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Abstract

Massive amounts of data are generated continuously in every field, such as finance, social
networks, medicine, and many others. Data mining is the task of discovering interesting
patterns exploring large amounts of data, making those useful and understandable. In
recent years, the data mining community has tackled and proposed a vast set of problems
but many others are still open. Now more than ever, it is of crucial importance to be
able to analyze and extract reliable knowledge from massive datasets. However, this
fundamental task poses some challenges. The first one is to design algorithms that scale
the computation to the analysis of massive datasets. In such a scenario, very often
approaches that return rigorous and high quality approximations are the only viable
approach. The second one is to develop strategies that extract useful knowledge providing
statistical guarantees on the analysis, while filtering out spurious discoveries. Finally,
the abundance of data is opening new scenarios, with a lot of sources generating data
continuously, requiring analyses that take into account the sequential nature of the data.
The objective of this Thesis is to design novel scalable and rigorous techniques to mine
patterns from sequential data, in three scenarios.

The first scenario we consider is mining frequent sequential patterns through sampling.
Sequential pattern mining is a fundamental task in data mining and knowledge discovery,
with applications in several areas (e.g., biology), that has been extensively studied in the
literature, with the definition of several exact methods. However, for large modern sized
datasets, the execution of exact methods is computationally very demanding. In such a
direction, we develop an algorithm to mine rigorous approximations, defined in terms
of false positives or false negatives, of the frequent sequential patterns using sampling.
To solve the crucial challenge of computing a sample size which guarantees high quality
approximations, we employ the VC-dimension, a key concept from statistical learning
theory. Our theoretical and experimental analyses prove that our strategy provides high
quality approximations while mining small portions of the original dataset.

The second scenario we consider is mining patterns from samples from unknown
probability distributions. In many real life applications (e.g., market basket analysis), the
analysis of a dataset is performed to gain insight on the underlying generative process of
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the data. However, by analyzing only a sample, one cannot exactly solve the problem and
has to resort to approximations. In such a scenario, a crucial challenge is to compute a
quantity that relates the frequency of a pattern in the sample and its probability of being
generated by the underlying process. In this setting, we tackle two problems: the problem
of mining, from a single dataset, true frequent sequential patterns, which are sequential
patterns frequently generated by the underlying process generating the data; and the
problem of mining statistically robust patterns from a sequence of datasets, which are
patterns whose probabilities of being generated from the underlying generative processes
behind the sequence of datasets follow well specified trends, i.e., increase, decrease or
stay stable, through the sequence. For both problems, we develop novel algorithms that
return rigorous approximations, defined in terms of false positives or false negatives,
employing concepts of statistical learning theory (e.g., the VC-dimension) and we provide
theoretical and experimental evidence of their effectiveness.

The last scenario we consider is mining significant patterns. In significant pattern
mining, the dataset is seen as a sample from an unknown probability distribution, and
the aim is to extract patterns significantly deviating from an assumed null hypothesis
with rigorous guarantees in terms of statistical significance of the output, controlling the
retrieval of false discoveries. In such a scenario, crucial challenges are the definition of
appropriate null models for the data, the assessment of the significance of the patterns
of interest, and the multiple hypothesis testing problem. In this setting, we tackle two
problems: the problem of mining statistically significant sequential patterns and the
problem of mining statistically significant paths in time series data from an unknown
network. Since sequential patterns represent ordered sequences of events, significant
sequential pattern mining aims to extract sequential patterns that appear more frequently
than expected under a null model that randomizes the order of such events inside the
sequential patterns. Instead, significant path mining aims to extract patterns that occur
more than expected given the distribution of the underlying network that generated the
time series, defined as sequences of vertexes of the network. For both problems, we develop
novel algorithms that provide rigorous guarantees in term of false discoveries, employing
the statistical hypothesis testing framework and techniques based on permutation testing.
Our theoretical and experimental analyses provide evidence of their effectiveness.
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Chapter 1

Introduction

Nowadays, massive amount of data is generated every day at an always increasing
rate. In the past decades, the generation of this massive amount of data was almost
entirely limited to big companies or scientific laboratories, while today even small realities
have understood the importance of collecting and analyzing data. Actually, we are all
contributing in the generation of new data. How? Sending emails, interacting with
our friends on social networks, navigating on the web, even listening to music on our
smartphones or watching movies on-demand. We contribute in the generation of data
even when we are not online, for example by renting a bike with the bike sharing service
of our city or going shopping in a supermarket that is carrying out market analyzes.
This Thesis does not want to focus on the dangers and on the ethical aspects that such a
collection of data could raise, for example the privacy issues related to the permissions
of collecting their data that too often unaware users provide, that of course are crucial
problems of our era. Instead, we prefer to optimistically consider the positive aspects of
this trend since the abundance of data and the ease with which it can be collected have
opened new possibilities and new research directions.

Data mining is the task of discovering interesting patterns exploring large amounts
of data, making those useful and understandable. In recent years, the data mining
community has developed a vast set of techniques to solve a large set of problems.
However, there are still many challenges and open problems. First of all, it is more
and more important to be able to efficiently analyze such data, since modern sized
datasets are continuously growing. In such a direction, to obtain an exact solution is
often computationally too expensive and the development of algorithms returning high
quality approximations is the only viable approach. Secondly, it is of crucial importance
to be able to extract useful and reliable knowledge while filtering out intrinsic noise and
uncertainty characteristics of the data. In particular, to be able to assess the significance
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of the results while providing rigorous guarantees in term of spurious discoveries. Finally,
the abundance of data is opening new scenarios. There are a lot of sources that generate
data continuously, requiring analyses that take into account the sequential nature of the
data. Sequential pattern mining and time series analysis are just two examples of data
mining tasks that take into consideration the sequential nature of the data. However,
this aspect can be taken into account in almost every data mining task, for example
performing analyses on multiple datasets taken in subsequent temporal points.

This Thesis introduces novel scalable and rigorous techniques to mine patterns from
sequential data. First, we consider the problem of mining frequent sequential patterns
through sampling. Sequential pattern mining is a fundamental task in data mining and
knowledge discovery, with applications in several fields, from recommender systems and
market basket analysis to biology and medicine, where, in general, sequential patterns
describe sequences of events or actions that are useful for predictions in many scenarios.
In its original formulation, sequential pattern mining requires to identify all frequent
sequential patterns, that is, sequences of itemsets that appear in a sufficient fraction of
transactions in a transactional dataset, where each transaction is a sequence of itemsets.
Several exact methods have been proposed to find frequent sequential patterns, but
the exact solution of the problem requires to process the entire dataset at least once,
and often multiple times, making the computation infeasible for large, modern sized
datasets. A natural solution to reduce the computation is to use sampling to obtain
a small random portion (sample) of the dataset, and perform the mining process only
on the sample. Unfortunately, by analyzing only a sample, the problem cannot be
solved exactly, and one has to rely on the approximation provided by the results of
the mining task on the sample. Therefore, the main challenge in using sampling is on
computing a sample size such that the frequency of the sequential patterns in the sample
is close to the frequency that would be obtained from the analysis on the whole dataset.
Relating the two quantities using standard techniques (e.g., Hoeffding inequality and
union bounds) does not provide adequately small sample sizes, but recently, tools from
statistical learning theory (e.g.,Vapnik-Chervonenkis dimension [87] and Rademacher
complexity [12]) have been successfully used in frequent itemset mining [66, 67] showing
that accurate and rigorous approximations can be obtained from small samples of the
entire dataset.

For the task of frequent sequential pattern mining through sampling, this Thesis
contributes the following results:

(i) In Chapter 3, we consider the problem of mining frequent sequential patterns through
sampling. In particular, we define two rigorous approximations of the set of frequent
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sequential patterns: one with no false negatives and one with no false positives,
both defined in terms of a single, easily interpretable, parameter which controls the
accuracy of the approximation. We then introduce a new sampling-based algorithm
to identify rigorous approximations of the frequent sequential patterns, which do
not contain false negatives or false positives with high probability. Our algorithm
hinges on a novel bound on the VC-dimension of sequential patterns, and it allows
to obtain a rigorous approximation of the frequent sequential patterns by mining
only a fraction of the whole dataset. In particular, we provide a simple, but still
effective in practice, upper bound on the VC-dimension of sequential patterns
by relaxing the upper bound previously defined in [75]. Finally, we perform an
extensive experimental evaluation analyzing several datasets. The results show that
our algorithm returns high-quality approximations, analyzing only small samples
of the original datasets, with guarantees even better than the ones provided by its
theoretical analysis. The contributions described in this Chapter appear in [73].

Then, we consider the problem of mining patterns from samples drawn from unknown
probability distributions. In several applications, the analysis of a dataset is performed to
gain insight on the underlying generative process of the data. For example, in market
basket analysis one is interested in gaining knowledge on the behaviour of all customers by
analyzing data from a restrict subset of the population. Thus, the task can be modeled as
a generative process from which the transactions in the dataset have been drawn. For the
problem of mining patterns from samples drawn from unknown probability distributions,
in this Thesis, we consider two different scenarios.

The first one is the mining of true frequent sequential patterns from a single sample
drawn from an unknown probability distribution. In such a scenario, one is not interested
in sequential patterns that are frequent in the sample, but in sequential patterns that are
frequently generated by the generative process underlying the data, that is, sequential
patterns whose probability of appearing in a transaction generated from the process
is sufficiently high. Such patterns, called true frequent patterns, have been introduced
by [68], which provides a VC-dimension based approach to mine true frequent itemsets.
While there is a relation between the probability that a pattern appears in a transaction
generated from the process and its frequency in the sample, one cannot simply look at
the observed frequency of the patterns. Moreover, due to the stochastic nature of the
data, one cannot identify the true frequent patterns with certainty, and approximations
are to be sought. In such a scenario, to relate the probability that a pattern appears in a
transaction generated from the process with its frequency in the sample is a challenging
problem since standard techniques do not provide tight guarantees.
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The second one is the mining of statistically robust patterns from a sequence of
datasets. In several real applications, a pattern is studied in the context of a sequence of
datasets, where the sequence is given, for example, from the collection of the data at
different time points. For example, in market basket analysis, it is natural to study the
patterns (e.g., itemsets or sequential patterns) in datasets obtained from transactions in
different weeks or months. In almost all applications, one can assume that each dataset
is obtained from a generative process on transactions, which generates transactions
according to a probability distribution. In such a scenario, patterns of interest are the
ones whose probability of appearing in a transaction follows some well-specified trends
(e.g., it increases, decreases, or is constant across datasets). However, the identification
of such patterns is extremely challenging, since the underlying probability distributions
are unknown and the observed frequencies of the patterns in the data only approximately
reflect such probabilities. As a result, considering the same trends at the level of observed
frequencies leads to report several false positives. In addition, techniques developed for
significant pattern mining [26] or for statistically emerging pattern mining [38] can only
be applied to (a sequence of) two datasets.

For the task of mining patterns from samples drawn from unknown probability
distributions, this Thesis contributes the following results:

(i) In Chapter 4, we consider the problem of mining true frequent sequential patterns.
In particular, we define two rigorous approximations of the set of true frequent
sequential patterns: one with no false negatives and one with no false positives,
both defined in terms of a single, easily interpretable, parameter which controls the
accuracy of the approximation, as already done for the mining of frequent sequential
patterns through sampling. We then introduce a new algorithm to identify rigorous
approximations of the true frequent sequential patterns, which do not contain false
negatives or false positives with high probability. Our algorithm hinges on a bound
on the (empirical) VC-dimension of sequential patterns, as the one proposed in
Chapter 3 for the mining of frequent sequential patterns through sampling. Finally,
we perform an extensive experimental evaluation analyzing several datasets. The
results show that by directly considering the frequency of the patterns in the sample,
the output contains false positives and false negatives almost always, while our
algorithm returns high-quality approximations with guarantees even better than
the ones provided by its theoretical analysis. The contributions described in this
Chapter appear in [73].

(ii) In Chapter 5, we consider the problem of mining statistically robust patterns from
a sequence of datasets. In particular, we define the problem of mining statistically
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robust patterns, and define an approximation of such patterns with no false positives.
We also describe three general types of patterns, emerging, descending, and stable,
which represent different trends of interest in most scenarios. We then introduce
an algorithm, gRosSo, to obtain a rigorous approximation of the statistically
robust patterns without false positives with high probability. To provide such
guarantees, gRosSo can employ any uniform convergence bound. We also define
an approximation of the statistically robust patterns with no false negatives, and
explain how gRosSo can be modified to obtain such an approximation with high
probability, besides additional guarantees. We apply the general framework of
statistically robust patterns to mine sequential patterns and itemsets. For both
pattern mining tasks, we use already-known upper bounds on the empirical VC-
dimension of sequential patterns and of itemsets as uniform converge bounds. In
particular, for the sequential patterns, we introduce a novel algorithm to compute
an upper bound on the capacity of a sequence that can be used in the computation
of the bound on the empirical VC-dimension. Finally, we perform an extensive
experimental evaluation, mining statistically robust sequential patterns and itemsets
from pseudo-artificial datasets, proving that the frequency alone leads to several
spurious discoveries, while gRosSo provides high-quality approximations for both
data mining tasks. At the end, we analyze real datasets mining statistically robust
sequential patterns, proving that gRosSo is able to detect various types of patterns.
Part of the contributions described in this Chapter appear in [84], while an extended
version is currently under review in the journal Knowledge and Information Systems,
invited among the best papers accepted at IEEE ICDM’20.

Finally, we consider the problem of mining statistically significant patterns, whose
goal is to find patterns significantly deviating from an assumed null hypothesis, while
providing rigorous guarantees in term of false positives. For the problem of mining
statistically significant patterns, in this Thesis, we consider two different scenarios.

The first one is the mining of statistically significant sequential patterns. While
the frequency of a pattern is an important feature in some applications, it is usually
not sufficient to identify patterns that provide useful knowledge regarding the process
described by the data. For example, a sequence of itemsets may appear frequently in
a dataset simply because each of its itemsets has high individual frequency, even if
there is no real association between them. A natural framework to identify interesting
sequential patterns is provided by statistical hypothesis testing, where the goal is to
mine statistically significant sequential patterns, defined as sequences that appear more
frequently than expected under an appropriate null model for the data. Let us remember
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that, in general, sequential patterns describe sequences of events or actions. Thus, in the
significant sequential pattern mining task, we are interested in mining sequential patterns
that appear in a dataset with frequency higher than the one that they would have in
random data, obtained randomizing the order of the itemsets but still preserving other
characteristics of the original dataset. In such a scenario, to provide guarantees in term
of false discoveries is a challenging problem since the gargantuan number of candidate
sequential patterns that can be built from a ground set of items poses a severe multiple
hypothesis correction problem.

The second one is the mining of statistically significant paths in time series data
from an unknown network. The mining of time series data has applications in several
domains, and in many cases the data are generated by networks, with time series that are
sequences of vertexes representing paths on such networks. Very often, one has access to a
collection of time series, i.e., a collection of sequences of vertexes representing paths on a
network, but does not know the distribution on the network that generated them, or the
structure of such a network. In such a scenario, we are interested in mining unexpected
paths from the dataset. Standard techniques usually use the frequency or the number of
occurrences as extraction criteria, with the aim to find interesting paths, but, in many
real applications, such metrics are not enough to find paths that provide useful knowledge.
For example, paths that appear only few times in a dataset may be over-represented if
we consider the distribution of the network underlying the data, or vice-versa, paths that
appear a lot of times may be under-represented. Thus, techniques based on such metrics
may lead to several spurious discoveries. In addition, since we do not know the network
underlying the data, we can not directly find over- or under-represented paths.

For the task of mining statistically significant patterns, this Thesis contributes the
following results:

(i) In Chapter 6, we consider the problem of mining statistically significant sequential
patterns. In particular, we introduce a new algorithm, ProMiSe, to identify
statistically significant sequential patterns using permutation testing. ProMiSe is
the first algorithm to mine statistically significant sequential patterns providing
rigorous guarantees on the Family-Wise Error Rate (FWER) of the output, using
the Westfall-Young (WY) method to properly correct for multiple hypothesis testing.
In such a direction, we introduce and formalize three strategies, based on swaps or
on permutations at the level of itemsets, to generate (random) permuted datasets
for sequential pattern mining. These three strategies are at the core of ProMiSe,
and they sample datasets from the distribution of all datasets where the number
of appearances of each itemset and the number of itemsets in each transaction
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are the same as in the input dataset, but the order of the itemsets is randomized.
For the itemsets swapping strategy, we provide a formal analysis proving that a
polynomial number of swaps is sufficient to uniformly sample a random dataset from
the aforementioned distribution. However, we experimentally show that a number
of swaps proportional to the number of itemsets in the dataset is sufficient to
sample a random dataset. Then, we introduce an alternative version of ProMiSe,
I-ProMiSe, that results in a lower statistical power than the original version but
that is several orders of magnitude faster, allowing to mine significant sequential
patterns from massive datasets. Finally, we conduct an extensive experimental
evaluation with real and pseudo-artificial datasets, providing an implementation of
our algorithms. The results show that they allow to efficiently extract significant
sequential patterns from real datasets while correctly controlling the FWER. Part
of the contributions described in this Chapter appear in [83].

(ii) In Chapter 7, we consider the problem of mining statistically significant paths in
time series data from an unknown network. In particular, we introduce the problem
of mining statistically significant paths in time series data from an unknown network,
defining a generative null model based on meaningful characteristics of the observed
dataset. We then introduce caSPiTa, an algorithm to mine statistically significant
paths (over- or under-represented) from a time series dataset, while providing
guarantees on the probability of reporting at least one false positive, i.e., the
FWER, employing the Westfall-Young (WY) method to properly correct for multiple
hypothesis testing. caSPiTa requires the generation of random data in accordance
with the generative null model, and thus we discuss two possible strategies to
generate such data. In addition, for one of the two strategies, we illustrate a
possible approximation to assess the significance of the paths more efficiently. Then,
we introduce g-caSPiTa, a variant of caSPiTa to mine statistically significant
paths (over- or under-represented) while providing guarantees on the generalized
FWER, which allows to increase the statistical power of the algorithm, with the
drawback of tolerating the presence of a few false positives. We also introduce and
discuss an alternative interesting scenario in which caSPiTa can be applied, which
consists in mining paths that are significant with respect to a null model based on
data from a different dataset. Finally, we perform an extensive suite of experiments
that demonstrates that caSPiTa is able to efficiently mine statistically significant
paths, over- or under-represented, in real datasets while providing guarantees on the
false positives. Part of the contributions described in this Chapter appear in [85],
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while an extended version is currently under review in the journal Knowledge and
Information Systems, invited among the best papers accepted at IEEE ICDM’21.

Let us note that each of the problems tackled in this Thesis aims to mine patterns
from sequential data in an efficient and rigorous manner taking into consideration different
aspects of the data. Thus, each of the proposed techniques allows a different type of
data analysis. Here, we briefly recap the setting of each problem, highlighting the key
differences between them, to direct interested readers to the most suitable approach
according to their requirements. A more in-depth description of the different problem
settings is illustrated in the respective Chapters.

In mining frequent sequential patterns through sampling, we consider the classical
sequential pattern mining problem, in which one is interested in mining sequential
patterns that appear in a sufficiently high number of transactions. Given the massive size
of modern datasets, our solution aims to extract frequent sequential patterns by mining
only a sample of the input dataset. The output of our algorithm is then a high quality
approximation of the frequent sequential patterns that would be mined from the whole
dataset, that does not contain false positives or false negatives with high probability,
depending on the demands of the user. Thus, this approach allows to efficiently mine
frequent sequential patterns from massive datasets obtaining rigorous approximations. It
can be used to speed up the execution of traditional frequent sequential pattern mining
algorithms for applications in which rigorous approximations are acceptable results or
to mine frequent sequential patterns from datasets in which the execution of exact
algorithms is infeasible from a computational point of view.

In mining true frequent sequential patterns, we consider a variation of the classical
sequential pattern mining problem, in which the dataset is a sample from an unknown
probability distribution and one is interested in mining sequential patterns that are
frequently generated by the underlying generative process of the dataset. The output
of our algorithm is then a rigorous approximation of the sequential patterns that are
frequently generated by such a process, that does not contain false positives or false
negatives with high probability, depending on the demands of the user, and whose quality
depends on the available amount of data. Thus, this approach allows to mine sequential
patterns in the scenario in which one has access to a sample from an unknown probability
distribution and is interested in gaining knowledge regarding the underlying process by
mining sequential patterns.

In mining statistically robust patterns from a sequence of datasets, we consider the
scenario in which there is a sequence of datasets that are samples from potentially
different unknown probability distributions and one is interested in mining patterns
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whose probabilities of being generated by such processes follow some well-specified trends.
The output of our algorithm is then a rigorous approximation of such patterns, that
does not contain false positives or false negatives with high probability, depending on
the demands of the user, and whose quality depends on the available amount of data.
Thus, this approach allows to mine patterns (e.g., itemsets or sequential patterns) in
the scenario in which one has access to a sequence of samples from different unknown
probability distributions and is interested in gaining knowledge regarding how the
underlying processes evolve.

In mining statistically significant sequential patterns, we consider the scenario in
which one is interested in mining sequential patterns that appear more frequently than
expected in random data, obtained randomizing the order of the itemsets inside the
sequential patterns. The output of our algorithm is then the set of statistically significant
sequential patterns, with rigorous guarantees in terms of false positives. Thus, this
approach allows to mine sequential patterns whose frequencies are due to the order of
their itemsets while filtering out sequential patterns that appear frequent by chance, and
then providing sequential patterns that give more information with the drawback of a
larger computational cost.

Finally, in mining statistically significant paths in time series data from an unknown
network, we consider the scenario in which there is a collection of time series, which are
sequences of vertexes representing paths from an unknown network, and one is interested
in mining paths that in such a collection appear more ore less than expected given the
distribution of the underlying network. The output of our algorithm is then the set of
over- or under-represented paths, with rigorous guarantees in terms of false positives.
Thus, this approach allows to mine paths in the scenario in which one has access to time
series that are data constrained by the structure and by the distribution of a network.
A key difference with respect to sequential pattern mining is that in this scenario the
paths represent consecutive vertexes in a transaction, while sequential patterns allow
gaps between the itemsets in a transaction.

The rest of this Thesis is organized as follows. In Chapter 2, we introduce the notions
and main concepts used in the rest of the Thesis, and provide a brief survey of previous
works. In Chapter 3, we present our results for the frequent sequential pattern mining
through sampling. In Chapter 4, we present our results for the true frequent sequential
pattern mining. In Chapter 5, we present our results for the statistically robust pattern
mining from a sequence of datasets. In Chapter 6, we present our results for statistically
significant sequential pattern mining. In Chapter 7, we present our results for statistically



10 Introduction

significant path mining in time series from an unknown network. Finally, in Chapter 8,
we end this Thesis with some concluding remarks.



Chapter 2

Background

This Thesis introduces novel techniques to mine patterns from sequential data. In this
Chapter, we introduce the notions and main concepts used in the rest of the Thesis, and
provide a brief survey of previous works. A more in-depth presentation of the previous
works related to our novel contributions is illustrated in the respective Chapters. In
Section 2.1, we introduce the general framework of frequent pattern mining whose goal is
to discover patterns that appear with high frequency over a set of data, and two concrete
realizations of such a framework, itemset mining and sequential pattern mining, which
represent, respectively, the mining of subsets and sequences of features. In Section 2.2,
we introduce the sampling technique in the frequent pattern mining scenario, a solution
to reduce the size of the data to analyze. In Section 2.3, we introduce the task of true
frequent pattern mining, whose goal is to discover patterns that are frequently generated
by the unknown generative process underlying the data. In Section 2.4, we introduce the
framework of statistical learning theory and the related concepts of maximum deviation
and VC-dimension which may be employed to obtain rigorous guarantees using sampling
and in the true frequent pattern mining task. Finally, in Section 2.5, we introduce the
task of significant pattern mining, whose goal is to find patterns significantly deviating
from an assumed null distribution, and the statistical hypothesis testing framework used
to provide rigorous guarantees in the significant pattern mining task.

2.1 Frequent Pattern Mining

Frequent pattern mining is one of the fundamental tasks in data mining and knowledge
discovery, and has applications in several domains, ranging form market basket analysis
to medicine. In its original formulation, the goal of frequent pattern mining is to discover
patterns that appear with high frequency over a set of data. Therefore, such patterns are
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considered to be interesting as “highly supported” by the data. In particular, the goal of
frequent pattern mining is to discover patterns that appear in a fraction at least θ of
all the transactions in a transactional dataset, where the threshold θ is a user-specified
parameter and its choice must be, at least in part, be informed by domain knowledge.

Let a dataset D = {τ1, τ2, . . . , τm} be a finite bag of |D| = m transactions, where each
transaction is an element from a domain U, and let us assume that the elements of U
form a poset. We define a pattern p as an element of U, potentially with some constraints.
For example, in itemset mining [2] the domain U consists of all subsets of binary features
called items, while in sequential pattern mining [3] it consists in sequences of such subsets.
A pattern p belongs to a transaction τ ∈ D if and only if p is contained in τ , denoted
by p ⊑ τ , where the definition of “belongs” depends on the data mining task. Since the
goal of frequent pattern mining is to extract patterns that appear frequently in a set of
data, a notion of frequency is required. The support set TD(p) of p in D is the set of
transactions in D containing p

TD(p) = {τ ∈ D : p ⊑ τ}.

Finally, the frequency fD(p) of p in D is the fraction of transactions in D to which p

belongs
fD(p) = |TD(p)|

|D|
.

Given a dataset D and a minimum frequency threshold θ ∈ (0, 1], frequent pattern
(FP) mining is the task of reporting the set FP (D, θ) of all the patterns whose frequencies
in D are at least θ, and their frequencies, that is,

FP (D, θ) = {(p, fD(p)) : p ∈ U, fD(p) ≥ θ}.

A vast number of different frequent pattern mining tasks has appeared in the literature,
considering different types of patterns and different algorithmic strategies to efficiently
mine such patterns from large amount of data (see [27] for several references). In the
following two Sections, we describe the two pattern mining tasks that we consider in this
work, i.e., itemset mining and sequential pattern mining.

2.1.1 Itemset Mining

Itemset mining [2] is probably the most famous pattern mining task and considers the
mining of subsets of binary features. Let I = {i1, i2, . . . , ip} be a finite set of items. An
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itemset X is a non-empty subset of I, i.e., X ⊆ I, X ̸= ∅. We denote by I the set of
all possible itemsets composed by items from I. The length |X| of X is the number of
items in X and an itemset X is contained in an other itemset Y if and only if X ⊆ Y .

Example 1. Let us consider the following dataset D = {τ1, τ2, τ3, τ4} as an example:

τ1 = {2, 6, 7}
τ2 = {1, 2, 6, 7}
τ3 = {1, 2, 3, 4, 5, 6}
τ4 = {2, 6, 7}.

The dataset above has 4 transactions. The first one, τ1 = {2, 6, 7}, has length |τ1| = 3.
The frequency fD({6, 7}) of the itemset {6, 7} in D is 3/4, since it is contained in all
transactions but τ3.

2.1.2 Sequential Pattern Mining

Sequential pattern mining [3] is a slightly more recent data mining task where, in general,
sequential patterns describe sequences of events or actions that are useful for predictions
in many scenarios. Let I = {i1, i2, . . . , ip} be a finite set of items. Let us remember
that an itemset X is a non-empty subset of I, i.e., X ⊆ I, X ≠ ∅. A sequential pattern
(or sequence) s = ⟨S1, S2, . . . , Sk⟩ is a finite ordered sequence of itemsets, with Si ⊆ I,
Si ̸= ∅ for all i ∈ {1, . . . , k}. We say that such a sequence s is built on I and we denote
by S the set of all such sequences. The length |s| of s is the number of itemsets in s. The
item-length ||s|| of s is the sum of the sizes of the itemsets in it, i.e.,

||s|| =
|s|∑

i=1
|Si|,

where the size |Si| of an itemset Si is the number of items in it. A sequential pattern
y = ⟨Y1, Y2, . . . , Ya⟩ is a subsequence of an other sequential pattern w = ⟨W1, W2, ..., Wb⟩,
denoted by y ⊑ w, if and only if there exists a sequence of naturals 1 ≤ i1 < i2 < · · · <
ia ≤ b such that Y1 ⊆ Wi1 , Y2 ⊆ Wi2 , . . . , Ya ⊆ Wia . Let us note that an item can occur
only once in an itemset, but it can occur multiple times in different itemsets of the same
sequence. Finally, the capacity c(s) of a sequence s is the number of distinct subsequences
of s, i.e., c(s) = |{a : a ⊑ s}|.
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Example 2. Let us consider the following sequential dataset D = {τ1, τ2, τ3, τ4} as an
example:

τ1 = ⟨{2, 6, 7}, {2}⟩
τ2 = ⟨{1}, {2}, {6, 7}, {2}⟩
τ3 = ⟨{1, 4}, {3}, {2}, {1, 2, 5, 6}⟩
τ4 = ⟨{7}, {2}, {6, 7}, {2}⟩.

The dataset above has 4 transactions. The first one, τ1 = ⟨{2, 6, 7}, {2}⟩ has length
|τ1| = 2, item-length ||τ1|| = 4 and capacity c(τ1) = 14. The frequency fD(⟨{7}, {2}⟩)
of the sequence ⟨{7}, {2}⟩ in D, is 3/4, since it is contained in all transactions but τ3.
Let us note that the sequence ⟨{7}, {2}⟩ occurs three times as a subsequence of τ4, but τ4

contributes only once to the frequency of ⟨{7}, {2}⟩.

2.2 Frequent Pattern Mining Through Sampling

Several exact methods have been proposed to find frequent patterns [27], but the exact
solution of the problem requires processing the entire dataset typically several times,
which may be infeasible for large modern sized datasets. A natural solution to reduce the
computation is to use sampling, in order to obtain a small random portion of the dataset,
a sample, and to perform the mining process only on the sample [82, 61]. We define a
sample S = {s1, s2, . . . , sn} of a dataset D as a bag of |S| = n transactions, where each
transaction is an element from D sampled with replacement. It is easy to see that by
analyzing only a sample of the data, the problem cannot be solved exactly, and one has
to rely on the approximation provided by the results of the mining task on the sample.
Therefore, the main challenge in using sampling is on computing a sample size such
that the frequency of the patterns in the sample is close to the frequency that would be
obtained from the analysis on the whole dataset in order to obtain rigorous guarantees
on the reported patterns. In particular, usually, one is interested in mining sets of
patterns without false positives, i.e., FP (S, θ) ⊆ FP (D, θ), or without false negatives,
i.e., FP (D, θ) ⊆ FP (S, θ). The problem is that to relate the two quantities, i.e., the
frequency of the patterns in the sample and the frequency of the patterns in whole dataset,
using standard techniques (e.g., Hoeffding inequality and union bounds) does not provide
sample sizes adequately small. In fact, such procedures require the knowledge of the
number of all the patterns in the dataset, which is impractical to compute in a reasonable
time. Thus, one has to resort to loose upper bounds that usually result in sample
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sizes that are larger than the whole dataset. Recently, tools from statistical learning
theory (see Section 2.4), such as Vapnik-Chervonenkis dimension [87] and Rademacher
complexity [12], have been successfully used in frequent itemset mining [66, 67], showing
that accurate and rigorous approximations can be obtained from small samples of the
entire dataset. Related to sampling, the VC-dimension has also been used to approximate
frequent substrings in collections of strings [57], while the related concept of pseudo-
dimension has been used to mine interesting subgroups [69].

