is a sequence of Lipschitz continuous

functions dense in the unit ball of C(TN2 ×A2). Hence, (1.6.2) follows immediately.

Finally, to prove the Lemma (1.2.2) it suffices, thanks to Lemma 1.6.1 and Lemma

1.6.2, to show that the set-valued map x⇝ W (x) is indeed outer semicontinuous.

Proof. We want to show that lim sup
x→x̄

W (x) ⊂ W (x̄), for all x̄, that is

∀ xn → x̄, ∀µn ∈ W (xn), µn
∗
⇀ µ̄⇒ µ̄ ∈ W (x̄)

Let ϕ be in C1(TN2), and µn ∈ W (xn) such that xn → x̄ and µn
∗
⇀ µ̄. We have∫

TN2×A2

∇ϕ(y) · f2(xn, y, u)dµn(y, u) = 0, ∀ n,∀ ϕ ∈ C1.
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We need to show that

M(ϕ) :=

∫
TN2×A2

∇ϕ(y) · f2(x̄, y, u)dµ̄(y, u) = 0, ∀ϕ ∈ C1

We omit TN2 ×A2 in the integral for clarity of notation, and denote by Lf2 the Lipschitz

constant of f2. We have

|M(ϕ)| =
∣∣∣∣ ∫ ∇ϕ(y) · (f2(x̄, y, u)− f2(xn, y, u))dµ̄(y, u) +

∫
∇ϕ(y) · f2(xn, y, u)d(µ̄− µn)(y, u)

∣∣∣∣
≤
∫

|∇ϕ(y)|dµ̄(y, u)Lf2︸ ︷︷ ︸
=:C(ϕ)

|x̄− xn|+
∣∣∣∣ ∫ ∇ϕ(y) · f2(xn, y, u)d(µ̄− µn)(y, u)

∣∣∣∣
≤ C(ϕ)|x̄− xn|+

∣∣∣∣ ∫ ∇ϕ(y) · (f2(xn, y, u)− f2(x̄, y, u))d(µ̄− µn)(y, u)

∣∣∣∣+
+

∣∣∣∣ ∫ |∇ϕ(y) · f2(x̄, y, u)|d(µ̄− µn)(y, u)

∣∣∣∣
≤ C(ϕ)|x̄− xn|+

∣∣∣∣ ∫ |∇ϕ(y)|d(µ̄− µ̄n)(y, u)Lf |x̄− xn|
∣∣∣∣+

+

∣∣∣∣ ∫ |∇ϕ(y) · f2(x̄, y, u)|d(µ̄− µn)(y, u)

∣∣∣∣
≤
(
C(ϕ) + Lf2

∣∣∣∣ ∫ |∇ϕ(y)|d(µ̄− µ̄n)(y, u)

∣∣∣∣)︸ ︷︷ ︸
=:C(ϕ)

|x̄− xn|+

+

∣∣∣∣ ∫ |∇ϕ(y) · f2(x̄, y, u)|d(µ̄− µn)(y, u)

∣∣∣∣
Now, as n → ∞, the first term goes to 0 since the coefficient (again denoted by) C(ϕ)

is constant, and in the second term, the function (y, u) 7→ |∇ϕ(y) · f2(x̄, y, u)| defines a
bounded and continuous function on TN2×A2 and µn

∗
⇀ µ̄. This insures thatM(ϕ) = 0,

for all ϕ ∈ C1, that is µ̄ ∈ W (x̄).

Therefore, the set-valued map x ⇝ W (x) is outer semicontinuous. And thanks to

Lemma 1.6.2, x⇝ Z(x) is outer semicontinuous. Finally, using Lemma 1.6.1, x⇝ Z(x)

is upper semicontinuous, which is the desired result.



Chapter 1 - Periodic homogenization of deterministic control problems 63

1.6.2 A counterexample to homogenization

We revisit a counterexample to uniform convergence of solutions of singular pertur-

bation problems presented in [4, Section 8]. Consider the following dynamics in R2

ẋ1(t) = cos
(

x2(t)
ε

)
+ 1, x1(0) = x1

ẋ2(t) = x1(t) + α2(t), x2(0) = x2

|α2| ≤ 1 (1.6.3)

and the terminal cost functional given by

J(t, x1) = h(x1(t))

where h : R→ R is a strictly increasing continuous function. The value function is then

vε
(
t, x1, x2

)
= inf

{
h(x1(t))

∣∣∣x1(·) solves (1.6.3)} .
Proposition 1.6.1. The family vε

(
t, x1, x2

)
of solutions of∂tvε − vεx1

(
cos
(
x2

ε

)
+ 1
)
+
(
|vεx2

| − x1v
ε
x2

)
= 0 in (0,+∞)×R2

vε
(
0, (x1, x2)

)
= h(x1) in R2.

(1.6.4)

converges uniformly in any compact subset of [0,+∞)×R\{1}×R, but not on compact

subsets of [0,+∞)×R×R.

Proof. The Hamiltonian in (1.6.4) is

H
(
x1,

x2
ε
, p1, p2

)
= −p1

(
cos
(x2
ε

)
+ 1
)
+ (|p2| − x1p2) . (1.6.5)

We look for a solution of (1.6.4) of the form vε
(
t, x1, x2

)
= uε

(
t, x1,

x2

ε

)
. Hence

uε(t, x1, y) solves the re-scaled equation
∂tu

ε +H

(
x1, y, u

ε
x1
,
1

ε
uεy

)
= 0 in (0,+∞)×R2

uε(0, x1, y) = h(x1) in R2,

(1.6.6)

whose unique solution is the value function

uε(t, x1, y) = inf {h(x1(t))}
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for the singularly perturbed control systemẋ1(t) = cos y(t) + 1 x1(0) = x1

ẏ(t) = 1
ε
[x1(t) + α2(t)] , y(0) = y

|α2| ≤ 1. (1.6.7)

System (1.6.7) is obtained from (1.6.3) by introducing the fast variable y = x2/ε

and observing that - since in (1.6.3) the drift for x2, i.e. f2(x1, α2) = x1 + α2, does not

depend on x2 - we can ignore the dynamics for x2. Consequently we expect the limit of

vε to be independent of x2.

For any x1 ∈ R the fast dynamics ẏ(t) = x1+α2(t) is bounded time controllable (see

Definition 1.2.1), thus H is ergodic with effective Hamiltonian H̄(x1, p1). Notice that

H is not coercive with respect to p2 when |x1| > 1 because, in this case, the quantity

−x1p2 + |p2| can be negative for some p2.

Taking into account formula (1.2.6) and proceeding along the lines of [4, Lemma 8.2],

we come to the following expression for H̄:

H̄(x1, p1) = sup
{
−p1v

∣∣∣ v ∈
[
f̃(x1), 2− f̃(x1)

]}
(1.6.8)

where f̃(x1) := 1 − cos θ, and θ is the unique solution of the equation tan θ − θ =
π
2
(|x1| − 1)+. Note that f̃(x1) is not Lipschitz at x1 = 1.

Arguing again as in [4, Section 8], and taking into account that h is strictly increasing,

we observe that the effective problem∂tu+ H̄(x1, ux1) = 0 in (0,+∞)×R

u(0, x1) = h(x1) in R,
(1.6.9)

is solved by the value function ū(t, x1) = inf{h(x1(t))}, where the infimum is taken over

solutions of the dynamics

ẋ1(t) = f̃(x1(t)), x1(0) = x1. (1.6.10)

The dynamics above has exactly one solution if and only if x1 ̸= 1; a flow gtx1 can be

consequently associated in this case. If instead x1 = 1 there are infinitely many solutions,

because the drift f̃ is not Lipschitz continuous at that point. In this case we denote

by x+1 (t) and x
−
1 (t) the largest and the smallest solution of (1.6.10) respectively; both

x+1 and x−1 can be computed explicitly in this example. Lemma 8.3 in [4] provides an

explicit representation of the maximal supersolution and minimal subsolution of (1.6.9),
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denoted by u♯(t, x1) and u♯(t, x1) respectively, in terms of solutions of (1.6.10):

u♯(t, x1) = u♯(t, x1) = h(gtx1), in [0,∞)×R\{1}, (1.6.11)

u♯(t, 1) = h(x−1 (t)) > h(x+1 (t)) = u♯(t, 1) for any t > 0. (1.6.12)

Using the formulas above we observe that u♯ coincides with (u♯)∗, the l.s.c. envelop of

u♯, which is the larger l.s.c. less than or equal to u♯. Since both u♯ and v∗ are l.s.c. and

v∗ ≤ u♯, we conclude that u♯ ≥ v∗ and then, by (1.2.4), u♯ = v∗; similarly, v̄∗ = u♯. In

particular, as noticed before, v̄∗ and v∗ do not depend on x2. The information gathered,

together with (1.2.4), give

u♯ = v∗ ≤ v̄∗ = u♯ in [0,+∞)×R. (1.6.13)

Now, by (1.6.11), the maximal supersolution and the minimal subsolution agree

everywhere except for x1 = 1. Then vε(t, x1, x2) converges uniformly on compact subsets

of [0,+∞) × R\{1} × R. On the other hand, by (1.6.12) and (1.6.13), v∗(t, 1) <

v̄∗(t, 1) for any t, thus vε cannot converge in any compact neighborhood of any point in

[0,+∞)× {1} ×R.





Chapter 2

Deep relaxation via singular

perturbations of stochastic control

problems

2.1 Introduction

We are interested in studying the asymptotic behavior as ε → 0 of a system of

controlled and singularly perturbed stochastic differential equations

dXt = f(Xt, Yt, ut) dt+
√
2σε(Xt, Yt, ut) dWt,

dYt =
1

ε
b(Xt, Yt) dt+

√
2

ε
ϱ(Xt, Yt) dWt,

(SDE
(
1
ε

)
)

where Xt ∈ Rn is the slow dynamics, Yt ∈ Rm is the fast dynamics, ut is the control

taking values in a given compact set U and Wt is a multidimensional Brownian motion.

We will allow the components of the drift and the diffusion of the slow dynamics to

depend at most linearly on the fast process Y . And while the diffusion coefficient of

the process X can be degenerate (i.e. σε = 0 is possible), the diffusion coefficient of the

process Y is required to be nondegenerate. The precise assumptions are give in Section

2.2. We carry our analysis in the context of stochastic optimal control problems of the

form

sup
u

J(t, x, y, u) := E

[
eλ(t−T )g(XT , YT ) +

∫ T

t

ℓ(s,Xs, Ys, us)e
λ(s−T )ds

∣∣∣∣Xt = x, Yt = y

]
.

Such a quantity is denoted by V ε(t, x, y) and refers to the value function which solves

in the viscosity sense a fully nonlinear parabolic degenerate PDE in (0, T )×Rn ×Rm.

67
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Our motivation is the Stochastic Gradient Descent algorithm in the context of Deep

Learning and Big Data analysis, where one needs to consider the possible unboundedness

of the data and the state space. In particular, such a kind of singularly perturbed system

of SDEs has been considered (with no control) in [64] and where it is used to build an

algorithm for a Stochastic Gradient Descent. In this chapter, we show how our results

allow us to prove such a convergence with or without a control under rather general

assumptions. This also captures the previous results in [21, 23] where the coefficients

in the slow variable are assumed to be bounded with respect to the fast variables.

Moreover, we rely in our analysis on arguments and methods sometimes different from

those in [21, 23] and borrowed from probability theory, which were key ingredients for

handling unboundedness of the data and the state domain.

Let us also mention that our results also recover a large range of applications in

finance, e.g. models of pricing and trading derivative securities in financial markets

with stochastic volatility as it has been done in [23], or applications in economics and

advertising theory as it is the case in [21].

There is a wide literature on singular perturbations for control systems that goes back

to the late 60’s [112], and also for diffusion processes, with and without control, and

different models with fast variables have been studied since then both in deterministic

and stochastic settings and using methods of probability, analysis, measure theory, or

control. We refer the reader to the introduction in [21, 23] where a large but non-

exhaustive list of references on these topics are provided.

We will however mention two types of results concerning the singular perturbations

problem for stochastic differential equations

without control: In a series of papers [141, 142, 143] Pardoux and Veretennikov tack-

led the problem of approximation of diffusions from the point of view of Poisson

equation where the differential operator is the generator of the singularly per-

turbed stochastic differential equations (without control). And hence they proved

the convergence in distribution (in [141]) under quite general assumptions using

the generator of the latter. Other convergence results are in [142, 143]

with control: In [47] (see also [48] and the references therein) Borkar and Gaitsgory

studied the convergence of the singularly perturbed stochastic differential equa-

tions with control both in the slow and in the fast variables. They relied on

the Limit Occupational Measure Set to prove convergence in law to the averaged

system. They also recovered stronger convergence under further assumptions.
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In the present chapter, we analyse the convergence of singular perturbations in the

framework of stochastic control and we rely on the associated Hamilton-Jacobi-Bellman

equation. We also insist on making assumptions that can be easily checked and which

do comply with the applications we are interested in.

Overview.

We are interested in the behavior as ε→ 0 of the controlled and singularly perturbed

system of stochastic differential equations (SDE
(
1
ε

)
). We start first by embedding this

system in a family of control problems that we identify through there value function

V ε(t, x, y). The latter is characterized (Proposition 2.2.1) as the unique viscosity

solution to a Hamilton-Jacobi-Bellman equation. Then we rely on ergodicity of the fast

process to construct the effective Hamiltonian (Proposition 2.3.2) and initial data

(Proposition 2.3.3) that allow us to set the limit Cauchy problem. Using methods

from homogenization and viscosity theory, we prove (Theorem 2.4.1) the convergence

of V ε to the unique viscosity solution of the limit Hamilton-Jacobi equation. And only

after proving the effective Hamiltonian is of Bellman type (Proposition 2.5.1), by

means of a selection argument, we can consider the limit PDE as a Hamilton-Jacobi-

Bellman equation and we can identify (Theorem 2.5.2) its unique viscosity solution

with the value function of an optimal control problem with a stochastic differential

inclusion. At this stage we have the convergence of the value function of a family of

optimal control problems to a value function of another family of control problems. We

use the latter result to finally make precise (Theorem 2.5.3 and Theorem 2.5.4) the

limit system of SDE
(
1
ε

)
.

Organization of the chapter.

This chapter is organized as follows. In Section 2.2 we present the two scale stochas-

tic control problem and the assumptions that will stand all along this chapter, together

with the associated Hamilton-Jacobi-Bellman equation. Section 2.3 is devoted to the

study of the fast variables Y . We will state and prove some useful lemmas that are of

their own interest, using probabilistic arguments. Then we will construct the effective

Hamiltonian and initial data in a new way, different from what it has been done previ-

ously in the literature. This will be an important step for the convergence result of the

value function that we next show in Section 2.4. Indeed, we will rely in this section on

viscosity methods and will provide a new adaptation of the perturbed test function first

introduced in [78], in order to fit our unbounded context. Finally, in Section 2.5, We

show how our result applies to the control of stochastic gradient descent. In order to do



70 Section 2.2 - The two scale stochastic control problem

so, we show that the effective Hamiltonian enjoys an exchange property, using a selec-

tion argument borrowed from measure theory before we construct an effective optimal

control problem with a stochastic differential inclusion whose value function solves in

the viscosity sense the effective Cauchy problem of section 2.4. And only then, we can

provide the convergence results of the controlled and singularly perturbed trajectories.

2.2 The two scale stochastic control problem

2.2.1 The stochastic system

Let (Ω,F ,Ft,P) be a complete filtered probability space and let (Wt)t be an Ft-

adapted standard r-dimensional Brownian motion. We consider the following stochastic

control system
dXt = f(Xt, Yt, ut) dt+

√
2σε(Xt, Yt, ut) dWt, X0 = x ∈ Rn

dYt =
1

ε
b(Xt, Yt) dt+

√
2

ε
ϱ(Xt, Yt) dWt, Y0 = y ∈ Rm

(2.2.1)

For a given compact set U , f : Rn × Rm × U → Rn, σε : Rn × Rm × U → Mn,r,

b : Rn × Rm → Rm and ϱ : Rn × Rm → Rm,r are continuous functions, Lipschitz

continuous in (x, y) uniformly w.r.t. u ∈ U and ε > 0 and with linear growth in both x

and y, that is

for some C > 0, |f(x, y, u)|, ∥σε(x, y, u)∥ ≤ C(1 + |x|+ |y|), ∀ x, y, ∀ε > 0 (2.2.2)

for some C > 0, |b(x, y|, ∥ϱ(x, y)∥ ≤ C(1 + |x|+ |y|), ∀ x, y, (2.2.3)

Moreover we assume that

lim
ε→0

σε(x, y, u) = σ(x, y, u) locally uniformly, (2.2.4)

where σ : Rn × Rm × U → Mn,r satisfies the same conditions as σε. Finally, we

assume that a stronger1 version of the recurrence condition, introduced by Pardoux and

Veretennikov in [141] and usually called Khasminskii’s assumption, holds for the fast

variables Y·, that is the drift satisfies

∃ A,R > 0 s.t. ⟨y, b(x, y)⟩ < −A∥y∥, ∀ ∥y∥ ≥ R, ∀ x ∈ Rn (2.2.5)

1The assumption on the drift in the recurrence condition in [141] is: lim
|y|→∞

sup
x∈Rn

⟨y, b(x, y)⟩ = −∞

uniformly in x. This is satisfied as soon as (2.2.5) holds.
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and the diffusion ϱ driving the fast variables Yt is such that ϱϱ⊤ is uniformly bounded

and non degenerate, i.e.

∃ Λ, Λ > 0, s.t. Λ∥ξ∥2 ≤ ξϱ(x, y)ϱ⊤(x, y) · ξ = |ξϱ(x, y)|2 ≤ Λ∥ξ∥2, ∀ x, y, ξ. (2.2.6)

And we will not make any nondegeneracy assumption on the matrix σε, σ, so the case

σ ≡ 0 is allowed.

2.2.2 The optimal control problem

We define the following pay off functional for a finite horizon optimal control problem

associated to system (2.2.1) for t ∈ [0, T ]

J(t, x, y, u) := E

[
eλ(t−T )g(XT , YT ) +

∫ T

t

ℓ(s,Xs, Ys, us)e
λ(s−T )ds

∣∣∣∣ Xt = x, Yt = y

]
,

(2.2.7)

The associated value function is

V ε(t, x, y) := sup
u∈U

J(t, x, y, u), subject to (2.2.1) . ( OCP (ε) )

The discount factor is λ ≥ 0. The utility function g : Rn × Rm → R and the running

cost ℓ : [0, T ]×Rn ×Rm × U → R are continuous functions and satisfy

∃ K > 0 such that |g(x, y)|, |ℓ(s, x, y, u)| ≤ K(1 + |x|2 + |y|2), ∀x, y. (2.2.8)

The set of admissible control functions U is the standard one in stochastic control

problems, i.e. it is the set of Ft-progressively measurable processes taking values in U .

2.2.3 The HJB equation

The HJB equation associated via Dynamic Programming to the value function V ε is

−V ε
t +F

ε

(
t, x, y, V ε, DxV

ε,
DyV

ε

ε
,D2

xxV
ε,
D2

yyV
ε

ε
,
D2

x,yV
ε

√
ε

)
= 0, in (0, T )×Rn×Rm,

(2.2.9)

complemented with the obvious terminal condition

V ε(T, x, y) = g(x, y) (2.2.10)



72 Section 2.3 - Ergodicity of the fast variables and the effective data

This is a fully nonlinear degenerate parabolic equation (strictly parabolic in the y vari-

ables by the assumption (2.2.6)). We denote by Mn,m (respec. Sn) the set of matrices

of n rows and m columns (respec. the subset of n-dimensional squared symmetric ma-

trices). The Hamiltonian F ε : [0, T ]×Rn ×Rm ×R×Rn ×Rm × Sn × Sm ×Mn,m → R

is defined as

F ε(t, x, y, r, p, q,M,N,Z) := Hε(t, x, y, p,M,Z)− L(x, y, q,N) + λr, (2.2.11)

where

Hε(t, x, y, p,M,Z) := min
u∈U

{
−trace(σεσε⊤M)− f · p− 2trace(σεϱ⊤Z⊤)− ℓ

}
(2.2.12)

where σε, f are computed at (x, y, u), ℓ = ℓ(t, x, y, u) and ϱ = ϱ(x, y), and

L(x, y, q,N) := b(x, y) · q + trace(ϱ(x, y)ϱ⊤(x, y)N) (2.2.13)

We define also the Hamiltonian H which is as Hε where σε is replaced by σ

H(t, x, y, p,M,Z) := min
u∈U

{
−trace(σσ⊤M)− f · p− 2trace(σϱ⊤Z⊤)− ℓ

}
(2.2.14)

Our first result is the following proposition whose proof is, mutatis mutandis, the

same as [23, Proposition 3.1] or in [21].

Proposition 2.2.1. ([21, Proposition 2.1]) For any ε > 0, the function V ε in ( OCP (ε) )

is the unique continuous viscosity solution to the Cauchy problem (2.2.9)-(2.2.10) with

at most quadratic growth in x and y, i.e.,

∃ K > 0 such that |V ε(t, x, y)| ≤ K(1 + |x|2 + |y|2), ∀ t ∈ [0, T ], x ∈ Rn, y ∈ Rm.

(2.2.15)

Moreover the functions V ε are locally equibounded.

It is important to note that V ε is not bounded in y, but has a quadratic growth. This

comes from the assumption (2.2.2) together with (2.2.8).
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2.3 Ergodicity of the fast variables and the effective

data

Consider the diffusion processes in Rm obtained by putting ε = 1 in (2.2.1) and fixing

x ∈ Rn

dYt = b(x, Yt) dt+
√
2ϱ(x, Yt) dWt, Y0 = y ∈ Rm (2.3.1)

called fast subsystem. To recall the dependence on the parameter x, we will denote the

process in (2.3.1) as Y x
· . Observe that its infinitesimal generator is Lxw := L(x, y,Dyw,D

2
yyw)

with L defined by (2.2.13). In this section, we will rely on the invariant measure for the

process Y x
· in (2.3.1) (see for example [129])

Definition 2.3.1. We say that µx is an invariant measure for the process (2.3.1), if µx

is a probability measure satisfying∫
Rm

E[f(Yt) |Y0 = y] dµx(y) =

∫
Rm

f(y) dµx(y), ∀ t > 0 (2.3.2)

for all bounded Borel function f in Rm

Other characterizations of the invariant measure are possible, for instance as being

the stationary solution of the Fokker-Planck equation L∗
xµx = 0, where L∗

x is the adjoint

operator to Lx.

It is well known that the assumption (2.2.5) on the drift insures the existence of

an invariant measure, and its uniqueness follows from the non degeneracy assumption

(2.2.6) on the diffusion ϱ. This is proven for instance in [157] (see also [141, 142, 143]).

Another proof of existence and uniqueness of the invariant measure can be found in [23]

assuming a Lyapunov-type condition. This is also compatible with our setting noticing

that the recurrence condition implies the latter assumption (see [21]). We denote by µx

its unique invariant probability measure, and we say that the process Y x
· is ergodic.

For simplicity of notation only, we will drop in this section the dependency on x in

the fast subsystem and its coefficients, and we recall instead its dependency on its initial

position. Therefore we write

dYy(t) = b(Yy(t)) dt+
√
2ϱ(Yy(t)) dWt, Yy(0) = y ∈ Rm (2.3.3)

It should be understood here that x ∈ Rn is an arbitrary fixed parameter on which all

the coefficients still depend. Similarly, we denote by µ its unique invariant measure.

And when there is no confusion, we drop the dependency on the initial position and

simply write Yt (instead of Yy(t)).
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This section will be devoted to the fast variables Y , and we will make use of the index

n to refer to a sequence; not to be confused with the dimension of the slow variables

x ∈ Rn.

2.3.1 Useful Proposition and Lemmas

The first result we need is the following Lipschitz regularity of the invariant measure

µx, which guarantees local Lipschitz regularity in x of the effective Hamiltonian (in

Proposition 2.3.2) and the effective initial data (in Proposition 2.3.3). This is crucial

for the convergence result in §2.4.

Proposition 2.3.1. ([21, Proposition 2.3]) Besides the standing assumptions, assume

that

b ∈ C1(Rn ×Rm,Rm) and ϱ ∈ C1(Rn ×Rm,Mm,r) (2.3.4)

with all their derivatives bounded and Hölder continuous in y uniformly in x. Then the

invariant measure µx of the process Y x
· in (2.3.1) has a density φx(y) and there exist

k > 1, C > 0, such that

|φx1(y)− φx2(y)| ≤ C
1

1 + |y|k
|x1 − x2|, ∀ x1, x2 ∈ Rn, y ∈ Rm. (2.3.5)

Proof. The proof can be found in [142, Theorem 6]. We refer also to [21, Remark 2.2]

for a connection with a similar result in [47, Proposition 5.2].

In what follows, we will also need a result stronger than just ergodicity of the fast

subsystem, that is a convergence result of the probability law of Y x
· towards its unique

invariant probability measure.

Lemma 2.3.1. Under assumption (2.2.5), there exists C > 0 and for some d, k > 0,

one has

∥PYy(t)(·)− µ(·)∥TV ≤ C(1 + |y|d)(1 + t)−(1+k)

In particular, the invariant measure µ does exist and has finite moments of any order.

We use ∥µ− ν∥TV for the total variation distance between two probability measures

µ, ν defined by

∥µ− ν∥TV = sup
A∈B

|µ(A)− ν(A)|

where B is the class of Borel sets. In particular, ∥µ∥TV =
∫
Rm d|µ| and is equal to

µ(Rm) =
∫
Rm dµ when µ is positive.
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Proof of Lemma 2.3.1. This is a particular case of the more general result in [157,

Theorem 6]. Indeed, the main assumption in [157] is

∃M0 ≥ 0, r ≥ 0 s.t. ⟨b(y), y⟩ ≤ −r, ∀ |y| ≥M0 (2.3.6)

Then introduce the following constants

Λ− := inf
y ̸=0

⟨ϱϱ∗(y) y
|y|
,
y

|y|
⟩, Λ+ := sup

y ̸=0
⟨ϱϱ∗(y) y

|y|
,
y

|y|
⟩

Λ̃ := sup
y

trace(ϱϱ∗(y))

m
, r0 := [r − (mΛ̃− Λ−)/2]Λ

−1
+

Now Theorem 6 in [157] states that under assumption (2.3.6), with r0 >
3
2
, one has

∀ k ∈ (0, r0 − 3
2
), ∀ d ∈ (2k + 2, 2r0 − 1)

∥PYy(t)(·)− µ(·)∥TV ≤ C(1 + |y|d)(1 + t)−(1+k)

In our case, assumption (2.2.5) guarantees a constant r (in (2.3.6)) as large as we want.

For the finite moments, see [157, eq. (28) in §6] where it is shown that the invariant

measure has finite moments of order d ∈ (2k + 2, 2r0 − 1), where again k ∈ (0, r0 − 3
2
).

It is enough to use Hölder inequality together with the fact that µ(Rm) = 1 to prove

finite moments of any order d ≥ 1.

Remark 2.3.1. Lemma 2.3.1 holds again when the diffusion coefficient ϱ is degenerate

but satisfies a Hörmander type condition. The proof is the same but relies instead on

the results in [158].

The following result describes the behavior of the exit time of the process Yy(·) in

(2.3.3). This will be needed together with the previous Lemma for constructing the

limit PDE in the next section. Let τYn := inf {t ≥ 0 | ∥Yy(t)∥ ≥ n} denote the first exit

time of Yy(·) from the ball centered in 0 with radius n, and where y = Yy(0) is the initial

position.

Lemma 2.3.2. Under assumption (2.2.5), there exist η, C positive constants and ℓ a

positive function such that for any δ > 0 one has

E
[
e−δτYn

]
≤ C

ℓ(δ)

δ
e−nη, locally uniformly in y, (2.3.7)
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where ℓ(δ) = 1 +O(δ) when δ → 0+. In particular for any α ≥ 0 and β > 0, one has

E
[
nαe−

1

nβ τYn
]
≤ Cnα+βe−nη −→ 0 as n→ +∞. (2.3.8)

Proof of Lemma 2.3.2. In what follows, we will not distinguish between the exit time

of the process Y· ∈ Rm from the ball centered in 0 with radius n, and the exit time of the

process ∥Y·∥ ∈ R from the interval [−n, n], and define it by τYn := inf {t ≥ 0 | ∥Y (t)∥ ≥ n}.
Moreover, the notation τYn refers to the exit time (of the process Y· or similarly ∥Y·∥)
seen as a random variable in the probability space (Ω,F ,Ft,P) where P is the reference

probability measure. On the other hand, the notation τn is a random variable defined

on the space of continuous paths on a probability space (Ω,F ,Ft,PX) where X is some

stochastic process. Hence, comparing τYn and τZn is the same as comparing τn when

evaluated in probability spaces where the law is respectively PY and PZ .

Step 0. (A comparison observation for exit times)

Assuming one can find a process Zt ∈ R such that ∥Y (t)∥ ≤ Zt a.s., then one has

τYn ≥ τZn a.s., where τYn , τ
Z
n are the exit times of Y and Z respectively, and hence

∥Yt∥ ≤ Zt a.s. ⇒ τYn ≥ τZn , a.s.

⇒ E
[
e−δτYn

]
≤ E

[
e−δτZn

]
, ∀ δ > 0

(2.3.9)

that is,

∥Yt∥ ≤ Zt a.s. ⇒ E∥Y ∥
[
e−δτn

]
≤ EZ

[
e−δτn

]
, ∀ δ > 0 (2.3.10)

where the expectation now is taken in the probability space defined with the law of

∥Y ∥ and the law of Z respectively. Armed with this observation, we can tackle our

problem by first constructing such a process Z, and then by giving an upper-bound for

the second inequality in (2.3.10).

Step 1. (Construct the process Z such that ∥Yt∥ ≤ Zt a.s.)

We follow, mutatis mutandis, the construction of Z in the proof of [93, Proposition 1.4].

Fix A and R positive constants such that (2.2.5) is satisfied, i.e.

∀ ∥y∥ ≥ R, ⟨y, b(y)⟩ ≤ −A∥y∥. (2.3.11)

Define h : Rm → R as a C2 function such that h(y) = ∥y∥ when ∥y∥ ≥ R, and h(y) < R

otherwise.
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Using the notation ”a ∨ b = max{a; b}”, we set

Zt := R ∨ ∥yo∥+
√
2Mt − ηξt + Lt (2.3.12)

where

• yo ∈ Rm is the initial condition of Yt, i.e. Y0 = yo,

• Mt =
∫ t

0
∇h(Ys)⊤ϱ(Ys)dWs, for t ≥ 0,

• ξt =
∫ t

0
∥∇h(Ys)⊤ϱ(Ys)∥2ds is the quadratic variation of the continuous local

martingale Mt,

• η is a positive constant to be made precise,

• Lt is an increasing process (of finite variation) which increases only at times t for

which Zt = R, and is of zero value when Z > R; such pair (Z,L) is the unique

pair of continuous adapted process giving by Skorokhod’s lemma (see e.g. [146,

chap.VI, §2]): Z is a reflected process and L its compensator.

Notice that when ∥y∥ ≥ R, ∇h(y) = y
∥y∥ so

∥∥∇h(y)⊤ϱ(y)∥∥2 = 1
∥y∥2y

⊤ϱ(y)ϱ(y)⊤y ≤ Λ

and hence dξt ≤ Λ dt on {∥Yt∥ ≥ R}. On the other hand, define K̃ := sup
∥y∥≤R

∥∇h(y)∥2.

Then we have ξt ≤ (1 ∨ K̃) Λ t for all t ≥ 0, where Λ is defined in (2.2.6). We set

K := (1 ∨ K̃)Λ, and we have

0 ≤ ξt ≤ Kt, ∀ t ≥ 0 (2.3.13)

Now in order to prove that

∥Yt∥ ≤ Zt a.s. ∀ t ≥ 0 (2.3.14)

we will use the same procedure as in [93] that we adapt to our context. We choose

f ∈ C2(R) such that

f(x) > 0 and f ′(x) > 0, ∀ x > 0

f(x) = 0, ∀ x ≤ 0

We set a(y) := ϱ(y)ϱ(y)⊤. According to Itô’s formula, for t ≥ 0,

dh(Ys) =
(
∇h(Ys)⊤b(Ys) + trace

(
a(Ys)D

2h(Ys)
))

ds+
√
2∇h(Ys)⊤ϱ(Ys)dWs

dZs = −ηdξs + dLs +
√
2dMs

= −η
∥∥∇h(Ys)⊤ϱ(Ys)∥∥2 ds+ dLs +

√
2∇h(Ys)⊤ϱ(Ys)dWs
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that is

d (h(Y )− Z)s =
(
∇h(Ys)⊤b(Ys) + trace

(
a(Ys)D

2h(Ys)
)
+ η

∥∥∇h(Ys)⊤ϱ(Ys)∥∥2) ds− dLs

(2.3.15)

and again by Itô’s formula (see e.g. [108, Theorem 3.3, Chap.3, p.149]) one gets

f(h(Yt)− Zt) =f(h(yo)−R ∨ ∥yo∥) +
∫ t

0

f ′(h(Ys)− Zs)d(h(Y )− Z)s+

+
1

2

∫ t

0

f ′′(h(Ys)− Zs)d⟨h(Y )− Z⟩s,

where we recall, for a stochastic process dζt = f(ζt)dt+σ(ζt)dWt, its quadratic variation

is defined by ⟨ζ⟩t =
∫ t

0
σ(ζs)σ

⊤(ζs)ds.

And we have f(h(yo)−R ∨ ∥yo∥) = 0 by definition of h and f . Moreover, h(Y·)−Z·

is a continuous process with no Wiener process term, and hence it has zero quadratic

variation, i.e. d⟨h(Y )−Z⟩s = 0. Now, again by definition of h and Z, we have h(Yt) ≤ Zt

on {∥Yt∥ ≤ R}, so {h(Yt) > Zt} = {∥Yt∥ > Zt} is a subset of {∥Yt∥ > R}. And when

∥y∥ ≥ R, we have ∇h(y) = y
∥y∥ and D2h(y) = 1

∥y∥

(
Im − y⊗y

∥y∥2

)
.

Setting a(y) = (aij(y))1≤i,j≤m, we have

trace
(
a(y)D2h(y)

)
=

m∑
i,j=1

aij(y)(D
2h(y))ji

=
1

∥y∥

m∑
i=1

aii(y)

(
1− y2i

∥y∥2

)
− 1

∥y∥

m∑
i=1

m∑
j=1
j ̸=i

aij(y)
yiyj
∥y∥2

≤ Λ(m− 1)

∥y∥
− 1

∥y∥

m∑
i,j=1

aij(y)
yiyj
∥y∥2

+
1

∥y∥

m∑
i=1

aii(y)
y2i
∥y∥2

≤ Λm

∥y∥
+

1

∥y∥

m∑
i,j=1

aij(y)
|yi| |yj|
∥y∥2

≤ Λm(m+ 1)

∥y∥

(2.3.16)

where in the last inequality we have used |yi| ≤ ∥y∥ and
m∑

i,j=1

aij(y) ≤ Λm2.

Hence the expression∫ t

0

f ′(∥Ys∥ − Zs)

{
1

∥Ys∥
⟨Ys, b(Ys)⟩+

m(m+ 1)

∥Ys∥
Λ + ηΛ

}
ds−

∫ t

0

f ′(∥Ys∥ − Zs)dLs
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which is obtained for ∥Ys∥ > R, is an upper-bound of f(h(Yt) − Zt). Furthermore,

dLs = 0 for ∥Ys∥ > R, and therefore one has

f(h(Yt)− Zt) ≤
∫ t

0

f ′(∥Ys∥ − Zs)

{
1

∥Ys∥
⟨Ys, b(Ys)⟩+

m(m+ 1)

∥Ys∥
Λ + ηΛ

}
ds (2.3.17)

Now using (2.3.11) yields

1

∥Ys∥
⟨Ys, b(Ys)⟩+

m(m+ 1)

∥Ys∥
Λ + ηΛ ≤ −A+

m(m+ 1)

∥Ys∥
Λ + ηΛ

and since this upper-bound is obtained for ∥Ys∥ > R, then

−A+
m(m+ 1)

∥Ys∥
Λ + ηΛ ≤ −A+

m(m+ 1)

R
Λ + ηΛ .

It suffices then to choose η > 0 and such that the r.h.s. of the above inequality is

negative, i.e.

η ≤ A

Λ
− m(m+ 1)

R
(2.3.18)

which therefore insures f(h(Yt) − Zt) ≤ 0 and implies ∥Yt∥ ≤ Zt a.s. by definition of

f . And this is possible since the ball radius R in (2.3.11) can be chosen as large as we

want; it suffices indeed to notice that if (2.3.11) is satisfied outside the ball of radius R,

then it is in particular true outside any ball of radius greater or equal than R. So by

choosing any R̃ such that R̃ > max
{
R ;
(

m(m+1)
A

Λ
)}

, there can exist such η > 0. And

it suffices then to write (2.3.11) with such R̃ instead of R.

Step 2. (upper-bound EZ

[
e−δτn

]
)

Fix δ > 0 and let us set γ := δ
K

where K is the constant in (2.3.13).

By Itô’s formula, we have for any Φ ∈ C2(R),

d(Φ(Zt)e
−γξt) =

√
2Φ′(Zt)e

−γξtdMt + Φ′(Zt)e
−γξtdLt

+ e−γξt {Φ′′(Zt)− ηΦ′(Zt)− γΦ(Zt)} dξt.

Since we are interested in the limit as n→ ∞, we can assume without loss of generality

that n > R. We choose Φ such that Φ′′(z)− ηΦ′(z)− γΦ(z) = 0, for z ∈ [R, n]

Φ′(R) = 0 and Φ(n) = 1
(2.3.19)
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then Φ(Zt)e
−γξt is a local martingale which is bounded up to time τn. Hence we are

allowed to apply Doob’s stopping theorem to obtain

Φ(R ∨ ∥yo∥) = EZ

[
Φ(Zτn)e

−γξτn
]

(2.3.20)

and since Zτn = n, Φ(n) = 1, and ξt ≤ Kt for all t ≥ 0, we have

EZ

[
e−γKτn

]
≤ EZ

[
e−γξτn

]
= Φ(R ∨ ∥yo∥) (2.3.21)

which yields

EZ

[
e−δτn

]
≤ Φ(R ∨ ∥yo∥) (2.3.22)

Now solving the differential equation (2.3.19) yields

Φ(z) =
−λ2eλ1(z−R) + λ1e

λ2(z−R)

−λ2eλ1(n−R) + λ1eλ2(n−R)
(2.3.23)

where λ2 < 0 < λ1, and are given by

λ1 =
1

2

(
η +

√
η2 + 4γ

)
, λ2 =

1

2

(
η −

√
η2 + 4γ

)
Hence,

Φ(z) ≤ (λ1 − λ2)e
λ1(z−R)

−λ2eλ1(n−R)

≤ λ1 − λ2
−λ2

eλ1(z−n)

Set r := R ∨ ∥yo∥, then one gets

Φ(r) ≤ λ1 − λ2
−λ2

eλ1(r−n)

≤ 2

√
1 + 4γ

η2√
1 + 4γ

η2
− 1

exp

[
r
η

2

(
1 +

√
1 +

4γ

η2

)]
exp

[
−nη

2

(
1 +

√
1 +

4γ

η2

)]

≤ 2
η2

γ

1 + 2γ
η2

1− γ
η2

exp

[
rη

(
1 +

γ

η2

)]
e−n η

2

Recall γ := δ
K

where K is the constant in (2.3.13) and set

ℓ(δ) =
1 + 2δ

Kη2

1− δ
Kη2

exp

[
r
δ

Kη

]
and C = 2η2Kerη,
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then the right-hand side in the last inequality writes as C ℓ(δ)
δ
e−n η

2 and it is easy to see

that ℓ(δ) = 1 +O(δ) when δ → 0+. Together with (2.3.22), this finally yields

EZ

[
e−δτn

]
≤ C

ℓ(δ)

δ
e−n η

2 (2.3.24)

Finally, we have thanks to (2.3.10)

E∥Y ∥
[
e−δτn

]
≤ C

ℓ(δ)

δ
e−n η

2 ,

which concludes the proof of the first statement.

Now multiplying the last inequality by nα for α ≥ 0 and choosing δ = n−β for β > 0,

one recovers the second statement of the desired lemma.

Lemma 2.3.3. Under assumptions (2.2.3), (2.2.5) and (2.2.6), there exist C1, C2 and

κ > 0 such that

C2 (n
2 − |y|2) ≤ E[ τn ] ≤ C1 e

κn2

locally uniformly in y, (2.3.25)

where τn = inf{s ∈ [0, T ] : ∥Yy(s)∥ ≥ n} and Yy(0) = y ∈ Rm.

In particular, for any n, τn < +∞ almost surely.

Proof of Lemma 2.3.3.

Step 1. (The upper-bound)

Let y ∈ Dn := {y ∈ Rm : |y| < n}. Recall that x̄ is kept fixed in all this section and

all the constants depend on it. For simplicity of notation only, we drop the dependency

on x and consider again the process Yy(·) as defined in (2.3.3), and its infinitesimal

generator L defined by (2.2.13) where we dropped the dependency on x, i.e.

L(y,DV,D2V ) = b(y) · ∇V (y) + trace(a(y)D2V (y))

where a(y) = ϱ(y)ϱ(y)⊤.

We proceed now in a similar way as in [133, page 80]. We define for y ∈ Rm the function

V (y) = −e−αy1 for some α > 0 that we will choose in a suitable way. Indeed, from the

non-degeneracy assumption (2.2.6), we have a11(y) ≥ Λ > 0. Therefore, we have

LV (y) = b(y) · ∇V (y) + trace(a(y)D2V (y))

= α e−αy1 ( b1(y)− α a11(y) )

≤ α e−αy1 ( b1(y)− αΛ )

≤ α e−αy1 (C(1 + |x̄|+ n)− αΛ )
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where in the last inequality we have used the linear growth assumption (2.2.3) together

with |y| < n. Denote by Cn := 1
Λ
C(1 + |x|+ n). So we have

LV (y) ≤ Λα e−αy1 ( Cn − α ) (2.3.26)

We need now to choose α such that the right hand side in the last inequality is negative.

Let us now choose α = Cn + 1
n
=: α∗

n > 0. Substituting in (2.3.26) we have

LV (y) ≤ − 1

n
Λα∗

n e
−α∗

ny1 ≤ − 1

n
Λα∗

n e
−α∗

n n =: −K(n) < 0

By Itô’s formula, we have

E[V (Yy(τn ∧ T )) ]− V (y) = E

[ ∫ τ∧T

0

LV (Yy(s)) ds

]
≤ −K(n)E[τn ∧ T ].

On the other hand, denoting by yn1 the first component of Yy(τn ∧ T ), we have

E[V (Yy(τn ∧ T )) ]− V (y) = e−α∗
n y1 − E[ e−α∗

n yn1 ]

≥ e−α∗
n n − eα

∗
n n ≥ −eα∗

n n.

Hence, the following holds

E[τn ∧ T ] ≤
eα

∗
n n

K(n)
.

And we have

eα
∗
n n

K(n)
=

n

C(1 + |x̄|+ n) + Λ
n

exp

(
2C

Λ
n2 +

2C

Λ
(1 + |x̄|)n+ 2

)

whose dominant term, as n→ +∞, is e2

C(1+|x̄|) e
2C
Λ

n2

.

Finally, setting κ := 1 + C
Λ
> 0 and C1 := 1 + e2

C(1+|x̄|) > 0 yields E[τn ∧ T ] ≤ C1e
κn2

.

Now take T → ∞ and using the monotone convergence theorem we get E[τn] ≤ C1e
κn2

which is finite for any n, and hence implies that τn < +∞ almost surely.

Step 2. (The lower-bound)

Using the same procedure as in Step 1, we choose now V (y) = 1
2
|y|2 and we have
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LV (y) = b(y) · y + trace(a(y)) ≤ b(y) · y + mΛ. Hence, we have the following

E[V (Yy(τn))]− E[V (y)] = E

[∫ τn

0

LV (Yy(s)) ds

]
≤ E

[∫ τn

0

⟨b(Yy(s)), Yy(s)⟩ + mΛds

] (2.3.27)

And using the recurrence condition on the drift (2.2.5) and the growth assumption2

(2.2.3), we have

⟨b(y), y⟩ ≤ −A |y|, if |y| > R

or ⟨b(y), y⟩ ≤ |b(y)| |y|,

≤ C(1 +R)R if |y| ≤ R

So for any y ∈ Rm, we have ⟨b(y), y⟩ ≤ −A|y|+C(1+R)R ≤ C(1+R)+R. This yields

together with (2.3.27)

E[V (Yy(τn))]− E[V (y)] ≤ E

[∫ τn

0

C(1 +R)R + mΛds

]
≤ (C(1 +R)R + mΛ)E[τn]

and hence, noticing that E[V (Yy(τn))]− E[V (y)] = 1
2
(n2 − |y|2), we have

C2(n
2 − |y|2) ≤ E[τn]

where we have set C2 := (2C(1 +R)R + 2mΛ)−1.

Comment. Lemma 2.3.3 provides a qualitative result on the growth of the exit time of

the process Yy(·). Indeed, the upper-bound shows that, although it can grow exponen-

tially fast in expectation, the exit time remains finite almost surely. That is, the process

Yy(·) will almost surely leave all bounded domains, but in (exponentially) large time.

Or, in other words, the process Yy(·) will remain for most of its life time in bounded

domains. On the other hand, the lower-bound insures a growth at least quadratic for

the exit time in expectation. This complements the other inequality by telling us how

much can we hope to make the exit time larger in expectation by enlarging the bounded

domain, or analogously, how much can we enlarge a bounded domain in order to make

the process Yy(·) not quickly leaving it.

2where we omit the dependency on the slow variable x in (2.2.3) for simplicity of notation only.
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2.3.2 The effective Hamiltonian

We will show the existence of an effective Hamiltonian that will characterize the

limit PDE in the convergence theorem. In principle, for each (t, x, p, P ) one expects the

effective Hamiltonian H(t, x, p, P ) to be the unique constant c ∈ R such that the cell

problem

− L(x, y,Dχ,D2χ) +H(t, x, y, p, P , 0) = c in Rm, (2.3.28)

where H is defined in (2.2.14), has a viscosity solution χ, called corrector (see [2, 78,

127]). And in many cases (see [3]), it turns out that it is sufficient to consider a δ-cell

problem

δωδ − L(x, y,Dωδ, D
2ωδ) +H(t, x, y, p, P , 0) = 0 in Rm (2.3.29)

whose solution ωδ is called approximate corrector, and then the effective Hamiltonian

will be given as the limit of −δωδ as δ → 0. In our setting, we don’t show the existence

of a (viscosity) solution to (2.3.28) (this will later be addressed in Chapter 4). However,

in the convergence result of the next section, and which is the main contribution of this

chapter, it is enough to show the existence of an effective Hamiltonian as a limit of a

truncated δ-cell problem. Fix (x, p, P ), and let us denote for simplicity

L(x, y,Dω,D2ω) := Lω(y) (2.3.30)

and

h(y) := H(t, x, y, p, P , 0) in Rm (2.3.31)

Under the assumptions (2.2.2) and (2.2.8), the Hamiltonian has at most a quadratic

growth in y, i.e.

∃ Kh > 0, |h(y)| ≤ Kh(1 + |y|2), ∀ y ∈ Rm (2.3.32)

where Kh is a constant that depends on the slow dynamics data (f, σ) and the running

cost ℓ.

We consider the PDE (2.3.29) on a sequence of bounded and open domains Dn s.t.:

y ∈ Dn ⊂ Dn+1 ⊂ Rm and Dn −−−→
n→∞

Rm (in the sense of Hausdorff metric on the

euclidean space Rm for instance) with C2 boundaries. Set in addition Dn ⊆ B(0, n) :=

{y ∈ Rm | ∥y∥ < n} the euclidean open ball centered in 0 with radius n. Consider now
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the Dirichlet-Poisson problem δu(y)− Lu(y) = −h(y), in Dn

u(y) = ϕ(y), on ∂Dn

(2.3.33)

It has a unique solution uδ,n(·) (see, e.g., [133, Theorem 8.1, page 79]) given by

uδ,n(y) = E
[
ϕ(Yy(τn))e

−δτn
]
+ E

[
−
∫ τn

0

h(Yy(t))e
−δtdt

]
(2.3.34)

where τn is the first exist time of Yy(·) from Dn.

For the sake of generality, we consider ϕ with a polynomial growth, that is ∃ Kϕ > 0,

and for some κ ≥ 0 such that for all y ∈ Rm

|ϕ(y)| ≤ Kϕ(1 + |y|κ). (2.3.35)

And we are interested in the limit as (δ, n) → (0,∞). The following proposition provides

the existence of the effective Hamiltonian, using the above truncated δ-cell problem

(2.3.33).

Proposition 2.3.2. Let uδ,n(·) be the solution to (2.3.33). Under the standing assump-

tions of section §2.2.1, and assuming (2.3.32),(2.3.35), and δ = δ(n) = O
(

1
n4+α

)
, where

α > 0 is arbitrary, one has

lim
n→∞

∣∣δ(n)uδ(n),n(y) + µ(h)
∣∣ = 0, locally uniformly in y, (2.3.36)

where µ(h) =
∫
Rm h(y)dµ(y) and µ is the unique invariant probability measure for the

process (2.3.1).

Remark 2.3.2. This result still holds true if we consider, instead of assumption (2.3.32),

h such that

∃ Kh > 0, |h(y)| ≤ Kh(1 + |y|γ), ∀ y ∈ Rm

where γ ≥ 0 is as large as we want, provided we set δ = O
(

1
n2γ+α

)
in Proposition 2.3.2.

This means that the slow dynamics is allowed to have a polynomial growth w.r.t. the

fast variables.

Proof of Proposition 2.3.2. From (2.3.34), one has

uδ,n(x)+
µ(h)

δ
= E

[
−
∫ τn

0

h(Yy(t))e
−δtdt

]
+

∫ ∞

0

∫
Rm

h(y)e−δtdµ(y)dt+E
[
ϕ(Yy(τn))e

−δτn
]
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Exchanging the integrals in the first term (the expectation and the time integral), one

gets

uδ,n(x) +
µ(h)

δ
= E

[
−
∫ ∞

0

1Dn(Yy(t))h(Yy(t))e
−δtdt

]
+

∫ ∞

0

∫
Rm

h(y)e−δtdµ(y)dt

+ E

[∫ ∞

τn

1Dn(Yy(t))h(Yy(t))e
−δtdt

]
+ E

[
ϕ(Yy(τn))e

−δτn
]

= −
∫ ∞

0

∫
Rm

1Dn(y)h(y)dPYy(t)(y)e
−δtdt+

∫ ∞

0

∫
Rm

h(y)e−δtdµ(y)dt

+ E

[∫ ∞

τn

1Dn(Yy(t))h(Yy(t))e
−δtdt+ ϕ(Yy(τn))e

−δτn

]
=

∫ ∞

0

∫
Dn

h(y)d

(
µ(y)− PYy(t)(y)

)
e−δtdt+

1

δ

∫
Dc

n

h(y)dµ(y)

+ E

[∫ ∞

τn

1Dn(Yy(t))h(Yy(t))e
−δtdt+ ϕ(Yy(τn))e

−δτn

]
where Dc

n refers to the complement of Dn, that is R
m \Dn.

