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Abstract

This work is devoted to the investigation of planar flows of complex fluids in non specific
geometries through techniques of computer simulation.

Firstly, we developed a new heterogeneous multi-scale method that combines micro-
scale data from Non-Equilibrium Molecular Dynamics (NEMD) with a macro-scale CFD
solver to achieve a data-driven prediction of complex non-uniform planar flows in macro-
scopic complex geometries. The microscopic data were employed to reconstruct the stress
tensor that determines the evolution associated with the equations of motion at the
macroscopic level. At the continuum level, the method is model-free, since the Cauchy
stress tensor is determined locally in space and time from NEMD data. The modelling
effort is thus limited to the identification of suitable interaction potentials at the micro-
scale. The method has been tested successfully onto three paradigmatic flows of polymeric
fluids: the straight channel, the contraction 4:1 and the flow past a deep hole. However,
it is applicable only when the time-scale of changes in the local state of a fluid element
is greater than the microscopic relaxation time necessary to achieve a statistically steady
state of the molecular conformation and interactions. Compared to previous proposals,
our approach takes into account the fact that the material response of polymeric fluids
can depend strongly on the local flow type and we show that this is a necessary feature
to correctly capture the macroscopic dynamics.

Secondly, we have been able to extend reproducibility conditions of a lattice of points
in R2 under planar extension (found by Kraynik & Reinelt [38]) to the case of mixed
flows (combination of simple shear and extension). These conditions are linked to the
possibility of extending indefinitely the time duration of the simulation and this is very
important to be able to extract steady properties of the system. It results that, for
each fixed homogeneous mixed flow, we must take a specific orientation and aspect ratio
for the simulation box to display the periodic behavior. In correspondence to the time
period, the simulation box can be re-initialized without loosing any meaningful physical
property.

Thirdly, the algorithm has been successfully implemented in the PMF software package,
written in C++ and devoted to NEMD simulations of Planar Mixed Flows in LAMMPS
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(Large-scale Atomic/Molecular Massively Parallel Simulator). We also managed to carry
out a complete set of simulations of mixed motions and, for this reason, the software can
be a reliable tool for exploring the rheological properties of this class of flows.
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Sommario

Questo lavoro è dedicato all’indagine dei flussi planari di fluidi complessi in geometrie
non specifiche attraverso tecniche di simulazione computazionali.

In primo luogo, abbiamo sviluppato un nuovo metodo multiscala eterogeneo che ac-
coppia i dati su microscala della Dinamica Molecolare Non all’Equilibrio (NEMD) con
un solutore CFD su macroscala per ottenere una previsione data-driven di flussi planari
complessi non uniformi in geometrie macroscopiche complesse. A livello del continuo, il
metodo è privo di modello, poiché il tensore di Cauchy che determina l’evoluzione del
moto è determinato localmente nello spazio e nel tempo dai dati NEMD. Lo sforzo di
modellazione è quindi limitato all’identificazione dei potenziali di interazione adatti alla
microscala. Il metodo è stato testato con successo su tre flussi paradigmatici di fluidi
polimerici: il canale, la contrazione 4:1 e il flusso oltre un foro profondo. Tuttavia, è ap-
plicabile solo quando la scala temporale dei cambiamenti dello stato locale di un elemento
fluido è maggiore del tempo di rilassamento microscopico necessario per ottenere uno stato
della conformazione molecolare e delle interazioni statisticamente stazionario. Rispetto
alle proposte precedenti, il nostro approccio tiene conto del fatto che la risposta dei fluidi
polimerici può dipendere fortemente dal tipo di flusso locale e dimostriamo che questa è
una caratteristica necessaria per catturare correttamente la dinamica macroscopica.

In secondo luogo, abbiamo esteso le condizioni di riproducibilità di un reticolo di punti
in R2 sottoposto ad estensione planare (trovate da Kraynik & Reinelt [38]) al caso dei
flussi misti (combinazione di simple shear ed estensione). Queste condizioni sono legate
alla possibilità di estendere indefinitamente la durata temporale della simulazione e questo
è molto importante per poter estrarre proprietà stazionarie del sistema. Risulta che, per
ogni flusso misto fissato, dobbiamo prendere un orientazione e un rapporto d’aspetto
specifico per la scatola di simulazione al fine di visualizzare un suo comportamento peri-
odico. In corrispondenza del periodo, la scatola viene reinizializzata senza perdere alcuna
proprietà fisica significativa.

In terzo luogo, l’algoritmo è stato implementato con successo nel pacchetto software
PMF, scritto in C++ e dedicato alle simulazioni NEMD di Flussi Planari Misti in LAMMPS
(Large-scale Atomic/Molecular Massively Parallel Simulator). Siamo anche riusciti a re-
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alizzare una serie completa di simulazioni significative di moti misti e, per questo motivo,
il software può essere uno strumento affidabile per esplorare le proprietà reologiche di
questa classe di flussi.
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Introduction

Complex fluids, such as suspensions of hard particles in a Newtonian solvent or polymeric
melts, often reveal non-Newtonian effects such as viscoelasticity, shear-thinning or shear-
thickening behavior of viscosity with respect to the velocity of the deformation.

Viscoelasticity is the property of a material to behave as elastic solid or as viscous fluid,
depending on temperature, shear rate or time scale of observation. Polymeric solutions
are typically viscoelastic because of the presence of elastic chains that elongate, tumble
and realign, depending on the condition of flow, breaking the linearity in the stress-strain
relation of the Newtonian case. Another non-Newtonian phenomenon is the non-constant
viscosity: for low values of the shear rate the particles tend to orientate in the direction
of the flow, structuring partially, and causing the decreasing of the viscosity (shear-
thinning) at low concentrations. For high values of the shear rate and volume fractions
of the dispersed phase near the jamming point (critical value), the elastic structures tend
to form clusters much more structured and the viscosity increases (shear-thickening).
So, the molecular structure of the fluid is modified in different ways according to the
type of flow: shear motion with its rotatory component encourages the aggregation and
disaggregation of particles, elongation instead promotes the orientation in the direction
of the extension. For this reason it is important to study also the local rheology and the
microscopic changes, to understand the macroscopic response of these fluids to applied
forces. We are going to restrict the field of our investigation to fluids which are, to a
good extent, incompressible, thus liquids and to mention, firstly, their main rheological
properties, called material functions, in simple shear (shear viscosity η and Normal Stress
Differences N1 and N2) and in the extension flow (extensional viscosity ηE). In Chapter 1
we are going to illustrate the main rheological properties of non-Newtonian fluids in a
mathematical approach.

The class of Newtonian fluids represents a good approximation for some substances
such as water, air and plasma in the blood in several relaxed conditions of flow (large
arteries, wide tubes, . . . ). Material functions have classically been extracted and ob-
served in the, so called, viscometric flows, i.e. with velocity gradient locally equivalent
to that of a simple shear. In recent decades, extensional flows have acquired more and
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more importance for the rheological characterization of complex fluids. However, simple
flows turn out to be only mathematical idealizations of the reality because they are often
completely uniform and develop in regular geometries. Real processes, instead, occur in
flow geometries that are rarely regular: they often have restrictions, holes, barriers, ob-
structions, deviations, angles and this gives rise to complex flows characterized by regions
with different flow-types and non-homogeneous velocity gradients, hard to investigate and
classify. For this reason, we are interested in studying properties of complex fluids under
generic flow conditions and it becomes necessary to develop techniques able to take into
account the flow-type dependence of the response of the fluid through the stress tensor
to applied pressure gradients.

In the characterization of fluids and the construction of macroscopic models, rheology,
as the science that investigates (both computationally and experimentally) properties of
materials (both solids and liquids) under deformations and flows, helps us. In recent
years, numerical methods are becoming increasingly common in the investigation of fluids,
because they make it possible to go beyond the typical limits of laboratory experiments
and to obtain data even under conditions that are difficult to reproduce in the laboratory,
in a much shorter time, see Crochet [9] for a discussion on numerical methods for complex
fluids.

Regarding fluids and deformable systems, the relevant kinematic information are en-
coded in the derivatives of the velocity u. In this discussion we start by considering only
the first derivative, the velocity gradient tensor ∇u, representing it in a frame–invariant
form through the eigenvectors of its symmetric part, the strain rate tensor, D, as illus-
trated in Chapter 2. The local kinematics of the fluid in planar flows turns out to be
described by two parameters: the rate of strain ε̇ and the out-of-flow component of the
vorticity β3. The parameter β3 detects the presence of rotational components in the flow,
thus our classification of planar flows will be made on its basis. In particular, |β3| = 0
corresponds to extensional planar motion, |β3| = 1 to a simple shear and |β3| → ∞
to rotational rigid motions, where intermediate values of |β3| are associated to mixed
flow-types.

Then, the rigorous mathematical link between the kinematic and the dynamic state
of the fluid is given through the constitutive law for the Cauchy stress tensor σ, appear-
ing in the equation of motion of the fluid. It quantifies the internal stresses that are
generated on a fluid element as a consequence of external actions. We give a brief and
not exhaustive overview of classical choices in literature on constitutive laws illustrating
Ideal, Newtonian, Power-law, Reiner–Rivlin and Second order fluids.

However, for the realization of this study we deviate from classical representations and
we prefer to use a data-driven approach, without postulating any “a priori” constitutive
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laws. We make use of the decomposition of the stress illustrated in Giusteri & Seto [25]
(and in Chapter 2) to project and organize microscopic data that are used to reconstruct
the stress at the macroscopic level, in a way that we explain in detail in Chapter 2 and
Chapter 5.

This decomposition gives a mechanically invariant (with respect to the reference sys-
tem) meaning to the various terms, thus it has a tensor-type form. The stress tensor
is here represented by a linear combination of basis tensors built starting from D. This
decomposition is adaptable to any flow and to any fluid in every geometry. It is a local
representation both in time and space, because depends on the eigenvectors of D that
are changing in time and in every point. But the representation of each basis tensor is
the same at any time in any point. The model requires only that D is non-zero.

Microscopic data are retrieved thanks to Molecular Dynamics (MD) simulations, a
widely used technique to compute equilibrium and transport properties of many-body
systems. The particles that make up the system obey to the laws of classical mechanics,
for example Newton’s second law where the acting forces are empirical forces, deriving
from suitable interaction potential functions. The mainly used interaction potentials
are the classical Lennard Jones (LJ) potential, the Weeks-Chandler-Andersen potential
(WCA), which takes only the repulsive part of LJ, and the FENE (Finitely Extensible
Nonlinear Elastic) potential for elastic covalent bonds. More details on basic notions on
MD are reported in Chapter 3. We made NEMD (Non-Equilibrium Molecular Dynamics)
simulations with a coupling between the WCA and the FENE potential to model polymers
as bead-spring systems. The MD simulation of motion is conducted in the main or
primitive box, which is surrounded by periodic copies of itself (called images) to achieve
a representation of the bulk flow. This technique is called Periodic Boundary Conditions
(PBCs).

In our NEMD simulations the flow is applied with a deformation of the box through
its boundaries. At each timestep we compute interacting forces on each particle that
belongs to the main cell, using all the particles that fall in the interaction radius, also
image particles, if it is necessary.

Once forces are computed for all particles in the main box, the program proceeds with
the integration of the equations of motion. Particles obey to Newton’s second law, but
we make use of another formulation, called SLLOD, in which we consider the velocity
relative to the streaming velocity, instead of the actual one. Daivis and Todd [10] proved
the validity of this equations in the entire class of homogeneous flows, and not only for
simple shear motion. Usually these equations are coupled with a thermostat that is
needed to keep the average temperature around a chosen value, allowing to simulate the
flow in the desired statistical ensemble.
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When a situation is reached in which the measured average properties of the system
no longer vary with time, we are in the steady state. And for example, the microscopic
pressure tensor at steady state is calculated with the virial theorem. It also happens that
if N is sufficiently large the statistics observed is independent of N and of the periodicity.

In Chapter 5, we show our NEMD results that reproduce and extend published data of
the research group of the University of Mainz, reported in Stalter et al [56]. We collected
microscopic data about mean flow quantities in a simple shear motion using LAMMPS
(Large-scale Atomic/Molecular Massively Parallel Simulator), a well-known molecular
dynamics parallel simulator. However, data obtained are of limited applicability because
few motions are local shear and it appeared necessary to study types of flow other than
simple shear.

Using LAMMPS, we went beyond the article mentioned above, simulating the planar
extensional flow through the UEF package by David Nicholson [51], obtaining data about
the mean pressure tensor, energy and temperature. We organized the data by projecting
the average stress σ on the tensorial basis adapted to the local flow (Î, D̂, Ĝ3) illustrated
in Chapter 3, but independent of the flow type and of the reference system, as we already
mentioned. The coefficients of the decomposition of the stress tensor are p the pressure
of the fluid, η the generalized viscosity and λ3, related to non-Newtonian effects and
normal stress differences. MD data have been fitted using principles of Gaussian Process
Regression (GPR) and pyGPs, a devoted library in Python [49].

This microscopic results has been used, trying to extend the applicability of the Stal-
ter’s work to extensional and mixed flows. Substantially, with MD data we can associate
to each node of the macroscopic computational domain the appropriate stress σ at each
time step. Such a stress features flow-type dependent viscosity η(ε̇, β3) and normal stress
differences λ3(ε̇, β3).

Moreover, in a first study, we interpolated linearly the values of the parameters of the
model, using the new data relative to simple shear and extension to obtain the values
in intermediate situation of mixed motions 0 < |β3| < 1, important to complete the
study of real fluids that are just complex. The method is usable when separation of
scales (micro-macro) occurs and has been applied to the analysis of some paradigmatic
examples of non-uniform planar flows, such as the flow through a 4:1 contraction and the
flow past a deep hole. In doing so, we made use of FEniCS, a well-known Python library
for numerical integration of Partial Differential Equations, that makes use of techniques
of Finite Element Methods (FEM). Our results emphasize the need of considering the
flow-type dependence of the material response of polymeric fluids.

Subsequently, we tried to use LAMMPS to get data about mixed flow, combining shear
and extensional modules, already implemented on that software. This was done to avoid
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the approximation introduced with linear interpolation of MD data. Unfortunately, these
modules allowed us to explore only a limited range of values for the parameters of the
model.

This prompted us to study various algorithms and to consider the idea proposed by
Kraynik and Reinelt [38], with the aim to extend it to mixed motions cases. Substantially,
it is about seeing the simulation box as a lattice that is deforming in time due to a
stress applied to its walls. In 1992 they found the reproducibility conditions for square
and hexagonal lattices under extensional flows. Starting from this work, we found the
reproducibility equations in situations of planar mixed flows with rectangular simulation
lattices, extending their algorithm and implementing these results in a software package
PMF written in C++ language, thought to be inserted in the LAMMPS framework. The
achievement of our boundary conditions is illustrated in Chapter 4.

Practically, choosing the sides in certain proportions, represented by the aspect ratio
a, and orienting the box at a certain angle ϑ we obtained, at a critic time τ , a lattice
identical to the initial one, thus through a careful remapping of the box, we can proceed
with the simulation. This turns to be a clever trick to extend simulations of extensional
flow to infinite times, as it already is for the shear motion, without having a box too
“stretched”.

The main difficulty was in identifying the decomposition of the matrix of the sides
of the simulation box which allows to pass from the so-called LAMMPS frame to the flow
frame. LAMMPS uses a reference in which one side of the box is always aligned with
the first coordinate direction and performs all operations in that frame, except for the
actual deformation which can be done in the flow frame. In our case, this frame has
an eigenvector of the velocity gradient conveniently aligned with the first coordinate
direction.

Hunt et al [31] in 2013 and Todd and Daivis [62] in 2017 had already succeeded in
extending KR’s work to the case of mixed motions by producing a simulation algorithm.
The substantial difference of our work lies in the different parameterization used which
essentially derives from the new decomposition of the velocity gradient (presented in
Chapter 2). It turns out to be advantageous since at the level of the continuum we have
the same parameterization and therefore the coupling becomes easier.

After implementing the code, we have been able to realize a complete set of MD
simulations that cover the field of mixed flows, between simple shear and planar extension,
for values 0 ≤ |β3| < 1 and of the strain rate 0.0001 s−1 < ε̇ ≤ 0.22 s−1.





1
Complex flows and complex fluids

The work of this thesis focuses on the concept of complex incompressible non-Newtonian
fluid with an approach that is intended to be mathematical. A fluid is said to be non-
Newtonian if the stress experienced by the fluid is not proportional to the strain rate and
the relationship between the two quantities can take various forms.

The mathematical model of non-Newtonian fluid has attracted considerable scientific
and technological interest. On the one hand, there is a growing and urgent scientific need
to investigate, model and predict the behaviour of many natural and biological phenomena
such as landslides, avalanches, blood clots, etc. On the other hand, there is an even
stronger technological interest in manipulation and production of complex fluids. Among
the most common non-Newtonian fluids in the food industry, that belong to our daily-life,
are mayonnaise, ice-cream, mustard, cheese, chocolate and sweets. Also many personal
care products can be described by non-Newtonian fluid models: shampoo, nail polish,
lipstick, deodorant, toothpaste. Electronic and optical devices such as liquid crystals and
solder paste belong to this category too. Molten polymers used industrially to create
plastics, packaging and pharmaceutical casings, encapsulants for drug delivery, etc., are
classic examples of complex materials that can be considered non-Newtonian fluids during
their manufacturing process. Materials and mixtures used in building and construction
science are complex fluids: cement, asphalt, bitumen. Some biological substances are
(natural) non-Newtonian fluids, for example blood, mucin, synovial fluid and cannot be
treated with mathematical models related to simple fluids. Among complex materials
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8 CHAPTER 1. COMPLEX FLOWS AND COMPLEX FLUIDS

there are also viscoelastic fluids and heterogeneous mixtures. A good introduction to the
topic can be found in the book by Phan-Thien [52].

Complex fluids can display a very different behavior, spanning from solid-like to liquid-
like, when subjected to different environmental conditions, due to their microstructural
internal rearrangements. This is well illustrated by Larson [42] in his book. On the
contrary, simple fluids are materials in which the stress resulting from the current de-
formation depends only on the past history of its deformation and not from external
sources. The class of Newtonian fluids belongs to this category and represents a good
approximation for some substances such as water, air and plasma in the blood in several
relaxed conditions of flow (large arteries and wide tubes, for example).

Fluids of all kinds have historically been studied and observed in viscometric flows,
i.e. flows, not necessarily uniform in space, whose velocity gradient is locally always
equivalent to that of a simple shear. Coleman, Markovitz and Noll give an extensive
characterisation of them in their book [8]. In recent decades, extensional flows have also
been studied extensively and considered important for the rheological characterization
of the fluid. Simple flows turn out to be only mathematical idealizations of the real-
ity because they are often completely uniform and develop in regular geometries. Real
processes, instead, occur in flow geometries that are rarely regular and that give rise to
complex non-uniform motions, hard to investigate and classify. For this reason, we are
interested to study complex fluids under generic flow conditions, considering the effect of
the flow-type dependence on the macroscopic motion. We want to develop techniques able
to take into account both the flow-type and the strain-rate dependence of non-Newtonian
fluids properties. We are going to restrict the field of our investigation to fluids which
are, to a good extent, incompressible, thus liquids.

In the characterization of fluids and the construction of macroscopic models, rheology,
as the science that investigates (both computationally and experimentally) properties of
materials (solids, liquids or gasses) under deformations and flows, helps us. Basically, it
exploits simple flows to extract material functions, that are generally related only to such
type of flow and to a particular frame of reference. However, rheometry is not sufficient
for the complete characterization of non-Newtonian materials. To make available more
quantitative and qualitative measurements, other sophisticated techniques such as mi-
croscopy, x-ray and neutron scattering or polarimetry are used, see Larson [42]. In recent
years, computational methods are becoming increasingly common in the investigation
of fluids, because they make it possible to go beyond the typical limits of laboratory
experiments, to obtain data even under conditions that are difficult to reproduce in the
laboratory and to do the task in a much shorter time.
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1.1 Mathematical framework

In this section we are going to introduce the basic concepts of continuum mechanics that
will be useful to build macroscopic flow equations.

We introduce a fixed rectangular coordinate system Oxyz and a parameter t ∈ R+

describing the time. Let B ⊂ R3 be the reference configuration of a fluid which is
considered as a continuous set of particles, whose positions in the reference configuration
are denoted by vectors X = (X, Y, Z) of Lagrangian (or material) coordinates. And
let us assume, for sake of simplicity, that B is realized at time t = 0. We describe
the movement of the particles by an injective function φ called placement that, at each
instant t, associates the position at time t, denoted with Eulerian (or spatial) coordinates
x = (x, y, z), function of the time, of the particle that at the initial time was in X, as
represented in Fig.1.1

φ : B × R+ → R3

(X, t) → x := φ(X, t).

R3

B

e1

e2

e3

o

X

ϕ
Bt

x

Figure 1.1: The link between the reference configuration B and the current
configuration Bt is provided by the injective function placement φ.

We assume that φ, φ −1 are functions of class C3 (so that acceleration field can be
defined and that every position x must correspond to a unique particle X) in both
variables and we will call current configuration the set of particles Bt := φ(B, t) at time
t.

The velocity fields in material and spatial coordinates, respectively, are defined as

U (X, t) := ∂φ

∂t
(X, t), u(x, t) := U(φ −1(x, t), t) = dx

dt
= ∂φ

∂t
+ u · ∇φ.
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and also the acceleration fields become

A(X, t) := ∂2φ

∂2t
(X, t), a(x, t) := A(φ −1(x, t), t) = du

dt
= ∂u

∂t
+ u · ∇u.

where ∇φ and ∇u are the placement and velocity gradients and dx
dt
, du

dt
are the material

derivatives, meaning “along particle trajectories”. Lagrangian coordinates are typically
employed in the theory of elasticity, while in fluid dynamics it is customary to refer to the
Eulerian description (velocity and acceleration fields as functions of the current position).
For this reason, from now on we will make use of Eulerian notation, even for gradient,
divergence and rotor operators.

We report here a theorem of derivation under the integral sign that is useful to derive
the balance equations.

Theorem 1.1.1. (Reynolds Transport Theorem): Let Ωt ⊂ Bt ⊂ R3 be an open and
limited set of particles in the current configuration with Ωt := φ(Ω0, t), so that Ω0 = Ω(0).
Given a scalar, vectorial or tensorial field F (x, t), we have

d

dt

∫
Ωt

FdV =
∫

Ωt

(
∂F

∂t
+ u∇F + F∇ · u

)
dV (1.1)

where the left-hand-side term is the temporal derivative of the function{
t 7→

∫
Ωt

F (x, t)dV
}
.

Further details about the proof of the theorem can be found in many different books,
see for example Gurtin [26].

1.1.1 Conservation of mass and incompressibility

The mass of a continuum system Ωt at time t ∈ R+ is obtained through the volume
integral of the mass density per unit volume ρ at time t

M(Ωt) =
∫

Ωt

ρ(x, t) dV.

We are going to consider situations in which there is neither accumulation nor dispersion
of mass, therefore the Principle of conservation of mass is valid: the mass is preserved
through the motion of the fluid ∀Ωt ⊂ Bt, ∀t ∈ R+

M(Ωt) = M(Ω0).
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By making the mass explicit and applying Theorem 1.1.1, we obtain the following con-
dition holding ∀Ωt ⊂ Bt,∀t ∈ R+

d

dt
M(Ωt) = d

dt

∫
Ωt

ρ(x, t) dV =
∫

Ωt

(
∂ρ

∂t
+ ∇ · (ρu)

)
dV = 0

and, since Ωt is arbitrary, the integrand is locally null, namely, ∀t ∈ R+,∀Ωt,∀x ∈ Ωt

∂ρ

∂t
+ ∇ · (ρu) = 0. (1.2)

The previous equation is called continuity equation and expresses the local conservation
of the mass.

At this point, we restrict ourselves to the class of incompressible materials because we
want to investigate liquid properties, neglecting the study of gases. In these fluids, the
variations in time of the density function are not relevant for the single particle, thus the
density is constant along particle’s trajectories, meaning ∀X ∈ Ω0,∀t ∈ R+

ρ(φ(X, t), t) ≡ const

and, thanks to the continuity equation, we obtain a solenoidal velocity vector field

∂ρ

∂t
+ (u · ∇)ρ = 0 ⇒ ρ(∇ · u) = 0 ⇒ ∇ · u = 0.

1.1.2 Equations of motion

Dynamics implies that there is some force acting on the fluid element under consideration.
The forces exerting on the body are either surface forces t (tractions) that acts on short
ranges, and body (volume) forces b, that act on long ranges. An example of body force is
the gravitational, while the hydrodynamic pressure or the frictions between fluid elements
are examples of tractions. The resultant of volume forces is expressed with the volume
integral of the density of volume forces per unit mass b(x, t) over the fluid element Ωt∫

Ωt

ρb dV.

For the tractions we make the following assumption, called Cauchy principle: let S be
an internal surface in the current configuration of the continuum body Bt, oriented with
the outward normal n. There exists a distribution of forces

t(x, t;S)
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that represents the force density per unit (current) area exerted through S by the part of
the material B+

t that is from the side of n towards the part of the material B−
t on the

side of −n. The vector t acts as a sort of flux through S, see Figure 1.2. We also assume
that t depends continuously on S only through the normal n with

t(x, t;S) = t(x, t; n).

Thus, the resultant of surface forces can be expressed by the integral over the surface S∫
S

t ds.

B+
t

B−
tS

n

Figure 1.2: The traction t(x, t; n) in point x is the force per unit area exerted
by B+

t onto B−
t , where S is a surface internal to the current configuration

of a body.

The principle of linear momentum balance is also assumed: the rate of change of linear
momentum of a material volume Ωt with boundary ∂Ωt equals the total resultant of forces
acting on the body

d

dt

∫
Ωt

ρu dV =
∫

Ωt

ρb dV +
∫

∂Ωt

t dS (1.3)

and, thanks to the Theorem 1.1.1, becomes
∫

Ωt

ρ
du

dt
dV =

∫
Ωt

ρb dV +
∫

∂Ωt

t dS. (1.4)

We are going now to state a fundamental theorem of continuum mechanics.

Theorem 1.1.2. (Cauchy Stress Tensor): ∀(x, t) ∈ Ωt ×R+, the vectorial field t(x, t; n)
is linear in n, i.e. there exists a second-order tensor σ such that

t(x, t; n) = σ(x, t)n

that is called Cauchy Stress Tensor.