2.3 True Frequent Pattern Mining

Besides the classical frequent pattern mining task (see Section 2.1), a vast number of
variations of this problem has been proposed in the literature, considering alternative
concepts to the frequency to mine the patterns of interest. Examples are significant
pattern mining [26], high-utility pattern mining [19, 20], and true frequent pattern
mining [68]. In particular, [68] introduces the task of mining true frequent itemsets, which
are itemsets that are frequently generated by the unknown generative process underlying
the data.

In several applications, the dataset D is a sample of transactions independently drawn
from an unknown probability distribution π on U, that is, the dataset D is a finite bag
of |D| independent identically distributed (i.i.d.) samples from π, with π : U → [0, 1].
The true support set T (p) of p is the set of patterns in U to which p belongs, i.e.,
T (p) = {τ ∈ U : p ⊑ τ}, and the true frequency tπ(p) of p with respect to (w.r.t.) π is
the probability that a transaction sampled from π contains p, that is,

tπ(p) = Pr
τ∼π

(p ⊑ τ).

In such a scenario, the final goal of the data mining process on D is to gain a better
understanding of the process that generated the data, i.e., the distribution π, through the
true frequencies of the patterns, which are unknown and only approximately reflected in
the dataset D. Thus, given a probability distribution π on U and a minimum frequency
threshold θ ∈ (0, 1], true frequent pattern (TFP) mining is the task of reporting the set
TFP (π, θ) of all patterns whose true frequencies w.r.t. π are at least θ, and their true
frequencies, that is,

TFP (π, θ) = {(p, tπ(p)) : p ∈ U, tπ(p) ≥ θ}.
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A crucial problem of this task is that it is not possible to find the exact set TFP (π, θ)
given a finite number of random samples from π, the dataset D. Thus, one has to resort
to approximations of TFP (π, θ) to obtain sets of patterns without false positives, i.e.,
FP (D, θ) ⊆ TFP (π, θ), or without false negatives, i.e., TFP (π, θ) ⊆ FP (D, θ). The
major challenge to obtain such approximations is in relating the true frequency of the
patterns w.r.t. the unknown probability distribution with the frequency of the patterns
in the dataset. In particular, [68] employs the empirical VC-dimension of itemsets, a
concept of statistical learning theory, to relate such two quantities and they find rigorous
approximations which do not contain false positives with high probability. However, their
solution requires to solve an optimization problem that is tailored to itemsets and whose
computation could be expensive.

2.4 Statistical Learning Theory

Sampling is a powerful technique at the core of statistical data analysis and machine
learning that attempts to estimate properties of an entire domain using a finite, often
small, set of observations from such a domain. Using sampling, a crucial challenge is
to understand the sample complexity of the problem, i.e., the minimum sample size
needed to obtain the required results with rigorous guarantees [52]. Statistical learning
theory [86] is an important branch of machine learning and pattern recognition that
aims to provide quantitative probabilistic guarantees on the performances of learning
algorithms. Related to sampling, statistical learning theory provides concepts to control
the sample complexity of the problem, in order to obtain rigorous guarantees on the
quality of the results.

In the task of frequent pattern mining through sampling, one is interested in generating
a small portion of the dataset, a sample, and to mine the patterns from the sample, in
order to speed up the computation of the mining phase or to obtain a sample that can
fit in the main memory of the machine used for the mining. In particular, one needs to
compute a sample size such that the frequency of the patterns in the sample is close
to the frequency that would be obtained from the analysis on the whole dataset, in
order to obtain rigorous guarantees on the patterns reported from the sample. Instead,
in the task of true frequent pattern mining, one is interested in mining patterns that
are frequently generated by the unknown generative process underlying the data. The
major challenge is that the underlying probability distribution is unknown and thus, to
obtain rigorous approximations, one needs to relate the true frequency of the patterns
w.r.t. the unknown probability distribution and the frequency of the patterns in the
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dataset. Even if the two tasks seem to be unrelated, they both require to relate a quantity
and its empirical average on a sample: the frequency of a pattern in a dataset and its
frequency in a sample, for the frequent pattern mining through sampling task, or the
true frequency of a pattern w.r.t. an unknown probability distribution and its frequency
in a sample from such a distribution, for the true frequent pattern mining task. To
relate such quantities, concepts from statistical learning theory can be used. In the next
two Sections, we introduce the concept of maximum deviation, which formally defines
the quantity that we need to bound in order to relate the quantities that we have just
described, and the VC-dimension, a concept from statistical learning theory that can be
used to compute a probabilistic upper bound on the maximum deviation.

2.4.1 Maximum Deviation

Let X be a domain set, let π be a probability distribution on X, i.e., π : X→ [0, 1], and
let G be a set of functions from X to [0, 1]. Given a function g ∈ G, we denote by E[g]
the expectation of g, that is,

E[g] = Ex∼π[g(x)],

with x ∈ X, while, given a sample A of |A| elements drawn from X w.r.t. π, the empirical
average E(g,A) of g on A is defined as

E(g,A) = 1
|A|

∑
xi∈A

g(xi).

The maximum deviation D(G,A) is defined as the largest absolute difference, over all
functions g ∈ G, between the expectation of g and its empirical average on a sample A,
that is,

D(G,A) = sup
g∈G
|E[g]− E(g,A)|. (2.1)

To have a bound µ ∈ (0, 1) on the maximum deviation, i.e., D(G,A) ≤ µ, it is known as
uniform convergence and implies that all estimates E(g,A) are uniformly close to (i.e.,
within a factor µ) their true values E[g]. Or equivalently, it implies simultaneous bounds
on the expected values of the functions g ∈ G from their estimates.

In the frequent pattern mining through sampling task, one is interested in finding
good estimates for the frequencies of the patterns in the dataset, simultaneously for all the
patterns. In such a scenario, the frequency of a pattern in the dataset and its frequency
on the sample represent, respectively, the expectation and the empirical average of a
function associated with such a pattern. Instead, in the true frequent pattern mining
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task, one is interested in finding good estimates for the true frequencies of the patterns,
simultaneously for all the patterns. In such a scenario, the true frequency of a pattern
and its observed frequency in the dataset represent, respectively, the expectation and the
empirical average of a function associated with such a pattern. Thus, in both scenarios,
tools from statistical learning theory, e.g., VC-dimension [87, 52] and Rademacher
complexity [76, 12], can be used to find probabilistic upper bounds on the maximum
deviation, i.e., finding a µ ∈ (0, 1) such that

Pr (D(G,A) ≤ µ) ≥ 1− δ,

with a confidence parameter δ ∈ (0, 1). More common techniques (e.g., Hoeffding
inequality and union bounds) instead do not provide useful results since they require to
know the number of all possible patterns to consider, which can be infinite or impractical
to compute.

2.4.2 VC-dimension

The Vapnik-Chervonenkis (VC) dimension [87, 52] of a space of points is a measure of
the complexity or expressiveness of a family of indicator functions, or, equivalently, of
a family of subsets, defined on that space. A finite bound on the VC-dimension of a
structure implies a bound of the number of random samples required to approximately
learn that structure.

We define a range space as a pair (X,R), where X is a finite or infinite set and R,
the range set, is a finite or infinite family of subsets of X. The members of X are called
points, while the members of R are called ranges. Given A ⊆ X, we define the projection
of R in A as PR(A) = {r ∩ A : r ∈ R}. We define 2A as the power set of A, that is the
set of all the possible subsets of A, including the empty set ∅ and A itself. If PR(A) = 2A,
then A is said to be shattered by R. The VC-dimension of a range space is the cardinality
of the largest set shattered by the space.

Definition 1. Let RS = (X,R) be a range space and B ⊆ X. The empirical VC-
dimension EV C(RS, B) of RS on B is the maximum cardinality of a subset of B shattered
by R. The VC-dimension V C(RS) of RS is defined as V C(RS) = EV C(RS, X).

Example 3. Let X = [0, 1] be the set of all the points in [0, 1] and let R be the set
of subsets [a, b], with 0 ≤ a ≤ b ≤ 1, that is [a, b] ⊆ [0, 1]. Let us consider the set
Y = {x, y, z}, containing 3 points 0 ≤ x < y < z ≤ 1. It is not possible to find a range
whose intersection with the set Y is {x, z}, since all the ranges [a, b], with 0 ≤ a ≤ b ≤ 1,
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containing x and z, also contain y. Then, V C(X,R) must be less than 3. Let us consider
now the set Y = {x, y}, containing only 2 points 0 ≤ x < y ≤ 1. It is easy to see that Y

is shattered by R, then V C(X,R) = 2.

The main application of VC-dimension in statistics and learning theory is to derive
the sample size needed to approximately “learn” the ranges, as defined below.

Definition 2. Let RS = (X,R) be a range space and let γ be a probability distribution
on X. Given µ ∈ (0, 1), a bag B of elements taken from X in accordance with γ is a
µ-bag of X w.r.t. γ if for all r ∈ R,∣∣∣∣∣Pr

γ
(r)− |B ∩ r|

|B|

∣∣∣∣∣ ≤ µ.

A µ-bag of X w.r.t. γ can be constructed sampling points from X according to the
distribution γ, as follows.

Theorem 1 ([43]). Let RS = (X,R) be a range space of VC-dimension V C(RS) ≤ d,
and let γ be a probability distribution on X. Given µ, δ ∈ (0, 1), there is a constant c > 0
such that if B is a bag of |B| = m elements sampled from X in accordance with γ, where

m ≥ c

µ2

(
d + ln 1

δ

)
,

then B is a µ-bag of X w.r.t. γ with probability ≥ 1− δ.

The universal constant c has been experimentally estimated to be at most 0.5 [46],
and in the remaining of this Thesis, we will use c = 0.5. Let us note that Theorem 1
holds also when d is an upper bound on the empirical VC-dimension EV C(RS, B) of
RS on B [43]. In that case, the bag B itself is a µ-bag of X w.r.t. γ. How to compute
an upper bound on the (empirical) VC-dimension depends on the pattern mining task
and efficiently computable upper bounds on the VC-dimension of sequential patterns
and itemset will be illustrated in the following Chapters.

In what follows, we may omit the probability distribution γ when it represents the
uniform distribution. In particular, when γ is the uniform distribution and the set X is
a finite set, a bag B of elements taken from X is a µ-bag of X (see Definition 2) if for all
r ∈ R, ∣∣∣∣∣ |X ∩ r|

|X|
− |B ∩ r|
|B|

∣∣∣∣∣ ≤ µ. (2.2)
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2.5 Significant Pattern Mining

As already stated above, besides the classical frequent pattern mining task, a vast
number of variations of this problem has been proposed in the literature, considering
alternative concepts to the frequency to mine the patterns of interest. In significant
pattern mining [90] the dataset is seen as a sample from an unknown distribution
and one is interested in finding patterns significantly deviating from an assumed null
distribution (or hypothesis). Many variants and algorithms have been proposed for the
problem [26, 35, 60, 59]. In the significant pattern mining task, a crucial challenge
is to be able to correctly identify significant patterns obtaining a limited number of
false discoveries. To obtain guarantees on the number of false discoveries, the statistical
hypothesis testing framework is used.

2.5.1 Statistical Hypothesis Testing

The task of mining statistically significant patterns is to identify patters significantly
deviating from an assumed null hypothesis H0, which represents the case “nothing
interesting” for a given question of interest. In a simple statistical test, the null hypothesis
H0 is tested against an alternative hypothesis H1. Given a dataset D and a pattern w,
let aD(w) be the test statistic of the pattern w computed in the dataset D, which is a
quantity of interest in the given question for the pattern w in D. In particular, the test
statistic quantifies an aspect of w that would distinguish the null from the alternative
hypothesis. For example, in many statistically significant pattern mining tasks, one is
interested in finding patterns w that appear in a dataset D with a frequency higher of
the one that they have under an appropriate null distribution. In such a scenario, the
test statistic aD(w) of w computed in D is the frequency fD(w) of w in D. Under the
null hypothesis, the test statistic of w is described by a random variable Aw, and in
order to assess the significance of w, a p-value pw is commonly computed. The p-value
pw of w is the probability of observing an outcome of the test statistic Aw, under the
null hypothesis H0, that is equally or more extreme than the test statistic aD(w) of w in
D, that is,

pw = Pr [Aw “equally or more extreme than” aD(w)|H0] .

The set of outcomes that should be considered “equally or more extreme than” depends
on the goal of the test, and it will be defined in the respective Chapters.

Unfortunately, for complex null hypothesis, the p-values can not be computed ana-
lytically, since there is not a closed form for Aw. However, when one can generate data
from the distribution described by the null hypothesis, the p-values can be estimated
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by a simple Monte Carlo (MC) procedure as follows: to generate M datasets D̃i, with
i ∈ {1, . . . , M}, from the distribution described by the null hypothesis. Then, the p-value
pw is estimated as

pw = 1
M + 1

(
1 +

M∑
i=1

1
[
aD̃i

(w) “equally or more extreme than” aD(w)
])

,

where 1 [·] is the indicator function of value 1 if the argument is true, and 0 otherwise.
The statistical hypothesis testing framework is commonly used to provide guarantees

on the false discoveries, i.e., patters flagged as significant while they are not. When a
single pattern w is tested for significance, flagging w as significant, i.e., rejecting the null
hypothesis, when pw ≤ α, where α ∈ (0, 1) is the significance threshold fixed by the user,
guarantees that the probability that w corresponds to a false discovery ≤ α.

The situation is completely different when several patters are tested simultaneously,
as in the case of significant pattern mining. If d patterns are tested with the approach
used for a single pattern, i.e., each pattern is flagged as significant if its p-value is ≤ α,
then the expected number of false discoveries can be as large as αd. To solve this issue,
one identifies a corrected significance threshold δ ∈ (0, 1) such that all patterns with
p-value ≤ δ can be reported as significant while providing some guarantees on the number
of false discoveries. A common approach is to identify δ that provides guarantees on
the Family-Wise Error Rate (FWER), defined as the probability of reporting at least
one false positive, that is, if FP is the number of false positives, then FWER = Pr[FP
> 0]. For a given value δ, let FWER(δ) be the FWER obtained when δ is used as
corrected significance threshold, that is, by reporting as significant all patterns with
p-value ≤ δ. Often FWER(δ) can not be evaluated in closed form, and thus approaches,
as the Bonferroni correction or based on permutation testing, described below, must be
employed.

A simple approach to correct for multiple hypothesis testing is to use the Bonferroni
correction [11], setting δ = α/d. Using the union bound, it is easy to show that the
resulting FWER satisfies FWER(δ) ≤ dδ = α. However, to properly correct for multiple
hypothesis testing, one must consider the number of all patterns that can be generated
by the distribution described by the null hypothesis, and when such a number d is very
large, as in the case of pattern mining, δ is very close to 0, resulting in low statistical
power and many false negatives, i.e., significant patterns that are not correctly reported
in output [89–91].

The Westfall-Young (WY) method [95] is a multiple hypothesis testing procedure
based on permutation testing that results in high statistical power and that has been
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successfully applied in pattern mining scenarios [81, 79, 45, 60]. The WY method directly
estimates the joint distribution of null hypotheses using permuted datasets, i.e., datasets
obtained from the distribution described by the null hypothesis. In detail, the WY
method considers P datasets D̃i, with i ∈ {1, . . . , P}, generated from the distribution
described by the null hypothesis. Then, for every dataset D̃i, with i ∈ {1, . . . , P}, it
computes the minimum p-value p

(i)
min over all patterns of interest in D̃i. The FWER

FWER(δ) obtained using δ as corrected significance threshold can then be estimated as

FWER(δ) = 1
P

P∑
i=1

1
[
p

(i)
min ≤ δ

]
. (2.3)

Thus, given a FWER threshold α ∈ (0, 1), the corrected significance threshold δ∗ is
obtained as

δ∗ = max{δ : FWER(δ) ≤ α}.



Chapter 3

Mining Sequential Patterns through
Sampling

In this Chapter, we apply sampling to a classical pattern mining task, frequent sequential
pattern mining. In such a scenario, we aim to perform the mining of frequent sequential
patterns in a small random sample of the original dataset with the aim to speed up the
execution by reducing the quantity of data to analyze. Using sampling, a key challenge is
the computation of a sample size which guarantees that the frequencies of the sequential
patterns in the dataset are close to their frequencies in the sample. To solve this difficult
task, we use the statistical learning theory concept of VC-dimension, which allows us to
obtain rigorous approximations of the results that would have been obtained by analyzing
the whole dataset, with guarantees on the false positives or on the false negatives. The
contributions described in this Chapter appear in [73].

3.1 Introduction

Let us remember, from Section 2.1.2, that sequential pattern mining [3] is a fundamental
task in data mining and knowledge discovery, with applications in several fields, from
recommender systems and e-commerce to biology and medicine, where, in general,
sequential patterns describe sequences of events or actions that are useful for predictions
in many scenarios. In its original formulation, sequential pattern mining requires to
identify all frequent sequential patterns, that is, sequences of itemsets that appear in a
fraction at least θ of all the transactions in a transactional dataset, where each transaction
is a sequence of itemsets. The threshold θ is a user-specified parameter and its choice
must be, at least in part, be informed by domain knowledge.
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Several exact methods have been proposed to find frequent sequential patterns
(e.g., [28, 54, 64, 96]). However, the exact solution of the problem requires processing the
entire dataset at least once, and often multiple times. For large, modern sized datasets,
this may be infeasible. A natural solution to reduce the computation is to use sampling
(see Section 2.2) to obtain a small random portion, i.e., a sample, of the dataset, and
perform the mining process only on the sample. It is easy to see that by analyzing only
a sample of the data the problem cannot be solved exactly, and one has to rely on the
approximation provided by the results of the mining task on the sample. Therefore, the
main challenge in using sampling is on computing a sample size such that the frequency of
the sequential patterns in the sample is close to the frequency that would be obtained from
the analysis on the whole dataset. Relating the two quantities using standard techniques
(e.g., Hoeffding inequality and union bounds) does not provide useful results, that is,
small sample sizes. In fact, such procedures require the knowledge of the number of all
the sequential patterns in the dataset, which is impractical to compute in a reasonable
time. So, one has to resort to loose upper bounds that usually result in sample sizes that
are larger than the whole dataset. Recently, tools from statistical learning theory (see
Section 2.4), e.g.,Vapnik-Chervonenkis dimension [87] and Rademacher complexity [12],
have been successfully used in frequent itemsets mining [66, 67], a frequent pattern mining
task where transactions are collections of items, showing that accurate and rigorous
approximations can be obtained from small samples of the entire dataset. While sampling
has previously been used in the context of sequential pattern mining (e.g., [65]), to the
best of our knowledge no sampling algorithm providing a rigorous approximation of the
frequent sequential patterns has been proposed.

3.1.1 Our Contributions

In this Chapter, we study the problem of mining frequent sequential patterns through
sampling and we propose an efficient algorithm for this problem, based on the concept of
VC-dimension. In this regard, our contributions are:

• We define two rigorous approximations of the set of frequent sequential patterns:
one with no false negatives, that is, containing all elements of the original set; and
one with no false positives, that is, without any element that is not in the original
set. Our approximations are defined in terms of a single parameter, which controls
the accuracy of the approximation and is easily interpretable.

• We study the VC-dimension of sequential patterns, an advanced concept from
statistical learning theory, and provide a simple, but still effective in practice, upper
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bound on the VC-dimension of sequential patterns by relaxing the upper bound
previously defined in [75].

• We introduce a new sampling-based algorithm to identify rigorous approximations
of the frequent sequential patterns with probability 1− δ, where δ is a confidence
parameter set by the user. Our algorithm hinges on our novel bound on the VC-
dimension of sequential patterns, and it allows to obtain a rigorous approximation
of the frequent sequential patterns by mining only a fraction of the whole dataset.

• We perform an extensive experimental evaluation analyzing several sequential
datasets, showing that our algorithm provide high-quality approximations, even
better than guaranteed by its theoretical analysis.

3.1.2 Related Work

Since the introduction of the frequent sequential pattern mining problem [3], a number
of exact algorithms has been proposed for this task, ranging from multi-pass algorithms
using the anti-monotonicity property of the frequency function [77], to prefix-based
approaches [54], to works focusing on the closed frequent sequences [88].

The usage of sampling to reduce the amount of data for the mining process while
obtaining rigorous approximations of the collection of interesting patterns has been
successfully applied in many pattern mining tasks. Raïssi and Poncelet [65] provided a
theoretical bound on the sample size for a single sequential pattern in a static dataset
using Hoeffding concentration inequalities, and they introduced a sampling approach to
build a dynamic sample in a streaming scenario using a biased reservoir sampling. Our
work is heavily inspired by the work of Riondato and Upfal [66], which introduced an
advanced statistical learning technique for the task of frequent itemset and association
rules mining. In particular, they employed the concept of VC-dimension to derive a
bound on the sample size needed to obtain an approximation of the frequent itemsets and
association rules from a dataset. The VC-dimension has also been used to approximate
frequent substrings in collections of strings [57] and for approximate mining frequent
subgraphs [63], while the related concept of pseudo-dimension has been used to mine
interesting subgroups [69].

Other works have studied the problem of approximating frequent sequential patterns
using approaches other than sampling. In [49], the dataset is processed in blocks with a
streaming algorithm, but the intermediate sequential patterns returned may miss many
frequent sequential patterns. More recently, [75] introduced an algorithm to process
the datasets in blocks using a variable, data-dependent frequency threshold, based on
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an upper bound on the empirical VC-dimension, to mine each block. They define an
approximation for frequent sequential patterns that is one of the definitions we consider
in this Chapter. The intermediate results obtained after analyzing each block have
probabilistic approximation guarantees, and after analyzing all blocks the output is the
exact collection of frequent sequential patterns. While these works, in particular [75],
are related to our contributions, they do not provide sampling algorithms for sequential
pattern mining.

3.1.3 Organization of the Chapter

The rest of the Chapter is structured as follows. Section 3.2 contains the main definitions
and concepts used throughout this Chapter. In Section 3.3, we apply the statistical
learning theory concept of VC-dimension to sequential patterns and introduce a strategy
to compute a sample size which guarantees to obtain a probabilistic upper bound on the
maximum deviation for the frequent sequential pattern mining through sampling task. In
Section 3.4, we introduce our sampling based algorithm to mine a rigorous approximation
of the frequent sequential patterns. Finally, Section 3.5 reports the results of an extensive
suite of experiments performed to evaluate the effectiveness and performance of our
sampling strategy.

3.2 Preliminaries

We now define the definitions and concepts used throughout the Chapter, refreshing
some notions defined in Chapter 2. We start by refreshing the task of sequential pattern
mining, introduced in Section 2.1.2, and formally define the problem of approximating
the frequent sequential patterns. We then apply the concept of maximum deviation,
introduced in Section 2.4.1, to the frequent pattern mining scenario.

3.2.1 Frequent Sequential Pattern Mining

Let us remember, from Section 2.1.2, that a sequential pattern, or sequence, s =
⟨S1, S2, . . . , Sk⟩ is a finite ordered sequence of itemsets Si, with i ∈ {1, . . . , k}, which
are sets of elements called items. The length |s| of s is the number of itemsets in s, the
item-length ||s|| of s is the sum of the sizes of the itemsets in s, that is,

||s|| =
|s|∑

i=1
|Si|,
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while the capacity c(s) of a sequence s is the number of distinct subsequences of s, i.e.,
c(s) = |{a : a ⊑ s}|.

Let the domain S be the set of all the sequences which can be built with itemsets
that are subsets of a given set of items I. A dataset D is a finite bag of |D| (sequential)
transactions where each transaction is a sequence from S. A sequence s belongs to a
transaction τ ∈ D if and only if s is a subsequence of τ , i.e., s ⊑ τ . For any sequence s,
the support set TD(s) of s in D is the set of transactions in D to which s belongs, that
is, TD(s) = {τ ∈ D : s ⊑ τ}. Finally, the frequency fD(s) of s in D is the fraction of
transactions in D to which s belongs, that is,

fD(s) = |TD(s)|
|D|

.

Given a dataset D and a minimum frequency threshold θ ∈ (0, 1], frequent sequential
pattern (FSP) mining is the task of reporting the set FSP (D, θ) of all the sequences
whose frequency in D is at least θ, and their frequencies, that is,

FSP (D, θ) = {(s, fD(s)) : s ∈ S, fD(s) ≥ θ}.

In this Chapter, we are interested in finding the set FSP (D, θ) by mining only
a sample of the dataset D. Let us note that given a sample of the dataset D, one
cannot guarantee to find the exact set FSP (D, θ) and has to resort to approximations of
FSP (D, θ). Thus, we are interested in finding rigorous approximations of FSP (D, θ).
In particular, we consider the approximation of FSP (D, θ) defined in [75].

Definition 3. Given ε ∈ (0, 1), a false negatives free (FNF) ε-approximation N of
FSP (D, θ) is defined as a set of pairs (s, fs),

N = {(s, fs) : s ∈ S, fs ∈ [0, 1]},

that has the following properties:

• N contains a pair (s, fs) for every (s, fD(s)) ∈ FSP (D, θ);

• N contains no pair (s, fs) such that fD(s) < θ − ε;

• for every (s, fs) ∈ N , it holds |fD(s)− fs| ≤ ε/2.

(Let us note that while [75] introduced the definition of FNF ε-approximation of
FSP (D, θ), it did not provide a sampling algorithm to find such an approximation
for a given ε ∈ (0, 1).)
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Intuitively, the approximation N contains all the frequent sequential patterns that
are in FSP (D, θ) (i.e., there are no false negatives) and no sequential pattern that has
frequency in D much below θ. In addition, N provides a good approximation of the
actual frequency of the sequential patterns in D, within an error ε/2, arbitrarily small.

Depending on the application, one may be interested in a different approximation of
FSP (D, θ), where all the sequential patterns in the approximation are frequent sequential
patterns in the whole dataset.

Definition 4. Given ε ∈ (0, 1), a false positives free (FPF) ε-approximation F of
FSP (D, θ) is defined as a set of pairs (s, fs),

F = {(s, fs) : s ∈ S, fs ∈ [0, 1]},

that has the following properties:

• F contains no pair (s, fs) such that fD(s) < θ;

• F contains all the pairs (s, fs) such that fD(s) ≥ θ + ε;

• for every (s, fs) ∈ F , it holds |fD(s)− fs| ≤ ε/2.

The approximation F does not contain false positives, that is, sequences with fD(s) <

θ. In addition, it does not miss sequences with fD(s) ≥ θ + ε and, similarly to the FNF
ε-approximation, we have that, for every pair in F , it gives a good approximation of the
actual frequency of the sequential patterns in D, within an error ε/2, arbitrarily small.

3.2.2 Maximum Deviation

In the frequent pattern mining through sampling task (see Section 2.2), we aim to find
good estimates for fD(s) simultaneously for all the sequential patterns s ∈ S. In such
a scenario, the frequency fD(s) is the expectation of a Bernoulli random variable (r.v.)
XD(s, τ) which is 1 if the sequential pattern s appears in a transaction τ drawn uniformly
at random from D, that is,

Eτ∼D[XD(s, τ)] = Pr
τ∼D

(XD(s, τ) = 1) = |TD(s)|
|D|

= fD(s).

Let S be a sample of transactions drawn uniformly and independently at random from
D. We define the frequency fS(s) as the fraction of transactions of S where s appears.
In this scenario, we have that the frequency fD(s) of s on D and the frequency fS(s) of s
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on the sample S represent, respectively, the expectation E(gs) and the empirical average
E(gs,S) of a function gs associated with a sequential pattern s. Thus, in such a scenario,
the maximum deviation (see Equation 2.1) is

sup
s∈S
|fD(s)− fS(s)|.

In the next Section, we provide a strategy, based on the concept of VC-dimension of
sequential patterns, to compute a sample size which guarantees to obtain a probabilistic
upper bound on the maximum deviation in the frequent sequential pattern mining
scenario.

3.3 VC-Dimension of Sequential Patterns

In this Section, we apply the statistical learning theory concept of VC-dimension (see
Section 2.4.2) to sequential patterns. First, we define the range space associated with
a sequential dataset. Then, we show a computable efficient upper bound on the VC-
dimension and we show how to compute the size of a sample that guarantees to obtain a
good approximation for the problem of mining the frequent sequential patterns.

Let us remember that a range space is a pair (X,R) where X contains points and R
contains ranges. For a sequential dataset, X is the dataset itself, while R contains the
sequential transactions that are the support set for some sequential patterns.

Definition 5. Let D be a sequential dataset consisting of sequential transactions, which
are sequences from a domain S. We define RS = (X,R) to be a range space associated
with D such that:

• X = D is the set of sequential transactions in the dataset;

• R = {TD(s) : s ∈ S} is a family of sets of sequential transactions such that for each
sequential pattern s, the set TD(s) = {τ ∈ D : s ⊑ τ} is the support set of s on D.

The VC-dimension of this range space is the maximum size of a set of sequential
transactions that can be shattered by the support sets of the sequential patterns.

Example 4. Let us consider the following dataset D = {τ1, τ2, τ3, τ4} as an example:

τ1 = ⟨{1}, {2, 3}, {4, 5, 6}⟩
τ2 = ⟨{1}, {3}, {4}⟩
τ3 = ⟨{7}, {3, 4}⟩
τ4 = ⟨{4}, {5}⟩.
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The dataset above has 4 transactions. We now show that the VC-dimension of the
range space RS = (X,R) associated with D (see Definition 5) is 2. Let us consider
the set A = {τ2, τ3}. The power set 2A of A is 2A = {∅, {τ2}, {τ3}, {τ2, τ3}}. A is
shattered by R since the projection PR(A) of R in A is equal to 2A (let us remember that
PR(A) = {r ∩ A : r ∈ R}):

∅ = A ∩ TD(⟨{6}⟩),
{τ2} = A ∩ TD(⟨{1}⟩),
{τ3} = A ∩ TD(⟨{3, 4}⟩),

A = {τ2, τ3} = A ∩ TD(⟨{3}⟩).

Since |A| = 2 and A is shattered by R, then the range space associated with D has VC-
dimension ≥ 2. Analogously, the sets {τ1, τ3},{τ1, τ4},{τ2, τ4} and {τ3, τ4} are shattered
by R. The set B = {τ1, τ2} is instead not shattered by R: since τ2 ⊑ τ1, there is
not a sequential pattern s̃ such that B ∩ TD(s̃) = {τ2}. The sets C = {τ1, τ3, τ4} and
E = {τ2, τ3, τ4} are not shattered by R either: there is not a sequential pattern ŝ such
that {τ3, τ4} = C ∩ TD(ŝ) or {τ3, τ4} = E ∩ TD(ŝ). Thus, the VC-dimension of the range
space associated with D is exactly 2.