The first term:

Applying Hölder inequality to the first term yields∣∣∣∣∫ ∞

0

∫
Dn

h(y)d

(
µ(y)− PYy(t)(y)

)
e−δtdt

∣∣∣∣ ≤
≤

(∫ ∞

0

(∫
Dn

h(y)d(µ(y)− PYy(t)(y))

)2

dt

)1/2(∫ ∞

0

e−2δtdt

)1/2

=
1√
2δ

(∫ ∞

0

(∫
Dn

h(y)d(µ(y)− PYy(t)(y))

)2

dt

)1/2

Now using Lemma 2.3.1, we can bound the term in the right-hand side of the latter

inequality as follows∫ ∞

0

(∫
Dn

h(y)d(µ(y)− PYy(t)(y))

)2

dt ≤
∫ ∞

0

(
sup
Dn

|h|
∫
Dn

d(µ(y)− PYy(t)(y))

)2

dt

≤ sup
Dn

|h|2
∫ ∞

0

∥∥PYy(t)(·)− µ(·)
∥∥2
TV

dt

≤ C(1 + |y|d)
k

sup
Dn

|h|2 ≤ C(1 + |y|d)
k

K2
h(1 + n2)2
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Finally, we have the following upper-bound

∣∣∣∣∫ ∞

0

∫
Dn

h(y)d

(
µ(y)− PYy(t)(y)

)
e−δtdt

∣∣∣∣ ≤ Kh

(
C(1 + |y|d)

k

)1/2
(1 + n2)√

2δ
(2.3.37)

The second term:

It is nothing but

1

δ

∫
Dc

n

h(y)dµ(y) =
1

δ

(
µ(h)−

∫
Dn

h(y)dµ(y)

)
(2.3.38)

The third term:

Using the definition of Dn and the growth condition of h and ϕ, one has

∣∣∣∣E [∫ ∞

τn

1Dn(Yy(t))h(Yy(t))e
−δtdt+ ϕ(Yy(τn))e

−δτn

] ∣∣∣∣ ≤
≤ E

[∫ ∞

τn

1Dn(Yy(t))|h(Yy(t))|e−δtdt

]
+ E

[
|ϕ(Yy(τn))|e−δτn

]
≤ KhE

[∫ ∞

τn

1Dn(Yy(t))(1 + |Yy(t)|2)e−δtdt

]
+KϕE

[
(1 + |Yy(τn)|κ)e−δτn

]
≤ KhE

[∫ ∞

τn

(1 + n2)e−δtdt

]
+KϕE

[
(1 + nκ)e−δτn

]
which finally yields the following upper-bound∣∣∣∣E [∫ ∞

τn

1Dn(Yy(t))h(Yy(t))e
−δtdt+ ϕ(Yy(τn))e

−δτn

] ∣∣∣∣ ≤ (Kh
1 + n2

δ
+Kϕ(1 + nκ)

)
E
[
e−δτn

]
(2.3.39)

Conclusion:

Therefore, from (2.3.37), (2.3.38) and (2.3.39) one has

∣∣∣∣uδ,n(y) + µ(h)

δ

∣∣∣∣ ≤ Kh

(
C(1 + |y|d)

k

)1/2
1 + n2

√
2δ

+
1

δ

∣∣∣∣µ(h)− ∫
Dn

h(y)dµ(y)

∣∣∣∣+
+

(
Kh

1 + n2

δ
+Kϕ(1 + nκ)

)
E
[
e−δτn

]
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Hence

∣∣δuδ,n(y) + µ(h)
∣∣ ≤ Kh

(
C(1 + |h|d)

k

)2
1 + n2

√
2

√
δ +

∣∣∣∣µ(f)− ∫
Dn

h(y)dµ(y)

∣∣∣∣+
+ δ

(
Kh

1 + n2

δ
+Kϕ(1 + nκ)

)
E
[
e−δτn

]
Now setting δ = δ(n) = O( 1

n4+α ), where α > 0 is arbitrary fixed, one has

lim
n→∞

∣∣δ(n)uδ(n),n(x) + µ(f)
∣∣ = 0

since the last term converges to zero thanks to Lemma 2.3.2.

Therefore, the effective Hamiltonian is defined by

H(t, x, p, P ) := −µx(h) = −
∫
Rm

H(t, x, y, p, P , 0)dµx(y) (2.3.40)

2.3.3 The effective initial data

In this section we construct the effective terminal value for the limit as ε → 0 of

the singular perturbations problem (2.2.9)-(2.2.10). We fix x̄ and consider the following

Cauchy initial problem:ωt − L(y,Dω,D2ω) = 0 (0,+∞)×Rm,

ω(0, y) = g(x̄, y),
(2.3.41)

where g satisfies assumption (2.2.8) and L is as defined in (2.2.13).

If g was a bounded function of the y variable3 then one can use the result in

[23, Proposition 4.4]: The Cauchy problem (2.3.41) admits a unique classical solution

(t, y) 7→ ω(t, y; x̄) and the effective initial data that we denote by g(x̄) is given by

lim
t→+∞

ω(t, y; x̄) =

∫
Rm

g(x̄, y)dµ(y) =: g(x̄) locally uniformly in y. (2.3.42)

In our setting, the assumption on g, having a linear growth in y, makes the Cauchy

problem (2.3.41) more difficult to solve and hence we cannot directly use the result

(2.3.42). Indeed, very few results exist for such Cauchy problems with unbounded

3Note that although we may assume g to be uniformly bounded in y, the function (x, y) 7→
E[g(Xt, Yt) |X0 = x, Y0 = y], for any t > 0, has at most a quadratic growth in y, since the process X·
depends linearly on y and g has at most a quadratic growth in x.



Chapter 2 - Deep relaxation via singular perturbations of stochastic control 89

data in unbounded space domain (see in particular [36, Theorem 3]). But here we

are interested in constructing the effective initial data, rather than solving the Cauchy

problem with unbounded data. And to do so, we will proceed in a similar way as we

did for the effective Hamiltonian in the previous section.

We consider an increasing sequence of bounded and open domainsDn with C
2 bound-

aries exactly as in §2.3.2, and such that Dn ⊆ B(0, n) := {y ∈ Rm | ∥y∥ < n} the eu-

clidean open ball centered in 0 with radius n (for example Dn = B(0, n)). Now instead

of (2.3.41), we set the Cauchy problem in the bounded domain [0, T ] × Dn for some

T > 0 that we will later made precise, that is, we consider the following problem
∂

∂t
ωT,n − L(y,DωT,n, D2ωT,n) = 0 in (0, T ]×Dn,

ωT,n(0, y) = g(x̄, y) in Dn,

ωT,n(t, y) = 0 in [0, T ]× ∂Dn,

(2.3.43)

and if we set uT,n(t, y) = ωT,n(T−t, y), then uT,n(·, ·) solves the Cauchy problem (Initial-

Boundary Value Problem)
∂

∂ t
uT,n + L(y,DuT,n, D2uT,n) = 0 in [0, T )×Dn,

uT,n(T, y) = g(x̄, y) in Dn,

ut,n(t, y) = 0 in [0, T ]× ∂Dn,

(2.3.44)

It is known (See [133, Theorem 8.2, page 81]) that the problem (2.3.44) admits a unique

solution given by

uT,n(t, y) = E[1{τn∧T=T} g(Yy,t(T )) ] (2.3.45)

where Yy,t(·) is the fast process defined by (2.3.1) and such that Yy,t(t) = y ∈ Rm, and

τn = inf{s ∈ [t, T ] : Yy,t(s) /∈ Dn} is the first exit time from Dn.

To construct the effective initial data as in (2.3.42), we will study the limit as T goes

to +∞ of ωT,n(T, y) = uT,n(0, y) but where T = T (n) will be depending on n (i.e. on

the increasing sequence of domains Dn) such that T (n) → +∞ as n→ +∞.

Proposition 2.3.3. Let uT,n(·, ·) be as defined in (2.3.45) and assume (2.2.3), (2.2.5)

and (2.2.6) hold true. Then for any increasing sequence {T (n)}n>0 such that T (n) ≥ n2,

we have the following

lim
n→+∞

∣∣∣∣uT (n),n(0, y) − g

∣∣∣∣ = 0, locally uniformly in y, (2.3.46)

were g :=
∫
Rm g(y)dµ(y) and µ is the unique invariant probability measure of the process
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(2.3.1). In particular lim
n→+∞

ωT (n),n(T (n), y) = g locally uniformly in y.

Moreover g is continuous and satisfy the quadratic growth condition (2.2.8).

Remark 2.3.3. Recall that here (as in all section §2.3), we are freezing the slow variable

X· at some fixed value that we denote in all §2.3.3 by x. For the sake of simplicity of

notation only, we did not make explicit the dependency on x and wrote simply ωT,n(t, y),

g(y), g and µ(·) instead of ωT,n(t, y;x), g(x, y), g(x) and µx(·) respectively. Also, the

fast process Yy,0(·) which is the one taking the value y at time 0, is simply denoted by

Yy(·).

Remark 2.3.4. This result still holds true if we consider, instead of the growth assump-

tion (2.2.8), g such that

∃Kg > 0, |g(y)| ≤ Kg(1 + |y|γ), ∀ y ∈ Rm

where γ ≥ 0 is as large as we want, provided we choose T (n) ≥ nγ.

Proof of Proposition 2.3.3. We have the following

uT (n),n(0, y) =

∫
Dn

1{τn∧T (n)=T (n)}g(z) dPYy(T (n))(z), from (2.3.45)

g = µ(g) =

∫
Rm

g(z) dµ(z) =

∫
Dn

g(z) dµ(z) +

∫
Dc

n

g(z) dµ(z).

Hence∣∣∣∣uT (n),n(0, y) − g

∣∣∣∣ ≤ ∣∣∣∣ ∫
Dn

1{τn∧T (n)=T (n)}g(z) d
(
PYy(T (n)) − µ

)
(z)

∣∣∣∣
+

∣∣∣∣ ∫
Dc

n

g(z) dµ(z)

∣∣∣∣
≤ C(1 + n2)∥PYy(T (n))(·)− µ(·)∥TV +

√
µ(g2)

√
1− µ(Dn)

where, for the second integral term in the first inequality, we used Hölder inequality

together with the fact that µ has finite forth moment guaranteed by Lemma 2.3.1 and

is a probability measure i.e. positive and such that µ(Rm) =
∫
Rm 1dµ = 1, while for the

first integral term, we upper-bounded 1{τn∧T (n)=T (n)} by 1, then we used the quadratic

growth of g from (2.2.8), and extended the integral domain Dn to the whole space Rm

on which we considered the absolute variation of the signed measure PYy(T (n))(·)− µ(·)
on Borel sets of Rm. Now using Lemma 2.3.1, there exist C, d, k > 0 such that

∥PYy(T (n))(·)− µ(·)∥TV ≤ C(1 + |y|d)(1 + T (n))−(1+k)
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Therefore, we can choose a sequence of Cauchy problems (2.3.43) where the final time

T (n) is sufficiently large such that T (n) ≥ n2 in order to have∣∣∣∣uT (n),n(0, y) − µ(g)

∣∣∣∣ ≤ C(1 + n2)(1 + |y|d) 1

(1 + n2)1+k
+
√
µ(g2)(1− µ(Dn)) −→ 0.

Finally, the regularity of g and the growth condition can be obtained, using the defini-

tion of g, from condition (2.2.8) and the regularity of the invariant measure stated in

Proposition 2.3.1.

2.4 The convergence theorem for the value function

We will prove that the value function V ε(t, x, y), solution to (2.2.9)-(2.2.10), con-

verges locally uniformly, as ε → 0, to a function V (t, x) which will be characterised as

the unique solution of the Cauchy problem −Vt +H(t, x,DxV,D
2
xxV ) + λV (x) = 0, in (0, T )×Rn

V (T, x) = g(x), in Rn
(2.4.1)

where H is the effective Hamiltonian (2.3.40) and g(x) =
∫
Rm g(x, y) dµx(y) the effective

initial data as in Proposition 2.3.3. To this end, we will need the following Liouville

type result. Recall the fast subsystem (2.3.1) associated to (2.2.1) for a fixed x ∈ Rn

dYt = b(x, Yt) dt+
√
2ϱ(x, Yt) dWt, Y0 = y ∈ Rm.

under the standing assumptions.

Lemma 2.4.1. ([132, Proposition 3.1]) Fix x ∈ Rn and consider the problem

− LV (y) = −b(x, y) · ∇V (y)− trace(ϱ(x, y)ϱ(x, y)⊤D2V (y)) = 0, in Rm. (2.4.2)

Assume that there exist a function ω ∈ C∞(Rm) and R0 > 0 such that

− Lω ≥ 0 in B(0, R0)
C
, ω(y) → +∞ as |y| → +∞. (2.4.3)

Then:

1. every viscosity subsolution V ∈ USC(Rm) to (2.4.2) such that lim sup
|y|→∞

V
ω

≤ 0 is

constant;
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2. every viscosity supersolution V ∈ LSC(Rm) to (2.4.2) such that lim inf
|y|→∞

V
ω
≥ 0 is

constant;

Proof of Lemma 2.4.1. The Lemma is proven in [132] assuming that the diffusion ϱ

satisfies the Hörmander condition. It suffices to notice that the non degeneracy condition

(2.2.6) implies Hörmander condition. A more general result can be found in [22].

Remark 2.4.1. The Liouville property replaces the standard strong maximum principle

and is the key ingredient for extending some results of [4] to the non periodic setting.

Roughly speaking, it says that when a harmonic function is bounded, then it can only be

constant. This property is also reminiscent of other similar conditions about ergodicity

of diffusion processes in the whole space, see for example [29, 47, 48, 109, 126] and [21,

Remark 2.1].

We are now ready to state and prove our first main result (Theorem 2.4.1) in this

chapter on the convergence of the value function of the stochastic optimal control prob-

lem with singular perturbations to the unique viscosity solution of the effective Cauchy

problem.

Theorem 2.4.1. We assume the standing assumptions in Sections §2.2.1 and §2.2.2,
and we assume the assumptions in Proposition 2.3.1 and in Lemma 2.4.1. Then the

solution V ε to (2.2.9) converges uniformly on compact subsets of [0, T )×Rn×Rm to the

unique continuous viscosity solution to the limit problem (2.4.1) satisfying a quadratic

growth condition in x, i.e.

∃ K > 0 such that |V (t, x)| ≤ K(1 + |x|2), ∀ (t, x) ∈ [0, T ]×Rn (2.4.4)

Proof of Theorem 2.4.1. Using our previous results on the effective data of the prob-

lem, we can conduct the proof in the line of the one of [23, Theorem 5.1] (see also [21,

Theorem 3.2]), but still with some difference (in particular in Step 3). It is divided into

several steps:

- Step 1. we define the relaxed semilimits that will be used all along the proof,

- Step 2. we show that the relaxed semilimits do not depend on y using the Liouville

type result in Lemma 2.4.1,

- Step 3. we show that the relaxed semilimits are sub- and supersolutions to the

limit PDE,

- Step 4. we show that the relaxed semilimits are continuous at the final time T ,
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- Step 5. we conclude by using a Comparison Principle for Bellman equations under

quadratic growth.

Step 1. (Relaxed semilimits)

Recall that by (2.2.15) the functions V ε are locally equibounded in [0, T ] × Rn × Rm,

uniformly in ε. We define the half-relaxed semilimits (see [19, Chap. V]) in [0, T ] ×
Rn ×Rm:

V (t, x, y) = lim inf
ε→0

t′→t,x′→x,y′→y

V ε(t′, x′, y′), V (t, x, y) = lim sup
ε→0

t′→t,x′→x,y′→y

V ε(t′, x′, y′)

for t < T, x ∈ Rn, y ∈ Rm, and

V (T, x, y) = lim inf
ε→0

t′→T−,x′→x,y′→y

V ε(t′, x′, y′), V (T, x, y) = lim sup
ε→0

t′→T−,x′→x,y′→y

V ε(t′, x′, y′).

It is immediate to get by definitions that the estimate (2.2.15) holds also for V and V ,

that is

|V (t, x, y)|, |V (t, x, y)| ≤ K(1 + |x|2 + |y|2), ∀ t ∈ [0, T ], x ∈ Rn, y ∈ Rm (2.4.5)

Step 2. (V , V do not depend on y)

We check that V (t, x, y), V (t, x, y) do not depend on y for every t ∈ [0, T ) and x ∈
Rn. Arguing as in Step 2 of the proof of [23, Theorem 5.1], we get that V (t, x, y)

(resp., V (t, x, y)) is, for every t ∈ (0, T ) and x ∈ Rn, a viscosity subsolution (resp.,

supersolution) to

− L(x, y,DyV,D
2
yyV ) = 0 in Rm (2.4.6)

where L is the differential operator defined in (2.2.13). Consider now the function ω

defined on Rm \ {0} such that

ω(y) =
1

2
|y|2 log |y|. (2.4.7)

and such that ω(0) = 0. It is easy to check that

∇ω(y) =
(
1

2
+ log(|y|)

)
y

D2ω(y) =

(
1

2
+ log(|y|)

)
Im +

y ⊗ y

|y|2
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where we recall y ∈ Rm and Im is the identity matrix of dimension m. Therefore,

recalling a = ϱϱ⊤, one has

−Lω = −
(
1

2
+ log(|y|)

)
⟨b(y), y⟩ −

(
1

2
+ log(|y|)

)
trace(a(y))− 1

|y|2
trace((y ⊗ y)a(y))

≥ −
(
1

2
+ log(|y|)

)(
⟨b(y), y⟩+mΛ

)
− Λ −−−−→

|y|→∞
+∞

(2.4.8)

thanks to assumption (2.2.5) and (2.2.6). This means that one can find R > 0 such that

− Lω(y) ≥ 0 in B(0, R)
C
, and ω(y) −−−−→

|y|→∞
+∞ (2.4.9)

We can now use Lemma 2.4.1 with such a Lyapunov function ω, since V , V have at most

a quadratic growth in y, to conclude that the functions y 7→ V (t, x, y), y 7→ V (t, x, y)

are constants for every (t, x) ∈ (0, T )×Rn. Finally, using the definition it is immediate

to see that this implies that also V (T, x, y) and V (T, x, y) do not depend on y.

Step 3. (V , V are super- and subsolutions of the limit PDE)

First we show that V and V are sub and supersolutions to the PDE in (2.4.1) in

(0, T ) × Rn. We prove it only for V since the other case is completely analogous. The

proof adapts the perturbed test function method [78]. We fix (t, x) ∈ (0, T ) × Rn and

we show that V is a viscosity subsolution at (t, x) of the limit problem. This means that

if ψ is a smooth function such that ψ(t, x) = V (t, x) and V − ψ has a strict maximum

at (t, x) then

− ψt(t, x) +H(t, x,Dxψ(t, x), D
2
xxψ(t, x)) + λV (t, x) ≤ 0 (2.4.10)

Without loss of generality, we assume that the maximum is strict in B((t, x), r) and

that 0 < t− r < t+ r < T .

Set p = Dxψ(t, x) and P = D2
xxψ(t, x) and consider the following δ(n)-cell problemδχδ(y)− L(x, y,Dχδ, D
2χδ) +Hε(t, x, y, p, P , 0) = 0, in Dn

χδ(y) = 0, in Rm \Dn

(2.4.11)

where δ := δ(n) = O
(

1
n4+α

)
and Dn is the euclidean open ball centered in 0 with radius

n large enough. For simplicity of notations, we drop in what follows the dependency of δ

on n. The solution χδ of the above δ-cell problem is C2 in a neighborhood of (t, x, p, P ).
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Thanks to the convergence result for the effective Hamiltonian, we have for every κ > 0

there exists δo > 0 (or equivalently no > 0) such that for every δ ≤ δo (or equivalently

for every n ≥ no) one has

|δχδ(y) +H(t, x, p, P )| ≤ κ, ∀y ∈ B(y,R) (2.4.12)

where y,R will be soon after made precise, and n is chosen large enough to insure

B(y,R) ⊂ Dn.

We consider now the Lyapunov function ω in (2.4.7), and let y be such that ω(y) =

min
y∈Rm

ω(y). It is easy to see that such y satisfies |y| = e−1/2. However, by evaluating

the equality in (2.4.8) at y, one has −L(ω)(y) ≤ −Λ < 0. So we will construct a

perturbed test function by compensating the negative gap of −Lω when evaluated in

a neighborhood of y, and which will contain a new global minimizer. We define the

perturbed test function as

ψε(t, x, y) := ψ(t, x) + εχδ(y) + ω(y)− η
|y − y|2

2
ζ(y) (2.4.13)

Here ε is independent of δ and n. Moreover, η > 0 is to be made precise, and ζ ∈ C2(Rm)

is a cut-off function with a compact support subset of B(y,R) where R > 0 is to be

made precise and such that ζ(y) = 1 for all y ∈ B(y,R−θ) for some θ > 0 small enough,

and ζ(y) = 0 for all y ∈ B(y,R)
C
.

Claim: There exist η,R > 0 such that

ŷ := argmin
y∈Rm

{
ω(y)− η

|y − y|2

2
ζ(y)

}

is a global strict minimum. Moreover, ŷ ∈ B(y,R− θ) and

−L
(
ω(y)− η

|y − y|2

2
ζ(y)

)
≥ 0, ∀y ∈ B(y,R− θ) (2.4.14)

Assume the claim holds true. Observe that

lim sup
ε→0

t′→t,x′→x,y′→y

V ε(t′, x′, y′)− ψε(t′, x′, y′)

= V (t, x)− ψ(t, x)−
(
ω(y)− η

|y − y|2

2
ζ(y)

) (2.4.15)
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and (t, x, ŷ) is a strict local maximum of (t, x, y) 7→ V (t, x)−ψ(t, x)−
(
ω(y)− η |y−y|2

2
ζ(y)

)
.

Arguing as in [19, Lemma V.1.6] we get sequences

εk → 0, and (tk, xk, yk) ∈ B := B((t, x), r)×B(y,R− θ)

such that (tk, xk, yk) → (t, x, ŷ) where ŷ is as in the claim, and, when k → +∞,

V εk(tk, xk, yk)− ψεk(tk, xk, yk) → V (t, x)− ψ(t, x)−
(
ω(ŷ)− η

|ŷ − y|2

2
ζ(ŷ)

)
and (tk, xk, yk) is a maximum of V εk − ψεk in B.

Then using the fact that V ε is a subsolution to (2.2.9), we get4

−ψt +Hεk(tk, xk, yk, Dxψ,D
2
xxψ, 0) + λV εk − L(xk, yk, Dyχδ, D

2
yyχδ)

− 1

εk
L
(
ω(yk)− η

|yk − y|2

2
ζ(yk)

)
≤ 0

(2.4.16)

where V εk , ψ, χδ and ω (and their derivatives) are computed respectively in (tk, xk, yk),

(tk, xk) and in yk. Using (2.4.14) we get from the previous inequality that

− ψt +Hεk(tk, xk, yk, Dxψ,D
2
xxψ, 0) + λV εk − L(xk, yk, Dyχδ, D

2
yyχδ) ≤ 0 (2.4.17)

We now recall that χδ solves the δ-cell problem (2.4.11), thus

− ψt +Hεk(tk, xk, yk, Dxψ(tk, xk), D
2
xxψ(tk, xk), 0)

−Hεk(t, x, yk, p, P , 0)− δχδ(yk) + λV εk(tk, xk, yk) ≤ 0.
(2.4.18)

By taking the limit as k → ∞ the second and the third term of this inequality cancel

out. Next we use (2.4.12) to replace −δχδ with H − κ and get that

− ψt(t, x) +H(t, x, p, P ) + λV (t, x) ≤ κ. (2.4.19)

Finally, since the latter holds for all κ > 0, we conclude.

To prove that V is a supersolution to (2.4.1) we proceed exactly in the same way,

provided we choose as a perturbed test function

ψε(t, x, y) := ψ(t, x) + εχδ(y)− ω(y) + η
|y − y|2

2
ζ(y).

4We use both notations: LΦ(y) = L(x, y,DΦ(y), D2Φ(y)) when Φ is a function of y.
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Step 4. (Behavior of V and V at time T)

In this step, we adapt the Step 4 in the proof of [23, Theorem 5.1] or in [21, Theorem

3.2] using our result in Proposition 2.3.3. The main difference relies in the use of

the sequence of Cauchy problems with bounded domains (2.3.43) instead of the Cauchy

problem (2.3.41) that was used in [21, 23]. We repeat the proof for the sake of consistency

and clarity.

We prove only the statement for subsolution, since the proof for the supersolution is

completely analogous.

We fix x ∈ Rn and t0 > 0, and we consider, for some n > 0 to be later made

precise, the unique bounded solution ωr,n to the Cauchy problem in [0, T (n)] × Dn

where T (n) := n2t0 and Dn is the ball of radius n in Rm


ωt − L(y,Dω,D2ω) = 0, in (0, T (n)]×Dn,

ω(0, y) = sup
{|x−x|≤r}

g(x, y), in Dn,

ω(t, y) = 0, in [0, T (n)]× ∂Dn.

(2.4.20)

Using stability properties of viscosity solutions it is not hard to see that ωr,n converges,

as r → 0, to ωn solution to (2.3.43) set in [0, T (n)]×Dn.

Denote by

g(x) := µx(g(x, ·)) =
∫
Rm

g(x, y) dµx(y).

Using the convergence result in Proposition 2.3.3 and the uniform convergence of ωr,n

to ωn, it is easy to see that for every η > 0 there exist r0 and n0 > 0 such that

∀n ≥ n0 : |ωr,n(T (n), y)− g(x)| ≤ η, ∀ r < r0, y ∈ Dn ⊇ Dn0 . (2.4.21)

We now fix r < r0 and a constant Mr such that V ε(t, x, y) ≤ Mr and |g(x, y)| ≤ Mr/2

for every ε > 0, x ∈ B := B(x, r) and y ∈ D := Dn0 . This is possible by Proposition

2.2.1 and assumption (2.2.8). Moreover we fix a smooth non-negative function ψ such

that ψ(x) = 0 and ψ(x) + inf
y∈D

g(x, y) ≥ 2Mr for every x ∈ ∂B. Let Cr be a positive

constant such that

|Hε(t, x, y,Dψ(x), D2ψ(x), 0)| ≤ Cr for x ∈ B, y ∈ D and ε > 0
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where Hε is defined in (2.2.12). Note that such constant exists thanks to assumptions

(2.2.2) and (2.2.8). We define the function

ψε
r(t, x, y) = ωr,n

(
T − t

ε
, y

)
+ ψ(x) + Cr(T − t),

for some fixed n > n0, and we claim that it is a supersolution to the parabolic problem
−Vt + F ε

(
t, x, y, V,DxV,

DyV

ε
,D2

xxV
ε,
D2

yyV

ε
,
D2

xyV√
ε

)
= 0, in (0, T )×B ×D

V (t, x, y) =Mr, in (0, T )× ∂B ×D

V (T, x, y) = g(x, y), in B ×D

(2.4.22)

where F ε is defined in (2.2.11). Indeed

− (ψε
r)t + F ε

(
t, x, y,Dxψ

ε
r ,
Dyψ

ε
r

ε
,D2

xxψ
ε
r ,
D2

yyψ
ε
r

ε
,
D2

xyψ
ε
r√

ε

)
=

1

ε

[
(ωr,n)t − L(y,Dωr,n, D2ωr,n)

]
+ Cr +Hε(t, x, y,Dψ(x), D2ψ(x), 0) ≥ 0.

Moreover ψε
r(T, x, y) = sup

{|x−x|≤r}
g(x, y) + ψ(x) ≥ g(x, y). Finally, observe that the con-

stant function min{ 0 ; inf
y∈D

sup
{|x−x|≤r}

g(x, y) } is always a subsolution to (2.4.20) and then

by a standard comparison principle we obtain ωr,n(t, y) ≥ min{ 0 ; inf
y∈D

sup
{|x−x|≤r}

g(x, y) }.

This implies

ψε
r(t, x, y) ≥ min{ 0 ; inf

y∈D
sup

{|x−x|≤r}
g(x, y) }+ 2Mr − inf

y∈D
g(x, y) + Cr(T − t), ∀x ∈ ∂B

≥ Mr

where we have used either the fact that |g(x, y)| ≤ Mr/2, and hence − inf
y∈D

g(x, y) ≥

−Mr/2, when we have min{ 0 ; inf
y∈D

sup
{|x−x|≤r}

g(x, y) } = 0, or otherwise, we have used the

fact that inf
y∈D

sup
{|x−x|≤r}

g(x, y) − inf
y∈D

g(x, y) ≥ 0. In the first case, we get ψε
r(t, x, y) ≥

3Mr/2 and in the second case we have ψε
r(t, x, y) ≥ 2Mr. Then ψε

r is a supersolution

to (2.4.22). For our choice of Mr we get that V ε is a subsolution to (2.4.22). Moreover

both V ε and ψε
r are bounded in [0, T ]×B ×D, because of the estimate (2.2.15), of the

boundedness of ωr,n and of the regularity of ψ. So, a standard comparison principle for
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viscosity solutions gives

V ε(t, x, y) ≤ ψε
r(t, x, y)

= ωr,n

(
T − t

ε
, y

)
+ ψ(x) + Cr(T − t)

for every 0 < r < r0, n > n0 ε > 0, (t, x, y) ∈ [0, T ] × B ×D. We compute the upper

limit of both sides of the previous inequality as (ε, t, x, y) → (0, t′, x′, y′) for t′ ∈ (0, T ),

x′ ∈ B, y′ ∈ D and ε := ε(n) = T−t
T (n)

(recalling T (n) = n2t0) and get, using (2.4.21),

V (t′, x′) ≤ g(x) + η + ψ(x′) + Cr(T − t′).

Then taking the upper limit for (t′, x′) → (T, x), we obtain obtain V (T, x) ≤ g(x) + η

which permits to conclude recalling that η is arbitrary.

The proof for V is completely analogous, once we replace the Cauchy problem (2.4.20)

with 
ωt − L(y,Dω,D2ω) = 0, in (0, T (n)]×Dn,

ω(0, y) = inf
{|x−x|≤r}

g(x, y), in Dn,

ω(t, y) = 0, in [0, T (n)]× ∂Dn.

Step 5. (Uniform convergence)

We observe that by definition V ≥ V and that both V and V satisfy the same quadratic

growth condition (2.4.4). Moreover the Hamiltonian H defined in(2.3.40) inherit all the

regularity properties of H in (2.2.12), as easily seen by their definitions. Therefore we

can use the comparison result between sub- and supersolutions to parabolic problems

satisfying a quadratic growth condition, given in [71, Theorem 2.1], to deduce V ≥ V .

Therefore V = V =: V . In particular V is continuous, and by definition of half-relaxed

semilimits, this implies that V ε converges locally uniformly to V (see [19, Lemma V.1.9]).

Proof of the claim (2.4.14):

In what follows, and for the sake of clarity, we will omit the dependency on x for the

fast subsystem (2.3.1). Its infinitesimal generator writes

− LV (y) = −⟨b(y),∇V (y)⟩ − trace(a(y)D2V (y)) (2.4.23)

It is easy to see that any y such that |y| = e−1/2 is a global minimizer of ω. Fix such y.

We look for (η,R) such that ŷ := argmin
y∈Rm

{
ω(y)− η |y−y|2

2
ζ(y)

}
∈ B(y,R− θ) and
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−L
(
ω(y)− η

|y − y|2

2
ζ(y)

)
≥ 0, ∀y ∈ B(y,R− θ) (2.4.24)

We have, when ζ(y) = 1,

− L
(
ω(y)− η

|y − y|2

2

)
= −

(
1

2
+ log(|y|)

)
⟨b(y), y⟩ −

(
1

2
+ log(|y|)

)
trace(a(y))

− 1

|y|2
trace((y ⊗ y)a(y)) + η ⟨b(y), y − y⟩+ η trace(a(y))

≥ −
(
1

2
+ log(|y|)

)(
⟨b(y), y⟩+mΛ

)
− Λ

+ η

(
⟨b(y), y − y⟩+mΛ

)
(2.4.25)

So we need to find a pair (η,R) such that ∀ y ∈ B(y,R), and hence also in B(y,R− θ),

η

(
⟨b(y), y − y⟩+mΛ

)
≥
(
1

2
+ log(|y|)

)(
⟨b(y), y⟩+mΛ

)
+ Λ (2.4.26)

We start from the left-hand side of the above inequality.

Thanks to assumption (2.2.3), for y ∈ B(y,R), i.e. |y−y| ≤ R and recalling |y| = e−1/2,

we have

|⟨b(y), y − y⟩| ≤ C(1 + |y|)|y − y| ≤ C(1 + e−1/2 +R)R

⇒ −C(1+e−1/2+R)R+mΛ ≤ ⟨b(y), y−y⟩+mΛ ≤ C(1+e−1/2+R)R+mΛ

We look for R > 0 such that the left hand side of the above (double) inequality is

positive and hence 0 < ⟨b(y), y − y⟩+mΛ. Denote by R± the roots of the polynomial

P (Z) := −C(1 + e−1/2 + Z)Z +mΛ = −CZ2 − C(1 + e−1/2)Z +mΛ

It is easy to see that there exist two real roots defined by

R± :=
C(1 + e−1/2)±

√
C2(1 + e−1/2)2 + 4CmΛ

−2C

Denote by Rc = |R+| ∧ |R−|. Hence, for any R ∈]0, Rc[, P (R) > 0 and we have

∀ y ∈ B(y,R)

0 < P (R) < ⟨b(y), y − y⟩+mΛ ≤ C(1 + e−1/2 +R)R +mΛ (2.4.27)
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Choose R and fix θ > 0 small enough such that R ± θ ∈]0, Rc[. Hence, to get (2.4.26),

we choose

η ≥
(
1
2
+ log(|y|)

) (
⟨b(y), y⟩+mΛ

)
+ Λ

⟨b(y), y − y⟩+mΛ
, ∀ y ∈ B(y,R) (2.4.28)

Finally, it is easy to notice that both the numerator and denominator are bounded for

all y ∈ B(y,R): the denominator is bounded thanks to (2.4.27), and the numerator

is a continuous function on B(y,R). Note in addition that the right hand side when

evaluated in y = y is equal to Λ
mΛ

and hence is a lower-bound of the expression we are

maximizing. Therefore, by choosing such R ∈]0, Rc[ and η such that

η ≥ max
|y−y|≤R

(
1
2
+ log(|y|)

) (
⟨b(y), y⟩+mΛ

)
+ Λ

⟨b(y), y − y⟩+mΛ
≥ Λ

mΛ
> 0

we have (2.4.26), which in turn implies (2.4.24).

We need now to check that ŷ := argmin
y∈Rm

{
ω(y)− η |y−y|2

2
ζ(y)

}
∈ B(y,R− θ). This is

easy to see since we know that y is a global minimizer (not unique) of ω. And we are

subtracting a positive quantity in a neighborhood of y thanks to the cut-off function

ζ. Therefore we recover a new global minimizer (unique) which belongs to the domain

where ζ = 1, that is B(y,R− θ).

2.5 Deep relaxation of controlled Stochastic Gradi-

ent Descent

2.5.1 Introduction and motivation

A gradient descent in its continuous version is given as

dXt = −∇F (Xt) dt

It is well known that such process converges, under some mild assumptions, to a local

minimum of F (x) and a huge literature exists on this topic. However, in most of the

applications nowadays, the function to be minimized lacks many properties: it is usually

non convex and also not smooth. Moreover, the dimension of the unknown variable is

tremendously large, and this issue is known as the curse of dimensionality. This is the
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case in deep neural networks and more precisely in supervised learning when one wishes

to find the optimal parameters of the neural network in order to fit the data set on which

it performs the “training”. A particular (and well known) example of such algorithms is

the image classification. To overcome this issues (non smoothness of the function to be

minimized/maximized, large dimension, non convexity, . . . ), one performs a stochastic

gradient descent (SGD) where the stochasticity is added artificially to recover some

richness in the exploration performed by a “non-exact” gradient descent. In fact, one

only computes a sample of the gradient (called mini-batch), that is a gradient with

respect to only some variables, then adds a noise to the latter. The stochastic gradient

descent in the continuous version writes

dXt = −∇mbF (Xt)dt+ σdWt

where W· is a Wiener process, σ some constant, and ∇mb is the gradient performed over

a mini-batch, that is a subset of variables. Again, a huge literature exists on this topic,

and many algorithms are performed and improved for the convergence of such process

towards a minimum of the function F , called loss function. It is worth noticing that

such process is of Smoluchowski type, provided F is a smooth confining potential (see

Definition 2.6.1). We have seen however that smoothness is also an issue when dealing

with such optimization problems. One way to handle this problem is the well known

use of convolution together with a mollifier, see e.g. [151, §7.2]: if ηγ is a smooth (say

C∞) function such that
∫
Rn ηγ = 1, then Fγ := F ∗ ηγ may be considered as a convex

weighted average of F which enjoys more smoothness properties. Moreover, as γ → 0,

Fγ is known to be a good approximation of F [151, Lemma 7.1]. In this way one recovers

a more regular version of the loss function to be minimized, and hence expects a better

performance of the SGD since the gradients will be computed in a more accurate way.

Still, the high dimensionality of the optimization problem will be an obstacle towards

the computation of the whole gradient. And this is where singular perturbations will

be used, together with the regularization obtained with the mollifiers.

This modification of the loss function has been introduced in [18, 63] where the

authors used a regularized version of the loss function called local entropy, whereas the

additional use of homogenization appeared in [64]. In the sequel, we shall apply our

convergence result of trajectories to the system of SDEs introduced in [64] and whose

limit is a gradient descent (not stochastic) of a regularized version of the loss function;

the local entropy. Moreover, we will add a control parameter in the same spirit as in

[123, §4.1]. We therefore recover a convergence result for a singularly perturbed system

towards a Controlled Stochastic Gradient Descent of a local entropy function that plays
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the role of the regularized loss function.

2.5.2 The model with singular perturbations

In what follows, we consider a generic non-convex optimization problem

min
x∈Rn

f(x) (2.5.1)

where f is a scalar function, a priori not smooth. We will give more precise assumption

on f later on. Such an optimization problem arises in training a deep neural network.

We don’t give further features on the loss function f here and refer to the large existing

literature.

The authors in [64] introduced fγ, a regularization of the loss function f , such that

fγ := − 1

β
log (Gβ−1γ ∗ exp(−βf(x))) (2.5.2)

where

Gβ−1γ(x) := (2πγ)−n/2 exp

(
− β

2γ
|x|2
)

is the heat kernel, and β, γ > 0 are fixed parameter. The function fγ plays the role of

a local entropy and, as γ → 0, it is a smooth approximation of f . The parameter β

corresponds in physics to the inverse of the temperature (see [144, Chapter 6]) and as

β → ∞, the heat kernel tends to Dirac measure supported on 0 (see [144, Chapter 7,

p.236]).

It is now easy to see that the gradient of (2.5.2) has the following nice structure.

Lemma 2.5.1. ([64, Lemma 1]) The gradient of the regularized loss function (2.5.2) is

given by

∇fγ(x) =
∫
Rn

x− y

γ
ρ∞

β
(dy;x) (2.5.3)

where ρ∞
β
(y;x) := Z−1 exp

(
−β
(
f(y) + 1

2γ
|x− y|2

))
and Z is a normalizing constant.

Now the fact that ∇fγ in (2.5.3) is defined as an average of y 7→ 1
γ
(x−y) over a Gibbs

measure ρ∞
β

is reminiscent to what one usually expects to obtain in homogenization and

in singular perturbations.

Indeed, with this observation, we would like to build a system of singularly perturbed

SDEs whose limiting behavior yields (2.5.3). This motivates the following system of
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singularly perturbed SDEs as introduced in [64] where we first define

V (y, x) := f(y) +
1

2γ
|x− y|2 (2.5.4)

and then we set

dXs = −∇xV (Ys, Xs) ds, X0 = x ∈ Rn

dYs = −1

ε
∇yV (Ys, Xs) ds+

√
2

ε
β−1/2 dWs, Y0 = y ∈ Rn.

(2.5.5)

Therefore, we expect the limit as ε→ 0 in the above system of SDEs to be

dX̂s =

∫
Rn

−1

γ
(Xs − y)ρ∞

β
(dy;Xs) ds, X̂0 = x ∈ Rn

which writes (using Lemma 2.5.1) as

dX̂s = −∇fγ(X̂s)ds, X̂0 = x ∈ Rn (2.5.6)

that is the gradient descent (not stochastic) of the regularized loss function.

Several preliminary questions arise before the study of the limit ε→ 0:

• Well-posedness of the SDES in (2.5.5) and in (2.5.6): a sufficient condition for

existence and uniqueness of strong solutions is to have f Lipschitz continuous and

with at most a linear growth.

• Existence and uniqueness of ρ∞
β
: it is well defined when V is a confining potential

(see Definition 2.6.1 in the appendix), and it is the unique invariant probability

measure corresponding to the stochastic process Y· in (2.5.5) by classical results

that we recall in the appendix (in particular Proposition 2.6.1 and Theorem 2.6.1).

The limit as ε → 0 in (2.5.5) has been studied in various ways under different as-

sumptions, and several references are mentioned in section 2.1. Our goal in the sequel is

to show this limit in the context of stochastic optimal control theory with an application

to controlled stochastic gradient descent as we shall describe in the next section.

2.5.3 Controlled Stochastic Gradient Descent

Following the model in [123, §4], we can introduce in (2.5.5) a control parameter u

which plays the role of a Learning Rate. Its optimization will allow us to control how

far the process X· (and equivalently X̂·) should follow the gradient descent, in other
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words, how trustful is the gradient descent direction. Usually the control u takes values

in [0, 1]. In the sequel we consider U as a general compact set of values that the control

u would take, and we write the new system of singularly perturbed controlled SDEs as

dXs = −us∇xV (Ys, Xs) ds+
√
2σ(Xs, Ys, us) dWs, X0 = x ∈ Rn

dYs = −1

ε
∇yV (Ys, Xs) ds+

√
2

ε
β−1/2 dWs, Y0 = y ∈ Rn

(2.5.7)

where V is defined in (2.5.4), and σ is a diffusion term that also depends on the learning

rate which is the control, and is allowed to be zero. The optimal learning rate should

provide a balance between exploration (how fast at each step should we follow the drift)

and exploitation (how much at each step should we diffuse and look around). Given an

appropriate cost function for the problem of tuning the learning rate, we can write an

optimal control problem of the form

min
u
E

[
g(XT , YT )e

λ(t−T ) +

∫ T

t

ℓ(s,Xs, Ys, us)e
λ(s−T ) ds

∣∣∣∣ Xt = x, Yt = y

]
subject to (2.5.7), where λ is a non negative constant, and g, ℓ satisfy some growth

assumptions that we will later made precise in section 2.2.2, and can be chosen according

to the performance we seek (sparsity, momentum, covariance, E[f(XT )], . . . ).

Our main result (Theorem 2.5.2) insures that at the limit ε → 0, the stochastic

control problem with singular perturbations (2.5.7) is again a control problem that is

subject to dynamics of the form

dX̂s = −νs∇fγ(X̂s) ds+
√
2σ(X̂s,νs) dWs (2.5.8)

where

σ(x̂,ν) :=

√∫
Rn

σ(x̂, y,ν)σ⊤(x̂, y,ν)ρ∞(dy;x)

Note that by taking σ ≡ 0 and U = {1}, we recover the particular case of (2.5.5) and

(2.5.6).

The benefit of this approximation is that we can allow the use of mini-batches in

the fast variables of (2.5.5) and recover at the limit as ε → 0, a full gradient of the

regularized loss function in (2.5.6) while controlling the learning rate (or any other

parameter in the dynamics). We show in what follows an example of such application

and how it can benefit in optimization problems.
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A practical example.

Let U be a compact subset of R and U be the set progressively measurable functions

from [0, T ] to U and T > 0. Recalling the definition of the regularized loss function fγ

as in (2.5.2), we are interested in the following optimal control problem (where σ = 0 is

allowed, in which case we would have a deterministic control problem)

U(x) :=min
u·∈U

E[f(XT )]

s.t. dXt = −ut∇fγ(xt) dt+ σ dWt

X0 = x ∈ Rn, t ∈ [0, T ]

(2.5.9)

We introduce the singularly perturbed optimal control problem

Uε(x, y) :=min
u·∈U

E[f(Xε
T )]

s.t. dXε
t = −utγ−1(Xε

t − Y ε
t ) dt+ σ dWt

dY ε
t = −1

ε

(
∇f(Y ε

t )−
1

γ
(Xε

t − Y ε
t )

)
dt+

√
2

ε
β−1/2 dWt

Xε
0 = x ∈ Rn, Y ε

0 = y ∈ Rn, t ∈ [0, T ]

(2.5.10)

Theorem 2.5.1. Let f be Lipschitz continuous. Then we have

lim
ε→0

Uε(x, y) ≤ U(x)

locally uniformly in x, y ∈ Rn, i.e. the dynamics with singular perturbations yields a

lower value than the one with a controlled full gradient descent.

In other words, the latter theorem insures that with a controlled and singularly

perturbed system of SDEs, one reaches a value of the function f to be minimized (in

expectation) lower than any other choice of the learning rate (which is here represented

by the control).

The proof is postponed to the end of section 2.5.4.

Reminder 2.5.1. We believe that allowing mini-batches in the dynamics of Y ε
· does

not alter the result, since at the limit ε → 0 we recover the invariant measure of the

process, which is independent of which subgradients we choose or not to implement,

i.e., those chosen in the mini-batches. And the invariant measure µx(·), where x is

fixed, only depends on which potential V (· , x) we are considering; in our case it is

y 7→ V (y, x) := f(y) + 1
2
γ−1|x − y|2 and is explicitly given by its density ρ∞ as in

Lemma 2.5.1 or as in Proposition 2.6.1.
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More generally, we conjecture that there exists a natural number n∗ strictly less than the

space dimension n, such that the invariant measure associated to a stochastic process (or

to the corresponding stationary Fokker-Planck equation), with constant diffusion and a

drift given by −∇V where V is a confining potential, remains unchanged when we con-

sider the same process but with a drift given by −∇n∗V where ∇n∗ = (α1
∂

∂x1
, . . . , αn

∂
∂xn

)⊤

and αi ∈ {0, 1} satisfying
n∑

i=1

αi = n∗ < n. Such an operator ∇n∗ corresponds to the

gradient with mini-batches ∇mb as presented earlier in this section.

2.5.4 A control interpretation of the limit PDE

The following result allows to represent the effective Hamiltonian (2.3.40) as a Bell-

man Hamiltonian associated to an effective optimal control problem that we will con-

struct by a relaxation procedure.

Proposition 2.5.1. Under the standing assumptions, the effective Hamiltonian (2.3.40)

writes

H(t, x, p, P ) = min
ν∈Uex(x)

∫
Rm

[
−trace(σσ⊤P )− f · p− ℓ

]
dµx(y) (2.5.11)

where σ, f are computed in (x, y, ν) and ℓ in (t, x, y, ν) , and U ex(x) is the set of

progressively measurable processes taking values in the extended control set U ex(x) :=

L2((Rm, µx), U).

Reminder 2.5.2.

• The set U ex(x) contains a copy of U given by constant functions since µx is a proba-

bility measure.

• The choice of U ex(x) := L2((Rm, µx), U) is justified by the quadratic term of the

Hamiltonian, that is trace(σσ⊤M). The drift f is supposed to have a linear growth in

the control, and since µx is finite, we have L2((Rm, µx), U) ⊂ L1((Rm, µx), U).

• Since any process ν(·) ∈ U ex(x) takes values in a compact set U , it is in particular

bounded and hence in L∞(Rm, U). The latter being a subset of U ex(x), one can write

(2.5.11) with U ex(x) being the set of progressively measurable processes taking values in

L∞(Rm, U) which is independent of x.

Proof. (Proposition 2.5.1)

Fix (t, x, p,M) ∈ [0, T ]×Rn ×Rn × Sn, and define

F (y, u) = −trace(σ(x, y, u)σ⊤(x, y, u)M)− f(x, y, u) · p− ℓ(t, x, y, u), in Rm × U.
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Now define LHS (resp., RHS) the left hand side (resp., right hand side) of (2.5.11) by

LHS :=

∫
Rm

min
u∈U

F (y, u) dµx(y), and RHS(ν) :=

∫
Rm

F (y,ν(y)) dµx(y)

then (2.5.11) writes

LHS = min
ν∈Uex(x)

RHS(ν) (2.5.12)

Step 1. (LHS ≤ min
ν∈Uex(x)

RHS(ν)).

This is the easy inequality. It suffices to notice that, for all ν(·) ∈ U ex(x)

RHS(ν) ≥
∫
Rm

min
u∈U

F (y, u) dµx(y) = LHS

and in particular, taking the minimum in U ex(x) yields the desired inequality.

Step 2. (LHS ≥ min
ν∈Uex(x)

RHS(ν)).

We first start by choosing a sequence (Ii)i∈Z of open intervals in Rm such that Ii∩Ij = ∅
and Rm = ∪i∈ZI i, where I i is the closure of Ii. We denote by RHS(i) the integral

defining RHS but where the integration is done only on Ii. Therefore, one has for an

arbitrary chosen ν ∈ U ex(x)

RHS(i) =

∫
Ii

F (y,ν(y)) dµx(y)

Recall that µx is a probability measure and hence is positive with a total variation equal

to 1. Denote by Ak = ∪k
i=−kI i and let y 7→ Fk(y) be the sequence of functions defined

as

Fk(y) = 1{y∈Ak}(y)F (y,ν(y)), ∀ y ∈ Rm, ∀ k ∈ N

where ν is an arbitrary fixed element of U ex that we omit in Fk for the sake of clarity,

and 1{y∈Ak} is the characteristic function of Ak. Notice that limk→+∞Ak = R
m.

It is clear that the family {Fk}k is uniformly integrable over Rm, that is:

For every ε > 0, one can find δ > 0 such that

if D ⊆ Rm with µx(D) < δ, then
∫
D
|Fk(y)| dµx(y) < ε, ∀ k.

This is true since Fk ≤ |F | which in turn is integrable with respect to the measure µx

that has finite moments. Therefore, Vitali’s convergence theorem applies:
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Since Fk(y) −−−−→
k→+∞

F (u,ν(y)) for µ-almost every y, one has

k∑
i=−k

∫
Ii

F (u,ν(y)) dµx(y) =

∫
Rm

Fk(y) dµx(y) −−−−→
k→+∞

∫
Rm

F (y,ν(y)) dµx(y).

We shall now consider the minimization problem

min
u∈U

F (y, u) =: Hi(y) ∈ F (y, U)

where y ∈ Ii. Since U is compact, Hi(y) and F (y, U) are continuous, and µx is finite,

a classical selection theorem (e.g., [94, Theorem 7.1, p. 66]) implies the existence of a

measurable selector νi such that

Hi(y) = F (y,νi(y)).

Therefore the minimization is obtained with νi(·) and one has

∀i ∈ Z, ∃ νi ∈ U ex(x), s.t. ∀y ∈ Ii, Hi(y) = min
u∈U

F (y, u) = F (y,νi(y)).

Now consider ν ∈ U ex(x) defined as y 7→ ν(y) = {νi(y), if y ∈ Ii, ∀ i ∈ Z}. Therefore,
one has

LHS =

∫
Rm

min
u∈U

F (y, u) dµx(y) =
∑
i∈Z

∫
Ii

min
u∈U

F (y, u) dµx(y)

=
∑
i∈Z

∫
Ii

F (y,νi(y)) dµx(y)

=

∫
Rm

F (y,ν(y)) dµx(y)

≥ min
ν∈Uex(x)

∫
Rm

F (y,ν(y)) dµx(y) = min
ν∈Uex(x)

RHS(ν).

This yields the desired second inequality, and proves (2.5.12) and equivalently (2.5.11).

Armed with this result, together with the Lipschitz regularity of the invariant measure

in Proposition 2.3.1, we can construct the effective dynamics as
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
dX̂t =

∫
Rm

f(X̂t, y,νt(y))dµX̂t
(y)dt+

√
2

√∫
Rm

σσ⊤(X̂t, y,νt(y))dµX̂t
(y) dWt,

νt(·) ∈ U ex(X̂t), and X̂0 = x ∈ Rn.