The proof of the theorem can be found in Landau [40]. This tensor encodes the state
of stress at a point inside the fluid element in the deformed (current) configuration, thus
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codifies the different way this element responds to external stimuli in different directions.
Thanks to the previous results and to the Divergence Theorem, the resultant of surface
forces takes now the form∫

∂Ωt

t dS =
∫

∂Ωt

σn dS =
∫

Ωt

∇ · σ dV

so that we can re-write the balance of linear momentum in terms of all volume integrals
∫

Ωt

ρ
du

dt
dV =

∫
Ωt

ρb dV +
∫

Ωt

∇ · σ dV.

For the regularity of the considered fields and, by the arbitrariness of the integration
domain, we obtain this relation, holding ∀t ∈ R+,∀x ∈ Ωt

ρ
du

dt
= ρb + ∇ · σ (1.5)

that is the local equation of motion, valid in any point of the fluid element Ωt.
Analogously, we assume the balance of angular momentum to complete the previous

physical hypothesis, valid ∀Ωt ⊂ B and ∀t ∈ R+

d

dt

∫
Ωt

ρx × u dV =
∫

Ωt

ρx × b dV +
∫

∂Ωt

x × t dS.

The following theorem can be proved, for details see Phan-Thien [52].

Theorem 1.1.3. If the equation of continuity and the conservation of linear momentum
hold, then the conservation of angular momentum is verified if and only if the Cauchy
Stress Tensor is symmetric σ = σT.

In isothermal flows the equations governing the fluid-dynamics of an incompressible
fluid of density ρ(x) are the following

∇ · u = 0 (1.6)

ρ
du

dt
= ρb + ∇ · σ (1.7)

σ = σT (1.8)

where (1.6) and (1.7) represent a system of 4 scalar equations in the 10 unknowns ρ, u

and σ. In order to have a closed problem, we need to specify further properties for the
fluid. One could provide a static form for sigma and close the problem, but we prefer
to keep it as a function of the other unknowns. Classically, this is done by providing a
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constitutive law for the Cauchy stress tensor σ

σ = −pI + τ (t, ρ,∇ρ, . . . ,u,∇u, . . . ) (1.9)

where p is the isotropic pressure and τ the extra (or deviatoric) stress, the non-isotropic
part of σ. The constitutive law is a differential operator depending on the unknowns, their
derivatives and time that represents the bridge between the dynamics and the kinematics
of the fluid.

In constitutive modelling we distinguish two approaches: the continuum approach and
the microstructure approach. It is generally believed that relevant constitutive equations
should be based on a (simplified) model of the microstructure. But, when the physics
governing the microstructure interactions is complicated, one must not hesitate to in-
troduce elements of continuum modelling, however the continuum approach should not
completely replace the microstructure modelling. In Chapter 2 we will recap well-known
examples of continuum constitutive models. On the contrary, the method proposed in
this thesis aims to reconstruct the stress tensor at the level of the continuum without
prescribing a particular functional form for it, letting rheological properties of the fluid
emerging from simulations on the micro-scale.

Rheology helps us to make τ explicit for each type of fluid considered. In the next
sections we are going to illustrate the main rheological properties of fluids and the deriva-
tion of classical material functions, taking inspiration from Phan-Thien [52]. For more
details we can always refer also to Larson [42].

1.2 Rheological properties

Fluids with simple microstructures are well described by the Newtonian constitutive
equation, for which the stress tensor is proportional to the rate of the deformation. In
the liquid state the mechanical properties of a Newtonian fluid are represented by only
the density ρ and the shear viscosity η, which is only pressure, density and temperature-
dependent while is constant in space and time. However, a constant viscosity does not
qualify a fluid to be Newtonian. The term Newtonian is much more restrictive in its
meaning, see Chapter 2 for some mathematical detail. The mechanical behavior of many
real fluids appears to be accurately described by the theory of Newtonian fluids over a
wide range of circumstances. There are natural substances such as water and air, but
also biological substances, such as plasma in the blood, that can be considered in good
approximation as Newtonian fluids. However, in most of the cases, the Newtonian fluid
model represents an almost exclusively mathematical simplification of reality. In fact, real
fluids show, generally, a complex behavior due to the presence of relevant microstructures
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between their molecules. Polymer melts and solutions (molten plastics, fibre-reinforced
or particulate plastics), suspensions of particles or droplets (blood, paint, ink, asphalt,
bitumen, foodstuffs, etc.) exhibit a wide variety of non-Newtonian effects, that are briefly
recalled here.

1.2.1 Viscosity

Shear-rate dependent viscosity

The most important property for engineering calculation is the fluid viscosity measured
in simple shear. As shown in Fig. 1.3, the simple shear flow is generated by sliding the
top wall with respect to the bottom, with the fluid in between. The quantities of interest
are the shear rate γ̇ and the shear stress σxy

γ̇ = U

h
, σxy = F

A
,

where x is the direction of the sliding, y the direction of the velocity gradient, U the
velocity of the top plate, h the sample thickness, F the tangential force on the top plate
and A the fluid contact area. In the case of non-Newtonian fluids, the shear stress is an
odd function of the shear rate σxy(γ̇). The shear rate in any point can be computed also
as the derivative of the horizontal component of the velocity with respect to the vertical
direction γ̇ = ∂ux/∂y. The velocity gradient of this type of flow is, thus, represented by
the matrix

∇u =


0 γ̇ 0
0 0 0
0 0 0

 .
In addition, there may be a normal force on the plates.

y

x

h Normal force
ux = γ̇y

U σxy = F/A

Figure 1.3: Shear flow generated by sliding one plate on top of another with
velocity U . A linear velocity profile is formed ux = γ̇y, a shear stress σxy

and normal pressures at the walls.
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When a steady flow can be achieved, the steady shear viscosity is defined as the ratio
of the shear stress to the shear rate

η = σxy

γ̇
. (1.10)

and has units Pa · s. From the rheometric measurements it appears that for most fluids
with long chain microstructure (polymer melts and solutions), the viscosity exhibited
under simple shear is a decreasing function of the shear rate. This type of behavior
is called shear- thinning and is due, prevalently, to two factors: the spheroidal shape
assumed by the molecules of the fluid (due to the rotational part of the flow) and the
tendency of the flow, at low concentrations, to orient and structure molecules in the
direction of the sliding. The opposite shear-thickening behavior is sometimes observed
with some suspensions especially at high concentration and high shear rate deformations,
due to the sudden formation of clusters which provokes the hardening of the fluid. In
Chapter 5 we will discuss these facts more in relation to our results.

For some materials with solid-like behavior (for example, bread dough, biological
tissues), viscosity measurement makes no sense, since the shear stress just keeps increasing
with time until the sample breaks or flows out of the test cell, and what has been measured
is not a material property, but an indication of the friction between the sample and the
test apparatus. With suspensions of particles with surface charges, one can get viscosity
to behave in many different ways; even a discontinuity at a particular shear rate may be
induced.

1.2.2 Normal Stress Differences

As reported in Phan-Thien [52], normal stress differences are the differences between
the unequal normal stresses that are generated in a non-Newtonian fluid under a shear
flow. For a Newtonian fluid, instead, the normal stresses are always equal, so, normal
differences are null. We define the first and the second normal stress difference as

N1 = σxx − σyy N2 = σyy − σzz (1.11)

where, as usual, x is the direction of the sliding, y the direction of the velocity gradient
and z the vorticity direction of the flow. N1,N2 are even functions of the shear rate and
we can, alternatively, use the first and second normal stress coefficients as the ratios

Ψ1 = N1

γ̇2 , Ψ2 = N2

γ̇2 (1.12)
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that are also even functions of the shear rate, but give us additional information on the
(quadratic, quartic, . . . ) trend of the functions N1 and N2.

Instead of N2, the real parameter usually measured in laboratory is N0, a combination
of N1 and N2

N0 = N1

2 + N2 = σxx + σyy

2 − σzz.

In the shear flow the response of a non-Newtonian fluid is characterized by three degrees of
freedom of the symmetric stress tensor σ, represented by the normal stress differences N1

and N2 (or their coefficients) and the steady shear viscosity η. All of them are classically
called viscometric material functions.

In the work of Seto & Giusteri [55], they investigated the presence and the microscopic
origin of normal stress differences in dense suspensions under simple shear flows in the
high-Péclet-number limit (advection phenomena prevail over conduction ones). As they
said, in viscoelastic fluids, a non-vanishing N1 is a signature of elastic effects. And the
convection determined by the rotational component of the flow leads to positive values
of N1. While in suspensions, since suspended particles are usually very rigid, there
is no elastic component. Most of the experimental results reported a negative N1 for
moderately dense suspensions at high shear rates. Few of them also reported a transition
from negative to positive values of N1 at high shear rates in very dense suspensions. A
misconception is widespread that the sign of N1 discriminates between regimes in which
either hydrodynamic interactions are dominant (negative N1) or contact interactions are
(positive N1). However, Seto & Giusteri proved that positive values of N1 are only
associated to artefacts of the numerical approximation needed in a computational model
that aims at simulating hard-sphere suspensions. Moreover N1 is used as a measure of the
misalignment between the eigenvectors of the stress σ and the ones of D. The quantity
N0, instead, measures a stress anisotropy caused by the planarity of simple shear flows.
The flow generates more pressure in the flow plane than in the vorticity direction (stress
contribution is globally anisotropic). Differently from the standard N2, the quantity N0

is fully independent of N1, thus N0 is more informative than N2.

Weissenberg Rod-Climbing Effect

When a rod is rotating in a viscoelastic fluid, the fluid moves up the rod rather than
depressing the free surface near the rod. This phenomenon is called the Weissenberg rod-
climbing effect. Rod climbing is due to the fluid element being able to support a tension
along a streamline (first normal stress difference) that forces the fluid up the rod.
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Die Swell

When a viscoelastic fluid exits from a capillary of diameter D, it tends to swell con-
siderably more than a Newtonian fluid. For highly viscous Newtonian fluids, the swell
ratio, DE

D
, where DE is the extrudate diameter, is at most 13%. For a polymer melt,

the extrudate diameter could be a few times the capillary diameter. This phenomenon
is called die swell, and the dominant mechanism causing this is the first normal stress
difference. In fact, Tanner [57] proposed the simple rule for capillary die swell, based on
a simple analysis

DE

D
= 0.13 +

1 + 1
2

(
N1

2σxy

)2

w

1/6

, (1.13)

where N1 and σxy are the first normal stress difference and the shear stress, both evaluated
at the wall (subscript w). Die swell is mainly due to the fluid elasticity, but it can also
occur with the shear-thinning induced by viscous heating. Inertia tends to reduce the
amount of swell, and to delay it.

Flow down an inclined channel

The second normal stress difference N2, although small in magnitude, is important in
some cases. In the flow down an inclined channel, a Newtonian fluid is seen to have
a nearly flat free surface, whereas a convex surface is seen for a viscoelastic fluid with
a negative N2. Viscoelasticity is also responsible for the reversal of the secondary flow
pattern.

1.2.3 Extensional Flows

Extensional viscosity

Stretching or elongating a sample fluid specimen leads to diagonal velocity gradient,
coinciding with its symmetrized part

∇u =


a 0 0
0 b 0
0 0 c


where, in the incompressible case tr (∇u) = a + b + c = 0. There are three different
types of extensional flow: when b = −a and c = 0 one has a planar elongational flow,
we have a uni-axial elongational flow when a = b = −c/2 and a bi-axial elongation when
a ̸= b and c = −(a+ b). Usually, a equals the dominant eigenvalue a = ε̇ which is called
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elongational (or strain) rate and it physically corresponds to the rate of the deformation
in a point.

The gradient is here expressed in a different frame of reference with respect to the
simple shear case: the x-axis corresponds, in fact, to the direction of the extension (or of
the dominant eigenvector). For the simple shearing motion, the most convenient frame
to use is the one that has the contraction and expansion directions oriented at 45° with
respect to the reference axes.

The viscosity in the extensional motion is defined differently from that in simple shear
and is called elongational viscosity

ηE = σxx − σyy

ε̇
.

being the ratio between the first normal stress N1 and the strain rate ε̇.
Except at very low elongational rates, elongational viscosity does not usually reach a

steady state (the sample elongates and fails). The elongational viscosity of a Newtonian
fluid is a few times its shear viscosity, but for a polymer solution, the elongational viscosity
can be orders of magnitude greater. Classically, the Trouton ratio (Tr) is defined as the
ratio of the elongation viscosity to the shear viscosity of the fluid

Tr = ηE

η
. (1.14)

For a Newtonian fluid, the Trouton ratio is Tr = 3 in dimension three and Tr = 4 in the
planar case.

1.2.4 Mixed Flows

Mixed flows combine characteristics of shearing and extensional flows. We represent
here the most general velocity gradient (in two dimensions for convenience) through the
following matrix

∇u = 1
2G

 1 + α 1 − α

−(1 − α) −(1 + α)


where α is a “flow-type” parameter , α = 0 for simple shear and α = 1 for planar
extension; G corresponds to the shear rate γ̇ if α = 0 while to the extension rate ε̇ if the
flow is a planar extension. A general 2D flow (thus, every type of flow) can be generated
in an apparatus called four-roll mill, see Larson [42] for details.

For mixed flows, rheometric standards for material functions are not yet defined, so a
new theoretical framework is needed to characterize non-Newtonian fluids in every type
of flow. We will see in the next chapter how this framework is mathematically formalized
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and how new and more generic material functions defined.



2
Kinematics and constitutive laws

The concept of constitutive law is key in fluid dynamics: it expresses in rigorous mathe-
matical terms the link between the fluid’s kinematic state and its corresponding dynamic
state, dissecting how it responds to external stimuli through the generation of internal
stresses. In deformable bodies, therefore also in fluids, the relevant kinematics is rep-
resented in a first approximation by the velocity gradient tensor ∇u, that encodes the
relative velocity around a point. It is usually expressed by separating the symmetric
part D, related to the deformation, from the skew part W, related to the rotational com-
ponents of the flow. We choose to represent ∇u on the basis of the eigenvectors of D
because this representation is independent of the reference system.

Our study is restricted to the case of planar flows and, in doing so, two kinematic
parameters ε̇ and β3 emerge. The first is the rate of strain, while the second is the
component of vorticity in the direction orthogonal to the flow and will be our flow-type
parameter. On the basis of β3 we make a classification of flows associating to each of its
values a type of motion: extensional, simple shear, rigid rotational or mixed. The details
of this classification are illustrated in Giusteri & Seto [25], which we take as reference for
this chapter. There are many other classification theories, that have been overviewed by
Thompson & Mendes [60], such as those by Astarita [1] and Schunk & Scriven [54].

Mathematically, the dynamic response of the fluid is expressed with the Cauchy stress
tensor σ which quantifies the internal stresses that are generated on a fluid element
as a consequence of external actions. Rheology aims at codifying this fluid response

21
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through mathematical laws, linking the stress to the kinematic parameters. These laws
should be simple, understandable and easy to use, but are often not very general and not
applicable to different contexts if they are designed for specific flows. We will review the
main classical constitutive laws such as Ideal, Newtonian, Power-law, Reiner–Rivlin and
Second order fluids.

However, in the development of this work we will follow a data-driven approach with-
out postulating constitutive laws. To this end, we take as reference the decomposition
introduced by Giusteri & Seto [25]. This decomposition is adaptable to any flow and
fluid and requires only that D is non-zero. It has a local nature in both space and time
and does not depend on the geometry of the flow. Precursors to that decomposition and
to the methods that we will employ can be found in the works by Miller et al. [47] and
by Hartkamp et al. [27].

2.1 Velocity gradient and flow classification

The velocity gradient tensor ∇u is the most fundamental kinematic variable of the fluid
dynamics. In fact, in the theory of deformable bodies, the relevant kinematic quantity is
not the velocity itself u(x, t) in a geometrical point x, but the relative velocity between
nearby points, expressed through the velocity gradient. If ∇u = 0, there is no difference
in nearby point velocities and the body is moving with a rigid translation of constant
velocity. If we change inertial observer, the system is not moving at all, no internal forces
are arising and we don’t have any fluid dynamics. So we, obviously, assume ∇u ̸= 0 in
our discussion.

Some ideal flows display homogeneous gradients, maybe varying over time. Anyway
real fluxes are characterized by non-uniform velocity gradients, that can change drastically
from one point to another, and for this reason, we are interested in their local kinematics,
analyzing the velocity gradient computed at a point.

The symmetric part D of the velocity gradient ∇u is called strain rate tensor, and its
skew-symmetric part W is called vorticity tensor. We have

∇u = D + W

with D = 1
2

(
∇u + ∇uT

)
and W = 1

2

(
∇u − ∇uT

)
. In this way, we can distinguish

the contribution of the stretching part (due to the flowing of the material) from the
contribution of the rotational part to the velocity gradient.

The multiscale method we have implemented is centered around the decomposition
of the stress tensor illustrated in the work of Giusteri & Seto [25]. Their starting point
is D and the representation of tensors D,W onto the basis of eigenvectors of D. They
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consider cases in which D has a non-vanishing dominant eigenvalue, corresponding to the
strain rate ε̇, related to the eigenvector d̂1, while d̂2 and d̂3 are the other two orthonormal
eigenvectors. Moreover, for incompressible fluids the trace of the velocity gradient is null,
tr (∇u) = tr (D) = 0, and it can be proved that the most generic symmetric part of ∇u

is represented as

D = 2ε̇√
3 + 4α2

[
d̂1 ⊗ d̂1 − (1/2 + α)d̂2 ⊗ d̂2 − (1/2 − α)d̂3 ⊗ d̂3

]

with 0 ≤ α ≤ 1/2 an asymmetry parameter. Then, the most generic skew-symmetric
part of ∇u is represented by this combination

W = ε̇
[
β1(d̂3 ⊗ d̂2 − d̂2 ⊗ d̂3) + β2(d̂1 ⊗ d̂3 − d̂3 ⊗ d̂1) + β3(d̂2 ⊗ d̂1 − d̂1 ⊗ d̂2)

]
with βk, k = 1, 2, 3, (dimensionless) components of the (normalized) vorticity vector along
the directions d̂k

βk = 1
2ε̇ d̂k · ∇ × u. (2.1)

The strain rate ε̇ quantifies the intensity of the deformation. For us, it corresponds
to the tensorial Frobenius1 norm of the matrix D

IID = 1
2
(
(tr D)2 + tr (D2)

)
= tr D2

2 ⇒ |ε̇| = ||D|| =
√

D : D
2 =

√
IID =

√
tr D2

2 .

The inverse of ε̇ is the local timescale of the deformation tD, for any value of the dimen-
sionless parameters α and βk.

In this three dimensional representation the nine degrees of freedom of ∇u reduce
to eight because of the incompressibility condition, and are represented by ε̇, βk, α, d̂i,
that are our independent descriptors of the local state of the system. Since each of these
parameters depends on time and space (x, t), at any given time, it is possible to associate
to each point x of the (continuum) flow domain a unique value for them.

In our discussion we focus on the two-dimensional case, but in the future we may
extend the discussion and results to the three-dimensional case. Thus, in planar motions
α = 1/2 (maximal asymmetry) and β1 = β2 = 0 because the vorticity has components
only in the out-of-flow-plane direction, thus, the representation of the velocity gradient
becomes

D = ε̇
[
d̂1 ⊗ d̂1 − d̂2 ⊗ d̂2

]
, W = ε̇β3

[
d̂2 ⊗ d̂1 − d̂1 ⊗ d̂2

]
.

In this framework it is clear that, up to rotations of d̂i, ε̇ and β3 are unique representatives

1The Frobenius inner product of two matrices A and B is defined as A : B := tr (AT · B).



24 CHAPTER 2. KINEMATICS AND CONSTITUTIVE LAWS

of the local kinematics. ε̇ works as weight for the deformation and β3 works as weight of
the amount of rotation relative to the deformation.

In particular, the parameter β3 is going to be, for us, the flow-type parameter because
is useful to classify all the steady homogeneous flows. According to Giusteri and Seto [25],
doing a proper classification means to group flow conditions that are, at the microscopic
level, physically equivalent entailing equivalent material responses at the macroscopic
level. For a fixed ε̇, our parametrization with β3 measures the tendency of the fluid to
protect from strong deformations increasing its vorticity. Precisely, β3 = 0 corresponds to
planar extension, because it is not reacting at all through vorticity, |β3| = 1 corresponds to
simple shear flows (equivalent components of rotation and deformation), |β3| ≫ 1 highly
rotational flows, when the body clearly prefers to rotate rather than deform, and mixed
flows for 0 < |β3| < 1 in which there are different intakes from the two types of motion.
In Fig. 2.1 we report the illustration of the vectorial velocity fields of homogeneous flows,
spanning from extension to rotation, on the basis the classification just illustrated.

Figure 2.1: Streamlines of the velocity gradient fields of five types of flow,
classified on the basis of the parameter β3, which is the vorticity component
in the out-of-flow direction. From the left side we have: planar extension
|β3| = 0, intermediate (extensional) motion (0 < |β3| < 1), simple shear
|β3| = 1, intermediate (rotational) motion (1 < |β3| < ∞) and purely rota-
tion.

Flow characterization has a long history, overviewed by Thompson & Mendes [60].
Astarita [1] also gave his important contribution to this theory, proposing criteria and
the following scalar parameter as flow-type parameter

R = −tr (W2)
tr (D2)

.

The scheme offered by Schunk and Scriven [54] includes among the kinematic parame-
ters the material derivative of the eigenvectors d̂k of D through the so called Jaumann
derivative, for example.

Among all the choices, the simplest we can make is considering only the dependence
of the stress tensor onto the velocity gradient: all constitutive prescriptions will be, in
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such a case, combinations of the two parameters ε̇ and β3, up to rotations of the d̂i.
No one forbids us to go beyond the mere dependence on the velocity gradient. In more
complicated fluids there are dependencies also from higher order derivatives of u, for
example see Schunk & Scriven [54], the history of the deformation, or the amount of
volume fraction of the dilute phase into the solvent and many other factors. Doing this,
would require the introduction of further kinematic parameters.

2.2 Classical constitutive laws

The constitutive law, also called rheological equation of state, makes the linkage between
the stress response and the kinematic local state of the material, providing the missing
information to have a closed mathematical problem for the fluid. Finding this model for
each fluid is the central concern of rheology. In this section we give a brief overview of
the main well-known constitutive laws for incompressible fluids.

2.2.1 Ideal Fluid

The first and simplest choice we can make in modeling a fluid is to neglect the tangential
stress, responsible of viscosity. This leads to the model of Ideal (or Ideal) Fluids. In this
case every direction is eigenvector for σ and therefore the stress tensor is an isotropic
tensor, multiple of the Identity tensor I

σ = −pI

where p > 0 is the pressure coefficient, that is assumed to be a function of (x, t).
In the static regime all the fluids can be, approximately, considered ideal, while in the

dynamic regime, this choice corresponds to neglect the viscosity of the fluid and consider
only the category of inviscid fluids, which is not consistent with reality, but is only a
mathematical idealization. For biological and industrial fluids, it is fundamental to find
constitutive equations for σ which take into account the viscosity.

2.2.2 Reiner-Rivlin fluids

Among the class of viscous fluids there is a special class of incompressible fluids whose
extra-stress tensor depends only on the strain-rate tensor τ = τ (D). These fluids are
called Reiner-Rivlin fluids and are represented by equation

σ = −pI + f1(IID, IIID)D + f2(IID, IIID)
[
D2 − (IID/3)I

]
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with f1, f2 arbitrary scalar functions of the invariants of matrix D with IID = tr (D2) and
IIID = det D. D is encoding information about deformation and how the fluid is flowing,
thus, the dependence of σ onto D is the simplest one we can make.

Newtonian Fluid

If we consider Reiner-Rivlin fluids with f2 = 0 and f1 = 2η constant in space and time, we
obtain the model of Newtonian fluids, the most famous and investigated class of viscous
fluids. For them, the relation between the stress σ and D is linear and represented by
the following equation

σ = −pI + 2ηD

where η is the shear viscosity, codifying the amount of mechanical energy that is dissipat-
ing through the motion of the fluid. The second principle of the thermodynamics leads
to a restriction on its sign η ≥ 0.

The substitution of this expression in the Cauchy stress tensor of the equation of
motion leads to the popular Navier-Stokes problem of the fluid dynamics.

Generalized Newtonian Fluid

The two characteristic features of the Newtonian model are the linear dependence of the
stress tensor σ on D, and the fact that the shear viscosity η is constant.

A natural way of generalizing the constitutive equation is to drop the linearity assump-
tion, as well as to allow the dependency of η on the tensor D. Thus, another particular
case of Reiner-Rivlin fluids are the, so-called, Generalized Newtonian fluids, for which

f2 = 0 and f1 = η(IID) (2.2)

so, the stress tensor σ becomes

σ = −pI + η(IID)D, η ≥ 0. (2.3)

There are several choices we can make for the function η. A very popular one is the
so-called “Power-law” model, introduced by W. Ostwald as early as 1925, where η is a
power function of the strain rate ε̇

η(IID) = k|ε̇|s−2

with k a dimensional coefficient, s > 1 a non-dimensional constant which is called flow
behavior index. Changing s means to consider different models of Power-Law fluids:
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• if 1 < s < 2 we have shear thinning (or pseudo-plastic) fluids, i.e., the viscosity
decreases as ε̇ increases

• if s > 2 we have shear thickening (or dilatant) fluids, i.e., the viscosity increases as
ε̇ increases

• if s = 2 we have Newtonian fluids.

2.2.3 Second order fluids

Suppose that the particle X, that is in position ξ at time τ , occupies the position x at
time t. The deformation gradients between old and new positions are expressed as

F(t) =
(
∂x

∂X

)T

, F(τ) =
(
∂ξ

∂X

)T

and the relative deformation gradient as

Ft(τ) =
(
∂ξ

∂x

)T

=
(
∂ξ

∂X

)T

·
(
∂X

∂x

)T

= F(τ)F(t)−1 = I + (τ − t)∇u + O
(
(τ − t)2

)
.