The exact computation of the VC-dimension of the range space associated with a
dataset D is computationally expensive. The s-index, introduced by Servan-Schreiber
et al. [75], provides an efficiently computable upper bound on the VC-dimension of
sequential patterns. Such an upper bound is based on the notion of capacity c(s) of
a sequence s. Let us remember that the capacity c(s) of a sequence s is the number
of distinct subsequences of s, that is, c(s) = |{a : a ⊑ s}|. The exact capacity can be
computed using the algorithm described in [16], but it is computationally expensive and
may be prohibitive for large datasets. Instead, [75] proposed an algorithm to compute a
more efficient upper bound c̃(s) ≥ c(s). Let us consider that a first naïve bound is given
by 2||s||−1, that may be a loose upper bound of c(s) because it is obtained by considering
all the items contained in all the itemsets in s as distinct, that is, the capacity of the
sequence s is 2||s|| − 1 if and only if all the items contained in all the itemsets of the
sequence s are different. The bound proposed by [75] can be computed as follows. When
s contains, among others, two itemsets A and B such that A ⊆ B, subsequences of the
form ⟨C⟩ with C ⊆ A are considered twice in 2||s||− 1, “generated” once from A and once
from B. To avoid over-counting such 2|A| − 1 subsequences, [75] proposes to consider
only the ones “generated” from the longest itemset that can generate them. Then, the
s-index is defined as follows.
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Definition 6 ([75]). Let D be a sequential dataset. The s-index of D is the maximum
integer d such that D contains at least d different sequential transactions with upper
bound on their capacities c̃(s) at least 2d − 1, such that no one of them is a subsequence
of another, that is the d sequential transactions form an anti-chain.

The following result from [75] shows that the s-index is an upper bound on the
VC-dimension of the range space for sequential patterns in D.

Theorem 2 (Lemma 3 [75]). Let D be a sequential dataset with s-index d. Then, the
range space RS = (X,R) corresponding to D has VC-dimension ≤ d.

While an upper bound on the s-index can be computed in a streaming fashion, it
still requires to check whether a transaction is a subsequence of one of the transactions
that define the current value of the s-index. In addition, the computation of the upper
bound c̃(s) on the capacity of a sequence s requires to check whether the itemsets of s are
subsets of each others. In a scenario in which the efficiency is of key importance, such as
sampling, these operations may be prohibitive from a computational point of view. Thus,
to avoid such expensive operations, we define an upper bound on the s-index, which we
call s-bound, that does not require to check whether the transactions form an anti-chain,
nor the computation of an upper bound on the capacity of a sequence.

Definition 7. Let D be a sequential dataset. The s-bound of D is the maximum integer
d such that D contains at least d different sequential transactions with item-length at
least d.

In practice, it is quite uncommon that the long sequences that define the value of the
s-index are subsequences of other sequences, thus, removing the anti-chain constraint,
the bound does not deteriorate. In addition, the usage of the naïve algorithm to compute
the upper bound on c(s), that is 2||s|| − 1, it is equivalent to consider the transactions
that have item-length at least d to calculate the s-bound, making the computation much
faster without worsening the bound on the VC-dimension in practice.

Algorithm 1 shows the pseudo-code to compute an upper bound on the s-bound in a
streaming fashion. It uses an ordered set to maintain in memory the set of transactions
that define the current value of the s-bound. The ordered set stores pairs (τ, ||τ ||)
composed by a transaction τ and its item-length ||τ ||, sorted by decreasing item-length.
In addition, it uses an hash set to speed up the control on the equal transactions.
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Algorithm 1: SBoundUpp: compute an upper bound on the s-bound.
Data: Dataset D.
Result: Upper bound d on the s-bound of D.

1 H ← empty HashSet of transactions;
2 O ← empty OrderedSet of pairs (τ, ||τ ||) sorted by decreasing item-length ||τ ||;
3 d← 0;
4 foreach τ ∈ D do
5 if τ /∈ H then
6 ℓ← ComputeItemLength(τ);
7 if ℓ > d then
8 H.add(τ);
9 O.add((τ, ℓ));

10 (τ ′, ℓ′)← O.last();
11 if ℓ′ > d then d← d + 1;
12 else
13 H.remove(τ ′);
14 O.removeLast();
15 return d;

3.3.1 Sample Size for FSP Mining

In this Section, we show how to compute a sample size m for a random sample S of
transactions taken from D such that the maximum deviation is bounded by ε/2, that is,
sups∈S |fD(s)− fS(s)| ≤ ε/2, for a user-defined value ε ∈ (0, 1), using an upper bound
on the VC-dimension of sequential patterns, e.g., the s-bound (see Definition 7). Such a
result underlies the sampling algorithm that will be introduced in Section 3.4.

Theorem 3. Let S be a random sample of m transactions taken with replacement from
the sequential dataset D and let d be an upper bound on the VC-dimension of the range
space associated with D. Given ε, δ ∈ (0, 1), if

m ≥ 2
ε2

(
d + ln 1

δ

)
,

then sups∈S |fD(s)− fS(s)| ≤ ε/2 with probability at least 1− δ.

Proof. From Theorem 1, we know that S is an ε/2-bag for D with probability at least
1− δ. Then, from Definition 2 (and Equation 2.2),∣∣∣∣∣ |D ∩ r|

|D|
− |S ∩ r|
|S|

∣∣∣∣∣ ≤ ε

2
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for all r ∈ R. Given a sequence s ∈ S and its support set TD(s) on D, that is the range
rs, and from the definition of range set of a sequential dataset, Definition 5, we have

|D ∩ rs|
|D|

= fD(s)

and
|S ∩ rs|
|S|

= fS(s).

Thus, sups∈S |fD(s)−fS(s)| ≤ ε/2 with probability ≥ 1−δ, which concludes the proof.

Algorithm 2: ComputeSampleSize: compute the sample size.
Data: Dataset D, ε, δ ∈ (0, 1).
Result: Sample size m s.t. Pr (sups∈S |fD(s)− fS(s)| ≤ ε/2) ≥ 1− δ.

1 d← SBoundUpp(D);
2 m← 2/ε2 (d + ln(1/δ));
3 return m;

Algorithm 2, using an efficient upper bound on the VC-dimension of sequential
patterns, i.e., the s-bound (described in Algorithm 1), shows how to compute a sample
size which guarantees that sups∈S |fD(s)− fS(s)| ≤ ε/2 with probability ≥ 1− δ. This
algorithm is used in our sampling strategy (Algorithm 3 of Section 3.4).

3.4 Sampling-Based Algorithm for FSP Mining

We now present a sampling algorithm for frequent sequential pattern mining. The aim of
this algorithm is to reduce the amount of data to consider to mine the frequent sequential
patterns, in order to speed up the extraction of the sequential patterns and to reduce
the amount of memory required. We define a random sample as a bag of m transactions
taken uniformly and independently at random, with replacement, from D. Obtaining the
exact set FSP (D, θ) from a random sample is not possible, thus we focus on obtaining
an ε-approximation with probability at least 1 − δ, where δ ∈ (0, 1) is a confidence
parameter, whose value, with ε ∈ (0, 1), is provided in input by the user. Intuitively, if a
random sample is sufficiently large, then the set of frequent sequential patterns extracted
from the random sample well approximates the set FSP (D, θ). The challenge is to find
the number of transactions that are necessary to obtain the desired ε-approximation,
FNF or FPF. To compute such a sample size, our approach uses the VC-dimension of
sequential patterns (see Section 3.3.1).
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Theorem 4. Given ε, δ ∈ (0, 1), let S be a random sample of size m sequential trans-
actions taken independently at random with replacement from the dataset D such that
sups∈S |fD(s)− fS(s)| ≤ ε/2 with probability at least 1− δ. Then, given θ ∈ (0, 1], the set
FSP (S, θ − ε/2) is a FNF ε-approximation of FSP (D, θ) with probability at least 1− δ.

Proof. Let us suppose that sups∈S |fD(s)− fS(s)| ≤ ε/2. In such a scenario, we have that
for all sequential patterns s ∈ D, it results fS(s) ∈ [fD(s)− ε/2, fD(s) + ε/2]. This also
holds for the sequential patterns in N = FSP (S, θ− ε/2). Therefore, the set N satisfies
Property 3 from Definition 3. It also means that for all s ∈ FSP (D, θ), fS(s) ≥ θ − ε/2,
then such s ∈ N and N also satisfies Property 1. Now, let s̃ be a sequential pattern such
that fD(s̃) < θ−ε. Then, fS(s̃) < θ−ε/2, that is s̃ /∈ N , which allows us to conclude that
N also has Property 2 from Definition 3. Since we know that sups∈S |fD(s)−fS(s)| ≤ ε/2
with probability at least 1− δ, then the set N is a FNF ε-approximation of FSP (D, θ)
with probability at least 1− δ, which concludes the proof.

Theorem 4 provides a sampling-based algorithm to obtain a FNF ε-approximation of
FSP (D, θ) with probability≥ 1−δ: take a random sample S of |S| = m transactions from
D such that the maximum deviation is bounded by ε/2, that is, sups∈S |fD(s)− fS(s)| ≤
ε/2; report in output the set FSP (S, θ − ε/2). As illustrated in Section 3.3.1, such a
sample size can be computed using an efficient upper bound on the VC-dimension, given
in input the desired upper bound on the maximum deviation ε/2 (see Algorithm 2).
Algorithm 3 shows the pseudo-code of the sampling algorithm.

We now provide the respective theorem to find a FPF ε-approximation.

Theorem 5. Given ε, δ ∈ (0, 1), let S be a random sample of size m sequential trans-
actions taken independently at random with replacement from the dataset D such that
sups∈S |fD(s) − fS(s)| ≤ ε/2 with probability ≥ 1 − δ. Then, given θ ∈ (0, 1], the set
FSP (S, θ + ε/2) is a FPF ε-approximation of FSP (D, θ) with probability ≥ 1− δ.

Proof. Let us suppose that sups∈S |fD(s)− fS(s)| ≤ ε/2. In such a scenario, we have that
for all sequential patterns s ∈ D, it results fS(s) ∈ [fD(s)− ε/2, fD(s) + ε/2]. This also
holds for the sequential patterns in F = FSP (S, θ + ε/2). Therefore, the set F satisfies
Property 3 from Definition 4. It also means that for all ŝ /∈ FSP (D, θ), fS(ŝ) < θ + ε/2,
then such ŝ /∈ F and F also satisfies Property 1. Now, let s̃ be a sequential pattern such
that fD(s̃) ≥ θ+ε. Then, fS(s̃) ≥ θ+ε/2, that is s̃ ∈ F , which allows us to conclude that
F also has Property 2 from Definition 4. Since we know that sups∈S |fD(s)−fS(s)| ≤ ε/2
with probability at least 1− δ, then the set F is a FPF ε-approximation of FSP (D, θ)
with probability at least 1− δ, which concludes the proof.
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Algorithm 3: SamplingFSP: sampling-based algorithm for FSP mining.
Data: Dataset D, ε, δ ∈ (0, 1), θ ∈ (0, 1].
Result: Set N that is a FNF ε-approximation (resp. a FPF ε-approximation) of

FSP (D, θ) with probability ≥ 1− δ.
1 m← ComputeSampleSize(D, ε, δ);
2 S ← random sample of m transactions from D;
3 N ← FSP (S, θ − ε/2); /* resp. θ + ε/2 to obtain a FPF ε-approximation */
4 return N ;

As explained above, the sample size m can be computed with Algorithm 2 that uses
an efficient upper bound on the VC-dimension of sequential patterns, i.e., the s-bound.
Then, the sample is generated taking m transactions uniformly and independently at
random, with replacement, from D. Finally, the mining of the sample S can be performed
with any efficient algorithm for the exact mining of frequent sequential patterns.

3.5 Experimental Evaluation

In this Section, we report the results of our experimental evaluation on multiple datasets
to assess the performance of our sampling algorithm. The goals of the evaluation are the
following:

• Assess the performance of our sampling algorithm. In particular, to asses whether
with probability 1−δ, the sets of frequent sequential patterns extracted from samples
are FNF ε-approximations, for the first strategy, and FPF ε-approximations, for
the second one, of FSP (D, θ). In addition, we compared the performance of the
sampling algorithm with the ones to mine the full datasets in term of execution
time.

Since no sampling algorithm for rigorously approximating the set of frequent sequen-
tial patterns has been previously proposed, we do not consider other methods in our
experimental evaluation. In all the experiments, to bound the VC-dimension we used our
novel upper bound on the VC-dimension of sequential patterns, i.e., the s-bound (see
Definition 7).

3.5.1 Implementation, Environment, and Datasets

The code to compute the bound on the VC-dimension (Algorithm 1), of our sampling
algorithm (Algorithm 3), and to perform the evaluation has been developed in Java
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and executed using version 1.8.0_201. We have performed all our experiments on
the same machine with 512 GB of RAM and 2 Intel(R) Xeon(R) CPU E5-2698 v3 @
2.3GHz, running Ubuntu 14.04. To mine sequential patterns, we used the PrefixSpan [54]
implementation provided by the SPMF library [18]. Our open-source implementation and
the code developed for the tests, including scripts to reproduce all results, are available
at https://github.com/VandinLab/VCRadSPM.

Here, we describe the datasets we used in our evaluation. All the datasets are obtained
starting from the following real datasets, publicly available online:1

• BIBLE: a conversion of the Bible into sequence where each word is an item;

• BMS1: contains sequences of click-stream data from the e-commerce website
Gazelle;

• BMS2: contains sequences of click-stream data from the e-commerce website
Gazelle;

• FIFA: contains sequences of click-stream data from the website of the FIFA World
Cup 98;

• KOSARAK: contains sequences of click-stream data from an Hungarian news
portal;

• LEVIATHAN: is a conversion of the novel Leviathan by Thomas Hobbes (1651) as
a sequence dataset where each word is an item;

• MSNBC: contains sequences of click-stream data from MSNBC website and each
item represents the category of a web page;

• SIGN: contains sign language utterance.

The typical scenario for the application of sampling is that the dataset to mine is very
large, sometimes even too large to fit in the main memory of the machine. Thus, in
applying sampling techniques, we aim to reduce the size of such a dataset, considering
only a sample of it, in order to obtain an amount of data of reasonable size. Since
the number of transactions in each real dataset described above is fairly limited, we
replicated each dataset to reach modern datasets sizes. For each real dataset, we fixed
a replication factor and we created a new dataset, replicating each transaction in the
dataset a number of times equals to the replication factor. We then used such enlarged

1https://www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php

https://github.com/VandinLab/VCRadSPM
https://www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php
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Table 3.1 Datasets characteristics. The Table reports: Dataset D: name of the dataset;
|D|: number of transactions; Repl. Factor: replication factor; |I|: total number of items;
Avg ||τ ||: average transaction item-length.

Dataset D |D| Rep. Factor |I| Avg. ||τ ||
BIBLE 7273800 200x 13905 21.6
BMS1 5960100 100x 497 2.5
BMS2 7751200 100x 3340 4.6
FIFA 4090000 200x 2990 36.2
KOSARAK 6999900 100x 14804 8.0
LEVIATHAN 5835000 1000x 9025 33.8
MSNBC 9898180 10x 17 4.8
SIGN 7300000 10000x 267 52.0

datasets as input for our sampling algorithm. The replication factors we considered
are the following: BIBLE and FIFA = 200x; BMS1, BMS2 and KOSARAK = 100x;
LEVIATHAN = 1000x; MSNBC = 10x; SIGN = 10000x. The characteristics of the
enlarged datasets are reported in Table 3.1.

3.5.2 Sampling Algorithm Results

In this Section, we describe the results obtained with our sampling algorithm (Algo-
rithm 3). As explained above, the typical scenario to apply sampling is that the dataset
to mine is very large. Thus, we aim to reduce the size of such a dataset, considering
only a sample of it. In addition, from the sample, we aim to obtain a good and rigorous
approximation of the results that would have been obtained from the entire dataset, i.e., a
FNF or FPF ε-approximation. In all our experiments, we fixed ε = 0.01 and δ = 0.1. The
steps of the evaluation are the following (Algorithm 3): given a dataset D as input, we
computed the sample size m, using Algorithm 2, to obtain a FNF ε = 0.01-approximation
(resp. FPF 0.01-approximation) with probability at least 1 − δ = 0.90. Then, we ex-
tracted a random sample S of m transactions from D and we ran the algorithm to mine
the frequent sequential patterns on S. Finally, we verified whether the set of frequent
sequential patterns extracted from the sample was a FNF 0.01-approximation (resp. FPF
0.01-approximation) to FSP (D, θ). For each dataset D, we repeated the experiment
5 times, and then we computed the fraction of times the sets of frequent sequential
patterns extracted from the samples had the properties described in Definition 3 (resp.
Definition 4). Table 3.2 shows the results.



38 Mining Sequential Patterns through Sampling

Table 3.2 Sampling algorithms results. The Table reports: Dataset D: name of the
dataset; θ: minimum frequency threshold; |S|/|D|: ratio between the sample size |S|
and the size of the dataset |D|; Max-Err: maximum absolute error over the 5 samples;
Avg-Err: average absolute error over the 5 samples; FNF ε-app. (%): percentage of
FNF ε-approximations obtained over the 5 samples; FPF ε-app. (%): percentage of FPF
ε-approximations obtained over the 5 samples.

Dataset D θ |S|/|D| Max-Err
(x10−4)

Avg-Err
(x10−4)

FNF ε-app.
(%)

FPF ε-app.
(%)

BIBLE 0.1 0.24 9.33 7.47 100 100
BMS1 0.012 0.17 5.45 4.70 100 100
BMS2 0.012 0.16 4.08 3.14 100 100
FIFA 0.25 0.50 8.68 7.07 100 100
KOSARAK 0.02 0.52 7.18 4.95 100 100
LEVIATHAN 0.15 0.30 9.19 7.84 100 100
MSNBC 0.02 0.37 4.33 3.63 100 100
SIGN 0.4 0.20 14.14 12.19 100 100

From the results, it is possible to notice that the samples obtained from the datasets
are about 2 to 5 times smaller than the respective whole datasets. Moreover, in all
the runs and for all the datasets, we obtained a FNF ε-approximation (resp. FPF
ε-approximation). Such results are even better than the theoretical guarantees, that
ensure to obtain such approximations with probability at least 90%. We also reported
the maximum absolute error Max-Err = maxi∈{1,...,5} maxs∈Ni

|fD(s)− fSi
(s)| and the

average absolute error Avg-Err = 1
5
∑5

i=1 maxs∈Ni
|fD(s)− fSi

(s)|, where Ni is the set
of frequent sequential patterns extracted from the sample Si, with i ∈ {1, . . . , 5}, to
obtain a FNF ε-approximation. (Let us note that we considered 5 samples, since we ran
each experiment 5 times). They represent, respectively, the maximum and the average,
over the 5 runs, of the maximum absolute difference between the frequency that the
sequential patterns have in the whole dataset and that they have in the sample, over
all the sequential patterns extracted from the sample. Again, the results obtained are
better than the theoretical guarantees, that ensure a maximal absolute difference lower
than ε/2 = 0.005.

Finally, Figure 3.1 shows the comparison between the average execution time of the
sampling algorithm and the average execution time of the mining of the whole dataset,
over 5 runs. For all the datasets, the sampling algorithm requires less time than the
mining of the whole dataset. For BMS1 and BMS2, the mining of the whole dataset is
very fast since the number of frequent sequential patterns extracted from it is low. Thus,
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Fig. 3.1 Execution time of the sampling algorithm. It shows: Mining Dataset: the
execution time required to mine the whole dataset; the execution times of the sampling
algorithm to obtain a FNF or a FPF ε-approximation: Compute Sample Size: the
execution time to compute the sample size; Generate Sample: the execution time to
generate the sample; Mining Sample: the execution time to mine the sample.

there is not a large difference between the execution time to mine the whole dataset and
the execution time for the sampling algorithm, which is most due to the computation of
the sample size. Similar results have been obtained with KOSARAK and MSNBC. As
expected, for all the datasets, the execution time of the sampling algorithm to obtain
a FNF ε-approximation is larger than the one to obtain a FPF ε-approximation, since
the minimum frequency threshold used in the first case is lower, resulting in a higher
number of extracted sequential patterns.

3.5.3 Analysis of MSNBC

We now briefly discuss some of the sequential patterns extracted from the MSNBC
dataset, for which richer information regarding the data is available. In particular, in
MSNBC, each transaction contains the sequence of click-stream data generated by a
single view on the MSNBC website by a user, and each item represents the category of a
visited webpage, e.g., “frontpage”, “news”, “sports”, and so forth.
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The two most frequent sequential patterns extracted in the real dataset with a
classic FSP algorithm are single categories, that is, sequential patterns of item-length
1: ⟨{frontpage}⟩ is the most frequent while ⟨{on − air}⟩ is the second one. They
are also the two most frequent sequential patterns extracted in all the five samples
using our sampling algorithms. The most frequent sequential patterns with item-
length greater than one are the sequential patterns ⟨{frontpage}, {frontpage}⟩ and
⟨{frontpage}, {frontpage}, {frontpage}⟩. For ⟨{frontpage}, {frontpage}⟩, in the 75%
of the transactions in which it appears, there is at least an instance of such a pat-
tern where the two items are consecutive. This means that users visited two consec-
utive webpages of the same category, “frontpage”, or that they refreshed the same
page twice, while in the 25% of the transactions in which it appears, users visited
webpages of other categories between the two “frontpage” webpages. Instead, for
⟨{frontpage}, {frontpage}, {frontpage}⟩ the percentage of transactions in which the
three items are consecutive is 59%. We also observed similar results with other categories:
sequential patterns that are sequences of the same item, and so of the same category,
have higher frequency. This fact highlights that users usually visit more frequently pages
of the same category or that they refresh multiple times the same pages.

The most frequent sequential patterns that are not sequences of the same item are
combinations of the items “frontpage” and “news”, for example, ⟨{frontpage}, {news}⟩,
⟨{frontpage}, {news}, {news}⟩ and ⟨{news}, {frontpage}⟩. Surprisingly, the item “on-
air” alone is more frequent that the item “news” alone. This means that users visit
“news” webpages coming from a “frontpage” more frequently than “on-air” webpages,
though they visit more frequently “on-air” webpages.



Chapter 4

Mining True Frequent Sequential
Patterns

In this Chapter, we consider the problem of mining true frequent sequential patterns.
While in Chapter 3 we aimed to extract a meaningful random sample from a dataset,
in this Chapter we consider the scenario in which the dataset itself is a random sample
from an unknown underlying generative process, as happens in many real applications,
and by analyzing the dataset, one is interested in mining sequential patterns that are
frequently generated by such a process. In this task, unlike the one described in the
previous Chapter, the sample, and thus its size, is already fixed. Then, a key challenge
is the computation of a bound on the difference between the true frequencies of the
sequential patterns w.r.t. the underlying generative distribution and their frequencies in
the dataset. Let us note that the quality of such a bound depends on the available amount
of data, i.e., the size of the dataset. To solve this difficult task, we use results from the
previous Chapter based on the (empirical) VC-dimension of sequential patterns, which
allow us to obtain rigorous approximations of the true frequent sequential patterns, with
guarantees on the false positives or on the false negatives. The contributions described
in this Chapter appear in [73].

4.1 Introduction

In several applications, the analysis of a dataset is performed to gain insight on the
underlying generative process of the data. For example, in market basket analysis one
is interested in gaining knowledge on the behaviour of all the customers, which can be
modeled as a generative process from which the transactions in the dataset have been
drawn. In such a scenario, one is not interested in sequential patterns that are frequent
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in the dataset, but in sequential patterns that are frequent in the generative process, that
is, whose probability of appearing in a transaction generated from the process is above
a threshold θ. Such patterns, called true frequent patterns (see Section 2.3), have been
introduced by [68], which provides a VC-dimension based approach to mine true frequent
itemsets. While there is a relation between the probability that a pattern appears in
a transaction generated from the process and its frequency in the dataset, one cannot
simply look at patterns with frequency above θ in the dataset to find the ones with
probability above θ in the process. Moreover, due to the stochastic nature of the data,
one cannot identify the true frequent patterns with certainty, and approximations are
to be sought. In such a scenario, relating the probability that a pattern appears in a
transaction generated from the process with its frequency in the dataset using standard
techniques is even more challenging than the scenario illustrated in Chapter 3. Hoeffding
inequality and union bounds require to bound the number of all the possible sequential
patterns that can be generated from the process. Such a bound is infinite if one considers
all possible sequential patterns (e.g., does not bound the pattern length). To the best of
our knowledge, no method to mine true frequent sequential patterns has been proposed.

4.1.1 Our Contributions

In this Chapter, we study the problem of mining true frequent sequential patterns and
we propose an efficient algorithm for this problem, based on the concept of empirical
VC-dimension of sequential patterns. In this regard, our contributions are:

• We formally define the task of mining true frequent sequential patterns and two
rigorous approximations of the set of true frequent sequential patterns: one with
no false negatives, that is, containing all elements of the original set; and one with
no false positives, that is, without any element that is not in the original set.

• We introduce an efficient algorithm to obtain rigorous approximations of the true
frequent sequential patterns with probability 1−δ, where δ is a confidence parameter
set by the user. Our algorithm hinges on a uniform convergence bound and it
allows to obtain accurate approximations of the true frequent sequential patterns,
where the accuracy depends on the size of the available data.

• We perform an extensive experimental evaluation analyzing several sequential
datasets, showing that our algorithm provide high-quality approximations, even
better than guaranteed by its theoretical analysis.
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4.1.2 Related Work

To the best of our knowledge, [68] is the only work that considers the extraction of frequent
patterns w.r.t. an underlying generative process, based on the concept of empirical VC-
dimension of itemsets. While we use the general framework introduced by [68], the
solution proposed by [68] requires to solve an optimization problem that is tailored
to itemsets and, thus, not applicable to sequential patterns. In addition, computing
the solution of such a problem could be relatively expensive. A more recent work by
Pellegrina and Vandin [59] considers the problem of mining significant patterns under
a similar framework, making more realistic assumptions on the underlying generative
process compared to commonly used tests (e.g., Fisher’s exact test).

Several works have been proposed to identify statistically significant patterns where the
significance is defined in terms of the comparison of patterns statistics. Few methods [24,
47, 62] have been proposed to mine statistically significant sequential patterns. These
methods are orthogonal to our approach, which focuses on finding sequential patterns
that are frequent w.r.t. an underlying generative distribution.

We remind interested readers to the related work of Chapter 3 (Section 3.1.2) for
works regarding frequent sequential pattern mining and other pattern mining problems
that use the (empirical) VC-dimension.

4.1.3 Organization of the Chapter

The rest of the Chapter is structured as follows. Section 4.2 contains the main definitions
and concepts used throughout this Chapter. In Section 4.3, we provide a strategy to
compute a probabilistic upper bound on the maximum deviation for the true frequent
sequential pattern mining problem based on the empirical VC-dimension of sequential
patterns. In Section 4.4, we introduce our algorithm to find a rigorous approximation
of the true frequent sequential patterns. Finally, Section 4.5 reports the results of an
extensive suite of experiments performed to evaluate the effectiveness and performance
of our algorithm to find approximations of the true frequent sequential patterns.

4.2 Preliminaries

We now define the definitions and concepts used throughout the Chapter, refreshing
some notions defined in Chapter 2. We start by refreshing the task of sequential pattern
mining, introduced in Section 2.1.2, and formally define the problem of mining and
approximating the true frequent sequential patterns. We then apply the concept of
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maximum deviation, introduced in Section 2.4.1, to the true frequent pattern mining
scenario.

4.2.1 True Frequent Sequential Pattern Mining

Let us remember, from Section 2.1.2, that a sequential pattern, or sequence, s =
⟨S1, S2, . . . , Sk⟩ is a finite ordered sequence of itemsets Si, with i ∈ {1, . . . , k}, which
are sets of elements called items. The length |s| of s is the number of itemsets in s, the
item-length ||s|| of s is the sum of the sizes of the itemsets in s, that is,

||s|| =
|s|∑

i=1
|Si|,

while the capacity c(s) of a sequence s is the number of distinct subsequences of s, i.e.,
c(s) = |{a : a ⊑ s}|. Given a dataset D, which is a bag of |D| sequences from a domain S,
and a minimum frequency threshold θ ∈ (0, 1], frequent sequential pattern (FSP) mining
is the task of reporting the set FSP (D, θ) of all the sequences whose frequency in D is
at least θ, and their frequencies, that is,

FSP (D, θ) = {(s, fD(s)) : s ∈ S, fD(s) ≥ θ},

where the frequency fD(s) of s in D is the fraction of transactions in D to which s belongs,
that is,

fD(s) = |{τ ∈ D : s ⊑ τ}|
|D|

.

In several real applications, the dataset D is a sample of transactions independently
drawn from an unknown probability distribution π on S, that is, π : S→ [0, 1]. In such a
scenario, the dataset D is a finite bag of |D| independent identically distributed (i.i.d.)
samples from π. For any sequence s ∈ S, the true support set T (s) of s is the set of
sequential patterns in S to which s belongs, i.e., T (s) = {τ ∈ S : s ⊑ τ}, and the true
frequency tπ(s) of s w.r.t. π is the probability that a transaction sampled from π contains
s, that is,

tπ(s) = Pr
τ∼π

(s ⊑ τ).

In such a scenario, the final goal of the data mining process on D is to gain a better
understanding of the process that generated the data, i.e., the distribution π, through the
true frequencies of the sequential patterns, which are unknown and only approximately
reflected in the dataset D. Thus, given a probability distribution π on S and a minimum
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frequency threshold θ ∈ (0, 1], true frequent sequential pattern (TFSP) mining is the task
of reporting the set TFSP (π, θ) of all sequential patterns whose true frequencies w.r.t.
π are at least θ, and their true frequencies, that is,

TFSP (π, θ) = {(s, tπ(s)) : s ∈ S, tπ(s) ≥ θ}.

Let us note that the probability distribution π, and then the true frequencies, are
unknown and thus it is not possible to directly mine the set TFSP (π, θ). In addition,
given a finite number of random samples from π, i.e., the dataset D, the frequencies
of the sequential patterns in the dataset D only approximately reflect the underlying
distribution and thus one has to resort to approximations of TFSP (π, θ). Analogously to
the two approximations defined in Chapter 3 for the frequent sequential pattern mining
through sampling task, we now define two approximations of TFSP (π, θ), depending
on the application one is interested in: the first one that contains all the true frequent
sequential patterns, while the second one that does not contain false positives.

Definition 8. Given µ ∈ (0, 1), a false negatives free (FNF) µ-approximation E of
TFSP (π, θ) is defined as a set of pairs (s, fs),

E = {(s, fs) : s ∈ S, fs ∈ [0, 1]}

that has the following properties:

• E contains a pair (s, fs) for every (s, tπ(s)) ∈ TFSP (π, θ);

• E contains no pair (s, fs) such that tπ(s) < θ − µ;

• for every (s, fs) ∈ E, it holds |tπ(s)− fs| ≤ µ/2.

Intuitively, the approximation E contains all the true frequent sequential patterns
that are in TFSP (π, θ) (i.e., there are no false negatives) and no sequential pattern that
has true frequency w.r.t π much below θ. In addition, E provides a good approximation
of the actual true frequency of the sequential patterns, within an error µ/2 which depends
on the size of the available data.