(2.5.13)

We recall that U ex(X̂t) is the set of progressively measurable processes taking values in

the extended control set U ex(X̂t) := L2((Rm, µX̂t
), U), that is

ν·(·) : t 7→ νt(·) ∈ L2((Rm, µX̂t
), U) =

{
ϕ(·) : y 7→ ϕ(y) ∈ U

∣∣∣∣ ∫
Rm

|ϕ(y)|2 dµX̂t
(y)

}
and the measure µX̂t

for a fixed t ≥ 0 is the unique invariant probability measure

associated to the fast subsystem

dYs = b(X̂t, Ys) ds+
√
2ϱ(X̂t, Ys) dWs, Y0 = y ∈ Rm.

Reminder 2.5.3. It is immediate to see that both the drift and the diffusion

F (x,ν) :=

∫
Rm

f(x, y,ν(y))dµx(y) and G(x,ν) :=

√∫
Rm

σσ⊤(x, y,ν(y))dµx(y)

(2.5.14)

are Lipschitz continuous in x with at most a linear growth, and uniformly bounded in ν,

that is they satisfy assumption (2.2.2) with now no dependency on the y variable. Hence

the SDE in (2.5.13) has a strong solution.

The dynamics (2.5.13) can be written in fact as a stochastic differential inclusion

(SDI) (see [110, 111]). Let us introduce the following set-valued functions F from Rn

to Rn and G from Rn to Rn,r defined using F,G in (2.5.14) as

F (x) := F (x,U ex(x)) =

{∫
Rm

f(x, y,ν(y)) dµx(y), s.t. ν(·) ∈ U ex(x)

}
G(x) := G(x,U ex(x)) =

{√∫
Rm

σ(x, y,ν(y))σ⊤(x, y,ν(y)) dµx(y), s.t. ν(·) ∈ U ex(x)

}
(2.5.15)

We define the SDI, using the notation (F ◦X)s(ω) = F (Xs(ω)), (G◦X)s(ω) = G(Xs(ω))

for t ≥ 0 and ω ∈ Ω, where now the extended control ν is seen as an element of U ex(·),
and write (2.5.13) as

X̂t2 − X̂t1 ∈
∫ t2

t1

(F ◦ X̂)s ds+
√
2

∫ t2

t1

(G ◦ X̂)s dWs (2.5.16)
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We can now write the effective optimal control problem as follows

V (t, x) = sup Ĵ(t, x,ν·(·)), subject to (2.5.13) ( OCP )

where the effective pay off is

Ĵ(t, x,ν·(·)) = E
[
eλ(t−T )g(X̂s) +

∫ T

t

ℓ(s, X̂s,νs)e
λ(s−T ) ds

∣∣∣∣ X̂t = x

]
(2.5.17)

with

g(x) :=

∫
Rm

g(x, y) dµx(y) and ℓ(s, x, u) :=

∫
Rm

ℓ(s, x, y, u) dµx(y)

Theorem 2.5.2. The value function ( OCP ) is the unique viscosity solution to the

Cauchy problem (2.4.1). In particular, it is the limit of V ε defined in ( OCP (ε) ).

Proof. (Theorem 2.5.2)

We are in the framework of Proposition 2.2.1, since the dynamics (2.5.13) and the cost

function (2.5.17) satisfy the conditions in §2.2.1 following Remark 2.5.3 and thanks to

Lipschitz regularity of the invariant measure in Proposition 2.3.1. This insures that

the value function as defined by ( OCP ) is a viscosity solution to the Cauchy problem

(2.4.1) satisfying moreover the quadratic growth condition.

But we know from Theorem 2.4.1 that the limit problem has a unique viscosity solution

which is the one given by the limit of V ε solution to (2.2.9). Therefore V as defined in

( OCP ) is the limit of V ε defined by ( OCP (ε) ).

Reminder 2.5.4. Combining Theorem 2.4.1 and Theorem 2.5.2 yields the following

(for example with λ = 0 and g ≡ 0):

E

[∫ T

t

ℓ(s,Xε
s , Y

ε
s , us) ds

]
−−→
ε→0

E

[∫ T

t

ℓ(s, X̂s,νs) ds

]
, ∀ ℓ continuous, as in (2.2.8)

where we denoted by (Xε
· , Y

ε
s , u·) an optimal solution to ( OCP (ε) ) and by (X̂·,ν·) an

optimal solution to ( OCP ). In particular, when ℓ is independent of y, we have ℓ = ℓ,

and choosing it for simplicity also independent of u, yields

E

[∫ T

t

ℓ(s,Xε
s ) ds

]
−−→
ε→0

E

[∫ T

t

ℓ(s, X̂s) ds

]
, ∀ ℓ continuous, as in (2.2.8)

This will be used in the next subsection.

We are now ready to prove Theorem 2.5.1 in the practical example at the end of

section 2.5.3 as a direct consequence of the previous results.
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Proof. (Theorem 2.5.1)

From Theorem 2.4.1 and Theorem 2.5.2, we know that Uε(x, y) converges locally uni-

formly to the value function U(x) defined by the optimal control problem

U(x) := min
ν·(·)∈Uex(·)

E[f(XT )]

s.t. dX t = −
∫
Rn

νt(y)γ
−1(X t − y) dµXt

(y) dt

X0 = x ∈ Rn, t ∈ [0, T ]

It suffices then to notice that the set of admissible controls U is a subset of the extended

control set U ex since the latter contains controls which are constant with respect to y

and µx is a probability measure (see Remark 2.5.2).

Hence we have lim
ε→0

Uε(x, y) = U(x) ≤ U(x).

2.5.5 Convergence of trajectories in multiscale optimal control

We have shown so far that the value function V ε in ( OCP (ε) ) converges locally uni-

formly to the value function V in ( OCP ) as ε→ 0. In this section, we are interested in

the link between the singularly perturbed dynamics (2.2.1) and the corresponding effec-

tive one (2.5.13) (equivalently (2.5.16)). Mainly we will show that, under the standing

assumptions and if σ = 0 in (2.2.4), then as ε → 0, every solution to (2.5.13) is ap-

proximated by a sequence of processes of the form (2.2.1), in a sense that we will soon

after make precise, and conversely, any converging sequence of trajectories (2.2.1), can

be represented with a solution to (2.5.13).

In this subsection, we will assume, besides the standing assumptions of §2.2, that the
limit in (2.2.4) is null, that is,

lim
ε→0

σε(x, y, u) = 0 locally uniformly. (2.5.18)

In this case, the effective dynamics (2.5.13) becomes
dx̂t
dt

=

∫
Rm

f(x̂t, y,νt(y))dµx̂t(y)

νt(·) ∈ U ex(x̂t), and x̂0 = x ∈ Rn.

(2.5.19)

Note that, since there is no randomness, U ex(x̂t) ≡ U ex(x̂t) := L2((Rm, µx̂t), U). And fol-

lowing the last point in Remark 2.5.2, one can take instead of U ex(x̂t) the set L
∞(Rm, U) =:

U
ex

that is independent of x. Hence, the effective dynamics (2.5.19) equivalently writes
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as 
dx̂t
dt

=

∫
Rm

f(x̂t, y,νt(y))dµx̂t(y)

νt(·) ∈ U
ex
, and x̂0 = x ∈ Rn.

⇔ x̂t2 − x̂t1 ∈
∫ t2

t1

F (x̂s) ds. (2.5.20)

where F is as defined in (2.5.15) and (2.5.16).

Theorem 2.5.3. Under the standing assumptions of §2.2 and assuming (2.5.18) holds,

every solution x̂· to the effective dynamics (2.5.20) is an accumulation point to a sequence

{Xε
· }ε>0 of trajectories (2.2.1) in the sense

lim
ε→0

E
[ ∣∣Xε

s − x̂s
∣∣p ] = 0, a.e. s ∈ [t, T ]

for some p ∈ (0, 2].

Proof. (Theorem 2.5.3)

The proof is in the same spirit as for Theorem 1.3.2: we will construct an optimal

control problem of the form ( OCP (ε) ), then exploit the convergence result of the

value function to finally deduce the desired result using a particular choice of pay off

function.

We start by fixing an initial condition y ∈ Rm for the fast process Y ε
· , and we consider

a fixed pair (x̂·,ν·) : [0, T ] → Rn × U
ex

satisfying (2.5.20) with x̂0 = x fixed in Rn. We

choose Xε
· with the same initial condition as for x̂· and a diffusion σε satisfying (2.5.18),

which together with Y ε
· solves (2.2.1). We then choose a pay off functional of the form

(2.2.7) with g ≡ 0 and a running cost

ℓ(s, x) = −
∣∣x− x̂s

∣∣p, p ∈ (0, 2] (2.5.21)

that is, ℓ has at most a quadratic growth. We choose, for simplicity, the discount factor

λ = 0. Therefore, our optimal control problem ( OCP (ε) ) writes

V ε(t, x, y) := sup
u·∈U

E

[∫ T

t

−
∣∣Xε

s − x̂s
∣∣p ds]

s.t. dXε
s = f(Xε

s , Y
ε
s , us) ds+

√
2σε(Xε

s , Y
ε
s , us) dWs, X

ε
t = x ∈ Rn

dY ε
s =

1

ε
b(Xε

s , Y
ε
s ) ds+

√
2

ε
ϱ(Xε

s , Y
ε
s ) dWs, Y ε

t = y ∈ Rm.

The minus sign in the running cost is due to fact that we have a maximization problem.

Thanks to the convergence result of the value function in Theorem 2.4.1 we deduce that

V ε(t, x, y) converges locally uniformly to V (t, x) which solves an effective optimal control
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problem of the form ( OCP ). Notice that here, the pay off functional is unchanged,

since it is independent of the variable y. Now, because we have V (t, x) ≤ 0 together with

the fact that x̂· is an admissible solution (by definition), then when the cost functional is

evaluated in the latter trajectory, it yields V (t, x) = 0 and hence x̂· is indeed an optimal

solution. This means that V ε(t, x, y) converges locally uniformly to 0 as ε→ 0, i.e.

∀ δ > 0, ∃ E > 0 s.t.: ∀ ε ≤ E, |V ε(t, x, y)| ≤ δ

2

Fix δ > 0. Let us denote again by (Xε, Y ε) the suboptimal ( ε
2
-optimal) solution associ-

ated to V ε(t, x, y), so we get

−δ
2
≤ V ε(t, x, y) ≤

∫ T

t

−E
[ ∣∣Xε

s − x̂s
∣∣p ] ds+ ε

2

and since ε can be chosen as small as we want, we can choose it such that 0 < ε ≤ δ.

Hence, one gets

−δ ≤ −δ
2
− ε

2
≤ V ε(t, x, y) ≤

∫ T

t

−E
[ ∣∣Xε

s − x̂s
∣∣p ] ds ≤ 0

which finally yields

∀ δ > 0, ∃ E > 0 s.t.: ∀ ε ≤ E, 0 <

∫ T

t

E
[ ∣∣Xε

s − x̂s
∣∣p ] ds ≤ δ

in particular

lim
ε→0

E
[ ∣∣Xε

s − x̂s
∣∣p ] = 0, a.e. s ∈ [t, T ].

The next result shows that every limit (in a sense that we will make precise) of a

sequence of controlled and singularly perturbed dynamics can be approximated by a

sequence of effective dynamics (2.5.20) and is, moreover, a solution to the convexified

effective dynamics.

Theorem 2.5.4. Under the standing assumptions of §2.2 and assuming (2.5.18) holds,

if a given sequence of controlled processes Xε
· of (2.2.1) converges to some (determinis-

tic) process x· in the sense

lim
ε→0

E
[ ∣∣Xε

s − xs
∣∣p ] = 0, a.e. s ∈ [t, T ], (2.5.22)
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for some p ∈ [1, 2], then x· satisfies

ẋs ∈ coF (xs), a.e. s ∈ [t, T ],

where F is as in (2.5.20) and co denotes the closed convex hull.

Proof. (Theorem 2.5.4)

In the same spirit as in the proof of Theorem 2.5.3, we will construct an optimal control

problem of the form ( OCP (ε) ) then study its limit and deduce the desired convergence.

We start by choosing a sequence Xε
· solution to (2.2.1) which converges to a deter-

ministic process x· in the sense (2.5.22) for some p ∈ (0, 2] fixed. We need to show that

the limit process x· can be approximated by a sequence of dynamics solving (2.5.20).

We consider an optimal control problem of the form ( OCP (ε) ) where the final cost

g ≡ 0 and the running cost is (2.5.21). Since Xε
· is an admissible solution to ( OCP (ε) ),

we have ∫ T

t

−E
[ ∣∣Xε

s − xs
∣∣p ] ds ≤ V ε(t, x, y) ≤ 0.

Using the fact that Xε converges to x in the sense (2.5.22), we deduce that V ε(t, x, y)

converges to 0 as ε → 0. This means that the limit value function V (t, x) of the

effective optimal control problem ( OCP ) also equals 0. And hence, one can consider

a minimizing sequence {xk· }k of the effective problem ( OCP ) such that∫ T

t

∣∣xks − xs
∣∣p ds −−−−→

k→+∞
0

which yields

lim
k→+∞

∣∣xks − xs
∣∣p = 0, a.e. s ∈ [t, T ].

We need now to apply [67, Theorem 4.1.11, p.186] which provides a subsequence (again

denoted by) xk· that converges uniformly to z· and whose derivatives converge weakly

to ż· where

żs ∈ coF (zs), a.e. s ∈ [t, T ] (2.5.23)

using the notation in (2.5.20). The latter theorem holds true, since for every x, coF (x)

is a nonempty compact convex set, moreover F (x) is upper semicontinuous5 as a di-

rect consequence of [16, Proposition 1.4.14, p.47] hence also coF (x), and finally every

element of coF (x) is upper bounded by an affine function of ∥x∥ which follows from

5F is upper semicontinuous in x if ∀ ε > 0, ∃ δ > 0 s.t. |x− x′| ≤ δ ⇒ F (x′) ⊂ F (x) + εB where B
is the unit ball (see [15, Def. 1.1.5, p. 45] and the discussion afterwards, or [16, p. 39]).
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(2.2.2). Therefore, and when p ≥ 1, one has

|zs − xs|p ≤ ∥xk· − z·∥p∞ + |xks − xs|p −−−−→
k→+∞

0

and zs = xs for almost every s ∈ [t, T ] and x satisfies (2.5.23).

2.6 Conclusion

We managed to provide a SGD version which combines the results in [64] concerning

the (uncontrolled) singularly perturbed system, and those in [123] concerning the control

of the learning rate. So we presented a convergence result which allows to justify the

approximation of a controlled SGD by a system of controlled and singularly perturbed

SDEs. And of course this holds for any SDE of Smoluchowski type and also to more

general dynamics satisfying the assumptions presented earlier.

Advantages. Using singular perturbations as an approximation procedure allows

us ultimately to gain more reliability in the gradient descent, since we get the ”full

gradient”. Moreover, since we have a regularized version of the loss function, then we

gain in smoothness and hence the gradient descent will be more effective and trustful.

We refer to [63] and the references therein, where the entropy-guided SGD is introduced

in the framework of deep neural networks and is well studied.

Drawbacks. To implement such controlled system of SDEs, we need an explicit

optimal control (which is in our application the learning rate parameter). But as it

is usually the case for control systems, the computation of an optimal control can be

costly from the numerical point of view, especially when it is given in a feedback form.

However, it turns out that for some particular choices of cost functions, one can get

the explicit controls and then plug them directly in the dynamics. This is the case for

instance in the linear-quadratic cost functions. We refer to [123, §4.1.2 & §4.1.3] where
the use of such controlled SGD has been presented and explicit computation for optimal

controls have been performed and tested.

2.6.1 Known results on Smoluchowski equation

The results in this section are well known and are borrowed from [144, §4.5]. We

recall them for completeness.
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Consider the following stochastic process

dXt = −∇V (Xt) dt+
√

2β−1 dWt, X0 = x (2.6.1)

The corresponding infinitesimal generator writes

L • = −∇V (x) · ∇ •+β−1∆ • . (2.6.2)

Assume the initial condition forXt is a random variable with probability density function

ρ0(x). The probability density function ρ(x, t) of Xt is the solution of the initial value

problem:
∂ρ

∂t
= ∇ · (∇V ρ) + β−1∆ρ

ρ(x, 0) = ρ0(x)

(2.6.3)

It is not possible to calculate the time-dependent solution for arbitrary potentials. We

can however calculate the stationary solution when it exists.

Definition 2.6.1. [144, Definition 4.2] A potential V will be called confining if

lim
|x|→∞

V (x) = +∞ and exp(−ηV (x)) ∈ L1(Rd), ∀η ∈ R+ (2.6.4)

With such potential, one expects nice ergodic properties.

Proposition 2.6.1. [144, Proposition 4.2] Let V (x) be a smooth confining potential

and β > 0 a constant. Then the Markov process with generator (2.6.2) is ergodic. The

unique invariant distribution is the Gibbs distribution

ρ∞
β
(x) =

1

Z
exp(−βV (x)) (2.6.5)

where the normalization factor Z is

Z =

∫
Rd

exp(−βV (x)) dx (2.6.6)

In general, for dXt = b(Xt)dt+Σ(Xt)dWt, we can write the Fokker-Planck equation

in the form of a continuity equation

∂ρ

∂t
+∇ · J = 0 (2.6.7)
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where the probability flux (current) is

J := b(x)ρ− 1

2
∇ · (Σ(x)ρ) (2.6.8)

Therefore, in the case of (2.6.1), direct computations yield

∇ · J(ρ∞
β
) = 0, (2.6.9)

that is, ρ∞
β

is an invariant distribution.

For uniqueness, we need to show that the infinitesimal generator (2.6.2) has a spectral

gap (the monograph [129] contains more details on this topic) or equivalently that ρstat

satisfies a Poincaré inequality. This is the object of th next result.

Theorem 2.6.1. [144, Theorem 4.3] Let V ∈ C2(Rd), β = 1 and define µ(dx) =
1
Z
exp(−V )dx. If

lim
|x|→∞

(
1

2
|∇V (x)|2 −∆V (x)

)
= +∞ (2.6.10)

then µ(dx) satisfies the Poincaré inequality with constant λ > 0:

∃ λ > 0 s.t. ∀f ∈ C1(Rd) ∩ L2(µ), with

∫
fµ(dx) = 0 : λ∥f∥2L2(µ) ≤ ∥∇f∥2L2(µ)

(2.6.11)

A condition that ensures that the probability measure µ(dx) = 1
Z
exp(−V (x))dx

satisfies the Poincaré inequality with constant λ is the uniform convexity condition (or

Bakry-Emery criterion)

D2V ≥ λI, (2.6.12)

Proposition 2.6.2. [144, Proposition 4.3] Assume that V (x) is a smooth confining

potential. Then the operator

L • = −∇V (x) · ∇ •+β−1∆ •

is self-adjoint in L2(ρ∞
β
). Furthermore, it is non-positive, and its kernel consists of

constants.

Remark 2.6.1. The generator L is self-adjoint in the space of square integrable func-

tions weighted by the invariant density of Xt:

L2(ρ∞
β
) :=

{
f, such that

∫
Rd

|f |2ρ∞
β
(dx) <∞

}
(2.6.13)

which is a Hilbert space with inner product ⟨f, h⟩ :=
∫
Rd f(x)h(x)ρ

∞
β
(dx).
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The Poincaré inequality yields exponentially fast convergence to equilibrium in the

right function space.

Theorem 2.6.2. [144, Theorem 4.4] Let ρ(x, t) denote the solution of the FP equation

(2.6.3) with ρ0(x) ∈ L2(Rd; (ρ∞
β
)−1), and assume that the potential V satisfies a Poincaré

inequality with constant λ. the ρ(x, t) converges to the Gibbs distribution ρ∞
β

defined in

(2.6.5) exponentially fast

∥ρ(·, t)− ρ∞
β
∥L2((ρ∞

β
)−1) ≤ e−λβ−1t∥ρ0(·)− ρ∞

β
∥L2((ρ∞

β
)−1). (2.6.14)

Thanks to these results, we can directly link a potential V with its invariant measure.

In fact, this is one of the few cases where we can have an explicit formula for the invariant

measure. Other cases where one has explicitly the invariant measure of a diffusion can

be found for example in [124].

2.7 Future perspective

An application to Energy production

We briefly describe a possible future application of our results on the asymptotics of

such system of controlled and singularly perturbed SDEs
dXt = f(Xt, Yt, ut) dt+

√
2σε(Xt, Yt, ut) dWt, X0 = x ∈ Rn

dYt =
1

ε
b(Xt, Yt) dt+

√
2

ε
ϱ(Xt, Yt) dWt, Y0 = y ∈ Rm

In the context of energy production, the slow dynamics X· represents the produc-

tion of energy which we can control (e.g., start and stop): fossil thermal production,

nuclear production or hydropower production, whereas the fast dynamics Y· represents

the renewable energies which we do not control. The latter are highly volatile since they

depend on weather conditions, and moreover the energy produced must be disposed of

at any cost, i.e. they benefit from priority over other means of production. Therefore,

one expects the dynamics Y· to be ruled by b = b(y) and ϱ = ϱ(y), and the randomness

in X shall come from the one of Y , i.e. σε = σε(y), in particular, it is reasonable to

assume lim
ε→0

σε(y) = 0 since the effective control problem is expected to be deterministic

(although one can still include a diffusion for X coming from the randomness of the

demand of energy). The optimal control is then of the form ( OCP (ε) ). We refer to

[58] for some explicit models of energy production.
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The limit procedure as studied in the present chapter would allow us to construct an

effective optimal control problem of the form ( OCP ), where the new effective dynamics

and cost only concern the means of energy production which we do control but that now

incorporate the “effect” of the renewable energies. This shall then be a model reduction

technique for the initial problem of control, since we would have reduced the dimension

of the system from n + m to n. Moreover, we have an established link between the

dynamics of the singularly perturbed control problem and the effective (limit) one as in

§2.5.5.

Let us finally mention that one can consider additional constraints of the form X· ≥ 0

which could be meaningful in this application. Our results can still be adapted to this

setting following the techniques in [23].



Chapter 3

Global optimization: an optimal

control approach

3.1 A parameterized control problem

Let ν = (Ω, {Fs},P,W·) be some reference probability system, where Ω is a sample

space, {Fs} a filtration, P a probability measure, andW· a P-Brownian motion adapted

to {Fs}. Given ε > 0, we introduce a controlled stochastic process Xs solution to

dXs = αs ds+
√
2ε dWs,

X0 = x ∈ Rn
(3.1.1)

where the control αs is R
n-valued Fs-progressively measurable process satisfying |αs| ≤

M for all s ≥ 0 and for some constant M > 0. We denote by Aν
M the set of all such

control processes α·. Then

Aν =
⋃
M>0

Aν
M (3.1.2)

is the set of all admissible control processes. In the sequel, we will omit the explicit

dependency on ν when there is no confusion and simply write A or AM for some given

fixed ν. And the goal is to choose α· ∈ Aν for some reference probability system ν,

such that it minimizes a given criterion J that we will made precise in the next sections.

Note that in the case where (3.1.1) has pathwise unique solution, then the reference

probability system ν can be arbitrary.

As pointed out in [85, Example 8.2, p.137], the dynamics (3.1.1) represents the posi-

tion of some particle at time s, in the setting of Nelson’s theory of stochastic mechanics

[138]. For a particle with such dynamics, the velocity is undefined since brownian paths

121



122 Section 3.1 - A parameterized control problem

are nowhere differentiable with probability 1, but one can still represent its local ”av-

erage velocity” and which is represented by αs. The classical action associated to such

particle (of mass 1) takes then the form 1
2
|α|2 + f(x) where α plays the role of the

velocity and −f(x) is the potential energy at position x.

In this section we prove Theorem 3.1.1 which allows us to use classical results (e.g.

[85] and [117] for the discounted problem) for proving existence of an optimal control

and characterizing it via the solution of a HJB equation, before we study its asymptotic

behavior.

The main issue is in the control set: while the classical results concern controls with

values in a compact set, if we want to make explicit the maximization in the HJB

representation then this requires the control set to be unbounded (in fact, equal to the

whole space) a priori. To remedy this, we show instead that the gradient of the value

function (which captures the optimal control) is indeed bounded and hence there is no

loss in generality when considering a bounded control set (provided it is large enough);

see Lemma 3.1.1.

A similar result is in [84, §4]. The main difference between our setting and the one

in [84] is in the assumptions on the dynamics (3.1.1). In [84] it is assumed that the

dynamics has an inward-pointing drift (independent from the control) which guarantees

strong ergodicity of the process X· (see [84, (3.1)-c]). This assumption plays a crucial

role in their estimates. In our case, we do not consider any drift (besides the control),

in particular we do not have ergodicity, but we will take advantage of the semiconcavity

of f in the running cost (which is not present in [84]).

We consider a finite-horizon and discounted control problem. We fix a small discount

factor λ > 0 and a time horizon t > 0, and consider the cost functional defined by

Jλ(t, x, α·) = E

[∫ t

0

(
1

2
|αs|2 + f(Xs)

)
e−λ s ds

∣∣∣∣ X0 = x

]
(3.1.3)

where Xs is the solution to (3.1.1) for a fixed ε > 0 and f is a bounded continuous

function, s.t.

∃ f, f s.t. f ≤ f(x) ≤ f, ∀ x ∈ Rn. (3.1.4)

Let us fix a bound M > 0 for the admissible controls and consider the problem of

minimizing the cost function (3.1.3) over the set AM as defined earlier in this section.

We will later prove that the choice of M can be made arbitrary when it is large enough;
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see Remark 3.1.1. We define the value function of the latter control problem as

uελ(x, t) = inf
α·∈AM

Jλ(t, x, α·) s.t. (3.1.1). (3.1.5)

In the light of [85, Theorem IV.4.2 and Remark IV.4.1] (see also [84, §4]) and ref-

erences therein, results about parabolic PDEs and a verification theorem insure that

uελ(x, t) is a classical solution to the dynamic programming equation
∂tu

ε
λ − ε∆uελ + max

|α|≤M

{
−α · ∇uελ −

1

2
|α|2
}
+ λuελ = f(x)

uελ(x, 0) = 0

(3.1.6)

that is, uελ(x, t) and the partial derivatives ∂tu
ε
λ, ∂xi

uελ and ∂2xixj
uελ, i, j = 1, . . . , n, are

continuous. We will now prove some estimates that will be later needed.

Lemma 3.1.1. Assume (3.1.4) holds and let C1 = sup |∇f |. Then the following hold

for every x ∈ Rn, λ > 0, t > 0

(i) Bounds on the value function uελ(x, t):

λ−1f(1− e−λt) ≤ uελ(x, t) ≤ min(λ−1, t)∥f∥∞ (3.1.7)

in particular we have

f(1− e−λt) ≤ λuελ(x, t) ≤ ∥f∥∞, and f
1− e−λt

λt
≤ 1

t
uελ(x, t) ≤ ∥f∥∞. (3.1.8)

(ii) Bounds on its time derivative: for every t1, t2 > 0

|uελ(x, t1)− uελ(x, t2)| ≤ (M2 + ∥f∥∞)min

(
|t1 − t2|,

|e−λt1 − e−λt2 |
λ

)
(3.1.9)

in particular we have

|∂tuελ(x, t)| ≤ (M2 + ∥f∥∞). (3.1.10)

(iii) bounds on its spatial derivative:

|∇uελ(x, t)| ≤ min(λ−1, t)C1 (3.1.11)

(iv) If moreover f is C2-semiconcave, then there exists C > 0 such that uελ is C-

semiconcave and C is independent of λ, t and of the diffusion parameter ε ≤ 1.



124 Section 3.1 - A parameterized control problem

Remark 3.1.1. The latter results state that for fixed λ, T > 0, we have for any (x, t) ∈
Rn× [0, T ], |∇uελ(x, t)| ≤ min(λ−1, T )C1 =:MT

λ . Therefore if we choose the constant M

large enough in the admissible control set AM and such that M > MT
λ , then the maxi-

mum in the HJB equation (3.1.6) is an interior maximum, achieved at α∗
s = −∇uελ(x, s).

Thus the HJB equation (3.1.6) writes as∂tu
ε
λ − ε∆uελ +

1

2
|∇uελ|2 + λuελ = f(x), (x, t) ∈ Rn × (0, T ]

uελ(x, 0) = 0, x ∈ Rn
(3.1.12)

which is the one satisfied, in the classical sense, by the value function of the same optimal

control problem but where we replace the minimization over bounded controls |α| ≤ M

with the minimization over controls taking values in Rn.

Proof of Lemma 3.1.1. The inequalities in the statement (i) can be immediately ob-

tained by direct estimates using (3.1.3). The statement in (ii) relies on the well-known

inequality inf
α·∈AM

Jλ(t1, x, α·) − inf
α·∈AM

Jλ(t2, x, α·) ≤ sup
α·∈AM

{Jλ(t1, x, α·) − Jλ(t2, x, α·)},

together with direct estimates.

Proof of (iii).

For δ > 0 take a δ-optimal control for the problem with initial position x + h and

denote with Xx+h
· the corresponding trajectory. Then use the same control for the

initial position x and denote with Xx
· the trajectory. Then using C1 = sup |∇f |, we

have

uελ(x, t)− uελ(x+ h, t) ≤ E
[∫ t

0

(f(Xx
s )− f(Xx+h

s ))e−λs ds

]
+ δ

≤ C1E

[∫ t

0

|Xx
s −Xx+h

s |e−λs ds

]
+ δ

Since Xx+h
· and Xx

· have the same control (hence the same drift) and the same constant

diffusion, then

uελ(x, t)− uελ(x+ h, t) ≤ C1|h|(1− e−λt)λ−1 + δ ≤ C1|h|λ−1 + δ

or if we use e−λs ≤ 1, then

uελ(x, t)− uελ(x+ h, t) ≤ C1|h|t+ δ

By reversing the roles of x and x + h and then letting δ → 0, we obtain the desired

inequality.

Proof of (iv).
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Let us denote by ξ a vector of Rn such that |ξ| = 1, and let ωλ(x, t) := D2
ξξu

ε
λ(x, t)

be the second order derivative in the direction ξ. The proof of the statement (iv) is

conducted in two steps.

Step 1. (We show that ωλ(x, t) ≤ min(λ−1, t)C2)

This is equivalent to showing that the value function uελ(x, t) is min(λ−1, t)C2-semiconcave

in the spatial variable x. Let δ > 0 and take a δ
2
-optimal control for the initial point x.

Then use the same control for the initial points x+h and x−h where h ∈ Rn. Consider

the following inequality

uελ(x+ h, t)− 2uελ(x, t) + uελ(x− h, t)− δ ≤

E

[∫ t

0

(f(Xx+h
s )− 2f(Xx

s ) + f(Xx−h
s ))e−λs ds

] (3.1.13)

From (3.1.1), we have Xx
s = 1

2

(
Xx+h

s +Xx−h
s

)
. And since f is C2-semiconcave, we have

E

[∫ t

0

(f(Xx+h
s )− 2f(Xx

s ) + f(Xx−h
s ))e−λs ds

]
≤ C2E

[∫ t

0

1

4

∣∣Xx+h
s −Xx−h

s

∣∣2 e−λs ds

]
≤ min(λ−1, t)C2 |h|2

(3.1.14)

This holds for any δ > 0, we therefore have uελ(·, t) is (min(λ−1, t)C2)-semiconcave, which

then implies that w(x, t) ≤ min(λ−1, t)C2 for all (x, t) ∈ Rn × (0,+∞) and λ > 0.

Step 2. (We show that ωλ(x, t) ≤ C for some C > 0 independent of x, t, λ)

Let T > 0 that we will later made precise. From (3.1.12), we have ω satisfies

∂tωλ − ε∆ωλ +Duελ ·Dωλ + |DξDu
ε
λ|2 + λωλ = Dξξf, in Rn × (0, T ]. (3.1.15)

And since ω2
λ ≤ |DξDu

ε
λ|2 and using the semiconcavity assumption D2

ξξf ≤ C2, then ωλ

satisfies

∂tωλ − ε∆ωλ +Duελ ·Dωλ + ω2
λ + λωλ ≤ C2, in Rn × (0,+∞). (3.1.16)

Now set g(x) := log(1+ |x|2) and Φλ(x, t) := ωλ(x, t)−βg(x), in Rn× (0,+∞) for some

β > 0 to be made precise. From Step 1, ωλ is bounded from above uniformly in x and

for every t ≤ T , therefore Φλ(x, t) → −∞ as |x| → +∞ and hence Φλ admits a global

maximum in Rn × [0, T ]. Set (x, t) ∈ Rn × [0, T ] such that Φλ(x, t) := max
Rn×[0,T ]

Φλ(x, t)

(clearly (x, t) depends on λ and T ) . Hence, evaluating (3.1.16) in (x, t) and supposing
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t ∈ (0, T ) yields1

ω2
λ(x, t) + λωλ(x, t) ≤ C2 + 2εβ

n+ (n− 2)|x|2

(1 + |x|2)2
− 2βDuελ(x, t) ·

x

1 + |x|2
(3.1.17)

Note that x ∈ Rn 7→ n+(n−2)|x|2
(1+|x|2)2 has a global maximum in x = 0 when n ≥ 1, also x

1+|x|2

is bounded from above by 1, and together with (3.1.11) and the fact that t < T , the

bound in (3.1.17) writes

ω2
λ(x, t) + λωλ(x, t) ≤ C2 + 2εβn+ 2βmin(λ−1, T )C1

We choose β > 0 small enough, such that 2βmin(λ−1, T ) ≤ 1, and since we are interested

in λ→ 0 or T → +∞, then we can choose λ small enough or T large enough, such that

we have in particular β < 1, then

ω2
λ(x, t) + λωλ(x, t) ≤ C2 +max{C1;nε} ≤ C2 + C1 + nε (3.1.18)

where the right hand side is now independent of T and x. Now if t = 0, then since

uελ(x, 0) = 0 for all x, then ω(x, 0) = 0 and (3.1.18) still holds. And if t = T then

either we choose T ′ > T and we maximize Φ over Rn × [0, T ′] or if we have (x, T ) =

argmax
Rn×[0,T ]

Φ(x, t) for all T > 0, then ∂tΦ(x, T ) ≥ 0 i.e. ∂tω(x, T ) ≥ 0 and (3.1.18) again

still holds. Moreover, note that 1
2
(z2 − λ2) ≤ z2 + λz holds2 for any z ∈ R. Therefore,

from (3.1.18) and for λ < 1 we have

ωλ(x, t)
2 ≤ 2(C1 + C2 + εn) + 1 (3.1.19)

where the right hand side is now independent of λ, T and x.

Let us set C3 :=
√

2(C1 + C2 + εn) + 1 , and suppose by contradiction that

∃ (y, s) ∈ Rn × (0,+∞) s.t. ωλ(y, s) > C3. (3.1.20)

Denote by δ = ωλ(y, s)−C3 > 0. Without loss of generality, we can choose T > 0 large

enough such that s < T , and denote again by (x, t) the maximizer of Φλ over Rn× [0, T ].

And let us choose β > 0 small enough such that it satisfies 2βmin(λ−1, T ) ≤ 1 and also

1

∂tΦλ(x, t) = 0 ⇒ ∂tωλ(x, t) = 0,

DxΦλ(x, t) = 0 ⇒ Dxωλ(x, t) = 2β x
1+|x|2 , and ∆Φλ(x, t) ≤ 0 ⇒ ∆ωλ(x, t) ≤ 2β n+(n−2)|x|2

(1+|x|2)2 .
20 ≤ 1

2 (z + λ)2 = z2 + λz − 1
2

(
z2 − λ2

)



Chapter 3 - Global Optimization: an optimal control approach 127

βg(y) ≤ δ
2
(it suffices to take T large and λ < 1 small). Then, one has

0 <
δ

2
≤ δ − βg(y) = ωλ(y, s)− βg(y)− C3 = Φλ(y, s)− C3

and hence from the definition of (x, t)

0 <
δ

2
≤ Φλ(x, t)− C3. (3.1.21)

But from (3.1.19) we have

ωλ(x, t) ≤ C3

which yields

Φλ(x, t)− C3 ≤ −βg(x) ≤ 0

and contradicts (3.1.21). Therefore, the statement in (3.1.20) cannot be true and hence

ωλ(x, t) ≤ C3, for all (x, t) ∈ Rn × (0,+∞).

This proves the semiconcavity of uελ uniformly in λ, t and x, and for every ε less than

some constant, say ε ≤ 1.

We are now ready to pass to the limit either for λ > 0 fixed and t → +∞, or for

t > 0 fixed and λ→ 0.

Theorem 3.1.1. Under the standing assumptions as in the previous lemma, the follow-

ing holds

(i) the limit uε(x, t) := lim
λ→0

uελ(x, t) exists uniformly in x, locally uniformly in t. More-

over, uε(x, t) is the value function of the corresponding finite-horizon optimal con-

trol problem (3.1.5) with λ = 0 in (3.1.3), and for any T > 0, it satisfies in the

classical sense∂tu
ε − ε∆uε +

1

2
|∇uε|2 = f(x), (x, t) ∈ Rn × (0, T ]

uε(x, 0) = 0, x ∈ Rn
(3.1.22)

(ii) the limit uελ(x) := lim
t→+∞

uελ(x, t) exists, uniformly in x. Moreover, uελ(x) is the

value function of the corresponding infinite-horizon discounted optimal control

problem (3.1.5) with t = +∞ in (3.1.3), and satisfies in the classical sense

λuελ − ε∆uελ +
1

2
|∇uελ|2 = f(x), x ∈ Rn. (3.1.23)
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Proof. The results are consequences of the previous estimates in Lemma 3.1.1. Indeed,

as previously mentioned in Remark 3.1.1, the value function uελ(x, t) satisfies in the

classical sense the PDE (3.1.12).

Proof of (i).

Let us first consider (x, t) ∈ Rn × [0, T ] for a fixed T > 0. From (3.1.7), we have

|uελ(x, t)| ≤ ∥f∥∞T, ∀ (x, t) ∈ Rn × [0, T ] (3.1.24)

This is a direct consequence of (3.1.7), noticing that z
1+z

< 1− e−z < z for any z > −1.

We also get from (3.1.11) the following bound

|∇uελ(x, t)| ≤ T C1, ∀ (x, t) ∈ Rn × [0, T ] (3.1.25)

Therefore, {uελ(x, t)}λ>0 is a bounded and equicontinuous family of functions. We can

then apply Ascoli-Arzelà theorem and extract a subsequence 0 ≤ λm ≤ 1 satisfying

λm → 0 as m→ +∞ and such that uελm
converges uniformly in Rn× [0, T ] to a function

uε. Using again (3.1.24), we have for any (x, t), λmuλm → 0 uniformly in x, and then

uε solves (3.1.22) for any (x, t) ∈ Rn × [0, T ]. And using (3.1.25), we have moreover

|∇uε(x, t)| ≤ TC1 for any x ∈ Rn. Since λmu
ε
λm

, ∇uελm
and also (using (3.1.10)) ∂tu

ε
λm

are bounded independently of λm, then ∆uελm
is also bounded independently of λm

uniformly in x. Therefore, standard arguments for quasilinear parabolic PDEs (see e.g.

[118, Chapter VI]) insure that uε is a classical solution to (3.1.22). On the other hand,

the value function (3.1.5) associated to the optimal control problem with λ = 0 in (3.1.3)

and with an admissible control set AM such that M = TC1 (or any larger constant as

in Remark 3.1.1), is the unique classical solution to the HJB equation (3.1.6) where

we set λ = 0 (see [85, Theorem IV.4.2]). And with our choice of M , the maximum is

an interior one, and the value function is again the unique classical solution to (3.1.22)

which coincides with the limit function uε.

Proof of (ii).

Fix λ > 0 and set M := λ−1C1 (or any larger constant as we previously discussed in

Remark 3.1.1). The proof is in the line of (i), using the following two estimates that we

easily deduce from (3.1.7)

|uελ(x, t)| ≤ λ−1∥f∥∞, ∀ (x, t) ∈ Rn × (0,+∞) (3.1.26)

and

|∇uελ(x, t)| ≤ λ−1C1, ∀ (x, t) ∈ Rn × (0,+∞). (3.1.27)
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We also have from (3.1.9) where we set t := t1 and t2 = t+ h

|uελ(x, t)− uελ(x, t+ h)| ≤ λ−1 (M2 + ∥f∥∞) |e−λt − e−λ(t+h)|.

Dividing by |h| and letting h→ 0, we get

|∂tuελ(x, t)| ≤ (M2 + ∥f∥∞)e−λt

which therefore yields lim
t→+∞

|∂tuελ(x, t)| = 0 uniformly in x. Since uελ(x, t) satisfies

(3.1.12) in the classical sense, and together with (3.1.26) and (3.1.27), we have ∆uελ

is also bounded uniformly in x, t. This insures that the limit lim
t→+∞

uελ(x, t) =: uελ(x),

uniform in x, exists, and by standard estimates for semilinear parabolic PDEs (see e.g.

[117, Theorem 1]) , we have uελ ∈ C2(Rn) and solves (3.1.23). In addition, uελ(x) satis-

fies the dynamic programming equation (3.1.6) and hence is the value function of the

corresponding infinite-horizon discounted optimal control problem (3.1.5) with t = +∞
in (3.1.3).

Before we end this section, let us comment the latter theorem.

First, we have the problem (3.1.6) which does admit a classical solution uελ(x, t). Then

using the estimates in Lemma 3.1.1, the latter PDE writes as (3.1.12). This was the

object of Remark 3.1.1. We next consider two problems

• Fix the time horizon t > 0 and let the discount factor λ→ 0: this is the statement

(i) in Theorem 3.1.1. We showed that this limit PDE admits a classical solution

u(x, t) and moreover the gradient∇u(x, t) admits a bound uniform in x, but which

depends on T such that t ∈ [0, T ], that is of the form (3.1.25).

• Fix λ > 0 and let t→ +∞: this is the statement (ii) in Theorem 3.1.1. The limit

PDE admits a classical solution and its gradient ∇uελ satisfies a bound uniform in

x but which depends on λ as in (3.1.27).

In both cases, the admissible control set is of the form AM and the optimal strategies

are feedback controls given by the gradient of the value function whenM is chosen large

enough. However, the constant M in both situations depends on the parameter t in the

first case, and on λ in the second, which prevents in the limit (t → +∞ or λ → 0) for

the ergodic case. In the next sections, we shall need an estimate on the gradient that is

independent of the parameters t, λ.
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3.2 Degenerate Eikonal equation

3.2.1 Introduction

Let f ∈ C(Rn) be a bounded function attaining the global minimum. Global op-

timization is concerned with the search of the minimum points, i.e., finding the set

M = argmin f . For convex smooth functions this is achieved by the gradient flow,

i.e., by following the trajectories of ẏ(s) = −∇f(y(s)) from any initial point x = y(0).

However, if the function f is not convex the trajectory y(·) may converge to a local min-

imum or a saddle point. Several alternative algorithms have been designed to handle

non-convex optimization, such as the stochastic gradient descent, simulated annealing,

or consensus-based methods. In particular the case of non-smooth f in high dimensions

is important for the applications to machine learning, see, e.g., the recent paper [59]

and the references therein.

In this section we construct and study a Lipschitz function v : Rn → R such that the

following normalized non-smooth gradient descent differential inclusion

ẏ(s) ∈
{
− p

|p|
, p ∈ D−v(y(s))

}
, for a.e. s > 0, (3.2.1)

has a solution for any initial condition x = y(0) and all solutions converge to M as

t→ +∞. Here D−v is the sub-differential of the theory of viscosity solutions (see, e.g.,

[19]). The construction of such a generating function v is based on a classical problem

for Hamilton-Jacobi equations: find a constant c such that the stationary equation

H(x,Dv) = c in Rn (3.2.2)

has a solution v. The minimal c with this property is the critical value of the Hamiltonian

H and, ifH(x, ·) is convex, it is also the value of an optimal control problem with ergodic

cost having H as its Bellman Hamiltonian. If the critical solution v is interpreted in the

viscosity sense, the problem fits in the weak KAM theory, and it is well-known that, for

H = |p|2−f(x) with f periodic, c = −min f [81, 127]; moreover the same holds for any

bounded f ∈ C2(Rn) by a result of Fathi and Maderna [83]. In Section 3.2.2 we extend

such result to non-smooth f , provided it is Lipschitz and semiconcave. We also prove

that min f and v solving the critical equation

min f +
1

2
|∇v(x)|2 = f(x) in Rn
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can be approximated in two ways: by the solution of the stationary equation

λuλ +
1

2
|Duλ|2 = f(x), x ∈ Rn, (3.2.3)

as λ → 0+, the so-called small discount limit, as well as by the long-time limit of the

solution of the evolution equation

∂tu+
1

2
|Du|2 = f(x), in Rn × (0,+∞), u(x, 0) = 0. (3.2.4)

More precisely, for the evolutive equation (3.2.4) we prove

lim
t→+∞

(u(x, t)− tmin f) = v(x) locally uniformly in Rn. (3.2.5)

Note that the two problems (3.2.3) and (3.2.4) do not require the a-priori knowledge of

min f and argmin f . Moreover we show that Duλ and Dxu(·, t) both converge (a.e.) to

Dv, therefore giving an approximation of the gradient descent equation (3.2.1).

The main result of this section is the convergence of the gradient descent trajectories

(3.2.1) to the set M of minima of f . This is done in Section 3.2.3.1 after observing that

v solves also the Dirichlet problem for the eikonal equation |∇v(x)| = ℓ(x), x ∈ Rn \M

v(x) = 0, x ∈ M
(3.2.6)

with ℓ(x) :=
√
2(f(x)−min f). (In fact, our analysis of this problem requires only that

ℓ ∈ C(Rn) is bounded, non-negative, and M = {x : ℓ(x) = 0}). We exploit that the

unique solution of (3.2.6) is the value function

v(x) = inf
α(·)

∫ tx(α)

0

ℓ(yαx (s)) ds, ẏαx (s) = α(s), for s > 0, yαx (0) = x,

where α is measurable, |α(s)| ≤ 1, and tx(α) is the first time the trajectory yαx hits M.

We show that optimal trajectories exist, satisfy the gradient descent inclusion (3.2.1),

and tend to M as t → +∞ under a slightly strengthened positivity condition on ℓ.

A crucial new tool for the proof are the occupational measures associated to these

functions. Finally, we give a sufficient condition for such trajectories to reach M in

finite time.

In the third part of this chapter, §3.3, we also study the approximation of v and M

by vanishing viscosity. We add to (3.2.3) a term −ε∆uλ and let λ → 0+ to get the
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viscous critical equation

U ε − ε∆vε(x) +
1

2
|∇vε(x)|2 = f(x) in Rn,

where U ε is a constant. We prove that 0 ≤ U ε −min f ≤ Cεβ for some β > 0. Then we

define the approximate stochastic gradient descent

dXs = −∇uλ(Xs) ds+
√
2ε dWs,

and show that the trajectories converge to M in a suitable sense, for small λ and ε.

Note that (3.2.4) is the classical Hamilton-Jacobi equation with the mechanical

Hamiltonian H(x, p) = |p|2 − f(x), where −f is the potential energy. Then our re-

sults of Section 3.2.2 have an interpretation in analytical mechanics. For instance, the

long-time behavior (3.2.5) describes a thermodynamical trend to equilibrium in a non-

turbulent gas or fluid: see [56, 57].

We do not attempt to review all the literature related to the topics mentioned above.

For weak KAM theory on compact manifolds we refer to [80, 81, 82], and for the PDE

approach to ergodic control, mostly under periodicity assumptions, the reader can con-

sult [4, 8] and the references therein. When the state space is not bounded one must

add conditions to get some compactness. In addition to [83] already quoted, such prob-

lems were studied in all Rn by [12, 52, 139] assuming that f is large at infinity, and by

[87, 105] for equations involving a linear first order term that satisfies a recurrence con-

dition. Here, instead, we get compactness from the semiconcavity of f . Several of the

results just quoted were used for homogenisation and singular perturbation problems,

e.g., [4, 12, 127, 139], so we believe that also our results will have such applications.

The Dirichlet problem (3.2.6) with ℓ vanishing at the boundary was studied, e.g., in

[131, 153]. The synthesis of an optimal feedback from the value function v leading to

(3.2.1) uses method from [19] based on the earlier papers [34, 86].

We do not try here to design algorithms for global optimization based on the previous

results. Let us mention, however, that some efficient numerical method for computing

at the same time c and v in the critical/ergodic PDE (3.2.2) were proposed in [49].

The second part of this chapter, §3.2, is organized as follows. Section 3.2.2 concerns

a weak KAM theorem and approximation of the critical solution: in subsection 3.2.2.1

we prove the weak KAM theorem by the small discount approximation (3.2.3) and in

subsection 3.2.2.2 we study the long-time asymptotics of solutions to (3.2.4). Then,

in section 3.2.3 we address the problem of reaching the minima via optimal control:
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subsection 3.2.3.1 is devoted to the optimal control problem with target M associated

to (3.2.6) and subsection 3.2.3.2 to deriving the gradient descent inclusion (3.2.1) for

the optimal trajectories, then in subsection 3.2.3.3 we prove that such trajectories

converge to M. Finally, in section 3.2.4 we show a case where the hitting time is finite.

And before we move to the third and last part of this chapter, §3.3, we provide in the

appendix in section 3.2.5 a counterexample to uniqueness for (3.2.2).

3.2.2 A weak KAM theorem and approximation of the critical

solution

Throughout this section we assume the following.

A1. f : Rn → R is continuous and

∃ f, f s.t. f ≤ f(x) ≤ f, ∀ x ∈ Rn, (3.2.7)

A2. f attains the minimum, i.e.,

M := {x ∈ Rn : f(x) = f := min
z∈Rn

f(z)} ≠ ∅ (3.2.8)

A3. f is C1-Lipschitz continuous, i.e. C1 = ∥∇f∥∞,

A4. f is C2-semiconcave, i.e., D2
ξξf ≤ C2 a.e. for all ξ ∈ Rn s.t. |ξ| = 1, where D2

ξξf is

the second order derivative of f in the direction ξ.

A weak KAM theorem for the Hamiltonian H(x, p) = |p|2− f(x) should give conditions

under which there exists a constant U ∈ R, the (Mané) critical value, such that the

equation

U + |∇v(x)|2 = f(x), in Rn. (3.2.9)

has a viscosity solution v. Clearly any critical value must satisfy U ≤ f . In this

section we prove under the current assumptions that f is a critical value and construct

the solution v by two different approximation procedures, both classical and with an

interpretation in terms of ergodic problems in optimal control.

The fact that f is the maximal critical value was proved in [83] for f ∈ C2 and with

Rn replaced by any complete Riemannian manifold, by methods of weak KAM theory

different form ours.
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3.2.2.1 The small discount limit

We consider the stationary approximation of (3.2.9)

λuλ +
1

2
|Duλ|2 = f(x), x ∈ Rn, (3.2.10)

where λ > 0 will be sent to 0. The viscosity solution uλ is known to be the value

function of the following infinite horizon discounted optimal control problem

uλ(x) = inf
α·
J(x, α·), J(x, α·) :=

∫ +∞

0

(
1

2
|αt|2 + f(x(t))

)
e−λt dt,

s.t. ẋ(s) = αs, x(0) = x ∈ Rn, s ≥ 0

(3.2.11)

where the controls α. : [0,+∞) → Rn are measurable function (see, e.g.,[19, Chapter

III]). The main result of this section is the following.

Theorem 3.2.1. Under the standing assumptions (A1–A4), as λ→ 0,

λuλ(x) → f and uλ(x)− fλ−1 → v(x) locally uniformly in Rn,

Duλk
(x) → Dv(x) a.e.,

where v(·) is a Lipschitz continuous viscosity solution to

f +
1

2
|Dv(x)|2 = f(x), x ∈ Rn. (3.2.12)

Moreover v ≥ 0 in Rn and null on M, and it is the unique viscosity solution of (3.2.12)

in Rn \M vanishing on ∂M and bounded from below.

For the proof we need some estimates uniform in λ. The following lemmata are direct

consequences of Lemma 3.1.1 in the previous section.