We can now define the (Right) Cauchy-Green tensor through the relative deformation
gradient

Ct(τ) = Ft(τ)TFt(τ). (2.4)

We are going now to see an example of a class of fluids out of the category of Reiner-
Rivlin fluids: the Second Order fluids, whose stress tensor is built from the velocity field
with up to two derivatives. We can express now the, so called, n-th Rivlin-Eriksen tensor
through material derivatives of Ct(τ)

An(t) = dn

dτn
Ct(τ)|τ=t, n = 0, 1, 2, . . . (2.5)

and, since Ft(τ) = I and Ct(τ)|τ=t = I, we obtain the first Rivlin-Eriksen tensor

A0 = I.

The higher order tensors can be obtained through the following recursive formula

An+1 = d

dt
An + An∇u + (∇u)TAn n = 1, 2, . . .

that we can prove being equivalent to (2.5) (see Phan-Thien [52]). For example, we have

A1 = 0 + I∇u + (∇u)TI = 2D, A2 = 2(Ḋ + D∇u + (∇u)TD).
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At this point, as reported in Phan-Thien [52], the stress tensor of a second-order fluid is
an isotropic function of the Rivlin-Eriksen tensors An until the second order represented
by

σ = −pI + ηA1 + α1A2
1 + α2A2

where η is the zero-shear viscosity and α1, α2 are the constant material moduli usually
referred to as normal stress moduli, with α1 ≥ 0 and α1 + α2 = 0. It represents another
attempt to go beyond the linear Newtonian model, considering, moreover, some memory
effects, related to the history of the material, as we take into account Ḋ, the time deriva-
tive of the strain tensor. This can be useful when we want to consider the fact that the
current behavior of the fluid can depend not only on its current state, but also on past
events.

2.3 New decomposition of the stress

The stress decomposition proposed in the work of Giusteri and Seto [25] is adapted
to the local flow because the coefficients are not given a priori, but are functions of the
kinematic state of the fluid. These coefficients generalize the classical concept of viscosity
and normal stress differences, born within the simple shear framework, for flows other
than simple shear.

Let us start building an orthogonal basis in the space of three dimensional symmetric
tensors, starting from the identity tensor I and D. D is traceless, thus orthogonal to I
and we take E orthogonal to both D and I and diagonal on the basis of the eigenvectors
(d̂1, d̂2, d̂3) of D. Its expression on the basis of d̂i is uniquely determined by

E = ε̇√
3 + 4α2

(
−2αd̂1d̂1 − (3/2 − α) d̂2d̂2 + (3/2 + α) d̂3d̂3

)
.

To complete the orthogonal basis of symmetric tensors, we must consider the following
off-diagonal tensors

Gi = ε̇
(
d̂jd̂k + d̂kd̂j

)
, i, j, k = {1, 2, 3}, i ̸= j ̸= k.

Finally, considering the dimensionless formulation we get

D̂ = ε̇−1D, Ê = ε̇−1E, Ĝi = ε̇−1Gi

and we obtain a basis adapted to the local flow, in the sense that their expression is
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linked to the local kinematic state of the fluid through the d̂i

B = (̂I, D̂, Ê, Ĝ1, Ĝ2, Ĝ3). (2.6)

This basis depends on time and space on the kinematic parameters, but the form of these
tensors with respect to d̂k remains the same for each type of local flow. The Cauchy-Stress
tensor σ is now decomposed onto such a basis, in the following way

σ = −pI + 2ε̇
(
ηD̂ + λ0Ê + λ1Ĝ1 + λ2Ĝ2 + λ3Ĝ3

)
(2.7)

with p, η, λ0, λ1, λ2, λ3 called response coefficients being functions of the local kinematic
state of the system ε̇, βk and d̂i. They represent the new material functions of the non-
Newtonian fluid. Sometimes, in the data analysis, the following representation will be
more suitable

σ = CIÎ + CDD̂ + CEÊ + CG1Ĝ1 + CG2Ĝ2 + CG3Ĝ3

where the following correspondence between parameters holds

CI := −p, CD := 2ε̇η, CE := 2ε̇λ0, CG1 := 2ε̇λ1, CG2 := 2ε̇λ2, CG3 := 2ε̇λ3.

The coefficients are just defined as orthogonal projections of σ onto the relative tensors

p := −σ : Î
||̂I||2

= −1
3tr (σ), η := 1

2ε̇
σ : D̂
||D̂||2

, λ0 := 1
2ε̇

σ : Ê
||Ê||2

, λk := 1
2ε̇

σ : Ĝk

||Ĝk||2
(2.8)

where the orthogonality between these tensors is defined using the Frobenius inner prod-
uct. This definition does not fix a particular form for the coefficients and is valid for every
type of motion because there is no reference to any specific flow characteristic. Therefore
also their physical meaning is no more strictly related to the local flow or the type of
non-Newtonian fluid and remains the same in every reference system or geometry:

• p is the isotropic pressure of the fluid, combining two contributions: the proper hy-
drodynamic pressure ph and the Lagrange multiplier pl due to the incompressibility
constraint, p = ph + pl

• η is the generalized viscosity: the rate of conversion of mechanical energy in internal
energy. “Generalized” because we include irreversible dissipation and reversible
elastic energy in this contribution

• λ0 is the anisotropy: indicates that the intensity of the stress is not distributed along
its principal directions proportionally to the distribution of the rate of deformation
even if the eigenvectors of σ are still aligned with those of D

• λi with i = 1, 2, 3 are the reorientation factors: their presence reveal that the
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eigenvectors of σ are no more aligned with those of D due to the presence of elastic
effects or rearrangements of the micro-structure.

So how do we characterize the form of these functions? Through MD simulations of
homogeneous flows. We choose a non-Newtonian fluid, we simulate its homogeneous
flows (simple shear, extensional, rigid or intermediate motions with fixed flow parameter
and fixed strain rate). For each type of flow, we project the stress σ onto the basis tensors,
making a sample of the coefficient’s values and building a functional form from that. At
the macroscopic level, the decomposition of σ just illustrated is used to re-compose σ

from the coefficient functions and basis tensors at each point of the simulated domain.
Let us focus, for a moment, on the planar case. In this case, a reorientation of

eigenvectors of σ can happen only in the flow plane, thus λ1 = λ2 = 0 and the stress
decomposition reduces to

σ(ε̇, β3) = −p(ε̇, β3)I + 2ε̇
[
η(ε̇, β3)D̂ + λ0(ε̇, β3)Ê + λ3(ε̇, β3)Ĝ3

]
. (2.9)

The term 2ε̇λ0Ê induces an isotropic shift in the eigenvalues of σ of a factor −ε̇λ0 in each
of the directions of the flow plane and of 2ε̇λ0 in the out-of-flow plane. The anisotropy
induced is measured through the ellipsoidal factor 2ε̇λ0/p. The term 2ε̇λ3 induces, in-
stead, a reorientation of the eigenvectors of σ with respect to those of D̂ by an angle φ
(called reorientation angle) whose tangent function is

tanφ = λ3

η +
√
η2 + λ2

3

= CG3

CD +
√

C2
D + C2

G3

≈
(λ3≪η)

λ3

2η = CG3

2CD

. (2.10)

2.3.1 New material functions

Now we can see how the proposal of this new framework completes and unifies the stan-
dard material functions and extend their meaning to the case of mixed motions.

In simple shear flows the shear rate is twice the strain rate, γ̇ = 2ε̇, thus the velocity
gradient and the basis tensors of the stress decomposition take the form

∇u = ε̇


0 2 0
0 0 0
0 0 0

 , D = ε̇


0 1 0
1 0 0
0 0 0

 , E = ε̇


−1

2 0 0
0 −1

2 0
0 0 1



G1 = ε̇


0 0 1
0 0 −1
1 −1 0

 , G2 = ε̇


0 0 1
0 0 1
1 1 0

 , G3 = ε̇


−1 0 0
0 1 0
0 0 0

 .
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This brings the stress tensor to the following expression

σ =


−p− ε̇λ0 − 2ε̇λ3 2ε̇η 2ε̇λ1 + 2ε̇λ2

2ε̇η −p− ε̇λ0 + 2ε̇λ3 −2ε̇λ1 + 2ε̇λ2

2ε̇λ1 + 2ε̇λ2 −2ε̇λ1 + 2ε̇λ2 −p+ 2ε̇λ0

 .

From this representation and the definition of the normal stress differences ((1.2.2) and
(1.11)) we can trivially retrieve the expression of N1,N2,N0 and of the steady shear
viscosity η in terms of the new material functions

N1 = −4ε̇λ3 = −2CG3, N2 = 2ε̇λ3 − ε̇λ0 = CG3 − 3
2CE, N0 = −ε̇λ0 = −3

2CE

η = σxy

2ε̇ = CD

2ε̇
and we can observe that CG3 has the same meaning of the standard first normal stress
difference N1, while CE is representative of N0 and CD is related to the shear stress.
As they are defined for any type of flow and take on a meaning independent of the
flow, it seems that they can generalize the concept of viscosity and express a measure of
non-Newtonian effects in generic flows and geometries.

In the planar extensional flow the basis tensors of the decomposition take the form

∇u = D = ε̇


1 0 0
0 −1 0
0 0 0

 , E = ε̇


−1

2 0 0
0 −1

2 0
0 0 1



G1 = ε̇


0 0 0
0 0 1
0 1 0

 , G2 = ε̇


0 0 1
0 0 0
1 0 0

 , G3 = ε̇


0 1 0
1 0 0
0 0 0


thus, the stress tensor has the following expression

σ =


−p+ 2ηε̇− ε̇λ0 2ε̇λ3 2ε̇λ2

2ε̇λ3 −p− 2ηε̇− ε̇λ0 2ε̇λ1

2ε̇λ2 2ε̇λ1 −p+ 2ε̇λ0


and we retrieve the expression of the elongational viscosity from

ηE = σxx − σyy

ε̇
= 2CD

ε̇

so the fact that the coefficient CD is related to the viscosity is confirmed. And we take
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as further material functions the coefficients CE,CG3 with the same meaning that N0,N1

have in simple shear motion. We can retrieve these coefficients through their definition
as projections, or in this way

CE = −2
3

(
σxx − σyy

2 − σzz

)
, CG3 = 2ε̇λ3 = σxy.

To sum up, the correspondences between standard and new material functions are as
follows

β3 = 1 η(γ̇ = 2ε̇) = η(ε̇, β3 = 1)
N1(γ̇ = 2ε̇) = −4ε̇λ3(ε̇, β3 = 1)
N2(γ̇ = 2ε̇) = 2ε̇λ3(ε̇, β3 = 1) − 3ε̇λ0(ε̇, β3 = 1)
N0(γ̇ = 2ε̇) = −3ε̇λ0(ε̇, β3 = 1)

β3 = 0 ηE(ε̇) = 4η(ε̇, β3 = 0)

but the new framework manages to extract functions that extend the meaning of N1 and
N0 also to the extensional (and mixed) case.

Considering planar mixed motions, the representation of the velocity gradient in this
new context (with respect to the basis B of the eigenvectors d1,d2 of the strain rate
tensor D) is done by

(∇u)B = ε̇


1 β3 0

−β3 −1 0
0 0 0

 .
However we are going to consider the representation of ∇u with respect to the vectorial
basis B′ made of one eigenvector of the gradient and its orthogonal complement, because
it will be more useful for our discussion. For more details about this change of basis see
Chapter 4. Thus, we obtain the velocity gradient and its symmetric part

(∇u)B′ =


ε̇
√

1 − β2 2ε̇β 0
0 −ε̇

√
1 − β2 0

0 0 0

 , DB′ =


ε̇
√

1 − β2 ε̇β 0
ε̇β −ε̇

√
1 − β2 0

0 0 0


where β = −β3. The eigenvalues of D′

B are λ1,2 = ±ε̇, λ3 = 0 with relative unit-norm
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eigenvectors d̂3 = [0, 0, 1] and

d1 =
[
−

(
1+

√
1−β2

)
β

1 0

]
, d̂1 =

√
2
(

1 +
√

1 − β2
) [

−1
2

1−
√

1−β2

2β
0
]

d2 =
[(

1−
√

1−β2
)

β
1 0

]
, d̂2 =

√
2
(

1 −
√

1 − β2
) [

1
2

1+
√

1−β2

2β
0
]
.

We change sign to d̂1, to have a right-handed basis, getting the tensor products

d̂1 ⊗ d̂1 = 2
(

1 +
√

1 − β2
) [

1
2

√
1−β2−1

2β
0
]

⊗
[

1
2

√
1−β2−1

2β
0
]

= 2
(

1 +
√

1 − β2
)


1
4

√
1−β2−1

4β
0

√
1−β2−1

4β

(√
1−β2−1

)2

4β2 0
0 0 0

 =


1+

√
1−β2

2 −β
2 0

−β
2

1−
√

1−β2

2 0
0 0 0



d̂2 ⊗ d̂2 = 2
(

1 −
√

1 − β2
) [

1
2

1+
√

1−β2

2β
0
]

⊗
[

1
2

1+
√

1−β2

2β
0
]

= 2
(

1 −
√

1 − β2
)


1
4

1+
√

1−β2

4β
0

1+
√

1−β2

4β

(
1+

√
1−β2

)2

4β2 0
0 0 0

 =


1−

√
1−β2

2
β
2 0

β
2

1+
√

1−β2

2 0
0 0 0



d̂1 ⊗ d̂2 =
√

2
(

1 −
√

1 − β2
)

· 2
(

1 +
√

1 − β2
) [

1
2

√
1−β2−1

2β
0
]

⊗
[

1
2

1+
√

1−β2

2β
0
]

= 2β


1
4

1+
√

1+β2

4β
0√

1−β2−1
4β

−1
4 0

0 0 0

 =


β
2

1+
√

1−β2

2 0√
1−β2−1

2 −β
2 0

0 0 0



d̂2 ⊗ d̂1 =
√

2
(

1 −
√

1 − β2
)

· 2
(

1 +
√

1 − β2
) [

1
2

1+
√

1−β2

2β
0
]

⊗
[

1
2

√
1−β2−1

2β
0
]

= 2β


1
4

√
1−β2−1

4β
0

1+
√

1−β2

4β
−1

4 0
0 0 0

 =


β
2

√
1−β2−1

2 0
1+

√
1−β2

2 −β
2 0

0 0 0
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d̂2 ⊗ d̂3 =
√

2
(

1 −
√

1 − β2
) [

1
2

1+
√

1−β2

2β
0
]

⊗
[
0 0 1

]

=
√

2
(

1 −
√

1 − β2
)

0 0 1
2

0 0 1+
√

1−β2

2β

0 0 0



d̂3 ⊗ d̂2 =
√

2
(

1 −
√

1 − β2
) [

0 0 1
]

⊗
[

1
2

1+
√

1−β2

2β
0
]

=
√

2
(

1 −
√

1 − β2
)

0 0 0
0 0 0
1
2

1+
√

1−β2

2β
0



d̂1 ⊗ d̂3 =
√

2
(

1 +
√

1 − β2
) [

1
2

√
1−β2−1

2β
0
]

⊗
[
0 0 1

]

=
√

2
(

1 +
√

1 − β2
)

0 0 1
2

0 0
√

1−β2−1
2β

0 0 0



d̂3 ⊗ d̂1 =
√

2
(

1 +
√

1 − β2
) [

0 0 1
]

⊗
[

1
2

√
1−β2−1

2β
0
]

=
√

2
(

1 +
√

1 − β2
)

0 0 0
0 0 0
1
2

√
1−β2−1

2β
0


and the tensor basis are functions of the kinematic parameters ε̇ and β and assumes the
following form

E = ε̇


−1

2 0 0
0 −1

2 0
0 0 1

 , G1 = ε̇

√
2
(

1 −
√

1 − β2
)

0 0 1
2

0 0 1+
√

1−β2

2β3
1
2

1+
√

1−β2

2β3 0



G2 = ε̇

√
2
(

1 +
√

1 − β2
)

0 0 1
2

0 0
√

1−β2−1
2β

1
2

√
1−β2−1

2β
0

 , G3 =


ε̇β ε̇

√
1 − β2 0

ε̇
√

1 − β2 −ε̇β 0
0 0 0

 .
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We check that this mixed formulation is consistent with the basis tensors found for simple
shear and extensional motion.

For β → −1 we retrieve exactly the same identical tensors found previously in the
shear case

D = ε̇


0 1 0
1 0 0
0 0 0

 , E = ε̇


−1

2 0 0
0 −1

2 0
0 0 1



G1 = ε̇
√

2


0 0 1

2
0 0 −1

2
1
2 −1

2 0

 , G2 = ε̇
√

2


0 0 1

2
0 0 1

2
1
2

1
2 0

 , G3 = ε̇


−1 0 0
0 1 0
0 0 0


and also in the limit of β → 0 we have limβ→0 ε̇

√
2
(
1 −

√
1 − β2

) (1+
√

1−β2

2β

)
= 1, getting

the tensors

D = ε̇


1 0 0
0 −1 0
0 0 0

 , E = ε̇


−1

2 0 0
0 −1

2 0
0 0 1



G1 = ε̇


0 0 0
0 0 1
0 1 0

 , G2 = ε̇


0 0 1
0 0 0
1 0 0

 , G3 = ε̇


0 1 0
1 0 0
0 0 0


previously recovered for the planar extensional flow. Therefore the formulation in the
mixed case is consistent and the new mathematical framework is suitable for describing
in a unified way all the types of flux intermediate between simple shear and planar
extensional motion.

2.4 Advantages of new material functions

Each of the coefficients of the decomposition (2.7) represents a material function for the
fluid and their characterization through MD simulation techniques is extremely powerful.
Computational experiments, in fact, realize flow conditions that would not be accessible
in the laboratory or that would not be easily or cheaply feasible.

This material functions p(ε̇, βk), η(ε̇, βk), λk(ε̇, βk) are advantageous for these reasons:

• they are defined in the same way, as projections, in every flow condition
• they are the same in every frame of reference, because this framework is linked to

eigenvectors of D
• they can be used with every flow classification scheme, simply by changing inde-

pendent descriptors, so it is extremely versatile. Independent descriptors should be
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measurable quantities that avoid redundancy, in the sense that two distinct sets of
values should label distinct kinematical states of the system.

The first property is very important for dealing with data that we have in great abundance
in non-viscometric flows. The classical material functions are, in fact, defined in relation
to a particular type of flow and in relation to a precise frame of reference. While our
functions are simply defined as projections of the Cauchy Stress Tensor onto some tensors
that are normalized with ε̇ and are therefore flow/frame-independent.

The last property denotes their general applicability and the fact that they include
the standard material functions, but extending them to a broader and more general set
of flow conditions.



3
Non-Equilibrium Molecular Dynamics

In this Chapter we want to introduce basic concepts of Molecular Dynamics (MD) and
the main ideas that we followed in doing MD simulations.

MD represent a well-established computational technique to simulate the microscopic
interactions among the molecules of a material. In this context, Non-Equilibrium means
that the simulated system is not in a state of thermodynamical equilibrium. And in
our specific case, this is due to the fact that the motion of the particles is induced by a
deformation applied to the simulation box that leads to the overheating of the system. A
thermostatting routine is, thus, needed to reset the system to the desired value of average
temperature.

In our particular case, at each timestep, an integration of SLLOD equations of motion
for each particle is performed to update positions and velocities. This is done in conjunc-
tion with a thermostat (Nosé-Hoover in our case) which makes it possible to carry out
the simulation under conditions of constant volume V , temperature T and total number
of particles N . This creates a system trajectory consistent with the canonical ensemble,
as explained in Sec. 3.3.1.

SLLOD equations of motion, originally proposed by Hoover and Ladd [39], were
proven to be equivalent to Newton’s equations of motion for shear flow by Evans &
Morriss [19]. They were later shown to generate the desired velocity gradient and the
correct production of work for all homogeneous flow by Daivis and Todd [10]. As imple-
mented in LAMMPS, they are coupled to a Nosé-Hoover chain thermostat (typical for

37
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box that are changing in shape) in a Velocity Verlet formulation.
MD simulations realize the so called bulk flow of a fluid element that is composed

of infinitely many particles. This is done imposing Periodic Boundary conditions, i.e.,
surrounding the main cell with many other identical cells, following the same dynamics of
the primitive one. This avoid boundary effects and let us to deal with hundreds, instead
of millions, of particles. These choices give the correct dynamics because beyond a certain
number of particles, the statistical effect observed in the main cell is the same as that
which would be observed with (ideally) infinite molecules. PBCs make it possible to
take down the computational costs that would be involved in calculating the trajectories
of many thousands of different particles. It will therefore be sufficient to calculate the
dynamics of the molecules in the main cell.

Finally, there are two requirements that the simulation box must meet in order to
be able to support simulations with arbitrarily long timescales: compatibility and repro-
ducibility, which we will explain in detail later. There are several open source available
softwares to perform MD simulations, such as GROMACS, AMBER, NAMD, . . . However we
choose to make use of LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simu-
lator), a versatile and well-developed parallel particle simulator at the atomic, meso, or
continuum scale of many materials such as metals, biomolecules, polymers, coarse-grained
materials and so on.

LAMMPS makes it possible to carry out simulations of simple shear and extensional
motion, which can be extended indefinitely thanks to algorithms for re-initialising the
simulation box. Deformation causes particles to be extremely close to each other and
sometimes to interact with periodic copies of themselves. It is therefore necessary that the
system meets the requirements of compatibility and reproducibility so that reinitialization
can take place and the simulation can continue undisturbed.

The contents illustrated in these chapters come from classic manuals such as Hoover [28,
29], Evans & Morris [34] and Leimkhuler [45].

3.1 Basics of MD

According to [24], Molecular Dynamics simulation is a technique for computing the equi-
librium and transport properties of a classical many-body system. In this context, the
word classical means that constituent nuclei of particles obey the laws of classical me-
chanics and this represents an excellent approximation for a wide range of materials.
Only when we consider the translational or rotational motion of light atoms or molecules
(He,H2,D2) or vibrational motion with a frequency ν such that ℏν > kBT (ℏ is the
Planck constant, kB the Boltzmann constant, T the target temperature) we should worry



3.1. BASICS OF MD 39

about quantum effects.
It is possible to express the equations of motion in some domain of a system of nuclei,

by use of Newton’s Second Law
ma = F.

Therefore MD are carried out through Newton’s equations integration, where the forces
are empirical forces determined from a potential energy function φ. Denoting with ri ∈ R3

the position vector of atom i and the atomic mass by mi, three ODE (one for each
component) must be solved for each particle of a N−atom system

mi
d2ri

dt2
= −∇φ ∀i = 1, . . . ,N.

MD simulation techniques are becoming increasingly developed in recent years. Soft-
ware simulations are considered proper virtual experiments, since they follow the same
procedures as real experiments and have the same objectives.

When we perform a real experiment we follow, broadly speaking, these steps: we
prepare the sample for the analysis, we connect it to a measuring instrument (manome-
ter, viscosimeter, rheometer, thermometer, . . . ), we measure observables during a time
interval and we average over that interval to extract meaningful statistical information.
Then, to increase accuracy of the solution we try to eliminate statistical noise averaging
on a longer time, or using signal noise techniques.

In Molecular Dynamics the same approach is used:

1. selection of a model for the interactions among N particles (is equivalent to the
preparation of the sample)

2. reading of the parameters of the run, such as initial temperature, number of parti-
cles, density, timestep, number of iterations, . . .

3. initialization of the system, through the selection of positions and velocities
4. computation of the forces on all the particles (equivalent to measuring initial quan-

tities in real experiments)
5. integration of Newton’s equations of motion (corresponding to making the experi-

ment)
6. performing measurements and printing the averages of measured quantities.

Points 4), 5) and 6) are repeated at each timestep until equilibration is reached (at
least), i.e until the properties of the system no longer change with time, and then, carried
out for the desired length of time.

Numerical simulations are often used to support and complement real experiments
and vice versa. The two methodologies have different strengths: simulations, for example,
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provide access to all microscopic information and directly reveal molecular mechanisms
and local properties, while experiments have access to much larger and more complicated
systems as well as longer time scales.

3.1.1 Interaction potentials

When designing a classical potential energy function in the empirical approach, the mod-
eller simply works within a defined framework using parameters and prescribed functional
forms to match the properties of the system to experimental data.

In the most common situations, the potential energy function consists of a sum of
2-body, 3-body and/or 4-body terms

φij(ri, rj), φijk(ri, rj, rk), φijkl(ri, rj, rk, rl).

The 2-body terms describe repulsion due to the impenetrability of the outer valence
shell of atoms (Pauli repulsion), bonds between atoms which “share” electrons, and the
Coulombic attractive and repulsive forces due to net charges accumulating on the atoms
of bound groups. In this work, we are going to make use only of φij, denoting it simply
with φ. This is because in the case of the viscoelastic model we use (presented in the
previous Chapter 2) the binary interactions are those that give the dominant contribution
to the dynamics.

The Lennard-Jones (LJ) potential is the best known and most used of the empirical
potentials to describe (non-Coulombic and non-bonded) interatomic and intermolecular
interaction, both attraction and repulsion. At very small interatomic or intermolecular
distances, the electron densities overlap, generating very intense repulsive forces, charac-
terized by a very short range of action and by the fact that they grow rapidly as molecules
approach. For them there is no theoretically derived equation that describes them, so
we have to rely on some potential empirical functions. The LJ function also includes
the attractive part due to the van der Waals interaction and is solely a function of the
separation distance rij = ||ri − rj|| between two particles i and j whose position vectors
are ri and rj. It is independent of the relative orientation of their separation vector

φLJ(rij) =


4ϵ
[(

σ

rij

)12

−
(
σ

rij

)6]
rij ≤ rcut

0 otherwise
(3.1)

where −ϵ is a minimum energy realized when the beads centers are at distance rij = 6
√

2σ,
σ is the length scale and the diameter of the beads. rcut is the distance of null potential
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that can be chosen arbitrarily, to include certain neighbouring particles in the force
calculation. For proper scaling, during simulations, all calculations are performed in
reduced units where ϵ/kB = σ = m = 1. This means we are measuring all distances in
units of σ, all temperatures in units of ϵ/kB and all masses in units of m.

The Weeks–Chandler–Andersen (WCA) potential is the Lennard-Jones potential trun-
cated at the position of the minimum potential energy and then shifted up to have the
cutoff at rcut = 6

√
2σ

φWCA(rij) =


4ϵ
[(

σ

rij

)12

−
(
σ

rij

)6]
+ ϵ rij ≤ 6

√
2σ

0 otherwise.
(3.2)

It selects the repulsive part of the LJ potential and both of them are active between each
pair of monomers. The main advantage of this potential is its extremely short range
effect. This allows simulations to be carried out much more quickly than is possible with
the longer-ranged LJ potential.