Definition 9. Given µ ∈ (0, 1), a false positives free (FPF) µ-approximation M of
TFSP (π, θ) is defined as a set of pairs (s, fs),

M = {(s, fs) : s ∈ S, fs ∈ [0, 1]}

that has the following properties:
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• M contains no pair (s, fs) such that tπ(s) < θ;

• M contains all the pairs (s, fs) such that tπ(s) ≥ θ + µ;

• for every (s, fs) ∈M, it holds |tπ(s)− fs| ≤ µ/2.

The approximation M does not contain false positives, that is, sequences with
tπ(s) < θ. In addition, it does not miss sequences with tπ(s) ≥ θ + µ and, similarly to the
FNF µ-approximation, we have that, for every pair in M, it gives a good approximation
of the actual true frequency of the sequential patterns, within an error µ/2 which depends
on the size of the available data.

4.2.2 Maximum Deviation

In the true frequent pattern mining task, we aim to find good estimates for tπ(s)
simultaneously for each sequential pattern s ∈ S. In such a scenario, the true frequency
tπ(s) of a sequential pattern s w.r.t. the probability distribution π and its frequency
fD(s) in D represent, respectively, the expectation and the empirical average of a function
associated with the sequential pattern s, since

tπ(s) = Eτ∼π[1τ (s)]

and
fD(s) = 1

|D|
∑
τ∈D

1τ (s),

where 1τ (s) the indicator function that assumes the value 1 if and only if s ⊑ τ . Thus,
in such a scenario the maximum deviation (see Equation 2.1) is

sup
s∈S
|tπ(s)− fD(s)|.

In the next Section, we provide a strategy, based on the concept of empirical VC-
dimension of sequential patterns, to compute a probabilistic upper bound on the maximum
deviation in the true frequent sequential pattern mining scenario.

4.3 Bound on the Max Deviation for TFSP Mining

In this Section, we provide a strategy to compute an upper bound on the maxi-
mum deviation µ/2 for the true frequent sequential pattern mining problem, that is,
sups∈S |tπ(s)− fD(s)| ≤ µ/2, using an upper bound on the empirical VC-dimension (see
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Section 2.4.2). Such a result underlies the strategy for mining the true frequent sequential
patterns that will be introduced in Section 4.4.

Let us remember that a range space is a pair (X,R) where X contains points and R
contains ranges. For a domain S, X is the domain itself, while R contains the sequential
transactions that are the true support set for some sequential patterns.

Definition 10. Let S be a domain. We define RS = (X,R) to be a range space associated
with S such that:

• X = S is the set of sequences in S;

• R = {T (s) : s ∈ S} is a family of sets of sequences such that for each sequential
pattern s, the set T (s) = {τ ∈ S : s ⊑ τ} is the true support set of s.

The s-index (see Definition 6) defined in [75] and the s-bound (see Definition 7)
defined in Chapter 3 of this Thesis, are upper bounds on the empirical VC-dimension
EV C(RS,D) of the range space associated with S computed on D.

Theorem 6. Let RS = (X,R) be the range space associated with S, let π be a probability
distribution on the domain S, and let D be a finite bag of |D| i.i.d. samples from π. If
the empirical VC-dimension EV C(RS,D) of RS on D ≤ d, then, given δ ∈ (0, 1) and

µ =
√

2
|D|

(
d + ln 1

δ

)
,

sups∈S |tπ(s)− fD(s)| ≤ µ/2 with probability at least 1− δ.

Proof. From Theorem 1, we know that D is a µ/2-bag of S w.r.t. π with probability at
least 1− δ. Then, from Definition 2,∣∣∣∣∣Pr

π
(r)− |D ∩ r|

|D|

∣∣∣∣∣ ≤ µ

2

for all r ∈ R. Given a sequential pattern s ∈ S and its real support set T (s), which is
the range rs, from the definition of range space associated with S, we have

Pr
π

(rs) = tπ(s)

and
|D ∩ rs|
|D|

= fD(s).

Thus, sups∈S |tπ(s)− fD(s)| ≤ µ/2 with probability at least 1− δ, which concludes the
proof.
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Algorithm 4: ComputeMaxDev: compute an upper bound on the max deviation.
Data: Dataset D, δ ∈ (0, 1).
Result: Upper bound on the max deviation µ/2 s.t.

Pr (sups∈S |tπ(s)− fD(s)| ≤ µ/2) ≥ 1− δ.
1 d← SBoundUpp(D);
2 µ←

√
2/|D| (d + ln(1/δ));

3 return µ/2;

Algorithm 4 using an efficient upper bound on the VC-dimension of sequential patterns,
i.e., the s-bound (see Section 3.3, Algorithm 1), shows how to compute an upper bound
on the maximum deviation which guarantees that sups∈S |tπ(s) − fD(s)| ≤ µ/2 with
probability ≥ 1− δ. Let us note that while here we employ the s-bound to upper bound
the empirical VC-dimension computed on D, every upper bound on such a measure can
be employed. This algorithm is used in our strategy to mine rigorous approximations of
the true frequent sequential patterns (Algorithm 5 of Section 4.4).

4.4 Algorithm for TFSP Mining

In this Section, we describe our approach to find rigorous approximations of the TFSPs.
In particular, given a dataset D, that is a finite bag of |D| i.i.d. samples from an
unknown probability distribution π on S, a minimum frequency threshold θ ∈ (0, 1] and a
confidence parameter δ ∈ (0, 1), we aim to find rigorous approximations of TFSP (π, θ),
i.e., FNF µ-approximations (Definition 8) and FPF µ-approximations (Definition 9),
with probability at least 1− δ.

The intuition behind our approach is the following. If we know an upper bound
µ/2 on the maximum deviation, i.e., sups∈S |tπ(s) − fD(s)| ≤ µ/2, we can identify a
frequency threshold θ̃ (resp. θ̂) such that the set FSP (D, θ̃) is a FNF µ-approximation
(resp. FSP (D, θ̂) is a FPF µ-approximation) of TFSP (π, θ). The upper bound on the
maximum deviation can be computed, as illustrated in the previous Sections, with the
empirical VC-dimension.

We now describe how to identify the threshold θ̃ that allows to obtain a FNF µ-
approximation. Suppose that sups∈S |tπ(s)− fD(s)| ≤ µ/2. In such a scenario, we have
that every sequential pattern s ∈ TFSP (π, θ), and so that has tπ(s) ≥ θ, has a frequency
fD(s) ≥ θ − µ/2 = θ̃. Hence, by mining the sequential patterns that have frequency in
D greater or equal to θ̃ = θ − µ/2, we do not miss any TFSPs, avoiding false negatives.
The following theorem formalizes the strategy to obtain a FNF µ-approximation.
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Theorem 7. Given δ ∈ (0, 1), such that sups∈S |tπ(s) − fD(s)| ≤ µ/2 with probability
at least 1 − δ, and given θ ∈ (0, 1], the set FSP (D, θ̃), with θ̃ = θ − µ/2, is a FNF
µ-approximation of the set TFSP (π, θ) with probability at least 1− δ.

Proof. Let us suppose that sups∈S |tπ(s)− fD(s)| ≤ µ/2. Thus, we have that for all the
sequential patterns s ∈ S, it results fD(s) ∈ [tπ(s)− µ/2, tπ(s) + µ/2]. This also holds
for the sequential patterns in E = FSP (D, θ̃). Therefore, the set E satisfies Property 3
of Definition 8. It also means that for all s ∈ TFSP (π, θ), fD(s) ≥ θ − µ/2 = θ̃, that is,
s ∈ E , which allows us to conclude that E also has Property 1 from Definition 8. Now,
let s∗ be a sequential pattern such that tπ(s∗) < θ − µ. Then, fD(s∗) < θ − µ/2, that is
s∗ /∈ E , which allows us to conclude that E also has Property 2 from Definition 8. Since
we know that sups∈S |tπ(s)− fD(s)| ≤ µ/2 with probability at least 1− δ, then the set E
is a FNF µ-approximation of TFSP (π, θ) with probability at least 1− δ, which concludes
the proof.

Theorem 7 provides a strategy to obtain a FNF µ-approximation of TFSP (π, θ)
with probability ≥ 1 − δ: compute an upper bound on the maximum deviation such
that sups∈S |tπ(s) − fD(s)| ≤ µ/2 with probability ≥ 1 − δ; report in output the set
FSP (D, θ − µ/2). As illustrated in Section 4.3, such a probabilistic upper bound on
the maximum deviation can be computed using an upper bound on the empirical VC-
dimension. In particular, in Algorithm 5 we show the pseudo-code to mine a FNF
µ-approximation of true frequent sequential patterns using the s-bound (see Section 3.3,
Algorithm 1).

We now provide the respective theorem to find a FPF µ-approximation.

Theorem 8. Given δ ∈ (0, 1), such that sups∈S |tπ(s) − fD(s)| ≤ µ/2 with probability
at least 1 − δ, and given θ ∈ (0, 1], the set FSP (D, θ̂), with θ̂ = θ + µ/2, is a FPF
µ-approximation of the set TFSP (π, θ) with probability at least 1− δ.

Proof. Suppose that sups∈S |tπ(s)−fD(s)| ≤ µ/2. Thus, we have that for all the sequential
patterns s ∈ S, it results fD(s) ∈ [tπ(s) − µ/2, tπ(s) + µ/2]. This also holds for the
sequential patterns in M = FSP (D, θ̂). Therefore, the set M satisfies Property 3 of
Definition 9. Let s∗ be a sequential pattern such that tπ(s∗) < θ, that is, it is not a true
frequent sequential pattern w.r.t. θ. Then, fD(s∗) < θ + µ/2 = θ̂, that is, s∗ /∈ G, which
allows us to conclude that M also has Property 1 from Definition 9. Now, let s′ be a
sequential pattern such that tπ(s′) ≥ θ + µ. Then, fD(s′) ≥ θ + µ/2, that is s′ ∈ M,
which allows us to conclude that M also has Property 2 from Definition 9. Since we
know that sups∈S |tπ(s)− fD(s)| ≤ µ/2 with probability at least 1− δ, then the setM is
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a FPF µ-approximation of TFSP (π, θ) with probability at least 1− δ, which concludes
the proof.

Algorithm 5: ApproxTSFP: Find a µ-approximation of the TFSPs.
Data: Dataset D, δ ∈ (0, 1), θ ∈ (0, 1].
Result: Set E that is a FNF µ-approximation (resp. FPF µ-approximation) of

TFSP (π, θ) with probability ≥ 1− δ.
1 µ/2← ComputeMaxDev(D, δ);
2 E ← FSP (D, θ − µ/2); /* resp. θ + µ/2 to obtain a FPF µ-approximation */
3 return E ;

Algorithm 5 shows the pseudo-code of our strategy to find a µ-approximation of the
true frequent sequential patterns. Let us note that to compute an upper bound on the
maximum deviation, it employs Algorithm 4 based on the empirical VC-dimension of
sequential patterns. However, all the reasoning are still valid when other techniques
are used to compute an upper bound on the maximum deviation, e.g., the Rademacher
complexity [12]. Finally, the mining of D can be performed with any efficient algorithm
for the exact mining of frequent sequential patterns.

4.5 Experimental Evaluation

In this Section, we report the results of our experimental evaluation on multiple datasets
to assess the performance of our algorithm to mine true frequent sequential patterns.
The goals of the evaluation are the following:

• Assess whether the sequential patterns mined from the datasets with a classical
algorithm to mine frequent sequential patterns contain false positives or false
negatives w.r.t. the set of true frequent sequential patterns;

• Assess the performance of our algorithm for mining the true frequent sequential
patterns. In particular, to assess whether with probability 1− δ the set of frequent
sequential patterns extracted from the dataset with the corrected threshold is
a FNF µ-approximation of TSFP (π, θ), for the first method, or it is a FPF
µ-approximation of TSFP (π, θ), for the second method.

Since no algorithm to mine true frequent sequential patterns has been previously
proposed, we do not consider other methods in our experimental evaluation. In all the
experiments, to bound the maximum deviation we used the empirical VC-dimension. In
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particular, we used our novel upper bound on the empirical VC-dimension of sequential
patterns, i.e., the s-bound (see Section 3.3, Definition 7).

4.5.1 Implementation, Environment, and Datasets

The code of our algorithm (Algorithm 5) to mine true frequent sequential patterns, and to
perform the evaluation has been developed in Java and executed using version 1.8.0_201.
We have performed all our experiments on the same machine with 512 GB of RAM and 2
Intel(R) Xeon(R) CPU E5-2698 v3 @ 2.3GHz, running Ubuntu 14.04. To mine sequential
patterns, we used the PrefixSpan [54] implementation provided by the SPMF library [18].
Our open-source implementation and the code developed for the tests, including scripts
to reproduce all results, are available at https://github.com/VandinLab/VCRadSPM.

Here, we describe the datasets we used in our evaluation. All the datasets are obtained
starting from the following real datasets, publicly available online:1

• BIBLE: a conversion of the Bible into sequence where each word is an item;

• BMS1: contains sequences of click-stream data from the e-commerce website
Gazelle;

• BMS2: contains sequences of click-stream data from the e-commerce website
Gazelle;

• KOSARAK: contains sequences of click-stream data from an Hungarian news
portal;

• LEVIATHAN: is a conversion of the novel Leviathan by Thomas Hobbes (1651) as
a sequence dataset where each word is an item;

• MSNBC: contains sequences of click-stream data from MSNBC website and each
item represents the category of a web page.

To evaluate our algorithm to mine the true frequent sequential patterns, we need to
know which are the sequential patterns that are frequently generated from the unknown
generative process π. In particular, we need a ground truth of the true frequencies of
the sequential patterns. We generated pseudo-artificial datasets by taking the original
datasets shown in Table 4.1 as ground truth for the true frequencies of the sequential
patterns. For each ground truth, i.e., original dataset, we created 4 new datasets by
sampling sequential transactions uniformly at random from the original dataset. All the

1https://www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php

https://github.com/VandinLab/VCRadSPM
https://www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php


52 Mining True Frequent Sequential Patterns

Table 4.1 Datasets characteristics. The Table reports: Dataset D: name of the dataset;
|D|: number of transactions; |I|: total number of items; Avg ||τ ||: average transaction
item-length.

Dataset D |D| |I| Avg. ||τ ||
BIBLE 36369 13905 21.6
BMS1 59601 497 2.5
BMS2 77512 3340 4.6
KOSARAK 69999 14804 8.0
LEVIATHAN 5835 9025 33.8
MSNBC 989818 17 4.8

new datasets have the same number of transactions of the respective original datasets.
We then used the original datasets as ground truth and we executed our algorithm in
the new (sampled) datasets. Therefore, the true frequency of a sequential pattern is
its frequency in the original dataset, that is, its frequency in the original dataset is
exactly the same that such a pattern would have in an hypothetical infinite number of
transactions generated by the unknown generative process π.

4.5.2 True Frequent Sequential Patterns Results

In this Section, we describe the results of our algorithms for mining the true frequent
sequential patterns. In all these experiments, we fixed δ = 0.1.

First of all, for each real dataset, we generated 4 pseudo-artificial datasets Di,
i ∈ {1, . . . , 4} from the same ground truth. We then mined the set FSP (Di, θ) and
compared it with the TFSPs, that is, the set FSP (D, θ), where D is the corresponding
ground truth. Such experiments aimed to verify whether the sets of the FSPs extracted
from the pseudo-artificial datasets contain false positives and miss some TFSPs. Table 4.2
shows the fractions of times that the set FSP (Di, θ) contains at least one false positive
and misses at least one TFSP from the ground truth. We ran this evaluation over the 4
datasets Di, i ∈ {1, . . . , 4}, of the same size of the corresponding ground truth and we
reported the average. For each dataset, we report the results with two frequency thresholds
θ. In almost all the cases, the FSPs mined from the pseudo-artificial datasets contain
false positives and miss some TFSPs. In particular, with lower frequency thresholds (and,
therefore, a larger number of sequential patterns), the fraction of times we found false
positives and false negatives usually increases. These results emphasize that, in general,
mining FSPs is not enough to learn interesting features of the underlying generative
process of the data, and techniques like the one introduced in this Chapter are necessary.
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Table 4.2 Average fraction of times that FSP (Di, θ) contains false positives and false
negatives. The Table reports: Dataset D; name of the dataset; θ: minimum frequency
threshold; |TFSP|: number of true frequent sequential patterns in the ground truth;
Times FNs (%): percentage of runs that contain at least one false negative (FN); Times
FPs: percentage of runs that contain at least one false positive (FP).

Dataset D θ |TFSP| Times FNs (%) Times FPs (%)

BIBLE 0.1 174 100 50
0.05 774 100 100

BMS1 0.025 13 0 50
0.0225 17 25 0

BMS2 0.025 10 0 0
0.0225 11 0 0

KOSARAK 0.06 23 0 100
0.04 41 25 50

LEVIATHAN 0.15 225 100 75
0.1 651 100 100

MSNBC 0.02 97 25 75
0.015 143 50 100

Finally, we evaluated the performance of our strategy to mine µ-approximations of
the true frequent sequential patterns, with guarantees on the false negatives or on the
false positives. From each pseudo-artificial dataset Di, with i ∈ {1, . . . , 4}, we mined
the FSPs using θ̃ = θ − µ/2, for the first strategy, i.e., FSP (Di, θ̃), and θ̂ = θ + µ/2,
for the second one, i.e., FSP (Di, θ̂), computed, respectively, using Theorem 7 and 8,
and we compared the extracted sequential patterns with the TFSPs from the respective
ground truth D, i.e., FSP (D, θ). Table 4.3 shows the obtained results. Our algorithm
performs better than the theoretical guarantees for both type of approximations, indeed
we obtained a µ-approximation in all the runs, while the theory guarantees a probability
of at least 1− δ = 0.9. We also computed the average fraction of TFSPs reported in the
output w.r.t. the total number of sequential patterns reported by the algorithm, that is,
|TFSP |/|FSP (Di, θ̃)| for the FNF µ-approximations and |FSP (Di, θ̂)|/|TFSP | for the
FPF µ-approximations. In particular, for the FNF µ-approximations, such a measure
shows the ratio of reported sequential patterns that are not false positives, while for
the FPF µ-approximations, it shows the ratio of reported sequential patterns that are
true frequent sequential patterns. Let us note that we aimed to obtain ratios as close
to 1 as possible but that our strategy does not provide theoretical guarantees in such
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Table 4.3 Results of our algorithm to mine µ-approximations of the TFSPs. The Table
reports: Dataset D; name of the dataset; θ: minimum frequency threshold; |TFSP|:
number of true frequent sequential patterns in the ground truth; FNF µ-app. (%):
percentage of FNF µ-approximations obtained over the 4 datasets; |TFSP |/|FSP (Di, θ̃)|:
average ratio of reported TFSPs over the 4 datasets; FPF µ-app. (%): percentage of FPF
µ-approximations obtained over the 4 samples; |FSP (Di, θ̂)|/|TFSP |: average ratio of
reported TFSPs over the 4 datasets.

Dataset D θ |TFSP| FNF µ-app.
(%)

|TFSP|/
|FSP(Di, θ̃)|

FPF µ-app.
(%)

|FSP(Di, θ̂)|/
|TFSP|

BIBLE 0.1 174 100 0.63 100 0.55
0.05 774 100 0.33 100 0.32

BMS1 0.025 13 100 0.21 100 0.38
0.0025 17 100 0.19 100 0.29

BMS2 0.025 10 100 0.32 100 0.13
0.0025 11 100 0.19 100 0.18

KOSARAK 0.06 23 100 0.64 100 0.41
0.04 41 100 0.49 100 0.43

LEVIATHAN 0.15 225 100 0.30 100 0.30
0.1 651 100 0.11 100 0.18

MSNBC 0.02 97 100 0.77 100 0.56
0.015 143 100 0.65 100 0.50

a direction. For some datasets, e.g., BMS1, BMS2, and LEVIATHAN, such ratios are
not very high. Let us note that LEVIATHAN is a very small dataset while BMS1 and
BMS2, even if are larger than other datasets, contain very short transactions. Instead
with other (larger) datasets, e.g., BIBLE, KOSARAK, and MSNBC, the ratios are higher.
Indeed, as previously stated, our strategy crucially hinges on a bound on the maximum
deviation, whose quality depends on the available amount of data. (Let us note that
except MSNBC, all the other datasets have a fairly limited number of transactions.)

Overall, the results show that our algorithm is a valid strategy to obtain rigorous
approximations, with no false negatives or no false positives, for the true frequent
sequential pattern mining task, and approaches like the one introduced in this Chapter
are necessary to obtain rigorous guarantees.



Chapter 5

Mining Statistically Robust
Patterns from a Sequence of
Datasets

In this Chapter, we consider the problem of mining statistically robust patterns from a
sequence of datasets. Let us remember that in Chapter 4, we considered the scenario in
which the dataset is a random sample from an unknown underlying generative process
and by analyzing the dataset, one is interested in mining sequential patterns that are
frequently generated by such a process. In this Chapter, we consider a similar scenario
with a sequence of datasets, which are random samples from (possibly different) unknown
underlying generative processes, instead of a single dataset. In such a scenario, we
are interested in mining patterns whose true frequencies follow well specified trends
through the sequence of datasets and we describe this task for a generic pattern mining
task. Again, a key challenge is the computation of a bound on the difference between
the true frequencies of the patterns w.r.t. the underlying generative distributions and
their frequencies in the datasets. To solve this difficult task, we generalize results from
the previous Chapter based on the VC-dimension, which allow us to obtain rigorous
approximations of the statistically robust patterns, with guarantees on the false positives
or on the false negatives. However, let us note that our strategy can employ any uniform
convergence bound. Part of the contributions described in this Chapter appear in [84],
while an extended version is currently under review in the journal Knowledge and
Information Systems, invited among the best papers accepted at IEEE ICDM’20.
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Grosso: (Italian adj.) large, big, robust.

5.1 Introduction

Let us remember, from Section 2.1, that frequent pattern mining [27] is one of the
fundamental tasks in data mining, and requires to identify all patterns appearing in
fractions at least θ of all transactions from a transactional dataset. Several variants of
the problem have explored different types of patterns (from itemsets [2] to sequential
patterns [3], to subgroups [36], to graphlets [4]) relevant to applications ranging from
market basket analysis to recommendation systems to spam detection.

In several real applications, a pattern is studied in the context of a sequence of
datasets, where the sequence is given, for example, from the collection of the data at
different time points. For example, in market basket analysis, it is natural to study the
patterns (e.g., itemsets) in datasets obtained from transactions in different weeks or
months. In almost all applications, one can assume that each dataset is obtained from
a generative process on transactions, which generates transactions according to some
probability distribution, as assumed by statistically-sound pattern mining [26]. Let us
consider, for example, a series of n surveys performed in n different time intervals in a
supermarket, where we collect the data of the receipts of the costumers. The goal of such
surveys is to infer information on how the behavior of the entire customers population
evolves, but, obviously, it is impossible to collect the receipts of the whole population.
Thus, our datasets only represent a collection of samples from the whole population.

In such a scenario, patterns of interest are the ones whose probability of appearing in
a transaction follows some well-specified trend (e.g., it increases, decreases, or is constant
across datasets). In the survey example above, we may be interested in finding sequences
of purchases (i.e., sequential patterns) which become more and more common in time to
understand how the customers’ behavior changes over time. However, the identification
of such patterns is extremely challenging, since the underlying probability distributions
are unknown and the observed frequencies of the patterns in the data only approximately
reflect such probabilities. As a result, considering the same trends at the level of observed
frequencies leads to reporting several false positives. This problem is exacerbated by the
huge number of potential candidates, which poses a severe multiple hypothesis correction
problem [58]. In addition, techniques developed for significant pattern mining [26] or for
statistically emerging pattern mining [38] can only be applied to (a sequence of) two
datasets.
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To address such challenges, in this Chapter we introduce a novel framework to identify
statistically robust patterns from a sequence of datasets, i.e., patterns whose probability
of appearing in transactions follows a well-specified trend, while providing guarantees
on the quality of the reported patterns in terms of false positives or in terms of false
negatives.

5.1.1 Our Contributions

In this Chapter, we introduce the problem of mining statistically robust patterns from a
sequence of datasets. In this regard, our contributions are:

• We define the problem of mining statistically robust patterns, and define an
approximation of such patterns that does not contain false positives. We also
describe three general types of patterns (emerging, descending, and stable) which
are of interest in most scenarios.

• We introduce an algorithm, gRosSo, to obtain a rigorous approximation, without
false positives, of the statistically robust patterns from a sequence of datasets
with probability at least 1− δ, where δ is a confidence parameter set by the user.
Our strategy is based on the concept of maximum deviation and can employ any
uniform convergence bound (see Section 2.4). We show how such a strategy can be
used to approximate the three types of statistically robust patterns we introduced.

• We define an approximation of the statistically robust patterns that does not
contain false negatives, and explain how gRosSo can be modified to obtain such
an approximation with high probability. We also discuss and prove additional
guarantees that can be obtained with gRosSo.

• We apply the general framework of statistically robust patterns to mine sequential
patterns. We also introduce a novel algorithm to compute an upper bound on the
capacity of a sequence that can be used to bound the maximum deviation using
the statistical learning concept of VC-dimension of sequential patterns.

• We apply the general framework of statistically robust patterns to mine itemsets
using the VC-dimension of itemsets to bound the maximum deviation.

• We perform an extensive experimental evaluation, mining statistically robust
sequential patterns and itemsets from pseudo-artificial datasets. Our evaluation
proves that relying on frequency alone leads to several spurious discoveries, while
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gRosSo provides high-quality approximations for both data mining tasks. Finally,
we analyze real datasets mining statistically robust sequential patterns, proving
that gRosSo is able to detect various type of patterns.

5.1.2 Related Work

In significant pattern mining (see Section 2.5) the dataset is seen as a sample from an
unknown distribution and one is interested in finding patterns significantly deviating
from an assumed null distribution (or hypothesis). Many variants and algorithms have
been proposed for the problem. We point interested readers to the survey [26] and the
recent works [45, 59, 60]. Few works have been proposed to mine statistically significant
sequential patterns [24, 47, 83]. These methods are orthogonal to our approach, which
focuses on finding patterns whose frequencies w.r.t. underlying generative distributions
respect well defined conditions through a sequence of datasets.

The first work that proposed the problem of mining emerging patterns is [14]. To
the best of our knowledge, the only work that considers the problem of finding emerging
patterns considering a data generative process and provides statistical guarantees is [38].
However, the proposed approach only works with two datasets and only finds patterns
with significant differences in the two datasets. Instead, our approach describes more
general trends of the probabilities of the patterns and considers more than two datasets,
and it is unclear whether the approach of [38] can be modified to work in our scenario.

Few works have been proposed to mine robust patterns, where the robustness is
usually defined by constraints between the relation of the observed frequency of a pattern
in a dataset and the frequencies of its sub- or super-patterns. For example, [97] defines
robust patterns as patterns for which, by removing some of their sub-patterns, the ratio
between its original frequency and the frequency of the resulting pattern in a dataset
is greater than a user defined parameter. Egho et al. [15] introduces a space of rules
patterns model and it defines a Bayesian criterion for evaluating the interest of sequential
patterns for mining sequential rule patterns for classification purpose. Differently from
our work, these contributions focus on a single dataset and do not consider a dataset as
a collection of samples from an unknown generative process.

Finally, let us note that while in this Chapter we use a general framework similar
to the one we propose in Chapter 4 to mine true frequent sequential patterns, in this
Chapter we consider the problem of mining statistically robust patterns in a sequence of
datasets, that is a different task.

We remind interested readers to the related work of Chapter 3 (Section 3.1.2) and
Chapter 4 (Section 4.1.2) for works regarding frequent sequential pattern mining, true
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frequent pattern mining, and other pattern mining problems based on the (empirical)
VC-dimension.

5.1.3 Organization of the Chapter

The rest of the Chapter is structured as follows. Section 5.2 contains the definitions and
concepts used throughout this Chapter. Our framework for statistically robust pattern
mining is presented in Section 5.3. Section 5.4 describes our algorithm, gRosSo to mine
statistically robust patterns and provides discussions and proofs of the guarantees that
can be obtained with gRosSo. The application of our approach for mining statistically
robust sequential patterns is described in Section 5.5, while the application for mining
statistically robust itemsets is described in Section 5.6. Section 5.7 reports the results of
an extensive suite of experiments performed to evaluate the effectiveness of gRosSo on
pseudo-artificial and real datasets.

5.2 Preliminaries

We now provide the definitions and the concepts used throughout the Chapter, refreshing
some notions defined in Chapter 2. We start by refreshing the task of pattern mining
and the assumptions of the true frequent pattern mining task, introduced, respectively,
in Section 2.1 and 2.3. We then show how to bound the maximum deviation for the
task we consider in this Chapter, generalizing the concepts introduced in Chapter 4 for
sequential pattern mining to a general pattern mining task.

5.2.1 Pattern Mining

Let us remember, from Section 2.1, that a pattern p is an element from a domain U,
potentially with some constraints. Given a dataset D, which is a bag of |D| transactions
(i.e., patterns), and a minimum frequency threshold θ ∈ (0, 1], frequent pattern (FP)
mining is the task of reporting the set FP (D, θ) of all patterns whose frequency fD(p) in
D is at least θ, and their frequencies, that is,

FP (D, θ) = {(p, fD(p)) : p ∈ U, fD(p) ≥ θ}.

where the frequency fD(p) of p in D is the fraction of transactions in D to which p

belongs, that is,
fD(p) = |{τ ∈ D : p ⊑ τ}|

|D|
.
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As assumed in true frequent pattern mining (see Section 2.3), in several applications,
the dataset D is a sample of transactions independently drawn from an unknown proba-
bility distribution π on U, that is, π : U→ [0, 1]. In such a scenario, the dataset D is a
finite bag of |D| i.i.d. samples from π. For any pattern p ∈ U, the true support set T (p)
of p is the set of patterns in U to which p belongs, i.e., T (p) = {τ ∈ U : p ⊑ τ}, and the
true frequency tπ(p) of p w.r.t. π is the probability that a transaction sampled from π

contains p, that is,
tπ(p) = Pr

τ∼π
(p ⊑ τ).

In such a scenario, the final goal of the data mining process on D is to gain a better
understanding of the process that generated the data, i.e., the distribution π, through
the true frequencies of the patterns, which are unknown and only approximately reflected
in the dataset D.

5.2.2 Bound on the Maximum Deviation

Let us remember that under the assumptions of true frequent pattern mining (see
Section 4.2.2), one is interested in finding good estimates for tπ(p) simultaneously for
each pattern p ∈ U. In such a scenario, the true frequency tπ(p) and the frequency fD(p)
of a pattern p on D represent, respectively, the expectation and the empirical average of
a function associated with p. Thus, the maximum deviation (see Equation 2.1) is

sup
p∈U
|tπ(p)− fD(p)|,

and one is interested in finding probabilistic upper bounds on such a measure, i.e., finding
a µ ∈ (0, 1) such that

Pr
(

sup
p∈U
|tπ(p)− fD(p)| ≤ µ

)
≥ 1− δ,

with a confidence parameter δ ∈ (0, 1).
To find such a probabilistic upper bound, we now generalize the concepts based on

the empirical VC-dimension introduced in Chapter 4 for sequential pattern mining to a
general pattern mining task. First, we define the range space of patterns, generalizing
Definition 10, and then we show how the empirical VC-dimension can be used to bound
the maximum deviation in our scenario.