Lemma 3.1. Under the assumption (A1,A3,A4), for all x ∈ Rn and λ > 0,

f ≤ λuλ(x) ≤ f (3.2.13)

|Duλ(x)| ≤
√
4∥f∥∞ a.e. (3.2.14)

Lemma 3.2. Let (A1,A3,A4) be satisfied. Then u is C̃3−semiconcave, where C̃3 is a

positive constant independent of λ ≥ 0.
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Proof of Theorem 3.2.1. First we claim that λuλ(x̄) = f if x̄ ∈ M (i.e., f(x̄) = f =

min f), for all λ > 0. In fact, for such x̄,

uλ(x) = inf
α·

∫ +∞

0

(
1

2
|αt|2 + f(x(t))

)
e−λ t dt ≤

∫ +∞

0

f(x)e−λ t dt = fλ−1,

where the inequality follows from the choice α· ≡ 0. The other inequality ≥ is true for

all x ∈ Rn by Lemma 3.1, so the claim is proved.

Now we denote R :=
√

4∥f∥∞ and use the gradient bound (3.2.14) to get

|λuλ(x)− f | ≤ λR dist(x,M) ∀x ∈ Rn.

Then λuλ(x) → f locally uniformly.

Define φλ(·) := uλ(·)− fλ−1 ≥ 0 and use (3.2.14) to get, for all x, y ∈ Rn,

|φλ(x)| ≤ R dist(x,M), |φλ(x)− φλ(y)| ≤ R |x− y|. (3.2.15)

Hence, {φλ(·)}λ∈(0,1) is a uniformly bounded and equi-continuous family on any ball of

Rn. So we can choose a sequence λk → 0 as k → +∞, such that φλk
(·) → v(·) ∈ C(Rn)

locally uniformly. Plugging φλ in (3.2.10) we get

λφλ + f +
1

2
|Dφλ(x)|2 = f(x), x ∈ Rn.

We let λk → 0 and use the stability of viscosity solutions to find that v satisfies (3.2.12).

Now we note that (3.2.12) is an eikonal equation with right hand side f(x)− f > 0

in Rn \M, v ≥ 0 and v = 0 on ∂M. This Dirichlet boundary value problem is known

to have a unique viscosity solution bounded from below. Therefore the convergence of

φλ is for λ→ 0 and not only on subsequences.

The convergence of the gradient Duλ(·) to Dv(·) is a direct consequence of [53,

Theorem 3.3.3], recalling that |φλ(x)| ≤ R |x| and using the uniform semiconcavity

estimate in Lemma 3.2.

3.2.2.2 Long time asymptotics

Here we consider the evolutive Hamilton-Jacobi equation∂tu(x, t) +
1

2
|Du(x, t)|2 = f(x), (x, t) ∈ Rn × (0,+∞)

u(x, 0) = 0, x ∈ Rn.
(3.2.16)
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and we will study the limit as t → +∞. The viscosity solution u(x, t) is known to be

the value function of the following finite-horizon optimal control problem

u(x, t) = inf
α·
J(x, t, α·) :=

∫ t

0

1

2
|αs|2 + f(x(s)) ds,

s.t. ẋ(s) = αs, x(0) = x ∈ Rn

(3.2.17)

where α. : [0,+∞) → Rn are measurable functions (see e.g. [85, Chapter II] or [19,

Chapter III]). The main result of this section is the following.

Theorem 3.2.2. Under the standing assumptions (A1–A4), as t→ +∞,

u(x, t)

t
→ f and u(x, t)− ft→ v(x) locally uniformly in Rn,

Dxu(x, t) → Dv(x) a.e.,

where v(·) is the viscosity solution of (3.2.12) found in Theorem 3.2.1.

To proceed with its proof we need some estimates uniform in t.

Lemma 3.3. Under the assumption (A1,A3,A4), for all (x, t) ∈ Rn × (0,+∞),

f ≤ u(x, t)

t
≤ f, (3.2.18)

|∂tu(x, t)| ≤ ∥f∥∞ a.e., (3.2.19)

|Du(x, t)| ≤
√

4∥f∥∞ a.e. (3.2.20)

Proof. The arguments are standard and follow from Lemma 3.1.1.

We only show (3.2.19).

Fix h ∈ R and x ∈ Rn. Note first that |u(x, h)| ≤ |h|∥f∥∞. Let us now denote

v(x, t) := u(x, t+h)+ |h|∥f∥∞. Both u and v solve the same PDE in (3.2.16) with initial

conditions u(x, 0) = 0 and v(x, 0) = u(x, h) + |h|∥f∥∞ ≥ 0, hence by the comparison

principle in [72, Theorem 2.1] we get u(x, t) ≤ v(x, t).

Conversely, v(x, t) := u(x, t+h)−|h|∥f∥∞ solves the same PDE in (3.2.16) with initial

condition v(x, 0) = u(x, h)−|h|∥f∥∞ ≤ u(x, 0) = 0. The same comparison principle now

implies that v(x, t) ≤ u(x, t). Therefore, one gets |u(x, t+ h)− u(x, t)| ≤ |h|∥f∥∞.

Lemma 3.4. Let (A1,A3,A4) be satisfied. Then u is C3−semiconcave, where C3 is a

positive constant independent of t ≥ 0.

Proof. It is a consequence of (iv) in Lemma 3.1.1.
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Proof of Theorem 3.2.2. First we observe that 1
t
u(x, t) = f if x̄ ∈ M. In fact, for such

x̄,

u(x, t) = inf
α·

∫ t

0

1

2
|αs|2 + f(x(s)) ds ≤

∫ t

0

f(x) dt = tf ,

where the inequality follows from the choice α· ≡ 0. The other inequality ≥ is true for

all x ∈ Rn by Lemma 3.3.

Denote R :=
√

4∥f∥∞ and use the gradient bound (3.2.20) to get∣∣∣∣1t u(x, t)− f

∣∣∣∣ ≤ 1

t
R dist(x,M) ∀x ∈ Rn, t > 0.

Then u(x, t) → f locally uniformly as t→ ∞.

Define now φt(·) := u(·, t) − ft. We observe that, in view of (3.2.20), |φt(x)| ≤
R dist(x,M) and |φt(x) − φt(y)| ≤ R|x − y|. Hence, {φt(·)}t≥0 is a locally uniformly

bounded and equi-continuous family.

We claim that φt(·) → ψ(·) ∈ C(Rn) locally uniformly as t → +∞ and ψ(·) is a

viscosity solution of

f +
1

2
|Dψ(x)|2 = f(x), in Rn. (3.2.21)

To prove the claim define uη(x, t) := φt/η (x) = u
(
x, t

η

)
− t

η
f . Then we have

η∂tuη + f +
1

2
|Duη|2 = f(x), in Rn × (0,∞).

Now consider the upper and lower relaxed semilimits (see [19, Definition V.I.4, p. 288])

θ(x, t) := lim sup
η→0, s→t, y→x

uη(y, s), ζ(x, t) := lim inf
η→0, s→t, y→x

uη(y, s),

and note that they are finite by the local equiboundedness of φt. It is well-known from

the stability properties of viscosity solutions (see, e.g., [19]) that they are, respectively,

a sub- and supersolution of (3.2.21) for any t > 0. Moreover, for all t > 0,

θ(x, t) = lim sup
s→+∞, y→x

φs(y) = lim sup
s→+∞

φs(x),

where the last equality comes from the equicontinuity of φt. Similarly,

ζ(x, t) = lim inf
s→+∞

φs(x)

and so both θ and ζ do not depend on t. Next note that φs(x) = 0 for all x ∈ M and

it is non-negative everywhere. Then θ(x) = ζ(x) = 0 on ∂M, and they are a sub- and a
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supersolution bounded from below of (3.2.21) in Rn \M, where f(x)− f > 0. Then a

standard comparison principle for the Dirichlet problem associated to eikonal equations

gives θ(x) = ζ(x). This proves that φt converges pointwise to ψ := θ = ζ ≥ 0, and

the convergence is locally uniform by the Ascoli-Arzela theorem, which gives the claim.

Moreover ψ coincides with the function v found in Theorem 3.2.1.

Finally, the convergence of the gradientDxu(·, t) = Dφt toDψ is a direct consequence

of [53, Theorem 3.3.3], recalling that |φt(x)| ≤ R dist(x,M) and using the uniform

semiconcavity estimate in Lemma 3.4.

3.2.3 Reaching the minima via deterministic optimal control

3.2.3.1 The optimal control problem with target

In this section we consider the Dirichlet problem |∇v(x)| = ℓ(x), x ∈ Rn \M,

v(x) = 0, x ∈ M,
(3.2.22)

motivated by the ergodic equation (3.2.12) of the previous section if ℓ(x) =
√
2(f(x)− f).

Here, however, the standing assumptions are only

B1. M ⊆ Rn is a closed nonempty set, possibly unbounded,

B2. ℓ ∈ C(Rn) satisfies

ℓ is bounded , ℓ(x) > 0 if x ∈ Rn \M, ℓ ≡ 0 on M. (3.2.23)

The Lipschitz and semiconcavity conditions used in the previous section are not needed

here.

We recall that the continuous viscosity solution of (3.2.22) is the value function of

the control problem

v(x) = inf
α

∫ tx(α)

0

ℓ(yαx (s)) ds, (3.2.24)

where α (an admissible control) is a measurable function [0,+∞) → B(0, 1), the unit

ball in Rn, tx(α) := inf{s ≥ 0 : yαx (s) ∈ M}, and

ẏαx (s) = α(s), ∀ s ≥ 0, yαx (0) = x. (3.2.25)
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Theorem 3.2.3. Under the standing assumptions (B1,B2), there exists an optimal con-

trol α∗ for the problem (3.2.24).

Proof. Note first that, since ℓ(x) = 0 for all x ∈ M and otherwise ℓ > 0, we can write

without loss of generality

v(x) = inf
α∈B(0,1)

∫ +∞

0

ℓ(yαx (s)) ds.

Fix x ∈ Rn and consider now a minimizing sequence (yk, αk)k i.e. satisfying

lim
k→+∞

∫ +∞

0

ℓ(yk(t)) dt = v(x) (3.2.26)

and

yk(t) = x+

∫ t

0

αk(s) ds, for all t ≥ 0.

Fix N ∈ N. Then using Alaoglu’s theorem, we can extract a subsequence that we denote

by (yk(N), αk(N)) where k(N) → +∞ and such that

αk(N)
∗
⇀ α∗

N , a.e. in [0, N ]

yk(N) → y∗N , loc. unif. on [0, N ]

and y∗N(t) = x+

∫ t

0

α∗
N(s) ds, for all t ∈ [0, N ].

We repeat this procedure for N + 1, that is from the subsequence indexed by k(N)

we extract again by Alaoglu’s theorem another subsequence (yk(N+1), αk(N+1)) where

k(N + 1) → +∞ and such that

αk(N+1)
∗
⇀ α∗

N+1, a.e. in [0, N + 1],

yk(N+1) → y∗N+1, loc. unif. on [0, N + 1],

and y∗N+1(t) = x+

∫ t

0

α∗
N+1(s) ds, for all t ∈ [0, N + 1].

Moreover we have
α∗
N+1 = α∗

N , a.e. in [0, N ]

y∗N+1 = y∗N , in [0, N ]

This suggests the definition of the candidate optimal pair (y∗, α∗) as

(y∗, α∗) := (y∗N , α
∗
N) in [0, N ].
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Before we prove its optimality, we first check that the subsequences (yk(N), αk(N)), for

N ∈ N, converge along their diagonal elements (yN(N), αN(N)). Indeed, let us fix T > 0

and choose some N ≥ T . From the previous construction, we have

αk(N)
∗
⇀ α∗, a.e. in [0, T ],

yk(N) → y∗, loc. unif. on [0, T ],

and y∗(t) = x+

∫ t

0

α∗(s) ds, for all t ∈ [0, T ].

(3.2.27)

It suffices then to note that N(N) is a subsequence of k(N) for all N ≥ N . Therefore

(yN(N), αN(N)) satisfies the convergence properties as in (3.2.27) where k(N) is now

replace by N(N). We are now left with the proof of optimality of (y∗, α∗). This is a

consequence of Fatou’s lemma which here writes as∫ ∞

0

lim inf
N→+∞

ℓ(yN(N)(t)) dt ≤ lim inf
N→∞

∫ +∞

0

ℓ(yN(N)(t)) dt.

But, recalling (3.2.26), the right-hand side is nothing but v(x) since yN(N) is a subse-

quence of yk. And ℓ being continuous, we conclude the proof taking the limits in N

with the latter convergence result of yN(N) and get∫ ∞

0

lim inf
N→+∞

ℓ(yN(N)(t)) dt =

∫ +∞

0

ℓ(y∗(t)) dt ≤ v(x),

that is (y∗, α∗) is an optimal pair solution to (3.2.24).

Next we show that the fraction of time spent by an optimal trajectory away from

the minimizers of ℓ tends to zero as t→ +∞. For a given fixed δ > 0 we define the set

of quasi-minimizers

Kδ := {x ∈ Rn : ℓ(x) ≤ δ}

and the fraction of time ρδt spent by an optimal trajectory starting from x away from

Kδ

ρδt :=
1

t

∣∣{s ∈ [0, t] : yα
∗

x (s) /∈ Kδ}
∣∣,

where
∣∣I∣∣ denotes the Lebesgue measure of I ⊆ R.

Theorem 3.2.4. Under the standing assumptions (B1,B2), for any x ∈ Rn and δ > 0,

an optimal trajectory yα
∗

x (·) for the problem (3.2.24) satisfies

ρδt ≤
ℓ

t δ
dist(x,M). (3.2.28)
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In particular, lim
t→+∞

ρδt = 0.

Proof. Since ℓ ≥ 0, using the characteristic function 1Q(y) = 1 if y ∈ Q and 0 other-

wise, ∫ t

0

ℓ(yα
∗

x (s))ds ≥
∫ t

0

1Kc
δ
(yα

∗

x (s)) ℓ(yα
∗

x (s)) ds ≥ δ

∫ t

0

1Kc
δ
(yα

∗

x (s)) ds

and hence
1

t

∫ t

0

ℓ(yα
∗

x (s))ds ≥ δ ρδt .

Now, since ℓ(yα
∗

x (s)) = 0 for all s ≥ tx(α
∗), we have

∀ t ≥ 0

∫ t

0

ℓ(yα
∗

x (s)) ds ≤
∫ tx(α∗)

0

ℓ(yα
∗

x (s)) ds,

= v(x) ≤ ℓ̄ inf {tx(α) : (3.2.25) holds with |α(s)| ≤ 1} .

The second factor on the right-hand side is the minimal time function whose optimal

trajectories are the straight lines from the initial position x to its orthogonal projection

on the set M, with maximal speed 1. Therefore the right-hand side in the last inequality

is less or equal ℓ̄|z − x| for any z ∈ M, and then

v(x) ≤ ℓ̄ dist(x,M).

Combining the inequalities we get

0 ≤ δ ρδt ≤
1

t

∫ t

0

ℓ(yα
∗

x (s)) ds ≤ v(x)

t
≤ ℓ̄

t
dist(x,M),

which concludes the proof.

3.2.3.2 A gradient descent inclusion for the optimal trajectories

So far, we showed that an optimal control exists and the corresponding optimal

trajectory does not leave the set of minimizers in average as time goes to infinity, i.e.

in the sense of (3.2.28). We now synthesize optimal feedback controls that give the

gradient descent differential inclusion anticipated in the Introduction.

Theorem 3.2.5. A control α with corresponding trajectory y(·) := yαx (·) is optimal if

and only if

ẏ(s) ∈
{
− p

|p|
, p ∈ D−v(y(s))

}
, for a.e. s ∈ (0, tx(α)). (3.2.29)
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Proof. By the dynamic programming principle, the function

h(t) := v(yαx (t)) +

∫ t

0

ℓ(yαx (s))ds, 0 ≤ t ≤ tx(α) (3.2.30)

is non decreasing for all α, and nonincreasing (hence constant) if and only if α is optimal.

And since h is locally Lipschitz, we get

α is optimal if and only if h′(t) ≤ 0 a.e. t.

Proof of Necessity. Assume α is optimal, and so h′ ≤ 0. Let y(·) := yαx (·).
Claim 1. p · ẏ(t) + ℓ(y(t)) ≤ 0 for all p ∈ D−v(y(t)) a.e. t.

Let ∂−v(x; q) be the lower Dini derivative at x in the direction q (see equation (2.47)

in [19, page 125]). Then by [19, Lemma 2.50, p. 135], one has

∂−(v ◦ y)(s; 1) = ∂−v(y(s; , ẏ(s))

and for almost every t, h′(t) = ∂−v(y(t), ẏ(t)) + ℓ(y(t)). Next, using [19, Lemma 2.37,

p. 126], one has, for any z ∈ Rn

D−v(z) = { p : p · q ≤ ∂−v(z; q), ∀ q ∈ Rn},

and hence, for almost every t and for all p ∈ D−v(y(t)),

p · ẏ(t) + ℓ(y(t)) ≤ ∂−v(y(t); ẏ(t)) + ℓ(y(t)) = h′(t) ≤ 0.

Claim 2. ẏ(t) = − p
|p| for all p ∈ D−v(y(t)), a.e. t.

By [19, Proposition 5.3, p. 344], v is a bilateral supersolution of |Dv(x)| − ℓ(x) = 0

in Rn \M, i.e. |p| − ℓ(x) = 0 for all p ∈ D−v(x). This implies in particular that p ̸= 0

if x /∈ M. Hence, and using claim 1 together with ẏ ∈ B(0, 1), one gets

|p| = ℓ(y(t)) ≤ −p · ẏ(t) ≤ |p|

that is ẏ(t) = − p
|p| .

Proof of sufficiency. Assume (3.2.29) holds. Then for almost every t, one has

h′(t) = −∂−v(y(t);−ẏ(t)) + ℓ(y(t)) ≤ −p · (−ẏ(t)) + ℓ(y(t)), ∀ p ∈ D−v(y(t)).
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Hence, if y(·) solves (3.2.29), then

h′(t) = −p · p
|p|

+ ℓ(y(t)) = −|p|+ ℓ(y(t)) ≤ 0

since p ∈ D−v(y(t)), by definition of v being a supersolution of |Dv| − ℓ = 0. This

concludes the proof.

Remark 3.2.1. Combining Theorem 3.2.3 and Theorem 3.2.5, the differential inclusion

(3.2.29) has at least a solution and all such solutions are optimal.

We recall the definition of limiting gradient of a Lipschitz function

D∗v(z) := { p : p = lim
n→+∞

Dv(xn) for some xn → z}.

Proposition 3.2.1. (i) A necessary condition for the optimality of y(·) is

ẏ(t) = − p

|p|
, ∀ p ∈ D+v(y(t)), p ̸= 0, a.e. t.

In particular, D+v(y(t)) is a singleton for a.e. t.

(ii) A sufficient condition for the optimality of y(·) is

ẏ(t) ∈ −
{

p

|p|
: p ∈ D∗v(y(t)) ∩D+v(y(t)), p ̸= 0

}
, a.e. t. (3.2.31)

Proof. To prove (i) we take h defined by (3.2.30) and let ∂+v(x; q) be the upper Dini

derivative of v in direction q, with |q| = 1.

Claim 1. p · ẏ(t) + ℓ(y(t)) ≤ 0, for all p ∈ D∗v(y(t)), a.e. t.

Using [19, Lemma 2.37, p. 126], one has, for any z ∈ Rn

D+v(z) = { p : p · q ≥ ∂+v(z; q), ∀ q ∈ Rn}.

Hence, for p ∈ D+v(y(t)), one has

p · ẏ(t) + ℓ(y(t)) = −p · (−ẏ(t)) + ℓ(y(t)) ≤ −∂+v(y(t);−ẏ(t)) + ℓ(y(t)).

But, as in Claim 1 in the proof of Theorem 3.2.5, and since y is optimal, one gets

−∂+v(y(t);−ẏ(t)) + ℓ(y(t)) = h′(t) ≤ 0,

which proves the claim.

Claim 2. ẏ(t) = − p
|p| for all p ∈ D+v(y(t)), p ̸= 0, a.e. t.
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Recalling |ẏ| ∈ B(0, 1) and v being a subsolution of |Dv| − ℓ = 0, we have for all

p ∈ D+v(y(t)), |p| ≤ ℓ(y(t)) ≤ −p · ẏ(t) ≤ |p|, and hence, either p = 0 or ẏ(t) = − p
|p| .

To prove (ii) note that at all points of differentiability of v, one has |Dv(z)| = ℓ(z).

Then for all p ∈ D∗v(z), |p| = ℓ(z). And one has

h′(t) = ∂+v(y(t); ẏ(t)) + ℓ(y(t)) ≤ p · ẏ(t) + ℓ(y(t)), ∀ p ∈ D+v(y(t)).

Then, for y solving (3.2.31), p ̸= 0

h′(t) ≤ −p · p
|p|

+ ℓ(y(t)) = −|p|+ ℓ(y(t)) = 0

which concludes the proof as it has been done for Theorem 3.2.5.

3.2.3.3 Convergence of optimal trajectories to the argmin

In order to show stability of M, we need an assumption which prevents ℓ(·) from

approaching 0 when dist(x,M) → ∞, that is,

• for all δ > 0, there exists γ = γ(δ) > 0 such that

inf{ℓ(x) : dist(x,M) > δ} > γ(δ). (H)

If M is bounded, then it is easy to see that this condition is equivalent to

lim inf
|x|→∞

ℓ(x) > 0,

which is also equivalent to Assumption (L3) in [52]. The last inequality, however, is

impossible when M is unbounded.

Remark 3.2.2. An example of function with a unique global minimizer that does not

satisfy hypothesis (H) is ℓ(x) = |x|e−x2
. In this case M = {0} and inf{ℓ(x) : |x| > δ} = 0

for all δ.

A direct consequence of Theorem 3.2.5 is the following result.

Corollary 3.5. Assume (H) holds besides the standing assumptions (B1,B2). Let yα
∗

x (·)
be an optimal trajectory and δ > 0. If there exists τ > 0 such that dist(y∗(τ),M) > δ,

then, for γ(·) defined in (H),

ρ
γ(δ/2)
t ≥ δ

t
, ∀ t > τ +

δ

2
. (3.2.32)
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Proof. Set y∗(·) := yα
∗

x (·). Since it satisfies (3.2.29), we have |ẏ∗(·)| ≤ 1 and hence

y∗(·) is Lipschitz continuous. Therefore, given δ > 0, if there exists τ > 0 such that

dist(y∗(τ),M) > δ, then

δ < dist(y∗(τ),M) ≤ dist(y∗(s),M) + |y∗(s)− y∗(τ)|

≤ dist(y∗(s),M) + |s− τ |

which yields

dist(y∗(s),M) >
δ

2
, ∀ s ∈]τ − δ/2, τ + δ/2[.

Hence one has

ℓ(y∗(s)) ≥ inf

{
ℓ(x) : dist(x,M) >

δ

2

}
, ∀ s ∈]τ − δ/2, τ + δ/2[,

and together with (H), one gets

ℓ(y∗(s)) > γ(δ/2), ∀ s ∈]τ − δ/2, τ + δ/2[. (3.2.33)

Therefore

|{s ∈ [0, t] : y∗(s) /∈ Kγ(δ/2)}| ≥ | ]τ − δ/2, τ + δ/2[ |, ∀ t > τ +
δ

2
.

The latter writes as

t ρ
γ(δ/2)
t ≥ δ

and concludes the proof.

We are now ready to show stability properties of the set of global minimizers M with

respect to the optimal trajectories yα
∗

x (·).

Theorem 3.2.6. Assume (H) holds besides the standing assumptions (B1,B2). Then

for y∗(·) as in (3.2.29),

(i) M is Lyapunov stable 3,

(ii) M is globally asymptotically stable 4.

Proof. Let y∗(·) := yα
∗

x (·) be an optimal trajectory, i.e., a solution of (3.2.29). We

proceed by contradiction.

3This means that ∀ ε > 0, ∃ η > 0 such that dist(x,M) ≤ η ⇒ dist
(
yα

∗

x (t),M
)
≤ ε, ∀ t ≥ 0.

4This means that M is Lyapunov stable and lim
t→+∞

dist
(
yα

∗

x (t),M
)
= 0 for all x ∈ Rn.
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Proof of (i). Let ε > 0 be fixed and suppose for all η > 0, ∃ τ > 0 such that

dist(y∗(τ),M) > ε and dist(x,M) < η. Then from Corollary 3.5, one has

ρ
γ(ε/2)
t ≥ ε

t
, ∀ t > τ +

ε

2
.

And from Theorem 3.2.4, one has

t γ(ε/2)

ℓ
ρ
γ(ε/2)
t ≤ dist(x,M).

Therefore one gets
ε γ(ε/2)

ℓ
≤ dist(x,M)

which contradicts dist(x,M) < η when we choose η < ε γ(ε/2)

ℓ
. Hence we have, for all

ε > 0, there exists η > 0 such that if dist(x,M) ≤ η then dist(y∗(t),M) ≤ ε for all t,

which concludes the proof of the Lyapunov stability.

Proof of (ii). Suppose there exists a diverging sequence {τk}k≥0 and ε > 0 such that

dist(y∗(τk),M) > ε. Without loss of generality, one can extract a subsequence (again

denoted by τk) such that τk+1 − τk ≥ ε. Using Corollary 3.5, in particular (3.2.33), one

has for all k ≥ 0

ℓ(y∗(s)) ≥ γ(ε/2), ∀ s ∈]τk − ε/2, τk + ε/2[

and therefore

|{s ∈ [0, t] : y∗(s) /∈ Kγ(ε/2)}| >
∑

{k≥0 : τk≤t− ε
2
}

| ]τk − ε/2, τk + ε/2[ | = N(t) ε,

where N(t) is the number of distinct elements {τk}k≥0 that are in [0, t+ ε/2], i.e.

N(t) := #{τk : τk ≤ t+ ε/2, k ≥ 0}.

The previous inequality writes as

tρ
γ(ε/2)
t > N(t) ε.

On the other hand, we know from Theorem 3.2.4, in particular (3.2.28), that

tρ
γ(ε/2)
t ≤ ℓ dist(x,M)

γ(ε/2)
,
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and so we have N(t) < ℓ dist(x,M)
ε γ(ε/2)

. But this cannot be true since N(t) → +∞ as t→ +∞,

and hence it concludes the proof.

3.2.4 On reaching the argmin in finite time

Here we investigate whether the hitting time tx(α
∗) of an optimal trajectory with

the target M is finite or not.

In some control problems it may happen that an optimal trajectory remains arbi-

trarily close to a target without ever reaching it. Such a behavior has been observed in

a linear-quadratic control problem studied in [113, §6.1] with the target is a singleton

{x◦} and the time tε of being ε-close to x◦ is shown to be tε = C ln
(

|x−x◦|
ε

)
, where x is

the initial state. Moreover, an optimal trajectory oscillates periodically around x◦ (see

[113, p. 55]).

In our control problem described in Section 3.2.3.1 we expect that the hitting time is

finite, except perhaps for some pathological choices of the running cost ℓ. Next we give

a sufficient condition that strengthens the hypothesis (H): denote d(x) := dist(x,M)

and assume the following.

• There exists a continuous function γ(s) > 0 for all s > 0 and γ(0) = 0 such that,

for some r > 0,  ℓ(x) ≥ γ(d(x)), ∀x ∈ Rn,

ℓ(x) = γ(d(x)), ∀x s.t. d(x) ≤ r.
(L)

Proposition 3.2.2. Assume (L) and α∗ be an optimal control for problem (3.2.24).

Then the hitting time tx(α
∗) = d(x) whenever d(x) ≤ r and it is finite for all x.

Proof. Let us first note that the finiteness for all x follows from the property in the

case d(x) ≤ r, because by Theorem 3.2.6 (ii) there exists a finite time t̃x such that

d(yα
∗

x (t̃x)) ≤ r.

We assume that the initial position x satisfies d(x) ≤ r and aim to prove that

v(x) =

∫ d(x)

0

γ(s) ds, (3.2.34)

where v(x) is the value function defined in (3.2.24). Denote by V (x) the right-hand side

of the last equality.

We first claim that v(x) ≤ V (x). Take z is in the set of projections of x onto M

and consider the straight line from x to z given by the trajectory yx(t) = x− pt, t ≥ 0,

where p = x−z
|x−z| . Note that tx := inf{t ≥ 0 : yx(s) ∈ M} = d(x), and that d(x−pt) ≤ r
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for all 0 ≤ t ≤ tx. Then, by (L),

v(x) ≤
∫ tx

0

ℓ(yx(t)) dt =

∫ tx

0

γ(d(yx(t))) dt =: J(x).

Observe now that d(yx(t)) =
∣∣|x − z| − t

∣∣ = d(x) − t. Therefore, using the change of

variable s := d(yx(t)) = d(x)− t, we obtain

J(x) =

∫ d(x)

0

γ(d(yx(t))) dt =

∫ d(x)

0

γ(s) ds = V (x)

and this proves the claim.

Next we show that v(x) ≥ V (x). Since v(x) is a continuous viscosity solution to

(3.2.22), then using [153, Theorem 3.2 (ii)] it satisfies the upper optimality principle

[153, Definition 3.1], that is,

v(x) ≥ inf
α

∫ t

0

ℓ(yαx (s)) ds+ v(yαx (t)), ∀t ≥ 0,

where the dynamics of yαx (·) is again (3.2.25) with |α(s)| ≤ 1. Using (L) and v ≥ 0 we

get

v(x) ≥ inf
α

∫ t

0

γ(d(yαx (s))) ds, ∀t ≥ 0.

In particular, since γ(s) = 0 if and only if s = 0, we have

v(x) ≥ inf
α∈B(0,1)

∫ tx(α)

0

γ(d(yαx (s))) ds =: W (x).

Then the function W (x) solves in the viscosity sense the Dirichlet problem |∇W (x)| = γ(d(x)), x ∈ Rn \M

W (x) = 0, x ∈ M.
(3.2.35)

But V (x) :=
∫ d(x)

0
γ(s) ds is also a viscosity solution of this Dirichlet problem because

|D±V (x)| = |D±d(x)|γ(d(x)). We conclude using [131, Theorem 1 and Remark 3.1]

that V (x) = W (x) and hence v(x) ≥ V (x).

Finally we use in the integral of the formula (3.2.34) the same change of variable as

above to get

v(x) =

∫ d(x)

0

γ(d(yx(t))) dt =

∫ d(x)

0

ℓ(yx(t)) dt.

This proves that yx(t) := x−pt is an optimal trajectory and d(x) is its hitting time.
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3.2.5 Appendix: A counterexample to uniqueness

We shall construct a continuous family (indexed by k ∈ R) of solutions (Uk, vk(·)) ∈
R× C(Rn) to the equation

Uk +
1

2
|Dvk(x)|2 = g(x), in Rn (3.2.36)

for some function g satisfying the same assumptions as f at the end of §3.2.1.

Assuming the space dimension n ≥ 2, we set n = n1 + n1 such that n1, n2 ≥ 1. For

any x ∈ Rn, we write x = (x1, x2) where we denote by x1 := Projn1
(x) (respec. x2)

the projection of x on Rn1 (respec. on Rn2), and we set x̃1 = (x1, 0n2) ∈ Rn (respec.

x̃2 = (0n1 , x2) ∈ Rn) where 0n1 , 0n2 are the zero elements of Rn1 and Rn2 .

We will need the following Lemma5.

Lemma 3.2.1. Let n1, n2 ≥ 1, and suppose {ui}i=1,2 are viscosity solutions respectively

to

|Dui|2 = fi(xi), xi ∈ Rni . (3.2.37)

Then, ω(x) := u1(x1) + u2(x2) is a viscosity solution to

|Dω(x)|2 = f1(x1) + f2(x2), x = (x1, x2) ∈ Rn1+n2 .

Proof. We check that ω is a viscosity subsolution. The proof of ω being a supersolution

follows analogously.

Denote by n = n1 + n2 and g(x) := f1(x1) + f2(x2) for all x = (x1, x2) ∈ Rn. Let

φ ∈ C1(Rn) and suppose there exists x◦ = (x◦1, x
◦
2) ∈ Rn a local maximum point for

ω − φ, i.e., one has for some r > 0

(ω − φ)(x) ≤ (ω − φ)(x◦), ∀x ∈ Br(x
◦) ⊂ Rn (3.2.38)

where Br(x
◦) = Br(x

◦
1)× Br(x

◦
2) is a ball of radius r centered in x◦. We need to check

that

|Dφ(x◦)|2 ≤ g(x◦). (3.2.39)

We first note that, since x◦ is a local maximum point for ω − φ, then x◦1 (respec. x◦2) is

a local maximum point for u1−φ( · , x◦2) in Br(x
◦
1) (respec. for u2−φ(x◦1, · ) in Br(x

◦
2)).

It suffices indeed to evaluate (3.2.38) in (x1, x
◦
2) for all x1 ∈ Br(x

◦
1) (respec. in (x◦1, x2)

for all x2 ∈ Br(x
◦
2)).

Moreover, since u1 and u2 are viscosity solutions to (3.2.37), then one has in particular

5An analogous, but more general, result is [19, Lemma II.5.17, p.87].
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that

|Dxi
φ(x◦1, x

◦
2)|2 ≤ fi(xi), xi ∈ Br(x

◦
i ) ⊂ Rni . (3.2.40)

Finally, it suffices to observe that |Dφ|2 = |Dx1φ|2 + |Dx2φ|2 and to sum (3.2.40) side

by side in order to obtain (3.2.39). This concludes the proof.

We are now ready to construct the desired counterexample.

Consider the following equation with n1 ≥ 2

U +
1

2
|Du(x1)|2 = f̃(x1), in Rn1 (3.2.41)

where we define f̃(x1) := f(x̃1) = f((x1, 0n2)) and f is as in §3.2.1. Then Theorem 3.2.1

provides at least one pair (U, u(·)) ∈ R × C(Rn1) such that u(·) is a viscosity solution

to (3.2.41). Now let us consider the following equation

− Ck +
1

2
|Dvk(x2)|2 = 0, in Rn2 (3.2.42)

for which any function vk(x2) = −
√
2Ck |x2|, with {Ck}k∈R a sequence of non-negative

real numbers, is a viscosity solution.

It suffices now to observe (using Lemma 3.2.1) that {(Λk, ωk)}k∈R such that ωk(x) :=

u(x1) + vk(x2) and Λk := U − Ck, for all k ∈ R, is a viscosity solution to (3.2.36) with

g(x) := f̃(Projn1
(x)). And moreover ωk is not differentiable in 0.

We refer to the more general results of [105] where it has been shown that the set of

constants for which there exists a viscosity solution is a half line, see [105, eq. (2.9)].

3.3 Stochastic approximation

3.3.1 Introduction

Given a function f to be minimized, our goal is to construct a dynamics which

converge to the global minimizer of the latter. It is well known that stochastic gradient

descent converges in general to local minima and depends on the choice of the initial

starting point. We would like here to construct trajectories which rather converge to

the global minimum regardless of the initial position.

Our approach is based on stochastic optimal control theory and on ergodic Hamilton-

Jacobi-Bellman equations. We rely in the first part on PDE methods to derive useful
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estimates, mainly semiconcavity, for the value function of the control problem. This will

allow us to construct trajectories that first converge towards quasi-minimizers. And then

we shall use probabilistic tools inspired from Laplace method to prove the convergence to

the global minimum in the zero-noise limit. We shall also provide a rate of convergence

for the latter.

The third part of this chapter, §3.3, is organized as follows. In section 3.3.2 we

introduce the control problem setting and derive the required estimates on its value

function. This will be a key step for studying the corresponding ergodic PDE (Theorem

3.3.1). And in section 3.3.3, we study the small-noise limit. We first show the behavior

of the ergodic constant in the vanishing viscosity regime (Proposition 3.3.3). Then we

use the latter result together with occupational measures, to show the desired result on

the convergence of trajectories towards the global minimum (Theorem 3.3.2).

In the sequel, we refer to the set of global minimizers of the function f again by

M := {x ∈ Rn : f(x) = min
z∈Rn

f(z)}. (3.3.1)

And we recall the standing assumptions in this section

A1. f : Rn → R is continuous and

∃ f, f s.t. f ≤ f(x) ≤ f, ∀ x ∈ Rn, (3.3.2)

A2. f attains the minimum, i.e.,

M := {x ∈ Rn : f(x) = f := min
z∈Rn

f(z)} ≠ ∅ (3.3.3)

A3. f is C1-Lipschitz continuous, i.e. C1 = ∥∇f∥∞,

A4. f is C2-semiconcave, i.e., D2
ξξf ≤ C2 a.e. for all ξ ∈ Rn s.t. |ξ| = 1, where D2

ξξf is

the second order derivative of f in the direction ξ.

A5. ∇f(·) is locally Lipschitz continuous,

We will also assume that the set of global minimizersM as defined in (3.3.1) is closed and

is nonempty, i.e. there exists at least one element x◦ ∈ Rn such that f(x◦) = min
z∈Rn

f(z).
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3.3.2 The stochastic control problem

The stochastic setting

Let ν = (Ω, {Fs},P,W·) be a reference probability system, where Ω is a sample

space, {Fs} a filtration, P a probability measure, andW· a P-Brownian motion adapted

to {Fs}. Given ε > 0, we introduce a controlled stochastic process Xs solution to

dXs = αs ds+
√
2ε dWs,

X0 = x ∈ Rn
(3.3.4)

where the control αs is R
n-valued Fs-progressively measurable process

A convergence result

We consider the following pay-off functional

J(x, α·) := E

[∫ +∞

0

(
1

2
|αt|2 + f(Xt)

)
e−λt dt

∣∣∣∣ X0 = x

]
(3.3.5)

where f is again a bounded continuous functional satisfying (??), and λ > 0 is the

discount factor. We also consider the corresponding control system which value function

is given by

uελ(x) := inf
α·∈A

J(x, α·), s.t. (3.3.4). (3.3.6)

Following the results in section 3.1 (see Remark 3.1.1), one can show that uλ is a classical

solution to the PDE

λuελ − ε∆uελ +
1

2
|Duελ|2 = f(x), x ∈ Rn. (3.3.7)

Using classical estimates (see Lemma 3.1.1) one has the following results.

Lemma 3.3.1. Let f be bounded. Then for every x ∈ Rn, one has

f ≤ λuελ(x) ≤ f (3.3.8)

Lemma 3.3.2. Let f be bounded and let C1 = sup |Dxf |. Then for all x ∈ Rn, one has

|Duελ(x)| ≤
C1

λ
(3.3.9)
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Lemma 3.3.3. Let f be bounded and C2-semiconcave, C1 = sup |Dxf | and n ≥ 2.

Then uε is C3−semiconcave, where C3 is a positive constant independent of λ ≥ 0 and

of ε ∈ (0, 1).

Theorem 3.3.1. Assuming (A1,A3,A4) hold and using the notations of the previous

lemmata, we have

|Duελ(x)| ≤
√

4∥f∥∞ + 2εnC3, ∀ x ∈ Rn, λ > 0. (3.3.10)

Moreover, λuελ(·) converges uniformly on Rn to a constant U ε as λ goes to 0+. And

for any sequence λk going to 0+, there exists a subsequence (that we still denote by λk)

such that uελk
(·) − uελk

(0) converges locally uniformly to a continuous viscosity solution

v(·)− v(0) of

U ε − ε∆vε +
1

2
|Dvε|2 = f(x), x ∈ Rn. (3.3.11)

We have in addition Duλk
(·) → Dvε(·) a.e. in Rn, and hence |Dvε(·)| also satisfies

the uniform bound in (3.3.10).

Proof of Theorem 3.3.1. We first show a uniform gradient estimate. This is done using

Lemma 3.3.1 and Lemma 3.3.3, together with the PDE (3.3.7). We then get, for R :=√
4∥f∥∞ + 2εnC3,

|Duελ(x)| ≤ R, for all x ∈ Rn. (3.3.12)

Define zλ(·) := λuελ(·) and φλ(·) := uλ(·)− uελ(0), and observe that for all x, y ∈ Rn

|zλ(0)| ≤ ∥f∥∞,

|zλ(x)− zλ(0)| ≤ λR |x|,

|φλ(x)| ≤ R |x|,

|φλ(x)− φλ(y)| ≤ R |x− y|.

(3.3.13)

Hence, {φλ(·)}λ∈(0,1) is a uniformly bounded and equi-continuous family on any balls

of Rn. So we can choose {λk}k∈N ⊂ (0, 1) such that as k → +∞, we have λk → 0,

zλk
(0) → U ε, φλk

(·) → vε(·) − vε(0) in C(Rn), for some (U ε, vε) ∈ R × C(R) and

where vε(0) is a constant that guarantees φtk(0) = 0. And from the second inequality

in (3.3.13), we get zλk
(x) → U uniformly on balls of Rn as k → +∞. Finally, by the

stability of the viscosity solutions, we find that v satisfies (3.3.11) in the viscosity sense.

The convergence of the gradient Duελk
(·) to Dvε(·) is a direct consequence of [53,

Theorem 3.3.3], recalling that |φλk
(x)| ≤ R |x| and using the uniform semiconcavity

estimate in Lemma 3.3.3.
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3.3.3 Reaching the minima via stochastic optimal control

We define the candidate optimal strategy for the discounted control problem in feed-

back form as αλ : x 7→ αλ(x) := −∇uελ(x) where λ is the discount factor and the

corresponding trajectory Xλ,ε
· is the one given by

dXλ,ε
s = −∇uελ(Xλ,ε

s ) ds+
√
2ε dWs, Xλ,ε

0 = x ∈ Rn. (3.3.14)

Optimal Markov Control Policies

Very often, we require Markov controls to be bounded and Borel measurable and

satisfy in addition local Lipchitz continuity in x and with at most a linear growth (see

[85, §IV.3, p. 159]). In fact, for this class of controls, the SDE in (3.3.14) admits a

pathwise unique solution and the reference probability system ν as defined in §3.3.2 can

then be arbitrarily chosen (see [85, Remark IV.3.2, p. 160]).

Proposition 3.3.1. The strategy defining the SDE (3.3.14) is the optimal one for the

control problem (3.3.6). It enjoys moreover pathwise uniqueness and the corresponding

control problem is invariant w.r.t. the reference probability system.

Proof. We are in the case of Markov control policies as defined above, thanks to the

C2 regularity and boundedness of the value function uελ(·) and its gradient (cf. Theorem

3.3.1). Therefore, given any (Ω,F , {Fs},P) and Fs-adapted brownian motion Ws, the

stochastic differential equation (3.3.14) has a pathwise unique solution, and hence the

reference probability system ν can be arbitrary chosen. Moreover the process αs =

−∇uελ(Xλ,ε
s ) is Fs-measurable and hence admissible.

Finally, a verification theorem (see [85, Corollary IV.5.1] and [117, Theorem 1]) insures

that the candidate strategy defining the SDE (3.3.14) is the optimal one for the control

problem (3.3.6).

Proposition 3.3.2. The SDE (3.3.14) admits a strong solution and enjoys pathwise

uniqueness.

Proof. This is a direct consequence of the the regularity of the function v(·) solution
to (3.3.11).

Before we move to results on global optimization via small-discounted average control

problems, we study in the next upcoming section the asymptotic behavior of the ergodic

constant U ε as ε → 0. This will play a key role in the proof of our convergence result

of optimal trajectories towards the global minimum.
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3.3.3.1 The ergodic constant

In this subsection, we study the behavior of the ergodic constant U ε as the diffusion

parameter ε goes to zero. But before we do so, let us recall some definitions (see, e.g.,

[129]) and known facts on Gibbs measure that we summarize in the next lemma.

Definition 3.3.1. (i) A probability measure µ is said to be invariant for the process

ξx· when it satisfies
∫
Rn E[φ(ξ

x
t )] dµ(x) =

∫
Rn φ(x) dµ(x), for all bounded Borel-

measurable functions φ and t > 0.

(ii) An invariant measure is said to be ergodic when

lim
t→+∞

1

t

∫ t

0

E[φ(ξxt )] dt =

∫
Rn

φ(z) dµ(z)

for all φ s.t.
∫
Rn |φ(z)|2 dµ(z) < +∞. In this case, we also have

lim
λ→0

λ

∫ +∞

0

E[φ(ξxs )] e
−λ s ds =

∫
Rn

φ(z) dµ(z)

This last statement is known as Abelian-Tauberian theorem.

Lemma 3.3.4. Let V : Rn → [0,+∞) belongs to C1+α(Rn) for some α ∈ (0, 1) and

such that e−V ∈ L1(Rn) and {x : V (x) = min
y∈Rn

V (y)} = {x◦}. Assume in addition that

∇V satisfies the following

∀R > 0,∃KR > 0, ⟨∇V (x)−∇V (y), x− y⟩ ≤ KR|x− y|2, ∀ |x|, |y| ≤ R,

∃K > 0, ⟨∇V (x), x⟩ ≤ K(1 + |x|2), ∀x ∈ Rn.
(3.3.15)

Then, for any σ > 0 the stochastic differential equation

dξxt = −∇V (ξxt ) dt+ σ dWt, ξx0 = x ∈ Rn (3.3.16)

is well defined and admits a unique invariant probability measure given by

µσ(dx) = Z−1e−2V (x)/σ2

dx, Z =

∫
Rn

e−2V (x)/σ2

dx (3.3.17)

that is in addition ergodic. If moreover V satisfies: for all δ > 0, there exists η > 0

such that

inf{V (x) : |x− x◦| ≥ δ } > sup{V (x) : |x− x◦| ≤ η } (3.3.18)

then µσ converges, as σ → 0, weakly to δx◦, the Dirac measure with unit mass concen-

trated on {x◦} the unique global minimizer of V .
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Proof. It is well known that (3.3.15) guarantees existence and uniqueness of a solution

ξxt continuous in t, which moreover defines a semigroup {T (t)} such that T (t)φ(x) =

E[φ(ξxt )] for every bounded Borel measurable φ (see Theorem 2.4.3 and Theorem 2.5.2

in [129, Chapter 2]). Since V ∈ C1+α(Rn) and e−V ∈ L1(Rn), the probability measure

µσ as defined in 3.3.17 is well defined. Then from [129, Theorem 8.1.26], it follows that

µσ is the invariant measure of the semigroup {T (t)}, and [129, Theorem 8.1.15] insures

its uniqueness, whereas ergodicity is given by [129, Theorem 8.1.11]. Convergence of µσ

weakly to δx◦ , as σ → 0, is shown in [13, Theorem 6.1] and is based on [96, Theorem

2.1].

Let us now recall the discounted optimal control problem

uελ(x) = inf
α·
Ex

[∫ +∞

0

(
1

2
|αt|2 + f(Xt)

)
e−λt dt

]
.

where dXs = αsds+
√
2ε dWs, X0 = x.

Proposition 3.3.3. Let U ε be the ergodic constant in (3.3.11), assume M is closed and

(A1–A5) hold. Then there exists C̃(ε, f, n) a positive constant that goes to 0 as ε → 0

such that

min
z∈Rn

f(z) ≤ U ε ≤ C̃(ε, f, n) + min
z∈Rn

f(z). (3.3.19)

In particular we have lim
ε→0

U ε = min
z∈Rn

f(z). If moreover f ∈ C2(Rn), then ∀ ε > 0

|U ε − min
z∈Rn

f(z)| ≤ C(f, n)
(
ε2κ + ε(1−κ)/2 + ε1+κ

)
, ∀κ ∈ (0, 1), (3.3.20)

where C(f, n) is a positive constant.

Remark 3.3.1. When ε ∈ (0, 1), we have ε1+κ ≤ max(ε2κ, ε(1−κ)/2) for all κ in (0, 1),

and (3.3.20) writes as

|U ε − min
x∈Rn

f(x)| ≤ C(f, n)
(
ε2κ + ε(1−κ)/2

)
, ∀κ ∈ (0, 1).

Proof. We proceed in three steps.

Step 1. (The bounds in (3.3.19))

We have

min
z∈Rn

f(z) ≤ λEx

[∫ ∞

0

(
1

2
|αt|2 + f(Xt)

)
e−λ t dt

]
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hence

min
z∈Rn

f(z) ≤ λuελ(x), ∀ x, λ > 0 (3.3.21)

It suffices then to take the limit as λ goes to 0 using Theorem 3.3.1.

We now prove the second inequality.

Let x◦ ∈ {x : f(x) = min
y∈Rn

f(y)} so f(x◦) = min
y∈Rn

f(y). Consider the function

V (x) := f(x)− f(x◦) +
γ

2
|x− x◦|2.

where γ > 0 is sufficiently large. It is immediate to see that the function V satisfies

the assumptions in Lemma 3.3.4. Let us fix κ ∈ (0, 1) and choose a control αs =

−εκ∇V (Y ε
s ) where Y

ε
s is the unique solution to

dY ε
s = −εκ∇V (Y ε

s )ds+
√
2ε dWs, Y ε

0 = x. (3.3.22)

We now estimate the term Ex

[∫∞
0

(
1
2
|αs|2

)
e−λ s ds

]
. On the one hand we have

Ex

[∫ ∞

0

(
1

2
|αs|2

)
e−λ s ds

]
= Ex

[∫ ∞

0

ε2κ

2
|∇f(Y ε

s ) + γ (Y ε
s − x◦)|2 e−λ s ds

]
≤ 1

λ

ε2κ

2
C2

1 + ε2κ γ Ex

[∫ ∞

0

(
∇f(Y ε

s ) · (Y ε
s − x◦) +

γ

2
|Y ε

s − x◦|2
)
e−λ s ds

]
.

(3.3.23)

On the other hand, Dynkin formula applied with the function

φ : (t, Y ε
t ) 7→

1

2
|Y ε

t − x◦|2e−λ t

yields, for some t > 0,

Ex [φ(t, Y
ε
t )]− φ(0, x)

= Ex

[∫ t

0

(
−λ
2
|Y ε

s − x◦|2 − εκ ∇V (Y ε
s ) · (Y ε

s − x◦) + ε n

)
e−λ s ds

]
≤ Ex

[∫ t

0

(
− εκ ∇V (Y ε

s ) · (Y ε
s − x◦) + ε n

)
e−λ s ds

]
and since φ ≥ 0, Ex [φ(t, Y

ε
t )] ≥ 0 and we have

0 ≤ φ(0, x) + Ex

[∫ t

0

(
− εκ ∇V (Y ε

s ) · (Y ε
s − x◦) + ε n

)
e−λ s ds

]
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The latter holds for any t > 0, we have

0 ≤ φ(0, x) + Ex

[∫ ∞

0

(
− εκ∇V (Y ε

s ) · (Y ε
s − x◦) + ε n

)
e−λ s ds

]
= φ(0, x) +

ε n

λ
+ Ex

[∫ ∞

0

−εκ∇V (Y ε
s ) · (Y ε

s − x◦) e
−λ s ds

]
and hence

ε−κφ(0, x) +
ε1−κ n

λ
≥ Ex

[∫ ∞

0

∇V (Y ε
s ) · (Y ε

s − x◦) e
−λ s ds

]
= Ex

[∫ ∞

0

(
∇f(Y ε

s ) · (Y ε
s − x◦) + γ |Y ε

s − x◦|2
)
e−λ s ds

]
≥ Ex

[∫ ∞

0

(
∇f(Y ε

s ) · (Y ε
s − x◦) +

γ

2
|Y ε

s − x◦|2
)
e−λ s ds

]
.

Using the latter together with (3.3.23), yields

Ex

[∫ ∞

0

(
1

2
|αs|2

)
e−λ s ds

]
≤ 1

λ

ε2κ

2
C2

1 + εκ γ φ(0, x) +
1

λ
ε1+κ γ n.

Therefore, we have

uελ(x) ≤ Ex

[∫ ∞

0

(
1

2
|αs|2 + f(Y ε

s )

)
e−λ s ds

]
≤ 1

λ

ε2κ

2
C2

1 + εκ γ φ(0, x) +
1

λ
ε1+κ γ n+ Ex

[∫ ∞

0

f(Y ε
s )e

−λ s ds

]
and hence, setting

C(ε) :=
C2

1

2
ε2κ + γ n ε1+κ, (3.3.24)

we have

λuελ(x) ≤ C(ε) + λ εκ γ φ(x) + λ

∫ ∞

0

Ex[f(Y
ε
s )]e

−λ s ds (3.3.25)

From Lemma 3.3.4, the process Y ε
· as defined in (3.3.22) admits a unique invariant

probability measure given by

µ(dx; ε) = Z−1 exp

(
−
f(x)− f(x◦) +

γ
2
|x− x◦|2

ε1−κ

)
dx,

with Z =

∫
Rn

exp

(
−
f(x)− f(x◦) +

γ
2
|x− x◦|2

ε1−κ

)
dx.