The third one, the Finitely Extensible Nonlinear Elastic (FENE) potential is only
active between successive monomers and is representing elastic covalent bonds in a poly-
meric chain

φFENE(rij) =


− 0.5KR2

0 ln
[
1 −

(
rij

R0

)2
]

rij < R0

0 otherwise
(3.3)

with K the elastic constant and R0 the maximum extent of the bonds. Its name is
self-explaining.

The work in this thesis has to do with simulations of polymer flows. They are usually
modelled as bead-spring systems through a combination of the two previous types of
potential: FENE potential (first attractive term) and WCA potential (second repulsive
term), leading, for rij < R0, to

φFENE+WCA (rij) = −0.5KR2
0 ln

[
1 −

(
rij

R0

)2
]

+ 4ϵ
( σ

rij

)12

−
(
σ

rij

)6
+ ϵ.

The potentials just described are illustrated in Figure 3.1.

3.1.2 Initialization

After reading parameters, choosing the shape of the box and the density of the fluid,
the particles are placed on a lattice site at a distance such that they do not overlap and
the system has the desired density. We set the temperature and the program assigns a
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Figure 3.1: Trends of four interaction potentials with respect to the separa-
tion distance between the particles rij : the Lennard-Jones (LJ), the Weeks-
Chandler-Andersen (WCA, repulsive part of LJ), the Finitely Extensible
Non-linear Elastic (FENE) and a combination of the last two, tipically used
to model polymers in MD simulations.

value drawn from a Maxwell-Boltzmann distribution to the velocity components. Sub-
sequently, we shift all velocities, such that the total momentum is zero and we scale the
resulting velocities to adjust the mean kinetic energy to the desired value. At the thermal
equilibrium, the relation holds

⟨v2
α⟩ = kB

T

m
(3.4)

where kBT is the wanted mean kinetic energy, vα is one degree of freedom of the velocity
and the previous equation is used to define the instantaneous temperature at time t

T (t) ≡ 1
kB

N∑
i=1

mv2
α,i(t)
Nf

where N is the total number of particles and Nf the total number of degrees of freedom.
The adjustment of the instantaneous temperature T (t) to match the target T is done by
scaling all velocities with factor (T/T (t)) 1

2 .

3.2 Ensembles

The notion of statistical mechanics ensemble was introduced by J. W. Gibbs in 1902
and can be defined as a probability distribution for the state of the system. It formalises
the idea that an experimenter repeating an experiment under the same macroscopic
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conditions, but unable to control the microscopic details, may expect to observe a range
of different outcomes.

The study of thermodynamics is concerned with systems that appear to human per-
ception to be “static” (despite the motion of their internal parts), and which can be
described simply by a set of macroscopically observable variables. These systems can
be described by statistical ensembles that depend on a few observable parameters, and
which are in statistical equilibrium (properties of the system do not change in time).
Gibbs noted that different macroscopic constraints lead to different types of thermody-
namical ensembles. He defined three

• Microcanonical (or NVE) ensemble, where the total energy and the number of
particles of the system are fixed particular values; each member of the ensemble
are required to have the same total energy and particle number. The system must
remain totally isolated (unable to exchange energy or particles with its environment)
in order to stay in statistical equilibrium.

• Canonical (or NVT) ensemble, where the energy is not known exactly but the
number of particles is fixed. In place of the energy, the temperature and the volume
are specified. The canonical ensemble is appropriate for describing a closed system
which is in weak thermal contact with a heat bath. In order to be in statistical
equilibrium, the system must remain totally closed (unable to exchange particles
with its environment) and may come into weak thermal contact with other systems
that are described by ensembles with the same temperature.

• Grand canonical ensemble when neither the energy nor the particle number are
fixed, but the temperature and the chemical potential are specified. It is appropri-
ate for describing an open system: one which is in weak contact with a reservoir
(thermal, chemical, radiative and electrical contacts, . . . ). The ensemble remains
in statistical equilibrium if the system comes into weak contact with other systems
that are described by ensembles with the same temperature and chemical potential.

3.3 Periodic Boundary Conditions (PBCs)

Once the type and size of the main simulation cell, known as primitive cell, has been
selected, it is filled with the number of particles required to achieve a certain density.
This cell is then surrounded by identical cells containing particles, called images, which
follow the same dynamics as the primitive particles. The structure of particles can be
mathematically represented by a lattice of points and is schematically shown in Figure
3.2.
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L

primitive cell

rcut

rcut � L

Figure 3.2: The primitive cell (red square) and the system of periodic boxes
(black squares) is here represented. In the replicated boxes we have exactly
a copy of each main particle, following exactly the same dynamics. Each
particle is interacting, at each timestep, only with particles enclosed in the
circle of radius rcut.

3.3.1 PBCs in simple shear and extensional flows

We will begin by describing periodic boundary conditions devised by Lees & Edwards [44]
for planar Couette flow, a boundary-driven shear flow.

Figure 3.3 shows a graphic representation of planar Couette flow in a periodic system
with two particles per unit cell: this is a graphical simplification because in a computer
simulation this number typically ranges from hundreds to hundreds of thousands. As
the particles move under Newton’s equations of motion, they feel the inter-atomic forces
exerted by the particles within its cutoff radius whose positions are determined by the
instantaneous lattice vectors of the periodic array of cells. The motion of the image cells
defines the constant shear rate, γ̇ ≡ ∂ux/∂y. The origin of individual cells moves at the
local streaming velocity of the fluid, given by

ui,S(r) = γ̇yx̂.

If the Reynolds number is sufficiently small and turbulence does not occur, we expect
that the motion of image particles above and below any given cell will induce a linear
velocity profile u(r) across the system. If particle moves out of the simulation cell it will
be replaced by one of its periodic images. But if the particle moves through an upper
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y

x

∆L = γ̇∆tL

ui,S,x(nL) = ui,S,x(0) + nγ̇L

ui,S,y(L) = ui,S,y(0)

y

x

ui,S(0) = 0

ui,S,x(y) = γ̇y

Figure 3.3: The left panel shows a periodic system of particles under a planar
Couette flow. The streaming velocity ui,S at a particle position nL is given
by the streaming velocity of the origin of the reference system superimposed
by the contribution of the imposed flow. The right panel shows the velocity
field of the applied (simple shear) flow.

face of a cell, the replacing image particle will not have the same laboratory velocity, nor
necessarily the same x-coordinate.

We have depicted the Lees-Edwards boundary conditions in the so-called sliding brick
representation. Consider now a simulation cube of side L, located so that the streaming
velocity at the cube origin is zero (that is, the cube (x, y, z) ∈ [0, L] × [0, L] × [0, L]). The
laboratory velocity of a particle i is then the sum of two parts: a peculiar or thermal
velocity ũi, and a streaming velocity ui,S(ri), so the total momentum is

ṙi = ũi + ui,S(ri).

At t = 0 we have the usual periodic replication of the simulation cube where the boundary
condition is

ri = (ri)modL

with the modulus of a vector defined to be the vector of the moduli of the components.
As the streaming velocity is a function of y, we need to consider explicitly boundary
crossings in the y direction. At t = 0, ri = (xi, yi) has images at r

′
i = ri + ŷL, and

r
′′
i = ri − ŷL. After time t, the positions of particle i and the two images are given by:

ri(t) = ri(0) +
∫ t

0
dsṙi(s) = ri(0) +

∫ t

0
ds(ũi + x̂γ̇yi),

r′
i(t) = ri(0) + ŷL+

∫ t

0
ds(ũ′

i + x̂γ̇(yi + L)) = ri(0) + x̂γ̇tL+ ŷL+
∫ t

0
ds(ũ′

i + x̂γ̇yi),

r′′
i (t) = ri(0) − ŷL+

∫ t

0
ds(ũ′′

i + x̂γ̇(yi − L)) = ri(0) − x̂γ̇tL− ŷL+
∫ t

0
ds(ũ′′

i + x̂γ̇yi)
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where ũi and yi are functions of time. By definition, the peculiar velocities of a particle
and its periodic images are equal, ũi = ũ′

i = ũ′′
i , so that

ri(t) = ri(0) +
∫ t

0
ds(ũi + x̂γ̇yi),

r′
i(t) = ri(t) + x̂γ̇tL+ ŷL,

r′′
i (t) = ri(t) − x̂γ̇tL− ŷL.

If ri(t) moves out horizontally from the primitive cube, it is physically replaced by the
image particle at r′

i(t) and rnew
i = (r′

i)modL. Else, if ri(t) moves out of the simulation cube
vertically, it is replaced by the image particle at r′′

i (t), rnew
i = (r′′

i )modL, or a combination
of the two effects can happen. The change in the laboratory velocity of a particle is
given by the time derivative of these two equations. There is a major difficulty with the
boundary-driven algorithm. The way in which the boundaries induce a shearing motion
to the particles takes time to occur, approximately given by the sound traversal time for
the primitive cell. This is the minimum time taken for the particles to realize that the
shear is taking place. The boundary-driven method above, therefore cannot be used to
study time-dependent flows.

The SLLOD equations provide the way to skip the problem and have been proved to
be valid for all homogeneous flows. They can be expressed as

ṙi = pi

m
+ (ri · ∇)u ṗi = Fi − (pi · ∇)u (3.5)

where the momenta pi = mũ are taken to be peculiar (i.e. thermal) with respect to
the streaming velocity ui,S and its velocity gradient ∇u (we omit the pedix). With
this formulation we see well that any homogeneous motion represented by the velocity
gradient ∇u, source of the mean velocity field, can be imposed on the system of periodic
cells. The rate of change in position ṙi of a particle depends on the sum of its “thermal”
fluctuation velocity and the streaming velocity at the position of the particle given by
u(ri) = (ri ·∇)u. The second equation of 3.5 is the evolution of the peculiar momentum.
The first term on the right-hand side denotes the sum Fi of the forces on particle i due to
other particles. The second term couples the velocity field to the fluid. These equations
of motion result in a homogeneous fluid in which all the particles are subjected to the
same external field (i.e., velocity gradient), and their dynamics is described by the same
evolution equations.

Even if SLLOD allow us to overcome difficulties in studying time-dependent flows
and is luckily valid for all homogeneous flows it lacks of some important conservation
properties about energy, pressure but also linear and angular momentum.
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Equations (3.5) are used in conjunction with compatible Periodic Boundary Condi-
tions (PBCs) and a homogeneous thermostat. For example, as reported in [62], in 1984
Nosé developed his now famous integral feedback thermostat and associated equations
of motion that preserve initial canonical distribution for all time and for all size system.
This approach was made more useful for simulations by Hoover and the resulting ther-
mostat has been known thereafter as the Nosé-Hoover thermostat. For a system under
influence of an external field, the Nosé-Hoover equations are given by

ṙi = pi

m
+ (ri · ∇)u

ṗi = Fi − (pi · ∇)u − ξpi

ξ̇ = 1
Q

[∑
i

p2
i

mi

−NfkBT

]

where ξ is the Nosé-Hoover thermostat multiplier (inverse time units), and the target
temperature T is related to the target kinetic energy K0 by T = 2K0/NfkB, where Nf is
the number of degrees of freedom. Q is a parameter associated with an additional degree
of freedom coupled to an external heat reservoir/bath and should be chosen to correctly
determine the average kinetic energy and its fluctuations. This additional degree of
freedom is what essentially scales the particle velocities to the desired kinetic temperature.
For further details we refer the reader to Todd [62].

PBCs for extensional flows are a more sensitive issue. Kraynik & Reinelt [38] de-
viced a system of PBCs adapted to an extensional flow (uniaxial, biaxial and planar)
sufficient to develop an algorithm to simulate boundary-driven extensional flows. In Fig.
3.2 is represented correctly the initial situation of the periodic system that should be,
subsequently, rotated of an appropriate angle, as explained by KR, to satisfy the require-
ments of compatibility and reproducibility of particle lattice. The dynamics is generated
through the SLLOD formulation of Newton’s equations, that is still valid, as proved in
the work by Daivis & Todd [10]. In this case, the motion is governed by the strain
rate ε̇ = ∂xux = −∂yuy. The mean motion of a particle i (with vector position ri) is
characterized by a “streaming” velocity that has two components

ui,S(ri) = ε̇xix̂ − ε̇yiŷ.

If particles move out of the simulation cell, they will be replaced by periodic images as
illustrated previously in the simple shear case. The laboratory velocity of a particle is,
again, the sum of a peculiar velocity and of the “streaming” one

ṙi = ũi + ui,S(ri).
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For further details of PBCs in elongational flows we refer the reader to the next Chapter 4
about PBCs in mixed motions, which includes the extensional case as limit case. We
referred also to Baranyiai & Cummings [3], B.Todd and P.J. Daivis [61], T. Hunt [32]
and M. Dobson [11].

3.4 Reproducibility and compatibility

In MD simulations that we carried out for this study, the background flow was imposed by
deforming the main simulation box. In the case of simple shear, the motion imposed by
the Lees-Edwards conditions (sliding bricks) turns to be equivalent to the flow obtained
through the direct shearing deformation of the box.

Deformation of the box over a long period of time can give some problems. In the
extensional flow, for example, at a certain time t of the deformation it may happen that
a particle is too close to some of its copies and starts to interact with them, altering the
interaction force count. As we can observe in Figure 3.4 (right panel), when the box is
too deformed, some of the copies of the magenta particle end up in the same interaction
radius and also more than one copy of the green particle are interacting with the central
magenta. This is not physically acceptable and computationally correct because the exact
same interaction is counted several times for the purpose of calculating the forces.

In the case of simple shear this problem does not arise because the particles and their
periodic copies are always at a distance equal to the size of the box L, even when the
box is very elongated, see Figure 3.4 (left panel). And this guarantees that no more
than one copy enters the range of interaction. However, when the box is too elongated,
the algorithms to determine who the first neighbours are struggle and so we either flip
the box when the deformation exceeds half the total length or re-initialize the deformed
simulation box by mapping it onto the time t = 0 simulation box. In fact, this always
contains exactly one periodic copy of each particle at each timestep, and so the simulation
can continue undisturbed. The same re-initialization cannot be done at each timestep for
extensional or mixed flows. In fact, as can be seen from the Figure 3.4 (right panel), by
cutting out the initial box it will contain at time t more than one copy of each particle,
making remapping to that situation inconvenient. For these reasons, the lattice points
represented by the periodic system should meet two requirements for the simulation to
be reliable and to be carried out for an indefinite time: compatibility and reproducibility.

Compatibility means that the minimum separation D of all lattice points (identical
image particles) must exceed the cutoff range rcut of interactions D ≫ rcut, since a particle
must not interact with its copies or with more than one copy of other particles.

Reproducibility means instead that the lattice repeats itself periodically with the de-
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formation. The correspondent period of time is called reproducibility period τp. The
deformation of the system periodically returns to a state where replacing some of the
original particles with their images the initial state boundaries are recovered. In corre-
spondence to the time period the box should be re-initialized to allow the simulation to
be still carried out. Reproducibility, usually, guarantees compatibility, but not viceversa.
As already said, in simple shear the squared lattice is reproduced at any time, meaning
at periods of time τp = 1, thus can be re-initialized at any time. In the extensional case
the lattice is not reproduced at any time. Kraynik & Reinelt [38] in 1992 found repro-
ducibility conditions for the planar extensional motion, using a squared simulation box
tilted of an angle ϑ = 0.55357435, leading to a reproducibility period τp = 0.962424.

In the next chapter, we are going to illustrate Periodic Boundary Conditions (PBCs)
related to mixed flows and how we have been able to retrieve reproducibility for these
cases.

L

L

L

L1

L2

L

Figure 3.4: The left panel is representing the deformed lattice of points
(undashed lines) under simple shear flow at a generic timestep t. Whatever
t, in the initial simulation box (blue square) there is exactly a copy of each
particle, thus, reproducibility is achieved. And compatibility guaranteed. In
fact, each particle is interacting with only a copy of the other elements and is
far from its images. In planar extensional motion (right panel) the situation
is different. The deformed box (red rectangle), at a certain time t is too
squashed. Compatibility is violated and reproducibility not guaranteed. In
fact, the interaction area of the magenta particle contains two copies of the
green particle and a copy of itself and this corrupts the right computation of
pairwise forces. Moreover the initial box is including more than one image
of the particles.
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3.5 Force calculation

In our work, since we deal with pairwise additive interactions, we have to consider the
contribution to the force on particle i due to all its neighbors, that are particles within
the range of the potential cutoff rcut. Once that is chosen and once the desired density
for the system is established, the minimum box size is chosen rcut much less than half the
diameter L.

In that case we can always limit the evaluation of inter-molecular interactions between
i and j to the interaction between i and the nearest periodic image of j. The vector
distance between i and the nearest image of j is indicated by rij and is the first thing we
compute. The list of neighbours is updated for each particle at each timestep.

Then all Cartesian components of rij are computed and finally r2
ij. Next we test if

r2
ij is less than r2

cut, the square of the cutoff radius. If not, we immediately skip to the
next value of j. If a given pair of particles is close enough to interact, we must compute
the force contribution to the potential energy. The minimum image of particle j may be
within the primitive cell, or in one of the surrounding image cells, see Fig. 3.2. One then
finds all the minimum images particles for j, that lie within the potential cutoff distance
rc and compute the contributions to the force on i, Fi =

∑
i<j

Fij.

∀i, j in the primitive cell rij r2ij Test: r2ij < rcut

neighbor list

∑

i<j

Fij(rij)

j = j + 1

j = j + 1

NO

YES

Figure 3.5: Schematic representation of the calculation of interaction forces
between the particles in the primitive cell. For each particle i in the main
cell we calculate its distance rij from every other particle of the primitive
simulation box and check that this distance is less than the interaction radius
rcut, fixed by the potential. If so, particle j is inserted in the list of first
neighbors (of i), the interaction force is calculated and we pass to consider a
new particle j. Otherwise, particle j is not included in the list and the next
ones are considered.

If, during the course of the motion, particle j leaves the primitive cell, it will be
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replaced under the periodic boundary condition convention by an image of itself, travelling
with exactly the same momentum, one lattice vector distant. A schematic representation
of this process is shown in Fig. 3.5.

3.6 Integration of the equations of motion

Now that we have computed all forces between the particles, we can integrate SLLOD
equations of motion for each particle. Omitting the pedix i to indicate that shown
equations must be solved at any time for each particle, SLLOD equations can be written
in our notation as 

ṙ = ũ + uS = p

m
+ (r · ∇)u

ṗ = m ˙̃u = Fφ − FS = Fφ − (p · ∇)u
(3.6)

where p = mũ is the peculiar momentum and the “streming” velocity uS is simply
denoted by u. If we set A = ∇u and Fφ = −∇φ we get

ṙ = ũ + (r · ∇)u = ũ + Ar

u̇ = m−1Fφ − (ũ · ∇)u = m−1Fφ − Aũ
(3.7)

thus, for each particle, at each timestep we must integrate two ODE equationsṙ = ũ + Ar

u̇ = m−1Fφ − Aũ.
(3.8)

Many algorithms have been designed to do this task. The Verlet methods in the Veloc-
ity Verlet formulation are seen as the gold-standard for molecular dynamics computa-
tions [24]. They require only one evaluation of ∇φ(r) per iteration, and offer a second-
order symplectic evolution. It has a similar cost to the Euler method, if we measure cost
in terms of force evaluations.

In our non-equilibrium simulations we use the Velocity Verlet algorithm directly ap-
plied to the SLLOD formulation of Newton’s equations. It adds an intermediate step from
a given vector (rn,un) to the next step vector (rn+1,un+1) by the sequence of operations

un+ 1
3 = e− ∆t

2 Aun

un+ 2
3 = un+ 1

3 +m−1F n+ 1
3 ∆t

un+1 = e− ∆t
2 Aun+ 2

3

(3.9)

meaning with F n+ 1
3 = Fφ(rn+ 1

3 ), since we know that u̇ = −Au → u(t) = e−tAu(0) and
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ṙ = Ar → r(t) = etAr(0).
Parallel to the integration of the velocity u, the integration of the position vectors r

is performed in this way 
rn+ 1

3 = e
∆t
2 Arn

rn+ 2
3 = rn+ 1

3 + ∆tun

rn+1 = e
∆t
2 Arn+ 2

3 .

(3.10)

3.7 Computation of the stress

We want to use MD to measure interesting properties of many-body systems, like quan-
tities that can be compared with real experiments. Among these are the thermodynamic
properties of the system under consideration, such as the temperature T , the pressure p,
and the heat capacity CV . The temperature is measured through equation (3.4).

While there are several different (but equivalent) ways to measure the pressure of a
classical N -body system. The most common among these is based on the virial equation
for the pressure, see Thompson [59] for references. Lammps makes use of an extension
of the virial theorem written in tensorial form that allows to link the microscopic to
the macroscopic pressure tensor of particles. Denoting, as usual, the peculiar velocities
through ũi = ui − ui,S, the pressure tensor can be expressed as

p = − 1
V

 N∑
i

(miũi,αũi,β) +
N∑
i

N∑
j>i

(rij,αFij,β)


where V is the volume and rij and Fij are the distance and the force between particles
i and j and ui,αui,β = ui,α ⊗ ui,β and rij,αFij,β = rij,α ⊗ Fij are tensorial products. The
pressure tensor p corresponds to the opposite of the Cauchy stress tensor.

For what concerns the expression of the heat capacity at constant volume CV we have

⟨K2⟩NVT − ⟨K⟩2
NVT = 3k2

BT
2

2N

(
1 − 3kB

2CV

)

where K is the average kinetic energy, Nf the number of degrees of freedom, kB the
Boltzmann constant and T the average temperature.



4
NEMD in mixed flows

In Chapter 2 we studied the velocity gradient ∇u and the stress tensor σ in the basis of
the eigenvectors d̂1, d̂2 of the strain rate tensor D. However, it seems more convenient
to use another frame of reference consisting of an eigenvector of the velocity gradient v̂1

and its orthogonal complement v̂⊥
1 . In fact, we will see that using this basis which makes

the gradient a superior triangular matrix will be particularly convenient for applying the
deformation.

We will explain that to carry on a Molecular Dynamics simulation for an indefinite
time, it is necessary to impose the right Periodic Boundary Conditions (PBCs), which
guarantee reproducibility and compatibility of the lattice that forms our periodic system
of particles. This allows the simulation box to be mapped back and to recover its initial
shape, preserving physical properties and avoid simulation breakdown.

In simple shear motion the reproducibility is achieved at each timestep, because the
initial cell contains always exactly one copy of each particle and to extend the simulation
time indefinitely. For the extensional motion, however, Kraynik & Reinelt [38] showed
that reproducibility of the lattice requires the introduction of an angle ϑ, popularly known
as the magic angle, between one side of the initial box and an eigenvector of the velocity
gradient ∇u. Baranyiai & Cummings [3] in 1999 applied the Kraynik and Reinelt PBCs
(KR) to perform steady state nonequilibrium molecular dynamics simulation of planar
elongation flow. Hunt, Bernardi and Todd [33] were the first in 2010 to extend the
KR conditions to motions given by the linear combination between planar Couette and

53
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extensional flows. They show that the most general form of mixed flow, in which the
angle between the expanding, or contracting, direction and the velocity gradient axis
varies, can be cast in a so-called canonical form, in which the angle assumes values
that are multiples of π when a mixed flow exists, by an appropriate choice of the field
parameters. In 2014, Dobson [11] generalized to the three-dimensional case the KR
boundary conditions to flows represented by non-defective matrices. This has been done
through multiple remappings of the simulation box. T. Hunt [32] in 2016 extended KR
to the case of uniaxial extensional flows, obtaining simulations of arbitrary duration.

After this overview on NEMD extensional/mixed simulation techniques, we illustrate
the method derived for planar intermediate flows, inspired by the work of Hunt, Bernardi
and Todd [33], but using a different parameterization for ∇u that leads to a different
construction of the deforming cells. Our method follows more closely the derivation of
KR PBCs. The reproducibility conditions require that the initial box will have aspect
ratio a, orientation angle ϑ and reproducibility period τp that depend on a dimensionless
flow-type parameter.

We implemented this algorithm in a software package that we called PMF (Planar
Mixed Flows), written in C++ language. It has been inspired by the UEF package for sim-
ulating extensional flows by David Nicholson [51] that implements boundary conditions
developed by Dobson [11] and Hunt [32].

Regarding this, there were several technical issues to deal with, but the crucial node
is that the boundary conditions (and the relative integration of the motion) in LAMMPS
require a simulation box that does not have a consistent alignment relative to the applied
flow field: there is an angle ϑ between the eigenvector v̂1 of the flow field and the initial
position of one box side (let us say l1(0)). However, LAMMPS uses an upper-triangular
matrix representing the evolving simulation box (meaning that the evolving box has
always one side along the x direction), so it is not possible to express the evolved and
evolving simulation box in the same coordinate system as the flow field, without changing
basis at any time. So, LAMMPS keeps track of two systems: the LAMMPS frame in which one
box side h1(t) is aligned at any time to the x-axis (particularly convenient for computing
positions, neighbours, potentials and forces) and the flow frame which is instead the
natural frame for the integration of the motion, in which v̂1 is aligned with the x-axis
and have an angle ϑ + ψ(t) of separation with l′

1(t). We are going to outline the QR
decomposition useful to pass from the representation of the box in the LAMMPS frame to
its representation in the flow frame.
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4.1 The velocity gradient in the flow frame

Following the pathway indicated by Kraynik and Reinelt [38], we found the conditions
of reproducibility of a lattice under planar mixed flows, linear combination between the
simple shear and the planar extension.

For convenience, we are going to use as flow parameter the amount of vorticity along
the direction orthogonal to the flow plane β3, as described in Chapter 2 and in Giusteri &
Seto [25], but changed in sign, thus β = −β3. In mixed conditions of flow this parameter
spans 0 < β < 1. We illustrate below a representation of the velocity gradient that is
convenient for the implementation of periodic boundary conditions (pbcs) of mixed flows.
Let us start from the representation of the velocity gradient with respect to the basis B
of the eigenvectors d1,d2 of the strain rate tensor D

(∇u)B =
 ε̇ −ε̇β
ε̇β −ε̇

 = ε̇

1 −β
β −1

 .
Its symmetric part D and skew-symmetric part W take the form

D = ε̇

1 0
0 −1

 , W = ε̇

0 −β
β 0


through the characteristic polynomial we find the eigenvalues of the velocity gradient

0 = det ((∇u)B − λI) = λ2 + ε̇2β2 − ε̇2 ⇒ λ1,2 = ±ε̇
√

1 − β2

and we search for the eigenvectors vi in the kernel of the operator fi = (∇u)B − λiI,
using, from this point on, the notation (∇u)B = ∇u

Ker(fi) = {vi ∈ R2 | (∇u − λiI)vi = 0} ∀i = 1, 2.