Definition 11. Let U be a domain. We define RS = (X,R) to be a range space associated
with U such that:
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• X = U is the set of patterns in U;

• R = {T (p) : p ∈ U} is a family of sets of transactions such that for each pattern p

the set T (p) = {τ ∈ U : p ⊑ τ} is the true support set of p.

The following theorem is a generalization of the result for sequential patterns in-
troduced in Chapter 4, Theorem 6. Here we provide it for a general pattern mining
task.

Theorem 9. Let RS = (X,R) be the range space associated with U, let π be a probability
distribution on the domain U, and let D be a finite bag of i.i.d. sample from π. If the
empirical VC-dimension EV C(RS,D) of RS on D ≤ d, then, given δ ∈ (0, 1) and

µ =
√

1
2|D|

(
d + ln 1

δ

)
,

supp∈U |tπ(p)− fD(p)| ≤ µ with probability at least 1− δ.

The proof is analogous to the proof of Theorem 6 in Section 4.2.2.
In Section 5.5 and 5.6, we discuss, respectively, an efficient computable upper bound

on the empirical VC-dimension of sequential patterns and of itemsets, to bound the
maximum deviation for these two data mining tasks.

5.3 Statistically Robust Pattern Mining

In this Section, we introduce the task of statistically robust pattern (SRP) mining from a
sequence of datasets. Let us consider the scenario in which we have a sequence Dn

1 =
{D1,D2, . . . ,Dn} of n datasets, where each dataset Di is a bag of |Di| i.i.d. samples taken
from a probability distribution πi on U, with i ∈ {1, . . . , n}. Let Πn

1 = {π1, π2, . . . , πn}
denote the sequence of the n probability distributions and Tp = {tπ1(p), tπ2(p), . . . , tπn(p)}
the sequence of the true frequencies of the pattern p w.r.t. Πn

1 . In such a scenario,
we are interested in finding patterns whose true frequencies w.r.t. Πn

1 respect a well
defined condition cond(Tp) that describes the evolution of their true frequencies through
the sequence. For example, one may be interested in finding patterns whose true
frequencies are almost the same in all the probability distributions, or patterns whose
true frequencies always increase/decrease, and so on. So, given n probabilities distribution
Πn

1 = {π1, π2, . . . , πn}, a condition cond(Tp) on the true frequencies Tp that defines the
patterns we are interested in, with cond(Tp) = 1 when the condition is satisfied and
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cond(Tp) = 0 otherwise, statistically robust pattern mining is the task of reporting the
set SRP (Πn

1 ) of all patterns whose true frequencies w.r.t Πn
1 respect cond(Tp), that is,

SRP (Πn
1 ) = {(p, Tp) : p ∈ U ∧ cond(Tp) = 1}.

Similarly to TFP mining, from a sequence of samples (the datasets Dn
1 ) it is not

possible to find the exact set SRP (Πn
1 ). Thus, one has to resort to approximations.

Denoting by Fp = {fD1(p), fD2(p), . . . , fDn(p)} the sequence of the n frequencies of p in
Dn

1 , we define a false positives free (FPF) approximation AP of SRP (Πn
1 ) as

AP = {(p,Fp) : ∃(p, Tp) ∈ SRP (Πn
1 )}.

The approximation AP does not contain false positives, that is, patterns p /∈ SRP (Πn
1 ).

In Section 5.4.4, we define an approximation that does not contain false negatives.
Now, we define three general types of patterns that can be described by the SRPs

framework, and that we consider in the rest of this Chapter.

Emerging Patterns (EP): these are patterns whose true frequencies always increase
over the sequence, i.e., patterns p for which tπi+1(p) > tπi

(p) + ε, for all i ∈ {1, . . . , n− 1},
for some given emerging threshold ε ∈ [0, 1). Formally, given an emerging threshold
ε ∈ [0, 1), we define the emerging condition condE(Tp) as

condE(Tp) =

1 if tπi+1(p) > tπi
(p) + ε,∀i ∈ {1, . . . , n− 1}

0 otherwise.
(5.1)

Descending Patterns (DP): these are patterns p whose true frequencies always
decrease over the sequence, i.e., patterns p for which tπi

(p) > tπi+1(p) + ε for all i ∈
{1, . . . , n− 1}, for some given emerging threshold ε ∈ [0, 1). Formally, given an emerging
threshold ε ∈ [0, 1), we define the descending condition condD(Tp) as

condD(Tp) =

1 if tπi
(p) > tπi+1(p) + ε,∀i ∈ {1, . . . , n− 1}

0 otherwise.
(5.2)

Stable Patterns (SP): these are patterns whose true frequencies in the n probability
distributions are above a minimum frequency threshold θ and do not change too much.
In particular, we consider patterns p for which |tπi

(p)− tπj
(p)| ≤ α and tπi

(p) ≥ θ for all
i ̸= j ∈ {1, . . . , n}, for some given stability threshold α ∈ (0, 1) and a minimum frequency
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threshold θ ∈ (0, 1). Formally, given a stability threshold α ∈ (0, 1) and minimum
frequency threshold θ ∈ (0, 1), we define the stability condition condS(Tp) as

condS(Tp) =


1 if |tπi

(p)− tπj
(p)| ≤ α ∧ tπi

(p) ≥ θ,

∀ i ̸= j ∈ {1, . . . , n}

0 otherwise.

(5.3)

Let us note that many more types of patterns can be described by our proposed
framework. For example, one may be interested in patterns whose true frequencies in
the different probability distributions have a ratio larger than a user-defined constant, or
may be interested in patterns whose true frequencies are stable in some distributions
and then increase/decrease in others, or that first increase and then decrease, and so on.
In addition, for the EP and DP tasks, we provided general conditions to describe such
patterns, while one may also consider constraints using a minimum frequency threshold
θ.

5.4 gRosSo: Approximating the SRPs

In this Section, we describe gRosSo, mininG statistically RObuSt patterns from a
Sequence Of datasets, our strategy to provide a rigorous approximation of the SRPs. In
particular, gRosSo aims to find an approximation that does not contain false positives
(i.e., a FPF approximation, see Section 5.3) with high probability. In Sections 5.4.1-5.4.3
we show how to apply such a strategy to mine approximations of the three types of SRPs
we defined in the previous Section. gRosSo can also be modified to find approximations
with guarantees on the false negatives: in Section 5.4.4, we show how to use gRosSo to
find such approximations for the EP task. Finally, in Section 5.4.5 we describe additional
guarantees that can be obtained with gRosSo for both types of approximations.

Algorithm 6 shows the pseudo-code of gRosSo. For a fixed cond(Tp) that defines
the SRPs we are interested in, and given the sequence Dn

1 of n datasets and a confidence
parameter δ ∈ (0, 1) as inputs, we start computing an upper bound µi on the maximum
deviation w.r.t πi for each dataset Di, i.e., supp∈U |tπi

(p)−fDi
(p)| ≤ µi, with i ∈ {1, . . . , n}

(line 2). Each upper bound is computed using confidence δ/n, thus Pr(supp∈U |tπi
(p)−

fDi
(p)| ≤ µi) ≥ 1−δ/n, ∀i ∈ {1, . . . , n}. We denote by µn

1 = {µ1, µ2, . . . , µn} the sequence
of the n upper bounds on the maximum deviations. (Such upper bounds can be computed,
for example, using Theorem 9 and the VC-dimension.) Since cond(Tp) considers the true
frequencies Tp, which are unknown, we need to define a new condition condP (Fp, µn

1 ) on
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Algorithm 6: gRosSo: find a FPF approximation AP of SRP (Πn
1 ).

Data: Datasets Dn
1 , δ ∈ (0, 1).

Result: Set AP that is a FPF approx. of SRP (Πn
1 ) with probability ≥ 1− δ.

1 foreach Di ∈ Dn
1 do

2 µi ← ComputeMaxDev(Di, δ/n);
3 θ̃i ← min. frequency threshold for Di computed considering condP (Fp, µn

i );
4 B ← FP (Dk, θ̃k), with k = arg maxi∈{1,...,n} θ̃i;
5 AP ← ∅;
6 foreach (p, fDk

(p)) ∈ B do
7 Fp ← empty array of n elements;
8 Fp[k]← fDk

(p); /* Fp[k]: k-th element of Fp */
9 AP ← AP ∪ (p,Fp);

10 foreach Di ∈ Dn
1 \ Dk do

11 foreach (p,Fp) ∈ AP do
12 Fp[i]← ComputeFrequency(Di, p);
13 if condP (Fp, µn

1 ) = 0 then
14 AP ← AP \ (p,Fp);
15 return AP ;

the frequencies Fp and on the upper bounds µn
1 . Such a new FPF condition takes into

account the uncertainty of the data in our samples, i.e., the datasets, in order to avoid
false positives, and, for a pattern p, it must be cond(Tp) = 0 =⇒ condP (Fp, µn

1 ) = 0
if supp∈U |tπi

(p)− fDi
(p)| ≤ µi holds ∀i ∈ {1, . . . , n}. Figure 5.1 shows such conditions

for the EP and SP scenarios as examples. Let us note that condP (Fp, µn
1 ) can be also

evaluated only considering a subsequence of the frequencies Fp, and if condP (Fp, µn
1 ) = 0

for some subsequence, then there are no guarantees that cond(Tp) = 1. Then, we aim
to find a starting set of possible candidates. For each dataset Di, we compute the
minimum frequency threshold θ̃i which the patterns must have in such a dataset to verify
condP (Fp, µn

1 ) (line 3). We then mine the dataset Dk, where k = arg maxi∈{1,...,n} θ̃i, with
the corresponding minimum frequency threshold θ̃k, obtaining the set B = FP (Dk, θ̃k)
of the starting candidates (line 4). The idea is to mine the dataset with the highest
minimum frequency threshold in order to obtain a set of possible candidates that is as
small as possible. Finally, we explore the remaining datasets. For each Di ∈ Dn

1 \ Dk

and for each p ∈ B, we compute its frequency fDi
(p) in Di (line 12) and check whether

condP (Fp, µn
1 ) = 1, considering the subsequence of the frequencies Fp that has already

been computed. If condP (Fp, µn
1 ) = 0, there are no guarantees that cond(Tp) = 1, and

we remove such a pattern from the set of the possible candidates (lines 13-14). Then,
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Fig. 5.1 FPF conditions for the EP and SP. The two panels show the cond(Tp) (left) and
the corresponding condP (Fp, µn

1 ) (right), which takes into account the uncertainty of the
data and avoids false positives, for the EP and SP tasks, with n = 3 datasets.

the output are the patterns that have not been removed from the set of the possible
candidates (line 15).

Theorem 10. The set AP returned by gRosSo is a FPF approximation of SRP (Πn
1 )

with probability ≥ 1− δ.

Proof. From the definition of condP (Fp, µn
1 ), cond(Tp) = 0 =⇒ condP (Fp, µn

1 ) = 0 if
supp∈U |tπi

(p)− fDi
(p)| ≤ µi holds ∀ i ∈ {1, . . . , n}. In such a scenario, only the patterns

p ∈ SRP (Πn
1 ) can appear in AP , and thus AP is a FPF approximation of SRP (Πn

1 ).
Now, let us define the event Ei as the event in which supp∈U |tπi

(p) − fDi
(p)| > µi,

with i ∈ {1, . . . , n}. From the choice of the confidence parameter used to compute the
upper bounds on the maximum deviation, we know that Pr(Ei) < δ/n. So, we have
Pr(∃i ∈ {1, . . . , n} : supp∈U |tπi

(p)−fDi
(p)| > µi) = Pr(∪n

i=1Ei) ≤
∑n

i=1 Pr(Ei) < δ. Thus,
the set AP returned by gRosSo is a FPF approximation of SRP (Πn

1 ) with probability
≥ 1− δ, which concludes the proof.
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5.4.1 FPF Approximation of the EP

Now, we apply the strategy defined above to find a FPF approximation of the EP.
Starting from condE(Tp) (Equation 5.1), we define condE

P (Fp, µn
1 ) as

condE
P (Fp, µn

1 ) =


1 if fDi+1(p)− µi+1 − (fDi

(p) + µi) > ε,

∀ i ∈ {1, . . . , n− 1}
0 otherwise.

For a given i ∈ {1, . . . , n− 1}, such a condition represents the scenario in which tπi+1(p)
and tπi

(p) assume the values fDi+1(p) − µi+1 and fDi
(p) + µi, respectively, that are

the values at which their distance is minimum over all possible values that they can
assume. Only if such a condition is true, we are guaranteed that tπi+1(p) > tπi

(p) + ε.
(See Figure 5.1.) Then, starting from such a condition, we compute the minimum
frequency threshold for each dataset. Since it must be fD2(p) − µ2 > fD1(p) + µ1 + ε

and fD3(p)− µ3 > fD2(p) + µ2 + ε, and thus fD3(p) > fD1(p) + 2 · ε + µ1 + µ3 + 2 · µ2,
iterating such a reasoning for all the n datasets and considering fD1(p) ≥ 0, we obtain
the minimum frequency threshold θ̃E

n for the dataset Dn,

θ̃E
n = (n− 1) · ε + µ1 + µn +

n−1∑
i=2

2 · µi,

the highest over all the n datasets. Thus, the set FP (Dn, θ̃E
n ) provides the starting

candidates. Finally, starting from Dn−1 and ending with D1, we analyze the remaining
datasets and check whether the candidates verify condE

P (Fp, µn
1 ).

Theorem 11. condE(Tp) = 0 =⇒ condE
P (Fp, µn

1 ) = 0.

Proof. Let us consider that supp∈U |tπi
(p)− fDi

(p)| ≤ µi, ∀ i ∈ {1, . . . , n}. Thus, we have
that for all patterns p ∈ U, it results tπi

(p) ∈ [fDi
(p)− µi, fDi

(p) + µi], ∀ i ∈ {1, . . . , n}.
Let p′ be a pattern s.t. condE(Tp′) = 0. From Equation 5.1, there is at least a couple
of consecutive distribution πj, πj+1, with j ∈ {1, . . . , n− 1}, s.t. tπj+1(p′) ≤ tπj

(p′) + ε.
Since we know that tπj+1(p′) ∈ [fDj+1(p′) − µj+1, fDj+1(p′) + µj+1] and that tπj

(p′) ∈
[fDj

(p′)− µj, fDj
(p′) + µj ], the condition fDj+1(p′)− µj+1− (fDj

(p′) + µj) > ε, cannot be
verified for such p′, and thus condE

P (Fp′ , µn
1 ) = 0, which concludes the proof.

If one is interested in patterns with a true frequency above a value θ ∈ (0, 1), i.e.,
tπi

(p) ≥ θ, ∀ i ∈ {1, . . . , n}, the following strategy can be used to reduce the set of
starting candidates. Since we require that fD1(p) ≥ θ + µ1 to discard possible false
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positives, a factor θ + µ1 must be added to θ̃E
n . Instead, if one is interested in patterns p

with tπn(p) ≥ θ, the minimum frequency threshold θ̃E
n for dataset Dn is

θ̃E
n = max{(n− 1) · ε + µ1 + µn +

n−1∑
i=2

2 · µi, θ + µn}.

5.4.2 FPF Approximation of the DP

Using the same approach proposed to approximate the EP, it is possible to approximate
the DP. Starting from condD(Tp) (Equation 5.2), we define condD

P (Fp, µn
1 ) as

condD
P (Fp, µn

1 ) =


1 if fDi

(p)− µi − (fDi+1(p) + µi+1) > ε,

∀ i ∈ {1, . . . , n− 1}
0 otherwise.

Iterating such a condition for all the n datasets, we obtain the minimum frequency
threshold θ̃D

1 = θ̃E
n for the dataset D1, that is the highest over all the n datasets. Thus,

the set FP (D1, θ̃D
1 ) provides the starting candidates. Finally, starting from D2 and

ending with Dn, we analyze the remaining datasets and check whether the candidates
verify condD

P (Fp, µn
1 ). In the case of a minimum frequency threshold θ ∈ (0, 1), reasoning

analogous to the EP can be applied.

Theorem 12. condD(Tp) = 0 =⇒ condD
P (Fp, µn

1 ) = 0.

The proof is analogous to the proof of Theorem 11.

5.4.3 FPF Approximation of the SP

Finally, we apply the strategy defined above to find an approximation of the SP. Starting
from condS(Tp) (Equation 5.3), we define condS

P (Fp, µn
1 ) as

condS
P (Fp, µn

1 ) =



1 if fDi
(p) + µi − (fDj

(p)− µj) ≤ α

∧ fDj
(p) + µj − (fDi

(p)− µi) ≤ α,

∧ fDi
(p)− µi ≥ θ,

∀ i ̸= j ∈ {1, . . . , n}

0 otherwise.

Given i ≠ j ∈ {1, . . . , n}, the first two conditions represent the scenario in which tπi
(p)

and tπj
(p) assume the values fDi

(p)− µi and fDj
(p) + µj , respectively, if fDi

(p) < fDj
(p),
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or respectively the values fDj
(p)−µj and fDi

(p)+µi if fDj
(p) < fDi

(p), that are the values
at which their distance is maximum over all possible values that they can assume. Only
if such conditions are true, we can prove that |tπi

(p)− tπj
(p)| ≤ α. The third condition,

instead, represents the scenario in which tπi
(p) assumes the value fDi

(p)− µi, that is the
minimum value that it can assume. Only if such a condition is true, we can prove that
tπi

(p) ≥ θ. (See Figure 5.1.) The only condition that affects the minimum frequency
thresholds θ̃S

i is fDi
(p) ≥ θ+µi, ∀i ∈ {1, . . . , n}. So, we have θ̃S

i = θ+µi, ∀i ∈ {1, . . . , n},
and the set FP (Dk, θ̃S

k ), with k = arg maxi∈{1,...,n} θ̃S
i , provides the starting candidates.

Finally, we analyze the remaining datasets Di ∈ Dn
1 \Dk and check whether the candidates

verify condS
P (Fp, µn

1 ).

Theorem 13. condS(Tp) = 0 =⇒ condS
P (Fp, µn

1 ) = 0.

Proof. Let us consider that supp∈U |tπi
(p)− fDi

(p)| ≤ µi, ∀ i ∈ {1, . . . , n}. Thus, we have
that for all patterns p ∈ U, it results tπi

(p) ∈ [fDi
(p)− µi, fDi

(p) + µi], ∀ i ∈ {1, . . . , n}.
Let p′ be a pattern s.t. condS(Tp′) = 0. From Equation 5.3, there is at least a distribution
πi, with i ∈ {1, . . . , n} s.t. tπi

(p′) < θ and/or there is at least a couple of distributions
πk, πj, with k ̸= j ∈ {1, . . . , n}, s.t. |tπj

(p′)− tπk
(p′)| > α. First, let us consider the case

in which there is a distribution πi, with i ∈ {1, . . . , n}, s.t. tπi
(p′) < θ. Since we know

that tπi
(p′) ∈ [fDi

(p′)− µi, fDi
(p′) + µi], the condition fDi

(p′)− µi ≥ θ cannot be verified,
and thus condS

P (Fp′ , µn
1 ) = 0. Now, let us consider the case in which there is a couple of

distributions πk, πj, with k ̸= j ∈ {1, . . . , n} s.t. |tπj
(p′)− tπk

(p′)| > α. Since we know
that tπj

(p′) ∈ [fDj
(p′)−µj, fDj

(p′)+µj ] and that tπk
(p′) ∈ [fDk

(p′)−µk, fDk
(p′)+µk], the

condition fDj
(p′) + µj − (fDk

(p′)− µk) ≤ α cannot be verified, if fDj
(p′) > fDk

(p′), while
the condition fDk

(p′) + µk − (fDj
(p′) − µj) ≤ α cannot be verified if fDj

(p′) < fDk
(p′),

and thus condS
P (Fp′ , µn

1 ) = 0, which concludes the proof.

5.4.4 Guarantees on False Negatives

In this Section, we explain how gRosSo can be modified to obtain an approximation
without false negatives with high probability. Analogously to what done in Section 5.3,
we first define a false negatives free (FNF) approximation AN of SRP (Πn

1 ) as

AN = {(p,Fp),∀(p, Tp) ∈ SRP (Πn
1 )}.

The approximation AN does not contain false negatives, that is, it contains all patterns
p ∈ SRP (Πn

1 ).
Our algorithm gRosSo can be used to obtain FNF approximations. The procedure

is the same described above (see Algorithm 6) but we need to define a new condition
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Fig. 5.2 FNF condition for the EP. The two panels show the cond(Tp) (left) and the
corresponding condN(Fp, µn

1 ) (right), which takes into account the uncertainty of the
data and avoids false negatives, for the EP task, with n = 3 datasets.

condN(Fp, µn
1 ), a FNF condition that takes into account the uncertainty in the data

in order to avoid false negatives, and for a pattern p it must be cond(Tp) = 1 =⇒
condN(Fp, µn

1 ) = 1 if supp∈U |tπi
(p) − fDi

(p)| ≤ µi holds ∀i ∈ {1, . . . , n}. Figure 5.2
shows such a condition for the EP scenario as an example. Then, we compute the
minimum frequency threshold θ̂i for each dataset Di, with i ∈ {1, . . . , n}, considering
condN (Fp, µn

i ), and we mine the set of the starting candidates from the dataset with the
highest minimum frequency threshold.

Theorem 14. The set AN returned by gRosSo using condN (Fp, µn
1 ) is a FNF approxi-

mation of SRP (Πn
1 ) with probability ≥ 1− δ.

Proof. From the definition of condN(Fp, µn
1 ), cond(Tp) = 1 =⇒ condN(Fp, µn

1 ) = 1 if
supp∈U |tπi

(p)− fDi
(p)| ≤ µi holds ∀ i ∈ {1, . . . , n}. In such a scenario, all the patterns

p ∈ SRP (Πn
1 ) appear in AN , and thus AN is a FNF approximation of SRP (Πn

1 ). The
remaining of the proof is analogous of the proof of Theorem 10.

FNF Approximation of the EP

Now, we apply the strategy defined above to find a FNF approximation of the EP. With
a similar reasoning, it is possible to mine a FNF approximation of the descending and
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stable patterns. Starting from condE(Tp) (Equation 5.1), we define condE
N(Fp, µn

1 ) as

condE
N(Fp, µn

1 ) =


1 if fDi+1(p) + µi+1 − (fDi

(p)− µi) > ε,

∀ i ∈ {1, . . . , n− 1}
0 otherwise.

For a given i ∈ {1, . . . , n−1}, such a condition represents the scenario in which tπi+1(p) and
tπi

(p) assume the values fDi+1(p) + µi+1 and fDi
(p)− µi, respectively, that are the values

at which their distance is maximum over all possible values that they can assume. Only if
such a condition is false, we can prove that tπi+1(p) ≤ tπi

(p) + ε. (See Figure 5.2.) Then,
starting from such a condition, we compute the minimum frequency threshold for each
dataset. Since it must be fD2(p) + µ2 > fD1(p)−µ1 + ε and fD3(p) + µ3 > fD2(p)−µ2 + ε,
and thus fD3(p) > fD1(p) + 2 · ε− µ1 − µ3 − 2 · µ2, iterating such a reasoning for all the
n datasets and considering fD1(p) ≥ 0, we obtain the minimum frequency threshold

θ̂E
i = (i− 1) · ε− µ1 − µi −

i−1∑
j=2

2 · µj,

for each dataset Di, i ∈ {2, . . . , n}, and θ̂E
1 = 0. Thus, the set FP (Dk, θ̂E

k ), with
k = arg maxi∈{1,...,n} θ̂E

i , provides the starting candidates. Then, we analyze the remaining
datasets Di ∈ Dn

1 \ Dk and check whether the candidates verify condE
N(Fp, µn

1 ). Let us
note that, depending on the values of ε and µn

1 , the highest minimum frequency threshold
θ̂E

k can be equal or very close to 0, resulting in a huge amount of starting candidates,
sometimes infeasible to mine. Thus, to obtain FNF approximations, a reasonable solution
is to only consider patterns with a minimum true frequency. If one is interested in
patterns with a true frequency above a value θ ∈ (0, 1), i.e., tπi

(p) ≥ θ, ∀ i ∈ {1, . . . , n},
the following strategy can be used to reduce the set of starting candidates. Since we
require that fDi

(p) ≥ θ − µi for all i ∈ {1, . . . , n} to discard possible false negatives, we
obtain the minimum frequency threshold

θ̂E
i = max{(i− 1) · ε + θ − µi −

i−1∑
j=1

2 · µj, θ − µi},

for each dataset Di, i ∈ {1, . . . , n}. Instead, if one is interested in patterns p with
tπn(p) ≥ θ, the highest minimum frequency threshold is the maximum between θ − µn,
for dataset Dn, and the minimum frequency threshold described above without frequency
constraints.
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Theorem 15. condE(Tp) = 1 =⇒ condE
N(Fp, µn

1 ) = 1.

Proof. Let us consider that supp∈U |tπi
(p)− fDi

(p)| ≤ µi, ∀ i ∈ {1, . . . , n}. Thus, we have
that for all patterns p ∈ U, it results tπi

(p) ∈ [fDi
(p)− µi, fDi

(p) + µi], ∀ i ∈ {1, . . . , n}.
Let p′ be a pattern s.t. condE(Tp′) = 1. From Equation 5.1, we have tπj+1(p′) > tπj

(p′)+ε

for all couples of consecutive distributions πj, πj+1, with j ∈ {1, . . . , n − 1}. Since we
know that tπj+1(p′) ∈ [fDj+1(p′) − µj+1, fDj+1(p′) + µj+1] and that tπj

(p′) ∈ [fDj
(p′) −

µj, fDj
(p′) + µj ], the condition fDj+1(p′) + µj+1 − (fDj

(p′)− µj) > ε is verified for such p′

for all j ∈ {1, . . . , n− 1}, and thus condE
N(Fp′ , µn

1 ) = 1, which concludes the proof.

5.4.5 Additional Guarantees of gRosSo

In this Section, we provide additional guarantees of gRosSo for both types of approx-
imations. In particular, it is possible to derive guarantees on the false negatives that
can appear in a FPF approximation returned by gRosSo, and, vice versa, guarantees
on the false positives that can appear in a FNF approximation. Such guarantees differ
considering different types of patterns (i.e., emerging, descending, and stable), and thus,
they must be separately derived for each type of pattern. Here, we prove additional
guarantees for the emerging patterns but, with a similar reasoning, it is possible to obtain
analogous guarantees for the descending and stable patterns.

Theorem 16. For any pattern p with tπi+1(p) > tπi
(p) + ε + 2 · µi + 2 · µi+1 ∀i ∈

{1, . . . , n− 1}, condE
P (Fp, µn

1 ) = 1.

Proof. Let us consider that supp∈U |tπi
(p)− fDi

(p)| ≤ µi, ∀ i ∈ {1, . . . , n}. Thus, we have
that for all patterns p ∈ U, it results tπi

(p) ∈ [fDi
(p)−µi, fDi

(p)+µi], ∀i ∈ {1, . . . , n}. Let
p′ be a pattern s.t. tπi+1(p′) > tπi

(p′)+ε+2·µi+2·µi+1 ∀i ∈ {1, . . . , n−1}. Since we know
that tπi+1(p′) ∈ [fDi+1(p′)−µi+1, fDi+1(p′)+µi+1] and that tπi

(p′) ∈ [fDi
(p′)−µi, fDi

(p′)+µi]
∀i ∈ {1, . . . , n−1}, then we have that fDi+1(p′)−µi+1 > fDi

(p′)+µi+ε ∀i ∈ {1, . . . , n−1},
and thus condE

P (Fp′ , µn
1 ) = 1, which concludes the proof.

Theorem 17. For any pattern p with tπi+1(p) ≤ tπi
(p) + ε − 2 · µi − 2 · µi+1 ∀i ∈

{1, . . . , n− 1}, condE
N(Fp, µn

1 ) = 0.

Proof. Let us consider that supp∈U |tπi
(p)− fDi

(p)| ≤ µi, ∀ i ∈ {1, . . . , n}. Thus, we have
that for all patterns p ∈ U, it results tπi

(p) ∈ [fDi
(p)−µi, fDi

(p)+µi], ∀i ∈ {1, . . . , n}. Let
p′ be a pattern s.t. tπi+1(p′) ≤ tπi

(p′)+ε−2·µi−2·µi+1 ∀i ∈ {1, . . . , n−1}. Since we know
that tπi+1(p′) ∈ [fDi+1(p′)−µi+1, fDi+1(p′)+µi+1] and that tπi

(p′) ∈ [fDi
(p′)−µi, fDi

(p′)+µi]
∀i ∈ {1, . . . , n − 1}, then we have that fDi+1(p′) + µi+1 ≤ fDi

(p′) − µi + ε and thus
condE

N(Fp′ , µn
1 ) = 0, which concludes the proof.
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Theorems 16 and 17 provide additional guarantees for the emerging patterns returned
by gRosSo. In particular, Theorem 16 provides additional guarantees for a FPF
approximation returned by gRosSo, stating that a pattern p with tπi+1(p) > tπi

(p) +
ε + 2 · µi + 2 · µi+1 ∀i ∈ {1, . . . , n − 1} is certainly included in a FPF approximation.
Instead, Theorem 17 provides additional guarantees for a FNF approximation returned
by gRosSo, stating that a pattern p with tπi+1(p) ≤ tπi

(p) + ε − 2 · µi − 2 · µi+1

∀i ∈ {1, . . . , n− 1} can not appear in a FNF approximation.

5.5 Mining Statistically Robust Sequential Patterns

In this Section, we refresh the task of sequential pattern mining (see Section 2.1.2),
as a concrete realization of the general framework of pattern mining we introduced in
Section 5.2.1. Then, we introduce a novel algorithm to compute an upper bound on the
capacity of a sequence which can be used to compute an upper bound on the empirical
VC-dimension of sequential patterns. Finally, we discuss a VC-dimension based strategy
to bound the maximum deviation of the true frequencies of sequential patterns, which
can be used in the SRP mining scenario.

Let us remember, from Section 2.1.2, that a sequential pattern, or sequence, s =
⟨S1, S2, . . . , Sk⟩ is a finite ordered sequence of itemsets Si, with i ∈ {1, . . . , k}, which
are sets of elements called items. The length |s| of s is the number of itemsets in s, the
item-length ||s|| of s is the sum of the sizes of the itemsets in s, that is,

||s|| =
|s|∑

i=1
|Si|.

A sequential pattern y = ⟨Y1, Y2, . . . , Ya⟩ is a subsequence of an other sequential pattern
w = ⟨W1, W2, ..., Wb⟩, denoted by y ⊑ w, if and only if there exists a sequence of naturals
1 ≤ i1 < i2 < · · · < ia ≤ b such that Y1 ⊆ Wi1 , Y2 ⊆ Wi2 , . . . , Ya ⊆ Wia . The capacity
c(s) of a sequence s is the number of distinct subsequences of s, i.e., c(s) = |{a : a ⊑ s}|.
Finally, the domain S is the set of all the sequences which can be built with itemsets
that are subsets of a given set of items I.