(3.3.26)
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The latter being ergodic (again from Lemma 3.3.4), we can pass to the limit λ → 0 in

(3.3.25) and using Theorem 3.2.1 we get

U ε ≤ C̃(ε, f) + min
z∈Rn

f(z) (3.3.27)

where

C̃(ε, f) := C(ε) +

∫
Rn

(
f(x)− f(x◦)

)
µ(dx; ε).

This concludes the proof of the first statement in the proposition.

Step 2. (The convergence as ε→ 0)

The limit as ε → 0 is justified on the one hand by the convergence C(ε) −−→
ε→0

0 from

the definition (3.3.24), and on the other hand by the weak convergence of µ(· ; ε) as

ε→ 0 to Dirac measure δx◦(·) given by Lemma 3.3.4 which then yields the convergence∫
Rn f(x)µ(dx; ε) −−→

ε→0

∫
Rn f(x)δx◦(x) dx = f(x◦) = min

z∈Rn
f(z), provided the function V (·)

satisfies the hypothesis (3.3.18) which we now check. Indeed, recalling the definition

V (·), we have
γ

2
|x− x◦|2 ≤ V (x) = f(x)− f(x◦) +

γ

2
|x− x◦|2.

Therefore, for δ > 0 fixed, we have on one hand

γ

2
δ2 ≤ inf{V (x) : |x− x◦| ≥ δ },

and on the other hand, we search for η > 0 such that

sup{V (x) : |x− x◦| ≤ η } <
γ

2
δ2.

And we have

sup{V (x) : |x− x◦| ≤ η } ≤ sup{ f(x)− f(x◦) : |x− x◦| ≤ η }+ γ

2
η2

≤ C1 η +
γ

2
η2.

It is then sufficient to search for η > 0 such that

C1 η +
γ

2
η2 <

γ

2
δ2.

This holds true for any η ∈ (0, η∗), where η∗ =
−C1+

√
C2

1+(γδ)2

γ
, and concludes the proof

of convergence.
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Step 3. (The rate of convergence)

For the rate of convergence, we need to estimate how fast the term∫
Rn

(
f(x)− f(x◦)

)
µ(dx; ε)

present in the constant C̃(ε, f) of (3.3.27) goes to zero. To do so, we apply the result

in [13, Theorem 6.3], in particular [13, Example 6.3.1]. First, note that since f is dif-

ferentiable and x◦ ∈ argmin
x∈Rn

f(x), one has ∇f(x◦) = 0. Then, using a Taylor expansion

of V (·) in a neighborhood of x◦, one gets

V (x)− V (x◦)

|x− x◦|2
=

1

2

(
D2f(x◦) + γIn

) x− x◦
|x− x◦|

· x− x◦
|x− x◦|

+ o(1)

where in addition D2f(x◦) ≥ 0. Hence for γ > 0, D2f(x◦) + γIn is a positive definite

matrix, and setting

ϕ(y) :=

(
1

2

(
D2f(x◦) + γIn

)
y · y

)1/2

, ∀ y ∈ Rn,

we have
V (x)− V (x◦)

(ϕ(x− x◦))2
−−−→
x→x◦

1.

This being satisfied, we can now apply the result in [13, Theorem 6.3] which insures

that a random vector Zε with distribution µ(· ; ε) as defined in (3.3.26) satisfies

Zε − x◦

(ε1−κ)1/2
d−−→

ε→0
Z (3.3.28)

where
d−→ means convergence in distribution and Z is a random vector with density

c exp(−(ϕ(z))2) for some c ∈ (0,+∞). Using the latter in (3.3.27) together with

(3.3.24), we can estimate the dependence on ε in the upper-bound of the ergodic con-

stant U ε as follows. We denote by ξr(·) : Rn → R the function supported on B(x◦, r),

the ball centered in x◦ of radius r > 0, where it is equal to 1, and is 0 otherwise. And

let {fr}r>0 be a sequence of functions such that fr(x) = ξr(x)f(x). Using Lipschitz

continuity of f (hence also of fr), one gets

E [fr(Z
ε)− fr(x◦)] ≤ ε

1−κ
2 C1E

[
ξr(Z

ε)
|Zε − x◦|
ε

1−κ
2

]
The term in the expectation being bounded (thanks to the compactly supported function

ξr), we can then use the above result (3.3.28) of convergence (in distribution) to pass to
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the limit in ε→ 0. Indeed, for any δ > 0, there exists ε > 0 such that for all ε ∈ (0, ε),

one has

E

[
ξr(Z

ε)
|Zε − x◦|
ε

1−κ
2

]
≤ δ + E[ ξr(x◦) |Z| ] = δ + E[ |Z| ],

since Zε converges in distribution to x◦ (as it is shown in Step 2 of the proof) and

ξr(x◦) = 1 for all r > 0. And we have (recalling the definition of Z above)

E[ |Z| ] = c

∫
Rn

|z| e−(ϕ(z))2 dz =: R

which is a positive constant. Therefore, one gets

E [fr(Z
ε)− fr(x◦)] ≤ ε

1−κ
2 C1 (R + δ), ∀ ε ∈ (0, ε).

The right-hand side being independent from r, we let r → +∞ in the left-hand side and

recover ∫
Rn

(
f(x)− f(x◦)

)
µ(dx; ε) = E [f(Zε)− f(x◦)] ≤ ε

1−κ
2 C1 (R + δ).

Going back to (3.3.27), we have

0 ≤ U ε − min
z∈Rn

f(z) ≤ α ε2κ + β ε1+κ + η ε
1−κ
2 , κ ∈ (0, 1)

where (using (3.3.24)) we set α :=
C2

1

2
, β := γ n and η := C1(R+ δ). This concludes the

last statement, setting (as in (3.3.20)) the constant C(f, n) := max(α, β, η).

We are now ready to state and make precise the convergence result of optimal tra-

jectories towards the global minimum.

3.3.3.2 The global minimum

Let ε > 0 be the diffusion coefficient, and recall the dynamics

dXs = αsds+
√
2ε dWs, X0 = x ∈ Rn (3.3.29)

We are interested in this section in the asymptotic behavior of these trajectories in the

context of optimal control, when the discount factor λ → 0, and then when letting the

diffusion coefficient ε goes to zero. We will show in particular how optimal trajectories

converge to the global minimum of the function f .
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We introduce occupational (random) measures that comply with the discounted op-

timal control problem and that we define by

µλ,x,α(Q) := λ

∫ ∞

0

1Q(Xs)e
−λ s ds (3.3.30)

where Q is any Borel set of Rn, X· is the trajectory (3.3.29) corresponding to the control

α with initial position x and for any z ∈ Rn, 1Q(z) = 1 if z ∈ Q and is 0 otherwise. It

is clear that µλ,x,α(Q) + µλ,x,α(Q
c) = 1, where again Qc is the complement of Q in Rn.

Let (X∗
· , α

∗
· ) := (Xλ,ε

· , αλ
· ) be an optimal pair state-control for the control problem

(3.3.6) as defined in (3.3.14) and in Proposition 3.3.1. For δ ≥ 0 fixed, we define the set

of quasi-minimizers (or quasi-optimal sublevel set) as follows

Kδ := { y ∈ Rn | f(y) ≤ f + δ } (3.3.31)

where we recall f := min
x∈Rn

f(x). And denote by ρδ,ελ the (weighted) fraction of the time

interval (0,+∞) during which the optimal trajectory X∗
· is far away from a minimizer

of f , that is

ρδ,ελ := µλ,x,α∗(Kc
δ) = λ

∫ ∞

0

1Kc
δ
(X∗

s )e
−λ s ds (3.3.32)

where Kc
δ := R

n \Kδ. Note that ρδ,ελ is a random variable

ρδ,ελ : Ω ∋ ω 7→ λ

∫ ∞

0

1Kc
δ
(X∗

s (ω))e
−λ s ds = ρδ,ελ (ω) ∈ [0, 1].

We can now state and prove the following convergence result.

Theorem 3.3.2. In the situation of Proposition 3.3.3, we have

lim
λ→0

P
(
ρδ,ελ > a

)
≤ 1

δ a

(
U ε − f

)
, ∀ a > 0, δ > 0, ε > 0 (3.3.33)

where U ε is the ergodic constant in (3.3.11). In particular, as the diffusion coefficient ε

vanishes, we have

lim
ε→0

lim
λ→0

P
(
ρδ,ελ > a

)
= 0, ∀ a > 0, δ > 0, (3.3.34)

with the same rate of convergence as in (3.3.20) when f ∈ C2(Rn).

Proof. Note first that ρδ,ελ ≥ 0 and Markov inequality writes

P(ρδ,ελ > a) ≤ E[ρδ,ελ ]

a
, ∀ a > 0, δ > 0.
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It suffices then to upperbound E[ρδ,ελ ]. We have for δ > 0

min
x∈Rn

f(x) =: f = (1− ρδ,ελ )f + ρδ,ελ f, a.s.

≤ (1− ρδ,ελ )f + ρδ,ελ (f + δ), a.s.

Then, multiplying by λ e−λ s and integrating over (0,+∞), and recalling the definition

(3.3.32) of ρδ,ελ , yield

f ≤ (1− ρδ,ελ )f + ρδ,ελ (f + δ), a.s.

≤ λ

∫ ∞

0

f(X∗
s ) e

−λ s ds, a.s.

where the second inequality holds because, on one hand we have by definition of the

minimum f ≤ f(X∗
s ) for any s ≥ 0, in particular the inequality holds during the fraction

of time (1− ρδ,ελ ), i.e. we have (1− ρδ,ελ )f ≤ (1− ρδ,ελ )
∫∞
0
λ f(X∗

s ) e
−λ s ds almost surely,

and on the other hand during the fraction of time ρδ,ελ we have f + δ ≤ f(X∗
s ) and hence

ρδ,ελ (f + δ) ≤ ρδ,ελ
∫∞
0
λ f(X∗

s ) e
−λ s ds almost surely.

We can now take the expectation and from the optimality of the pair (X∗
· , α

∗
· ) we have

f ≤ (1− E[ρδ,ελ ])f + E[ρδ,ελ ](f + δ) ≤ E
[
λ

∫ ∞

0

f(X∗
s ) e

−λ s ds

]
≤ E

[
λ

∫ ∞

0

(
1

2
|α∗

s|2 + f(X∗
s )

)
e−λ s ds

]
= λuελ(x).

which then yields

f ≤ f + δE[ρδ,ελ ] ≤ λuελ(x).

and together with Markov inequality we have for any a > 0

aP(ρδ,ελ > a) ≤ E[ρδ,ελ ] ≤ 1

δ

(
λuελ(x)− f

)
Using the convergence result in Theorem 3.2.1 together with the upperbound in Propo-

sition 3.3.3, we have

0 ≤ lim
λ→0

P(ρδ,ελ > a) ≤ 1

a
lim
λ→0

E[ρδ,ελ ] ≤ 1

δ a

(
U ε − f

)
.

It is then immediate to recover the limit as the diffusion coefficient ε vanishes using

Proposition 3.3.3, and the convergence rate from (3.3.20).
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Conclusion

With a stochastic discounted-optimal control problem and given a function f to be

minimized, we constructed a trajectory (3.3.14) that converge, when the discount factor

λ vanishes, to quasi-minimizers of f with a quantified error in (3.3.33). Then, in the

small-noise limit, we recovered global minimization in (3.3.34) with an explicit rate of

convergence (3.3.20). The latter is based on the behavior of the ergodic constant in the

vanishing viscosity regime (3.3.19).



Chapter 4

The viscous ergodic problem

4.1 Introduction

This chapter is devoted to the problem of existence and uniqueness of solutions to

some ergodic partial differential equations in the whole space domain Rm with un-

bounded data satisfying a subexponential growth. Such problems take the form of

Find (c, u(·)) ∈ R×X (Rm) s.t.: F (x,∇u(x), D2u(x)) = c, in Rm (4.1.1)

where X is a functional space (part of the unknowns) and F is either

• a linear operator of the form F := −Lu(x) + f(x), or

• a Bellman Hamiltonian of one of the two forms

F := min
α∈A

{−Lαu(x) + f(x, α) } or F := max
α∈A

{−Lαu(x) + f(x, α) }

and where L is a diffusion operator

Lφ(x) := trace(a(x)D2φ(x)) + b(x) · ∇φ(x)

and Lα is analogously defined with b := b(x, α) and a := a(x, α), and α ∈ A a compact

subset of Rk for some k > 0. Such problems arise in ergodic stochastic control, weak

KAM theory, homogenization, singular perturbations and asymptotic approximations

in partial differential equations (long-time behavior, vanishing discount coefficient).

Throughout the chapter, we will make the following assumptions and refer to them

wherever it is needed:

165
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A0. The dimension m ≥ 2.

A1. (i) a = (aij) is a continuous mapping on Rm such that a(x) = ϱ(x)ϱ(x)⊤

where ϱ is a continuous m×m1 matrix function (for some m1 ≥ m),

(ii) b = (bi) : Rm → Rm is a locally bounded Borel-measurable vector field.

A2. For some p > m, aij ∈ W p,1
loc (R

m) and bi ∈ Lp
loc(R

m).

A3. There exist Λ ≥ Λ > 0 such that ∀ x, ξ ∈ Rm, Λ∥ξ∥2 ≤ ξa(x) · ξ ≤ Λ∥ξ∥2,
i.e. a(·) is positive, uniformly bounded and nondegenerate.

A4. lim
|x|→∞

b(x) · x = −∞ (Recurrence condition).

A5. f is a Borel-measurable mapping on Rm with at most a polynomial growth,

i.e. ∃ Kf > 0, s.t. |f(x)| ≤ Kf (1 + |x|d) for all x ∈ Rm and for some d ≥ 1.

A6. There exist Kb > 0 and β ∈ [0, d] such that |b(x)| ≤ Kb(1 + |x|β) for all x ∈ Rm.

When the data will be depending on a (control) parameter α, the above conditions

will be assumed to hold uniformly in α, assumption (A4) writes as lim
|x|→∞

sup
α∈A

b(x, α) ·x =

−∞ and in (A5) we will assume in addition f to be continuous in α (i.e. a Carathéodory

condition: measurable in x, continuous in α).

Assumption (A4) is reminiscent of the existence of a Lyapunov function w ∈ C2(Rm)

s.t. lim
|x|→∞

w(x) = +∞ and lim
|x|→∞

Lw(x) = −∞. We will come back to this in §4.2.3.2.

The main difficulty and novelty in this setting is that we are looking for solutions

in the whole space Rm while both b and f are unbounded. Usually, we refer to c as

the ergodic constant and u(·) as the corrector. The differential operator Lα can be

interpreted as the infinitesimal generator of the controlled stochastic process

dXt = b(Xt, αt)dt+
√
2ϱ(Xt, αt)dBt (4.1.2)

where Bt is a Wiener process while f is the running cost of the control problem. Sim-

ilarly, the operator L would correspond to the same stochastic process where we drop

the dependency on the parameter α (see the discussion in §4.2.3.2). Note that (4.1.2)

should be understood in its weak sense (see e.g. [114, 115]).
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The main results in the first part of this chapter (see Theorem 4.3.2, Theorem

4.4.1 and Theorem 4.4.2) can be informally stated as: Under assumptions including

(A0)-(A6), the following statements hold true:

(i) (Existence) There exists a constant c ∈ R such that the PDE in (4.1.1) admits

an almost everywhere solution u(·) ∈ W r,2
loc (R

m) with r ∈ [1,+∞) and satisfying

|u(x)| ≤ K(1 + |x|κ) where K > 0 and κ = d+ 1− β.

(ii) (Uniqueness) If we assume moreover that b is locally Lipschitz continuous with at

most a linear growth (i.e. β = 1), then u(·) is unique in W r,2
loc (R

m) with r > m
2
,

up to an additive constant. That is, if (c, u(·)) and (c, v(·)) are two solutions in

the sense of (i), then u(·)− v(·) is a constant.

We will then conclude by providing an analogous result in the manifold setting (see

Theorem 4.4.3) and and by deriving a continuity estimate for the ergodic constant with

respect to the data of the problem (see Proposition 4.4.2).

Then, in the second part of the present chapter, we will tackle the ergodic problem

for Mean-Field Games and provide analogous results in the same setting.

Related results. There have been many contributions on the problem of ergodic

HJB equations in various settings and with many different techniques since it is of

interest not only of the community of PDEs but also of probabilists and (stochastic)

control theorists. Indeed, the ergodic problem captures the asymptotic behavior of a

system (e.g. the long-time behavior of a control problem, or the effective phenomena

in homogenization) and hence plays the role of a model reduction technique that is of

interest in many applications. In the context of stochastic control, such a problem arises

for the first time in the pioneering work [119]. Then probably the first results linking

homogenization to ergodic theory goes back to [32], and the ergodic problem as we have

stated appears in the context of homogenization in [128]. Since then many results on

the problem and related topics have been established.

• In the linear case. This corresponds to the ergodic Poisson equation, that is to

find a pair (c, φ(·)) where c is a constant, that solves c + Lφ = g in the whole space.

If one already knows what a possible ergodic constant c can be, then this boils down

to the usual Poisson equation Lφ = g̃ where g̃ := g − c. In this case, the methods

usually performed for the latter problem are mainly of stochastic analysis, based on

Feynman-Kac representation and the theory of Dirichlet forms and semigroups [129].

With assumptions similar to ours, the problem Lφ = g̃ is solved in [141, Theorem 1]
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(see also [142, 143] and more recently [149, 150] and the references therein) under the

additional assumption
∫
g̃dµ = 0 where µ is the invariant measure associated to L, i.e.

the solution to L∗µ = 0 where L∗ is the adjoint operator. In fact, with our result, we get

c =
∫
gdµ and hence c+ Lφ = g becomes Lφ = g − c = g̃ and our problem falls in the

setting of [141]. Let us also mention that in chapter 2, we constructed in Proposition

2.3.2 the ergodic constant c and showed that it corresponds indeed to the mean of g

w.r.t. µ using probabilistic techniques and without the need of proving the existence

of the solution φ(·); see also equation (2.3.40). We also mention [132] where linear

subelliptic operators are considered in the whole space Rm with possibly unbounded

coefficients. The methods used in the latter are inspired by the lectures “Equations

paraboliques et ergodicité” of P. L. Lions at Collège de France (2014–2015) [125].

• In the nonlinear case. We shall consider the particular case of Bellman equations.

Most of the theory has been developed for the multidimensional torus where one enjoys

compactness. Such a setting allows for a deeper analysis, in the sense of the underlying

dynamical system, and is treated in [8]. There have been since then a wide literature

on such a problem, mainly in the context of long-time behavior of HJB equation and

of homogenization, both for the first-order and second-order equations, but also in the

context of weak KAM theory, and that we do not review here, since it does not address

the problem studied in this manuscript. We would also like to mention the recent work

[38] where the link between PDEs and dynamical systems is brought into play. And

probably the first results treating the second-order ergodic Bellman equation on the

whole space Rm are [30], then [31]. By now, many results exist, addressing the problem

under structural assumptions on the Hamiltonian. In [26] (see also [27]), the ergodic

problem considered is of the form

−∆u+
1

γ
|Du|γ = f(x) + c, in Rm. (4.1.3)

Classical solutions are shown to exist using PDE methods, where f is locally Lipschitz

continuous with a growth condition on its gradient and is moreover assumed coercive

when γ ≥ 2 or f ∼ |x|β when γ < 2. These results are similar to those previously

shown in [97, 98, 99, 100] using methods of stochastic control theory and probability

tools. Similar arguments are used in [104] for quadratic Hamiltonian arising in risk-

sensitive stochastic control problems. A study of the underlying (controlled) stochastic

process can also be useful to derive helpful ergodic properties which then yield some

compactness. This is done for example in the very recent paper [62] where an inward

drift is assumed (similar to our assumption (A4)). Another approach that uses the

stochastic ergodic control formulation together with PDE methods is the one in [65]
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where the problem considered is of the form (4.1.3) with an additional term of the

form −b(x) · Du, and the term 1
γ
|Du|γ is replaced by H(Du) with H satisfying some

regularity and growth assumptions. In the latter, the problem is approximated by a

sequence of truncated problems (bounded with Neumann condition) as in [126]. The

usual PDE method for dealing with the viscous ergodic HJB equation as being a limiting

problem of either the long-time behavior of parabolic equations or to vanishing-discount

coefficient in elliptic equations is described in detail in [4] (and references therein). On

the other hand, [5] is devoted to uniqueness of classical solutions to HJB equation of the

form (4.1.3) in the case where γ ∈ (1, 2), and it relies on an infinite dimensional linear

program for elliptic equations for measures which is an approach that is reminiscent of

ours.

The usual method. The ergodic problem is studied as being a limiting problem

of either the long-time behavior (t→ +∞) of parabolic equations

∂tω +H(x,Dω,D2ω) = 0, in (0,+∞)×Rm

or to vanishing-discount coefficient (δ → 0) in elliptic equations

δω +H(x,Dω,D2ω) = 0, in Rm

The main questions then are the study of the limits lim
t→+∞

1
t
ω(x, t) (or lim

δ→0
δω(x)) and

lim
t→+∞

ω(x, t)−ω(x◦, t) (or lim
δ→0

ω(x)−ω(x◦)) for some fixed x◦. In our setting these limits

(in time or in the discount factor) are hard to obtain and remain, to our knowledge,

an open question. However these methods are extremely powerful and provide a better

insight on the problem (and motivates where the ergodic problem comes from). We

refer to [4] (and references therein) for much more details on the latter.

Our method relies on duality tools together with the extension of the diffusion op-

erator L. The idea is to isolate the two terms c and f which make the PDE in (4.1.1)

difficult to solve and consider them as (part of) objective functions in suitable optimiza-

tion problems which are dual to each other. Then we interpret a solution (c, u(·)) of

(4.1.1) as a Lagrange multiplier of an optimization problem over the space of measures

µ and whose admissible set is made of measures solving L∗µ = 0. And provided we

can solve the latter equation, which is in fact a stationary Fokker-Planck-Kolmogorov

equation, we can describe the admissible set of the optimization problem and hence

recover existence and uniqueness of its corresponding dual variables i.e. the Lagrange

multipliers, and which turn out to be the solution of the ergodic equation.
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In fact, this method allows us to transpose to problems of the form (4.1.1) the informa-

tion one can get from the study of the operator L and its adjoint L∗ through a duality

scheme for suitably chosen optimization problems.

This optimization view point is not totally new since it is briefly mentioned in [7, §6.6]
and is also reminiscent of [77]. However, to our knowledge, this analysis has never been

used to address a PDE problem such as the solvability of an ergodic HJB equation in our

setting. Another interesting direction is the one considered in [5] where the problem of

uniqueness of solutions to viscous HJB is addressed via similar duality methods, unlike

in our case where we use duality to prove existence only and rely rather on Liouville type

results [22] to prove uniqueness. We would like also to mention that our method allows

to deal with the ergodic HJB equation under weak regularity assumptions, in particular

the dependency on the space variable is assumed to be merely measurable and with

a subexponential growth. Moreover our assumptions concern the coefficients of the

diffusion operator (or the underlying stochastic differential equation) which is a way of

presentation that is different from the classical references (amongst the abovementioned)

that rather rely on structural assumptions on the Hamiltonian. Finally, the method can

be extended to deal with ergodic Mean-Field-Games in the same setting as we shall do

next.

This chapter is organized as follows. In Section 4.2 we provide the main results

from duality theory and also from diffusion operators, in particular we define the closed

extension of an operator and which is the definition we shall consider for L and Lα

in the equation (4.1.1). Then in Section 4.3 we apply the duality procedure for the

linear case and show how the method applies for existence and uniqueness of a solution

to (4.1.1). The techniques used for the linear case are instrumental for what follows.

Indeed the same procedure will be adapted in Section 4.4 to address the nonlinear

case, i.e. the Bellman Hamiltonian, before we conclude with a similar result in the

setting of manifolds and provide an estimate on the difference of ergodic constants. We

will then move to the problem of ergodic Mean-Field Games which will be addressed

in the devoted Section 4.5. Finally, in the conclusion in Section 4.6 we discuss some

remarks and possible further extensions of our method to tackle other problems in this

direction.
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4.2 Survey of known results

4.2.1 Duality theory

“Duality in mathematics is not a theorem, but a “principle”. It has a simple origin, it

is very powerful and useful, and has a long history going back hundreds of years. Over

time it has been adapted and modified and so we can still use it in novel situations. It

appears in many subjects in mathematics (geometry, algebra, analysis) and in physics.

Fundamentally, duality gives two different points of view of looking at the same object.

There are many things that have two different points of view and in principle they are

all dualities.”– Sir Michael F. Atiyah, in [14].

The results and remarks mentioned in this section are wellknown, and can be found in

[46]. For the sake of a broad readability and self-containedness, we include the necessary

results we will use, that we borrow again from [46].

Let (X,X∗) and (Y, Y ∗) be paired spaces, i.e. such that each space of a pair is a

locally convex topological vector space and is the topological dual of the other. We

assume moreover that X and Y are Banach spaces that we endow with their respective

strong topologies, while X∗ and Y ∗ are endowed with the respective weak-∗ topologies.

Let Q and K be closed convex subsets of X and Y respectively. We are interested

in first order optimality conditions for the optimization problem

min
x∈Q

f(x), s.t.: G(x) ∈ K (P )

where f : X → R and G : X → Y . The objective function in (P ) can be reformulated as

f(x)+ IQ(x) while we minimize over the whole set X. We denote by IQ(·) the indicator
function (IQ(x) = 0 if x ∈ Q, and +∞ if x /∈ Q). By

Φ := {x ∈ Q : G(x) ∈ K} = Q ∩G−1(K) (4.2.1)

and

L(x, y∗) := f(x) + ⟨y∗, G(x)⟩, (x, y∗) ∈ X × Y ∗, (4.2.2)

we denote the feasible set and the Lagrangian of (P ) respectively.

We embed the problem (P ) into the family of optimization problems

min
x∈Q

f(x), s.t.: G(x) + y ∈ K (Py)
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where y ∈ Y is viewed as the parameter vector. Clearly for y = 0, the corresponding

problem (P0) coincides with the problem (P ). We denote by v(y) the corresponding

value function

v(y) = val(Py) = inf
x∈Q

φ(x, y)

where

φ(x, y) = f(x) + IK(G(x) + y) (4.2.3)

and v(0) = val(P ).

The (conjugate) dual of (P ) can be written in the form (see [46, §2.5.3, p. 107]):

max
y∗∈Y ∗

{
inf
x∈Q

L(x, y∗) − σ(y∗;K)
}

(D)

where σ(·;K) is the support function of the set K which is the Legendre-Fenchel con-

jugate of the indicator function supported on K, i.e.

σ(y∗;K) = I∗K(y
∗) = sup

z∈K
⟨y∗, z⟩. (4.2.4)

Recall that val(P ) ≥ val(D) (this can be easily obtained for example as a consequence

of conjugate duality; see [46, eq. (2.268), p. 96], or by Lagrange duality; see [46,

Proposition 2.156, p. 104]) and that if for some xo ∈ Q, y∗o ∈ Y ∗ the equality of primal

and dual objective functions holds, i.e.

f(xo) + IK(G(xo)) = inf
x∈Q

L(x, y∗o)− σ(y∗o ;K), (4.2.5)

then val(P ) = val(D), and if the common value is finite, then xo ∈ Q and y∗o ∈ Y ∗ are

optimal solutions of (P ) and (D) respectively. The equality (4.2.5) can be written in

the following equivalent form

(
L(xo, y

∗
o)− inf

x∈Q
L(x, y∗o)

)
+
(
IK(G(xo)) + I∗K(y

∗
o)− ⟨y∗o , G(xo)⟩

)
= 0. (4.2.6)

Clearly, the first term in the left hand side is non-negative and the second term is also

non-negative by the Young-Fenchel inequality. Moreover the equality

IK(G(xo)) + I∗K(y
∗
o)− ⟨y∗o , G(xo)⟩ = 0

holds if and only if y∗o ∈ ∂IK(G(xo)); the subdifferential of the indicator function eval-

uated in G(xo). Therefore, the equality of the objective functions (4.2.5) is equivalent
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to

xo ∈ argmin
x∈Q

L(x, y∗o) and y∗o ∈ ∂IK(G(xo)). (4.2.7)

Proposition 4.2.1. ([46, Theorem 2.158, p. 109]) If conditions (4.2.7) are satisfied

for some x◦ and y∗◦, then x◦ is an optimal solution of (P ), y∗◦ is an optimal solution of

(D), and there is no duality gap between (P ) and (D).

We assume that K is nonempty, closed and convex. Then IK(·) is proper, lower semi-

continuous and convex. Now using Young-Fenchel equality together with the definition

of NK(·); the normal cone1 to K; we have ∂IK(G(xo)) = NK(G(xo)) and the optimality

conditions (4.2.7) write

xo ∈ argmin
x∈Q

L(x, y∗o) and y∗o ∈ NK(G(xo)). (4.2.8)

Note that existence of y∗o ∈ NK(G(xo)) implies that G(xo) ∈ K and hence that xo is

a feasible point of the problem (P ). Moreover, if K is a convex cone, the condition

y∗o ∈ NK(G(xo)) is equivalent to

G(xo) ∈ K, y∗o ∈ K− and ⟨y∗o , G(xo)⟩ = 0 (4.2.9)

where K− is the polar (negative dual) cone2 of K, and is equal to the normal cone when

K is a convex cone.

The convex case

In what follows, we consider the convex case, that is, we suppose f(x) is convex, K is

a convex, closed and nonempty cone, and G(x) is (−K)-convex3. We assume moreover

that f(x) and G(x) are continuous and the set Q is nonempty and closed. We have then

the functions f(x) + IQ(x) and IK(G(x) + y) are lower semicontinuous and proper4,

and φ(x, y) = f(x) + IQ(x) + IK(G(x) + y) is proper, lower semicontinuous and convex.

We assume in addition that G(x) is continuously differentiable, and we also make an

assumption on the regularity of the value function insured by

0 ∈ int(G(x◦) +DG(x◦)[Q− x◦]−K), ∀ x◦ ∈ Φ (4.2.10)

1Let S ⊂ X be convex, then NS(x) := {x∗ ∈ X∗ : ⟨x∗, z − x⟩ ≤ 0 ∀ z ∈ S}. If x /∈ S then
NS(x) = ∅.

2Let C be a subset of X, then C− := {x∗ ∈ X∗ : ⟨x∗, x⟩ ≤ 0, ∀ x ∈ C}.
3See [46, Definition 2.163, p. 110] and [46, Definition 2.103, p. 72].
4A function f is said to be proper if Domf ̸= ∅ and f(x) > −∞ for all x.
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This is equivalent to the metric regularity of the multifunction F(x) := G(x) − K

when G is (−K)-convex (see [46, p. 65]), and is also known as Robinson’s constraint

qualification.

Theorem 4.2.1. ([46, Theorem 3.6, p. 149]) Suppose that the problem (P ) is convex,

that xo is an optimal solution of (P ), and that the regularity condition (4.2.10) holds.

Then the set of elements y∗o ∈ Y ∗ satisfying (4.2.8) is a nonempty, convex, bounded, and

weakly-∗ compact subset of Y ∗, and is the same for any optimal solution.

Proof. See the proof [46, Theorem 3.6, p. 149], noticing that when the problem (P ) is

convex, then y∗o ∈ Y ∗ satisfying the optimality conditions (4.2.8) is a Lagrange multiplier

(See [46, Definition 3.5, p. 149]).

A particular case. If we have G(x) = (G1(x), G2(x)) and K = K1 × K2 ⊂
Y1×Y2 the Cartesian product of two Banach spaces, with K1 and K2 closed and convex,

then the following lemma provides an equivalent formulation for Robinson’s constraint

qualification (4.2.10) at a feasible point x◦ ∈ Φ.

Lemma 4.2.1. ([46, Lemma 2.100, p. 70]) Let the constraints be given in the above

product form, and assume that DG2(x◦) is onto. Then (4.2.10) which writes when

Q = X as

0 ∈ int(G(x◦) +DG(x◦)X −K)

is equivalent to

0 ∈ int(G1(x◦) +DG1(x◦)[DG2(x◦)
−1(K2 −G2(x◦))]−K1). (4.2.11)

Recall that by [DG(x◦)]
−1 we denote the multifunction with graph inverse to the one

of DG(x◦), i.e.,

[DG(x◦)]
−1(y) := {h ∈ X : DG(x◦)h = y}.

If we have Q ⊂ X and in the particular case of:

Y2 = X and G2(x) = x, ∀x ∈ X, (4.2.12)

then we set K̃2 := K2 ∩Q and (4.2.11) simplifies to (see [46, eq. (2.192), p. 71])

0 ∈ int(G1(x◦) +DG1(x◦)[K̃2 − x◦]−K1). (4.2.13)

The following is the last result we will need for existence.



Chapter 4 - The viscous ergodic problem 175

Proposition 4.2.2. ([46, Proposition 3.3, p. 148]) If conditions (4.2.8) are satisfied

for some xo and y∗o, then xo is an optimal solution of (P ), y∗o is an optimal solution of

(D), and there is no duality gap between (P ) and (D).

The general case

We drop here the assumption of convexity and are interested again in existence of

dual variables and no duality gap between (P ) and (D). But before we do so, we need

the following notion of calmness.

Definition 4.2.1. ([46, Definition 2.146, p. 99]) We say that the problem (Py) is calm

if val(Py) is finite and its optimal value function v(·) is subdifferentiable5 at y, i.e.,

∂v(y) ̸= ∅.

Hence when setting y = 0, the problem (P ) is said to be calm if its optimal value

v(0) = val(P ) is finite and v(y) is subdifferentiable at y = 0. The following theorem

then holds.

Theorem 4.2.2. ([46, Theorem 3.4, p. 148])

(i) If (P ) is calm, then there is no duality gap between (P ) and (D), and a feasible

point x◦ ∈ Φ is an optimal solution of (P ) if and only if there exists y∗◦ ∈ Y ∗

satisfying conditions (4.2.8).

(ii) If (P ) is calm and x◦ is an optimal solution of (P ), then the set of multipliers

y∗◦ satisfying optimality conditions (4.2.8) is nonempty and convex, and coincides

with the set of optimal solutions of the dual problem (D), and hence is the same

for any optimal solution of (P ).

It can be in general difficult to check subdifferentiability of the value function (and

hence calmness). In the convex case, it turns out that Robinson’s constraint qualification

(4.2.10) is sufficient to guarantee the desired results in this section, whereas in the

nonconvex case, one needs to rely on special structures of the problem (P ) for which

the computation of the subdifferential can be handled.

5A function x∗ ∈ X is said to be a subgradient of a (possibly nonconvex) function f : X →
R ∪ {+∞} ∪ {−∞} at a point x, if f(x) is finite and f(y) − f(x) ≥ ⟨x∗, y − x⟩, for all y ∈ X. The
collection of all subgradients of f is called the subdifferential of f at x (See [46, §2.4.3, p. 81])

∂f(x) := {x∗ ∈ X : f(y)− f(x) ≥ ⟨x∗, y − x⟩, ∀ y ∈ X}.



176 Section 4.2 - Survey of known results

Uniqueness

To conclude this section, we present a further assumption under which we have

uniqueness.

Proposition 4.2.3. ([46, Proposition 4.47, p. 297]) Suppose that y∗o satisfies the opti-

mality conditions (4.2.8) and that the strict constraint qualification

0 ∈ int(G(xo) +DG(xo)Q−Ko) (4.2.14)

where Ko := {y ∈ K : ⟨y∗o , y −G(xo)⟩ = 0} holds. Then y∗o is unique.

In fact, Ko = K ∩Ker y∗o and the strict constraint qualification writes as

0 ∈ int(G(xo) +DG(xo)Q−K ∩Ker y∗o). (4.2.15)

Proof. See [46, Proposition 4.47, p. 297] where K◦ is defined as the set {y ∈ K :

⟨y∗o , y − G(xo)⟩ = 0}. But if K is a convex cone (which is our case here), then by the

first order optimality conditions (4.2.8) (see also (4.2.9)), one has ⟨y∗o , G(xo)⟩ = 0, and

hence Ko = K ∩Ker y∗o .

4.2.2 Optimization in space of measures

We consider a particular case of the optimization problem (P ) that we write in the

context of functionals depending on a measure following the results in [134, 135, 136].

In this subsection, we choose Q and K as closed convex subsets of M+(Rm) and a

Banach space Y, respectively, and we define f : M(Rm) → R and G : M(Rm) → Y

as Fréchet differentiable functions. The derivative of f is a linear functional Df(µ)[h]

acting on h ∈ M(Rm) and the derivative of G is a linear operator DG(µ)[h] mapping

M into Y . The optimization problem writes as

min f(µ), s.t.: µ ∈ Q and G(µ) ∈ K (4.2.16)

Before we state a first-order optimality condition, we need to define a notion of regularity

(also called Constraint Qualification) that is due to Robinson [147] (see also [46, §2.3.4,
p. 67]) which is analogous to (4.2.10).

Definition 4.2.2. ([134, Definition 1.1]) A measure µ is called regular for Problem

(4.2.16) if

0 ∈ int(G(µ) +DG(µ)[Q− µ]−K) (4.2.17)
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where int(A) is the set of all y ∈ A ⊂ Y such that y + ty1 ∈ A for all y1 ∈ Y and all

sufficiently small positive t.

The following theorem is [68, Theorem 4.1] and gives first order necessary conditions

for a minimum in Problem (4.2.16). When applied to the framework of measures, it is

stated in [134].

Theorem 4.2.3. ([134, Theorem 1.1]) Assume that both f : M(Rm) → R and G :

M(Rm) → Y are continuous on Q and Fréchet differentiable at a regular µ◦ ∈ Q such

that G(µ◦) ∈ K. Then, if µ◦ is a local minimum point in Problem (4.2.16), the following

(necessary) optimality condition is satisfied:

Df(µ◦)[h] ≥ 0, ∀h ∈ TQ∩G−1(K)(µ◦), (4.2.18)

where TB(µ) is the first order tangent set to a set B at a point µ in a Banach space and

is defined as

TB(µ) = lim inf
t↓0

B − µ

t
.

In order to make use of the latter theorem, we will need to determine what is the

tangent set in the space of measures. In our case, we shall be interested in M+(Rm),

the cone of finite non-negative measures.

Theorem 4.2.4. ([134, Theorem 2.1]) Let µ ∈ M+(Rm). Then

TM+(Rm)(µ) = {h ∈ M(Rm) : h− ≪ µ}, (4.2.19)

where for a signed measure h, its Jordan decomposition is written as h = h+ − h−, and

for p, q ∈ M+(Rm), p≪ q refers to absolute continuity of p with respect to q.

A direct consequence of the latter theorem, is the case of measures with finite d-

moment. It suffices indeed to replaceM(Rm) (respec. M+(Rm)) withMd(R
m) (respec.

M+
d (R

m) and obtain the following result.

Corollary 4.2.1. Let µ ∈ M+
d (R

m). Then

TM+
d (Rm)(µ) ⊇ {h ∈ Md(R

m) : h− ≪ µ}. (4.2.20)

4.2.3 Diffusion operators

Let X be a Banach space with a norm ∥·∥. In the sequel, the term operator will refer

to a linear transformation, not necessarily bounded, with domain and range subspaces

of the same space X.
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On unbounded operators

Let us denote by A a linear operator

A : D(A) → X

where D(A) is a linear manifold, the domain of the operator A. It is important to note

that the domain is part of the definition of the operator.

Definition 4.2.3. A linear operator A : D(A) → X is closed if for any sequence of

vectors fn ∈ D(A) such that, as n → ∞, fn → f and Afn → g, it follows that

f ∈ D(A) and Af = g.

Definition 4.2.4. An operator B is an extension of A if D(A) ⊂ D(B) and Af = Bf

for all f ∈ D(A). We write A ⊂ B.

Definition 4.2.5. A linear operator (A,D(A)) is closable if it has a closed extension

(A,D(A)) where

D(A) := {f ∈ X : ∃ fn ∈ D(A), fn → f, Afn → g}, and Af := A lim
n
fn = lim

n
Afn.

The closure A of the operator A is the smallest closed extension of A in the sense that

if A ⊂ B and B is closed, then A ⊂ B.

Definition 4.2.6. (See [76, Definition B.8, p. 537]) For a densely defined operator

(A,D(A)) on X, we define the adjoint operator (A∗, D(A∗)) on X∗ by

D(A∗) := {x∗ ∈ X∗ : ∃ z∗ ∈ X∗ s.t. ⟨x∗, Ax⟩ = ⟨z∗, x⟩,∀ x ∈ D(A)},

A∗x∗ := z∗ for x ∈ D(A)

4.2.3.1 Semigroups of operators

Definition 4.2.7. Let {T (t) : t ≥ 0} be a family of operators. We say that it is a

semigroup if

T (0) = I, T (t+ s) = T (t)T (s), ∀ t, s ≥ 0.

A semigroup is called strongly continuous, or C0-semigroup, if for every f ∈ X, the

function T (·)f : [0,+∞) → X is continuous.

And it is a contractive semigroup if it satisfies ∥T (t)∥ ≤ 1 for all t ≥ 0.
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Definition 4.2.8. The infinitesimal generator (or, shortly, the generator) if the semi-

group {T (t) : t ≥ 0} is the operator defined by

D(L) =

{
f ∈ X : ∃ lim

h→0+

T (h)− I

h
f

}
, Lf = lim

h→0+

T (h)− I

h
f.

We refer to this operator by the pair (L,D(L)).

By definition, the vector Lf is the right derivative of the function t 7→ T (t)f at t = 0

and D(L) is the subspace where such derivative exists. In general, D(L) is not the whole

space X, but it is dense, as the next proposition shows.

Proposition 4.2.4. (See [130, Proposition 11.1.4, p. 138]) Let {T (t) : t ≥ 0} be a

strongly continuous semigroup. The domain D(L) of its generator is dense in X.

Proposition 4.2.5. (See [130, Proposition 11.1.6, p. 139]) The generator L of any

strongly continuous semigroup is a closed operator.

As a direct consequence, D(L) is a Banach space with the graph norm ∥f∥D(L) =

∥f∥+ ∥Lf∥.

4.2.3.2 Extension of diffusion operators

We resume in this subsection some known results from [42, §2] (see also the references
therein). We suppose the dimension m ≥ 2. Let A = (aij) be a continuous mapping on

Rm, and let b = (bi) : Rm → Rm be a Borel-measurable vector field. Let us set

LA,bφ = aij∂i∂jφ+ bi∂iφ, φ ∈ C∞
0 (Rm), (4.2.21)

where we use the standard summation rule for repeated indices. Suppose that µ is a

locally finite (not necessarily non-negative) Borel measure on Rm, i.e. a measure on the

Borel σ-algebra B(Rm) of Rm, such that

L∗
A,bµ = 0 (4.2.22)

in the following sense:

aij, bi ∈ L1
loc(µ) and

∫
Rm

LA,bφ dµ = 0, ∀ φ ∈ C∞
0 (Rm) (4.2.23)
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Measures µ satisfying (4.2.22) are called infinitesimally invariant, or simply invariant if

there is no confusion. And define

MA,b
ell :=

{
µ | µ a probability measure on Rm satisfying (4.2.22)

}
. (4.2.24)

where the subscript ”ell” stands for elliptic. In [42], it is shown that the question whether

or notMA,b
ell contains at most one element turns out to be related to the question whether

µ ∈ MA,b
ell is invariant for the C0-semigroup generated by the closure of the operator

(LA,b, C
∞
0 (Rm)).

In particular, and under assumptions that we will shortly made precise, if MA,b
ell = {µ}

a singleton, then µ allows to define a new operator (L
µ

A,b, D(L
µ

A,b)) which is the closed

extension of (LA,b, C
∞
0 (Rm)) on L1(Rm, µ). The latter operator will play a key role in

our main result on the existence of solutions to (4.1.1). We recall the usual notations:

when a measure µ has a density ρ with respect to Lebesgue measure that we denote by

dx, then µ is absolutely continuous with respect to dx, we write µ ≪ dx and ρ = dµ
dx

which is Radon-Nikodym derivative of µ with respect to dx.

Theorem 4.2.5. (Regularity –[42, Theorem 2.1]) Let µ be a locally finite and non-

negative Borel measure satisfying (4.2.22). Assume (A0), (A1), (A2) and (A3) for some

p > m. Then µ≪ dx with dµ
dx

∈ W p,1
loc (R

m)
(
⊂ C1−m

p (Rm)
)
. If ρ denotes the continuous

version of dµ
dx
, then for all compact K ⊂ Rm, ∃ cK ∈]0,∞[ s.t.: sup

K
ρ ≤ cK inf

K
ρ. In

particular, either ρ ≡ 0 or ρ(x) > 0, ∀ x ∈ Rm.

Proof. The theorem stated in this form is [42, Theorem 2.1] and is a combination of

the results [39, Corollary 2.10 & Corollary 2.11] which are slightly more general.

Theorem 4.2.6. (Existence –[42, Theorem 2.2]) Assume (A0), (A1), (A2) and (A3).

And assume in addition that there exists a function ω ∈ C2(Rm) s.t.

ω(x) → +∞ and LA,bω(x) → −∞ as |x| → ∞. (4.2.25)

Then MA,b
ell as defined in (4.2.24) is non-empty.

Proof. The theorem stated in this form is [42, Theorem.2.2] and it relies on [41, The-

orem 1.2].

Corollary 4.2.2. Assume (A0), (A1), (A2), (A3) and (A4). Then ω(x) := |x|2 fulfills

(4.2.25) and the conclusion of Theorem 4.2.6 holds.

Proof. See [41, Corollary 1.4 & Corollary 1.3(ii)].
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Let us consider now the situation of theorem 4.2.6. Fix µ ∈ MA,b
ell . As observed

in [42, §2.3], by Theorem 4.2.5, µ is equivalent to Lebesgue measure, and therefore is

strictly positive on all non-empty open subsets of Rm. So C∞
0 (Rm) can be identified

with a subset of L1(Rm, µ), since each corresponding µ-class has a unique continuous µ-

version. Hence the operator (LA,b, C
∞
0 (Rm)) is well defined on L1(Rm, µ). The following

theorem is a collection of results from [42] (See [154] for weaker assumptions).

Theorem 4.2.7. Assume (A0), (A1), (A2), (A3) and (A4). Then MA,b
ell = {µ} is a

singleton and the following statements hold true

(i) there exists a closed extension of the operator (LA,b, C
∞
0 (Rm)) on L1(Rm, µ);

(ii) its closure (L
µ

A,b, D(L
µ

A,b)) on L1(Rm, µ) generates a C0-semigroup (T µ
t )t≥0 on

L1(Rm, µ);

(iii) (T µ
t )t≥0 is the only C0-semigroup on L1(Rm, µ) which has a generator extending

(LA,b, C
∞
0 (Rm));

(iv) (T µ
t )t≥0 is contractive, and µ is (T µ

t )t≥0-invariant in the sense∫
Rm

T µ
t fdµ =

∫
Rm

fdµ, ∀ f ∈ L∞(Rm, µ). (4.2.26)

Proof. The proof relies on the results in [42] which use mostly [154].

First, and from [42, Lemma 2.5], we have (LA,b, C
∞
0 (Rm)) is closable on L1(Rm, µ),

which proves (i).

Now, from Theorem 4.2.6, we have MA,b
ell ̸= ∅, i.e. #MA,b

ell ≥ 1. Let µ ∈ MA,b
ell .

From Corollary 4.2.2, ω(x) = |x|2 is a a Lyapunov function, that is, [42, Proposition

2.9 (3)] holds and which insures, thanks to [42, Theorem 2.8 (1)], that µ is maximally

dissipative. Now using the main result [42, Theorem 3.1], we have #MA,b
ell = 1, i.e.

MA,b
ell = {µ}.
Moreover, since µ is maximally dissipative, [42, Proposition 2.6 (2)] is satisfied and is

equivalent to [42, Proposition 2.6 (1)] that is, our statement (ii), and is also equivalent

to [42, Proposition 2.6 (3)] which corresponds to (iii).

Finally, the last result in [42, Proposition 2.6] together with [42, Theorem 2.12] yield

(iv).

Thanks to this result, we can now define on a larger space the operator L in the

problem (4.3.1). This is an important step when dealing with unbounded right-hand

side terms f in (4.3.1), since there cannot exist any solution in C∞
0 (Rm), i.e. compactly

supported.
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In fact, the differential operator (L, D(L)) in (4.1.1) should be understood in the

sense of the closed extension (L
µ

A,b, D(L
µ

A,b)) provided by Theorem 4.2.7, where D(L
µ

A,b)

is the closure of C∞
0 (Rm) in L1(Rm, µ). More precisely, we have C∞

0 (Rm) ⊂ D(L
µ

A,b) ⊂
L1(Rm, µ) with dense inclusions.

Remark 4.2.1. If the dimension m = 1, then Theorem 4.2.7 fails, and we are not

able to provide a closed extension to the diffusion operator (see [42, Appendix A] and a

counter example in [154, Example 1.12]).

In the following, we state from [40] a theorem which makes D(L
µ

A,b) more precise.

In fact, for every r ∈ [1,+∞), the restriction of {T µ
t }t≥0, whose generator is L

µ

A,b, to

Lr(µ) is a strongly continuous semigroup on Lr(µ) (see [40, Lemma 5.1.4, p. 180]). Its

generator will be denoted by (Lµ,r
A,b, D(Lµ,r

A,b)), where

D(Lµ,r
A,b) = {f ∈ D(Lµ

A,b ∩ L
r(µ)) : Lµ

A,bf ∈ Lr(µ)}.

Theorem 4.2.8. ([40, Theorem 5.2.7, p. 190]) In the situation of Theorem 4.2.7, one

has for any r ∈ [1,+∞)

(Lµ,r
A,b, D(Lµ,r

A,b)) ⊂ {f ∈ Lr(µ) ∩W r,2
loc (R

m) : LA,bf ∈ Lr(µ)}

and Lµ,r
A,bf = LA,bf for all f ∈ D(Lµ,r

A,b).
(4.2.27)

Observe that for existence of solutions, we only need the first statement in Theorem

4.2.7 together with Theorem 4.2.8 in order to give a sense to the problem (4.1.1). Besides,

the other results in Theorem 4.2.7 allow us to interpret the closed extension of the

generator as a generator of a stochastic process and hence the invariant measure µ will

be the corresponding one to the stochastic process.

Indeed, it is well-known (see for example [140, Theorem 5.2.1, p. 66]) that when b, ϱ

are locally Lipschitz with a linear at most a linear growth, the stochastic differential

equation

dXt = b(Xt)dt+
√
2ϱ(Xt)dBt, t ∈ [0, T ], X0 = Z (4.2.28)

when Z is a random variable which is independent of the σ-algebra generated by

Bs(·), s ≥ 0 and such that E[|Z|2] <∞, has a unique t-continuous solution Xt(ω) with

the property that Xt(ω) is adapted to the filtration FZ
t generated by Z and Bs(·); s ≤ t,

and E[
∫ T

0
|Xt|2dt] <∞. Now let P (t, ·, ·) be the transition function of the homogeneous

Markov process Xt, and let f ∈ Cb(R
m) the set of continuous and bounded functions.
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Then the operator

(Ptf)(x) := E[f(Xt)|X0 = x] =

∫
Rm

f(y)P (t, x, dy) (4.2.29)

defines a C0-semigroup on continuous bounded functions. To the latter, we can de-

fine its infinitesimal generator acting again on Cb(R
m) (see [129] for a general study

of such semigroup). And using a convolution argument with standard mollifiers, each

f ∈ Cb(R
m) can be approximated with a sequence of compactly supported functions

{fn} ⊂ C∞
0 (Rm) which is bounded with respect to the sup-norm and such that fn

tends to f almost everywhere in Rm. Therefore, the infinitesimal generator of the C0-

semigroup (Pt)t≥0 defined above coincides with (LA,b, D(LA,b)) and hence the closed

extension (L
µ

A,b, D(L
µ

A,b)) proved in Theorem 4.2.7 is also a closed extension for the gen-

erator of the C0-semigroup (Pt)t≥0 (thanks to (ii) and (iii) in Theorem 4.2.7) provided

we assume that |b|, |ϱ| ∈ L1(Rm, |µ|) and ∥µ∥ <∞. And the latter assumptions turn out

to be true thanks to Lemma 4.2.2 and the fact that µ is a probability measure. Hence

µ coincides except on a set of measure zero with the invariant measure of the stochastic

process (4.2.28) (we consider here (4.2.28) with Z(·) = x ∈ Rm deterministic).