This leads to the resolution of the following trivial system of equations

(∇u) v1 = λ1v1, (∇u) v2 = λ2v2

setting v1 = [x, y]T we get the following system of equations
 ε̇ −ε̇β
ε̇β −ε̇

 ,
x
y

 = ε̇
√

1 − β2

x
y

 ,
 ε̇ −ε̇β
ε̇β −ε̇

 x
y

 = −ε̇
√

1 − β2

x
y
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that transforms ∀y,∀β into

x− βy = x
√

1 − β2

βx− y = y
√

1 − β2


x− βy = x

√
1 − β2

x = y+y
√

1−β2

β
=

y

(
1+

√
1−β2

)
β


0y = 0

x =
y

(
1+

√
1−β2

)
β

leading to the solution

v1 =
1+

√
1−β2

β

1

 .
Setting v2 = [x, y]T for the second eigenvector, we solve the algebraic equations and we
obtain the following solutions ∀y,∀β

x− βy = −x
√

1 − β2

βx− y = −y
√

1 − β2


x− βy = −x

√
1 − β2

x = y−y
√

1−β2

β
=

y

(
1−

√
1−β2

)
β


0y = 0

x =
y

(
1−

√
1−β2

)
β

getting the second eigenvector

v2 =
1−

√
1−β2

β

1

 .
Since 0 ≤ β ≤ 1, we can check that the vectors are not unit-norm

∥v1∥2 = 2(1 +
√

1 − β2)
β2 > 2(1 +

√
1 − β2) > 2

∥v2∥2 = 2(1 −
√

1 − β2)
β2 > 2(1 −

√
1 − β2) > 1

thus, we normalize them obtaining the relative unit-norm eigenvectors

v̂1 = v1

∥v1∥
=
[

1 +
√

1 − β2

β
, 1
]T

· β
√

2
√

1 +
√

1 − β2

=
[√

2
2

(√
1 +

√
1 − β2

)
,

√
2

2β

(
1 −

√
1 − β2

)
·
(√

1 +
√

1 − β2

)]T

v̂2 = v2

∥v2∥
=
[

1 −
√

1 − β2

β
, 1
]T

· β
√

2
√

1 −
√

1 − β2

=
[√

2
2

(√
1 −

√
1 − β2

)
,

√
2

2β

(
1 +

√
1 − β2

)
·
(√

1 −
√

1 − β2

)]T

.

We are going now to consider the vectorial basis B′ in the Euclidean space R2, made of
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one eigenvector and its orthogonal complement B′ = {v̂1, v̂
⊥
1 }. We denote with MBB′ , the

matrix of change of basis from B to B′ that is a rotation in R2 and we use the following
notation R = MBB′ (and RT = MB′ B for the inverse change of basis). The change of basis
has the following representation

R =
[
(d̂1)B′ (d̂2)B′

]
=
[
(v̂1)B (v̂⊥

1 )B

]T

=


√

2
2

(√
1 +

√
1 − β2

) √
2

2β

(
1 −

√
1 − β2

)
·
(√

1 +
√

1 − β2
)

−
√

2
2β

(
1 −

√
1 − β2

)
·
(√

1 +
√

1 − β2
) √

2
2

(√
1 +

√
1 − β2

)


and the expression of the velocity gradient in the basis B′ is retrieved through R

(∇u)B′ = R(∇u)BRT =
ε̇√1 − β2 −2ε̇β

0 −ε̇
√

1 − β2

 .
Let S be the diagonalizing matrix of the velocity gradient and S−1 its inverse matrix,
then (∇u)B = SDBS−1 with

S =


√

2
2

(√
1 +

√
1 − β2

) √
2

2

(√
1 −

√
1 − β2

)
√

2
2β

(
1 −

√
1 − β2

)
·
(√

1 +
√

1 − β2
) √

2
2β

(
1 +

√
1 − β2

)
·
(√

1 −
√

1 − β2
)


S−1 =



√√
1−β2+1

√
2
√

1−β2
3

− β
√

2
√

1−β2
√√

1−β2+1√
1−β2−1

√
2
√

1−β2
√

1−
√

1−β2

β
√

2
√

1−β2
√

1−
√

1−β2


and the relative diagonalized matrix is the following

DB = S−1(∇u)BS =
ε̇√1 − β2 0

0 −ε̇
√

1 − β2

 .
As a consequence, the matrix that diagonalizes (∇u)B′ is denoted with S′

S′ = RS =
1 β

0
√

1 − β2

 , S′ −1 = S−1RT =

1 − β√
1−β2

0 1√
1−β2
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since the following transformations are valid

(∇u)B′ = R(∇u)BRT

= R(SDBS−1)RT

= (RS)DB(S−1RT)
= S′DBS′−1. (4.1)

The eigenvectors of (∇u)B′ have these components on the basis B′

v̂1 =
1
0

 , v̂2 =
 β
√

1 − β2

 . (4.2)

The need to express the velocity gradient ∇u in the basis B′ arises from the fact that
LAMMPS, the software we use for Molecular Dynamics simulations, makes use of this frame
to apply the flow deformation. For this reason it will be called flow frame. Furthermore,
in LAMMPS all quantities are stored and used in another frame, called LAMMPS frame, which
is the “intrinsic” frame of the simulation box, i.e. the frame in which one side of the box
is always oriented along x.

4.1.1 The evolution operator

The deformation induced by an homogeneous velocity gradient (∇u)B′ on a fluid element
of position x ∈ R2 is described by the following ODE, which is an autonomous differential
system with initial condition x0 = x(0) ∈ R2

 ẋ = (∇u)B′x

x0 = x(0).

Its flux is expressed by the matrix exponential applied to the vector x0

x(t) = Φ(∇u)B′
t (x0) = exp ((∇u)B′t)x0.

In this case the velocity gradient is a diagonalizable matrix, thus, is easy to compute the
matrix exponential as a function of time

F(t) = exp ((∇u)B′t) =

exp
(
tε̇

√
1 − β2

)
−

β exp
(

−tε̇
√

1−β2
)(

−1+exp
(

2tε̇
√

1−β2
))

√
1−β2

0 exp
(
−tε̇

√
1 − β2

)
 (4.3)
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that is an upper triangular matrix, depending from both the strain rate ε̇ and the flow
parameter β.

4.2 PBCs for planar mixed motions

Now we have the necessary tools to find the conditions under which a lattice of points in
R2 turns out to be reproducible under mixed flow.

4.2.1 Reproducibility condition

Let us consider a lattice of points in R2, with a finite number m2 of points. The co-
ordinates of the i-th point in the lattice, expressed with respect to the basis B′, are
individuated at time t = 0 from the position vector Li(0)

Li(0) = Ni1l1(0) + Ni2l2(0), Nij ∈ Z

which is a linear combination with integer coefficients of two basis vectors l1(0), l2(0) that
are collected in the matrix L(0)

L(0) =
[
l1(0) l2(0)

]
.

In our discussion, the base vectors represent the sides of the simulation box that evolve
over time because of the applied flow field. Our simulation box is rectangular with longer
side of length ||l1(0)|| = a, the smaller side of length ||l2(0)|| = 1 and rotated of an angle
ϑ with respect to the first vector basis v̂1. Thus, we have

l1(0) =
a cosϑ
a sinϑ

 , l2(0) =
− sinϑ

cosϑ

 .
and we search for the values of the initial angle of orientation ϑ that guarantees the
reproducibility of the lattice.

Definition 4.2.1. A lattice is reproducible if there ∃ τp ∈ R+
0 s.t. at time t = τp, for each

point in the lattice ∀i ∈ {1, . . . ,m2}, there exists a couple (Ni1,Ni2) ∈ Z2 and some j s.t.

Li(τp) = Lj(0) = Ni1l1(0) + Ni2l2(0).

The meaning of the previous equation is that, at a time τp, called reproducibility
period, each point in the current (deformed) lattice individuated by position vector Li

overlaps some point Lj of the initial lattice, expressed thus with an appropriate linear
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combination of initial vector basis. Since the lattice points are generated by basis vectors,
it is sufficient to apply this condition to the basis vectors. The evolution of the initial
vector basis at time τp is computed through the matrix exponential of the diagonalized
velocity gradient

Li(t = τp) = F(τp) Li(0)
= exp ((∇u)B′τp)Li(0)
= exp

(
S′(D)BS′−1τp

)
Li(0)

= S′ exp ((D)Bτp)S′−1Li(0)
= S′ exp ((D)Bτp)L′

i(0)

where L′
i(t) = S′−1Li(t) and L′

i(0) = S′−1Li(0), getting the transformed vectors

l′
1(0) = S′−1l1(0) =

1 − β√
1−β2

0 1√
1−β2


a cosϑ
a sinϑ

 =


−aβ sin ϑ+a

√
1−β2 cos ϑ√

1−β2

a sin ϑ√
1−β2



l′
2(0) = S′−1l2(0) =

1 − β√
1−β2

0 1√
1−β2


− sinϑ

cosϑ

 =

−
√

1−β2 sin ϑ+β cos ϑ√
1−β2

cos ϑ√
1−β2

 .
Then, imposing the condition of reproducibility L′

i(τp) = Ni1l′
1(0) + Ni2l′

2(0), we obtain
for each lattice point ∀i ∈ {1, . . . ,m2}

exp ((DB)τp)L′
i(0) = Ni1l′

1(0) + Ni2l′
2(0) (4.4)

with matrix exponential being

exp ((DB)τp) = exp
ε̇√1 − β2 0

0 −ε̇
√

1 − β2

 τp



and to simplify the notation we set λ = eτpε̇
√

1−β2 and 1
λ

= e−τpε̇
√

1−β2 .

The existence of τp is strictly connected to the existence integer coefficients Nij and is
guaranted only for certain values of ϑ and aspect ratio a. We now impose the condition
(4.4) onto the basis vectors

exp ((D)Bτp)l′
i(0) = Ni1l′

1(0) + Ni2l′
2(0) i = 1, 2
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1(0) = N11l′

1(0) + N12l′
2(0)

i = 2 → exp ((D)Bτp)l′
2(0) = N21l′

1(0) + N22l′
2(0)

and expliciting l′
i(0) =

[
l′
ix(0), l′

iy(0)
]T

, with i = 1, 2, we obtain the following systems of
scalar equations λl′1x(0) = N11l′1x(0) + N12l′2x(0)

1
λ
l′1y(0) = N11l′1y(0) + N12l′2y(0)

,

 λl′2x(0) = N21l′1x(0) + N22l′2x(0)
1
λ
l′2y(0) = N21l′1y(0) + N22l′2y(0)

that, re-combined, leads to the new systems λl′1x(0) = N11l′1x(0) + N12l′2x(0)
λl′2x(0) = N21l′1x(0) + N22l′2x(0)


1
λ
l′1y(0) = N11l′1y(0) + N12l′2y(0)

1
λ
l′2y(0) = N21l′1y(0) + N22l′2y(0).

.

If we set

l′
x(0) =

l′1x(0)
l′2x(0)

 , l′
y(0) =

l′1y(0)
l′2y(0)


we can re-write the systems in this compact matricial form

(λI) l′
x(0) =

N11 N12

N21 N22

 l′
x(0), ( 1

λ
I) l′

y(0) =
N11 N12

N21 N22

 l′
y(0)

and finally obtaining a spectral problem in R2

(N − λkI)(l′
k(0)) = 0, k = x, y (4.5)

and N = [Nij] ∈ SL(2,Z). To sum up, the problem we are trying to solve is the following:
for a fixed homogeneous flow (β fixed), find an initial orientation angle ϑ and an aspect
ratio a for the simulation box s.t. ∃N ∈ SL(2,Z) that satisfies the equation (4.5).

Let us start by computing its characteristic polynomial (4.5)

p(z) = λ2 − kλ+ 1 = 0 (4.6)

where the coefficients are characterized by these relations

k = λ+ 1
λ

= tr N = N11 + N22

1 = λ
1
λ

= det N = N11N22 − N12N21. (4.7)
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The solution of the equation (4.6) is found for {k ≤ 2 ∪ k ≥ 2}∩Z, but since k = λ+ 1
λ
> 0

and excluding the trivial case k = 2, is represented by

λ,
1
λ

= k ±
√
k2 − 4
2 , k ≥ 3.

Equation (4.5) leads to two singular systems, whose first equations are

(N11 − λ)
(

−aβ sinϑ+ a
√

1 − β2 cosϑ
)

− N12

(√
1 − β2 sinϑ+ β cosϑ

)
= 0

a(N11 − 1
λ

) sinϑ+ N12 cosϑ = 0. (4.8)

We consider a and ϑ as unknowns of the equation, while β, k, N11 and N12 as free
parameters. β is the flux parameter and is set at the beginning, while N11,N12 and k are
linked to τp. At this point, there are four possible scenarios that can happen

1. lucky case: nothing changes with respect to the extensional flow. The squared box
with the same initial orientation angle ϑ = 0.553574 and the same aspect ratio
a = 1 is reproducible also under mixed flow fields

2. only the angle ϑ is adapting, while the aspect ratio a remains equal to the exten-
sional case (a = 1)

3. only a is adapting, while ϑ = 0.553574 is the same of the extension

4. both a and ϑ change and adapt to mixed conditions of flow.

We tried to get solutions from each of the three first cases, but none of them leads to
meaningful results for the case of mixed motions. So the only way forward is the fourth
one.

4.2.2 Parameters for mixed flows

Let us suppose to consider a specific mixed flow (β is fixed). We now look for solutions
(N11,N12) ∈ Z2 to the equations (4.8).

Since 0 ≤ β < 1, for convenience, we interpret β as the cosine of an angle 0 ≤ Φ ≤ π
2

β = cos Φ,
√

1 − β2 = sin Φ

which can be traced back, from (4.2), to the angle between the unit-norm eigenvectors
v̂1 and v̂2 of the applied velocity gradient (∇u)B′ . Let us divide by the cosine cosϑ
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equations (4.8), we get

− a (N11 − λ) (cos Φ tanϑ− sin Φ) − N12 (sin Φ tanϑ+ cos Φ) = 0

a
(

N11 − 1
λ

)
tanϑ+ N12 = 0.

N11 and N12 can be expressed with respect to the other parameters and take the expression

N11 = λ2 + cot Φ tanϑ− λ2 cot Φ tanϑ+ tan2 ϑ

λ (1 + tan2 ϑ)

N12 = a tanϑ (1 − λ2 − cot Φ tanϑ+ λ2 cot Φ tanϑ)
λ (1 + tan2 ϑ) .

We note that N11 does not depend on a. Since λ = k+
√

k2−4
2 , substituting this expression

into N11 and N12 we get

N11 =
cos2 ϑ

(
−2 + k2 + k

√
k2 − 4 −

(
−4 + k2 + k

√
k2 − 4 cot Φ tanϑ+ 2 tan2 ϑ

))
k +

√
k2 − 4

N12 = − a tanϑ
(
N11 − k −

√
k2 − 4
2

)
. (4.9)

We look for solutions of the first equation proceeding by trial and errors with (N11 and
N12). We tried N11 = 1, but it does not lead to any solution, so we pass considering
N11 = 2 and, using the following notation,

A = cot Φ
B = −4 + k2 + k

√
k2 − 4

C = k − 1 +
√
k2 − 4

x = cos2 ϑ

from the first equation of (4.9), we get this second degree equation

B2
(
A2 + 1

)
x2 +

(
−A2B2 − 4BC

)
x+ 4C2 = 0. (4.10)

Let x1,2 be its solutions, it is enough to keep the greater value, let us say x1, and the
relative angle of orientation with positive cosine ϑ = arccos (√x1), as k varies. From the
second equation of (4.9), taking N12 = −1 we get a meaningful expression for a, as k
varies

a = 1
tanϑ

(
N11 − k −

√
k2 − 4
2

)
.



64 CHAPTER 4. NEMD IN MIXED FLOWS

And let us recall that the period of the reproducibility is linked to k through the following
relation

λ = eε̇τp

√
1−β2 = k +

√
k2 − 4
2 ⇒ τp =

log
(

k+
√

k2−4
2

)
ε̇
√

1 − β2 .

Through the software Mathematica we found easily the solutions reported in Table 4.1
about the the three parameters as functions of β, for values of k in the range k ∈
{3, 4, 5, 6, 7, 8, 9}.

k ϑ a τp

3 1
2

(
arccos β − arcsin

(√
1−β2
√

5

))
− 2

√
1−β2

√
5β−

√
β2+4

log ( 3+
√

5
2 )

ε̇
√

1−β2

4 arccos β
2

cot ((arccos β)/2)√
3

log (2+
√

3)
ε̇
√

1−β2

5 1
2

(
arccos β + arcsin

(√
1−β2

√
21

))
− 2

√
1−β2

√
21β−

√
20+β2

log (5+
√

21)
2

ε̇
√

1−β2

6 1
2

(
arccos β + arcsin

(√
1−β2

2
√

2

)) √
2−2β2

−4β+
√

2
√

7+β2
log (3+2

√
2)

ε̇
√

1−β2

7 1
2

(
arccos β + arcsin

(√
1−β2
√

5

))
2
√

1−β2

3(−
√

5β+
√

4+β2

log ( 7+3
√

5
2 )

ε̇
√

1−β2

8 1
2

(
arccos β + arcsin

(
2
√

1−β2
√

15

))
−

√
1−β2

√
15β−

√
11+4β2

log (4+
√

15)
ε̇
√

1−β2

9 1
2

(
arccos β + arcsin

(
5
√

1−β2
√

77

))
− 2

√
1−β2

√
77β−

√
52+25β2

log (9+
√

77)
ε̇
√

1−β2

Table 4.1: Orientation angles ϑ, aspect ratios a and reproducibility periods
τp of a rectangular simulation box in mixed flows for different values of the
parameter k = 1

λ related to the eigenvalues of the problem.

In Fig. 4.1 we have also shown the trends of a and ϑ, as k varies. The aspect ratio is
a monotonically increasing function in β that tends to infinity for |β| → 1 and tends to 1
for β → 0. While it is a function with decreasing values as k increases. The orientation
angle, instead, is a monotone function decreasing in β and increasing, as k changes. For
|β| → 1 we have θ → 0, and this is consistent with the fact that in simple shear motion
the simulation box should not be initially rotated. For |β| → 0 we recover the value of the
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magic angle of the extensional case ϑ = 0.553574. Looking at Fig. 4.2 it becomes clear
that the reproducibility period has an increasing trend in k, monotonically increasing
with respect to β and decreasing with respect to ε̇. Any choice of k seems plausible and
leads to sensible solutions, but it is more convenient to choose the smallest possible k
because it corresponds to the smallest reproducibility period. The box will therefore be
re-initialised at that timestep and this prevents it from being too deformed and from
violating the flow compatibility requirement.

0.2 0.4 0.6 0.8 1.0

1
2
3
4
5
6
7
8

a

k=3
k=4
k=5
k=6

k=7
k=8
k=9

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure 4.1: Aspect ratio a (left panel) and orientation angle (right panel) ϑ
as functions of the flow parameter β of the initial simulation box in a mixed
flow. Each colored line is representing the function for a precise value of
the parameter k = eτpε̇

√
1−β2 , taken in the range k ∈ {3, 4, 5, 6, 7, 8, 9}. The

aspect ratio in monotonously increasing in β and decreasing in k, assuming
infinite value for |β| → 1. The orientation angle is increasing in k and
decreasing in β, reaching value zero as β approaches |β| → 1.

To sum up, from the first equation of 4.9, substituting k = 3 we obtain

N11 = 1
2

(
3 −

√
5
(

sin (2ϑ− Φ)
sin Φ

))

and, setting N11 = 2, we obtai ϑ,N12 as functions of the angle Φ and parameter a

ϑ = 1
2

(
Φ − arcsin

(
sin Φ√

5

)
+ 2πc1

)
c1 ∈ Z

N12 = 1
4a
(

2
√

5 cos Φ −
√

2
√

9 + cos (2Φ)
) 1

sin Φ .

Now, knowing that N12 = −1 leads to meaningful solutions, we obtain this result for the
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Figure 4.2: The period of reproducibility τp is a function of the flow param-
eter β and the strain rate ε̇ and is here represented for k ∈ {3, 4, 5, 6, 7, 8, 9}.
It is monotonic crescent function of β (left) and decrescent function of ε̇
(right) with values that increase with k. The minimum value of k gives us
the minimum period of reproducibility, that prevent us to have a too de-
formed simulation box.

aspect ratio
a = 4 sin Φ

−2
√

5 cos Φ +
√

2
√

9 + cos (2Φ)

and, since Φ = arccos (β), we finally obtain a and ϑ as functions of β only

a = 2
√

1 − β2
√

4 + β2 −
√

5β
(4.11)

ϑ = 1
2

(
arccos β − arcsin

(√
1 − β2
√

5

))
(4.12)

and, as already said, for k = 3 the reproducibility period takes the form

τp =
log

(
3+

√
5

2

)
ε̇
√

1 − β2 . (4.13)

N11 = 2 and N12 = −1 corresponds always to N22 = 1 and N21 = −1, for every chosen
value of k. Let us further note that for |β| → 1 the method has a singularity because
a → ∞, thus the found expression for the aspect ratio cannot be employed to simulate
simple shear motion. For all the other values of 0 ≤ β < 1, choosing carefully an initial
simulation box, with aspect ratio a tilted with an angle ϑ with respect to eigenvector v̂1,
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we are going to obtain reproducibility in mixed conditions of motion at periods of time
τp: this means that, at such timestep, in the initial simulation box, we find exactly one
copy of each particle. We can then re-initialize the box without losing relevant physical
information and the simulation will proceed for, at least, the same period of time. In Fig.
4.3 there is a representation of the deformation of the box and the lattice reproducibility
in the case β = 0.6.

Figure 4.3: Box deformation at a generic time t ̸= τp (left) and at the
reproducibility time t = τp (right) under a mixed motion of flow parameter
β = 0.6. Empty dots represent initial lattice points, while filled dots are
the deformed points, dotted rectangle is the initial simulation box of aspect
ratio a = 2.143563 and orientation angle ϑ = 0.28070777. The correspondent
reproducibility time amounts to τp = 1.20302956. Bold box rectangle is
the deformed box. Dotted lines are the (non-orthogonal) directions of the
velocity gradient eigenvectors v̂1, v̂2.

4.3 PMF: a LAMMPS package for Planar Mixed
Flows

In this section we would like to show the fundamental steps that have led to the con-
struction of the software package in C++ for simulating planar mixed flows and that
was included in the routines already implemented in LAMMPS. To do this, we have been
inspired by the work of Kraynik & Reinelt [38] and by the work of Hunt, Bernardi and
Todd [33]. The architecture of the code is, instead, based on the UEF package, designed by
David Nicholson [51], and also the usage of two different frames (one for the integration
of motion and the other for the rest of purposes). However we implemented a completely
different algorithm, that has been applied to a different type of flows.
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4.3.1 QR decomposition for the simulation box

Let us consider a planar mixed motion in three dimensions represented by the upper
triangular velocity gradient (∇u)B′ and to the related evolution operator FB′(∆t) of
equation 4.3 that is used in LAMMPS to perform the deformation of the simulation box.

As said in the introduction 4.2, LAMMPS makes use of two systems: the LAMMPS frame
with one box side h1(t) aligned at any time to the x-axis (particularly convenient for
computing positions, neighbours, potentials and forces) and the flow frame where v̂1 is
aligned with the x-axis and has an angle ϑ+ψ(t) of separation with l′

1(t). The angle ψ(t) is
computed using the angle ψ(∆t) that is added at any timestep because of the deformation
(see right figure in Fig.4.4). Thus, the matrix of rotation from the LAMMPS frame to the
flow frame during a timestep ∆t is given by Q = Q(ϑ+ψ(t)) where Q = Q(ϑ+Nψ(∆t))
if N timesteps are already passed.

Since the product of rotations is commutative in R2, we can always decompose Q in
the product of the two independent rotations of angle ϑ and ψ(t), respectively

Q(ϑ+ ψ(t)) = Q(ψ(t)) · Q(ϑ).

Therefore the evolution vectors of the box dimensions are the following in LAMMPS frame


l1(t) = (x(t), 0, 0), x(t) > 0 ∀t ∈ R+

l2(t) = (xy(t), y(t), 0), y(t) > 0 ∀t ∈ R+

l3(t) = (xz(t), yz(t), z(t)), z(t) > 0 ∀t ∈ R+

with xz(t) = 0 = yz(t) and z(t) = z(0), ∀t ∈ R+ in planar motions. The three sides of
the initial simulation box are codified in an upper triangular matrix

R(t) =


x(t) xy(t) 0

0 y(t) 0
0 0 z(0)

 .

At time t = 0 we have instead
l1(0) = (lx, 0, 0) lx = x(0) > 0

l2(0) = (0, ly, 0) ly = y(0) > 0

l3(t) = (0, 0, lz) lz = z(0) > 0

where lx, ly, lz are lenghts of the initial box sides.
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During most molecular dynamics operations, the system is represented in the LAMMPS
frame. Only when the positions and velocities must be updated the system is rotated to
the flow frame, and then it is rotated back to the LAMMPS frame immediately afterwards.
The simulation box R(t) is represented in the flow frame through the matrix U(t) obtained
through the following QR decomposition

U(t) = Q(t)R(t)

where Q is the rotation matrix of the change of basis between the LAMMPS frame and the
flow frame. Note that R is not the rotation matrix of the previous sections.

At any time, the angle ϑ + ψ(t), with ψ(t) < 0, is the angle between the deformed
box side and the eigenvector v̂1, as we can see in Figure 4.4.

Q(t) and U(t) have the following expression therefore

Q(t) =
 Q̃(t) 0

0 1

 , Q̃(t) =
cos (ϑ+ ψ(t)) − sin (ϑ+ ψ(t))

sin (ϑ+ ψ(t)) cos (ϑ+ ψ(t))



U(t) =


x(t) cos (ϑ+ ψ(t)) xy(t) cos (ϑ+ ψ(t)) − y(t) sin (ϑ+ ψ(t)) 0
x(t) sin (ϑ+ ψ(t)) xy(t) sin (ϑ+ ψ(t)) − y(t) cos (ϑ+ ψ(t)) 0

0 0 z(0)

 .