Given a dataset D for the sequential pattern mining task, that is a finite bag of
transactions sampled from S in accordance with π, we aim to compute the empirical
VC-dimension EV C(RS,D) of the range space (see Definition 11) associated with S
on the dataset D in order to find a probabilistic bound µ ∈ (0, 1) on the maximum
deviation sups∈S |tπ(s)− fD(s)|. In particular, given EV C(RS,D) and using Theorem 9,
it is possible to compute a µ ∈ (0, 1) s.t. sups∈S |tπ(s)− fD(s)| ≤ µ.
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Let us remember, from Section 4.2.2 of Chapter 4, that the exact computation of
the empirical VC-dimension EV C(RS,D) of sequential patterns on the dataset D is
computationally expensive. The s-index (see Definition 6) introduced by Servan-Schreiber
et al. [75] and the s-bound (see Definition 7) introduced in Chapter 3 provide efficiently
computable upper bounds on EV C(RS,D). Let us note that the s-index crucially hinges
on tight and efficient upper bound on the capacity of a sequence. Thus, in the next
Section, we provide a novel algorithm to compute an upper bound on the capacity of a
sequential pattern.

5.5.1 New Upper Bound on the Capacity of a Sequence

The exact capacity c(s) of a sequence s can be computed using the algorithm described
in [16], but it is computationally expensive and may be prohibitive for large datasets.
Thus, we are interested in efficiently computable upper bounds on c(s). A first naïve
bound, that we denote by c̃n(s) ≥ c(s), is given by 2||s|| − 1, but it may be a loose upper
bound since c(s) = 2||s|| − 1 if and only if all the items contained in all the itemsets of
the sequence s are different.

The second upper bound has been introduced in [75]. Such an upper bound, that we
denote by c̃(s) ≥ c(s), can be computed as follows. When s contains, among others, two
itemsets A and B s.t. A ⊆ B, subsequences of the form ⟨C⟩ with C ⊆ A are considered
twice in 2||s|| − 1, “generated” once from A and once from B. To avoid over-counting
such 2|A| − 1 subsequences, [75] proposes to consider only the ones “generated” from the
longest itemset that can generate them.

In this Section, we introduce a novel, tighter upper bound ĉ(s) ≥ c(s). Our upper
bound is based on the following observation. Let itemsets A and B be respectively the
i-th and j-th itemset of the sequence s with i < j, that is, A comes before B in s, and let
T = A ∩B ≠ ∅ be their intersection. Let D be a subset of the bag-union of the itemsets
in s that come before A, that is D ⊆ ⋃Sk∈s:k<i Sk, and let E be a subset of the bag-union
of the itemsets in s that come after B, that is E ⊆ ⋃

Sℓ∈s:ℓ>j Sℓ. The sequences of the
form ⟨DCE⟩, with C ⊆ T , are also considered twice, for the same reasons explained
above. Given a = ∑i−1

k=1 |Sk| the sum of the sizes of the itemsets before A in the sequence
s and b = ∑|s|

ℓ=j+1 |Sℓ| the sum of the sizes of the ones that come after B, the number of
over-counted sequences of this form is 2a · (2|T |− 1) · 2b. Let us note that this new formula
also includes the sequences of the form ⟨C⟩, since D and E may be the empty set.

An algorithm to compute an upper bound ĉ(s) based on the observation above is
given in Algorithm 7. Let s = ⟨S1, S2, ..., S|S|⟩ be a sequence and assume to re-label
the itemsets in s by increasing size, ties broken arbitrarily, i.e., following the original
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order. Let ŝ = ⟨S1, S2, ..., S|ŝ|⟩ be the sequence in the new order, s.t. |Si| ≤ |Si+1|,∀ i ∈
{1, . . . , |ŝ| − 1}. Let N = [n1, n2, ..., n|ŝ|] be a vector s.t. its i-th element ni is the sum
of the sizes of the itemsets that in the original ordered sequence s come before the i-th
itemset of the new ordered sequence ŝ. The inputs of our algorithm are the new ordered
sequence ŝ and the vector N . First, ĉ(ŝ) is set to 2||ŝ|| − 1 (line 2). For each itemset
Si ∈ ŝ, we check whether there exists an itemset Sj , with j > i, s.t. the set Tij = Si ∩ Sj

is non-empty (line 6). For such Sj , we compute the number of over-counted subsequences
with the formula above (line 7). In line 7, the min and max functions are used to check
which itemset comes first in the original ordered sequence. After checking the entire
sequence ŝ for a single itemset Si, we remove the maximum number of over-counted
subsequences found for such Si (line 9). Then, we update the vector N , subtracting the
size of Si from each nm, if the itemset m comes after the itemset i in the original ordered
sequence s (lines 11-13).

Algorithm 7: CapUpperBound: compute the upper bound ĉ(ŝ).
Data: Sequence ŝ = ⟨S1, S2, .., S|ŝ|⟩, with the S ′

is labeled as described in the text,
vector N = [n1, n2, .., n|ŝ|], with the n′

is computed as described in the text.
Result: Upper bound ĉ(ŝ) to c(s).

1 t← ||ŝ||;
2 ĉ(ŝ)← 2t − 1;
3 for i← 1 to |ŝ| − 1 do
4 val← 0;
5 for j ← i + 1 to |ŝ| do
6 if ∃ T = Si ∩ Sj : T ̸= ∅ then
7 val← max{val, 2min (ni,nj) ·

(
2|T | − 1

)
·

· 2t−max (ni+|Si|,nj+|Sj |)};
8 if val ̸= 0 then
9 ĉ(ŝ)← ĉ(ŝ)− val;

10 t← t− |Si|;
11 for m← i + 1 to |ŝ| do
12 if nm > ni then
13 nm ← nm − |Si|;
14 return ĉ(ŝ);

Example 5. Let us consider the sequence s = ⟨{1}, {2, 5, 7}, {4}, {2, 3, 5}, {1, 8}⟩. The
inputs of our algorithm are ŝ = ⟨{1}, {4}, {1, 8}, {2, 5, 7}, {2, 3, 5}⟩ and N = [0, 4, 8, 1, 5].
The naïve upper bound c̃n(s) is 210 − 1 = 1023. The upper bound c̃(s) defined in [75] is
1022, since it only removes once the sequence ⟨{1}⟩. The upper bound ĉ(s) obtained with
our algorithm is 1010, since we remove the sequence ⟨{1}⟩ but also sequences generated by
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the intersection of {2, 5, 7} and {2, 3, 5} combined with other itemsets (e.g., the sequence
⟨{2, 5}, {1, 8}⟩).

Using Algorithm 7 one can compute upper bounds on the capacities of the transactions
of D, which can be used to obtain the s-index. Such a bound can be used in Theorem 9 as
upper bound on the empirical VC-dimension of sequential patterns, in order to compute
a bound on the maximum deviation of the true frequencies of sequential patterns. With
such a bound on the maximum deviation, we can use gRosSo to find FPF and FNF
approximations of the statistically robust sequential patterns.

5.6 Mining Statistically Robust Itemsets

In this Section, we refresh the task of itemset mining (see Section 2.1.1), as an other
concrete realization of the general framework of pattern mining we introduced in Sec-
tion 5.2.1. Then, we apply the VC-dimension to itemsets and we discuss a VC-dimension
based strategy to bound the maximum deviation of the true frequencies of itemsets,
which can be used in the SRP mining scenario.

Let us remember, from Section 2.1.1 that an itemset X is a non-empty subset of I,
i.e., X ⊆ I, X ̸= ∅, where I = {i1, i2, ..., ip} is a finite set of items. We denote by I the
set of all possible itemsets composed by items from I. The length |X| of X is the number
of items in X and an itemset X is contained in an other itemset Y if and only if X ⊆ Y .

As we described in Section 5.5 for the sequential patterns, given a dataset D for the
itemset mining task, that is a finite bag of transactions sampled from I in accordance
with π, we aim to compute the empirical VC-dimension EV C(RS,D) of the range space
(see Definition 11) associated with I on the dataset D in order to find a probabilistic
bound µ ∈ (0, 1) on the maximum deviation supX∈I |tπ(X) − fD(X)|. In particular,
given EV C(RS,D) and using Theorem 9, it is possible to compute a µ ∈ (0, 1) s.t.
supX∈I |tπ(X) − fD(X)| ≤ µ. The d-index introduced by Riondato and Upfal [66]
provides an efficiently computable upper bound on EV C(RS,D).

Definition 12 ([66]). Let D be a dataset for the itemset mining task. The d-index of D
is the maximum integer d such that D contains at least d different transactions of length
at least d, such that no one of them is a subset of another, i.e., the d transactions form
an anti-chain.

The d-index can be used in Theorem 9 as upper bound on the empirical VC-dimension
of itemsets in order to compute a bound on the maximum deviation of the true frequencies
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of itemsets. With such a bound on the maximum deviation, we can use gRosSo to find
FPF and FNF approximations of the statistically robust itemsets.

5.7 Experimental Evaluation

In this Section, we report the results of our experimental evaluation on multiple pseudo-
artificial datasets to assess the performance of gRosSo for approximating the statistically
robust sequential patterns and itemsets. Then, we execute gRosSo on multiple real
datasets to approximate the statistically robust sequential patterns and we analyze the
sequential patterns mined. To bound the maximum deviations, as required by gRosSo,
we use Theorem 9. The VC-dimension of sequential patterns is bounded using the s-index
obtained by using our algorithm (Algorithm 7) to compute the upper bound on the
capacity of each sequential transaction, while the VC-dimension of itemsets is bounded
using the d-index (Definition 12).

The goals of the evaluation are the following:

• Assess the performance of our algorithm to compute an upper bound on the capacity
c(s) of a sequence s, comparing our upper bound with the naïve bound and with
the one proposed by [75] (see Section 5.5.1).

• Assess the performance of gRosSo on pseudo-artificial datasets to mine statistically
robust sequential patterns and itemsets, checking whether, with probability 1− δ,
the set of patterns returned by gRosSo does not contain false positives or false
negatives.

• Assess the performance of gRosSo to mine statistically robust sequential patterns
on real datasets.

Since this is the first work that considers the problem of mining SRPs, there are not
methods to compare with.

5.7.1 Implementation, Environment, and Datasets

We implemented gRosSo for mining statistically robust sequential patterns and itemsets,
and our algorithm to compute an upper bound on the capacity of a sequence in Java. To
mine the frequent sequential patterns and frequent itemsets, we used, respectively, the
PrefixSpan [54] and the FP-Growth [29] implementations both provided by the SPMF
library [18]. We performed all experiments on the same machine with 512 GB of RAM
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and 2 Intel(R) Xeon(R) CPU E5-2698 v3 @ 2.3GHz, running Ubuntu 14.14 and using
Java 1.8.0_201. Our open-source implementation and the code developed for the tests
and to generate the datasets are available at https://github.com/VandinLab/gRosSo. In
all experiments, we fixed δ = 0.1.

Here, we provide the details on the generation of the real datasets for the sequential
pattern mining task. The details on the generation of pseudo-artificial datasets for the
sequential pattern and itemset mining tasks are provided in the respective Sections. To
obtain sequences of real sequential datasets, we generated multiple datasets starting
from the Netflix Prize data,1 which contains over 100 million ratings from 480 thousand
randomly-chosen anonymous Netflix customers over 17 thousand movie titles collected
between October 1998 and December 2005.

To generate a single dataset, we collected all the movies that have been rated by the
users in a given time interval (e.g., in 2004). Each transaction is the temporal ordered
sequence of movies rated by a single user, with the movies sorted by ratings’ date. Movies
rated by such a user in the same day form an itemset and each movie is represented by
its year of release. Considering consecutive time intervals, we obtained a sequence of
datasets, where each dataset only contains data generated in a single time interval. From
the original data we removed movies which year of release is not available and movies
that have been rated in a year that is antecedent to their year of release. The latter are
due to one of the perturbations introduced in the data to preserve the privacy of the
users.2

We considered the data collected between January 2003 and December 2005. For
each year 2004 and 2005, we generated two types of sequences: the first one composed
by 4 datasets, e.g., 2004(Q1-Q4) (each dataset contains the data generated in 3 months),
and the second one composed by 3 datasets, e.g., 2004(T1-T3) (each dataset contains
the data generated in 4 months). Finally, we generated another sequence of datasets,
2003-2005, considering the entire data between 2003 and 2005 (each dataset contains the
data generated in one year).

The characteristics of the generated real datasets are reported in Table 5.1.

5.7.2 Upper Bound on the Capacity

In this Section, we report the results of Algorithm 7, which computes the upper bound
ĉ(s) on the capacity of a sequence, and compare it with the naïve upper bound c̃n(s) =
2||s|| − 1, and the upper bound c̃(s) from [75]. (See Section 5.5.1.)

1https://www.kaggle.com/netflix-inc/netflix-prize-data
2https://en.wikipedia.org/wiki/Netflix_Prize

https://github.com/VandinLab/gRosSo
https://www.kaggle.com/netflix-inc/netflix-prize-data
https://en.wikipedia.org/wiki/Netflix_Prize
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Table 5.1 Real datasets characteristics and comparison of the upper bounds on the capacity.
The Table reports: Dataset D: name of the real dataset; |D|: number of transactions; |I|:
total number of items; Avg ||τ ||: average transaction item-length; ∆no(%) and ∆po(%):
average relative differences between our upper bound on the capacity and the previously
proposed ones. The datasets are grouped in sequences.

Dataset D |D| |I| Avg. ||τ || ∆no(%) ∆po(%)
2004Q1 132,907 93 24.2 11.42 10.55
2004Q2 165,428 93 23.5 11.61 10.76
2004Q3 184,109 93 24.7 9.18 8.48
2004Q4 218,151 93 24.9 9.77 9.00
2005Q1 266,799 94 26.2 12.31 11.34
2005Q2 291,627 94 25.3 12.15 11.14
2005Q3 315,316 94 24.7 8.67 7.86
2005Q4 295,797 94 19.9 7.89 6.74
2004T1 152,657 93 29.2 11.64 10.94
2004T2 184,202 93 30.3 11.64 10.96
2004T3 229,929 93 30.6 9.71 9.09
2005T1 290,287 94 32.0 13.03 12.17
2005T2 331,117 94 31.4 11.14 10.38
2005T3 326,668 94 25.7 8.53 7.61
2003Y 117,497 92 51.6 13.81 13.37
2004Y 259,407 93 65.9 11.91 11.54
2005Y 451,435 94 62.2 12.07 11.71

Table 5.1 shows the averages (over all transactions) of the relative differences between
our novel upper bound ĉ(s) and the previously proposed ones, which, for a dataset D,
are computed as

∆no(%) = 1
|D|

∑
τ∈D

(
c̃n(τ)− ĉ(τ)

c̃n(τ)

)
· 100

and
∆po(%) = 1

|D|
∑
τ∈D

(
c̃(τ)− ĉ(τ)

c̃(τ)

)
· 100.

In all the datasets, our novel bound is (on average) tighter than the other bounds, with
a maximum improvement of 13.81% on the naïve method and 13.37% on the method
proposed by [75].
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5.7.3 Results with Pseudo-Artificial Datasets

In this Section, we report the results of our evaluation on pseudo-artificial datasets. First,
we describe the experimental evaluation using pseudo-artificial datasets for the sequential
pattern mining task and then for the itemset mining task.

Sequential Patterns

Here, we report the results of our experimental evaluation using pseudo-artificial datasets
for the sequential pattern mining task. We considered the 2005(T1-T3) sequence of
datasets as ground truth for the sequential patterns, and we generated random datasets
taking random samples from each of the datasets in the sequence. In such a way, we know
the true frequencies of the sequential patterns (the probability that a pattern belongs to
a transaction sampled from a dataset is exactly the frequency that such a pattern has
in that dataset). Then, we executed gRosSo on the pseudo-artificial datasets and, by
knowing the true frequencies of the patterns, we assessed its performance in terms of
false positives, false negatives, and of correctly reported patterns. Since it is not feasible
to obtain all the statistically robust sequential patterns due to the gargantuan number of
candidates to consider in such datasets, for the EP and DP scenarios, we only considered
patterns with true frequency above a minimum threshold θ in the last and first dataset,
respectively, while for the SP with true frequency above θ in all the datasets, as defined
in Section 5.3.

From each of the three original datasets, 2005T1, 2005T2 and 2005T3, we generated a
random dataset with the same size of the corresponding original one, obtaining a sequence
of three random datasets. From such a sequence, we mined the set of statistically robust
sequential patterns without considering the uncertain of the data, i.e., directly using
Equation 5.1, Equation 5.2, or Equation 5.3, using the observed frequencies of the
patterns in the random datasets. This allows us to verify whether the set of sequential
patterns obtained considering only the frequencies (i.e., without taking the uncertainty
into account) results in false positives or in false negatives.

We then ran gRosSo on the sequence of random datasets to mine a FPF or a FNF
approximation of the statistically robust sequential patterns, and checked whether the
returned approximation contained, respectively, false positives or false negatives. We also
reported what fraction of statistically robust sequential patterns is reported by gRosSo.
(For both gRosSo and the observed frequency-based approach above, we only considered
patterns with frequency greater than θ as explained above, matching our ground truth.)
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Table 5.2 Results on pseudo-artificial datasets for EP and DP for the sequential pattern
mining task with guarantees on the false positives. The Table reports: Dn

1 : name of
the sequences of datasets; ε: emerging threshold; θ: minimum frequency threshold; for
both the EP and DP: |GT |: number of SRPs in the ground truth; T.FPf : percentage
of times that the SRPs mined using the observed frequencies contain false positives;
T.FPg: percentage of times that the SRPs mined using gRosSo contain false positives;
|AP |/|GT |: average ratio between reported patterns by gRosSo and patterns in the
ground truth over 5 random sequences.

Datasets Dn
1 ε θ

EP DP
|GT | T.FPf T.FPg |AP |/|GT | |GT | T.FPf T.FPg |AP |/|GT |

Sn
1 0.01 0.3 18 0% 0% 0.46 245 60% 0% 0.28

0.2 104 0% 0% 0.21 2439 100% 0% 0.08

Sn×2
1 0.01 0.3 18 0% 0% 0.62 245 60% 0% 0.48

0.2 104 20% 0% 0.38 2439 100% 0% 0.23

Sn×3
1 0.01 0.3 18 0% 0% 0.67 245 60% 0% 0.58

0.2 104 60% 0% 0.43 2439 100% 0% 0.34

Table 5.3 Results on pseudo-artificial datasets for SP for the sequential pattern mining
task with guarantees on the false positives. The Table reports: α: stability threshold.
See Table 5.2 for the meaning of the other values.

Datasets Dn
1 α θ |GT | T.FPf T.FPg |AP |/|GT |

Sn
1 0.1 0.3 42 60% 0% 0.02

0.2 430 100% 0% 0.06

Sn×2
1 0.1 0.3 42 40% 0% 0.29

0.2 430 100% 0% 0.30

Sn×3
1 0.1 0.3 42 40% 0% 0.49

0.2 430 100% 0% 0.46

Table 5.2 reports the average results, over 5 different random sequences, denoted by
Sn

1 , for mining FPF approximations of the EP and DP with ε ∈ {0, 0.01, 0.05}, Table 5.3
reports the average results for mining FPF approximations of the SP with α ∈ {0.05, 0.1},
while Table 5.4 reports the average results for mining FNF approximations of the EP.
We repeated the entire procedure with 5 sequences of random datasets, denoted by Sn×2

1 ,
where each random dataset had size twice the original one, and then with five sequences
of random datasets, denoted by Sn×3

1 , with size three times the original one. For all the
experiments, we used θ ∈ {0.2, 0.3}. Here, we report only a representative subset of the
results, with ε = 0.01 and α = 0.1. Other results are analogous and discussed below.
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Table 5.4 Results on pseudo-artificial datasets for EP for the sequential pattern mining
task with guarantees on the false negatives. The Table reports: T.FNf : percentage
of times that the SRPs mined using the observed frequencies contain false negatives;
T.FNg: percentage of times that the SRPs mined using gRosSo contain false negatives;
|GT |/|AN |: average ratio of patterns in the ground truth and reported patterns by
gRosSo over 5 random sequences. See Table 5.2 for the meaning of the other values.

Datasets Dn
1 ε θ |GT | T.FNf T.FNg |GT |/|AN |

Sn
1 0.01 0.3 18 60% 0% 0.45

0.2 104 80% 0% 0.09

Sn×2
1 0.01 0.3 18 0% 0% 0.68

0.2 104 20% 0% 0.35

Sn×3
1 0.01 0.3 18 0% 0% 0.75

0.2 104 40% 0% 0.50

The results show that, for almost all parameters, the sets of patterns mined in the
pseudo-artificial datasets only considering the observed frequency of the patterns (i.e.,
without considering the uncertainty) contain false positives or false negatives with high
probability. In addition, such a probability increases with a lower θ, and thus with a
large number of patterns. Instead, the patterns returned by gRosSo do not contain
false positives or false negatives in all the runs and with all the parameters. The results
are even better than the theoretical guarantees, since theory guarantees us a probability
at least 1− δ = 0.9 of obtaining a set without false positives or without false negatives.
Let us note that in some cases, the percentage of reported SRPs is small, in particular
for the SP. However, such a percentage increases with larger datasets, since techniques
from statistical learning theory, such as the VC-dimension, perform better when larger
collections of data are available. In the EP scenario, for both types of approximations,
FPF and FNF, we also checked whether the approximations returned by gRosSo had
the additional guarantees described in Section 5.4.5, and, in all the runs, we found that
such additional guarantees were always respected.

For the EP and DP with guarantees on the false positives, the results obtained with
ε = 0 are very close to the ones reported by Table 5.2, in many cases even better,
while with ε = 0.05 gRosSo reported a lower percentage (between 0.003 and 0.23) of
statistically robust sequential patterns, in particular for the DP scenario. For the SP
instead, using α = 0.05, we found only few real SRPs in the original data, and gRosSo
did not report any of them, while for the EP with guarantees on the false negatives, the



82 Mining Statistically Robust Patterns

results obtained with ε = 0 and ε = 0.05 are very close to the ones reported by Table 5.4,
with a percentage of reported patterns between 0.06 and 0.78.

For the EP and DP scenarios with guarantees on the false positives, we also performed
an additional experiment to verify the absence of false positives in the output of gRosSo.
We generated a random sequence of datasets taking three random samples from the same
original dataset 2005T1. In such a way, the random sequence did not contain any EP
and DP, since each pattern had the same true frequency in all the datasets. Then, we
executed gRosSo on such a sequence using θ = 0 and ε = 0. Let us note that this choice
of parameters is the most challenging scenario, since we searched for all the EP and DP
we were able to find. Again, we repeated such an experiment with five different random
sequences where each dataset had the same size of the original one, five sequences with
double size and five sequences with datasets that had three times the size of the original
one. In all the runs, gRosSo correctly did not report any EP and DP.

These results show that, in general, considering the observed frequencies of the
patterns is not enough to find sets of SRPs that do not contain false positives or false
negatives. Thus, techniques like the one introduced in this Chapter are necessary to
find large sets of SRPs without false positives or false negatives. In addition, gRosSo
is an effective tool to find rigorous approximations of the statistically robust sequential
patterns.

Itemsets

Here, we report the results of our experimental evaluation using pseudo-artificial datasets
for the itemset mining task. Starting from the 2005(T1-T3) sequence of datasets for the
sequential pattern mining task, we first generated the corresponding sequence of datasets,
2005(T1-T3)IT, for the itemset mining task. For each dataset in the sequence 2005(T1-
T3), we generated a new dataset taking the union of the items in each transaction of the
dataset, e.g., a sequential transaction τ = ⟨{1}, {2}, {6, 7}, {2}⟩ becomes a transaction
τ ′ = {1, 2, 6, 7}. Then, we considered the 2005(T1-T3)IT sequence as ground truth for the
itemsets, and we performed the same experimental evaluation described in the previous
Section for the sequential patterns. We denote by Qn

1 , Qn×2
1 , and Qn×3

1 the analogous to
Sn

1 , Sn×2
1 , and Sn×3

1 , but for itemsets. Table 5.5 reports the average results for mining
FPF approximations of the EP and DP, Table 5.6 reports the average results for mining
FPF approximations of the SP, while Table 5.7 reports the average results for mining FNF
approximations of the EP. The results show that, for almost all parameters, the sets of
patterns mined in the pseudo-artificial datasets only considering the observed frequency
of the patterns contain false positives or false negatives with high probability. Instead, the
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Table 5.5 Results on pseudo-artificial datasets for EP and DP for the itemset mining
task with guarantees on the false positives. See Table 5.2 for the meaning of the values.

Datasets Dn
1 ε θ

EP DP
|GT | T.FPf T.FPg |AP |/|GT | |GT | T.FPf T.FPg |AP |/|GT |

Qn
1 0.01 0.3 26 20% 0% 0.17 6 0% 0% 0.33

0.2 48 60% 0% 0.14 60 80% 0% 0.04

Qn×2
1 0.01 0.3 26 0% 0% 0.36 6 100% 0% 0.67

0.2 48 100% 0% 0.20 60 100% 0% 0.07

Qn×3
1 0.01 0.3 26 100% 0% 0.42 6 100% 0% 0.67

0.2 48 100% 0% 0.23 60 100% 0% 0.07

Table 5.6 Results on pseudo-artificial datasets for SP for the itemset mining task with
guarantees on the false positives. See Table 5.3 for the meaning of the values.

Datasets Dn
1 α θ |GT | T.FPf T.FPg |AP |/|GT |

Qn
1 0.1 0.3 419 80% 0% 0.65

0.2 10541 60% 0% 0.70

Qn×2
1 0.1 0.3 419 0% 0% 0.81

0.2 10541 0% 0% 0.76

Qn×3
1 0.1 0.3 419 0% 0% 0.82

0.2 10541 0% 0% 0.78

Table 5.7 Results on pseudo-artificial datasets for EP for the itemset mining task with
guarantees on the false negatives. See Table 5.4 for the meaning of the values.

Datasets Dn
1 ε θ |GT | T.FNf T.FNg |GT |/|AN |

Qn
1 0.01 0.3 26 80% 0% 0.20

0.2 48 60% 0% 0.02

Qn×2
1 0.01 0.3 26 0% 0% 0.24

0.2 48 0% 0% 0.04

Qn×3
1 0.01 0.3 26 0% 0% 0.30

0.2 48 0% 0% 0.05
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patterns returned by gRosSo do not contain false positives or false negatives in all the
runs, as observed for the sequential patterns. In addition, all the approximations of the EP
reported by gRosSo respected the additional guarantees introduced in Section 5.4.5. All
these results emphasize that considering the observed frequency is not enough to find large
sets of SRPs without false positives or false negatives, and that gRosSo is an effective
tool also to find rigorous approximations of the statistically robust itemsets. Comparing
these results with the ones obtained for the sequential patterns, it is interesting to notice
that in the EP and DP scenarios, almost always the returned statistically robust itemsets
are less than the corresponding statistically robust sequential patterns, in particular for
the DP, and that also the percentages of reported patterns are lower for the itemsets.
Instead, in the SP scenario, more statistically robust itemsets are returned, always with
higher percentages of reported patterns.

5.7.4 Results with Real Datasets

Here, we report the results of gRosSo for mining statistically robust sequential patterns
from the Netflix real datasets. First, we report and discuss the results with guarantees
on the false positives for all the three types of SRPs. For the EP and DP, we did not use
any constraints on the minimum frequency, thus we reported every statistically robust
sequential patterns found in the data. Table 5.8 shows the results for the EP and DP
with guarantees on the false positives. In the EP scenario, for the sequences of datasets
composed by four datasets (denoted by Q1-Q4), gRosSo reported only few patterns. In
particular, all the emerging sequential patterns returned contain the year of the dataset
in which they were found, e.g., in 2004(Q1-Q4) all the EP contain the item 2004, with
a frequency close to zero in the first dataset. Since during the year many more movies
come out, the number of users that rates such movies increases through the year and
so such patterns emerge through the sequence. We found the same result in sequences
composed by three datasets (denoted by T1-T3) but in this case gRosSo reported many
more patterns, in particular for the 2004 sequence, since now we were considering the
emerging condition only in three datasets, and thus patterns with such an emerging
behavior are easier to discover.

gRosSo did not report any DP in all the datasets using ε = 0.05. Observing
the patterns found on 2005(T1-T3), we noted that the maximum absolute difference
maxs∈A |fD1(s)−fDn(s)| over all the returned patterns between the frequency of a pattern
in the first dataset and its frequency in the last dataset was 0.26, while for the EP such a
difference was 0.60. Thus, while the frequencies of the EP increase a lot through the year,
the frequencies of the DP decrease less, which explains why fewer descending patterns
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Table 5.8 Results on real datasets for EP and DP for the sequential pattern mining task
with guarantees on the false positives. The Table reports: Dn

1 : name of the sequences
of datasets; ε: emerging threshold; for both the EP and DP: |AP |: number of returned
SRPs; Avg||s||: average item-length of the returned SRPs.

Datasets Dn
1 ε

EP DP
|AP | Avg||s|| |AP | Avg||s||

2004(Q1-Q4)
0 25 2.4 0 /

0.01 16 2.3 0 /
0.05 1 1.0 0 /

2005(Q1-Q4)
0 2 1.5 10 3.2

0.01 1 1.0 2 2.5
0.05 0 / 0 /

2004(T1-T3)
0 5213 4.6 5 3.4

0.01 2214 4.4 0 /
0.05 207 3.6 0 /

2005(T1-T3)
0 113 3.6 689 5.4

0.01 48 3.3 187 4.9
0.05 4 2.5 0 /

2003-2005(Y) 0.05 15107 5.4 14 5.5

Table 5.9 Results on real datasets for SP for the sequential pattern mining task with
guarantees on the false positives. The Table reports: α : stability threshold; θ : minimum
frequency threshold. See Table 5.8 for the meaning of the other values.

Datasets Dn
1 α θ |AP | Avg||s||

2004(Q1-Q4) 0.1 0.4 2 1.0
0.2 40 1.8

2005(Q1-Q4) 0.1 0.4 0 /
0.2 7 1.7

2004(T1-T3) 0.1 0.4 3 1.0
0.2 146 2.2

2005(T1-T3) 0.1 0.4 1 1.0
0.2 18 2.1

2003-2005(Y) 0.1 0.4 3 2.0
0.2 458 3.9
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Table 5.10 Results on real datasets for EP for the sequential pattern mining task with
guarantees on the false positives and on the false negatives. The Table reports: Dn

1 : name
of the sequences of datasets; θ : minimum frequency threshold; ε: emerging threshold;
for both the FPF and FNF approximations: |A|: number of returned SRPs; Avg||s||:
average item-length of the returned SRPs.