Here and in what follows we denote by µ both the invariant measure in Theorem

4.2.7 and the invariant probability measure of the SDE (4.2.28).

We conclude this section by recalling a result from [157].

Lemma 4.2.2. Assuming (A1) and (A4), the invariant measure µ exists and has finite

moments of any order ℓ ≥ 1, i.e.
∫
Rm |x|ℓ dµ(x) < +∞.

Proof. This is a particular case of the more general result in [157, Theorem 6] (see in

particular [157, eq. (28) in §6]). Indeed, the main assumption in [157] is

∃M0 ≥ 0, r ≥ 0 s.t. ⟨b(x), x⟩ ≤ −r, ∀ |x| ≥M0 (4.2.30)

Then introduce the following constants

λ− := inf
y ̸=0

⟨ϱϱ∗(x) x
|x|
,
y

|x|
⟩, λ+ := sup

x ̸=0
⟨ϱϱ⊤(x) x

|x|
,
x

|x|
⟩

Λ̃ := sup
x

trace(ϱϱ⊤(x))

m
, r0 := [r − (mΛ̃− λ−)/2]λ

−1
+

In this context, it is shown that the invariant measure has finite moments of order

ℓ ∈ (2k + 2, 2r0 − 1), where again k ∈ (0, r0 − 3
2
). In our case, assumption (A4)
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guarantees a constant r (in (4.2.30)) as large as we want. Then it is enough to use

Hölder inequality together with the fact that µ(Rm) = 1 to prove finite moments of any

order ℓ ≥ 1.

Remark 4.2.2. Some of the assumptions can be weakened, for example

• Sobolev regularity of the coefficients in (A2) can be expressed in a local way, i.e.:

∀UR a ball of radius R > 0 in Rm, ∃ pR > m such that b ∈ LpR(UR) and a ∈ W pR,1(UR).

See [41] and [40].

• The recurrence condition (A4) can be replaced by the following: ∃M ≥ 0, r > 0 such

that ⟨b(x), x⟩ ≤ −r for all |x| ≥ M . In this case, one cannot insure Lemma 4.2.2, but

rather prove finite moments of some orders only as in the proof of the latter Lemma.

See [157]. This can be indeed enough if the order of the polynomial growth of our data

falls in the range of order for which the moments are finite. However, it may not be

enough to get uniqueness.

• The growth condition (A5) can be replaced by an integrability condition with respect

to the invariant measure, i.e. f ∈ L1(Rm, dµ). For example, one can still handle the

case |f(x)| ≤ K eγ x, provided we assume a condition on the drift b(x) stronger than

assumption (A4), mainly we need b(x) to be of the form −γ̃ x for some γ̃ > γ ≥ 0.

Indeed, if b(x) = −γ̃ x and a(x) = I the identity matrix, then the stochastic process is

an Ornstein-Uhlenbeck whose invariant (Gibbs) measure behaves as e−γ̃x and allows to

perform the subsequent computations.

4.3 Ergodic Poisson equation

We address in this section the problem of existence and uniqueness of solutions to

the so-called ergodic Poisson equation by analogy with the Poisson equation Lφ = f ,

also known as the linear cell problem when it arises in homogenization theory, that is

Find X a functional space, and (c, u(·)) in R×X

such that c+ L(x,∇u(x), D2u(x)) = f(x) in Rm
(4.3.1)

where Lφ(x) := L(x,∇φ(x), D2φ(x)) is a linear differential operator given by

Lφ(x) = trace(a(x)D2φ(x)) + b(x) · ∇φ(x), φ ∈ C∞
0 (Rm). (4.3.2)
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We write the functional space X as an unknown because it is yielded by the procedure

that we will later follow. We denote by C∞
0 (Rm) the set of all real-valued, infinitely

differentiable functions on Rm with compact support. And we define as usualW p,k(Rm),

for p ≥ 1, k > 0, the Sobolev space of all functions on Rm with generalized derivatives

up to order k in Lp(dx), where dx denotes Lebesgue measure on Rm. W p,k
loc (R

m) denotes

the corresponding local Sobolev space, i.e. f ∈ W p,k
loc (R

m) if ζf ∈ W p,k(Rm) for all

ζ ∈ C∞
0 (Rm).

For the sake of simplicity of notation, we denote again by (L, D(L)) the closed

extension (L
µ

A,b, D(L
µ

A,b)) as given in Theorem 4.2.7 and Theorem 4.2.8. The functional

space X is a subset of D(L) that we will make precise.

4.3.1 Useful reformulation and main results I

Let us denote by M(Rm) the space of totally finite signed Borel measures on Rm and

equipped with the Total Variation norm6 ∥µ∥ = µ+(Rm)+µ−(Rm), where µ = µ+−µ−

is the Jordan decomposition of µ. It is known that (M(Rm), ∥ · ∥) is a Banach space

(see e.g. [74, §IV.2.16]), and hence also a locally convex topological vector space when

equipped with its norm topology.

We also denote by Md(R
m) (respectively, M+

d (R
m)) the subset of signed (resp. non-

negative) totally finite Borel measures with finite moments of order d, where we recall

d is the growth order of f as in assumption (A5). And since the latter two subsets are

closed, they are also Banach spaces.

Let us define the duality product in Md(R
m) by

⟨h(·), µ⟩ =
∫
Rm

h(x)dµ(x), for all µ ∈ Md(R
m)

where h is a Borel measurable function with at most a polynomial growth of order d.

Recall that a linear functional h on the normed space (M(Rm), ∥ · ∥) is continuous
if and only if it is bounded on the unit ball, i.e. if

∥h∥∗ := sup
∥µ∥≤1

⟨h, µ⟩ <∞

And so, the topological dual space (M(Rm))∗ (i.e. set of continuous linear functionals,

6To check it is a norm, the only technical step is in the triangle inequality; to prove that ∥µ+ ν∥ ≤
∥µ∥+ ∥ν∥ we need to consider a Hahn decomposition Rm = A ⊎B for µ+ ν.
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equipped with the dual norm ∥·∥∗) is again a Banach space. It is easy to see that Borel-

measurable functions with at most a polynomial growth of order d are in (Md(R
m))∗.

It can be quite hard to deal with (M(Rm))∗ which can indeed be seen as the bidual

of the space of continuous and bounded functions. But we will see that we can avoid

these difficulties provided we find a subset of the latter, which will turn out to be more

convenient to work with. We refer the interested reader to the work of S. Kaplan on

the bidual of the space of continuous functions [106, 107].

Consider now the following (primal) optimization problem

min
q∈M+

d (Rm)

{
⟨f(·), q⟩, s.t.: 1− ⟨1, q⟩ = 0 and q ∈ Ker(L∗)

}
(P)

The constraint q ∈ Ker(L∗) is analogue to (4.2.22) and should be understood in the sense

of (4.2.23) as in §4.2.3.2. Since q is non-negative, and if ∥q∥ ̸= 0, we have 1
∥q∥q ∈ MA,b

ell

as defined in (4.2.24). In fact, the feasible set satisfies

{q ∈ M+
d (R

m) : 1− ⟨1, q⟩ = 0 and q ∈ Ker(L∗)} ⊆ MA,b
ell . (4.3.3)

since MA,b
ell does not have any restriction on the moments.

For simplicity of notation, we set

X = Md(R
m) and Q = M+

d (R
m)

G1 : X → R, s.t. G1(q) = 1− ⟨1, q⟩

G2 : X → X, s.t. G2(q) = q

G = (G1, G2) and Y = R×X

K1 = {0}, K2 = Ker(L∗) and K = K1 ×K2 ⊂ Y

The (primal) problem (P) can be written in the more compact form

min
q∈Q

{
⟨f(·), q⟩, s.t.: G(q) ∈ K

}
(P)

Let us denote by σ(·;K) : Y ∗ → R ∪ {+∞} the support function of the set K, as

defined in (4.2.4). And Y ∗ is the (topological) dual of Y .
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To the (primal) problem (P), we associate the (conjugate or dual) problem

max
y∗∈Y ∗

{
inf
q∈Q

L(q, y∗)− σ(y∗;K)
}

(D)

where the Lagrangian L : X × Y ∗ → R is defined by

L(q, y∗) = ⟨f(·), q⟩+ ⟨y∗, G(q)⟩Y ∗,Y (4.3.4)

and ⟨·, ·⟩Y ∗,Y is the duality product in Y . We are now ready to state our main results.

Assume (A0)-(A6) hold. Then we have the following statements.

Lemma 4.1. The problem (D) is equivalent to

max
c∈R
u∈X

{
c , s.t.: c+ Lu(x)− f(x) ≤ 0, a.e. in Rm

}
(4.3.5)

where, setting κ = d− 1 + β, we have

X = D(L) ∩ {u : Rm → R,Borel-measurable | ∃ C > 0, |u(x)| ≤ C(1 + |x|κ)}, (4.3.6)

that is, the two optimization problems have the same set of optimal solutions and the

same optimal value.

Theorem 4.3.1. The set of solutions of (4.3.5) with X as in (4.3.6) is nonempty,

convex, bounded, and weakly-∗ compact subset of Y ∗.

Theorem 4.3.2. Let µ be the unique invariant probability measure associated to L∗.

Then for c = ⟨f(·), µ⟩, there exists u(·) ∈ W r,2
loc (R

m) for any r ∈ [1,+∞), satisfying

|u(x)| ≤ K(1 + |x|κ) where κ = d− 1 + β, and which solves

c+ L(x,∇u(x), D2u(x)) = f(x) a.e. in Rm.

When r > m
2
, u(·) is continuous and pointwise twice differentiable almost everywhere.

If moreover the vector field b is globally Lipchitz continuous and β = 1 in (A6), then

u(·) with such a polynomial growth is unique in any W r,2
loc (R

m), r > m
2
in the sense: if

(c, u1(·)) and (c, u2(·)) are two solutions, then u1(·)− u2(·) ≡ constant.

Remark 4.3.1. In fact, the PDE is solved on spt(µ) (the support of the unique invariant

measure µ). But thanks to Theorem 4.2.5, we have µ≪ dx and spt(µ) = Rm.



188 Section 4.3 - Ergodic Poisson equation

4.3.2 Proof of the main results I

Our strategy follows three steps:

Step 1. Show that (4.3.5) can be represented as a a dual problem (D), i.e. the set of

solutions of (D) coincides with the set of solutions of (4.3.5) and hence we have

Lemma 4.1,

Step 2. Study the problem (D) as a dual to (P). Thus, the set of solutions of (D) is

the set of Lagrange multipliers of (P), which is Theorem 4.3.1,

Step 3. Make use of the optimality conditions together with the zero duality gap to

finally get the solvability of the PDE as in Theorem 4.3.2.

Proof of Lemma 4.1.

We need to show that the dual problem

max
y∗∈Y ∗

{
inf
q∈Q

L(q, y∗)− σ(y∗;K)
}

(D)

where the Lagrangian L : X × Y ∗ → R is defined by

L(q, y∗) = ⟨f(·), q⟩+ ⟨y∗, G(q)⟩Y ∗,Y (4.3.7)

is equivalent to (4.3.5)

max
c∈R
u∈X

{
c , s.t.: c+ Lu(x)− f(x) ≤ 0, a.e. in Rm

}
. (4.3.8)

Recall

X = Md(R
m) and Y = R×X

so Y ∗ = R×X∗ and we denote the elements y∗ ∈ Y ∗ by

y∗ = (c, w) ∈ R× (Md(R
m))∗ = R×X∗ = Y ∗.

We also recall K = K1 ×K2 = {0} ×Ker(L∗).

The set (Md(R
m))∗ contains Borel-measurable functions with a polynomial growth

of order at most d. We also recall G(q) = (G1(q), G2(q)) = (1− ⟨1, q⟩, q) ∈ R×X and

q is chosen in the subset Q = M+
d (R

m) ⊂ X (in fact, one can minimize over the whole

set X and consider instead the objective function ⟨f(·), q⟩ + IQ(q) as we discussed in

§4.2.1).
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Therefore, the problem (D) writes

max
c∈R
w∈X∗

{
inf
q∈Q

⟨f(·), q⟩+ c(1− ⟨1, q⟩) + ⟨w(·), q⟩ − σ((c, w);K)
}

(D)

Since K is a cone, then σ(y∗;K) = 0 if y∗ ∈ K− and +∞ if not. Hence the problem

(D) becomes

max
c∈R

w∈K−
2

{
inf
q∈Q

⟨f(·), q⟩+ c(1− ⟨1, q⟩) + ⟨w(·), q⟩
}

= max
c∈R

w∈K−
2

{
c+ inf

q∈Q
⟨f − c+ w, q⟩

}
,

= max
c∈R

w∈K−
2

{
c− sup

q∈Q
⟨−f + c− w, q⟩

}
= max

c∈R
w∈K−

2

{
c− σ(−f + c− w;Q)

}
= max

c∈R
w∈K−

2

{
c , s.t.: − f + c− w ∈ Q− }, (Recall: Q = M+

d (R
m) is a cone)

(4.3.9)

We have set K2 = Ker(L∗), so K−
2 = (Ker(L∗))⊥ = cl(range(L)), that is, for any

w ∈ K−
2 , there exists −u ∈ D(L) such that w = −Lu.

And Q− = (M+
d (R

m))− is made of Borel-measurable functions ψ with a polynomial

growth of order at most d and such that ⟨ψ(·), q⟩ ≤ 0 for any q ∈ M+
d (R

m), and hence

ψ ≤ 0 a.e., that is, we have necessarily−f+c+Lu ≤ 0 and−f+c+Lu with a polynomial

growth of order at most d. Since f satisfies the latter condition (by assumption (A5))

and c is a constant, we need Lu to satisfy this condition. By assumption (A3), the

matrix function a is uniformly bounded, and by assumption (A6) the drift vector field

has a polynomial growth of order β. Hence, setting κ as the polynomial growth of u,

then it necessarily satisfies κ− 1+ β ≤ d where κ− 1 corresponds to the growth of ∇u.
So a sufficient condition to have Lu with a polynomial growth of order at most d is to

have u satisfying a polynomial growth of order at most κ = d+ 1− β (note that κ ≥ 1

since β ∈ [0, d]). Therefore, u ∈ D(L) and with at most a polynomial growth of order

κ. Hence the dual problem (D) becomes

max
c∈R
u∈X

{
c , s.t.: c+ Lu− f ≤ 0 a.e. in Rm

}
(D)

with X = D(L) ∩ {u : Rm → R,Borel-measurable | ∃ C > 0, |u(x)| ≤ C(1 + |x|κ)}.
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Remark 4.3.2. We can now see the problem (4.3.8) (equivalently (4.3.5)) as the dual

of the primal problem (P), that is,

min
q∈M+

d (Rm)

{
⟨f(·), q⟩, s.t.: 1− ⟨1, q⟩ = 0 and q ∈ Ker(L∗)

}
(P)

also represented by

min
q∈Q

{
⟨f(·), q⟩, s.t.: G(q) ∈ K

}
. (P)

This will be used in the next proof.

Proof of Theorem 4.3.1.

The theorem is a consequence of Theorem 4.2.1. In fact, (c, w = −Lu) are the Lagrange
multipliers whose existence need to be proved. Note that we are in the Particular case

for the constraints (see (4.2.12)) at the end of §4.2.1. And thanks to Theorem 4.2.7,

Ker(L∗) = {λµ : λ ∈ R}

i.e. Ker(L∗) is a one-dimensional linear space.

Before using Theorem 4.2.1, Let us check the assumptions in our setting.

The set K = K1 ×K2 is a nonempty, closed and convex cone. And both g(q) and G(q)

are linear, and continuous, and G is (−K)-convex. So the problem (P) is convex. It

remains to check the regularity condition (4.2.10) or equivalently the two conditions in

Lemma 4.2.1 (see also (4.2.13)).

First, we have G1(q) = 1−⟨1, q⟩, G2(q) = q, and K1 = {0} and K2 = Ker(L∗), hence

also K̃2 := K2 ∩ Q, are closed and convex. Moreover Ker(L∗) ∩ Q = {λµ : λ ≥ 0}
where µ is as given in Theorem 4.2.7, and DG1(q)h = −⟨1, h⟩ for all h ∈ Md(R

m). So

for q ∈ Md(R
m) we have

G1(q) +DG1(q)[K̃2 − q]−K1

= {1− ⟨1, q⟩ − ⟨1, λ µ− q⟩ : λ ≥ 0}

= {1− λ : λ ≥ 0} = (−∞ , 1]

where we have used ⟨1, µ⟩ = 1. Therefore we have

0 ∈ int(G1(q) +DG1(q)[K̃2 − q]−K1)

and the required condition (4.2.13) (equivalently (4.2.10)) is satisfied.

Finally, we need to check if the problem (P) has an optimal solution. In fact, the

equality constraint G1(q) ∈ K1, which is 1−⟨1, q⟩ = 0, together with q ∈ Q = M+
d (R

m),
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yields that the problem (P) can be written as

min
q∈Pd(Rm)

{
⟨f(·), q⟩, s.t.: q ∈ Ker(L∗)

}
= min

q∈M(Rm)

{
⟨f(·), q⟩, s.t.: q ∈ Ker(L∗) ∩ Pd(R

m)
} (P)

where Pd(R
m) is the set of probability measures with d-finite moments. Therefore,

Ker(L∗)∩Pd(R
m) = Ker(L∗)∩P(Rm)∩Md(R

m) and Ker(L∗)∩P(Rm) = MA,b
ell = {µ}.

And by Lemma 2.3.1, µ has finite moments of any order, i.e µ ∈ Md(R
m). And hence

Ker(L∗) ∩ Pd(R
m) = {µ} which means that the feasible set of the problem P is a

singleton, and yields

min
q∈M+

d (Rm)

{
⟨f(·), q⟩, s.t.: 1− ⟨1, q⟩ = 0 and q ∈ Ker(L∗)

}
= ⟨f(·), µ⟩ (P)

Finally, applying Theorem 4.2.1 insures that the set Λo of Lagrange multipliers (c, w)

is a nonempty, convex, bounded, and weakly-∗ compact subset of Y ∗. The latter satisfy

the conditions (4.2.8), hence using proposition 4.2.2, the set Λo is the set of solutions of

(D). And we conclude the proof using Lemma 4.1.

Proof of Theorem 4.3.2.

Step 1. (Existence)

Using the conclusion of Theorem 4.3.1 and for µ the optimal solution to (P), the condi-

tion (4.2.8) is satisfied. Therefore, Proposition 4.2.2 insures that (c, w) is a solution to

the dual problem (D). Moreover, using the formulation (4.2.9), we have in particular

G(µ) ∈ K, (c, w) ∈ R×K−
2 , and c(1− ⟨1, µ⟩) + ⟨w(·), µ⟩ = 0. (4.3.10)

And for w ∈ K−
2 , we can choose w = −Lu as stated in the proof of Theorem 4.3.1. And

the equality in the right hand side writes c − ⟨c + Lu(·), µ⟩ = 0, and since there is no

duality gap (by Proposition 4.2.2), c = ⟨f(·), µ⟩. Hence, we have ⟨c+Lu(·)−f(·), µ⟩ = 0.

On the other hand, µ is a non-negative measure, and (c, w) solves the dual problem and

hence c+ Lu− f ≤ 0 almost everywhere, i.e. does not change sign almost everywhere.

Therefore ⟨c + Lu(·) − f(·), µ⟩ = 0 implies that c + Lu − f = 0, for µ-almost every

x ∈ supp(µ). But µ is absolutely continuous with respect to Lebesgue measure and

is supported on the the whole Rm thanks to Theorem 4.2.5, therefore (c, u) solves the

PDE c+ Lu− f = 0 almost everywhere in Rm.

Step 2. (Regularity)
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As we have seen at the end of §4.2.3.2, we can consider L as the generator of the strongly

continuous semigroup {T µ}t≥0 when restricted to the weighted Lebesgue space Lr(µ)

for any r ∈ [1,+∞). In this case, and thanks to Theorem 4.2.8, D(L) is a subset of

W r,2
loc (R

m). Now if 2r > m, then a classical embedding theorem (see, e.g., [1, Chapter

5]) states that W r,2(Ω) ⊂ C(Ω) for any Ω bounded subset of Rm satisfying the cone

property7. Now by using smooth cut-off functions ζ ∈ C∞
0 (Rm) with a support U

bounded subset of Rm, we have ζ u ∈ W r,2(U) ⊂ C(U). We conclude that for any

r > m
2
, the solution u(·) ∈ W r,2

loc (R
m) is a continuous function and, from Step 1, it

satisfies the polynomial growth, that is, there exists a constant K > 0 such that for any

x ∈ Rm, |u(x)| ≤ K(1 + |x|κ) where κ = d− 1 + β as in Lemma 4.1.

Note also that the range 2r > m is the one where W r,2
loc functions are not only contin-

uous but also pointwise twice differentiable almost everywhere (see, e.g., [50, Appendix

C]).

Step 3. (Uniqueness)

First, we need to check that the Lagrange multipliers y∗◦ = (c, ω = −Lu) which existence

is proved in Theorem 4.3.1 (see the proof of Theorem 4.3.1) is in fact unique. This is

a direct consequence of Proposition 4.2.3. Indeed, the strict constraint qualification

(4.2.14) is clearly satisfied noticing that (in the notation of Proposition 4.2.3) we have

x◦ = µ, so G(x◦) = (0, µ), DG(x◦) is a nonzero constant and independent of x◦, Q =

M+
d (R

m), and K = {0} × {λµ : λ ∈ R}. Hence any element of K can be written as

a pair (0, λ µ) for some λ ∈ R. It is therefore immediate to see that such a pair (0, λµ)

is in Ker y∗◦: indeed ⟨(c,−Lu) , (0, λµ)⟩Y ∗,Y = −λ ⟨Lu , µ⟩X∗,X = 0 since by definition

we have L∗µ = 0, and hence K = Ker y∗◦. Thus, we have K◦ = K where we recall from

Proposition 4.2.3 (and the comment after the latter) that K◦ := K ∩Ker y∗◦ ⊆ K.

Therefore (c, ω = −Lu) is unique. However, note that this in fact does not tell us

anything on uniqueness of the ergodic constant, because the only one we are dealing

with is c = ⟨f, µ⟩ (which is unique by definition of c as the objective function in the

optimization problem (D)). The latter preliminary result of uniqueness shall be used

instead to show uniqueness of u(·) as we will now do.

To prove that u(·) is unique, we need to assume in addition that b is locally Lipschitz

continuous with at most a linear growth, i.e. β = 1 and hence κ = d. This setting will

allow us to apply the Liouville type result in [22].

So we need to show that if u1, u2 ∈ W r,2
loc with a polynomial growth of order at most d are

7Ω has the cone property if there exists a finite cone C (i.e. C is an intersection of a cone and an
open ball) and such that each point x ∈ Ω is the vertex of a finite cone Cx contained in Ω and congruent
to C (i.e. Cx is obtained from C by a rigid motion).
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such that Lu1 = Lu2 = ω, then u1(·)− u2(·) ≡ constant. Note also that when 2r > m,

W r,2
loc functions are continuous and pointwise twice differentiable almost everywhere (see,

e.g., [50, Appendix C]). Therefore, v := u1 − u2 is a viscosity solution to −Lv(x) = 0 in

Rm.

We make the following

claim: there exist a function ψ ∈ C∞(Rm) and Ro > 0 such that

− Lψ(x) ≥ 0 in B(0, Ro)
C
, ψ(x) → +∞ when |x| → +∞ (4.3.11)

and such that

lim
|x|→+∞

v(x)

ψ(x)
= 0 (4.3.12)

Hence, using a Liouville type result [22, Theorem 2.1], we deduce that v is constant, i.e.

u1(·)− u2(·) ≡ constant.

Proof of the claim:

We check that ψ(x) := |x|d log(|x|) satisfies (4.3.11) and (4.3.12).

Using the polynomial growth of u1 and u2, (4.3.12) is immediate.

To check the validity of (4.3.11), we compute −Lψ(x) and make use of assumption (A6).

We have ω(x) → +∞ when |x| → +∞ and

∇ψ(x) = |x|d−2
(
d log(|x|) + 1

)
x

D2ψ(x) = |x|d−2
[
(d− 2)

(
d log(|x|) + 1

)
+ d
]x⊗ x

|x|2
+ |x|d−2

(
d log(|x|) + 1

)
Im

where Im is the identity matrix of dimension m. Therefore, one has

−b(x) · ∇ψ(x) = −|x|d−2
(
d log(|x|) + 1

)
⟨b(x), x⟩

and

−trace(A(x)D2ψ(x)) = −|x|d−2
(
d log(|x|) + 1

)
trace(A(x))

− |x|d−2
[
(d− 2)

(
d log(|x|) + 1

)
+ d
]
trace

(
A(x)

x⊗ x

|x|2

)
≥ −mΛ|x|d−2

(
d log(|x|) + 1

)
− Λ|x|d−2

[
(d− 2)

(
d log(|x|) + 1

)
+ d
]

≥ −mΛ|x|d−2
(
d log(|x|) + 1

)
− dΛ|x|d−2

[(
d log(|x|) + 1

)
+ 1
]
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Hence, one gets (using (A4))

−Lω(x) ≥ −|x|d−2
(
d log(|x|) + 1

)
⟨b(x), x⟩

−mΛ|x|d−2
(
d log(|x|) + 1

)
− dΛ|x|d−2

(
d log(|x|) + 1

)
− dΛ|x|d−2

≥ −|x|d−2
(
d log(|x|) + 1

)(
⟨b(x), x⟩+ (m+ d)Λ

)
− dΛ|x|d−2

≥ −|x|d−2

[(
d log(|x|) + 1

)(
⟨b(x), x⟩+ (m+ d)Λ

)
+ dΛ

]
→ +∞ as |x| → +∞.

In particular, there exists Ro > 0 such that (4.3.11) is satisfied.

4.4 Ergodic Bellman equation

4.4.1 The primal problem

Armed with the result in the linear case, we are interested now in a class of nonlinear

equations, usually called ergodic (stationary) Hamilton-Jacobi-Bellman (HJB) equations

and which are of the type

Find X a functional space, and (c, u(·)) in R×X (Rm)

such that H(x,∇u(x), D2u(x)) = c in Rm
(4.4.1)

where the Bellman Hamiltonian takes one of the forms

H := min
α∈A

{−Lαu(x) + f(x, α) } or H := max
α∈A

{−Lαu(x) + f(x, α) }

and for each α ∈ A compact subset of Rk with k > 0, the linear differential operator

Lαφ(x) := Lα(x,∇φ(x), D2φ(x)) is defined as in the previous sections by

Lαφ(x) = trace(a(x, α)D2φ(x)) + b(x, α) · ∇φ(x), φ ∈ C∞
0 (Rm). (4.4.2)

As for the linear case, we write in the problem (4.4.1) the functional space X as an

unknown because it is yielded by the procedure that we will follow, in the light of the

previous sections §4.3.

Note that unlike the differential operator (4.3.2), the coefficients of Lα as defined

in (4.4.2) depend on a parameter α. This is also the case with the right-hand side

function f in (4.3.1) which now in (4.4.1) also depends on α. Such an equation arises

for example in the theory of stochastic ergodic control where α stands for the control
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parameter, ai,j and bi describe the diffusion and the drift respectively of the controlled

dynamics, f is the running cost which depends both on the state x and on the control

α and finally c is the ergodic constant that captures the long-time average of the value

function. This equation can also be encountered in stochastic control problems with

singular perturbations or again in the theory of homogenization.

In what follows, we will first deal with the case where the Hamiltonian is given by

H(x,∇u(x), D2u(x)) = min
α∈A

{−Lαu(x) + f(x, α) }.

Using the notation a ∧ b = min(a, b), a ∨ b = max(a, b), we will refer to the primal

problem by (P∧) and its dual by (D∧). We will then recover the case where we have in

the Hamiltonian a max instead of a min, and use the notation (P∨) and (D∨).

Before we go any further, let us state and prove a result that we will need in the

sequel. It is an exchange property whose proof is similar to the one of Proposition 2.5.1

in §2.5.4.

Proposition 4.4.1. Let f satisfies (A5). The following holds for any q ∈ M+
d (R

m)∫
Rm

min
α∈A

f(x, α) dq(x) = min
α(·)∈A

∫
Rm

f(x,α(x)) dq(x) (4.4.3)

where A is a compact subset of Rk, for some k > 0, and A is the set of measurable

functions α(·) : Rm → A. And the same holds true with max instead of min.

Remark 4.4.1. In the context of stochastic control, the set A needs to be the one of

progressively measurable functions. In fact, these are the admissible controls.

Proof. We repeat mutatis mutandis the arguments in the proof of Proposition 2.5.1.

Let q ∈ M+
d (R

m) be arbitrarily fixed and f : Rm × A→ R satisfies (A5).

Step 1. (the inequality ”≤ ”)

For any ε > 0, there exists αε(·) ∈ A such that

min
α(·)∈A

∫
Rm

f(x,α(x)) dq(x) + ε ≥
∫
Rm

f(x,αε(x)) dq(x)

≥
∫
Rm

min
α∈A

f(x, α) dq(x)

which proves the desired inequality.

Step 2. (the inequality ”≥ ”)
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Let (Ii)i∈Z a sequence of open intervals in Rm such that Ii ∩ Ij = ∅ whenever i ̸= j and

Rm = ∪i∈ZIi, where Ii is the closure of Ii. We define Dn = ∪n
i=−nIi and let x 7→ Fn(x;α)

be a sequence of functions defined as

Fn(x;α) = 1Dn(x)f(x,α(x)), ∀x ∈ Rm,α ∈ A, n ∈ N.

where 1D(·) is the indicator function of a set D which is 1 if x ∈ D and 0 otherwise.

It is clear that for any arbitrarily fixed α ∈ A, the sequence {Fn(·;α)}n∈N is uniformly

integrable over Rm, that is, ∀ ε > 0, ∃ δ > 0 s.t.

if D ⊂ Rm is s.t. q(D) =

∫
Rm

1D(x) dq(x) < δ, then

∫
D

|f(x,α(x))| dq(x) < ε, ∀ n ∈ N.

This is true since |Fn(x;α)| ≤ |f(x,α(x))| ≤ C(1 + |x|d) uniformly in α ∈ A from

assumption (A5), and q ∈ M+
d has finite moments of order less or equal d. Therefore

since we have lim
n→+∞

Dn = Rm, then Fn(· ;α(·)) −−−−→
n→+∞

f(· ,α(·)) for any α ∈ A, and

then Vitali’s convergence theorem insures that

n∑
i=−n

∫
Ii

f(x,α(x)) dq(x) =

∫
Rm

Fn(x;α) dq(x) −−−−→
n→+∞

∫
Rm

f(x,α(x)) dq(x).

Armed with this result, we can now consider the truncated minimization problem

fi(x) := min
α∈A

f(x, α) where x ∈ Ii. Since A is compact and fi(x) ∈ f({x} × A) with

fi measurable and f(x, α) is measurable in x and continuous in α, then a classical se-

lection theorem (see [94, Theorem 7.1, p. 66]) implies the existence of a measurable

selector αi for which the minimization is achieved, i.e.

∀ i ∈ Z, ∃ αi ∈ A, s.t. ∀ x ∈ Ii, fi(x) = min
α∈A

f(x, α) = f(x,α(x)).

Now consider α ∈ A defined as x 7→ α(x) = {αi(x), if x ∈ Ii, ∀ i ∈ Z}. Therefore one

has ∫
Rm

min
α∈A

f(x, α) dq(x) =
∑
i∈Z

∫
Ii

min
α∈A

f(x, α) dq(x)

=
∑
i∈Z

∫
Ii

f(x,αi(x)) dq(x)

=

∫
Rm

f(x,α(x)) dq(x)

≥ min
α(·)∈A

∫
Rm

f(x,α(·)) dq(x).

This yields the second desired inequality and concludes the proof.
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Note finally that the same holds true if write −f instead of f . Then one gets (4.5.3)

with max instead of min.

The exchange property proved in Proposition 4.4.1 will be much needed in the se-

quel. It insures that we can exchange the minimization over the parameters α and the

duality product in Md(R
m) provided we define the second argument in f as measurable

functions α(·) ∈ A instead of vectors α ∈ A, that is,

min
α(·)∈A

⟨ f(· ,α(·)) , q ⟩ = ⟨ min
α∈A

f(· , α) , q ⟩

In the next section we will conduct the duality procedure as in §4.3 (in particular as

in §4.3.1). We state our primal problem as follows

min
q∈M+

d (Rm)

{
min
α(·)∈A

⟨f(· ,α(·)), q⟩, s.t. 1− ⟨1, q⟩ = 0 and q ∈ Ker(L∗
α)

}
(P∧)

where we recall ⟨f(· ,α(·)), q⟩ =
∫
Rm f(x,α(x))dq(x), and we will use the same notation

as in §4.3.1 that we recall here for the reader’s convenience and taking into account the

dependency on the parameter α

X = Md(R
m) and Q = M+

d (R
m)

G1 : X → R, s.t. G1(q) = 1− ⟨1, q⟩

G2 : X → X, s.t. G2(q) = q

G = (G1, G2) and Y = R×X

K1 = {0}, K2(α) = Ker(L∗
α) and Kα = K1 ×K2(α) ⊂ Y

The primal problem then writes

min
q∈Q

{
min
α(·)∈A

⟨f(· ,α(·)), q⟩, s.t. G(q) ∈ Kα

}
(P∧)

Setting F (G(q),α) := IKα(G(q)) the indicator function which is 0 if G(q) ∈ Kα and

+∞ otherwise, we can finally write the primal problem as

min
q∈Q

{
min
α(·)∈A

⟨f(· ,α(·)), q⟩+ F (G(q),α)

}
. (P∧)

We will also need an assumption that will play a crucial role in the validity of our
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method for solving the problem (4.4.1). Besides the standing assumptions (A0) and

(A1-A6) that we assume to hold uniformly in the parameter function α, we denote

again by (Lα, D(Lα)) its closed extension as given by Theorem 4.2.7 and Theorem 4.2.8

and we assume the following holds true

(A*) The domain D(Lα) of the closed extension is nonempty and is independent of α.

Such an assumption can be encountered in [85, §III.6, p. 130]. It means that there

exists α̃(·) ∈ A such that for all α(·) ∈ A, one has D(Lα) = D(Lα̃) , and Lα̃ falls in

the framework of the previous sections, in particular it satisfies Theorem 4.2.8. The

nonemptiness assumption is trivial otherwise the PDE problem (4.4.1) does not make

sense. We will hereafter denote by D(L0) the latter domain.

The next result shows that the primal problem enjoys calmness (see Definition 4.2.1).

Lemma 4.2. The problem (P∧) is calm and admits an optimal solution (q◦,α◦).

Proof. We need to check that the value function is subdifferentiable in 0 and that an

optimal solution (q◦,α◦) exists (this shows in particular that v(0) < +∞).

Step 1. (∂v(0) ̸= ∅)
Using the above notations, let y ∈ Y such that y := (λ, z) where λ ∈ R and z ∈ X. We

define the value function v(y) as in §4.2.1, and we have

v(y) = inf
q∈Q

min
α(·)∈A

⟨f(· ,α(·)), q⟩, s.t. G(q) + y ∈ Kα

= inf
q∈Q

min
α(·)∈A

⟨f(· ,α(·)), q⟩+ IKα(G(q) + y)

≥ inf
q∈Q

min
α(·)∈A

{ ⟨f(· ,α(·)), q⟩+ IKα(G(q)) }+ inf
q∈Q

min
α(·)∈A

{IKα(G(q) + y)− IKα(G(q))}

where in the last inequality we used ”min(A + B) ≥ minA + minB”. Note that the

first term in the right hand-side is v(0) and hence, one gets, for any y ∈ Y

v(y)− v(0) ≥ inf
q∈Q

min
α(·)∈A

{IKα(G(q) + y)− IKα(G(q))} (4.4.4)

Recalling the definition of the subdifferential (see §4.2.1), one has

IKα(G(q) + y)− IKα(G(q)) ≥ ⟨y∗, y⟩Y ∗,Y for all y∗ ∈ ∂IKα(G(q)). (4.4.5)

It suffices then to have ∂IKα(G(q)) nonempty for any α(·) ∈ A, in order to show that

∂v(0) is nonempty. Hence, letting α(·) ∈ A be arbitrarily fixed, we first need to have
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G(q) ∈ Kα, and noting that (recalling y := (λ, z) ∈ R×X)

IKα(G(q) + y)− IKα(G(q)) = I{0}(G1(q) + λ)− I{0}(G1(q))

+ IKer(L∗
α)(G2(q) + z)− IKer(L∗

α)(G2(q)),

it suffices that the polar (negative dual) cones {0}− and
(
Ker(L∗

α)
)−

are nonempty,

since {0} and Ker(L∗
α) are nonempty, closed and convex cones (the same argument is

used when deriving the equivalent optimality conditions (4.2.7), (4.2.8) and (4.2.9) in

§4.2.1). This holds true, since {0}− = R and
(
Ker(L∗

α)
)−

= cl(range(Lα)) are nonempty.

Indeed, for z∗ ∈ X∗ to be in cl(range(Lα)) it suffices that there exists u ∈ D(Lα) such

that z∗ = Lαu. But D(Lα) = D(L0) is nonempty (thanks to (A*)), and hence there

exists z∗ = Lαu for u ∈ D(L0). So there exists y∗ = (λ∗, z∗) ∈ {0}−×
(
Ker(L∗

α)
)− ⊂ Y ∗

and y∗ depends on α(·) (in fact only z∗ depends on α(·)), satisfying (4.4.5).

To sum up, for any α(·) ∈ A, there exists q ∈ Q satisfying G(q) ∈ Kα (indeed

{q ∈ Q : G(q) ∈ Kα} = {µα} a singleton, as shown in §4.2.3.2), and moreover there

exists y∗ ∈ {0}− ×
(
Ker(L∗

α)
)−

satisfying (4.4.5). The set A being closed and recalling

(4.4.4), we conclude that there exists y∗◦ ∈ Y ∗ such that v(y) − v(0) ≥ ⟨y∗◦, y⟩, i.e.

∂v(0) ̸= ∅.
Step 2. (There exists an optimal solution)

Recall that the feasible set of our primal problem (P∧) is {q ∈ Q : G(q) ∈ Kα} = {µα}
a singleton, where µα ∈ Pd(R

m). Hence, (P∧) equivalently writes as

min
α(·)∈A

⟨f(· ,α(·)), µα⟩.

We proceed using a fixed-point approach: we first fix α1(·) ∈ A, hence also µα1 , and

then show that α2(·) ∈ argmin
α(·)∈A

⟨f(· ,α(·)), µα1⟩ exists. The next step is then to consider

the corresponding unique invariant probability measure µα2 in the objective function,

and repeat the process. We get a fixed point when α◦(·) ∈ argmin
α(·)∈A

⟨f(· ,α(·)), µα◦⟩.

Let α1(·) ∈ A be arbitrarily fixed, and let µα1 be the corresponding unique invariant

probability measure. Using (4.5.3) from Proposition 4.4.1, one has

min
α(·)∈A

⟨f(· ,α(·)), µα1⟩ = ⟨min
α∈A

f(· , α) , µα1 ⟩ =
∫
Rm

min
α∈A

f(x, α) dµα1(x).

The minimization problem is then reduced to a finite dimensional optimization problem

that is, to minimize f(x, α) over α ∈ A ⊂ Rk, for each x ∈ Rm. the function α 7→ f(x, α)

being continuous over a compact set A, a minimizer αx to the latter finite dimensional

optimization problem exists. We then define α◦ : Rm ∋ x 7→ αx ∈ A a measurable
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function, and we have α◦(·) ∈ argmin
α(·)∈A

⟨f(· ,α(·)), µα1⟩. But α◦(·) is independent of

µα1 since it is obtained from the minimization of f(x, α) for α ∈ A. Hence, one gets

the desired fixed point by considering µα◦ which is the corresponding unique invariant

probability measure, and (µα◦ ,α◦) is an optimal solution for (P∧).

4.4.2 The dual problem

In order to deduce the corresponding dual problem, we follow a parametric (conju-

gate) duality scheme as in [46, §2.5.3, p. 107]. Therefore we embed the problem (P∧) in

a family of parameterized problems, where y ∈ Y is the parameter vector and consider

the function

ϕ(q, y) = min
α(·)∈A

{
⟨f(· ,α(·)), q⟩+ F (G(q) + y,α)

}
.

It is clear that when setting y = 0, we recover the objective function in (P∧).

Lemma 4.3. ϕ is lower semi-continuous.

Proof. We have q 7→ ⟨f(· ,α), q⟩ and y 7→ F (y,α) are lower semi-continuous (l.s.c),

and q 7→ G(q) is continuous. And y 7→ F (y,α) is l.s.c. if and only if Kα is closed, and

this holds in our setting.

We also consider the following (Lagrangian) function, L : X×Y ∗×A → R, analogue

to (4.3.4) and s.t.

L(q, y∗,α) := ⟨f(· ,α(·)), q⟩+ ⟨y∗, G(q)⟩Y ∗,Y . (4.4.6)

Using the Legendre-Fenchel transform, we have

ϕ∗(q∗, y∗) = sup
q∈Q,y∈Y

{ ⟨q∗, q⟩+ ⟨y∗, y⟩ − ϕ(q, y) }

= sup
q∈Q,y∈Y

{
⟨q∗, q⟩+ ⟨y∗, y⟩ − min

α(·)∈A
{ ⟨f(· ,α(·)), q⟩+ F (G(q) + y,α)}

}
= sup

q∈Q,y∈Y

{
max
α(·)∈A

{⟨q∗, q⟩+ ⟨y∗, y⟩ −
(
⟨f(· ,α(·)), q⟩+ F (G(q) + y,α)

)
}
}

= max
α(·)∈A

{
sup

q∈Q,y∈Y
{ ⟨q∗, q⟩+ ⟨y∗, y⟩ −

(
⟨f(· ,α(·)), q⟩+ F (G(q) + y,α)

)
}
}

= max
α(·)∈A

{
sup
q∈Q

{ ⟨q∗, q⟩ − ⟨f(· ,α(·)), q⟩ − ⟨y∗, G(q)⟩Y ∗,Y } +

+sup
y∈Y

{ ⟨y∗, G(q) + y⟩ − F (G(q) + y,α) }
}
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= max
α(·)∈A

{
sup
q∈Q

{ ⟨q∗, q⟩ − L(q, y∗,α) + F ∗(y∗,α) }
}

= sup
q∈Q

{
⟨q∗, q⟩+ max

α(·)∈A
{−L(q, y∗,α) + F ∗(y∗,α)}

}
= sup

q∈Q

{
⟨q∗, q⟩ − min

α(·)∈A
{L(q, y∗,α)− F ∗(y∗,α)}

}
The dual of the parameterized primal problem is then obtained as

max
y∗∈Y ∗

{⟨y∗, y⟩ − ϕ∗(0, y∗) }

which writes

max
y∗∈Y ∗

{
⟨y∗, y⟩+ inf

q∈Q
min
α(·)∈A

{L(q, y∗,α)− F ∗(y∗,α)}
}

Finally, the dual problem associated to (P∧) is obtained by setting y = 0, and writes as

max
y∗∈Y ∗

{
inf
q∈Q

min
α(·)∈A

{L(q, y∗,α)− F ∗(y∗,α)}
}
. (D∧)

We will now make (D∧) more explicit.

Lemma 4.4. The problem (D∧) is equivalent to

max
c∈R
u∈X

{
c, s.t.: c−H(x,∇u,D2u) ≤ 0, a.e. in Rm

}
(D∧)

where H(x,∇u(x), D2u(x)) = min
α∈A

{−Lαu(x) + f(x, α) } and X is such that

X = D(L0) ∩ {u : Rm → R,Borel-meas. | ∃ C > 0, |u(x)| ≤ C(1 + |x|κ)} (4.4.7)

with κ = d+ 1− β, that is, the two optimization problems have the same set of optimal

solutions and the same optimal value.

Remark 4.4.2. Assumption (A*) together with Theorem 4.2.8 insure that D(L0) ⊂
W r,2

loc (R
m).

Proof. Recalling that F is an indicator function, its conjugate is the support function

as defined in (4.2.4), that is,

F ∗(y∗,α) = I∗Kα
(y∗) = σ(y∗;Kα)

=

 0, if y∗ ∈ (Kα)
−

+∞, otherwise
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And recalling the definition Kα = {0} ×Ker(Lα), we have

y∗ ∈ (Kα)
− ⇔ (c, ω) ∈

(
{0} ×Ker(Lα)

)−

⇔ (c, ω) ∈ R× (Ker(Lα))
⊥

⇔ (c, ω) ∈ R× cl(range(Lα))

Since we are working with Lα in its closed extension, we have

ω ∈ cl(range(Lα)) ⇔ ∃ u ∈ D(Lα), s.t. ω = −Lαu

⇔ ∃ u ∈ D(L0), s.t. ω = −Lαu

where the last equivalence is obtained thanks to the assumption (A*) which guarantees

that D(Lα) = D(L0) for all α(·) ∈ A. Note however that ω still depends on α through

its definition as ω = −Lαu. The fact that u belongs to a domain which is independent

of α is important in this scheme, since the maximization over y∗ is not in the same order

as the minimization over α. Indeed, our dual problem now writes

max
y∗∈Y ∗

inf
q∈Q

min
α(·)∈A

{L(q, y∗,α) s.t. y∗ = (c,−Lαu) and (c, u) ∈ R×D(L0)}, (D∧)

and the new variables on which we perform the maximization are now (c, u) and they

belong to R × D(L0). The latter being independent of α(·), we can write the dual

problem as

max
c∈R

u∈D(L0)

inf
q∈Q

min
α(·)∈A

{L(q, y∗,α), s.t. y∗ = (c,−Lαu) }. (D∧)

Recalling the definition (4.4.6) of L and the notations introduced earlier, we have

L(q, y∗,α) = ⟨f(· ,α(·)), q⟩+ ⟨y∗, G(q)⟩Y ∗,Y

= ⟨f(· ,α(·)), q⟩+ c(1− ⟨1, q⟩) + ⟨−Lαu(·), q⟩

= c+ ⟨f(· ,α(·))− Lαu(·)− c, q⟩

hence we have, using the exchange property in Proposition 4.4.1,

min
α(·)∈A

{L(q, y∗,α), s.t. y∗ = (c,−Lαu) }

= c+ min
α(·)∈A

{ ⟨f(· ,α(·))− Lαu(·)− c, q⟩ }

= c+ ⟨min
α∈A

{f(· , α)− Lαu(·)} − c, q⟩

= c+ ⟨H(· ,∇u,D2u)− c, q⟩
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and the dual problem writes

max
c∈R

u∈D(L0)

{
c+ inf

q∈Q
⟨H(· ,∇u,D2u)− c, q⟩

}
(D∧)

Noticing that − inf
q∈Q

⟨H(· ,∇u,D2u) − c, q⟩ = sup
q∈Q

⟨c − H(· ,∇u,D2u), q⟩ is the support

function σ(c−H(· ,∇u,D2u);Q) which is 0 if ⟨c−H(· ,∇u,D2u), q⟩ ≤ 0 for all q ∈ Q

and +∞ otherwise. But since Q is made of non-negative measures with finite moment

of order d, we need u to have a polynomial growth of order at most κ = d+ 1− β (see

the proof of Lemma 4.1) and c − H(x,∇u,D2u) ≤ 0 a.e. on each support of q ∈ Q,

hence in Rm. The dual problem finally writes

max
c∈R
u∈X

{
c , s.t.: c−H(x,∇u,D2u) ≤ 0, a.e. in Rm

}
(D∧)

and the functional space X is now

X = D(L0) ∩ {u : Rm → R,Borel-meas. | ∃ C > 0, |u(x)| ≤ C(1 + |x|κ)}

where κ = d+ 1− β, which then concludes the proof.

In the case where the Hamiltonian is given by

H(x,∇u(x), D2u(x)) = max
α∈A

{−Lαu(x) + f(x, α) }.

the same proof as before can again be conducted, with minor modification in the duality

procedure which we will now present.

The primal problem (P∧) will in this case take the form

min
q∈M+

d (Rm)

{
min
α(·)∈A

⟨−f(· ,α(·)), q⟩, s.t. 1− ⟨1, q⟩ = 0 and q ∈ Ker(L∗
α)

}
(P∨)

which writes as

min
q∈Q

{
min
α(·)∈A

⟨−f(· ,α(·)), q⟩, s.t. G(q) ∈ Kα

}
(P∨)

Note that the only difference is that instead of f we now consider −f . Then we define

ϕ(q, y) = min
α(·)∈A

{ ⟨−f(· ,α(·)), q⟩+ F (G(q) + y,α) } .
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and the Lagrangian in this case writes as

L(q, y∗,α) := ⟨−f(· ,α(·)), q⟩+ ⟨y∗, G(q)⟩Y ∗,Y . (4.4.8)

We compute in the same way as before the Legendre-Fenchel transform ϕ∗(q∗, y∗) and

recover the dual problem similar to (D∧) and which is given by

max
y∗∈Y ∗

inf
q∈Q

min
α(·)∈A

{L(q, y∗,α)− F ∗(y∗,α)}. (D∨)

The following is an analogue of Lemma 4.4.

Lemma 4.5. The problem (D∨) is equivalent to

max
c∈R
u∈X

{
−c, s.t.: H(x,∇u,D2u)− c ≤ 0, a.e. in Rm

}
(D∨)

where H(x,∇u(x), D2u(x)) = max
α∈A

{−Lαu(x) + f(x, α) } and X is such that

X = D(L0) ∩ {u : Rm → R,Borel-meas. | ∃ C > 0, |u(x)| ≤ C(1 + |x|κ)} (4.4.9)

with κ = d+ 1− β, that is, the two optimization problems have the same set of optimal

solutions and the same optimal value.

We keep the primal problem (P∨) and the dual problem (D∨) written in this formu-

lation because it will be needed when we will set the optimality conditions in the next

section.