4.3.2 Implementation issues

At this point we have involved four frames in this discussion

1. the basis of the orthogonal eigenvectors d̂1, d̂2 of the symmetric part D of velocity
gradient ∇u, B = {d̂1, d̂2}

2. the flow frame B′ = {v̂1, v̂
⊥
1 }, where v̂1 is the eigenvector (elongation direction) of

(∇u)B and its orthogonal direction v̂⊥
1 . This basis is useful for the integration of

the equations of the motion

3. the LAMMPS frame, anchored to one side of the simulation box l1(t) and its orthog-
onal direction B′′ = {l̂1(t), l̂⊥

1 (t)}. It is used for computing the updated positions,
potential, forces and neighbors

4. the basis of the eigenvectors v̂1, v̂2 ( extensional direction and contraction direction)
of ∇u is not orthogonal. This basis is particularly useful to compute the matrix
exponential of the evolution. We denote it with B′′′.
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In planar flows, during each timestep ∆t, the orthogonal change of basis from B′′ to B′

is made through the matrix Q̃(ϑ+ ψ(∆t))

Q̃(ϑ+ ψ(∆t)) =
cos (ϑ+ ψ(∆t)) − sin (ϑ+ ψ(∆t))

sin (ϑ+ ψ(∆t)) cos (ϑ+ ψ(∆t))


and the sides of the box (still to evolve li(0) and already evolved l′

i(t + ∆t)) in the two
frames are linked in this way

l′
i(t+ ∆t) = Q̃(ϑ+ ψ(∆t))li(t), i = 1, 2.

and, since the product of rotations is commutative we have the following decomposition

Q̃(ϑ+ ψ(∆t)) = Q̃(ψ(∆t))Q̃(ϑ).

Moreover the deformation operator acting during the timestep ∆t, in the basis B′ is

FB′(∆t) = S′ exp ((∇u)B′′′∆t) S′−1

=
exp (ε̇∆t sin Φ) cot Φ(exp (−ε̇∆t sin Φ) − exp (ε̇∆t sin Φ))

0 exp (−ε̇∆t sin Φ)


where the velocity gradient in basis B′′′ is diagonal

(∇v)B′′′ = ε̇

sin Φ 0
0 − sin Φ

 .
So, the box side l′

1(t) at time t = t0 + ∆t, i.e. evolved of only a timestep with respect to
t0, in the flow frame is obtained as

l′
1(t+ ∆t) = FB′(∆t)l′

1(t)

=
exp (ε̇∆t sin Φ) cot Φ(exp (−ε̇∆t sin Φ) − exp (ε̇∆t sin Φ))

0 exp (−ε̇∆t sin Φ)

 a cosϑ
a sinϑ


=
exp (ε̇∆t sin Φ)a cosϑ+ cot Φ(exp (−ε̇∆t sin Φ) − exp (ε̇∆t sin Φ))a sinϑ

a sinϑ exp (−ε̇∆t sin Φ)


(4.14)
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and box sides l′
i(t) are periodic of period τp, meaning l′

i(t + τp) = l′
i(t), for i = 1, 2. The

cosine and sine of the angle ψ(t) can be retrieved by

cosψ(t) = l′
1(t) · l′

1(0)
a||l′

1(t)||
(4.15)

sinψ(t) = −
√

1 − cos2 ψ(t). (4.16)

The complete deformation operator, seen from the LAMMPS frame perspective, is

FB′′(∆t) = Q̃(ϑ+ ψ(t+ ∆t))TFB′(∆t)Q̃(ϑ+ ψ(t)) (4.17)

and this combination of transformation is illustrated in Figure 4.4. The side of the box
l1(t) in the LAMMPS frame is, first, rotated of an angle ϑ + ψ(t) (where ϑ is the angle
between l1(t) and v̂1, while ψ(t) is the accumulated angle from deformation at previous
timesteps) and this brings the system in the flow frame. The deformation is then applied
and a further angle ψ(∆t) is accumulated. So, the system is remapped to the LAMMPS
frame B′′ through the rotation Q̃(ϑ + ψ(t + ∆t))T of angle −ϑ − ψ(t). Through this
operator we can find the evolved box sides in the LAMMPS frame B′

x(t+ ∆t)
0

 = FB′′(∆t)
x(t)

0

 ,
xy(t+ ∆t)
y(t+ ∆t)

 = FB′′(∆t)
xy(t)
y(t)

 .
Thus, if l1(0) = [lx, 0]T and l2(0) = [0, ly]T, with lx = aly, and the evolved sides at time t
are given by

x(t) = lx
2 e

−ε̇+∆t sin Φ
(

1 + e2ε̇+∆t sin Φ +
(
−1 + e2ε̇+∆t sin Φ

)(sin 2ϑ+ 3Φ
sin Φ

))

y(t) = ly
2 e

−ε̇+∆t sin Φ
(

1 + e2ε̇+∆t sin Φ +
(
−1 + e2ε̇+∆t sin Φ

)(sin 2ϑ+ 3Φ
sin Φ

))

xy(t) = lye
−ε̇+∆t sin Φ

(
−1 + e2ε̇+∆t sin Φ

)(sin (ϑ+ Φ)
sin Φ

)
.

4.4 User’s Guide for the USER-PMF package

USER-PMF is a LAMMPS package for non-equilibrium molecular dynamics (NEMD) under
mixed flow fields, linear combination between simple shear and extensional flow. With this
package, simulations under intermediate flow may be carried out for an indefinite amount
of time. It is an implementation of the boundary conditions developed in Section 4.2.
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a)

l2(0)

o
l1(0) ≡ x̂

v̂1

v̂2
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ϑ

ϑ
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Q̃(ϑ+ ψ(∆t))T
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ψ(∆t)
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b)
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o
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o
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l′2(t)

d)

l′2(t)

o
l′1(t) ≡ x̂

v̂1

v̂2v̂⊥1

Figure 4.4: The figure a) is representative of the simulation box in the
LAMMPS frame. Box sides l1(0), l2(0) coincides with the x, y axis of the
frame of reference. The box is orientated with an angle ϑ w.r.t. v̂1. The
transformation Q̃(ϑ) leads the system in the flow frame, where is v̂1 that is
coinciding with the x-axis, panel b). Then, a deformation F(∆t) is applied
to the box sides l′

1(t), l′
2(t) that is adding an angle ψ(∆t) < 0 to ϑ, see panel

c). To come back to the LAMMPS frame, we need to rotate the system with
Q̃(ϑ+ ψ(t))T and l′

1(t) coincides again with the x-axis.

The package is intended for simulations of homogeneous flows, and integrates the SLLOD
equations of motion.

4.4.1 Contents

• Usage

• fix nvt/pmf

• compute temp/pmf

• compute pressure/pmf

• dump cfg/pmf

• Implementation Details

• Error and Warning Messages
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4.4.2 Usage

The package defines fix nvt/pmf and fix npt/pmf for constant volume controlled sim-
ulations, compute pressure/pmf and compute temp/pmf to compute the pressure and
kinetic energy tensors, and dump cfg/pmf for outputting properly oriented atomic coor-
dinates.

4.4.3 fix nvt/pmf

Syntax

fix ID group_ID nvt/pmf temp Tstart Tstop Tdamp strate eps beta b_value keywords

• ID = name for the fix
• group_ID = name of the group to which this compute is to be applied (if all atoms, use

all)
• Tstart, Tstop = external temperature at start/end of run
• Tdamp = temperature damping parameter (time units)
• eps = strain rate in x dimension 1/(time units)
• b_value = vorticity value in the out-of-plane direction (adimensional)

Additional keywords:

• strain = initial level of strain (default=0). Use of this keyword is not recommended,
but may be necessary when resuming a run from a data file. This keyword should be left
unused when restart files are used.

The following additional keywords from fix nvt can be used with this fix: tchain, tloop, drag.

Usage notes

Due to requirements of the boundary conditions, when the strain keyword is unset, or set
to zero, the initial simulation box must be rectangular with aspect ratio and tilting angle
determined consistently with the value of the b_value keyword and have style triclinic. If the
box is initially of type ortho, use the command change box all triclinic before invoking
the fix.

This fix integrates the SLLOD equations of motion, which lead to an instability in the center
of mass velocity, as for the extension. A fix momentum should be used to regularly reset the
linear momentum. Additionally, this fix stores the peculiar velocity of each atom, defined as the
velocity relative to the streaming velocity. This is in contrast to the LAMMPS fix nvt/sllod
command, which stores the absolute velocity value in the lab-frame velocity.

This fix defines a compute pressure/pmf and compute temp/pmf that can be accessed at
c_ID_press and c_ID_temp respectively for scalar values, or c_ID_press[i] and c_ID_temp[i]
for the pressure and kinetic energy tensors.



74 CHAPTER 4. NEMD IN MIXED FLOWS

When this fix is applied, any orientation-dependent vector or tensor-valued quantities com-
puted, except for the tensors from compute pressure/pmf or compute temp/pmf and coordi-
nates from dump cfg/pmf, will not be in the same coordinate system as the flow field. See the
implementation details for further information.

This fix can be used with write_restart and read_restart, run_style respa, and
fix modify, however custom pressure and temperature computes must be of type pressure/pmf
and temp/pmf.

4.4.4 compute temp/pmf

Syntax

compute ID group_ID temp/pmf

• ID = name for the compute
• group_ID = name of the group to which this compute is to be applied (if all atoms, use

all)

Examples

compute 1 all temp/pmf

Usage notes

This compute requires a fix nvt/pmf or fix npt/pmf. It computes the kinetic energy tensor
in the reference frame of the flow field. See LAMMPS documentation for compute temp for further
details on output.

4.4.5 compute pressure/pmf

Syntax

compute ID group_ID pressure/pmf temp-ID

• ID = name for the compute
• group_ID = name of the group to which this compute is to be applied (if all atoms, use

all)
• temp-ID = ID of compute that calculates temperature

Additional keywords:

• The following additional keywords from compute pressure may be used with this fix:
ke or pair or bond or angle or dihedral or improper or kspace or fix or virial.
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Examples

compute 2 all pressure/pmf c_1_temp

Usage notes

This compute requires a fix nvt/pmf or fix npt/pmf. It computes the pressure tensor in the
reference frame of the flow field.

The pressure tensor computed from compute pressure/pmf is only accurate if its temper-
ature compute, specified by temp-ID, is a compute temp/pmf.

See the LAMMPS documentation for compute pressure for further details on output.

4.4.6 dump cfg/pmf

Syntax

dump ID group_ID cfg/pmf N file mass type xs ys zs keywords

• ID = name for the dump
• group_ID = name of the group to which this compute is to be applied (if all atoms, use

all)
• N = dump every this many timesteps
• file = name of file to write dump info to.

Additional keywords:

• See the documentation for dump cfg for additional keywords.

Examples

dump 1 all cfg/pmf 100 dump.*.cfg mass type xs ys zs x y z ix iy iz

Usage notes

This command requires a fix nvt/pmf or fix npt/pmf. It outputs the atomic positions in
the reference frame of the flow field. Only the positions are in the proper reference frame; if
the atomic velocities are specified as an output, for example, they will not be in the flow field
reference frame. See the dump cfg documentation for further information on writing trajectories
with cfg files.
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4.4.7 Implementation details
The simulation box used in the boundary conditions developed in section 4.2 does not have a
consistent alignment relative to the applied flow field. LAMMPS utilizes an upper-triangular sim-
ulation box, making it impossible to express the evolving simulation box in the same coordinate
system as the flow field. The PMF package keeps track of two coordinate systems: the flow
frame, and the LAMMPS frame in which the box is represented by an upper triangular matrix.
The coordinate systems are related to each other through the QR decomposition illustrated in
Section 4.3.1.

During most molecular dynamics operations, the system is represented in the LAMMPS frame.
Only when the positions and velocities are updated is the system rotated to the flow frame, and
it is rotated back to the LAMMPS frame immediately afterwards. For this reason, all vector-valued
quantities (except for the tensors from compute pressure/pmf and compute temp/pmf will be
computed in the LAMMPS frame. Rotationally invariant scalar quantities like the temperature
and hydrostatic pressure, on the other hand, will be computed correctly. Additionally, the
system is in the LAMMPS frame during all of the output steps, and therefore trajectory files made
using the dump command will be in the LAMMPS frame unless the dump cfg/pmf command is
used.

4.4.8 Error and Warning Messages
The methods described with inherit error/warning messages from fix npt/nvt, compute pressure
and dump cfg. Additional error messages associated with this package are the same founded
fo the UEF package, explained in the relative section of git hub page, https://github.com/
RutledgeGroupMIT/UEF#error-and-warning-messages. Just replace the word “uef” with
“pmf”.

https://github.com/RutledgeGroupMIT/UEF#error-and-warning-messages
https://github.com/RutledgeGroupMIT/UEF#error-and-warning-messages


5
The multiscale method

Modelling and computational simulation of non-Newtonian fluids is a challenging problem, since
these fluids exhibit complex effects, such as shear thinning or thickening, viscoelasticity or flow-
induced phase separation. A detailed analysis of the rheology of complex fluids can be obtained
by particle-based simulations. Clearly, such micro-scale description is accurate but computa-
tionally very expensive and cannot be applied to engineering-scale problems. Consequently,
new mathematical algorithms and hybrid multi-scale approaches have been proposed in recent
years.

In the literature, we can find several hybrid models combining particle dynamics with a
macroscopic continuum model, such as the heterogeneous multi-scale methods [12, 15, 14, 17,
23, 65], the triple-decker atomistic-mesoscopic-continuum method [20, 21], the seamless multi-
scale methods [13, 16, 18], the equation-free multi-scale methods [35, 36, 37] or the internal-flow
multi-scale method [4, 5]. In [50] software requirements and design principles are presented
and illustrated for a prototype coupling between molecular dynamics and Lattice Boltzmann
methods. Note that, in general, hybrid multi-scale approaches are successful when processes
occurring on a small scale are only loosely coupled with the large-scale behavior, that is, in the
presence of an effective scale separation [2]. In keeping with this, our method is applicable when
the local flow conditions experienced by a fluid element change on a much larger timescale than
the microscopic relaxation time necessary to achieve a statistically steady state of the molecular
conformation and interactions.

We should mention also the Feigl’s work [22] and Laso’s [43] work on viscoelastic flows and
Hulsen [30] on Brownian configurations who were among the first to use standard finite element

77
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techniques for solving the momentum and continuity equations by replacing the integral or dif-
ferential constitutive equation, traditionally used to compute polymer stresses, with stochastic
simulations of polymer dynamics.

The aim of the study illustrated in Tedeschi [58] and reported in this chapter is to provide
a new heterogeneous multi-scale method for the simulation of flows of complex fluids in generic
geometries and different conditions of motion. We extend and generalize the idea presented
in [56], where a heterogeneous multi-scale method is developed for polymeric solutions sub-
jected to simple shear flows. Simple shear is very well investigated for it is more easily realized
in experiments than other flows. It provides fundamental information that is often sufficient
to characterize simple fluids. However, complex fluids show a molecular structure that is able
to change with respect to different conditions of motion, geometries, but also time scales and
deformation rates. Therefore, to retrieve important rheological information about the stress
response of such fluids, their behavior is studied under conditions of flow different from steady
simple shear, for example extensional motions, startup flows and oscillating shear [48]. More-
over, it is also fundamental, for these types of materials, to consider flows in complex geometries
that contain holes, barriers, contractions or other irregular features, because in close proximity
of these structures the fluid is subject to local motions that are not equivalent to simple shear
and can manifests some unexpected behavior.

We focus our efforts on the development of a method to link the micro-scale rheological
information, available from simulations in different local flow types, to macro-scale flows in
complex geometries. The main aim of this work is to show that it is necessary to correctly take
into account the local flow type, which plays an important role in modifying the stress response
in non-viscometric flows of non-Newtonian fluids featuring a flow-type dependent rheology, such
as polymeric fluids. While simulations based on constitutive assumptions do take into account,
by construction, the possible flow type dependence incorporated at the level of constitutive
laws, multi-scale methods for fluid mechanics application has so far considered simple shear
flows as the only source of information for the micro-to-macro coupling. With our approach, we
overcome this severe limitation. The method is applied to planar flows, but it can be extended
to more general three-dimensional flows. The most challenging task for such an extension will
be to implement MD simulations under arbitrary local flow conditions.

5.1 Micro-scale data and macro-scale simulations

At the heart of our proposal there is the understanding that the local kinematics of a generic
planar flow must be identified by at least two parameters, one measuring the speed of the
deformation and the other measuring the local flow type (see Chapter 2, Section 2.1 for a
discussion of this point). While there is ample agreement about measuring the deformation rate
in generic situations by means of ε̇, different choices can be made for the flow-type parameter,
depending on the type of material response that we envision (see [25], Section III). Here we
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choose β3 for its simplicity and we stress that, to make it a frame-indifferent parameter, we
consider it as measured relative to the vanishing spin of a fixed inertial frame of reference. In
other contexts, different choices may be appropriate (such as the relative rotation rate proposed
by Schunk and Scriven [54]), but the structure of the scheme that we are going to present
remains the same.

The local kinematic parameters ε̇ and β3 are the macro-scale input of micro-scale simu-
lations that will in turn give an ensemble-averaged stress tensor σ. To be able to use the
micro-scale information encoded in σ we must express it in a form that is independent of the
coordinates, because coordinates that are chosen for computational convenience cannot always
be coherent when we pass from the micro- to the macro-scale simulation. We can achieve this
independence by decomposing the stress to an orthogonal tensorial basis built on D (see [25] or
Chapter 2, Section 2.3 for details and significance of this decomposition). For the case of planar
incompressible flows, we have

σ = −pI + 2ηD + 2λ3G3, (5.1)

where I is the identity tensor and for G3 we use this straightforward expression

G3 = 1
2 (AD − DA) with A =

[
0 −1
1 0

]
. (5.2)

The coefficients of the linear decomposition (5.1) have been extensively described in Chapter 2,
Section 2.3 and can be retrieved from the computational data in any coordinates by computing

p = −σ : I
∥I∥2 = −1

3tr (σ) , η = 1
2

σ : D
∥D∥2 , λ3 = 1

2
σ : G3
∥G3∥2 . (5.3)

For the sake of clarity, we indicate with η̃ and λ̃3 the two material functions of the kinematic
parameters (ε̇, β3), reconstructed by sampling the two-dimensional parameter space. In this
way, we obtain from computational rheological measurements the constitutive expression

σ = −pI + 2η̃(ε̇, β3)D + 2λ̃3(ε̇, β3)G3 (5.4)

for the stress tensor, that can be used in performing the macro-scale continuum simulations.
There is no need to define a pressure function because it is determined, at the macro-scale, as
the Lagrange multiplier of the incompressibility constraint.

5.2 Micro-scale NEMD simulation

The NEMD simulation at the micro-scale is performed using LAMMPS (lammps.sandia.gov),
see Plimpton [53]. We consider both monomeric and polymeric aggregates in a three-dimensional
computational domain with periodic boundary conditions and undergoing two different planar
flows: simple shear and extensional flow. The average velocity field is imposed by suitably de-

lammps.sandia.gov
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forming the computational box and the canonical ensemble statistics of the velocity fluctuations
is achieved via the classical Nosé–Hoover thermostat [24]. For the case of simple shear we use
the LAMMPS command fix deform in conjunction with the SLLOD algorithm [10], while the
extensional flow is treated by means of the UEF package [51]. The latter implements boundary
conditions developed by Dobson [11] and Hunt [32], that are an extension of the boundary
conditions of Kraynik and Reinelt [38]. We will discuss results for monomers, Npol = 1, and
polymers, Npol = 20, where Npol is the number of monomers per molecule.

5.2.1 Interaction potentials

We choose an interatomic interaction potential of the FENE+WCA type, which has been ex-
tensively described in Chapter 3 (Section 3.1.1) and which is typical for modelling polymers as
bead-spring systems

φFENE+WCA (rij) = −0.5KR2
0 ln

[
1 −

(
rij

R0

)2
]

+ 4ϵ

( σ

rij

)12

−
(
σ

rij

)6
+ ϵ.

The attractive FENE part is only active between adjacent monomers, whereas the repulsive
WCA part is also active between non-adjacent monomers.

5.2.2 Average stress coefficients

We considered values of the deformation rate ε̇ ranging from 0.001 s−1 to 1 s−1. For each
value of ε̇ we performed 21 simulations with different initial configurations of the particles.
The simulations were conducted at a temperature (of the fluctuations around the mean motion)
equal to T = 1kB

ε , the density of the system is ρ = 0.8 m
σ2 . The total number of particles involved

depends on the type of the polymer: in the monomeric case is N1 = 1000 while in the polymeric
case is N20 = 800 and the length of the used simulation box is L = 10.77217σ. Equilibrium
times range from 10

√
mσ2

ϵ for ε̇ = 0.001 and Npol = 1 in simple shear motion, up a 2000
√

mσ2

ϵ

for ε̇ = 0.2 and Npol = 20 in planar extensional motion.
At each time, the average stress given as output by LAMMPS is projected onto the basis

tensors through the formulae (5.3) and these projections are averaged over time. Finally, a
mean over all initial configurations is taken. Figure 5.1 presents the data obtained for the
generalized viscosity η and the reorientation factor λ3. By fitting those data with Carreau and
power functions we obtain, for the monomeric case with Npol = 1, the curves

λ3,ext(ε̇) = 0, ηext(ε̇) = 1.7/
[
1 + (0.108 ε̇)1.05]2.276

,

λ3,sh(ε̇) = 0.0706 ε̇1.2, ηsh(ε̇) = 1.806[
1 + (1.6 ε̇)1.65]0.191 + 1.7 − 1.806[

1 + (0.3 ε̇)0.53]22 .

For the polymeric case with Npol = 20, the Gaussian Process Regression method was used to
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obtain the fitting curves, see next SubSection 5.3.
By comparing the results obtained under simple shear and planar extension for Npol = 1

and Npol = 20, we find that the former fluid displays almost no rate dependence and very little
flow-type dependence of the stress coefficients, while the latter features rate dependence and a
strong flow-type dependence (Figure 5.1). The statistics of interaction between monomers in
the two types of flow does not differ significantly, leading to a quasi-Newtonian rheology. On the
contrary, the fact that polymer chains are kept in an elongated state by extensional flows, while
they tend to tumble and keep a spherical shape in simple shear, generates a richer phenomenol-
ogy. In fact, the shear-thinning trend displayed in simple shear is qualitatively similar to that of
monomeric fluids, while we find an opposite trend—a shear-thickening behavior—in extensional
flows at small deformation rates, followed by a non-monotonic behavior of the viscosity. The
elastic effects generated by the bonds are crucial in this case and give rise, in simple shear, to
the normal stress differences associated with the coefficient λ3, also featuring a non-monotonic
curve.

The statistical uncertainty observed at low strain rates is due to the definition of these
functions η and λ3 in our framework, see Eq. (5.3). The error bar on the stress is constant but
when we divide by ε̇ the error is amplified by 1/ε̇.

Furthermore, it would appear that the statistical uncertainty at low strain rates is much
greater in the monomeric case than in the polymeric one. But this is due to the fact that higher
viscosity values feel less the influence of fluctuations. They have similar fluctuations but on the
viscosity scale of polymers they are less visible.

The direct connection between the statistics of chain conformation in the polymeric case and
the observed rheology can be evinced from the probability distribution, presented in Figure 5.2,
of the normalized radius of gyration Rg and asphericity α defined as follows. Let the components
of the 3 × 3 gyration tensor be

Rµν ≡ 1
M

20∑
i=1

mi(ri − rcm)µ(ri − rcm)ν ,

with mi the mass of the i-th monomer, ri its position, M = ∑
imi, and rcm the center of mass

of the polymeric chain. With R0 the effective monomer radius, we set

R2
g ≡ 1

R2
0M

∑
i

mi|ri − rcm|2 = tr R
R2

0
.

Moreover, the asphericity is given by

α ≡ 1
R2

0

[
a3 − 1

2(a1 + a2)
]
,

where a1 ≤ a2 ≤ a3 are the eigenvalues of the gyration tensor R.
At low deformation rate, the distributions obtained in simple shear and extensional flows are

almost identical (blue curves in Figure 5.2) because the chains are equally and mildly stretched
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Figure 5.1: The monomeric fluid displays almost no rate dependence and very
little flow-type dependence of the stress coefficients, while the polymeric fluid
features rate dependence and a strong flow-type dependence. We compare
the NEMD data for the stress coefficients η (top) and λ3 (bottom) against
ε̇ obtained for the monomeric case with Npol = 1 (left) and the polymeric
case Npol = 20 (right) under simple shear (circles and black dashed curves)
and planar extension (diamonds and red solid curves). In the latter case, λ3
fluctuates around zero, that is the expected value based on symmetry con-
siderations. The presence of a strong flow-type dependence for the polymeric
fluid is a key feature, originated by the different conformations of the long
molecules. Fitting curves are obtained as described in the text.
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Figure 5.2: The presence of a strong flow-type dependence for the polymeric
fluid is a key feature, originated by the different conformations of the long
molecules. The probability distribution of radius Rg of gyration (divided
by the effective monomer radius) and asphericity α for the polymeric chains
under simple shear and extensional flow is reported for different values of
ε̇. The black bars indicate equal values for an easier comparison between
the results under simple shear and planar extension. The curves are gener-
ated considering conformational data of five chains over 20,000 time steps of
steady-state NEMD.

by the imposed flow. As ε̇ grows larger, the extensional flow distributions feature a single peak
that is progressively shifted rightward, toward more stretched configurations. On the other
hand, in simple shear we notice a broadening of the distribution eventually leading to a doubly
peaked shape (red curves in Figure 5.2). This indicates that chains spend roughly half of the
time in a stretched configuration while frequently going back to a coiled configuration. In this
very different microscopic behavior we find the origin of the strong flow-type dependence of the
viscosity at larger ε̇.