Datasets Dn
1 θ ε

FPF FNF
|AP | Avg||s|| |AN | Avg||s||

2004(Q1-Q4) 0.3
0 21 2.1 119 2.3

0.01 15 2.1 114 2.3
0.05 1 1.0 80 2.6

2005(Q1-Q4) 0.3
0 2 1.5 13 2.0

0.01 1 1.0 11 2.1
0.05 0 / 4 1.8

2004(T1-T3) 0.3
0 74 2.7 309 2.6

0.01 73 2.7 298 2.6
0.05 63 2.7 243 2.8

2005(T1-T3) 0.3
0 9 2.0 43 2.0

0.01 8 2.3 41 2.0
0.05 3 2.2 25 2.0

2003-2005(Y) 0.5
0 46 2.2 255 2.1

0.01 44 2.1 242 2.1
0.05 41 2.1 227 2.1

are found by gRosSo. The DP found on 2005(T1-T3) are on average larger than the
EP found on the same data, and the 96% of such patterns contain the item 2004, many
of them multiple times. Thus, they probably represent long sequential patterns whose
frequencies decrease, since the users watch always less 2004’s movies through the year
2005 and so, it is difficult for such long patterns to persist through the time.

Table 5.9 shows the results for the SP with guarantees on the false positives. We
performed experiments varying θ ∈ {0.2, 0.4} and α ∈ {0.05, 0.1}. With α = 0.05,
gRosSo did not report any SP for all the datasets. Almost always the SP found by
gRosSo are quite short combinations of items that represents movies of the 90s or early
2000s, that precede the year of the mined sequence. It is surprising that sequential patterns
that contain such “old” items are stable through the time, e.g., ⟨{2000, 2001}, {1990}⟩
has a maximum absolute difference between all its frequencies of 0.025 in the sequence
2003-2005(Y). Such sequential patterns probability represent some classical movies that
people always watch with the same frequency through time.
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To conclude, we report the results for the EP with guarantees on the false negatives.
As we discussed in Section 5.4.4, we decided to consider only patterns p with tπn(p) ≥ θ to
reduce the amount of starting candidates. In order to compare the size of FPF and FNF
approximations in the same scenario, we also executed the same experiments for the EP
with guarantees on the false positives using a minimum frequency threshold. Table 5.10
reports the parameters and the results of such experiments. These results show that
gRosSo can detect EP when one is interested in finding FPF or FNF approximations,
and it is possible to notice that almost always the FNF approximations contain a number
of EP that is from 4 to 6 times larger than the corresponding number in the FPF
approximations.

Overall, the results show that gRosSo detects various types of SRPs from real
datasets, obtaining insights into the evolution of the generative process underlying the
data.





Chapter 6

Permutation Strategies for Mining
Statistically Significant Sequential
Patterns

In this Chapter, we consider the problem of mining statistically significant sequential
patterns. Let us remember that in Chapter 4 and 5, we considered the scenario in which
the dataset, or the sequence of datasets, are random sample from unknown probability
distributions and we studied the problem of mining patterns that are frequency generated
by such distributions, or whose true frequencies follow well specified trends though the
sequence of datasets. In significant pattern mining, the dataset is still considered a sample
from an unknown probability distribution, but the goal is to mine patterns significantly
deviating from an assumed null hypothesis. Key challenges is such a scenario are the
definition of appropriate null models for the data, the assessment of the significance of the
patterns of interest, and the multiple hypothesis testing problem, since one is interested
in testing multiple patterns simultaneously. To solve these difficult challenges, we employ
the statistical hypothesis testing framework and techniques based on permutation testing.
However, let us note that the significant pattern mining task and the ones described
in the two previous Chapters are not unrelated. Indeed, an approach that we define in
this Chapter to mine significant sequential patterns from massive datasets, is based on
techniques developed to solve the tasks of the previous Chapters. Part of the contributions
described in this Chapter appear in [83].
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6.1 Introduction

While the frequency of a sequential pattern is an important feature in some applications,
it is usually not sufficient to identify interesting sequential patterns, i.e., sequential
patterns that provide useful knowledge regarding the process described by the data. For
example, a sequence of itemsets may appear frequently in a dataset simply because each
of the itemsets has high individual frequency, even if there is no association between
the itemsets in the sequence. Since sequential patterns are ordered sequences of events,
represented by itemsets, in this work we are interested in understanding whether the
frequency of a sequential pattern is due to the observed order, i.e., on the relation,
between its itemsets, or if it is due to other factors. A natural framework to identify
interesting sequential patterns is provided by statistical hypothesis testing, where the goal
is to mine statistically significant sequential patterns, defined as sequences that appear
more frequently than expected under an appropriate (generative) null model for the data.

The extraction of statistically significant patterns has received a lot of attention when
patterns are itemsets, with several methods [35, 90, 21, 25] that have been proposed
to identify significant itemsets while providing guarantees on the false discoveries (i.e.,
itemsets flagged as significant while they are not). The most commonly used guarantee
is given by the Family-Wise Error Rate (FWER), that is the probability that one or
more false discoveries are reported in output. Strikingly, only few methods [24, 47] to
identify statistically significant sequential patterns have been proposed. The extraction
of statistically significant sequential patterns is more complex than the extraction of
significant itemsets, mostly for two key issues: first, the number of sequential patterns
that can be built from a ground set of items is much larger than the number of itemsets,
and the gargantuan number of candidate sequential patterns poses a multiple hypothesis
testing issue, since the probability of a false discovery increases with the number of
candidate patterns; second, the definition of appropriate null models for sequential
patterns is more difficult, since reasonable null models do not result in distributions that
can be analytically described and it is therefore crucial to be able to efficiently compute
the statistical significance of patterns. To the best of our knowledge, no method to
rigorously identify statistically significant sequential patterns with rigorous guarantees
on the FWER for the reported patterns is available.

6.1.1 Our Contributions

In this Chapter, we focus on the problem of mining statistically significant sequential
patterns from a transactional dataset. In this regards, our contributions are:
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• We introduce a new algorithm, ProMiSe, to identify statistically significant
sequential patterns using permutation testing. ProMiSe is the first algorithm to
provide rigorous guarantees on the Family-Wise Error Rate (FWER) of the output,
using the Westfall-Young method to properly correct for multiple hypothesis testing.

• We introduce and formalize three strategies, based on swaps or on permutations at
the level of itemsets, to generate (random) permuted datasets for sequential pattern
mining. These three strategies are at the core of ProMiSe, and they sample
datasets from the distribution of all datasets where the number of appearances of
each itemset and the number of itemsets in each transaction are the same as in the
input dataset.

• We provide a formal analysis of the itemsets swapping strategy, proving that a
polynomial number of swaps are sufficient to uniformly sample a random dataset
from the aforementioned distribution. Moreover, we experimentally show that a
number of swaps proportional to the number of itemsets in the dataset is sufficient
to sample a random dataset.

• We introduce an alternative version of ProMiSe, I-ProMiSe, that results in
a lower statistical power than the original version but that is several orders of
magnitude faster, allowing to mine significant sequential patterns from massive
datasets.

• We provide an implementation of our algorithms and conduct an extensive experi-
mental evaluation of their usage to extract significant sequential patterns, showing
that they allows to efficiently extract significant sequential patterns from real
sequential datasets.

6.1.2 Related Work

Several works have been proposed to identify statistically significant itemsets where the
significance is defined in terms of the comparison of itemsets statistics (e.g., frequencies
or number) with a null mode (e.g., [35, 21]). The one that is most related to ours is the
work of Gionis et al. [21], which introduces a swap randomization approach to assess
the significance of patterns (e.g., itemsets) in 0-1 datasets. Such a technique cannot
be applied to sequential transactions, due to sequential dimension that is absent in 0-1
datasets. In addition, [21] provides only an experimental assessment of the number of
swaps required to sample a random dataset, while we also prove a theoretical upper
bound.
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Few methods [24, 47] have been proposed to mine statistically significant sequential
patterns. Gwadera and Crestani [24] proposes a method based on a null model obtained
by combining two models at different levels, in particular itemset-wise and sequence-wise,
with a maximum entropy model for the itemset-wise level and a mixture model for the
sequence-wise level. Our null model is much simpler and allows for the efficient mining
of significant sequential patterns, that is instead not possible with the method of [24], in
particular for large patterns. More recently, Low-Kam et al. [47] introduce an approach
based on the independence model, where each itemset appears in a transaction with
probability equal to its frequency in the real dataset and independently of all other events.
We consider a null model where transactions’ lengths are preserved as well, which is more
appropriate in cases where different groups of transactions are in the dataset (similarly
to what happens for itemsets [21]). In addition, [47] performs a Bonferroni correction
assuming that the candidates sequential patterns are only the frequent patterns observed
in the dataset, while all potential candidate patterns should be considered, as it has been
argued for other pattern mining problems [35].

A different line of works identifies significant patterns, including sequential patterns,
where the significance is given by the association of the presence of the pattern with a
binary label available from each transaction [80, 51, 45, 60]. These methods cannot be
applied to identify patterns whose frequency significantly deviates from a null model.
Several methods (e.g., [10, 78, 48]) have been proposed to identify interesting patterns
using some alternative interestingness measure. These measures, and the methods that
employ them, are orthogonal to our approach, which focuses on the statistical significance
of patterns.

We remind interested readers to the related work of Chapter 3 (Section 3.1.2) for
works regarding frequent sequential pattern mining.

6.1.3 Organization of the Chapter

The rest of the Chapter is structured as follows. Section 6.2 contains the definitions and
concepts used throughout this Chapter. ProMiSe, our algorithm for mining significant
sequential patterns, and the three strategies to efficiently generate random datasets are
described in Section 6.3. Section 6.4 introduce I-ProMiSe, an alternative version of
our algorithm which is several orders of magnitude faster than the original one, allowing
to analyze massive datasets. Section 6.5 reports the results of an extensive suite of
experiments performed to evaluate the effectiveness of ProMiSe on synthetic and real
datasets.
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6.2 Preliminaries

We now provide the definitions and concepts used throughout this Chapter. Section 6.2.1
defines the problem of mining statistically significant sequential patterns, refreshing the
notion of sequential pattern mining. Finally, in Section 6.2.2, we introduce the multiple
hypothesis testing framework for the significant sequential pattern mining task.

6.2.1 Significant Sequential Pattern Mining

The task of mining significant sequential patterns requires to identify sequential patterns
whose frequency is significant, that is, whose frequency is not due to random fluctuations
in the data. Let us remember, from Section 2.1.2, that a sequential pattern, or sequence,
s = ⟨S1, S2, . . . , Sk⟩ is a finite ordered sequence of itemsets Si, with i ∈ {1, . . . , k}, which
are sets of elements called items. The length |s| of s is the number of itemsets in s and
the item-length ||s|| of s is the sum of the sizes of the itemsets in s. Given a domain
S, a dataset D, which is a bag of transactions, i.e., sequential patterns, from S, the
task of frequent sequential pattern (FSP) mining requires to report all the sequential
patterns with frequency fD(s) in D at least θ ∈ (0, 1], where the frequency fD(s) is
the fraction of transactions of D to which s belongs. In particular, sequential patterns
describe sequences of events or actions that are useful for predictions in many scenarios.
Thus, in this Chapter, we are interested in understanding whether the frequency fD(s)
of a sequential pattern s in a dataset D is due to the observed order, and thus on the
relation, between its itemsets, or if it is due to other factors. Two factors that are
natural to consider are the number of times the itemsets appears in the dataset and the
number of itemsets in the transactions of the dataset (i.e., the length of the transactions).
By mining significant sequential patterns, we are then interested in mining sequential
patterns whose high frequency in the dataset is due to the order of their itemsets.

To assess the significance of a sequential pattern, the framework of statistical hypothesis
testing (see Section 2.5.1) is usually employed. For each sequential pattern s, let Hs be
the null hypothesis that the frequency fD(s) of s in D well conforms to its frequency in
a random dataset, i.e., a dataset taken uniformly at random among all datasets with
properties similar to D. As already said, the properties we consider are:

• the number of times each itemset appears in D;

• the length of each transaction in D.

Therefore, under the null hypothesis, D is a dataset taken uniformly at random from all
datasets where each itemset appears the same number of times it appears in D and each
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transaction has the same length that it has in D. As an example for why is important to
preserve these properties in a random dataset, let us consider a sequential dataset from
an e-commerce website where each transaction is the ordered list of purchases made by a
single user and the itemsets represent products bought together. In such a dataset, the
idea is to preserve the products that the users bought together (the itemsets and the
number of times they appear) and also to preserve the number of orders made by the
users (the length of the transactions).

Example 6. Let us consider the dataset D = {τ1, τ2, τ3, τ4} in Section 2.1.2 (Example 2).
A random dataset D̃ with the same properties of D is the following:

τ1 = ⟨{3}, {2, 6, 7}⟩
τ2 = ⟨{7}, {2}, {6, 7}, {1, 2, 5, 6}⟩
τ3 = ⟨{6, 7}, {2}, {2}, {2}⟩
τ4 = ⟨{1}, {2}, {1, 4}, {2}⟩.

Let us note that each itemset that appears a certain number of times in D also appears
the same number of times in D̃, and that each transaction has the same length in the two
datasets. The item-lengths of the transactions are instead not mandatorily the same: τ1

has item-length 4 in both datasets but the item-length of τ2 changes from 5 to 8. Also the
frequency of the items (and so of the itemsets and of the sequential patterns) can change:
fD({2}) = fD̃({2}) = 1 but fD({6}) = 1 ̸= 3/4 = fD̃({6}).

Let us remember that under the null hypothesis, the frequency of a sequential pattern
s is described by a r.v. Xs and in order to assess its significance, a p-value ps is commonly
computed. Thus, in our scenario, the p-value ps of a sequential pattern s is the probability
of observing a frequency at least as large as the frequency fD(s) of s in D under the null
hypothesis, that is,

ps = Pr[Xs ≥ fD(s)|Hs].

Let us note that the statistical hypothesis testing framework requires to be able to
compute the p-values ps but for complex null hypotheses, such as ours, the p-values cannot
be computed analytically. However, when one can sample datasets uniformly at random
from the distribution described by the null hypothesis, the p-values can be estimated
by a Monte Carlo (MC) procedure generating M random datasets D̃i as described in
Section 2.5.1, that is,

ps = 1
M + 1

(
1 +

M∑
i=1

1[fD̃i
(s) ≥ fD(s)]

)
. (6.1)
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6.2.2 Multiple Hypothesis Testing

Let us remember from Section 2.5.1 that the statistical hypothesis testing framework is
commonly used to provide guarantees on the false discoveries. When a single sequential
pattern s is tested for significance, flagging it as significant when ps ≤ α, where α ∈ (0, 1)
is a threshold fixed by the user, guarantees that the probability that s corresponds to a
false discovery is at most α.

The situation is completely different when several sequential patterns are tested
simultaneously since the expected number of false discoveries, for a fixed α, linearly
grows with the size of the set of tested hypotheses, posing a severe multiple hypothesis
correction problem [58]. To solve this issue, a common solution is to identify a corrected
threshold δ ∈ (0, 1) s.t. all patterns with p-value ≤ δ can be reported as significant while
providing guarantees on the probability of reporting at least one false positive, i.e., the
Family-Wise Error Rate (FWER).

One approach to set δ is to use the Bonferroni correction [11], setting δ = α/d.
However, when d is large, δ is very close to 0, resulting in low statistical power with
many false negatives (i.e., significant patterns that are not reported in output). Let us
note that this issue is particular severe for sequential patterns, since if one does not
restrict (before analyzing the dataset) the space of sequential patterns, i.e., hypotheses,
the number of candidate patterns is infinite, and therefore d =∞. Even restricting the
set of patterns, for example considering only sequential patterns of item-length at most
ℓ, may result in low statistical power, since the number of candidate patterns increases
exponentially with ℓ.

More sophisticated techniques have been designed to increase the statistical power,
such as the Westfall-Young (WY) method [95]. As we discussed in Section 2.5.1, it
directly estimates the joint distribution of null hypotheses using P datasets obtained
from the distribution described by the null hypothesis, i.e., P random datasets. For every
random dataset D̃i, with i ∈ {1, . . . , P}, it computes the minimum p-value p

(i)
min over

all sequential patterns of interest in D̃i. Finally, it estimates the corrected significance
threshold δ∗ as the α-quantile of the P minimum p-values, that is,

δ∗ = max
{

δ :
P∑

i=1
1
[
p

(i)
min ≤ δ

]
≤ αP

}
, (6.2)

with α ∈ (0, 1) the FWER threshold.
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6.3 ProMiSe: Mining Significant Sequential Patterns
with Permutation Testing

In this Section, we describe ProMiSe, PeRmutatiOn strategies for MIning statistically
significant SEquential patterns, our algorithm to mine significant sequential patterns
while controlling the probability of reporting at least one false positive, i.e., the FWER.
ProMiSe crucially hinges on the ability of sampling random datasets uniformly at
random from the distribution described by the null hypothesis, then, in Section 6.3.1, we
illustrate three strategies to efficiently generate random datasets. Finally, in Section 6.3.2,
we provide the details of our parallel implementation of ProMiSe.

Algorithm 8: ProMiSe
Data: Sequential Dataset D, Minimum Frequency Threshold θ ∈ (0, 1], FWER

Threshold α ∈ (0, 1).
Result: Set SSP of significant sequential patterns with FWER ≤ α.

1 F ← FSP (D, θ);
2 for i← 1 to M do
3 D̃i ← RandomDataset(D);
4 foreach s ∈ F do
5 ps ← 1

M+1(1 +∑M
i=1 1[fD̃i

(s) ≥ fD(s)]);
6 foreach j ← 1 to P do
7 D̃(j) ← RandomDataset(D);
8 F (j) ← FSP (D̃(j), θ);
9 if F (j) = ∅ then p

(j)
min ← α;

10 else
11 for i← 1 to M do
12 D̃(j)

i ← RandomDataset(D̃(j));
13 for s̃ ∈ F (j) do
14 ps̃ ← 1

M+1(1 +∑M
i=1 1[fD̃(j)

i
(s̃) ≥ fD̃(j)(s̃)]);

15 p
(j)
min ← min{ps̃ : s̃ ∈ F (j)};

16 δ∗ ← min
{

α, max
{

δ : ∑P
j=1

(
1[p(j)

min ≤ δ]
)
≤ αP

}}
;

17 SSP ← {(s, fD(s), ps) : s ∈ F ∧ ps < δ∗};
18 return SSP ;

The pseudo-code of ProMiSe is described in Algorithm 8. Given a sequential dataset
D, a minimum frequency threshold θ ∈ (0, 1], and a FWER threshold α ∈ (0, 1) as input,
ProMiSe identifies a set of significant sequential patterns with frequency at least θ

and FWER bounded by α. Let us note that in Algorithm 8, we consider the values M
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and P , which are, respectively, the number of random datasets to generate for the MC
procedure and for the WY method, as parameters fixed by the users. (A discussion about
appropriate values for such parameters is provided in Section 6.5.) ProMiSe starts by
mining the set FSP (D, θ) of sequential patterns with frequency at least θ in D (line 1).
The extraction of such sequential patterns can be performed with any efficient algorithm
for the mining of frequent sequential patterns. Then, it uses the MC procedure to estimate
the p-value ps for each sequential pattern s ∈ FSP (D, θ) using Equation 6.1, and thus
considering M random datasets (lines 2-5). The procedure RandomDataset(D) is used
to sample a dataset uniformly at random among all datasets where each itemset appears
the same number of times it appears in D and each transaction has the same length
that has in D. How to implement such a procedure is illustrated in the next Section. In
particular, to generate random datasets, Algorithm 9, 10 or 11 can be employed. Then,
ProMiSe employs the WY method to compute the corrected significance threshold
δ∗ considering P random datasets. For each random dataset D̃(j), with j ∈ {1, . . . , P},
generated with the same procedure RandomDataset(D) described above (line 7), it
mines the set FSP (D̃(j), θ) (line 8) and computes the minimum p-value p

(j)
min over all the

sequential patterns s̃ ∈ FSP (D̃(j), θ) (line 15). To compute such p-values, it employs a
MC procedure analogous of the one described above (lines 11-14). Let us note that if
the set FSP (D̃(j), θ) = ∅, then we consider p

(j)
min = α, corresponding to an uncorrected

threshold (line 9). Finally, it estimates the corrected significance threshold δ∗ using
Equation 6.2 as the α-quantile of the P minimum p-values p

(j)
min, with j ∈ [1, P ]. If

δ∗ > α, then we set δ∗ = α, corresponding to an uncorrected threshold. Finally, the
output is the set of sequential patterns s ∈ FSP (D, θ) s.t. ps < δ∗ (line 17).

Let us note that since we are only interested in sequential patterns with frequency ≥ θ,
the computation of the minimum p-values p

(1)
min, . . . , p

(P )
min for the WY method is restricted

to sequential patterns that have frequency ≥ θ in the random datasets. That is, p
(j)
min

is computed as the minimum p-value over all the sequential patterns in FSP (D̃(j), θ).
This corresponds to employ the WY method to estimate the probability of observing any
sequential pattern with frequency ≥ θ and with p-value below the threshold δ under the
null hypothesis, that is what we need in order to estimate the FWER FWER(δ) obtained
using δ as significance threshold when we are interested only in sequential patterns with
frequency ≥ θ.1 Again, let us note that any efficient implementation for mining frequent
sequential patterns can be used to obtain FSP (D̃(j), θ).

1Let us note that in this way we are still allowing patterns s with frequency fD(s) < θ to appear
with frequency higher than θ in a random dataset, thus properly accounting for such sequential patterns
in our multiple hypothesis correction.
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The following result, easily derived by the properties of the WY method, establishes
the quality of the output of ProMiSe.

Theorem 18. The output of ProMiSe has FWER ≤ α.

Proof. Let us consider the P random datasets D̃(j), with j ∈ {1, . . . , P}, generated by
ProMiSe for the WY method. Let us note that they do not contain any significant
sequential patterns by construction, since they are sampled uniformly at random from
the distribution described by the null hypothesis. Given δ ∈ (0, 1), the FWER FWER(δ)
obtained using δ as significance threshold can be estimated using Equation 2.3. That is,
estimated as the fraction, over P , of the number of datasets D̃(j) that contain at least
one sequential pattern with p-value ≤ δ, and thus a sequential pattern that would be
reported as significant while it is not when δ is used as significance threshold. Since
ProMiSe uses the corrected significance threshold δ∗ = max{δ : FWER(δ) ≤ α}, then
its output has FWER ≤ α, which concludes the proof.

Let us note that ProMiSe crucially hinges on the ability of sampling random datasets
with the properties described above.

6.3.1 Efficiently Sampling Random Datasets

In this Section, we describe three methods to obtain a random dataset D̃ where:

• each itemset appears the same number of times it appears in D;

• each transaction has the same length it has in D.

All three strategies, i.e., itemsets swapping, dataset permutation, and transactions
permutations, start from D and perform random operations (swaps or permutations) at
the level of itemsets. While itemsets swapping and dataset permutation only preserve
the two properties above, transactions permutations also focuses on preserving additional
properties of D, which will be described in the respective Section, allowing different types
of analyses. Let us remember that sequential patterns describe ordered sequences of
events (i.e., itemsets), and thus the basic idea of all these strategies is to preserve these
events, represented by the itemsets, and to only change the order in which they occur.

Itemsets Swapping

We now describe a strategy similar to permutation swapping [13], previously proposed
for significant itemsets mining [21]. Let us note that the original strategy proposed
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in [21] cannot be directly used for sequential patterns since it does not take into account
the order of the itemsets and an itemsets can appear more than once in a sequential
transaction.

For each transaction τi ∈ D, i ∈ {1, . . . , |D|}, and each integer j ∈ {1, . . . , |τi|}, we use
the pair (i, j) to represent the the j-th itemset in τi. In itemset swapping (IS), we swap
the itemset in position (i, j) with the itemset in position (k, ℓ), with i, k ∈ {1, . . . , |D|},
j ∈ {1, . . . , |τi|} and ℓ ∈ {1, . . . , |τk|}. Let us note that such a swap preserves the length
of each transaction while the item-lengths of the transactions are not necessary preserved,
since the size of the two swapped itemsets may not be the same. Also the frequencies of
the swapped itemsets can change after a swap since the new transaction could contain
itemsets that are super-sets of the swapped ones. Finally, for the same reason, also the
frequencies of the items that compose the two itemsets can change as well.

Example 7. Let us consider the dataset shown in Example 6. (Here, we refer to it
as dataset D). In such a dataset, a possible swap is performed between itemset {3} in
position (1, 1) and itemset {6, 7} in position (2, 3). The new dataset D̃ after the swap is
the following:

τ1 = ⟨{6, 7}, {2, 6, 7}⟩
τ2 = ⟨{7}, {2}, {3}, {1, 2, 5, 6}⟩
τ3 = ⟨{6, 7}, {2}, {2}, {2}⟩
τ4 = ⟨{1}, {2}, {1, 4}, {2}⟩.

Let us note that the length of the transactions τ1 and τ2 does not change after the
swap, contrary to their item-length. The frequency of {3} has remained the same,
fD({3}) = fD̃({3}) = 1/4, while the frequency of {6, 7} has changed, fD({6, 7}) = 3/4 ̸=
1/2 = fD̃({6, 7}).

Let us note that in a dataset D there are m = ∑|D|
i=1 |τi| total itemsets (not necessarily

all distinct). Therefore, we can use the integer ℓ ∈ {1, . . . , m} to identify each itemset.
Algorithm 9 shows how to generate a random dataset using a sequence of r itemsets
swap operations under this indexing of itemsets. The procedure Swap(D, p1, p2) simply
swaps the itemset of index p1 with the itemset of index p2 in D, while the procedure
Random(1, m) generates an integer uniformly at random between 1 and m.

We now prove that the dataset produced in output by Algorithm 9 is a dataset taken
uniformly at random among the set D of all datasets that satisfy the properties described
in Section 6.3.1, providing enough swap operations. To analyze Algorithm 9, we use the
Markov chains framework [52]. Let us consider the Markov chain C = {P , T }, where
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P is the state space and T is the set of transitions. In our case, P is the set D of all
datasets satisfying the two properties defined in Section 6.3.1, while T is defined in terms
of neighbors of a dataset Dj ∈ D, where the neighbors of Dj are obtained by performing a
single swap operation on Dj . That is, the set T contains all pairs with datasets (Dj,Dk)
s.t. it is possible to obtain Dk from Dj (or vice versa) with a single itemsets swap, with
Dj,Dk ∈ D. For each dataset (state) Dj ∈ D, we define the degree of state Dj in the
Markov chain C as the number of possible swaps that can be performed in dataset Dj.

To prove that the output of Algorithm 9 produces in output a random dataset
starting from a dataset D, we prove that the Markov chain C admits a unique stationary
distribution and that such a distribution is uniform among all elements of D.

Algorithm 9: RandomDatasetIS: generate a random dataset using the itemsets
swapping strategy.

Data: Sequential dataset D = {τ1, τ2, . . . , τ|D|}, number of itemsets swaps r.
Result: Random dataset D̃ = {τ ′

1, τ ′
2, . . . , τ ′

|D̃|}.
1 D̃ ← D;
2 m← ∑|D|

i=1 |τi|;
3 for i← 1 to r do
4 p1 ← Random(1, m);
5 p2 ← Random(1, m);
6 Swap(D̃, p1, p2);
7 return D̃;

Theorem 19. The Markov chain C admits as unique stationary distribution the uniform
distribution.

Proof. Let us note that starting from any dataset Dj ∈ D, it is possible to obtain any
other dataset Dk ∈ D with a series of itemsets swap operations, that is, the Markov chain
C is irreducible. The Markov chain C has a finite state space, it is irreducible, and it is
aperiodic. A Markov chain with these properties is an ergodic chain. The Markov chain
C is also reversible: an itemsets swap can be undone by a single (reversed) itemsets swap.
From the theory of Markov chains [52], an ergodic Markov chain has a unique stationary
distribution. From the reversibility property, it follows that the probability of each state
in such a stationary distribution is proportional to the degree of the states. Therefore, in
order to obtain a uniform distribution, all states of the Markov chain must have the same
degree. Using Algorithm 9 to generate dataset D̃, all the states of the Markov chain have
degree equals to m2, with m = ∑|D|

i=1 |τi|. Thus, the Markov chain C admits as unique
stationary distribution the uniform distribution, which concludes the proof.
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In order to bound the number of swap operations that are required to converge to the
stationary distribution, we need to upper bound the mixing time of the Markov chain C.
Upper bounding the mixing time is usually difficult. For example, the mixing time of the
commonly used swap randomization procedure [13, 22] has been the object of theoretical
studies [13], but currently there are no conclusive results and only empirical analyses are
available [50, 21].

We now prove an upper bound on the number of itemsets swap operations that are
required for the Markov chain C to converge to the stationary distribution. In particular,
we aim to compute an upper bound on the mixing time η(ε) which guarantees that for
any initial state of C, the variation distance between the distribution of its states after
η(ε) steps and its stationary distribution is at most ε ∈ (0, 1]. In our proof, we use the
path coupling technique [52]. In brief, given a Markov chain C, a coupling for C consists
of two copies, C1 and C2, of C running simultaneously, where the two copies do not visit
the states in the same order nor perform the same transition at the same time, but are
defined on the same state space of C and have the same transition probabilities as C.

Theorem 20. The mixing time η(ε) of the Markov chain C is O(m2 log m
ε

), where
m = ∑|D|

i=1 |τi| and ε ∈ (0, 1].

Proof (sketch). We use path coupling to prove that the difference between the distribution
of the states of the Markov chain C after O(m2 log m

ε
) itemsets swaps and its stationary

distribution is at most ε. Let Dℓ,Dh ∈ D be two datasets that differ only for the position
of two itemsets. We say that Dℓ and Dh are at distance dist(Dℓ,Dh) = 2. The idea is to
start with a coupling for such a pair of datasets, that differ in just two itemsets, and then
extend the coupling over all pairs of datasets. Denoting with a and b the two positions
where datasets Dℓ and Dh differ, we define a coupling where the first Markov chain C1 is
exactly C, while the second Markov chain C2 is defined in terms of the transitions of
C1. Let Dℓ be the state of C1 = C at a given iteration, and let Dh be the state of C2

at the same iteration, i.e., the two Markov chains are in the two datasets at distance
dist(Dℓ,Dh) = 2. The transition (Dℓ,D

′
ℓ) performed by C1 (from state Dℓ) consists of

an itemsets swap between the itemset in position p1 and the itemset in position p2 in
dataset Dℓ, with p1 and p2 sampled uniformly at random among all m possible positions.
We then define the transition (Dh,D′

h) for C2 (from state Dh) as follows:

1. if p1 = a and p2 = b, C2 swaps the itemset in position a with itself in the dataset
Dh;

2. if p1 = b and p2 = a, C2 swaps the itemset in position b with itself in the dataset
Dh;
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3. if p1 = p2 = a or p1 = p2 = b, C2 swaps the itemset in position a with the itemset
in position b in the dataset Dh;

4. otherwise C2 swaps the itemset in position p1 with the itemset in position p2 in
the dataset Dh.

Let us note that for both chains, the probability of any given transition is still 1/m2

and thus the coupling is valid. Most of the moves of such a coupling maintain the
distance dist(D′

ℓ,D
′
h) = 2. The only moves that result in dist(D′

ℓ,D
′
h) = 0 are the 4

moves described by 1-3, i.e., the moves that swap, in one of the two datasets, the two
itemsets that are in different positions. Since each move occurs with the same probability
1/m2 and dist(Dℓ,Dh) = 2, we have

E
[
dist(D′

ℓ,D
′

h)|Dℓ,Dh

]
=
(
1− 4

m2

)
· 2 + 4

m2 · 0
≤ (1− β) · dist(Dℓ,Dh),

with β ≤ 4/m2. Thus, by applying the path coupling theorem [52], we can extend the
coupling to arbitrary pairs of states (D0

ℓ ,D0
h) (at any distance) obtaining a bound on the

mixing time of η(ε) = O( 1
β

log D
ε
), where D is the maximum distance between any two

states. Since in our case we have D = m and β ≤ 4/m2, we obtain that the mixing time
of C is bounded by η(ε) = O(m2 log m

ε
), which concludes the proof.