Proof. The proof follows the one of Lemma 4.4. The main difference is in the choice

of the representation of the dual variable y∗ ∈ (Kα)
− which we now write as

y∗ ∈ (Kα)
− ⇔ (−c,−ω) ∈

(
{0} ×Ker(Lα)

)−

⇔ (−c,−ω) ∈ R× (Ker(Lα))
⊥

⇔ (−c,−ω) ∈ R× cl(range(Lα))

We set again as in Lemma 4.4,

ω ∈ cl(range(Lα)) ⇔ ∃ u ∈ D(L0), s.t. ω = −Lαu.
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And the dual problem (D∨) writes as

max
y∗∈Y ∗

inf
q∈Q

min
α(·)∈A

{L(q, y∗,α) s.t. y∗ = (−c,Lαu) and (c, u) ∈ R×D(L0)}, (D∨)

Recalling the definition (4.4.8) of L and the notations introduced earlier, we have

L(q, y∗,α) = ⟨−f(· ,α(·)), q⟩+ ⟨y∗, G(q)⟩Y ∗,Y

= ⟨−f(· ,α(·)), q⟩ − c(1− ⟨1, q⟩) + ⟨Lαu(·), q⟩

= −c− ⟨f(· ,α(·))− Lαu(·)− c, q⟩

hence we have, using the exchange property in Proposition 4.4.1,

min
α(·)∈A

{L(q, y∗,α), s.t. y∗ = (−c,Lαu) }

= −c+ min
α(·)∈A

{−⟨f(· ,α(·))− Lαu(·)− c, q⟩ }

= −c− max
α(·)∈A

{ ⟨f(· ,α(·))− Lαu(·)− c, q⟩ }

= −c− ⟨max
α∈A

{f(· , α)− Lαu(·)} − c, q⟩

= −c− ⟨H(· ,∇u,D2u)− c, q⟩

and the dual problem writes

max
c∈R

u∈D(L0)

{
−c+ inf

q∈Q

{
−⟨H(· ,∇u,D2u)− c, q⟩

}}
. (D∨)

Recalling the definition (4.2.4) of the support function of a set, the dual problem becomes

max
c∈R

u∈D(L0)

{
−c− σ(H(· ,∇u,D2u)− c ;Q)

}
. (D∨)

The conclusion then follows as in the end of the proof of Lemma 4.4.

4.4.3 Main results II: ergodic HJB equation

4.4.3.1 The optimality conditions

We first consider the case where the Hamiltonian is given by

H(x,∇u(x), D2u(x)) = min
α∈A

{−Lαu(x) + f(x, α) }.

We check that the optimality conditions as stated in §4.2.1, in particular (4.2.8) and
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(4.2.9), still hold in our framework. In order to do so, we start from the duality gap

(or duality inequality) which states that the value of the dual problem (D∧) is less or

equal than the value of the primal problem (P∧). Recalling the definition (4.4.6) of the

Lagrangian function L and the value of the dual problem being less or equal the value

of the primal problem (see §4.2.1), we have

max
y∗∈Y ∗

min
q∈Q

min
α(·)∈A

{L(q, y∗,α)− F ∗(y∗,α)}

≤ min
q∈Q

min
α(·)∈A

{⟨f(· ,α(·)), q⟩+ F (G(q),α)}

≤ min
q∈Q

min
α(·)∈A

{L(q, y∗,α) + F (G(q),α)− ⟨y∗, G(q)⟩Y ∗,Y }, ∀ y∗ ∈ Y ∗.

Let us denote by (q◦,α◦) an optimal solution in the primal problem (P∧) and by y∗◦ an

optimal solution in the dual problem (D∧). We then have

min
q∈Q

min
α(·)∈A

{L(q, y∗◦,α)− F ∗(y∗◦,α)} ≤ L(q◦, y
∗
◦,α◦) + F (G(q◦),α◦)− ⟨y∗◦, G(q◦)⟩Y ∗,Y

= ⟨f(· ,α◦(·)), q◦⟩+ F (G(q◦),α◦)

Optimality conditions are then obtained when we reach equality in the above inequality.

We can then characterize the optimal primal and dual solutions and provide a no-duality

gap condition. Suppose the left hand side minimization in the above inequality is reached

in the pair of optimal solutions (q◦,α◦). Therefore, we firstly need to have F ∗(y∗◦,α◦) = 0

i.e.

y∗◦ ∈ (Kα◦)
− (4.4.10)

since F is an indicator function and hence F ∗ is a support function which is either 0 if

y∗◦ ∈ (Kα◦)
− or +∞ otherwise. Then, and secondly, since L(q◦, y

∗
◦,α◦) = ⟨f(· ,α◦(·)), q◦⟩+

⟨y∗◦, G(q◦)⟩ then from the optimality of (q◦,α◦) we have

⟨y∗◦, G(q◦)⟩Y ∗,Y = 0. (4.4.11)

And finally the inequality is reduced to

−F ∗(y∗◦,α◦) ≤ F (G(q◦),α◦)− ⟨y∗◦, G(q◦)⟩Y ∗,Y

which is the Fenchel-Young inequality. The latter is an equality if and only if we have

y∗◦ ∈ ∂F (G(q◦),α◦) = ∂IKα◦ (G(q◦)) = NKα◦ (G(q◦)) (4.4.12)
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And since Kα0 is a convex cone, then y∗◦ ∈ NKα◦ (G(q◦)) is equivalent to

G(q◦) ∈ Kα◦ , y∗◦ ∈ (Kα◦)
− and ⟨y∗◦, G(q◦)⟩Y ∗,Y = 0. (4.4.13)

To sum up, we have the following sufficient optimality conditions which also guarantee

the absence of the duality gap
(q◦,α◦) ∈ argmin

q∈Q,α(·)∈A
L(q, y∗◦,α)

G(q◦) ∈ Kα◦ , y∗◦ ∈ (Kα◦)
− and ⟨y∗◦, G(q◦)⟩Y ∗,Y = 0.

(4.4.14)

They are indeed analogue to (4.2.8) and (4.2.9).

And the same optimality conditions (4.4.14) hold when the Hamiltonian is given by

H(x,∇u(x), D2u(x)) = max
α∈A

{−Lαu(x) + f(x, α) },

provided we write−f (instead of f) in the above computations and make use of definition

(4.4.8) for the Lagrangian function L.

4.4.3.2 Main results II

We are now ready to state and prove the existence and uniqueness results for a

solution to the ergodic HJB equation as given in our initial problem (4.4.1), assuming

(A0-A6) and (A*) hold true.

Theorem 4.4.1. There exists a pair (c, u(·)) ∈ R×W r,2
loc (R

m) for any r ≥ 1, such that

|u(x)| ≤ K(1 + |x|κ) where κ = d− 1 + β, and which solves

H(x,∇u(x), D2u(x)) = c, a.e. in Rm

where H(x, p, P ) = min
α∈A

{−b(x, α) · p− trace(a(x, α)P ) + f(x, α) }. Moreover, the latter

constant c is given by c = ⟨f(· ,α(·)) , µα⟩ where

α(x) ∈ argmin
α∈A

{−Lαu(x) + f(x, α) }, a.e. in Rm

and µα is the unique invariant probability measure associated to L∗
α.

When r > m
2
, u(·) is continuous and pointwise twice differentiable almost everywhere.

If in addition the vector field b is locally Lipschitz continuous in x uniformly in α, and

β = 1 in (A6), then u(·) with such a polynomial growth is unique in any W r,2
loc (R

m),
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r > m
2
, in the sense: if (c, u1(·)) and (c, u2(·)) are two solutions, then u1(·) − u2(·) ≡

constant.

Theorem 4.4.2. The same conclusions of Theorem 4.4.1 are still valid when the Hamil-

tonian is H(x, p, P ) = max
α∈A

{−b(x, α) · p− trace(a(x, α)P ) + f(x, α) }, except α(x) that
is defined by

α(x) ∈ argmax
α∈A

{−Lαu(x) + f(x, α) }, a.e. in Rm.

Remark 4.4.3. In fact u(·) is an L-viscosity solution (see e.g. [50, 70]), which is as

expected as when we consider C-viscosity solutions for the continuous (and bounded)

case. Recall that in our setting, the vector field b and the function f are assumed to be

measurable (and unbounded) in x.

Proof of Theorem 4.4.1. We follow the same scheme as for the linear case taking ad-

vantage of the previous results. We recall the two optimization problems from §4.4.1
and §4.4.2:

• The primal problem

min
q∈M+

d (Rm)

{
min
α(·)∈A

⟨f(· ,α(·)), q⟩, s.t. 1− ⟨1, q⟩ = 0 and q ∈ Ker(L∗
α)

}
(P∧)

• The dual problem from Lemma 4.4

max
c∈R
u∈X

{
c, s.t.: c−H(x,∇u,D2u) ≤ 0, a.e. in Rm

}
. (D∧)

Step 1. (On the primal problem)

As we assume the standing assumptions hold uniformly in α, the diffusion operator Lα

satisfies the results in §4.2.3.2, in particular Theorem 4.2.7 holds for each α ∈ A, and

hence the set MA,b
ell as defined in (4.2.24) is again a singleton for each α. Moreover,

Lemma 4.2 insures existence of an optimal solution (q◦,α◦) to the problem (P∧).

Step 2. (On the dual problem)

The problem (P∧) being calm thanks to Lemma 4.2, Theorem 4.2.2 insures (i) a no-

duality gap between (P∧) and (D∧), and (ii) existence of multipliers y∗◦ := (c◦,−Lα◦u◦)

satisfying (4.4.14), which are in addition the solutions to the dual problem (D∧) thanks

to Proposition 4.2.1.

Step 3. (On the PDE problem)

Setting (q◦,α◦) an optimal solution to (P∧), (c◦, u◦) ∈ R × X an optimal solution to
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(D∧) and y∗◦ := (c◦,−Lα◦u◦), we have from the previous step (q◦,α◦) and y
∗
◦ satisfy the

optimality conditions (4.4.14). Moreover no-duality gap yields c◦ = ⟨f(· ,α◦(·)), q◦⟩ and
the condition ⟨y∗◦, G(q◦)⟩Y ∗,Y = 0 writes as c◦(1− ⟨1, q◦⟩) + ⟨−Lα◦u◦(·), q◦⟩ = 0. In fact,

since (q◦,α◦) in an optimal solution to the primal problem (P∧), one has 1−⟨1, q◦⟩ = 0

and ⟨Lα◦u◦(·), q◦⟩ = 0. In particular, when setting q to its optimal value q◦ in (P∧), one

has

α◦(·) ∈ argmin
α(·)∈A

{
⟨−Lαu◦(·) + f(· ,α(·))− c◦, q◦⟩

}
which yields thanks to the exchange property (4.5.3)

α◦(x) ∈ argmin
α∈A

{
− Lαu◦(x) + f(x, α)

}
, q◦-a.e. x ∈ Rm,

and implies

H(x,∇u◦(x), D2u◦(x)) = −Lα◦u◦(x) + f(x,α◦(x)), q◦-a.e. x ∈ Rm.

Moreover, (c◦, u◦) solves (D
∧), in particular the constraint is satisfied, that is

c◦ −H(x,∇u◦(x), D2u◦(x)) ≤ 0, a.e. in Rm

i.e. it does not change sign almost everywhere. Therefore, the equation

⟨c◦ − {−Lα◦u◦(·) + f(· ,α◦)}, q◦⟩ = 0 (4.4.15)

implies c◦ − {−Lα◦u◦ + f(· ,α◦)} = 0 q◦-almost everywhere. But q◦ is absolutely con-

tinuous with respect to Lebesgue measure and is supported in the whole Rm thanks to

Theorem 4.2.5, hence the result almost everywhere in Rm:

(c◦, u◦) solves (4.4.1) where X is as in (4.4.7)

Step 4. (Uniqueness of u◦(·))
As in Step 3 in the proof of Theorem 4.3.2, we have uniqueness of the Lagrange multiplier

y∗◦ thanks to Proposition 4.2.3.

To prove now that u◦(·) is unique, we need to assume in addition that b is locally

Lipschitz continuous with at most a linear growth, i.e. β = 1 and hence κ = d. This

setting will allow us to apply the Liouville type result in [22].
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Suppose (c◦, u1(·)), (c◦, u2(·)) are two solutions with a polynomial growth of order at

most d. Then we have, using the inequality ”min(A−B) ≤ min(A)−min(B)”

min
α∈A

{−Lα(u1 − u2) } ≤ min
α∈A

{−Lαu1 + f(· , α)} −min
α∈A

{−Lαu2 + f(· , α)} = 0

Therefore uniqueness of a solution (c◦, u(·)) is reduced to proving that there cannot exist

non-constant sub-solutions to the static HJB equation min
α∈A

{−Lαu} = 0, i.e. whether

Liouville property holds for the latter static HJB. This is answered positively in [22,

Theorem 2.1] using the Lyapunov function ψ as in Step 3 in the proof of Theorem 4.3.2.

Proof of Theorem 4.4.2. The same proof as for Theorem 4.4.1 still works when the

Hamiltonian is now given by a max (instead of a min), provided we make some minor

modifications. Indeed, Lemma 4.2 holds true also in this case, since the only change is in

the sign in front of f in the objective function of (P∨). We recall the two optimization

problems at the end of §4.4.2:

• The primal problem

min
q∈M+

d (Rm)

{
min
α(·)∈A

⟨−f(· ,α(·)), q⟩, s.t. 1− ⟨1, q⟩ = 0 and q ∈ Ker(L∗
α)

}
(P∨)

• The dual problem from Lemma 4.5

max
c∈R
u∈X

{
−c, s.t.: H(x,∇u,D2u)− c ≤ 0, a.e. in Rm

}
. (D∨)

In the proof of Theorem 4.4.1, Step 1 remains unchanged, while in Step 2 we will

get a different representation for the Lagrange multipliers y∗◦ (as we did in the proof

of Lemma 4.5), that is, y∗◦ := (−c◦,Lα◦u◦) which satisfies (4.4.14). Then we proceed

exactly as in Step 3 of the proof of Theorem 4.4.1, recalling that we have −f (and

not f) in the objective function of (P∨) and we have −c (and not c) in the objective

function of (D∨). The no-duality gap still writes as c◦ = ⟨f(· ,α◦(·)), q◦⟩ and α◦(·) is

now characterized by

α◦(x) ∈ argmax
α∈A

{
− Lαu◦(x) + f(x, α)

}
, q◦-a.e. x ∈ Rm,

since we have −f in the objective function of the problem (P∨), which again yields

H(x,∇u◦(x), D2u◦(x)) = −Lα◦u◦(x) + f(x,α◦(x)), q◦-a.e. x ∈ Rm.
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We conclude as in Step 3 of the proof of Theorem 4.4.1.

Finally, to prove uniqueness, we consider again (c◦, u1(·)), (c◦, u2(·)) two solutions

with a polynomial growth of order at most d, and the only difference with Step 4 in the

proof of Theorem 4.4.1 is that we need to check that there cannot exist non-constant

super-solutions to the static HJB equation max
α∈A

{−Lαu} = 0, since we have

max
α∈A

{−Lα(u1 − u2) } ≥ max
α∈A

{−Lαu1 + f(· , α)} −max
α∈A

{−Lαu2 + f(· , α)} = 0.

And Liouville property in [22, Theorem 2.2] again holds for the latter static HJB, using

the Lyapunov function ψ as in Step 3 in the proof of Theorem 4.3.2.

Remark 4.4.4. In stochastic control problems, the Hamiltonian usually writes H(x, p, P ) =

max
α∈A

{−b(x, α) · p − trace(a(x, α)P ) + f(x, α) }. So recalling the definition of the cor-

responding dual problem (D∨), one can see that the ergodic constant c that is given by

Theorem 4.4.2 is the smallest one, in the sense that: if there exists an other solution

(c̃, ũ(·)), then necessary c ≤ c̃. This is in line with the classical results on viscous er-

godic Bellman equations for which one usually expects infinitely many possible ergodic

constant (and solutions) but all larger than the critical (smallest) one; see [97, 104].

4.4.4 The manifold setting

A similar result holds in the case when we consider, instead of Rm, a non-compact

complete and connected smooth Riemannian manifold M of dimension m (see [17]).

Indeed most of the results in §4.2.3.2 and that we borrowed from [42] are still valid in

the case of a Riemannian manifold, following the results in [43]. It is however more

convenient (following [43]) to deal with second-order elliptic operators in the divergence

form

La,bφ(x) := div(a(x)∇φ(x)) + b(x) · ∇φ(x), φ ∈ C∞
0 (M)

where b(x) is a Borel-measurable vector field on M , a(x) is non-negative operator on

TxM that is Borel-measurable in x, ” · ” denotes the inner product in TxM , and div

is divergence with respect to the Riemannian volume dx, that is, for each function

φ ∈ C∞
0 (M), one has the equality∫

M

φ divv dx = −
∫
M

∇φ · v dx.
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We recall the operator L defined earlier in (4.3.2) and we denote it by

La,bφ(x) = trace(a(x)D2φ(x)) + b(x) · ∇φ(x),

and the set Ma,b
ell analogous to (4.2.24) but that we define now on the manifold M by

Ma,b
ell :=

{
µ | µ a probability measure on M satisfying L∗

a,bµ = 0
}
. (4.4.16)

where L∗
a,bµ = 0 is understood in the distribution sense, that is,∫

M

La,bφ dµ = 0, ∀φ ∈ C∞
0 (M),

provided µ is a locally finite Borel measure on M and La,bφ ∈ L1(M,µ), ∀φ ∈ C∞
0 (M).

When the coefficients aij and bi satisfy assumption (A2), we have

La,b = La,b0 , where bi0 = bi − ∂ja
ij,

La,b = La,b1 , where bi1 = bi + ∂ja
ij,

(4.4.17)

that is, both representations are equivalent and their coefficients satisfy the same local

conditions. Note however that when dealing with stochastic differential equations, the

Ito form leads to the non-divergent elliptic operator La,b, whereas the Stratonovich form

(see [101]) leads to the elliptic operator in divergence form La,b.

Remark 4.4.5. It is immediate to see that, using (4.4.17), our previous results in Rm

are still valid when we consider an operator in divergence form.

Let us consider the operator La,b where we drop the dependency on the coefficients

a and b, but which depends now on the parameters α ∈ A as previously defined. We

then write Lα and that we define by

Lαφ(x) := div(a(x, α)∇φ(x)) + b(x, α) · ∇φ(x), φ ∈ C∞
0 (M). (4.4.18)

Similarly, we use the notation Mα
ell to refer to (4.4.16) where measures satisfy L∗

αµ = 0.

We also recall A being the set of measurable functions α(·) : M → A, and Lα is

defined as in (4.4.18) where instead of α we have α(x).

The following lemma is a collection of results from [43] which are analogous to those

in §4.2.3.2. It allows us then to justify the results in §4.4 when in the setting of manifolds

and using the operator Lα as in (4.4.18).
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Lemma 4.6. Let M be a non-compact complete and connected smooth Riemannian

manifold of dimension m. Assume a, b satisfy conditions (A1), (A2) and (A3) in local

coordinates. The following statements hold true.

1. (Existence and uniqueness) If in addition, for each α(·) ∈ A, there exists a non-

negative compact8 function V [α] ∈ C2(M) (a ’Lyapunov function’) such that

lim
|x|→∞

V [α](x) = +∞, lim
|x|→∞

LαV [α](x) = ∞ (4.4.19)

in the following sense: for each R > 0, there exists a compact set KR such that

LαV [α](x) ≤ −R for x /∈ KR,α. Then the set Mα
ell is a non-empty singleton, i.e.,

there exists a unique invariant probability measure satisfying L∗
αµα = 0.

2. (Regularity) The measure µα given in (i) enjoys the same properties as those in

Theorem 4.2.5.

3. (Closed extension) There exists a closed extension (Lµα
α , D(Lµα

α )) of (Lα, C
∞
0 (M))

generating a sub-Markovian contractive C0-semigroup on L1(M,µ). Moreover,

Theorem 4.2.8 is still valid when replacing Rm with M .

Proof of Lemma 4.6. Statement (i) is a consequence of [43, Theorem 5.7 & Example

5.1], and was obtained in [41, 44]. Statement (ii) is [43, Theorem 2.1]. And statement

(iii) is [43, Theorem 2.3 & Theorem 2.8].

Remark 4.4.6. As noted in [41, Remark 2.3], if M has Ricci curvature bounded from

bellow, a Lyapunov function can be of the form r(x) = d(x, o)k defined outside the set

of its singularities, and where o is a fixed point in M and d(· , ·) is the distance in M .

We refer to [75, Chap. IX, §6] for further details. See also [41] and references therein.

Armed with this Lemma, we can then perform the same duality procedure using the

material of §4.2.1 and recover analogous results to Theorems 4.4.1 and 4.4.2.

However, we are lacking information on the moments of the invariant measure as

in Lemma 2.3.1 and also Liouville type results [22] when in the setting of manifolds.

Therefore in what follows, we only provide an existence result for a solution to an ergodic

HJB equation on a manifold M , and hope we can tackle the remaining questions in a

future work.

8A function V on M is said to be compact if the sets {V ≤ c}, c ≥ 0, are compact. When M is a
non-compact manifold and denoting |x| = dist(x, o), where o ∈ M is a fixed point, then a continuous
function V is compact if and only if V (x) → +∞ when |x| → +∞.
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Let us recall assumption (A*) which states that the domain of the closed extension

is nonempty and does not depend on the parameters α, i.e. there exists α such that

D(Lµα
α ) = D(Lµα

α ), for all α ∈ A. We also recall ⟨g(·), µ⟩ :=
∫
M
g(x)dµ(x).

The following is the manifold case analogue of Theorems 4.4.1 and 4.4.2.

Theorem 4.4.3. Let M be a non-compact complete and connected smooth Riemannian

manifold of dimension m. Assume a, b satisfy conditions (A1), (A2) and (A3) in local

coordinates, (A*) holds and there exists a Lyapunov function (4.4.19) as in Lemma

4.6(i). If the primal problem

min
q∈M+(M)

{
min
α(·)∈A

⟨f(· ,α(·)), q⟩, s.t. 1− ⟨1, q⟩ = 0 and q ∈ Ker(L∗
α)

}
admits a solution (µα◦ ,α◦(·)), then for any r ∈ [1,∞) such that f(· ,α◦(·)) ∈ Lr(M,µα◦),

there exists (c, u(·)) ∈ R×W r,2
loc (M) solution to

min
α∈A

{−div(a(x, α)∇u(x))− b(x, α) · ∇u(x) + f(x, α)} = c, a.e. in M.

Moreover, the ergodic constant is defined by c = ⟨f(· ,α◦(·)), µα◦⟩ and α◦ is such that

α◦(x) ∈ argmin
α∈A

{−div(a(x, α)∇u(x))− b(x, α) · ∇u(x) + f(x, α)}, a.e. in M.

Finally, the same holds when we have a max (respec. argmax) instead of a min (respec.

argmin).

Proof. The duality procedure described earlier remains valid in the manifold setting.

We conclude using Theorem 4.2.2 (i), the calmness property proved in Lemma 4.2,

together with the optimality conditions as we did in the proof of Theorem 4.4.1.

Obviously, with the same proof as in Lemma 4.2, one can show that the primal

problem in the above theorem admits a solution provided f is integrable w.r.t µ. This

integrability condition can be handled if one has an information on which are the mo-

ments of the invariant measure µ that are finite, and hence can make an assumption

on the growth of f as we did in (A5). This is also the reason why the existence result

in this setting is restricted to W r,2 with r such that f ∈ Lr(M,µ). Indeed, this latter

condition comes from Theorem 4.2.8 and was not needed in our previous results in §4.4,
since we have in hand Lemma 2.3.1.
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4.4.5 On the ergodic constant

In this subsection, we consider the particular case where the diffusion matrix (aij)

is the identity Im and we shall be interested in comparing the ergodic constants of two

HJB equations when the vector field b and the function f vary. More precisely, we are

given the two ergodic HJB equations:

−∆u(x) + min
α∈A

{−b1(x, α) · ∇u(x) + f(x, α) } = U, a.e. x ∈ Rm

−∆v(x) + min
α∈A

{−b2(x, α) · ∇v(x) + g(x, α) } = V, a.e. x ∈ Rm
(4.4.20)

whose respective solutions (insured by Theorem 4.4.1) are (U, u(·)) and (V, v(·)). We

have in addition (again using Theorem 4.4.1) the existence of α1(·) and α2(·) such that

the ergodic constants are represented by

U = ⟨f(· ,α1(·)) , µ⟩ and V = ⟨g(· ,α2(·)) , ν⟩. (4.4.21)

where µ and ν are the invariant probability measures corresponding to the adjoint

operator L∗
α1

and L∗
α2
, respectively. And our aim is to provide an estimate on |U − V |

in terms of the data. Before we do so, we will need the following result borrowed from

[40, p. 171].

Lemma 4.7. Let µ and ν be two probability solutions to (4.2.22) with a diffusion matrix

A = Im the identity, and with locally bounded Borel coefficients b1 and b2, respectively,

i.e. L∗
Im,b1

µ = 0 and L∗
Im,b2

ν = 0. Suppose that

(H.1) |b1 − b2| ∈ L2(Rm; ν),

(H.2) at least one of the following two conditions is fulfilled:

(a) (1 + |x|)−1|b1(x)| ∈ L1(Rm; ν)

(b) there exists a function V ∈ C2(Rm) such that LIm,b1V (x) ≤MV (x) for all x

and some M > 0 and

lim
|x|→+∞

V (x) = +∞,
(b1 − b2) · ∇V

1 + V
∈ L1(Rm; ν),

(H.3) µ and ν have second moments,

(H.4) the measure µ satisfies the logarithmic Sobolev inequality with constant C.

Then

∥µ− ν∥2 ≤ C

2

∫
Rm

|b1 − b2|2 dν. (4.4.22)
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In case (ii) in (H.2), the estimate (4.4.22) holds on a smooth Riemannian manifold

(instead of Rm) provided that the condition lim
|x|→+∞

V (x) = +∞ is replaced by the re-

quirement that the sets {V ≤ R} are compact.

Proof of Lemma 4.7. The estimate (4.4.22) is [40, Corollary 4.5.9, p. 171] and is based

on an estimate in [40, Theorem 4.5.8, p. 171].

Remark 4.4.7. Note that our standing assumptions already guarantee the fulfillment

of (H.1, H.2(i), H.3) above. If moreover we strengthen assumption (A4) and consider

instead

Aγ. (b(x)− b(y)) · (x− y) ≤ −γ|x− y|2 for some γ > 0 and all x, y ∈ Rm,

where b is again Borel locally bounded vector field on Rm, and (Aγ) is satisfied uniformly

in α, then (H.2(ii)) is satisfied with V (x) = |x|2 and (H4) is satisfied with C = 2/γ (see

[40, Theorem 5.6.36, p. 225]).

Proposition 4.4.2. Assume the two ergodic HJB equations (4.4.20) fall in the frame-

work of Theorem 4.4.1 where assumption (A4) is now replaced with (Aγ). Then there

exists a constant M > 0 such that we have the following

|U − V | ≤ ∥f − g∥L1(Rm;ν) +M ∥b1 − b2∥1/2L2(Rm;ν) (4.4.23)

Such an estimate is important for applications to problems in singular perturbations

and homogenization, and it is a refinement of [26, Proposition 4.4].

We recall the weighted norm, for 1 ≤ p < +∞, defined (when exists) by

∥f∥Lp(Rm;ν) :=

(∫
Rm

|f(x)|p dν(x)
) 1

p

Proof of Proposition 4.4.2. For simplicity of notation, we shall drop in the sequel the

dependency on α.

Let us consider the representation formula (4.4.21) of U and V , we have

U − V = ⟨f, µ⟩ − ⟨g, ν⟩

= ⟨f, µ− ν⟩+ ⟨f − g, ν⟩.

And observe that

⟨f − g, ν⟩ ≤
∫
Rm

|f(x)− g(x)| dν(x) = ∥f − g∥L1(Rm;ν).
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For the other term, using Cauchy-Schwarz inequality, and denoting by dµ = ρµdx and

dν = ρνdx the respective densities w.r.t. Lebesgue measure, we have

⟨f, µ− ν⟩ =
∫
Rm

f(x)
(
ρµ(x)− ρν(x)

)
dx

≤
(∫

Rm

|f(x)|2 |ρµ(x)− ρν(x)| dx
) 1

2
(∫

Rm

|ρµ(x)− ρν(x)| dx
) 1

2

≤ Kf

(∫
Rm

(
1 + |x|d

)2 |ρµ(x)− ρν(x)| dx
) 1

2

∥µ− ν∥1/2

where in the last inequality, we have used assumption (A5). We can now use the estimate

(4.4.22) and get

⟨f, µ− ν⟩ ≤M ∥b1 − b1∥1/2L2(Rm;ν)

where M :=
Kf

γ

(∫
Rm

(
1 + |x|d

)2 |ρµ(x)− ρν(x)| dx
) 1

2
and γ is as in assumption (Aγ)

(see Remark 4.4.7).

4.5 Ergodic Mean-Field Games

4.5.1 Introduction

This section is devoted to the problem of existence and uniqueness of solutions to

ergodic mean-field games (MFG) in the whole space Rm with unbounded data satisfying

subexponential growth. Such a problem writes as

Find (c, u, µ) ∈ R×X (Rm)× P(Rm), s.t.:

H(x,∇u(x), D2u(x), µ) = c and − L∗
α[u,µ]µ = 0

(4.5.1)

where X is a functional space (part of the unknowns), P is the set of probability measures

and the Hamiltonian is of one of the two forms

H := min
α∈A

{−Lαu(x) + f(x, α, µ) }, or H := max
α∈A

{−Lαu(x) + f(x, α, µ) },

the diffusion operator Lα is a linear operator given by

Lαφ(x) := trace
(
a(x, α)D2φ(x)

)
+ b(x, α) · ∇φ(x)



218 Section 4.5 - Ergodic Mean-Field Games

and its adjoint L∗
α is then

L∗
αµ(x) = trace

(
D2(a(x, α)µ(x))

)
− div

(
b(x, α)µ(x)

)
.

The second equation in (4.5.1) is nothing but −L∗
αµ = 0 where we anticipate the de-

pendence of α on (u, µ). The (control) parameters α are in a compact set A of Rk for

some k > 0. The first equation is a Hamilton-Jacobi-Bellman equation (HJB for short)

and the second one is a Fokker-Planck-Kolmogorov equation (FPK for short).

We denote by M(Rm) (respec. M+(Rm)) the space of totally finite signed (respec.

non-negative) Borel measures on Rm. With slight abuse of notation, an element µ ∈
M(Rm) will denote either a measure or a density (when exists). When µ is absolutely

continuous with respect to (w.r.t) Lebesgue measure dx; we write µ ≪ dx. For some

d ≥ 1, we denote by Md(R
m) the subset of measures with finite d-moment. We equip

M(Rm) with the Total-Variation (TV) norm. And we denote by P(Rm) the subset of

probability measures. We write shortly for any measurable function g : Rm → R and

µ ∈ M(Rm)

⟨g(·) , µ⟩ =
∫
Rm

g(x)dµ(x).

We recall that the differential operator Lα can be interpreted as the infinitesimal

generator of the controlled stochastic process

dXt = b(Xt, αt)dt+
√
2ϱ(Xt, αt)dBt (4.5.2)

where Bt is a Wiener process while f is the running cost of a stochastic control problem.

Note that (4.5.2) should be understood in its weak sense (see e.g. [114, 115]).

Throughout this section, we will make the following assumptions and refer to them

wherever it is needed.

A0. The dimension m ≥ 2.

A1. (i) a = (aijα ) is a continuous mapping (uniformly in α) on Rm such that a(x, α) =

ϱ(x, α)ϱ(x, α)⊤ where ϱ is a continuous in x (uniformly in α) m×m1 matrix

function (for some m1 ≥ m) and Borel-measurable in α,

(ii) b = (biα) : R
m × A→ Rm is a locally bounded Borel-measurable vector field.

A2. For p > m, aij(·, α) ∈ W p,1
loc (R

m) and bi(·, α) ∈ Lp
loc(R

m), uniformly in α ∈ A.

A3. There exist Λ ≥ Λ > 0 such that ∀ x, ξ ∈ Rm, Λ∥ξ∥2 ≤ ξa(x, α) · ξ ≤ Λ∥ξ∥2,
uniformly in α ∈ A, i.e. (aij) is positive, uniformly bounded and nondegenerate.
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A4. lim
|x|→∞

sup
α∈A

b(x, α) · x = −∞ (Recurrence condition).

A5. f : Rm × A×M(Rm) → R is such that

(i) x 7→ f(x, α, µ) is Borel-measurable on Rm,

(ii) α 7→ f(x, α, µ) is continuous on A ⊂ Rk,

(iii) f(· , α, µ) ∈ L1(Rm; dµ), , uniformly in α, for d ≥ 1 and for every µ ∈
M+

d (R
m) such that µ≪ dx,

(iv) µ 7→ f(x, α, µ) has a Fréchet (or strong) directional derivative at every µ ∈
M+

d (R
m) such that µ≪ dx, i.e.

f(x, α, µ+ h) = f(x, α, µ) +Dµf(x, α, µ)[h] + o(∥h∥), ∀h ∈ Md(R
m)

where Dµf(x, α, µ)[h] is a bounded linear continuous functional of h and ∥h∥
is its TV-norm.

(v) The Fréchet directional derivative of f in µ satisfies on the subset M+
d (R

m),

uniformly in α, and for every µ ∈ M+
d (R

m) such that µ≪ dx

⟨Dµf(· , α, µ)[h] , µ ⟩ ≤ 0, ∀h ∈ M+
d (R

m).

A6. ∃Kb > 0 and β ∈ [0, d] such that |b(x, α)| ≤ Kb(1 + |x|β) for all x ∈ Rm, α ∈ A.

Whenever µ is an absolutely continuous measure on Rm, we shall identify it with its

Lebesgue density.

Notation. We shall keep the same notation f(x, α, µ) whether f depends on µ in

a local way, i.e. when we have f(x, α, µ(x)) defined on Rm ×A×R, or f depends on µ

in a non-local way, i.e. when we have f(x, α, µ) defined on Rm × A ×M(Rm), having

in mind that one can represent (in the local case) µ(x) as a convolution with a Dirac

measure with unit mass concentrated at zero, i.e. δ0 ∗ µ(x).

Assumption (A4) is reminiscent of the existence of a Lyapunov function w ∈ C2(Rm)

s.t. lim
|x|→∞

w(x) = +∞ and lim
|x|→∞

Lw(x) = −∞; see Corollary 4.2.2.

In assumption (A5-(iii)), what we are asking is a polynomial growth of f in x of

order at most d, since µ here is taken among Md(R
m). This is in fact a subexponential

growth since d ≥ 1 can be arbitrarily chosen. One can still handle an exponential growth

provided assumption (A4) is strengthened (see Remark 4.2.2).
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With assumption (A5-(iv)), µ 7→ f(x, α, µ) is Fréchet-differentiable and hence there

also exists Gateaux (directional) derivative and we have

lim
t↓0

t−1(f(x, α, µ+ th)− f(x, α, µ)) = Dµf(x, α, µ)[h], ∀h ∈ Md(R
m).

In particular, µ 7→ f(x, α, µ) is continuous in the TV-norm.

Note that assumption (A5-(v)) is reminiscent of (but not exactly) the monotonicity

assumption discovered by Lasry and Lions [122], usually present in the MFG literature

[54, 55] and which writes (with our notations) as∫
Rm

(
f(x, α, µ1)− f(x, α, µ2)

)
d(µ1 − µ2)(x) ≤ 0, ∀µ1, µ2 ∈ Md(R

m). (M)

Setting µ1 = µ+h and µ2 = µ, and assuming f is Fréchet differentiable in the µ-variable,

then one gets∫
Rm

(
f(x, α, µ+ h)− f(x, α, µ)

)
dh(x) = ⟨Dµf(· , α, µ)[h] , h ⟩+ o(∥h∥2)

and condition (M) hence implies

⟨Dµf(· , α, µ)[h] , h ⟩ ≤ 0, ∀µ, h ∈ Md(R
m). (M’)

We shall discuss this later in Remark 4.5.1.

Finally, it is worth mentioning that by requiring in (A5-(i)) the function f to be

measurable only in x, we bypass regularity requirements of the measure µ on x in the

case f locally depends on µ.

The main result (see Theorem 4.5.1 & Theorem 4.5.2) can be informally stated as:

Under assumptions including (A0-A6), the following are equivalent

(I) There exists a pair (q◦,α◦) such that

(q◦,α◦) ∈ argmin
q∈M+

d (Rm)
α(·)∈A

{
⟨ f(· ,α(·), q) , q ⟩ , s.t.: 1− ⟨1, q⟩ = 0 and q ∈ Ker(L∗

α)
}
,

where A is the set of measurable functions from Rm to A.
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(II) There exists (c◦, u◦, q◦) ∈ R ×W r,2
loc (R

m) ×W s,1
loc (R

m) for any r ≥ 1, s > m, and

there exists a measurable function α◦(·) : Rm → A that solve the coupled system− trace
(
a(x,α◦(x))D

2u◦(x)
)
− b(x,α◦(x)) · ∇u◦(x) + f(x,α◦(x), q◦) = c◦

− trace
(
D2(a(x,α◦(x))q◦(x))

)
+ div

(
b(x,α◦)q◦(x)

)
= 0, a.e. in Rm

and such that

(i) the constant c◦ is defined by c◦ = ⟨f(· ,α◦(·), q◦), q◦⟩,

(ii) the function α◦(·) satisfies

α◦(x) ∈ argmin
α∈A

{−Lαu◦(x) + f(x, α, q◦)}, a.e. x ∈ Rm.

We will show in particular (see Corollary 4.5.1) that in the case where f is separable,

i.e. f(x, α, q) = g(x, α)+ k(x, q), statement (I) above is satisfied, and hence there exists

a solution to the MFG system as in (II). In the non-separable case, the same result

holds (see Corollary 4.5.2) under additional assumptions (mainly smoothness of the

coefficients) that we will later make precise.

The theory of Mean-Field Games started with the seminal work of [95, 120, 121, 122].

Since then there is a huge literature on MFGs in general and those of ergodic type

in particular, with mainly two approaches: PDEs or probability, but also with many

connections with control theory, differential games and optimal transport. For ergodic

MFGs, we would like to refer to [61] and the many references therein. However many of

the existing results consider bounded domains (mainly the torus), and very few treat the

problem in the whole space. We refer to [24, 25] for the linear-quadratic setting where

the solvability of the MFG system is reduced to the solvability of an algebraic Riccati

equation and a Sylvester equation which also allow to get (at least in some examples)

explicit solutions. In [60], existence of classical solutions is proved in the whole space

Rm for ergodic (stationary) MFGs of the form − ε∆u+H(Du) + c = g(m) + V (x)

− ε∆q − div(qDH(Du)) = 0, in Rm

where the potential V is assumed to be coercive and g is a local coupling term. The

Hamiltonian H also satisfies some growth assumptions. Their approach is variational

based on the analysis of the non-convex energy associated to the system. They have
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also studied the vanishing viscosity limit, i.e. when ε → 0. Another work in this same

vein is the one in [66] where the coupling term is local, decreasing and unbounded

satisfying some growth conditions. In this case, existence and non-existence results are

shown using Sobolev regularity of the invariant measure and a blow-up procedure, and

additional results in the case where the coupling term is local and increasing are also

proven. In the latter references, the setting is (with our notations) a = I identity matrix,

b(x, α) = α, f(x, α, q) = H∗(α) − V (x) − g(q) where H∗ is Legendre transform of H

which is usually assumed to behave as a power H(p) = 1
γ
|p|γ, γ > 1 (and hence also

H∗). Another difference is that we are interested in weak solutions whereas they are

concerned with classical solutions. Another recent result with a setting that is closer

to ours is the one in [6]. Their setting is the one of (ergodic) stochastic control: the

drift b = b(x, α) and the diffusion term ϱ = ϱ(x) in (4.1.2) are locally Lipschitz with an

affine growth and local non-degeneracy, and the running cost f satisfies some growth

conditions. They proved existence of MFG solutions defined as:

η ∈ C([0,+∞),P(Rm)) for which there exists v· such that

dXt = b(Xt, vt) + ϱ(Xt)dWt,

with Law(Xt) = ηt, X0 = x

and Jx(U, η) ≥ Jx(v, η) for all admissible controls U where

Jx(U, η) = lim sup
T→+∞

1

T
Ex

[∫ T

0

f(Xt, Ut, ηt)dt

]
.

is the objective function of the ergodic stochastic control problem.

When v above takes values in P(A), the MFG solution is said to be relaxed, and when

it takes values in A, the solution is said strict. Their approach is based on the ergodic

control formulation and relies on regularity of set-values maps corresponding to ergodic

occupation measures and invariant measures together with an application of Kakutani-

Fan-Glicksberg fixed point theorem and convex analytic tools.

Our method seems to be new in this regard. It relies on optimization on abstract

Banach spaces, taking advantage of existing results in the theory of Dirichlet forms (and

diffusion operators). We shall also work with the Total-Variation norm (and not the

Wasserstein metric as it is customary); see Remark 4.5.3. Finally, let us mention that

our assumptions concern the coefficients of the diffusion operator (or the underlying

stochastic differential equation) rather than the structure of the Hamiltonian.
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The following is organized as follows. In Section 4.5.2 we prove preliminary results

that will be needed throughout this section. In particular, we will define the primal

and dual optimization problems and also prove calmness property which plays a key

role in the sequel. We will then be ready in Section 4.5.3 to state and prove the main

existence and uniqueness results for the ergodic MFG system.

4.5.2 Preliminary results

Let us denote again by M(Rm) the space of totally finite signed Borel measures on

Rm and equipped with the Total Variation norm9 ∥µ∥ = µ+(Rm) + µ−(Rm), where

µ = µ+ − µ− is the Jordan decomposition of µ. It is known that (M(Rm), ∥ · ∥) is a

Banach space (see e.g. [74, §IV.2.16]), and hence also a locally convex topological vector

space when equipped with its norm topology.

We also denote by Md(R
m) (respectively, M+

d (R
m)) the subset of signed (resp. non-

negative) totally finite Borel measures with finite moments of order d, where we recall

d is the growth order of f as in assumption (A5). And since the latter two subsets are

closed, they are also Banach spaces.

Let us define the duality product in Md(R
m) by

⟨h(·), µ⟩ =
∫
Rm

h(x)dµ(x), for all µ ∈ Md(R
m)

where h is a Borel measurable function with at most a polynomial growth of order d.

Recall that a linear functional h on the normed space (M(Rm), ∥ · ∥) is continuous
if and only if it is bounded on the unit ball, i.e. if

∥h∥∗ := sup
∥µ∥≤1

⟨h(·), µ⟩ <∞

And so, the topological dual space (M(Rm))∗ (i.e. set of continuous linear functionals,

equipped with the dual norm ∥·∥∗) is again a Banach space. It is easy to see that Borel-

measurable functions with at most a polynomial growth of order d are in (Md(R
m))∗.

It can be quite hard to deal with (M(Rm))∗ which can indeed be seen as the bidual

of the space of continuous and bounded functions. But we will see that we can avoid

these difficulties provided we find a subset of the latter, which will turn out to be more

convenient to work with. We refer the interested reader to the work of S. Kaplan on

the bidual of the space of continuous functions [106, 107].

9To check it is a norm, the only technical step is in the triangle inequality; to prove that ∥µ+ ν∥ ≤
∥µ∥+ ∥ν∥ we need to consider a Hahn decomposition Rm = A ⊎B for µ+ ν.
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We denote by C∞
0 (Rm) the set of all real-valued, infinitely differentiable functions

on Rm with compact support. And we define as usual W p,k(Rm), for p ≥ 1, k > 0, the

Sobolev space of all functions on Rm with generalized derivatives up to order k in Lp(dx),

where dx denotes Lebesgue measure on Rm. W p,k
loc (R

m) denotes the corresponding local

Sobolev space, i.e. f ∈ W p,k
loc (R

m) if ζf ∈ W p,k(Rm) for all ζ ∈ C∞
0 (Rm).

We shall also need an assumption that will play a crucial role in the validity of our

method: besides the standing assumptions (A0-A6), we denote again by the operator

(Lα, D(Lα)) its closed extension (L
µ

A,b, D(L
µ

A,b)) as given by Theorem 4.2.7 and Theorem

4.2.8 and we assume the following holds true

(A*) The domain D(Lα) of the closed extension is nonempty and is independent of α.

Such an assumption can be encountered for example in [85, §III.6, p. 130]. It means

that there exists α̃(·) ∈ A such that for all α(·) ∈ A, one has D(Lα) = D(Lα̃) , and Lα̃

falls in the framework of the previous sections, in particular it satisfies Theorem 4.2.8.

The nonemptiness assumption is trivial otherwise the PDE problem (4.5.1) does not

make sense. We will hereafter denote by D(L0) the later domain. We will see that the

functional space X is a subset of D(L0) and we will shortly after make it precise.

Before we go any further, let us comment in the following remark on our assumption

(A5-(v)).

Remark 4.5.1. There is a twofold difference between (M’) and our assumption (A5-

(v)): firstly, the choice of measures in (M’) is the whole space Md(R
m), whereas in our

case we require the assumption to hold only in the positive cone10 M+
d (R

m); secondly,

the averaging ⟨ · , h ⟩ in (M’) is taken with respect to the same measure h as in the

Fréchet derivative Dµf(x, α, µ)[h], whereas in our case, the averaging ⟨ · , µ ⟩ is taking

w.r.t. the measure µ where the derivative has been computed. This difference makes it

difficult to compare the two conditions. However, in the case f depends linearly on the

measure µ, e.g.

f(x, α, µ) =

∫
Rm

K(x− y, α) dµ(y),

then the Fréchet derivative Dµf(x, α, µ)[h] = f(x, α, h) is independent of µ. Hence, our

condition (A5-(v)) requires ⟨f(· , α, h) , µ⟩ ≤ 0 for all h, µ ∈ M+
d (R

m), while condition

(M’) writes as ⟨f(· , α, h) , h⟩ ≤ 0 for all h ∈ Md(R
m). Therefore, in the case of a

linear dependency on the measure, (A5-(v)) is stronger than (M’) when restricted to the

10In (A5-(v)), we ask ⟨Dµf(· , α, µ)[h] , µ ⟩ ≤ 0 to hold ∀h, µ ∈ M+
d (R

m) s.t. µ ≪ dx. But in this
ongoing discussion, we forget deliberately about absolute continuity of µ w.r.t. Lebesgue measure in
order to focus rather on the structure of the assumption when compared to (M’).
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positive cone M+
d (R

m). If we assume in addition that the kernel K(· , α) is odd, then

condition (A5-(v)) implies (M’). Indeed, writing h = h+−h− the Jordan decomposition

of h, one has as (we drop the dependency on α)∫∫
K(x− y) dh(y)dh(x) =

∫∫
K(x− y)dh+(y)dh+(x) +

∫∫
K(x− y)dh−(y)dh−(x)

−
∫∫

K(x− y)dh+(y)dh−(x)−
∫∫

K(x− y)dh−(y)dh+(x).

Assuming K to be odd, the last term can be written as∫∫
K(x− y) dh−(y)dh+(x) = −

∫∫
K(y − x) dh−(y)dh+(x)

= −
∫∫

K(x− y) dh−(x)dh+(y), (i)

= −
∫∫

K(x− y) dh+(y)dh−(x), (ii)

where in line (i) we exchanged the notations of the mute variables x and y, and then in

line (ii) we exchanged the order of the two integrals. Substituting the latter term in the

previous equality, it cancels out and condition (M’) writes as∫∫
K(x− y)dh(y)dh(x) =

∫∫
K(x− y) dh+(y)dh+(x)+

∫∫
K(x− y)dh−(y)dh−(x)

≤ 0.

Therefore, noting that h+, h− ∈ M+
d (R

m), one gets: (A5-(v)) implies (M’).

A nonlinear version of this example can be

f(x, α, µ) = F

(
x, α,

∫
Rm

K(x− y, α) dµ(y)

)
.

Let us denote by D3 the derivative in the third variable of F : Rm ×A×R→ R. Then

one gets

Dµf(x, α, µ)[h] =

∫
Rm

D3F

(
x, α,

∫
Rm

K(x− z, α) dµ(z)

)
K(x− y, α) dh(y)

=

∫
Rm

ϕ(x, α, µ)K(x− y, α) dh(y)
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where ϕ is the term coming from D3F in the previous line. In this case, assumption

(M’) writes as:∫∫
R2m

[ϕ(x, α, µ)K(x− y, α)] dh(y) dh(x) ≤ 0, ∀h ∈ Md(R
2m),

and assumption (A5-(v)) is now:∫∫
Rm

[ϕ(x, α, µ)K(x− y, α)] dh(y) dµ(x) ≤ 0, ∀h, µ ∈ M+
d (R

m).

In this example, it is sufficient to have the term between brackets non-positive almost

everywhere to satisfy assumption (A5-(v)) since h, µ are non-negative measures. But

this is not sufficient to guarantee assumption (M’) since h can be any (signed) measure.

We refer to [20, §2.3] for various other examples with different interpretations on the

convolution kernel K considered above.

4.5.2.1 An exchange property

The following proposition allows us to exchange the order of the minimization (or

maximization) with the integration with respect to a measure q ∈ M+
d (R

m), i.e. non-

negative totally finite Borel measure with finite moment of order d.

Proposition 4.5.1. Let f satisfies (A5). The following holds for any q ∈ M+
d (R

m)∫
Rm

min
α∈A

f(x, α, q) dq(x) = min
α(·)∈A

∫
Rm

f(x,α(x), q) dq(x) (4.5.3)

where A is a compact subset of Rk, for some k > 0, and A is the set of measurable

functions α(·) : Rm → A. And the same holds true with max instead of min.

Remark 4.5.2. In the context of stochastic control, the set A needs to be the one of

progressively measurable functions. In fact, these are the admissible controls.

Proof. We refer to Proposition 4.4.1 where the same proof holds in the present setting,

provided we let q ∈ M+
d (R

m) be arbitrarily fixed and f : Rm × A × M+
d (R

m) → R

satisfies (A5-(i,ii,iii)).

The exchange property proved in Proposition 4.4.1 will be much needed in the se-

quel. It insures that we can exchange the minimization over the parameters α and the

duality product in Md(R
m) provided we define the second argument in f as measurable
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functions α(·) ∈ A instead of vectors α ∈ A, that is

min
α(·)∈A

⟨ f(· ,α(·), q) , q ⟩ = ⟨ min
α∈A

f(· , α, q) , q ⟩

4.5.2.2 The primal problem

In what follows, we will first deal with the case where the Hamiltonian is given by

H(x,∇u(x), D2u(x), q) = min
α∈A

{−Lαu(x) + f(x, α, q) }.

Using the notation a ∧ b = min(a, b), a ∨ b = max(a, b), we will refer to the primal

problem by (P∧) and its dual by (D∧). We will then recover the case where we have in

the Hamiltonian a max instead of a min, and use the notation (P∨) and (D∨).

We state our primal problem as follows

min
q∈M+

d (Rm)

{
min
α(·)∈A

⟨f(· ,α(·), q), q⟩, s.t.: 1− ⟨1, q⟩ = 0 and q ∈ Ker(L∗
α)

}
(P∧)

where we recall ⟨f(· ,α(·), q), q⟩ =
∫
Rm f(x,α(x), q)dq(x). For the convenience of the

reader, we will use the same notation as in §4.2.1, that is,

X = Md(R
m) and Q = M+

d (R
m)

G1 : X → R, s.t. G1(q) = 1− ⟨1, q⟩

G2 : X → X, s.t. G2(q) = q

G = (G1, G2) and Y = R×X

K1 = {0}, K2(α) = Ker(L∗
α) and Kα = K1 ×K2(α) ⊂ Y

The primal problem then writes

min
q∈Q

{
min
α(·)∈A

⟨f(· ,α(·), q), q⟩, s.t.: G(q) ∈ Kα

}
(P∧)

Setting F (G(q),α) := IKα(G(q)) the indicator function which is 0 if G(q) ∈ Kα and

+∞ otherwise, we can finally write the primal problem as

min
q∈Q

{
min
α(·)∈A

⟨f(· ,α(·), q), q⟩+ F (G(q),α)

}
. (P∧)
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In the case where the Hamiltonian is given by

H(x,∇u(x), D2u(x), q) = max
α∈A

{−Lαu(x) + f(x, α, q) }.

we write the primal problem in the form

min
q∈M+

d (Rm)

{
min
α(·)∈A

⟨−f(· ,α(·), q), q⟩, s.t.: 1− ⟨1, q⟩ = 0 and q ∈ Ker(L∗
α)

}
, (P∨)

that is,

min
q∈Q

{
min
α(·)∈A

⟨−f(· ,α(·), q), q⟩, s.t.: G(q) ∈ Kα

}
. (P∨)

Remark 4.5.3. The Total-Variation (TV) norm, although it is somehow dictated by

the results in §4.2.2, seems to be natural in regards to our primal problem (P∨) where

the constraint q ∈ Ker(L∗
α) is nothing but (4.2.22) in §4.2.3.2, that is requiring q to

be an invariant (stationary) measure. Therefore, there is no idea of ”transportation”

which the Wasserstein metric seems to capture the best. Roughly speaking, in optimal

transport, one seeks a transport plan (unknown) such that for a given initial measure, its

image with the transport plan matches a given target measure. Whereas in our case, one

seeks measures that remain invariant (in the sense (4.2.26)) w.r.t. to a given analogue

of the transport plan (known), that is, the C0-semigroup (Tt)t≥0 on L
1(Rm, µ) which has

L∗
α as a generator. And the latter invariance needs to hold for every t ≥ 0. In this

sense, one needs a stronger distance than Wasserstein and TV seems to be well suited.