5.3 Fitting procedure for the micro-scale NEMD data

We report here the details about the fitting of micro-scale data that we performed using Gaussian
Process Regression (GPR). Since some choices are involved in the procedure, it seems appropri-
ate to give a brief account of ours. To do the fitting, we referred mainly to Neumann [49] that
presents pyGPs, a Python software library implementing Gaussian processes (GPs) for Machine
Learning (ML). The library provides a wide range of functionalities reaching from simple gp
specification via mean and covariance and gp inference to more complex implementations of
hyperparameter optimization, sparse approximations, and graph based learning. Then, we took
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also some hints from [64], which is one of the main basic text for Gaussian Process in the context
of ML.

GPR is a Bayesian approach to regression based on machine learning techniques. The
fitting is done through a Gaussian stochastic process f(x; w) that evolves along the variable x
and depends on a list of hyper-parameters w. The observed data are a finite number N of pairs
(xi, yi)N

i=1. The functional form of the Gaussian process is specified by its mean and covariance
functions, m(x; w) = E[f(x; w)] and K(x, x′; w) = E

[(
f(x; w)−m(x; w)

)(
f(x′; w)−m(x′; w)

)]
,

where E denotes the expected value. A fundamental feature of GPR is that it does not produce
a definite value of the fitting parameters w, but considers them random variables and seeks to
determine suitable mean and variance for their distribution. This is achieved by an iterative
optimization that takes into account the likelihood of the parameters distributions given the
knowledge of the observed data [63].

What one needs to specify is the type of mean and covariance functions to be used for the
GPR. Typical choices for the former are polynomial functions of x with coefficients given by w,
while for the latter are Radial Basis Functions

KRBF(x, x′;σ, l) ≡ σ2 exp
(

−|x− x′|2

2l2

)

with a set of two hyper-parameters w = (σ, l), or the Matérn covariance of degree ν given by

KM,ν(x, x′;σ, ϱ) ≡ σ2 21−ν

Γ(ν)

(√
2ν |x− x′|

ϱ

)ν

Kν

(√
2ν |x− x′|

ϱ

)
,

where Γ is the Euler gamma function and Kν is the modified Bessel function of the second kind.
In our treatment, we took as x variable the quantity ε̇ or log10(ε̇), as y variable we took η,
log10(η), or λ3. We tested regressions with mean function zero, constant, or polynomial up to
degree four and, for the covariance function, RBF or Matérn kernel of degree up to 5 and pick
the combinations that give the best results after optimization.

5.3.1 Data-driven material functions

Ideally, we would like to perform micro-scale simulations with many values of ε̇ and β3, since
flows in generic geometries can easily feature variations of the flow type with β3 ranging from
minus to plus infinity and values of ε̇ that cover many orders of magnitude. The implementation
of simulation algorithms for mixed flows different from simple shear and planar extension is a
nontrivial task that will be addressed in future works, but we still need, for our macro-scale
simulations, a suitable definition of material functions that covers the whole range of kinematic
parameters. We thus apply simple extrapolation strategies to build material functions out of
the available computational data.

Specifically, we extend the fitted curves ηsh(ε̇), ηext(ε̇), λ3,sh(ε̇) and λ3,ext(ε̇) out of their
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natural domains by taking constant values. Then we set

η̃(ε̇, β3) ≡

(1 − |β3|)ηext(ε̇) + |β3|ηsh(ε̇), β3 ∈ [−1, 1]
ηsh(ε̇), |β3| > 1

(5.5)

that is an even function of β3 with ηext(ε̇) = η̃(ε̇, 0) and ηsh(ε̇) = η̃(ε̇, 1), and

λ̃3(ε̇, β3) ≡

β3λ3,sh(ε̇), β3 ∈ [−1, 1]
± λ3,sh(ε̇), β3 ≷ ±1

(5.6)

that is an odd function of β3 and such that λ3,ext(ε̇) = λ̃3(ε̇, 0) ≈ 0 and λ3,sh(ε̇) = λ̃3(ε̇, 1).
These operations in combination with (5.4) allow us to build a complete set of data for the
stress tensor as a function of ε̇ and β3.

5.4 Macro-scale simulation
We consider the flow of an incompressible fluid with constant density ρ and velocity vector u. As
we have discussed in Chapter 1, from the macroscopic point of view the continuum description
leads to the conservation of mass and the balance of linear momentum. In the incompressible
case, they translate into the following partial differential equations on the domain Ω:

∇ · u = 0, (5.7)

ρ

(
∂u

∂t
+ (u · ∇) u

)
= ∇ · σ(u, p). (5.8)

Here σ denotes the Cauchy stress tensor and p the pressure field. Equation (5.7) expresses the
incompressibility constraint. We partition the boundary of the domain as disjoint union of inlet
Γin, outlet Γout, and solid walls Γw, so that ∂Ω = Γin ∪ Γout ∪ Γw. As usual, n is the outward
unit normal to ∂Ω.

A weak formulation of the problem is retrieved by multiplying equation (5.8) by a test
function v ∈ H1

Γw
(Ω) =

{
f ∈ H1(Ω) : f |Γw = 0

}
and integrating over Ω. By applying Green’s

formula, we obtain the integral equation∫
Ω
ρ
∂u

∂t
· v +

∫
Ω
ρ(u · ∇)u · v =

∫
∂Ω

σn · v −
∫

Ω
σ : ∇v. (5.9)

Moreover, (5.7) can be multiplied by a scalar test function q ∈ L2
0(Ω) =

{
g ∈ L2

0(Ω) :
∫

Ω g = 0
}

and integrated over Ω to give ∫
Ω
q∇ · u = 0. (5.10)

We decompose the Cauchy stress tensor in spherical and deviatoric parts by introducing
the traceless extra stress τ such that σ = −(p + p̄)I + τ , where p̄ ∈ L2

0(Ω) is a given pressure
field used to impose a chosen pressure gradient from inlet to outlet. On top of the Dirichlet
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boundary conditions for u on Γw we assume a form of periodicity for u and p, requiring that
they take the same values on Γin and Γout. Thanks to the independence of the test functions
v and q, we can take the sum of (5.9) and (5.10) and substitute the expression for σ to obtain
the complete weak formulation of the problem:

Find u ∈ L2(R+;H1
Γw

(Ω)) and p ∈ L2(R+;L2
0(Ω)), such that for any suitable test functions

v and q we have∫
Ω
ρ
∂u

∂t
· v +

∫
Ω
ρ(u · ∇)u · v +

∫
Ω

τ : ∇v +
∫

Ω
q∇ · u −

∫
Ω

(p+ p̄)∇ · v =
∫

Γin∪Γout
p̄n · v. (5.11)

Equation (5.11) must be completed with suitable initial conditions for the velocity field, that
we will assume to vanish identically at time t = 0. To exploit the reflection symmetry of some
domains, we will consider a fictitious boundary Γc corresponding to the symmetry axis. On this
boundary we will assume that the normal component of the velocity field and the tangential
component of the traction τn vanish.

For the time integration of (5.11) we apply a semi-implicit Euler scheme. In particular, the
nonlinear convective term is approximated explicitly, the rest is approximated implicitly. This
approximation is suitable to simulate flows at sufficiently low Reynolds number. Consequently,
we have∫

Ω
ρ

un+1

∆t ·v+a(un+1,v)+b(v, pn+1+p̄)−b(un+1, q) =
∫

Ω
ρ

un

∆t ·v−
∫

Ω
ρ(un·∇)un·v+

∫
Γin∪Γout

p̄n·v

(5.12)
with bilinear forms b(u, q) := −

∫
Ω q∇ · u and a(u,v) :=

∫
Ω τ (u) : ∇v. Note that the latter is

already linearized since the (nonlinear) material functions in (5.4) are computed using un.

For each time step, Equation (5.12) is discretized in space and solved, in a standard way, by
means of mixed finite elements P2-P0 for the approximation of the velocity-pressure pair, which
are known to satisfy the Ladyzhenskaya–Babuška–Brezzi inf-sup condition for a stable solution
of the associated saddle-point problem [6]. The numerical method is implemented within the
Python library FEniCS [46] and some details pertaining the micro-to-macro coupling through
the dynamic reconstruction of the extra stress are given in next section 5.5.

5.5 Multi-scale coupling in the code
The purpose of this section is to present the portion of code that implements the multi-scale
coupling in the context of an otherwise standard Finite Element simulation of the flow equations,
see [41] for an introduction to FEniCS, the Python library we used. The peculiarity of our
method concerns the integration of NEMD data with the continuum solver and the construction
of the stress tensor based on the general representation (5.4).

In our code, numpy arrays contain the interpolated curves ηsh, λ3,sh and ηext, while λ3,ext

is simply zero. In particular, the first column of the array S contains the values of ε̇ on which
the Carreau function or GPR is sampled and the second column the corresponding expected
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values of ηsh. For an efficient use of those data in the stress computation, we transform them in
projections on a Finite Element space defined on a one-dimensional mesh, the nodes of which
are given by the sampled values of ε̇. Considering, for instance, the curve ηsh, it becomes the
function etas in the space E of P1 elements defined on the mesh mesh_etas. Its construction is
performed with the following lines of code. Similar commands are used to define the functions
etae and lambda3s that represent ηext and λ3,sh.

# 1D mesh for eta_sh

import numpy as np
from mshr import *

nodes = S[: ,0]
n_nodes = nodes.shape [0]
n_cells = n_nodes - 1
cells = np. arange ( n_cells )

# The geometry is inherited by a standard mesh
mesh0 = UnitIntervalMesh ( n_cells )
gdim = mesh0. geometry ().dim ()
tdim = mesh0. topology ().dim ()
c_type = mesh0.type ()
c_str = CellType . type2string ( c_type . cell_type ())

# Mesh nodes are specified from data
mesh_etas = Mesh ()
editor = MeshEditor ()
editor .open(mesh_etas , c_str , tdim , gdim)
editor . init_vertices ( n_nodes )
editor . init_cells ( n_cells )
[ editor . add_vertex (int(i) ,[n]) for i,n in enumerate (nodes)]
[ editor . add_cell (i,[i,i+1]) for i in range(cells.shape [0])]
editor .close ()

# Definition of FE space and function
E = FunctionSpace (mesh_etas , ’P’, 1)
etas= Function (E)
etas. vector (). set_local (np.flip(S[:,1], axis =0))
etas. set_allow_extrapolation (True)

The second portion of code relevant to the multi-scale coupling is the local computation of
the kinematic parameters ε̇ and β3 and the reconstruction, at each time step, of the spatial profile
of the stress coefficients η and λ3 by means of the material functions η̃(ε̇, β3) and λ̃3(ε̇, β3). This
is accomplished through the following definitions, where mesh is the two-dimensional triangular
mesh defined on the flow domain, and u is the velocity and pressure fields, respectively.
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from fenics import *

def Max(a, b):
return (a+b+abs(a-b))/ Constant (2)

def Min(a, b):
return (a+b-abs(a-b))/ Constant (2)

# Epsilondot from the velocity u_n
def eps(u_n):

return sqrt (0.5*(( u_n [0]. dx (0))**2 + (u_n [1]. dx (1))**2) + 0.25*( u_n
[1]. dx (0) + u_n [0]. dx (1))**2)

# Epsilondot truncated for viscosity in shear
def eps_es (u):

a = nodes [0]
b = nodes [-1]
ux , uy , p = split(u)
return Max(a,Min(b, eps(u)))

# Epsilondot truncated for viscosity in extension
def eps_ee (u):

a = nodes_e [0]
b = nodes_e [-1]
ux , uy , p = split(u)
return Max(a,Min(b, eps(u)))

# Epsilondot truncated for lambda_3 in shear
def eps_ls (u):

a = nodes_l [0]
b = nodes_l [-1]
ux , uy , p = split(u)
return Max(a,Min(b, eps(u)))

# Beta3 from the velocity u_n truncated between -1 and 1
def beta(u_n):

ux = u_n [0]
uy = u_n [1]
uxy= ux.dx (1)
uyx= uy.dx (0)
rot= uyx - uxy
return Max(-1, Min (1, rot /(2* Max (1.e-12, eps(u_n)))))

# Initialize functions
Q = FunctionSpace (mesh , ’P’, 1)
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epsilondot_ = Function (Q)
beta3_ = Function (Q)
eta = Function (Q)
lambda3 = Function (Q)

At each time step, we need to compute the new stress coefficients based on the velocity field
u_n obtained in the previous step. These will be used to update the stress. To this end, we
apply the interpolation between simple shear and extensional data according to (5.5)–(5.6).

# Within the time evolution loop
# Update kinematic parameters
edot_es = project ( eps_es (u_n), Q). vector (). get_local ()
edot_ee = project ( eps_ee (u_n), Q). vector (). get_local ()
edot_ls = project ( eps_ls (u_n), Q). vector (). get_local ()
beta3= project (beta(u_n), Q). vector (). get_local ()
# Evaluate material functions
etas_temp = np.zeros( edot_es .shape [0])
etae_temp = np.zeros( edot_ee .shape [0])
eta_temp = np.zeros( edot_es .shape [0])
lambda3_temp = np.zeros( edot_ls .shape [0])
for i in range( edot_es .shape [0]):

etas_temp [i]= etas( edot_es [i])
etae_temp [i]= etae( edot_ee [i])
lambda3_temp [i]= lambda3s ( edot_ls [i])

eta_temp = np. absolute (beta3)* etas_temp + (1-np. absolute (beta3))*
etae_temp
lambda3_temp = beta3* lambda3_temp
# Casting the data into functions on the 2D mesh
eta. vector (). set_local ( eta_temp )
lambda3 . vector (). set_local ( lambda3_temp )

# Reconstruction of stress tensor through functions eta and lambda3
def sigma(u, p, u_n , eta , lambda3 ):

return 2* eta* epsilon (u) -p* Identity (len(u)) + 2* lambda3 *g3(u, A)

5.6 Numerical results for different geometries

The aim of this section is to demonstrate the robustness and effectiveness of our heterogeneous
multi-scale method by presenting the results of simulations in three different planar geome-
tries: flows in a straight channel, through a 4:1 contraction, and past a deep hole. These are
paradigmatic geometries frequently used to test the non-Newtonian behavior of fluid models [9].
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5.6.1 Channel flow

The multi-scale method is firstly tested on the classical case of a planar channel flow. The total
length of the channel is L = 5 m along the x-axis and the system width is W = 2 m along the
y-axis. Exploiting the reflection symmetry of the problem, we discretized only the upper half
of the channel on a mesh with 100 triangular elements along the x-axis and 20 elements along
the y-axis, for a total of 4000 triangles in the entire computational domain. On the fictitious
boundary that corresponds to the center of the channel we impose a vanishing vertical velocity
and a vanishing normal traction to respect the reflection symmetry of the problem. We consider
a fluid with unit density and drive the flow by imposing a constant horizontal pressure gradient
C = 1 Pa/m. As for the velocity field u, we assume periodic boundary conditions so that the
velocity at inlet and outlet is the same. The time step is ∆t = 1 × 10−3 s. We let the system
evolve up to the time T = 2 s to reach a steady state.

The flow type is everywhere equivalent to that of a simple shear. Indeed, this is a viscometric
flow with β3 = 1 in the top half of the domain and β3 = −1 in the other half. A discontinuity
would appear at the midline of the channel consistent with the fact that β3 is not defined for
ε̇ = 0. The homogeneity of the flow type makes the flow-type dependence of the stress tensor
irrelevant. To assess the relevance of non-Newtonian effects, we compare the solution obtained
from the multi-scale approach with the analytical solution of a reference Newtonian model,
represented by the classical stress-strain relation

σ = −pI + 2η̄D (5.13)

with η̄ constant. We take η̄ = 1.7 Pa s for Npol = 1 and η̄ = 10 Pa s for Npol = 20, corresponding
to the zero-rate limit of the interpolated shear viscosity from our NEMD simulations.

The comparison of velocity, deformation rate, and viscosity profiles is reported in Figure 5.3.
In the case Npol = 1 the non-Newtonian solution is extremely close to the Newtonian one, as
expected from the mild rate dependence of the viscosity and the small values of λ3. In the
case Npol = 20, we observe a much larger deviation that is small only around the center of
the channel, where the shear rate vanishes and the viscosity approaches that of the reference
Newtonian model. The validation of the values of the viscosity curves in simple shear was done
by observing the range of values obtained in the study presented by Stalter et al. [56].

Due to the non-uniformity of the viscosity in the development of the flow and in its steady
state, the characterization of the flow by means of dimensionless quantities such as the Reynolds
number is not straightforward. Nevertheless, we can identify the range of local parameter values
as follows. We take the channel width W as reference length and P = CW as reference pressure
drop. The local Reynolds number is then given by

Re = W
√
ρCW

η
.



5.6. NUMERICAL RESULTS FOR DIFFERENT GEOMETRIES 91

Another important dimensionless quantity is the reorientation angle φ, such that

tanφ = λ3

η +
√
η2 + λ2

3

,

which we have already discussed in Chapter 2 and whose geometric information is precisely the
meaning of the first normal stress difference in simple shear flows, extended to generic local
flows by the definition of λ3 and η, see [25].

In the monomeric case, we have ηmin = 1.6 Pa s and ηmax = 1.8 Pa s so that Re ∈ [1.57, 1.77],
while φ is negligible. In the polymeric case, we have ηmin = 2 Pa s and ηmax = 10 Pa s so that
Re ∈ [0.28, 1.41]. We can then consider our examples to be at low Reynolds number. Since
ε̇max = 0.24 s−1, we have φ ∈ [−22, 22] degrees, that includes quite significant values.

5.6.2 Flow through a contraction

As a first example of flow in a complex geometry we consider the 4:1 contraction. This flow
is characterized by the presence of different local flow types: simple shear in regions that are
sufficiently far from the ends of the contraction, extensional and mixed motion in proximity of
entrance and exit of the contraction, and mixed rotational flow near the corners of the domain.
The spatial non-uniformity of the flow type must be taken into account to obtain a precise
macro-scale description of the fluid motion. To show this, we compare the prediction of the
full non-Newtonian model with that of a modified non-Newtonian model, wherein the flow-type
dependence is artificially suppressed. Specifically, β3 is replaced by the function sign(β3). In
this way, only the micro-scale data obtained in simple shear (i.e., β3 = ±1) are used, but the
results cannot properly reflect the fluid behavior.

We discuss results obtained with a channel of length L = 5 m and maximum width W = 2 m,
only in the polymeric case Npol = 20, with time step ∆t = 10−3, letting the system evolve to
reach a steady state for T = 0.2 s. We can appreciate the time convergence to the steady
solution by looking at the evolution of the flow rate Q through vertical sections of the domain,
reported in Figure 5.4, left panel. The discretization employs an unstructured triangular mesh
with average diameter of the triangles h ≈ 0.03 m. The mesh convergence of the multi-scale
method is assessed by considering the L2 norm of the difference between solutions obtained
with mesh parameter h and 2h. From the data reported in Figure 5.4, right panel, we see that
the incremental correction scales linearly in h, thus showing convergence of our simulation.

The pressure gradient that drives the flow is C = 0.3 Pa/m. The velocity field u is assumed
periodic so that it is matched at inlet and outlet and, to exploit symmetry and compute the
numerical solution only in the upper half of the domain, we use the same conditions as in
the straight channel simulation, namely, vanishing vertical velocity and vertical traction at
the center of the channel. The flow is laminar with the characteristic increase of horizontal
velocity ux in correspondence of the contraction. The pressure gradient is concentrated along
the narrower portion of the domain and features oblique isolines due to the presence of normal
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stress differences in that region (Figure 5.5). The non-uniformity of the deformation rate ε̇

and of the flow-type parameter β3 have a strong influence on the local values of η, that ranges
from 3.8 Pa s to 13 Pa s in the contracting region, and λ3, that ranges from −4 Pa s to 4 Pa s,
considering also the lower half of the domain (see Figure 5.6). From these values and taking
now W/4 as reference length, we can estimate Re ∈ [0.015, 0.05] and φ ∈ [−23.5, 23.5] degrees.

In this complex flow, the flow type measured by the parameter β3 varies significantly through
the domain (Figure 5.6b), ranging from pure extension (β3 = 0) to simple shear (|β3| = 1) to
more rotational flows (|β3| > 1). Regions of mixed and extensional motion cover a major part
of the domain, going well within the contraction. Since the viscosity in the full non-Newtonian
model is a function of ε̇ and β3, the effect of the flow type is clearly dominant in determining
its value. The importance of correctly embedding the flow-type dependence in the multi-scale
model can be highlighted by comparing the prediction of the full non-Newtonian model with that
obtained from the modified non-Newtonian model (Figure 5.7). The viscosity in the modified
model presents a very different profile in the extensional and mixed flow regions, where it
happens to decrease instead of increasing, as predicted by the correct method and in line with
the extensional rheology of the polymeric case. This has an immediate effect on the velocity
profile, that features a more rapid flow and a clear asymmetry, due to the overemphasized role
of the normal stress differences related to λ3 in the modified model.

5.6.3 Flow past a deep hole

In this section we analyze a second example of flow in a complex geometry. We consider a
channel of length L = 5 m and width W = 1 m. At a distance of 1.75 m from the inlet we find
the hole of width Whole = 1.5 m and depth H = 5 m. The deep hole has to be built to certain
proportions and we have taken our inspiration from what is described in Cochrane [7]. The
discretization employs an unstructured triangular mesh with average diameter of the triangles
h ≈ 0.06 m. The time step is ∆t = 10−3 and we let the system evolve to reach a steady state
for T = 0.4 s (see Figure 5.4, left panel). We present simulation results for the polymeric case
Npol = 20, driving the flow with an outlet-to-inlet pressure gradient C = 0.3 Pa/m. The velocity
field is again assumed to be periodic, and hence equal at inlet an outlet.

The flow past a deep hole features a complex distribution of local flow types with a conse-
quent variation of the material response. Also in this case, a comparison of the viscosity and the
horizontal velocity obtained with the full and the modified non-Newtonian models (Figure 5.8)
confirms the need for a correct treatment of flow-type-dependent rheologies. The viscosity ap-
pears to be significantly different right above the deep hole. This has a mild but noticeable
influence on the flow. The velocity depression is shifted rightward and, since the viscosity is
lower, the flow is globally faster with the modified model, as seen also from the values of the
flow rate reported in Figure 5.4.

From the component uy of the velocity (Figure 5.9a) we can clearly see the region where
the deep hole modifies the flow in the upper channel. Moreover, the presence of a clockwise-
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rotating vortex can be inferred at the center of the shown portion of the hole. The deformation
rate ε̇ and the flow-type parameter β3 highlight the presence of mixed flows and high-vorticity
regions (Figure 5.9b and 5.9c). Specifically, β3 confirms the presence of a vortex in the hole.
The sharp contrast between yellow and green regions nearby the openings of the upper channel
indicates the viscometric nature of the flow far from the hole. The values of λ3 across the domain
(Figure 5.9d) are a direct consequence of the non-Newtonian rheology and the complexity of
the flow. The same applies to the viscosity shown in Figure 5.7c. For this flow, the relevant
ranges of dimensionless parameters are Re ∈ [0.05, 0.12] and φ ∈ [−20.8, 20.8] degrees. Hence,
we have significant non-Newtonian effects while turbulent motions are prevented.

5.7 An analytical solution

This section stems from the need to solve a problem that arose when we simulated the flow
of a non-Newtonian fluid in the straight channel: the isolines of the pressure, contrary to our
expectations, were not vertical and created instabilities in the dynamics.

Finding the analytical solution of the motion in a channel for a special non-Newtonian
model allowed us to highlight the origin of this problem and understand which boundary con-
ditions were compatible with an admissible solution. In fact, imposing constant pressure at the
boundary, as we did in a first attempt, turned out to be a wrong choice.

Moreover, not all discretization methods are able to capture this particularity of non-
Newtonian fluids. Therefore, we had to abandon a less accurate pressure projection scheme
in favor of a mixed finite elements approach, P0 for pressure and P2 for velocity.

Let us consider a Cartesian reference xOy and look for an analytical solution (u(x, y, t), p(x, y, t))
to the flow of three types of fluid: Newtonian, quasi-Newtonian and non-Newtonian in a straight
channel of height h and length L. The velocity gradient and the strain-rate tensor, written in
components are

∇u =
[
∂xux ∂yux

∂xuy ∂yuy

]
D = 1

2
(
∇u + ∇uT

)
= 1

2

[
2∂xux (∂xuy + ∂yux)

(∂xuy + ∂yux) 2∂yuy

]

thus we compute the tensors

D2 = 1
4

[
4(∂xux)2 + (∂xuy + ∂yux)2 2(∂xuy + ∂yux)(∂xux + ∂yuy)

2(∂xuy + ∂yux)(∂xux + ∂yuy) 4(∂yuy)2 + (∂xuy + ∂yux)2

]

tr D2 =
(
(∂xux)2 + (∂yuy)2

)
+ 1

2(∂xuy + ∂yux)2

G3 = 1
2 (AD − DA) = 1

2

[
−(∂xuy + ∂yux) (∂xux − ∂yuy)
(∂xux − ∂yuy) (∂xuy + ∂yux)

]
A =

[
0 −1
1 0

]
.

Let us consider the most generic case of a non-Newtonian fluid with both material functions
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depending on both the strain rate |ε̇| =
√

tr D2

2 and the flow parameter β3

η = η(ε̇, β3) λ3 = λ3(ε̇, β3)

the stress tensor is given by

σ = −p(x, y, t)I + 2η(ε̇, β3)D + 2λ3(ε̇, β3)G3 = −p(x, y, t)I + τ (u(x, y, t))

and, written in components, has this expression

σ =
[

−p+ 2η∂xux − λ3(∂xuy + ∂yux) η(∂xuy + ∂yux) + λ3(∂xux − ∂yuy)
η(∂xuy + ∂yux) + λ3(∂xux − ∂yuy) −p+ 2η∂yuy + λ3(∂xuy + ∂yux)

]
.

The stress tensor is inserted in the equation of motion

ρ

(
∂u

∂t
+ (u · ∇)u

)
= −∇p+ ∇ · τ (u)

and since (u · ∇)u = (ux(∂xux) + uy(∂yux), ux(∂xuy) + uy(∂yuy)), the equation of motion
projected onto the two dimensions becomes

ρ

(
∂ux

∂t
+ ux(∂xux) + uy(∂yux)

)
= −∂xp+ ∂xτxx + ∂yτxy

ρ

(
∂uy

∂t
+ ux(∂xuy) + uy(∂yuy)

)
= −∂yp+ ∂xτyx + ∂yτyy

(5.14)

where the components of the extra-stress tensor are

τxx = 2η∂xux − λ3(∂xuy + ∂yux)
τxy = η(∂xuy + ∂yux) + λ3(∂xux − ∂yuy)
τyx = η(∂xuy + ∂yux) + λ3(∂xux − ∂yuy)
τyy = 2η∂yuy + λ3(∂xuy + ∂yux).

Thus, the equations take the following form

ρ

(
∂ux

∂t
+ ux(∂xux) + uy(∂yux)

)
= −∂xp+ 2η∂xxux − ∂x[λ3(∂xuy + ∂yux)] + η(∂yxuy + ∂yyux)

+ ∂y[λ3(∂xux − ∂yuy)]

ρ

(
∂uy

∂t
+ ux(∂xuy) + uy(∂yuy)

)
= −∂yp+ η(∂xxuy + ∂xyux) + ∂x[λ3(∂xux − ∂yuy)] + 2η∂yyuy

+ ∂y[λ3(∂xuy + ∂yux)].
(5.15)

In the straight channel, instead, we have the additional assumptions that the vertical component
of the velocity is null and that the horizontal velocity is nomore dependent from x because of
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the continuity equation

u(x, y, t) = ux(x, y, t)x̂ + uy(x, y, t)ŷ = ux(x, y, t)x̂ i.e. uy(x, y, t) = 0
∇ · u = 0 → ∂xux + ∂yuy = 0 → ∂xux = −∂yuy = 0 u = u(y, t)

therefore, tensors and parameters of our flow become

∇u =
[
0 ∂yux

0 0

]
, u = 1

2

[
0 ∂yux

∂yux 0

]
, G3 = 1

2

[
−∂yux 0

0 ∂yux

]

D2 = 1
4

[
(∂yux)2 0

0 (∂yux)2

]
, tr D2 = 1

2(∂yux)2, |ε̇| = ∂yux

2

and since (u · ∇)u = 0 the equations reduce toρ
∂ux

∂t
= −∂xp− ∂x(λ3(∂yux)) + η(∂yyux)

0 = −∂yp+ ∂y(λ3(∂yux)).
(5.16)

Let us consider the Newtonian case

η = η, λ3 = 0

the equations of motion in the case of complex geometries
ρ

(
∂ux

∂t
+ ux(∂xux) + uy(∂yux)

)
= −∂xp+ 2η∂xxux + η(∂yxuy + ∂yyux)

ρ

(
∂uy

∂t
+ ux(∂xuy) + uy(∂yuy)

)
= −∂yp+ η(∂xxuy + ∂xyux) + 2η∂yyuy

(5.17)

while in the straight channel reduces to
ρ
∂ux

∂t
= −∂xp+ η(∂yyux)

0 = ρ
∂uy

∂t
= −∂yp.

(5.18)

thus p = p(x, t) and making derivative in x of the first equation we obtain −∂xxp = 0, that
means p linear in x, p(x, t) = Cx+ c(t). Adding the stationariety hypothesis ∂tu = ∂tp = 0 we
obtain 0 = −C + η∂yyux

p(x, y) = Cx+ c
(5.19)

and from the first equation we have u(y) = C
2η

(
y2 − 2c1

)
+ c2. Let us now impose the Dirichlet

Boundary Conditions (DBCs) u(0) = u(y) = 0 obtaining c2 = 0 e c1 = h/2, therefore the
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solution for the velocity is
u(y) = C

2η (y2 − hy)

while for the pressure it is sufficient to assign its value at inlet p0 and the pressure drop C to
obtain

p(x, y) = Cx+ p0.

Let us consider, finally, now the quasi-Newtonian case with λ3 linear in ε̇ and the constant
viscosity

η = η λ3(ε̇) = Kε̇.

In complex geometries, where no symmetries are present, we have

ρ

(
∂ux

∂t
+ ux(∂xux) + uy(∂yux)

)
= −∂xp+ 2η∂xxux −K(∂xε̇)(∂xuy + ∂yux) −Kε̇(∂xxuy + ∂xyux)

+ η(∂yxuy + ∂yyux) +K(∂y ε̇)(∂xux − ∂yuy) +Kε̇(∂yxux − ∂yyuy)

ρ

(
∂uy

∂t
+ ux(∂xuy) + uy(∂yuy)

)
= −∂yp+ η(∂xxuy + ∂xyux) +K(∂xε̇)(∂xux − ∂yuy)

+Kε̇(∂xxux − ∂xyuy) + 2η∂yyuy

+K(∂y ε̇)(∂xuy + ∂yux) +Kε̇(∂yxuy + ∂yyux)
(5.20)

where

|ε̇| =

√
tr (D2)

2 =
√

1
2 ((∂xux)2 + (∂yuy)2) + 1

4(∂xuy + ∂yux)2

∂xε̇ = ∂x

(√
1
2 ((∂xux)2 + (∂yuy)2) + 1

4(∂xuy + ∂yux)2

)

= 1
2

[1
2
(
(∂xux)2 + (∂yuy)2

)
+ 1

4(∂xuy + ∂yux)2
]

∗

∗
[1

2 (2(∂xux)(∂xxux) + 2(∂yuy)(∂xyuy) + (∂xuy + ∂yux)(∂xxuy + ∂xyux))
]

=

[
(∂xux)(∂xxux) + (∂yuy)(∂xyuy) + 1

2(∂xuy + ∂yux)(∂xxuy + ∂xyux)
]

2
√

1
2 ((∂xux)2 + (∂yuy)2) + 1

4(∂xuy + ∂yux)2

∂y ε̇ =

[
(∂xux)(∂yxux) + (∂yuy)(∂yyuy) + 1

2(∂xuy + ∂yux)(∂xyuy + ∂yyux)
]

2
√

1
2 ((∂xux)2 + (∂yuy)2) + 1

4(∂xuy + ∂yux)2
.

For what concerns the channel, we have instead:
ρ
∂ux

∂t
= −∂xp−K(∂xε̇)(∂yux) + η(∂yyux)

0 = ρ
∂uy

∂t
= −∂yp+K(∂y ε̇)(∂yux) +Kε̇(∂yyux)

(5.21)
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ρ
∂ux

∂t
= −∂xp+ η∂yyux

0 = −∂yp+ K

2 ε̇∂y(∂yux)2
(5.22)

i.e. the presence of λ3 ̸= 0 leads to a non-null pressure gradient in y direction ∂yp ̸= 0. In the
simple shear however ε̇ is constant and the velocity profile is linear in y so ∂yyu = 0, i.e. the
solution is independent of λ3. From the last equation of the system we obtain

p(x, y, t) = K

2 (∂yux)2 + c(x, t)

thus, p(x, y) has a parabolic profile along the direction y. Making the derivative in x two times
of the first equation of the system we obtain

0 = −∂xxc

thus, c(x, t) is a linear function c(x, t) = Cx+ a(t), therefore the system becomes
ρ
∂ux

∂t
= −C + η∂yyux

p(x, y, t) = K

2 (∂yux)2 + Cx+ a(t).
(5.23)

We now look for the steady state solution ∂tu = ∂tp = 0 and adding the hypothesis of station-
ariety leads to 

0 = −C + η∂yyux

p(x, y) = K

2 (∂yux)2 + Cx+ a
(5.24)

and from the first equation we obtain u(y) = C
2η

(
y2 − 2c1

)
+ c2. Let us impose the DBCs

u(0) = u(y) = 0 getting c2 = 0 e c1 = h/2, and we finally retrieve the solution for the velocity

u(y) = C

2η (y2 − hy).

Instead, to obtain the pressure, just impose the pressure at the centre of the channel (where
I have the parabolic peak) at the inlet p(0, h/2) = 5 and at the outlet p(L, h/2) = −5. Or
fix the pressure delta C = −p0/L and the reference pressure at the centre of the channel
p(L/2, h/2) = 0, for instance

p(x, y) = k

2

(
C

η

)2 (
y − h

2

)2
+ C(x− L

2 )
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obtaining solutions of the form
u(y) = − p0

2Lη (y2 − hy)

p(x, y) = K

2

(
p0
Lη

)2 (
y − h

2

)2
− p0
L

(x− L

2 ).
(5.25)

With Npol = 20 the parameters are K = 20, p0 = 10, L = 5, η = 10, h = 1, so the final solutions
are 

u(y) = − 1
10(y2 − hy)

p(x, y) = 2
5

(
y − h

2

)2
+ 2(5

2 − x)
(5.26)

while their derivatives are 
∂yux(y) = − 1

10(2y − h)

∂yp(x, y) = 2
5(2y − h)

∂xp(x, y) = −2.

(5.27)

Now that we found an analytical solution, we compute the values of the functions u, p in some
points and we compare these analytical results with the numerical results found in simulations
to check if they are in good agreement

ux(y) = 0 ↔ y = 0, y = h

∂yux(y) = 0 ↔ y = h/2 → uxmax = ux(h/2) = 1
10
h2

4 = 1
10 = 0.1

p(x, y) = 0 ↔ 2
5

(
y − h

2

)2
+ 2(5

2 − x) = 0 → x = 1
5

(
y − h

2

)2
+ 5

2 .

The pressure is geometrically a parabolic cylinder, i.e. the x-y and y-z sections are parabolas,
while x-z sections are straight lines. Let us see what happens when we dissect, for example,
with vertical lines

x = L

2 → p(L2 , y) = kp0
2Lη2

(
y − h

2

)2

p(L2 , y) = 0 → y = h

2 p(L2 , h) = kp0h
2

8Lη2

∂yp(
L

2 , y) = kp0
2Lη2 (2y − h) ∂yp(

L

2 , y) = 0 → y = h

2
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x = 0 → p(0, y) = kp0
2Lη2

(
y − h

2

)2
+ p0

2

p(0, y) = 0 → ∄y p(0, h2 ) = p0
2 p(0, h) = kp0h

2

8Lη2 + L > L

∂yp(0, y) = kp0
2Lη2 (2y − h) ∂yp(0, y) = 0 → y = h

2 .

In the case of the channel with Npol=1 the parameters are K = 20, p0 = 10, L = 5, η = 1.7, h =
1, therefore 

u(y) = −0, 588235(y2 − hy)

p(x, y) = 13, 8408
(
y − h

2

)2
+ 2(5

2 − x)
(5.28)

while their derivatives are 
∂yux(y) = −0, 588235(2y − h)
∂yp(x, y) = 13, 8408(2y − h)
∂xp(x, y) = −2.

(5.29)

And, making some simple test and computations, we verify that analytical and numerical results
are, effectively, in good agreement

ux(y) = 0 → y = 0, y = h

∂yux(y) = 0 → y = h/2 → uxmax = ux(h/2) = 0, 588235h
2

4 = 0, 588235

p(x, y) = 0 → 13, 8408
(
y − h

2

)2
+ 2(5

2 − x) = 0 → x = 6, 9204
(
y − h

2

)2
+ 5

2 .
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Figure 5.3: Comparison of the horizontal velocity profile ux, local deforma-
tion rate ε̇, and viscosity η for the flow in a straight channel computed by
our multi-scale method with a reference Newtonian solution. In the case
Npol = 1, the non-Newtonian solution is extremely close to the Newtonian
one, as expected from the mild rate dependence of the viscosity and the small
values of λ3. In the case Npol = 20, we observe a much larger deviation with
a shear-thinning character expected from the rate dependence of the viscos-
ity. The motion in the channel has the property of spacing between various
values of ε̇, from ε̇ = 0 to ε̇max. If the pressure field generated for Npol = 20 is
large, the viscosity field that is generated is consistent with the figure shown
which highlights a strong shear-thinning. The fact that the viscosity curves
show approximately the same values at the edges is almost random. And it
comes from the fact that ux and ε̇ for Npol = 1 and Npol = 20 are randomly
very similar in values.
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Figure 5.4: Time convergence of the numerical solution to the steady flow
(left) and mesh convergence of the method (right). The attainment of steady
flow conditions is confirmed by the evolution of the flow rate Q through
vertical sections of the domain for the contraction and deep hole geometries
(left, see legend) the dashed lines show the flow rate produced by the modified
non-Newtonian model and highlight a measurable difference with the full
model. The incremental correction obtained by successive mesh refinements
is measured by the L2 norm of the difference of the corresponding velocity
fields and features a linear scaling with the mesh size parameter h, thus
showing convergence of the method in a situation in which all the non-
Newtonian contributions are activated.

(a)

(b)

(c)

ux (m/s)
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Figure 5.5: The geometry of the domain induces a flow that features a broad
spectrum of local flow types. (a,b) The two components of the steady-state
velocity field, ux and uy, in the flow through a contraction show that we are
in a stable laminar regime. (c) The pressure field features oblique isolines
due to the presence of normal stress differences.
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Figure 5.6: The non-uniform flow type in complex flows can affect signifi-
cantly the rheological response. We measured (a) the deformation rate ε̇ and
(b) the local flow type β3 in the flow through a contraction of a polymeric
fluid (Npol = 20) and computed the local values of the material parameters
(c) η and (d) λ3. In this case, they are strongly affected by changes in the
flow type on top of the variations due to the deformation rate.
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(a)

(b)

(c)

(d)

ux (m/s)⌘ (Pa s)

Figure 5.7: The dependence of the stress on the local flow type must be taken
into account to correctly predict the fluid behavior. We compare the steady-
state viscosity η and horizontal velocity ux nearby the contraction, computed
with (a,c) the full non-Newtonian model and (b,d) the modified one. The
viscosity in the modified model presents a very different profile in the exten-
sional and mixed flow regions, nearby entrance and exit of the restriction.
This influences the velocity field, which features a clear asymmetry due to
the overemphasized role of normal stress differences in the modified model.

(a)

(b)

(c)

(d)

ux (m/s)⌘ (Pa s)

1152x628, 1044x624

⌘ (Pa s) ux (m/s)

Figure 5.8: Also in the flow past a deep hole the presence of mixed and exten-
sional flow regions requires a proper treatment of the flow-type dependence of
the stress. We compare the steady-state viscosity η and horizontal velocity
ux computed with (a,c) the full non-Newtonian model and (b,d) the modified
one. The viscosity appears to be significantly different right above the deep
hole. The velocity depression is shifted rightward and the flow is globally
faster.
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Figure 5.9: The flow past a deep hole features a complex distribution of local
flow types with a consequent variation of the material response. (a) From
the component uy of the velocity we can see the region where the deep
hole modifies the flow in the upper channel. (b,c) The deformation rate ε̇
and the flow-type parameter β3 highlight the presence of mixed flows and
high-vorticity regions. (d) The values of λ3 across the domain are a direct
consequence of the non-Newtonian rheology and the complexity of the flow.



6
NEMD simulations with PMF package

NEMD simulations of mixed flows at the micro-scale have been performed using the software
package PMF (Planar Mixed Flows), implemented in C++ taking inspiration, for the archi-
tecture of the code (but not for the algorithm) from the package UEF developed by David
Nicholson [51]. The implemented algorithm is an extension of the Kraynik & Reinelt work [38]
to the mixed flows. The PMF package has been tested with the stable version of LAMMPS [53,
lammps.sandia.gov] of Oct 29th 2020.

6.1 Settings
We considered a simple model for polymeric chains in a three-dimensional computational domain
with periodic boundary conditions and undergoing mixed motions. Different types of mixed mo-
tions were carried out for values of the flow parameter β ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.
We considered values of the deformation rate ε̇ ranging from 0.001 s−1 to 0.22 s−1. The averaged
temperature of the fluctuations around the mean motion has been fixed at T = 1kB

ε while the
density of the system at ρ = 0.8 m

σ2 . The total number of particles involved depends on the flow
parameter β. The proportion of the simulation box also varies according to the flow parameter
β, as expressed by the equation (4.11) in Chap. 4. The shorter sides are always 10.77217σ while
the longer sides range from 10.77217σ for β = 0 to 51.967008σ for β = 0.9. The equilibration
times vary a lot, both on the basis of ε̇ and β, so we do not think it appropriate to report
them here. At each time, the average stress given as output by LAMMPS is projected onto the
basis tensors through the formulae (5.3) and these projections are averaged over time. Finally,

105



106 CHAPTER 6. NEMD SIMULATIONS WITH PMF PACKAGE

a mean over all initial configurations is taken.
Fixed β, for each value of ε̇ we performed 21 simulations with different initial configurations

of the particles. The average velocity field is imposed by deforming the computational box and
the canonical ensemble statistics of the velocity fluctuations is achieved via the Nosé–Hoover
thermostat [24]. It has not been possible to realize the simple shear motion with the PMF package
because the method has a singularity at β = 1, while it has been possible to simulate the planar
extensional motion by simply setting β = 0. Thus, we used the NEMD data shown in the
Chapter 5 obtained with the fix deform routine of LAMMPS, as a reference for β = 1. Polymers
are modeled through a FENE+WCA potential, as usual and as explained in Chapter 3. We
discuss results for Npol = 20, i.e. polymers with 20 bonded monomers in each chain.

6.2 Average stress coefficients
At each time, the average stress σ of the system was given as output by LAMMPS and has been
projected onto the basis tensors illustrated in Chapter 2 to obtain the material functions of
eq. (5.3). These projections are then averaged over time. Finally, an arithmetic mean over all
initial configurations has been taken. Let us take a detailed look at the trends of the coefficients
obtained, as ε̇ and β vary.

6.2.1 Viscosity and reorientation of eigenvectors
In the top panel of Figure 6.1 we presented data about the dependence of the material coefficient
CD = 2ε̇η(ε̇, β3) (linked to the generalized viscosity η) on the strain rate ε̇, for each value of β.
Each curve is monotonically increasing in the strain rate ε̇ while monotonically decreasing in
the flow-type parameter β, as we expected from MD results of Chapter 5 (Sec. 5.2.2) that show
higher values for the viscosity in extension than in simple shear.

While the bottom panel of Figure 6.1 shows the trend of the function CG3 = 2ε̇λ3(ε̇, β3),
related to non-Newtonian effects due to some reorientation in eigenvectors of the stress σ (w.r.t.
eigenvectors of the strain tensor D) in the fluid. This coefficient takes on non-zero values apart
for β = 0, as we expected, because we know that for polymers consisting of chains of length
Npol = 20 the reorientation takes place if a component of simple shear is present. CG3 assumes
negative values (this depends on the sign of β) and each single curve, for β fixed, displays a
monotonic decreasing trend with respect to ε̇ (or increasing in absolute value).

A curious thing to note is that the material function is not monotonic with respect to the flux
parameter β because it is increasing up to a value β = 0.6, while it is decreasing from β = 0.7
to β = 1. Initially, we considered the trend of η = CD

2ε̇ , but dividing by very small ε̇, of the order
of 10−3 or 10−2 would amplify the error and deviate η from the null value it must assume near
ε̇ = 0. For this reason we then chose to display the coefficients in their full form. We looked
at the trend of η in β and noted again the monotonic behavior in β, but this representation
shows a non-monotonic trend in ε̇: for 0.0 ≤ β ≤ 0.7 (β closer to extension) there is a clear
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Figure 6.1: The polymeric fluid displays rate dependence and strong flow-
type dependence of the stress coefficients. We compare the NEMD data for
the stress coefficients CD (top) and CG3 (bottom) against ε̇ obtained for the
polymeric case with Npol = 20 under mixed motions, i.e. for 0 < β < 1. The
former displays monotonic increasing trends both in ε̇ and β, while the latter
displays decreasing monotonic trend in ε̇ and non monotonic behavior in β.
The presence of a strong flow-type dependence originates from the different
conformations of the long molecules.

zone of shear-thickening for 0s−1 ≤ ε̇ ≤ 2 · 10−2s−1, followed by a zone of shear-thinning for
2 · 10−2s−1 ≤ ε̇ ≤ 1 · 10−1s−1 and a clear final hint of shear-thickening. This behaviour is more
pronounced for betas closer and closer to β = 0. While for β approaching 1 the classical shear-
thinning behavior of polymeric fluids (qualitatively similar to that of monomeric fluids) under
simple shear is displayed. This spectrum of behavior is due to the different shapes assumed by
conformation of molecules in the different types of motion (spherical in simple shear, elongated
in extensional, both in mixed, . . . ). These data are coherent with what we expected from the
NEMD data of Chapter 5. We looked also at λ3, with its non-monotonic behavior. The elastic
effects generated by the bonds are crucial in this case and when a little component of simple
shear is present, normal stress differences are generated and displayed by nonvanishing values
of λ3. Even if not visible (because small), the error bars are reported in Fig. 6.1. Furthermore,
the figure clearly shows that in the limit of ε̇ → 0 all motions have the same values for the
coefficients.
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With the package PMF we were able to obtain reliable data in the range of flow parameter
0 ≤ β < 1 and for strain rates 0s−1 < ε̇ < 0 22s−1 (we represented only up to ε̇ = 0 1s−1 for
graphical convenience) that could not be explored with the techniques already implemented in
LAMMPS. In Figures 6.2 and 6.3 we represented the colorplot of the surfaces of NEMD data that
we have been able to produce.

1e 1
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0.0
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1.0
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2.0

2.5

1 2
CD

Figure 6.2: The figure shows a different representation of NEMD data pre-
viously seen about the viscosity coefficient CD obtained for 0 < β < 1 and
0s−1 < ε̇ < 0 22s−1 with a colorplot of its values.

6.2.2 The other coefficients

We also represented the remaining coefficients CE,CG1,CG2 of the three dimensional decompo-
sition, related, respectively, to the anisotropy in the distribution of the stress along eigenvectors
and reorientation of the eigenvectors of σ (w.r.t those of D) in the orthogonal planes to the
x-axis and the y-axis, see Figure 6.4.

As we expected, the coefficients CG1 and CG2 fluctuate around zero, because, since the flow
develop in x− y plane, there is no reorientation of the eigenvectors in these directions, but only
in the flow plane. Instead, anisotropy is present, as can be seen from the non-zero coefficient
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Figure 6.3: The figure shows a different representation of NEMD data pre-
viously seen about the viscosity coefficient CG3 obtained for 0 < β < 1 and
0s−1 < ε̇ < 0 22s−1 with a colorplot of its values.

CE . It shows an increasing (decreasing in absolute value) monotonous trend with the parameter
β, and this is what we expected.
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Figure 6.4: NEMD data about the material functions CG1(ε̇, β),CG2(ε̇, β)
and CE(ε̇, β) of a polymeric fluid with chain length Npol = 20 under different
mixed flows. Each colored curve represents a fixed value of β. As expected
from the planarity of the motion, he reorientation coefficients CG1 and CG2

fluctuates around zero, while CE is monotonically increasing with β.



7
Conclusions

A multi-scale method for the simulation of planar flows in arbitrary geometries for complex fluids
has been proposed and tested. This is based on collecting the results of micro-scale simulations
according to a general decomposition of the stress [25] that allows to correctly align its different
components in flows that display a broad spectrum of local flow types. And, subsequently, to
combine these data with macro-scale continuum equations to achieve a data-driven prediction
of complex flows. We have shown that a proper treatment of the flow-type dependence, that
was missing in previous multi-scale methods (exclusively focused on simple shear rheology) is
essential to capture the macroscopic dynamics.

In our case, the micro-scale simulations are Non-Equilibrium Molecular Dynamics (NEMD)
simulations of polymeric chains with internal FENE bonds and an effective repulsive Weeks-
Chandler-Andersen interaction potential. We performed these simulations imposing simple
shear and planar extension as average kinematic conditions under which we evaluate the stress
response. From these, we built the rheological functions in mixed flows by means of a simple
interpolation and extrapolation procedure. Nevertheless, our coupling scheme does not rely
on a specific simulation strategy neither at the micro-scale nor at the macro-scale, but any
other methods can in principle be employed. The macroscopic simulation of the continuum was
implemented with a well-established mixed finite element method based on P2-P0 elements for
the velocity-pressure pair to deal with the incompressibility constraint and a semi-implicit time
integration scheme.

Polymeric fluids are well known to display a significant degree of flow-type dependence in
their rheological properties. In fact, the different average conformation of the long molecular
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chains in simple shear and extensional flows causes the same material to show opposite trends
in the dependence of the viscosity on the rate of deformation. Our micro-scale simulation
reproduced this feature. Hence, we were able to assess the relevance of properly taking into
account the flow type dependence of the stress in the material response and, thus, the macro-
scale simulation. From the results obtained with our multi-scale approach in three complex
geometries (the straight channel, the contraction channel and the deep-hole), it is clear that the
predictions of a model that suppresses the flow-type dependence are not reliable.

In fluids composed by molecules with longer microscopic relaxation times, it may happen
that the local flow type experienced by a fluid element changes fast along streamlines. The
method that we presented can in principle be extended to take this into account by devising
MD simulations for which the flow type of the imposed background motion is slowly varying.
The macroscopic material functions would then depend also on the derivative along streamlines
of the flow-type parameter. Other directions for future work are the testing of our method in
parameter ranges where elastic instabilities may be observed, that may lead to the presence of
highly oscillatory material coefficients in space and time, and the implementation of an on-the-
fly coupling between macro-scale and micro-scale simulations, to be able to sample the space of
kinematic conditions in a problem-driven fashion.

In view of the impact on macroscopic flows in non-viscometric geometries of the local flow
conditions, we expanded the micro-scale simulations to obtain data under mixed flows and
we plan to extend our investigation also to rotational flow conditions in which we will have
different orders of problems because the streamlines are elliptical and the method illustrated
in the thesis cannot be directly applied to such case. The extension to mixed flows required
the implementation of a suitable generalization of the Kraynik–Reinelt (KR) periodic boundary
conditions for non-equilibrium molecular dynamics simulations.

In our MD simulations of steady, homogeneous flows, the mixed flow is imposed through
the deformation of the simulation box, and can happen that image particles become arbitrarily
close, causing a stop of the simulation because the compatibility requirement is violated. Our
boundary conditions avoid this problem for intermediate flows between simple shear and planar
extension. We found reproducibility conditions of the system lattice of points: specific orienta-
tion and proportions of the unit cell lead to periodic behavior (i.e. the initial state boundaries
are recovered) with the minimum period. In correspondence to such period the box must be
re-initialized (in a way that conserves image locations) to proceed for another equal period of
time. Thus, through careful choice of the initial simulation box and by periodically remapping
it, we have been able to theoretically extend indefinitely the time of the simulations of planar
mixed flows. PBCs for Planar Mixed Flows have also been implemented by us in a software
package named PMF for NEMD simulations. The package is written in C++ and is planned to
be inserted in LAMMPS.
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