Note also that the space of totally finite Borel measures on Rm is a Banach space when

equipped with TV norm (see e.g. [74, §IV.2.16]) which is the right setting for §4.2.1.

4.5.2.3 Calmness property

In this subsection we assume the function f(x, α, µ) to be separable, that is,

(B0) There exist g(· , ·) and k(· , ·) such that (A5) is satisfied and

f(x, α, q) = g(x, α) + k(x, q)

The next result shows that the primal problem enjoys calmness (see Definition 4.2.1)

and moreover admits a solution in the case (B0) holds. We shall later come back to the

more general case, that is when f is not separable.
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Lemma 4.8. Under the standing assumptions, the primal problem (P∧) is calm. If we

assume in addition (B0) to hold, then the problem admits an optimal solution (q◦,α◦).

The same also holds when the primal problem is (P∨).

Proof. We need to check that the value of the primal problem (P∧) is finite and that

the value function v(y) is subdifferentiable in 0. Then we prove existence of an optimal

solution (q◦,α◦) assuming (B0) to hold.

Step 1. (val(P∧) < +∞)

This is true since the constraints sets and the domain of the objective function are

nonempty. Indeed, using Theorem 4.2.6 (and Corollary 4.2.2), for every α ∈ A, there

exists an invariant probability measure q and hence (q,α) is an admissible solution.

Step 2. (∂v(0) ̸= ∅)
Using the above notations, let y ∈ Y such that y := (λ, z) where λ ∈ R and z ∈ X. We

define the value function v(y) as in §4.2.1, and we have

v(y) = inf
q∈Q

min
α(·)∈A

⟨f(· ,α(·)), q⟩, s.t. G(q) + y ∈ Kα

= inf
q∈Q

min
α(·)∈A

⟨f(· ,α(·)), q⟩+ IKα(G(q) + y)

≥ inf
q∈Q

min
α(·)∈A

{ ⟨f(· ,α(·)), q⟩+ IKα(G(q)) }+ inf
q∈Q

min
α(·)∈A

{IKα(G(q) + y)− IKα(G(q))}

where in the last inequality we used ”min(A + B) ≥ minA + minB”. Note that the

first term in the right hand-side is v(0) and hence, one gets, for any y ∈ Y

v(y)− v(0) ≥ inf
q∈Q

min
α(·)∈A

{IKα(G(q) + y)− IKα(G(q))} (4.5.4)

Recalling the definition of the subdifferential (see §4.2.1), one has

IKα(G(q) + y)− IKα(G(q)) ≥ ⟨y∗, y⟩Y ∗,Y for all y∗ ∈ ∂IKα(G(q)). (4.5.5)

It suffices then to have ∂IKα(G(q)) nonempty for any α(·) ∈ A, in order to show that

∂v(0) is nonempty. Hence, letting α(·) ∈ A be arbitrarily fixed, we first need to have

G(q) ∈ Kα, and noting that (recalling y := (λ, z) ∈ R×X)

IKα(G(q) + y)− IKα(G(q)) = I{0}(G1(q) + λ)− I{0}(G1(q))

+ IKer(L∗
α)(G2(q) + z)− IKer(L∗

α)(G2(q)),
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it suffices that the polar (negative dual) cones {0}− and
(
Ker(L∗

α)
)−

are nonempty,

since {0} and Ker(L∗
α) are nonempty, closed and convex cones (the same argument is

used when deriving the equivalent optimality conditions (4.2.7), (4.2.8) and (4.2.9) in

§4.2.1). This holds true, since {0}− = R and
(
Ker(L∗

α)
)−

= cl(range(Lα)) are nonempty.

Indeed, for z∗ ∈ X∗ to be in cl(range(Lα)) it suffices that there exists u ∈ D(Lα) such

that z∗ = Lαu. But D(Lα) = D(L0) is nonempty (thanks to (A*)), and hence there

exists z∗ = Lαu for u ∈ D(L0). So there exists y∗ = (λ∗, z∗) ∈ {0}−×
(
Ker(L∗

α)
)− ⊂ Y ∗

and y∗ depends on α(·) (in fact only z∗ depends on α(·)), satisfying (4.5.5).

To sum up, for any α(·) ∈ A, there exists q ∈ Q satisfying G(q) ∈ Kα (indeed

{q ∈ Q : G(q) ∈ Kα} = {µα} a singleton, as shown in §4.2.3.2), and moreover there

exists y∗ ∈ {0}− ×
(
Ker(L∗

α)
)−

satisfying (4.5.5). The set A being closed and recalling

(4.5.4), we conclude that there exists y∗ ∈ Y ∗ such that v(y) − v(0) ≥ ⟨y∗, y⟩, i.e.

∂v(0) ̸= ∅.

Step 3. (There exists an optimal solution)

Recall that the feasible set of our primal problem (P∧) is {q ∈ Q : G(q) ∈ Kα} = {µα}
a singleton, where µα ∈ Pd(R

m). Hence, (P∧) equivalently writes as

min
α(·)∈A

⟨f(· ,α(·), µα), µα⟩.

We proceed using a fixed-point approach: we first fix α1(·) ∈ A, hence also µα1 , and

then show that α2(·) ∈ argmin
α(·)∈A

⟨f(· ,α(·), µα1), µα1⟩ exists. The next step is then to con-

sider the corresponding unique invariant probability measure µα2 in the objective func-

tion, and repeat the process. We get a fixed point when α◦(·) ∈ argmin
α(·)∈A

⟨f(· ,α(·), µα◦), µα◦⟩.

Let α1(·) ∈ A be arbitrarily fixed, and let µα1 be its corresponding unique invariant

probability measure. Using (4.5.3) from Proposition 4.4.1, and assuming (B0), i.e. f is

separable, one has

min
α(·)∈A

⟨f(· ,α(·), µα1), µα1⟩

= ⟨min
α∈A

f(· , α, µα1) , µα1 ⟩

= ⟨min
α∈A

g(· , α) + k(· , µα1) , µα1 ⟩

= ⟨ k(· , µα1) , µα1 ⟩ +

∫
Rm

min
α∈A

g(x, α) dµα1(x)

The minimization problem is then reduced to a finite dimensional optimization problem

that is, to minimize g(x, α) over α ∈ A ⊂ Rk, for each x ∈ Rm. The function α 7→ g(x, α)
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being continuous over a compact set A, a minimizer αx to the latter finite dimensional

optimization problem exists. We then define α◦ : Rm ∋ x 7→ αx ∈ A a measurable

function, and we have α◦(·) ∈ argmin
α(·)∈A

⟨f(· ,α(·), µα1), µα1⟩. But α◦(·) is independent of

µα1 since it is obtained from the minimization of g(x, α) for α ∈ A. Hence, one gets

the desired fixed point by considering µα◦ which is the corresponding unique invariant

probability measure, and (µα◦ ,α◦) is an optimal solution for (P∧).

Step 4. (On the problem (P∨))

The same argumentation as in the previous steps remains valid when we deal with the

problem (P∨) since the only difference is in the sign in front of f , while the constraints

set is unchanged.

4.5.2.4 The dual problem

In order to deduce the corresponding dual problem, we follow a parametric (conju-

gate) duality scheme as in [46, §2.5.3, p. 107]. Therefore we embed the problem (P∧) in

a family of parameterized problems, where y ∈ Y is the parameter vector and consider

the function

ϕ(q, y) = min
α(·)∈A

{ ⟨f(· ,α(·), q), q⟩+ F (G(q) + y,α) } .

It is clear that when setting y = 0, we recover the objective function in (P∧).

Lemma 4.9. Under the standing assumptions, ϕ is lower semi-continuous.

Proof. We have q 7→ ⟨f(· ,α(·), q), q⟩ and y 7→ F (y,α) are lower semi-continuous (l.s.c),

and q 7→ G(q) is continuous. And y 7→ F (y,α) is l.s.c. if and only if Kα is closed, and

this holds in our setting.

We also consider the following (Lagrangian) function, L : X×Y ∗×A → R, analogue

to (4.2.2) and such that

L(q, y∗,α) := ⟨f(· ,α(·), q), q⟩+ ⟨y∗, G(q)⟩Y ∗,Y . (4.5.6)

Using the Legendre-Fenchel transform, we have

ϕ∗(q∗, y∗) = sup
q∈Q,y∈Y

{ ⟨q∗, q⟩+ ⟨y∗, y⟩ − ϕ(q, y) }

= sup
q∈Q,y∈Y

{
⟨q∗, q⟩+ ⟨y∗, y⟩ − min

α(·)∈A
{ ⟨f(· ,α(·), q), q⟩+ F (G(q) + y,α)}

}
= sup

q∈Q,y∈Y

{
max
α(·)∈A

{⟨q∗, q⟩+ ⟨y∗, y⟩ −
(
⟨f(· ,α(·), q), q⟩+ F (G(q) + y,α)

)
}
}



232 Section 4.5 - Ergodic Mean-Field Games

= max
α(·)∈A

{
sup

q∈Q,y∈Y
{ ⟨q∗, q⟩+ ⟨y∗, y⟩ −

(
⟨f(· ,α(·), q), q⟩+ F (G(q) + y,α)

)
}
}

= max
α(·)∈A

{
sup
q∈Q

{ ⟨q∗, q⟩ − ⟨f(· ,α(·), q), q⟩ − ⟨y∗, G(q)⟩ } +

+sup
y∈Y

{ ⟨y∗, G(q) + y⟩ − F (G(q) + y,α) }
}

= max
α(·)∈A

{
sup
q∈Q

{ ⟨q∗, q⟩ − L(q, y∗,α) + F ∗(y∗,α) }
}

= sup
q∈Q

{
⟨q∗, q⟩+ max

α(·)∈A
{−L(q, y∗,α) + F ∗(y∗,α)}

}
= sup

q∈Q

{
⟨q∗, q⟩ − min

α(·)∈A
{L(q, y∗,α)− F ∗(y∗,α)}

}
The dual of the parameterized primal problem is then obtained as

max
y∗∈Y ∗

{⟨y∗, y⟩ − ϕ∗(0, y∗) }

which writes

max
y∗∈Y ∗

{
⟨y∗, y⟩+ inf

q∈Q
min
α(·)∈A

{L(q, y∗,α)− F ∗(y∗,α)}
}

Finally, the dual problem associated to (P∧) is obtained by setting y = 0, and writes as

max
y∗∈Y ∗

{
inf
q∈Q

min
α(·)∈A

{L(q, y∗,α)− F ∗(y∗,α)}
}
. (D∧)

We will now make (D∧) more explicit. We denote the support of a non-negative measure

q by spt(q) := {x ∈ Rm : q(x) > 0}.

Lemma 4.10. The problem (D∧) is equivalent to

max
c∈R
u∈X

{
c+ inf

q∈Q

{
⟨H(x,∇u,D2u, q)− c, q⟩

}}
, (D∧)

where H(x,∇u(x), D2u(x), q) = min
α∈A

{−Lαu(x) + f(x, α, q) } and X is such that

X = D(L0) ∩ {u : Rm → R,Borel-meas. | ∃ C > 0, |u(x)| ≤ C(1 + |x|κ)} (4.5.7)

with κ = d+ 1− β, that is, the two optimization problems have the same set of optimal

solutions and the same optimal value.

Remark 4.5.4. Assumption (A*) together with Theorem 4.2.8 insure that D(L0) ⊂
W r,2

loc (R
m).
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Proof of Lemma 4.10. Recalling that F is an indicator function, its conjugate is the

support function as defined in (4.2.4), that is

F ∗(y∗,α) = I∗Kα
(y∗) = σ(y∗;Kα)

=

 0, if y∗ ∈ (Kα)
−

+∞, otherwise

And recalling the definition Kα = {0} ×Ker(Lα), we have

y∗ ∈ (Kα)
− ⇔ (c, ω) ∈

(
{0} ×Ker(Lα)

)−

⇔ (c, ω) ∈ R× (Ker(Lα))
⊥

⇔ (c, ω) ∈ R× cl(range(Lα))

Since we are working with Lα in its closed extension, we have

ω ∈ cl(range(Lα)) ⇔ ∃ u ∈ D(Lα), s.t. ω = −Lαu

⇔ ∃ u ∈ D(L0), s.t. ω = −Lαu

where the last equivalence is obtained thanks to the assumption (A*) which guarantees

that D(Lα) = D(L0) for all α(·) ∈ A. Note however that ω still depends on α through

its definition as ω = −Lαu. The fact that u belongs to a domain which is independent

of α is important in this scheme, since the maximization over y∗ is not in the same order

as the minimization over α. Indeed, our dual problem now writes

max
y∗∈Y ∗

inf
q∈Q

min
α(·)∈A

{L(q, y∗,α) , s.t.: y∗ = (c,−Lαu) and (c, u) ∈ R×D(L0)}, (D∧)

and the new variables on which we perform the maximization are now (c, u) and they

belong to a domain R×D(L0). The latter being independent of α(·), we can write the

dual problem as

max
c∈R

u∈D(L0)

inf
q∈Q

min
α(·)∈A

{L(q, y∗,α), s.t.: y∗ = (c,−Lαu) }. (D∧)

Recalling the definition (4.5.6) of L and the notations introduced earlier, we have

L(q, y∗,α) = ⟨f(· ,α(·), q), q⟩+ ⟨y∗, G(q)⟩Y ∗,Y

= ⟨f(· ,α(·), q), q⟩+ c(1− ⟨1, q⟩) + ⟨−Lαu(·), q⟩

= c+ ⟨f(· ,α(·), q)− Lαu(·)− c, q⟩
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hence we have, using the exchange property in Proposition 4.4.1,

min
α(·)∈A

{L(q, y∗,α), s.t.: y∗ = (c,−Lαu) } =

= c+ min
α(·)∈A

{ ⟨f(· ,α(·), q)− Lαu(·)− c, q⟩ }

= c+ ⟨min
α∈A

{f(· , α, q)− Lαu(·)} − c, q⟩

= c+ ⟨H(x,∇u,D2u, q)− c, q⟩.

But since Q is made of non-negative measures with finite moment of order d, we need

u to have a polynomial growth of order at most κ = d+ 1− β (see (A3), (A5-(iii)) and

(A6)). The dual problem finally writes as

max
c∈R
u∈X

{
c+ inf

q∈Q
⟨H(x,∇u,D2u, q)− c, q⟩

}
.

where the functional space X is defined as

X = D(L0) ∩ {u : Rm → R,Borel-meas. | ∃ C > 0, |u(x)| ≤ C(1 + |x|κ)}

and κ = d+ 1− β. This concludes the proof.

In the case where the Hamiltonian is given by

H(x,∇u(x), D2u(x), q) = max
α∈A

{−Lαu(x) + f(x, α, q) },

and the corresponding primal problem is (P∨), we proceed in the same way as before,

noting that the only difference with (P∧) is that instead of f we now consider −f . Then
we define

ϕ(q, y) = min
α(·)∈A

{ ⟨−f(· ,α(·), q), q⟩+ F (G(q) + y,α) }.

and in this case the Lagrangian (compared with (4.2.2) or (4.5.6)) writes as

L(q, y∗,α) := ⟨−f(· ,α(·), q), q⟩+ ⟨y∗, G(q)⟩Y ∗,Y . (4.5.8)

Then we compute the Legendre-Fenchel transform ϕ∗(q∗, y∗) and recover the dual prob-

lem similar to (D∧) which is given by

max
y∗∈Y ∗

inf
q∈Q

min
α(·)∈A

{L(q, y∗,α)− F ∗(y∗,α)}. (D∨)

The following is an analogue of Lemma 4.10.
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Lemma 4.11. The problem (D∨) is equivalent to

max
c∈R
u∈X

{
−c+ inf

q∈Q

{
−⟨H(x,∇u,D2u, q)− c, q⟩

}}
(D∨)

where H(x,∇u(x), D2u(x), q) = max
α∈A

{−Lαu(x) + f(x, α, q) } and X is such that

X = D(L0) ∩ {u : Rm → R,Borel-meas. | ∃ C > 0, |u(x)| ≤ C(1 + |x|κ)} (4.5.9)

with κ = d+ 1− β, that is, the two optimization problems have the same set of optimal

solutions and the same optimal value.

We keep the primal problem (P∨) and the dual problem (D∨) written in this formu-

lation because it will be needed when we will set the optimality conditions in the next

section.

Proof of Lemma 4.11. The proof follows the one of Lemma 4.10. The main difference

is in the choice of the representation of the dual variable y∗ ∈ (Kα)
− which we now

write as

y∗ ∈ (Kα)
− ⇔ (−c,−ω) ∈

(
{0} ×Ker(Lα)

)−

⇔ (−c,−ω) ∈ R× (Ker(Lα))
⊥

⇔ (−c,−ω) ∈ R× cl(range(Lα))

We set again as in Lemma 4.10,

ω ∈ cl(range(Lα)) ⇔ ∃ u ∈ D(L0), s.t. ω = −Lαu.

And the dual problem (D∨) writes as

max
y∗∈Y ∗

inf
q∈Q

min
α(·)∈A

{L(q, y∗,α) s.t. y∗ = (−c,Lαu) and (c, u) ∈ R×D(L0)}, (D∨)

Recalling the definition (4.5.6) of L and the notations introduced earlier, we have

L(q, y∗,α) = ⟨−f(· ,α(·), q), q⟩+ ⟨y∗, G(q)⟩Y ∗,Y

= ⟨−f(· ,α(·), q), q⟩ − c(1− ⟨1, q⟩) + ⟨Lαu(·), q⟩

= −c− ⟨f(· ,α(·), q)− Lαu(·)− c, q⟩

hence we have, using the exchange property in Proposition 4.4.1,
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min
α(·)∈A

{L(q, y∗,α), s.t. y∗ = (−c,Lαu) } =

= −c+ min
α(·)∈A

{−⟨f(· ,α(·), q)− Lαu(·)− c, q⟩ }

= −c− max
α(·)∈A

{ ⟨f(· ,α(·), q)− Lαu(·)− c, q⟩ }

= −c− ⟨max
α∈A

{f(· , α, q)− Lαu(·)} − c, q⟩

= −c− ⟨H(x,∇u,D2u, q)− c, q⟩.

The dual problem (D∨) then writes as

max
c∈R
u∈X

{
−c+ inf

q∈Q

{
−⟨H(x,∇u,D2u, q)− c, q⟩

}}
.

And we conclude in the same way as in the proof of Lemma 4.10.

4.5.3 Main results III: ergodic MFG system

The PDE problem

We address the problem of existence and uniqueness of solutions to an ergodic mean-

field games (MFG) system, that is

Find (c, u, µ) ∈ R×X (Rm)× P(Rm), s.t.:

H(x,∇u(x), D2u(x), µ) = c and − L∗
α[u,µ]µ = 0

(4.5.10)

where X is a functional space (part of the unknowns), P is the set of probability measures

and the Hamiltonian is of one of the two forms

H := min
α∈A

{−Lαu(x) + f(x, α, µ) }, or H := max
α∈A

{−Lαu(x) + f(x, α, µ) },

the diffusion operator Lα is a linear operator given by

Lαφ(x) := trace
(
a(x, α)D2φ(x)

)
+ b(x, α) · ∇φ(x)

and its adjoint L∗
α is then

L∗
αρ(x) = trace

(
D2(a(x, α)ρ(x))

)
− div

(
b(x, α)ρ(x)

)
.

The second equation in (4.5.10) is nothing but −L∗
αµ = 0 where we anticipate the

dependence of α on (u, µ).
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Optimality conditions

We first consider the case where the Hamiltonian is given by

H(x,∇u(x), D2u(x), q) = min
α∈A

{−Lαu(x) + f(x, α, q) }.

We check that the optimality conditions as stated in §4.2.1, in particular (4.2.8) and

(4.2.9), still hold in our framework. In order to do so, we start from the duality gap

(or duality inequality) which states that the value of the dual problem (D∧) is less or

equal than the value of the primal problem (P∧). Recalling the definition (4.5.6) of the

Lagrangian function L

L(q, y∗,α) = ⟨f(· ,α(·), q), q⟩+ ⟨y∗, G(q)⟩Y ∗,Y

and the value of the dual problem being less or equal the value of the primal problem

(see §4.2.1), we have

max
y∗∈Y ∗

min
q∈Q

min
α(·)∈A

{L(q, y∗,α)− F ∗(y∗,α)}

≤ min
q∈Q

min
α(·)∈A

{⟨f(· ,α(·)), q⟩+ F (G(q),α)}

≤ min
q∈Q

min
α(·)∈A

{L(q, y∗,α) + F (G(q),α)− ⟨y∗, G(q)⟩Y ∗,Y }, ∀ y∗ ∈ Y ∗.

Let us denote by (q◦,α◦) an optimal solution in the primal problem (P∧) and by y∗◦ an

optimal solution in the dual problem (D∧). We then have

min
q∈Q

min
α(·)∈A

{L(q, y∗◦,α)− F ∗(y∗◦,α)} ≤ L(q◦, y
∗
◦,α◦) + F (G(q◦),α◦)− ⟨y∗◦, G(q◦)⟩Y ∗,Y

= ⟨f(· ,α◦(·), q◦), q◦⟩+ F (G(q◦),α◦)

Optimality conditions are then obtained when we reach equality in the above inequality.

We can then characterize the optimal primal and dual solutions and provide a no-duality

gap condition. Suppose the left hand side minimization in the above inequality is reached

in the pair of optimal solutions (q◦,α◦). Therefore, we firstly need to have F ∗(y∗◦,α◦) = 0

i.e.

y∗◦ ∈ (Kα◦)
− (4.5.11)

since F is an indicator function and hence F ∗ is a support function which is either 0 if

y∗◦ ∈ (Kα◦)
− or +∞ otherwise. Then, and secondly, since

L(q◦, y
∗
◦,α◦) = ⟨f(· ,α◦(·), q◦), q◦⟩+ ⟨y∗◦, G(q◦)⟩Y ∗,Y
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then from the optimality of (q◦,α◦) we have

⟨y∗◦, G(q◦)⟩Y ∗,Y = 0. (4.5.12)

And finally the inequality is reduced to

−F ∗(y∗◦,α◦) ≤ F (G(q◦),α◦)− ⟨y∗◦, G(q◦)⟩Y ∗,Y

which is the Fenchel-Young inequality. The latter is an equality if and only if we have

y∗◦ ∈ ∂F (G(q◦),α◦) = ∂IKα◦ (G(q◦)) = NKα◦ (G(q◦)) (4.5.13)

And since Kα0 is a convex cone, then y∗◦ ∈ NKα◦ (G(q◦)) is equivalent to

G(q◦) ∈ Kα◦ , y∗◦ ∈ (Kα◦)
− and ⟨y∗◦, G(q◦)⟩Y ∗,Y = 0. (4.5.14)

To sum up, we have the following sufficient optimality conditions which also guarantee

the absence of the duality gap
(q◦,α◦) ∈ argmin

q∈Q,α(·)∈A
L(q, y∗◦,α)

G(q◦) ∈ Kα◦ , y∗◦ ∈ (Kα◦)
− and ⟨y∗◦, G(q◦)⟩Y ∗,Y = 0.

(4.5.15)

They are indeed analogue to (4.2.8) and (4.2.9).

And the same optimality conditions (4.5.15) hold when the Hamiltonian is given by

H(x,∇u(x), D2u(x), q) = max
α∈A

{−Lαu(x) + f(x, α, q) },

provided we write−f (instead of f) in the above computations and make use of definition

(4.5.8) for the Lagrangian function L

L(q, y∗,α) = ⟨−f(· ,α(·), q), q⟩+ ⟨y∗, G(q)⟩Y ∗,Y .

4.5.4 Existence and uniqueness

Our first main result is a necessary and sufficient theorem for existence and unique-

ness of a solution to the ergodic MFG system (4.5.10).
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Theorem 4.5.1. Assuming (A0-A6) and (A*) hold true, the following are equivalent

(I) The primal problem (P∧) admits a solution (q◦,α◦), that is,

(q◦,α◦) ∈ argmin
q∈M+

d (Rm)
α(·)∈A

{
⟨f(· ,α(·), q), q ⟩ , s.t.: 1− ⟨1, q⟩ = 0 and q ∈ Ker(L∗

α)
}
.

(II) There exists (c◦, u◦, q◦) ∈ R ×W r,2
loc (R

m) ×W s,1
loc (R

m) for any r ≥ 1, s > m, and

there exists a measurable function α◦(·) : Rm → A that solve the MFG system− trace
(
a(x,α◦(x))D

2u◦(x)
)
− b(x,α◦(x)) · ∇u◦(x) + f(x,α◦(x), q◦) = c◦

− trace
(
D2(a(x,α◦(x))q◦(x))

)
+ div

(
b(x,α◦)q◦(x)

)
= 0, a.e. in Rm

(4.5.16)

and moreover

(a) the constant c◦ is defined by c◦ = ⟨f(· ,α◦(·), q◦), q◦⟩,

(b) the function u◦(·) satisfies: |u◦(x)| ≤ K(1 + |x|κ), with κ = d + 1 − β and

K > 0 a constant,

(c) q◦(·) is the density of a probability measure, absolutely continuous w.r.t.

Lebesgue,

(d) the function α◦(·) satisfies

α◦(x) ∈ argmin
α∈A

{−Lαu◦(x) + f(x, α, q◦)}, a.e. x ∈ Rm.

If moreover (q◦,α◦) in (I) is unique and the vector field b is locally Lipschitz continuous

in x with β = 1 in (A6), then u◦(·) is unique in W r,2
loc (R

m) with r > m
2
, that is, if

(c◦, u1(·)) and (c◦, u2(·)) are two solutions in the sense of (II), then u1(·) − u2(·) is a

constant.

Theorem 4.5.2. The statement in Theorem 4.5.1 remains valid when the Hamiltonian

is given by max (instead of min), provided we consider in (I) the problem (P∨) (instead

of (P∧)) and define (q◦,α◦) as an element of the argmax (instead of argmin), and in

(II-d) we define α◦ as an element of the argmax (instead of argmin).

Remark 4.5.5. Some observations regarding regularity and notion of the solution:

• We recall that functions inW r,2
loc (R

m), with 2r > m > 1, are continuous and pointwise

twice differentiable almost everywhere (see e.g. [50, Appendix C]). And for s > m, one

has W s,1
loc (R

m) ⊂ C1−m
s (Rm) (see e.g. [137, p. 28] or [1, p. 97]).
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• In fact u◦(·) is an L-viscosity solution (see e.g. [50, 70]), which is as expected as

when we consider C-viscosity solutions for the continuous (and bounded) case. Recall

that in our setting, the vector field b and the function f are assumed to be measurable

(and unbounded) in x.

Remark 4.5.6. Some observations on uniqueness of the solution:

• Uniqueness of (q◦,α◦) in statement (I) requires the (primal) optimization problem to

be jointly convex in (q, α). This is hardly satisfied because of the constraint q ∈ Ker(L∗
α).

Therefore, one does not expect uniqueness for the MFG system, at least not in our

setting.

• The ergodic constant c◦ is in general not unique. In fact, there might be infinitely

many constants for which there exists a solution (u, q). We refer to Remark 4.4.4

Note that by the latter theorems, we reduced the problem of existence of a solution

(c, u, q) for the MFG system (4.5.10) to the solvability of an (infinite dimensional) op-

timization problem where the unknown is (q,α). The next main result relies on the

particular case where f(x, α, q) is separable and for which we can solve the optimization

problem (hence prove existence of a solution to the MFG system). The non-separable

case requires additional assumptions and shall be discussed afterwards.

Corollary 4.5.1. In the situation of Theorem 4.5.1, if we assume in addition that (B0)

holds, i.e. f(x, α, q) = g(x, α)+ k(x, q), then the ergodic MFG system admits a solution

satisfying the properties (II) in Theorem 4.5.1.

The same also holds true when in the situation of Theorem 4.5.2.

4.5.5 Proofs of the main results

Proof of Theorem 4.5.1. The proof is a consequence of Theorem 4.2.2 (i) and Lemma

4.2, provided we express the optimality conditions (4.5.15) in terms of a PDE system

as in the statement (II). And to do so, we rely on Lemma 4.10 and the results in §4.2.2.

Step 1. (An application of Theorem 4.2.2 (i))

Thanks to Lemma 4.2, the primal problem (P∧) is calm. Therefore, the statement (i) of

Theorem 4.2.2 insures that there is no duality gap, and (q◦,α◦) is an optimal solution of

(P∧) if and only if there exists y∗◦ ∈ Y ∗ = R× (M(Rm))∗ such that conditions (4.5.15)

are satisfied.

Step 2. (On the conditions (4.5.15))

Let us first note that, using Proposition 4.2.1, y∗◦ is an optimal solution of the dual
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problem (D∧). And following Lemma 4.10 (see also its proof), one can substitute the

dual variables y∗ with the pairs of variables (c, u) ∈ R × X where X is as defined in

(4.5.7). And the optimal dual variables are given by y∗◦ = (c◦,−Lα◦u◦).

Now, the no-duality gap yields

c◦ + inf
q∈Q

{
⟨H(x,∇u◦, D2u◦, q)− c◦, q⟩

}
= ⟨f(· ,α◦(·), q◦), q◦⟩ (4.5.17)

and the last condition in (4.5.15) that is ⟨y∗◦, G(q◦)⟩Y ∗,Y = 0, writes as

c◦(1− ⟨1, q◦⟩) + ⟨−Lα◦u◦(·), q◦⟩ = 0,

i.e. c◦ = ⟨c◦, q◦⟩ − ⟨−Lα◦u◦(·), q◦⟩. Substituting c◦ in (4.5.17) yields

inf
q∈Q

{
⟨H(x,∇u◦, D2u◦, q)− c◦, q⟩

}
= ⟨−Lα◦u◦(·) + f(· ,α◦(·), q◦)− c◦, q◦⟩. (4.5.18)

Thanks to the exchange property (4.5.3), the latter equality writes as

inf
q∈Q

min
α(·)∈A

{ ⟨−Lαu◦(·) + f(· ,α(·), q)− c◦, q⟩ } = ⟨−Lα◦u◦(·) + f(· ,α◦(·), q◦)− c◦, q◦⟩,

(4.5.19)

that is

(q◦,α◦) ∈ argmin
q∈Q

α(·)∈A

{
⟨−Lαu◦(·) + f(· ,α(·), q)− c◦, q⟩

}
. (4.5.20)

In particular, when setting q to its optimal value q◦, one has

α◦(·) ∈ argmin
α(·)∈A

{
⟨−Lαu◦(·) + f(· ,α(·), q◦)− c◦, q◦⟩

}
(4.5.21)

which yields thanks to the exchange property (4.5.3)

α◦(x) ∈ argmin
α∈A

{
− Lαu◦(x) + f(x, α, q◦)

}
, q◦ − a.e. x ∈ Rm, (4.5.22)

i.e. H(x,∇u◦(x), D2u◦(x), q◦) = −Lα◦u◦(x) + f(x,α◦(x), q◦), q◦-almost everywhere.

And thanks to Theorem 4.2.5, q◦ is absolutely continuous with respect to Lebesgue

measure and hence the result almost everywhere in Rm.

Analogously, when setting α(·) to its optimal value α◦(·), one has

q◦ ∈ argmin
q∈Q

{
⟨−Lα◦u◦(·) + f(· ,α◦(·), q)− c◦, q⟩

}
. (4.5.23)

And recalling the definition of the primal problem (P∧), the condition G(q◦) ∈ Kα◦ in
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(4.5.15) means in particular that ⟨1, q◦⟩ = 1, and since q ∈ Q = M+
d (R

m), then q◦ is a

probability measure.

We will now show (using the results in §4.2.2) that an optimality condition for the

optimization problem (4.5.23) allows to prove that (c◦, u◦) solves the PDE −Lα◦u◦ +

f(· ,α◦(·), q◦) = c◦ a.e. in Rm, i.e. H(x,∇u◦(x), D2u◦(x), q◦) = c◦ a.e. in Rm.

Step 2.1. (On the problem (4.5.23))

We define f̃ : Rm ×M(Rm) → R and g : Rm → R respectively by

f̃(x, q) := f(x,α◦(x), q), g(x) := −Lα◦u◦(x)− c◦

and we set

Ψ(q) := ⟨ f̃( · , q) + g(·) , q ⟩.

The optimization problem (4.5.23) writes equivalently as

min
{
Ψ(q) , s.t.: q ∈ M+

d (R
m)
}
. (4.5.24)

With this formulation, it is easy to see that any measure q satisfying the constraint in

(4.5.24) is regular in the sense of Definition 4.2.2. Indeed, it suffices to set, in the notation

of (4.2.17), Q = M+
d (R

m), G(q) = q and K = Md(R
m). Thanks to assumption (A5-

(iv)), the function Ψ is Fréchet differentiable and we can apply Theorem 4.2.3 together

with Theorem 4.2.4 and Corollary 4.2.1 to obtain the following first-order necessary

condition for q◦ to be a minimum of (4.5.24) (or equivalently of problem (4.5.23)):

DΨ(q◦)[h] ≥ 0, ∀h ∈ {h ∈ Md(R
m) : h− ≪ q◦}, (4.5.25)

where, using the definition of Ψ, one has

DΨ(q◦)[h] = ⟨f̃(· , q◦) + g(·) , h⟩+ ⟨Dµf̃(· , q◦)[h], q◦⟩.

Step 2.2. (We show that f̃(· , q◦) + g(·) ≥ 0 in Rm)

We proceed by contradiction. Suppose ∃x ∈ Rm such that f̃(x, q◦) + g(x) < 0.

We choose h = δx, the Dirac measure with unit mass concentrated at x. It is a

positive measure and is clearly in TM+
d (Rm). When used in (4.5.25), one gets
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0 ≤ ⟨f̃(· , q◦) + g(·) , δx⟩+ ⟨Dµf̃(· , q◦)[δx], q◦⟩

≤ f̃(x, q◦) + g(x) + ⟨Dµf̃(· , q◦)[δx], q◦⟩

But using assumption (A5-(v)), we have ⟨Dµf̃(· , q◦)[δx], q◦⟩ ≤ 0 and this yields a con-

tradiction with f̃(x, q◦) + g(x) < 0. Hence, the function f̃(· , q◦) + g(·) is non-negative
for all x ∈ Rm.

Step 2.3. (We show that f̃(x, q◦) + g(x) = 0 almost everywhere in Rm)

We proceed by contradiction. Suppose there exists a Borel subset B (open set in Rm)

such that q◦(B) ̸= 0 and a constant Γ > 0, such that

Γ := q◦ − ess sup
x∈B

{ f̃(x, q◦) + g(x) } = inf{γ ∈ R : f̃(x, q◦) + g(x) ≤ γ, q◦ − a.e. in B}.

We will first show that the pair (q◦,α◦) in the problem (4.5.20) remains the same

when we subtract to f(· ,α(·), q) a positive constant. Then we will show that Γ cannot

be positive, which together with the previous Step 2.2 yields the desired result.

Observe that (q◦,α◦) besides being a minimizer for the problem (4.5.20), it is de-

termined by the optimality conditions (4.5.15). In particular, it is a minimizer for the

primal problem (P∧). Therefore, we start from the latter problem (P∧) where we will

subtract to f a constant nΓ where n ≥ 1 (although the choice of the constant here is not

important, we keep considering Γ as defined above to avoid introducing new constants).

Recall the primal problem (P∧)

min
q∈M+

d (Rm)

{
min
α(·)∈A

⟨f(· ,α(·), q), q⟩, s.t.: 1− ⟨1, q⟩ = 0 and q ∈ Ker(L∗
α)

}
. (P∧)

Thanks to existence and uniqueness theorems in §4.2.3.2 (Theorem 4.2.6 and Theorem

4.2.7) together with Lemma 2.3.1, the admissible (feasible) set for q in (P∧) writes as a

singleton that depends on α(·)

q ∈ Pd(R
m) ∩Ker(L∗

α) = {µα}

where µα is the unique invariant probability measure associated to L∗
α. Hence the

problem (P∧) equivalently writes as

min
α(·)∈A

⟨f(· ,α(·), µα) , µα⟩.
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Now subtracting a constant nΓ to f in (P∧), i.e. considering as objective function

(q,α) 7→ ⟨f(· ,α(·), q)− nΓ , q⟩

yields the optimization problem

min
α(·)∈A

⟨f(· ,α(·), µα)− nΓ , µα⟩.

But µα being a probability measure, the latter writes as

−nΓ + min
α(·)∈A

⟨f(· ,α(·), µα) , µα⟩.

And (q◦,α◦) is again a minimizer for the latter problem. In other words, subtracting a

constant to f in the objective function in (P∧) does not alter the optimality of the pair

(q◦,α◦). And ultimately the optimality conditions (4.5.15) also remain the same.

Therefore, one can still consider (c◦, u◦, q◦,α◦) as in (4.5.19) even if we subtract to f

a constant nΓ, i.e.

inf
q∈Q

min
α(·)∈A

{ ⟨−Lαu◦ + f(· ,α(·), q)− nΓ− c◦, q⟩ }

= ⟨−Lα◦u◦ + f(· ,α◦(·), q◦)− nΓ− c◦, q◦⟩.

In particular, q◦ is again a minimizer as it is for the problem (4.5.23) but when we

subtract to f a constant, i.e.

q◦ ∈ argmin
q∈Q

{
⟨−Lα◦u◦ + f(· ,α◦(·), q)− nΓ− c◦, q⟩

}
.

The latter writes in the notations of Step 2.1

min
{
⟨ f̃(· , q)− nΓ + g(·) , q ⟩ , s.t.: q ∈ M+

d (R
m)
}
. (4.5.26)

The first-order necessary optimality conditions (4.5.25) written for the latter problem

(4.5.26) now yields

⟨f̃(· , q◦)− nΓ + g(·) , h⟩+ ⟨Dµf̃(· , q◦)[h], q◦⟩ ≥ 0, ∀h ∈ {h ∈ Md(R
m) : h− ≪ q◦}

Thanks to assumption (A5-(v)), the second term in the above inequality is non-positive

when h is non-negative. So it suffices to choose h as a positive measure supported on

the Borel subset B that we have fixed in our hypothesis, and recalling the definition of
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Γ, one has f̃(· , q◦)+g(·)−nΓ < 0 for n sufficiently large (n > 1 is indeed enough) which

yields a contradiction. Hence there cannot be any Borel subset of non-zero measure in

which f̃(· , q◦)+g(·) is positive, i.e. f̃(x, q◦)+g(x) ≤ 0 q◦-almost everywhere in Rm, and

together with the conclusion of Step 2.2 we finally have f̃(x, q◦) + g(x) = 0 q◦-almost

everywhere in Rm. We conclude with Theorem 4.2.5 which insures that q◦ is absolutely

continuous with respect to Lebesgue measure, and hence the desired result:

− Lα◦u◦(x) + f(x,α◦(x), q◦) = c◦, almost everywhere in Rm (4.5.27)

which writes, thanks to (4.5.22), as H(x,∇u◦(x), D2u◦(x), q◦) = c◦ a.e. in Rm.

Step 2.4. (Conclusion)

At this stage of the proof, we have shown that (q◦,α◦) is an optimal solution of (P∧)

if and only if there exists a pair (c◦, u◦) ∈ Rm × X satisfying the optimality conditions

(4.5.15). And the latter conditions yield the no-duality gap, also the growth condition

of the function u◦ is given by the definition of X as in (4.5.7) (i.e. the statement (II-

b)), the properties of the measure q◦ are insured by Theorem 4.2.5 (i.e. the statement

(II-c)) and we have the characterization (4.5.22) of α◦ (i.e. the statement (II-d)) not-

ing that q◦ is equivalent to Lebesgue measure. Finally, the equation (4.5.27) together

with q◦ ∈ Ker(L∗
α◦) and (4.5.22) yield the PDE system (4.5.16), and (u◦, q◦) being in

W r,2
loc (R

m)×W s,1
loc (R

m), for r > m
2
and s > m, is a direct consequence of Theorem 4.2.5

and Theorem 4.2.8 (see Remark 4.5.4). Substituting (4.5.27) in the equation (4.5.17)

yields the characterization of the constant c◦ = ⟨f(· ,α◦(·), q◦), q◦⟩, hence the statement

(II-a).

We are therefore left with the proof of the last statement.

Step 3. (Uniqueness of u◦)

Assume here the primal problem (statement (I) of the theorem) enjoys uniqueness.

To prove that u◦(·) is unique, we need to assume in addition that the vector field b(x, α)

is locally Lipschitz continuous with at most a linear growth in x, uniformly in α, i.e.

β = 1 in (A6) and hence κ = d. We also need r > m
2
in order to ensure continuity

of u◦(·) following Remark 4.5.5. This setting will allow us to apply the Liouville type

result in [22].
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Suppose (c◦, u1(·)), (c◦, u2(·)) are two solutions with a polynomial growth of order at

most d. Then we have, using the inequality ”min(A−B) ≤ min(A)−min(B)”

min
α∈A

{−Lα(u1 − u2) } ≤ min
α∈A

{−Lαu1 + f(· , α, q◦)} −min
α∈A

{−Lαu2 + f(· , α, q◦)} = 0

Therefore uniqueness of a solution (c◦, u◦(·)) is reduced to proving that there cannot

exist non-constant sub-solutions to the static HJB equation min
α∈A

{−Lαv} = 0, where

v := u1 − u2 i.e. whether Liouville property holds for the latter static HJB equation.

This is answered positively in [22] using the following

claim: there exist a function ψ ∈ C∞(Rm) and Ro > 0 such that

min
α∈A

{−Lαψ(x)} ≥ 0 in B(0, Ro)
C
, ψ(x) → +∞ when |x| → +∞ (4.5.28)

and such that

lim
|x|→+∞

v(x)

ψ(x)
= 0 (4.5.29)

Hence, a Liouville type result [22, Theorem 2.1] insures that v is constant, i.e. u1(·) −
u2(·) ≡ constant.

Proof of the claim:

We check that ψ(x) := |x|d log(|x|) satisfies (4.5.28) and (4.5.29): Using the polynomial

growth of u1 and u2, (4.5.29) is immediate. To check the validity of (4.5.28), we compute

−Lαψ(x) and make use of assumptions (A3, A4, A6). This has been done in the claim

in step 3 of the proof of Theorem 4.3.2.

Proof of Theorem 4.5.2. The proof follows exactly the one of Theorem 4.5.1 with minor

modifications. We refer to the proof of Theorem 4.4.2 for further details. In particular,

the Liouville type result we will need is [22, Theorem 2.2].

Proof of Corollary 4.5.1. This is a consequence of Theorem 4.5.1 together with Lemma

4.2 (see also Theorem 4.2.2 (ii)).

4.5.5.1 The non-separable case

In this subsection, we shall prove a result analogue to Corollary 4.5.1 but where

we drop the assumption (B0). To do so, we need to solve the (infinite dimensional)

optimization problem (P∧) in the more general case of f being non-separable. The

conclusion then follows using Theorem 4.5.1. The case of (P∨) is analogous.



Chapter 4 - The viscous ergodic problem 247

From uniqueness of the invariant probability measure (see Theorem 4.2.7), the prob-

lem (P∧) can be equivalently expressed by

min
α(·)∈A

⟨f(· ,α(·), µα), µα⟩

since for each α, we have a unique measure µα in the constraints set. In the light of

Theorem 4.2.5, µα has a density ρα and we can therefore write

⟨f(· ,α(·), µα), µα⟩ =
∫
Rm

f(x,α(x), ρα) ρα(x) dx.

Recall that in the third argument of f , we can have either a local dependence on µα

(hence on ρα) or a non-local dependence as discussed earlier in the introduction. We

would like now to exchange the minimization and the integral. But to do so, we need a

result on the map α 7→ ρα.

In the sequel, we shall make the following additional assumptions (which remedy the

absence of (B0))

(B1) A = [0, 1],

(B2) The restrictions of aijα and biα to every ball U ⊂ Rm are continuous in α in the

space L1(U),

(B3) The family of measures µα solution to L∗
αµα = 0 is uniformly tight11.

We have the following result in [45] (see also [40, Proposition 3.7.4, p. 123]).

Proposition 4.5.2. ([45, Proposition 1.1]) Assume (A1, A2, A3) and (B1, B2, B3) hold.

Then one can choose densities ρα of µα such that the function ρα(x) is jointly contin-

uous. In addition, the mapping α 7→ ρα with values in L1(Rm) is continuous, i.e., the

mapping α 7→ µα is continuous in the variation norm.

Remark 4.5.7. ([45] or [40, p.124]) A sufficient condition for (B3) to hold is the

existence of a single Lyapunov function V such that V (x) → +∞ and sup
α∈A

LαV (x) →

−∞ as |x| → +∞. And this is satisfied under the conditions (A3, A4) in view of

Corollary 4.2.2.

As a direct consequence of Proposition 4.5.2, we obtain the desired exchange property.

11A family S of probability measures is uniformly tight if, for each r > 0, there is a compact set K
such that µ(Rm \K) ≤ r for all µ ∈ S.
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Lemma 4.12. Assuming (A1−A5(i, ii, iii, iv)) and (B1, B2) hold, we have the following

min
α(·)∈A

⟨f(· ,α(·), µα), µα⟩ =
∫
Rm

min
α∈A

f(x, α, ρα)ρα dx (4.5.30)

Proof of Lemma 4.12. The continuity of [0, 1] ∋ α 7→ f(x, α, ρα)ρα is a direct conse-

quence of Proposition 4.5.2 together with the assumptions (A1, A2, A3, A5(ii, iv)) and

(B1, B2), noting in addition that (B3) is satisfied with (A3, A4) using Remark 4.5.7.

We are therefore in the situation of Proposition 4.4.1, since x 7→ f(x,α(x), ρα)ρα(x) is

in L1(Rm; dx) where we recall dx is Lebesgue measure, thanks to assumption (A5(iii)).

The proof then follows using the same arguments as for Proposition 4.4.1.

Finally, we have the existence (and uniqueness) result for the system MFG in the

non-separable case.

Corollary 4.5.2. In the situation of Theorem 4.5.1, if we assume in addition that

(B1,B2) hold, then the ergodic MFG system admits a solution satisfying the properties

(II) in Theorem 4.5.1.

The same also holds true when in the situation of Theorem 4.5.2.

Proof of Corollary 4.5.2. It suffices to show existence of a solution for (I) in Theorem

4.5.1. This is true and is in the same spirit as in Step 3 in the proof of Lemma 4.2,

thanks to the exchange property in Lemma 4.12 which reduces the infinite dimensional

optimization problem to a finite dimensional optimization problem where we minimize

a continuous functions over a compact set.

The case of max (instead of min) as in Theorem 4.5.2 follows analogously.

4.6 Conclusion and future perspectives

We addressed the solvability of the ergodic Bellman problem in the whole space with

unbounded and measurable data using a new method based on abstract optimization

techniques together with results from Dirichlet forms theory. We also discussed unique-

ness of the solution under additional assumptions and characterized the ergodic constant

as being the critical one which then allows us to provide an estimate that measures its

dependency on the data of the problem. Moreover, we showed that the method can be

extend to the case of non-compact Riemannian manifolds with no boundaries.

Our strategy allows us also to tackle the problem of ergodic Mean-Field games. We

provided necessary and sufficient conditions for existence of a solution to the ergodic
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MFG system. Uniqueness is also discussed. And we showed moreover that these condi-

tions are satisfied both in the separable and in the non-separable cases (under additional

smoothness assumptions for the latter).

Further extensions

Besides the questions on generalization (see our Remark 4.2.2), e.g. using [40, Chap-

ter 5], several challenging problems are still not clear.

A first interesting and natural open problem would be to prove in our setting the

convergence of the approximating δ-cell problem and t-cell problem towards the true

cell problem which we called here ergodic PDE ; see [4, Chapter 2] for the convergence

results under different assumptions and using different techniques.

A challenging second question would be whether one can adapt such techniques in

the case of ergodic stochastic games, i.e. for Hamilton-Jacobi-Isaacs equations (see [37]

and also [4]). The difficulty indeed appears when we perform Legendre-Fenchel duality

to construct the dual problem as in §4.4.2.

One could also try to use these results to solve fully nonlinear elliptic PDEs more

general than those of Bellman type as we have considered, using for example Pucci’s

extremal operator; see, e.g., [51, §2.2].

Another work which made use of convex duality and invariant measures to address

uniqueness problem for viscous HJB is [5], unlike in our case where we used duality

for the existence problem. It could be interesting to see how much these methods can

complement each other to address both existence and uniqueness.

Finally, it would be interesting to highlight the link of the method in this chapter

with weak KAM theory. It is not difficult to see that what we called primal problem

is strongly related to Mather’s variational problem in the stochastic setting [91]. And

indeed, the method presented here is very reminiscent of [77], and to some extent to

[92, 102, 103]. Also the definition of the ergodic constant as the value of the dual problem

insures that it is indeed the the critical value or Mañé critical value (see Remark 4.4.4).

We hope we can tackle these problems in a future work.
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pp. 2007–2008.

[15] J.-P. Aubin and A. Cellina, Differential inclusions: set-valued maps and vi-

ability theory, vol. 264, Springer Science & Business Media, 2012.

[16] J.-P. Aubin and H. Frankowska, Set-valued analysis, Springer Science &

Business Media, 2009.

[17] T. Aubin, Nonlinear analysis on manifolds. Monge-Ampere equations, vol. 252,

Springer Science & Business Media, 2012.

[18] C. Baldassi, A. Ingrosso, C. Lucibello, L. Saglietti, and R. Zecchina,

Subdominant dense clusters allow for simple learning and high computational per-

formance in neural networks with discrete synapses, Physical review letters, 115

(2015), p. 128101.

[19] M. Bardi and I. Capuzzo-Dolcetta, Optimal control and viscosity solutions

of Hamilton-Jacobi-Bellman equations, Springer Science & Business Media, 2008.

[20] M. Bardi and P. Cardaliaguet, Convergence of some mean field games sys-

tems to aggregation and flocking models, Nonlinear Analysis, 204 (2021), p. 112199.

[21] M. Bardi and A. Cesaroni, Optimal control with random parameters: a mul-

tiscale approach, European journal of control, 17 (2011), pp. 30–45.

[22] , Liouville properties and critical value of fully nonlinear elliptic operators,

Journal of Differential Equations, 261 (2016), pp. 3775–3799.

[23] M. Bardi, A. Cesaroni, and L. Manca, Convergence by viscosity methods in

multiscale financial models with stochastic volatility, SIAM Journal on Financial

Mathematics, 1 (2010), pp. 230–265.



Bibliography 255

[24] M. Bardi and F. S. Priuli, LQG mean-field games with ergodic cost, in 52nd

IEEE Conference on Decision and Control, IEEE, 2013, pp. 2493–2498.

[25] , Linear-quadratic n-person and mean-field games with ergodic cost, SIAM

Journal on Control and Optimization, 52 (2014), pp. 3022–3052.

[26] G. Barles and J. Meireles, On unbounded solutions of ergodic problems in

Rm for viscous Hamilton-Jacobi equations, Communications in Partial Differential

Equations, 41 (2016), pp. 1985–2003.

[27] G. Barles, A. Quaas, and A. Rodŕıguez-Paredes, Large-time behavior of
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nikov, Fokker-Planck-Kolmogorov Equations, vol. 207, American Mathematical

Soc., 2015.
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