Theorems 19 and 20 tell us that Algorithm 9 can be employ to sample uniformly at
random a dataset among the set D if enough itemsets swap operations are provided, and
give us an upper bound on the number of swaps to perform. Moreover, in Section 6.5, we
experimentally show that a number of swaps proportional to the number of itemsets in
the dataset is sufficient to sample a random dataset. In addition, further studies allowed
us to define a more efficient strategy, i.e., dataset permutation, to generate datasets from
the aforementioned null hypothesis avoiding the series of itemsets swaps.

Dataset Permutation

In this Section, we introduce an alternative strategy, dataset permutation (DP), to sample
a dataset uniformly at random among the set D of all datasets that satisfy the properties
described in Section 6.3.1. Let L(D) be the ordered sequence of itemsets obtained
concatenating all the transactions of D = {τ1, τ2, . . . , τ|D|}, starting from the first one, τ1,
and ending with the last one, τ|D|. Let us note that at each dataset corresponds a unique
ordered sequence constructed in such a way. The idea behind the dataset permutation
strategy is the following. Starting from a dataset D, we create its ordered sequence
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L(D). Performing a random permutation of L(D), we obtain a new ordered sequence
L(D̃) which contains the same itemsets of L(D) but in a different order. Finally, starting
from L(D̃), we construct the random dataset D̃ = {τ ′

1, τ ′
2, . . . , τ ′

|D|} associated with L(D̃).
That is, the first |τ1| itemsets of L(D̃) form the transaction τ ′

1, the following |τ2| itemsets
of L(D̃) form the transaction τ ′

2, and so on. Since at each dataset corresponds a unique
ordered sequence, if we generate a random permutation uniformly at random among all
possible permutations, then we sample a dataset uniformly at random among D. Such a
permutation can be generated, for example, with Algorithm P (Shuffling) [37], which
takes time proportional to the number of itemsets to permute, i.e., O(m), and shuffles
them in place. Thus, the dataset permutation strategy is more efficient than the itemsets
swapping one.

Example 8. Let us consider again the dataset shown in Example 6. (Here, we refer to
it as dataset D). The ordered sequence L(D) associated with such a dataset is

L(D) = ⟨{3}, {2, 6, 7}, {7}, {2}, {6, 7}, {1, 2, 5, 6}, {6, 7}, {2}, {2}, {2}, {1}, {2}, {1, 4}, {2}⟩.

A possible permutation of such an ordered sequence is

L(D̃) = ⟨{2}, {7}, {2}, {3}, {2, 6, 7}, {6, 7}, {1}, {2}, {6, 7}, {2}, {2}, {2}, {1, 2, 5, 6}, {1, 4}⟩.

Finally, the random dataset D̃ associated with L(D̃) is

τ1 = ⟨{2}, {7}⟩
τ2 = ⟨{2}, {3}, {2, 6, 7}, {6, 7}⟩
τ3 = ⟨{1}, {2}, {6, 7}, {2}⟩
τ4 = ⟨{2}, {2}, {1, 2, 5, 6}, {1, 4}⟩.

Let us note that the same exact considerations done in Example 7 are valid also for this
resulting random dataset.

The dataset permutation strategy is described in Algorithm 10.2

Transactions Permutations

We now introduce a different strategy to obtain a random dataset, transactions per-
mutations (TP), which permutes each transaction independently. Let us note that this
strategy produces a random dataset that still satisfies the properties described above, but

2++ in Algorithm 10 is the concatenation of an element to a sequence.
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Algorithm 10: RandomDatasetDP: generates a random dataset with the dataset
permutation strategy.

Data: Sequential dataset D = {τ1, τ2, . . . , τ|D|}.
Result: Random dataset D̃ = {τ ′

1, τ ′
2, . . . , τ ′

|D̃|}.
1 L(D)← Empty sequence;
2 for i← 1 to |D| do
3 L(D)← L(D) ++ τi;
4 L(D̃)← Permute(L(D));
5 D̃ ← Dataset associated with L(D̃);
6 return D̃;

it also forces the itemsets to appear in the same transactions as in the original dataset D.
In particular, this strategy ensures that only the order with which the itemsets appear in
each transaction is random, while everything else (e.g., itemsets frequencies, transactions
in which each itemset appears, etc.) is fixed.

As a motivation, let us consider a dataset containing movies rated by some users. In
such a dataset, the items are the ID’s of the movies rated by the users. Each transaction
contains the ID’s of the movies rated by a single user and movies rated in the same
temporal interval, i.e., in the same day, are grouped in a single itemset. Thus, the
transactions represent the temporal sequence of sets of movies rated in the same temporal
interval. Since a user usually rates a movie only once, a movie is present at most once
in each transaction. This feature of the data is not preserved by itemsets swapping,
nor by dataset permutation. Thus, using itemsets swapping or dataset permutation in
dataset which exhibits this property, ProMiSe would report many significant sequential
patterns that are not interesting in such a scenario, since the strategy used to generate
random datasets completely change the original distribution of the data.

Example 9. Let us consider again the dataset shown in Example 6. (Here, we refer to it
as dataset D). A random dataset D̃ generated from D using the transactions permutations
approach is the following:

τ1 = ⟨{3}, {2, 6, 7}⟩
τ2 = ⟨{2}, {1, 2, 5, 6}, {6, 7}, {7}⟩
τ3 = ⟨{2}, {2}, {6, 7}, {2}⟩
τ4 = ⟨{1, 4}, {1}, {2}, {2}⟩.

Let us note that each transaction of the new dataset has the same length, and also the
same item-length, of the respective transaction of the dataset D. Also the frequency
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of the items and of the itemsets remains the same in the two datasets. Instead, the
frequency of the sequential patterns can change: fD(⟨{3}, {2}⟩) = fD̃(⟨{3}, {2}⟩) = 1/4
but fD(⟨{2}, {6, 7}⟩) = 1/4 ̸= 1/2 = fD̃(⟨{2}, {6, 7}⟩).

The transactions permutations strategy, described in Algorithm 11, produces a
random dataset by permuting each transaction independently of all other events.3 Thus,
it samples a random dataset uniformly at random among all datasets with the desired
properties.

Algorithm 11: RandomDatasetTP: generate a random dataset with the trans-
actions permutations strategy.

Data: Sequential dataset D = {τ1, τ2, . . . , τ|D|}.
Result: Random dataset D̃ = {τ ′

1, τ ′
2, . . . , τ ′

|D̃|}.
1 for i← 1 to |D| do
2 τ ′

i ← Permute(τi);
3 D̃ ← D̃ ⊎ τ ′

i ;
4 return D̃;

6.3.2 Parallel Implementation

Let us note that ProMiSe, as all approaches based on permutation testing, is well-suited
to parallelization. In particular, the generation of random datasets and the computation
of the p-values for the sequential patterns in FSP (D, θ) can be easily parallelized: when
k cores are used to compute the p-values using M random datasets in the MC estimate,
each core computes the p-values on M/k random datasets, and the results are then
aggregated at the end. Thus, for each core and for each pattern s ∈ FSP (D, θ), it
computes the sum of the values 1[fDi

(s) ≥ fD(s)], considering sequentially M/k random
datasets Di. Finally, it aggregates the counts computed by each core, using Equation 6.1,
obtaining the p-value ps.

Such a parallel implementation is particularly advantageous for ProMiSe, since
the MC estimate of the p-values of the sequential patterns is also required by the WY
method that computes, for each random dataset D̃(j), with j ∈ {1, . . . , P}, the minimum
observed p-value in the dataset D̃(j), over all sequential patterns of interest, i.e., the ones
with fD̃(j)(s) ≥ θ.

3⊎ in Algorithm 11 is the addition of an element to a multi-set.
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6.4 I-ProMiSe: Mining Significant Sequential Pat-
terns with Confidence Intervals

In this Section, we describe I-ProMiSe, an alternative version of ProMiSe which uses
confidence Intervals. Let us note that ProMiSe requires the generation of a large amount
of random datasets for the MC procedure, for the original dataset and for the P random
datasets required by the WY method. Even if in the previous Sections we introduced
efficient strategies to generate random datasets, this could be computationally infeasible
for massive datasets. For this reason, we introduce I-ProMiSe, a version of ProMiSe
which results in a lower statistical power than the original version but that provides a
more efficient solution to mine significant sequential patterns from massive datasets. Let
us remember that in significant pattern mining, the dataset is seen as a sample from an
unknown distribution and one is interested in finding patterns significantly deviating
from an assumed null distribution. Thus, we can consider that the dataset D is a sample
from the unknown distribution πU and we are interested in mining sequential patterns
s which have true frequency tπU

(s) w.r.t. πU greater than their true frequency tπN
(s)

w.r.t. the null distribution πN , that is, sequential patterns s with tπU
(s) > tπN

(s). Since,
from the results of the previous Sections, we are able to sample datasets from the null
distribution, we can use an approach analogous of the one introduced in Chapter 5 to
mine emerging patterns in (a sequence of) two datasets to mine statistically significant
sequential patterns. (See Section 5.4.1 for more details.)

The idea behind I-ProMiSe is the following. It starts by generating a single random
dataset D̃. Let us remember that, given a sequential dataset D that is a sample from a
probability distribution π, the maximum deviation is defined as sups∈S |tπ(s)− fD(s)|.
Thus, I-ProMiSe computes an upper bound on the maximum deviation for the null
distribution πN in the random dataset D̃ and for the unknown distribution πU in the
original dataset D. Finally, it uses such upper bounds on the maximum deviation to
find sequential patterns s ∈ FSP (D, θ) s.t. tπU

(s) > tπN
(s), providing guarantees on the

FWER.
Algorithm 12 shows the pseudo-code of I-ProMiSe. Given a sequential dataset

D, a minimum frequency threshold θ ∈ (0, 1], and a FWER threshold α ∈ (0, 1) as
input, I-ProMiSe identifies a set of significant sequential patterns with frequency at
least θ and FWER bounded by α. I-ProMiSe starts by mining the set FSP (D, θ)
of sequential patterns with frequency at least θ in D (lines 2). As already said for
ProMiSe, the extraction of such sequential patterns can be performed with any efficient
algorithm for the mining of frequent sequential patterns. Then, it generates a random
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dataset D̃ (line 3) using one of the procedure defined in the previous Sections, i.e.,
Algorithm 9, 10 or 11. From the dataset D, it computes a probabilistic upper bound
µU on the maximum deviation sups∈S |tπU

(s)− fD(s)| (line 4), while from the random
dataset D̃, it computes a probabilistic upper bound µN on the maximum deviation
sups∈S |tπN

(s) − fD̃(s)| (line 5), both using α/2 as confidence parameter. (Such upper
bounds can be computed, for example, using the VC-dimension as described in the
previous Chapter, Section 5.5.) Finally, it reports in output all the sequential patterns
s ∈ FSP (D, θ) with fD(s) > fD̃(s) + µU + µN (line 6-9). Let us note that only if
fD(s) > fD̃(s) + µU + µN , we can be sure that tπU

(s) > tπN
(s), avoiding false positives.

Algorithm 12: I-ProMiSe
Data: Sequential dataset D, minimum frequency threshold θ ∈ (0, 1], FWER

threshold α ∈ (0, 1).
Result: Set SSP of significant sequential patterns with FWER ≤ α.

1 SSP ← ∅;
2 F ← FSP (D, θ);
3 D̃ ← RandomDataset(D);
4 µU ← ComputeMaxDev(D, α/2);
5 µN ← ComputeMaxDev(D̃, α/2);
6 foreach s ∈ F do
7 if fD(s) > fD̃(s) + µU + µN then
8 SSP ← SSP ∪ s;
9 return SSP ;

The following result establishes the quality of the output of I-ProMiSe.

Theorem 21. The output of I-ProMiSe has FWER ≤ α.

Proof. Let us consider that D(D, πU ) = sups∈S |tπU
(s)−fD(s)| ≤ µU and that D(D̃, πN ) =

sups∈S |tπN
(s)−fD̃(s)| ≤ µN . Let s′ be a sequential pattern s.t. tπU

(s′) ≤ tπN
(s′). Since we

know that tπU
(s′) ∈ [fD(s′)−µU , fD(s′)+µU ] and that tπN

(s′) ∈ [fD̃(s′)−µN , fD̃(s′)+µN ],
then fD(s)− µU ≤ fD̃(s) + µN and thus s′ cannot be reported in output by I-ProMiSe.
Since from the confidence parameters used to compute the upper bounds on the maximum
deviation, Pr(D(D, πU) ≤ µU) ≥ 1− α/2 and Pr(D(D̃, πN) ≤ µN) ≥ 1− α/2, then the
output of I-ProMiSe has FWER ≤ α, which concludes the proof.



108 Mining Statistically Significant Sequential Patterns

6.5 Experimental Evaluation

In this Section, we report the results of our experimental evaluation on multiple pseudo-
artificial and real datasets to assess the performance of ProMiSe and I-ProMiSe for
mining statistically significant sequential patterns.

The goals of the evaluation are the following:

• To empirically estimate the number of itemsets swaps needed to reach the stationary
distribution for the itemsets swapping strategy (see Section 6.3.1).

• To prove that ProMiSe is able to find large sets of statistically significant sequential
patterns in real datasets, while avoiding false positives.

• To make a comparison between ProMiSe and I-ProMiSe for mining significant
sequential patterns from real datasets.

6.5.1 Implementation, Environment, and Datasets

We implemented ProMiSe and I-ProMiSe in Java, and used Apache Spark Java API
version 3.1.1 to parallelize ProMiSe. To mine the frequent sequential patterns, we
used the PrefixSpan [54] implementation provided by the SPMF library [18]. To bound
the maximum deviation as required by I-ProMiSe, we used the results of Chapter 5
based on the empirical VC-dimension of sequential patterns (see Section 5.5). We
performed all the experiments on the same machine with 512 GB of RAM and 2 Intel(R)
Xeon(R) CPU E5-2698 v3 @ 2.3GHz with a total of 64 cores, running Ubuntu 14.14
and using Java 1.8.0_201. Our open-source parallel implementation of ProMiSe, our
implementation of I-ProMiSe, and the code developed for the tests are available at
https://github.com/VandinLab/PROMISE. In all the experiments, we fixed the FWER
threshold to the commonly used value α = 0.05 and we used 64 cores to parallelize the
execution of ProMiSe. We now describe the datasets used in the evaluation, and how
we generated them, when necessary. Table 6.1 shows their characteristics.

• BIBLE:4 a conversion of the Bible into a sequence dataset. A word is an item and
a sentence corresponds to a transaction.

• BIKE:5 Los Angeles Metro Bike Share Trip Data. An item is a bike-sharing station
and a transaction is the sequence of bike-sharing stations in which a given bike was.
Details about the generation of such a dataset are provided in Section 6.5.6.

4http://www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php
5https://www.kaggle.com/cityofLA/los-angeles-metro-bike-share-trip-data

https://github.com/VandinLab/PROMISE
http://www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php
https://www.kaggle.com/cityofLA/los-angeles-metro-bike-share-trip-data
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Table 6.1 Datasets characteristics. The table reports: Dataset D: name of the dataset;
|D|: number of transactions; |I|: total number of items; Avg ||τ ||: average transaction
item-length; Rep items: whether the items appear multiple time in a transaction.

Dataset D |D| |I| Avg. ||τ || Rep. items
BIBLE 36369 13905 21.6 Yes
BIKE 21078 67 7.28 Yes
FIFA 20450 2990 36.2 Yes
FLIGHT 151M 523 2.77 Yes
FLIGHT1 78.5M 503 2.87 Yes
FLIGHT2 87.3M 489 2.69 Yes
LEVIATHAN 5835 9025 33.8 Yes
SIGN 730 267 52.0 No

• FIFA:4 a dataset of sequences of click-stream data from the website of FIFA World
Cup 98. An item represents a web page and the sequence of click-steams of a single
session of a user is a transaction.

• FLIGHT:6 data of the commercial flights in the USA. Each item is an airport, while
each transaction represents the sequence of airports visited in a single itinerary
by a passenger. We considered the data of the “Origin and Destination Survey:
DB1BCoupon”, between 2010 and 2020. Such data contains single flights in the
format of origin and destination airports, an unique numerical identifier of the
itinerary that contains the flight, and the sequence number of the flight inside
the itinerary. We collected the temporal ordered sequence of airports that each
passenger visited in a single itinerary, sorting the airports using the sequence
numbers. Such a sequence is a transaction in our dataset.

• FLIGHT1: smaller version of FLIGHT that contains data between 2010 and 2015.

• FLIGHT2: smaller version of FLIGHT that contains data between 2015 and 2020.

• LEVIATHAN:4 this dataset is a conversion of the novel Leviathan by Thomas
Hobbes (1651) as a sequence database. A word is an item and a sentence corresponds
to a transaction.

• SIGN:4 a dataset of sign language utterance.

6https://www.transtats.bts.gov/Fields.asp?gnoyr_VQ=FLM

https://www.transtats.bts.gov/Fields.asp?gnoyr_VQ=FLM
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6.5.2 Itemsets Swaps Convergence

In this Section, we empirically study the number of itemsets swaps needed to reach the
stationary distribution, that is, the number of itemsets swaps to perform in order to
obtain a dataset drawn uniformly at random. In this study, we did not consider the three
FLIGHT datasets for the excessive computational time required to generate their random
datasets. Theorem 20 gives us an upper bound of the number of swaps to perform. In
practice, the stationary distribution may be reached with a smaller number of swaps.
To evaluate whether this is the case, we analyzed how the average relative frequency
difference (ARFD) changed with the number of itemsets swaps.

Given the real dataset D, let the set FSP (D, θ) be the frequent sequential patterns
extracted from D using θ as minimum frequency threshold, and let D̃t be a random
dataset obtained performing a series of t itemsets swaps from D. We define the average
relative frequency difference ARFD(D̃t) for D̃t as

ARFD(D̃t) = 1
|FSP (D, θ)|

∑
s∈F SP (D,θ)

|fD(s)− fD̃t
(s)|

fD(s) .

The idea behind the ARFD is to observe how the frequency, and so the distribution,
of the frequent sequential patterns of D changes after a series of t random swaps.
If ARFD(D̃t) does not change much after t > t∗ swaps for some value t∗, then the
distribution of the sequential patterns does not vary much in the datasets generated with
more than t∗ swaps, and we can assume that we are close to the stationary distribution.
We computed ARFD(D̃t) for t = im, where i is a positive integer and m = ∑|D|

i=1 |τi|. For
each real dataset, we performed this computation 5 times (i.e., generating five different
random datasets D̃t, each with a series of t itemsets swaps, starting from D) and then we
computed the average value of ARFD(D̃im). The dashed lines shown in Figure 6.1 are
the values obtained for all the real datasets. Let us note that we performed a maximum
of m2 log m itemsets swaps for all the datasets.

From Figure 6.1, it is possible to notice that, just after 2m itemsets swaps and
for all the datasets, the ARFD(D̃2m) is very close to the one obtained with m2 log(m)
itemsets swaps. Thus, we considered that 2m swaps are enough to sample a random
datasets uniformly at random. Finally, we generated a single random dataset D̃ using
the dataset permutation strategy, we computed ARFD(D̃), and we compared it with
the one obtained with itemsets swaps. Again, we repeated the computation 5 times and
we reported the average. The solid lines in Figure 6.1 show the results. It is possible to
notice that ARFD(D̃), obtained with a single dataset permutation of D, is very close to
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Fig. 6.1 Itemsets Swapping Convergence. It shows: average relative difference ARFD(D̃t)
between the frequencies of the frequent sequential patterns in D and their frequencies
in random datasets generated with t itemsets swaps (dashed lines); average relative
difference ARFD(D̃) between the frequencies of the frequent sequential patterns in D
and their frequencies a random datasets generated with the dataset permutation strategy
(solid lines). The legend shows the values of θ used to compute the ARFD.

the one obtained with the itemsets swaps (in particular with m2 log(m) itemsets swaps),
and thus the dataset permutation is a valid and more efficient strategy to sample datasets
uniformly at random from the null distribution.

Let us note that the ARFDs obtained with the same relative number of swaps in the
considered real datasets are very different. This is due to the different distributions of
the sequential patterns in the datasets. In particular, SIGN, that has values greater than
the other datasets, does not contain repeated items in its transactions, and therefore a
series of itemsets swaps changes its distribution more than on the other datasets.

6.5.3 Computational Time of the Generation Strategies

In this Section, we compare the execution times to generate random datasets using the
three generation strategies we proposed. For each real dataset and for each generation
strategy, we reported the average execution time required to generate a single random
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Table 6.2 Execution time to generate a random dataset. The table reports: Dataset
D: name of the dataset; for each generation strategy, itemsets swapping (IS), dataset
permutation (DP), and transactions permutations (TP), Generation Time (ms): the
time to generate a single random dataset in ms.

Dataset D Generation Time (ms)
IS DP TP

BIBLE 490 12.2 9.09
BIKE 43.0 1.68 1.89
FIFA 412 11.3 8.08
FLIGHT 1.35M 51.6K 5.77K
FLIGHT1 792K 33.9K 3.97K
FLIGHT2 1.07M 18.6K 2.52K
LEVIATHAN 43.7 2.27 2.11
SIGN 5.95 0.49 0.42

dataset, over 10 runs. Given the results of Section 6.5.2, for the itemsets swapping
strategy we considered 2m itemsets swap operations to generate a single random dataset.
Table 6.2 shows the results. It is possible to notice that the two strategies based on
permutations, i.e., dataset permutation and transactions permutations, are very efficient,
since they required a few milliseconds to generate a random dataset (excluding the
FLIGHT datasets). In particular, the transactions permutations resulted the fastest one.
The itemsets swapping strategy, instead, resulted at least one order of magnitude slower
than the other approaches. Given the results of this Section and of the previous one, the
dataset permutation strategy results a better strategy than the itemsets swapping one.
Finally, it is clear that it is impractical to execute ProMiSe on massive datasets such as
FLIGHT, since the generation of a single random dataset, even with the fastest strategy,
required several seconds. Thus, strategies based on MC procedures, which require the
generation of a large number of random datasets, must be avoided for such massive
datasets.

6.5.4 Results of ProMiSe

In this Section, we report the results of ProMiSe for mining significant sequential
patterns in real datasets. We did not report results for the itemsets swapping strategy
since they were analogous of the ones obtained with the dataset permutation strategy
and the dataset permutation strategy allows to obtain them more efficiently. First, we
used the BIKE dataset to evaluate the impact of the number P of permuted datasets
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Table 6.3 Results of ProMiSe for BIKE. The table reports: Dataset D: name of the
dataset; Strategy: generation strategy for the random datasets, itemsets swapping (IS)
or dataset permutation (DP); P : number of random datasets for the WY method; M :
number of random datasets for the MC procedure; |FSP |: number of frequent sequential
patterns in D; |SSP |: number of significant sequential patterns reported by ProMiSe.

Dataset D Strategy P M |FSP | |SSP |

BIKE (θ = 0.025)

DP

100 1K

163

0
100 10K 38
100 100K 38
1K 1K 0
1K 10K 38

TP

100 1K

163

0
100 10K 29
100 100K 31
1K 1K 0
1K 10K 31

for the WY method and of the number M of random datasets for the MC procedure.
Table 6.3 reports the obtained results. For M = 1000, ProMiSe did not report any
significant sequential patterns with both generation strategies since the MC estimates
of the p-values are too coarse (the smallest p-value that can be estimated is 1/1001).
For the remaining values, ProMiSe with the DP strategy reported the same amount
of patterns, 38. Instead, with the TP strategy, ProMiSe reported 29 patterns with
P = 100 and M = 10000, while it reported 31 patterns with the remaining values. Given
these results, we fixed P = 100 and M = 10000 for all the remaining analyses, since they
represent a good trade-off between the number of reported patterns and the execution
time.

Then, we executed ProMiSe on the remaining datasets. Table 6.4 reports the results.
First of all, let us note that using the dataset permutation strategy, ProMiSe reported
as significant all the frequent sequential patterns extracted from SIGN: this is due to
the absence of repeated items in the transactions of SIGN, which is therefore extremely
different from a random dataset. Thus, SIGN is an example of dataset that requires
the TP strategy. For all the datasets and for both generation strategies, ProMiSe
returned some significant sequential patterns. In addition, the sequential patterns flagged
as significant are always less than the frequent sequential patterns, confirming that the
frequency by itself is not enough to provide statistical significance. For FIFA, only one
frequent sequential pattern was not reported in output using the DP strategy. This
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Table 6.4 Results of ProMiSe. See Table 6.3 for the meaning of the reported values.

Dataset D Strategy |FSP | |SSP |

BIBLE (θ = 0.1) DP 174 119
TP 121

FIFA (θ = 0.275) DP 182 181
TP 142

LEVIATHAN (θ = 0.15) DP 225 85
TP 98

SIGN (θ = 0.4) DP 518 518
TP 457

is due to the fact that such a dataset contains very few transactions with repeated
itemsets, therefore, similarly to what we observed for SIGN, the dataset permutation
heavily changes the distribution of the frequencies of the patterns. Indeed, FIFA is the
second dataset with the highest ARFD (see Figure 6.1). Let us note that for some
datasets, the number of significant sequential patterns found with the TP strategy is
greater than the one found with the dataset permutation, although the TP strategy
cannot detect sequential patterns of length one or sequential patterns composed by a
single itemset repeated multiple times. Such results depend on the distribution of the
sequential patterns in the real datasets, highlighting that our two generation strategies
provide complementary assessments of the significance of the sequential patterns.

Finally, we assessed the false positives guarantees of ProMiSe using pseudo-artificial
datasets. Starting from SIGN, we generated 50 random datasets. Let us note that such
random datasets did not contain any significant patterns since they have been sampled
from the distribution described by the null hypothesis. Then, we executed ProMiSe
on such random datasets, and we estimated the FWER as the fraction of runs in which
ProMiSe reported at least one significant sequential pattern, which would be a false
positive by construction. Let us note that SIGN was the ideal candidate for such an
experiment, since ProMiSe mined many significant sequential patterns from it. With
the DP strategy, ProMiSe obtained an estimated FWER of 0%, while it obtained 4%
with the TP strategy. Let us note that in the runs in which it reported some false
positives, it reported exactly one false positive. These results show that the false positives
guarantees of ProMiSe are even better than the theoretical ones, which are ≤ 5% using
α = 0.05, and that P = 100 and M = 10000 are enough to obtain such guarantees.
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Table 6.5 Results of I-ProMiSe. See Table 6.3 for the meaning of the reported values.

Dataset D Strategy |FSP | |SSP |

BIBLE (θ = 0.1) DP 174 69
TP 53

BIKE (θ = 0.025) DP 163 0
TP 0

FIFA (θ = 0.275) DP 182 142
TP 138

FLIGHT (θ = 0.001) DP 566 177
TP 68

FLIGHT1 (θ = 0.001) DP 652 189
TP 33

FLIGHT2 (θ = 0.001) DP 501 152
TP 20

LEVIATHAN (θ = 0.15) DP 225 0
TP 0

SIGN (θ = 0.4) DP 518 88
TP 34

Overall, these results show that ProMiSe is a valid strategy to mine significant
sequential patterns while correctly controlling the FWER.

6.5.5 Results of I-ProMiSe

In this Section, we report the results of I-ProMiSe for mining significant sequential
patterns in real datasets, in particular from the massive three FLIGHT datasets. Table 6.5
reports the obtained results. Let us remember that I-ProMiSe requires the generation
of a single random dataset and thus it is incredible faster than the original version of
ProMiSe, with the drawback of a lower statistical power. Indeed, I-ProMiSe did not
report any significant sequential patterns from BIKE and LEVIATHAN, while ProMiSe
did. In addition, also in all the other datasets, I-ProMiSe reported less significant
sequential patterns. However, it reported some significant sequential patterns from all
the three FLIGHT datasets, with both generation strategies, while ProMiSe would
not report any significant sequential pattern in feasible time. In particular, I-ProMiSe
required about 30 minutes to mine FLIGHT, the biggest dataset, less than a tenth of
the time that ProMiSe required to mine BIBLE using 64 cores.
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Overall, these results show that I-ProMiSe is a valid alternative to ProMiSe for
mining statistically significant sequential patterns from massive datasets.

6.5.6 Analysis of BIKE with ProMiSe

In this Section, we provide an analysis of some significant sequential patterns returned by
ProMiSe from BIKE. We obtained BIKE by downloading the Los Angeles Metro Bike
Share Trip Data and performing the following pre-processing steps in order to create a
sequential dataset. The Los Angeles Metro Bike Share Trip Data contains a series of
trips performed in Los Angeles using the bike sharing service. For each trip, the following
information is available, among others: the starting station, the ending station, a unique
identifier of the bike, the starting time, the ending time. We collected all the trips made
by each bike and we sorted them using the temporal information available. In particular,
for each bike, we collected the ordered sequence of station where the bike has been. The
items in our dataset are the ID of the stations. Each transaction represents the ordered
list of stations in which a certain bike has been. The first station in each transaction is
the starting station of the first trip available for that bike. The second one is the ending
station of that trip, which becomes the starting station for the following trip and so on.
If for any reason one series of stations contained gaps, i.e., the end station of a trip did
not correspond to the starting station of the following trip, we split the sequence where
the gap happened, creating two transactions.

To mine significant sequential patterns from BIKE, we used ProMiSe with θ = 0.025,
P = 100, and M = 10000. Figure 6.2 shows the 4 most significant sequential patterns
(i.e., with the smallest p-values) found with the DP strategy and the 4 most significant
ones found with the transactions permutations. Two patterns have been found only with
the DP strategy, three have been found only with the TP strategy, while the remaining
three have been found with both. Let us note that the two patterns found only with the
DP strategy cannot be mined using the TP strategy, since they are composed by the
same itemset twice, and thus they always have the same frequency in random datasets
generated with transactions permutations. An example of such patterns is the sequential
pattern starting from the Union Station West Portal and ending in the same bike station.
Such a bike station is located near the Union Station, the main train station of Los
Angeles. The other is a sequential pattern starting from 7th & Flower and ending again
in the same station, which is located near the Metro Center station in the financial
district of Los Angeles. We investigated whether the two itemsets that composed these
sequential patterns are consecutive in the transactions in which they appear, indicating
that they correspond to single trips, or if they are a combination of multiple trips. We
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Fig. 6.2 Map of the Los Angeles Metro Bike stations with some significant sequential
patterns found with ProMiSe. The red stars are the bike stations involved, with the
respective names. Each arrow is a significant sequential pattern: black arrows have been
found with both generation strategies; blue arrows have been found only with the TP
strategy; purple arrows have been found only with the DP strategy.

considered that two itemsets of a sequential pattern are consecutive in a transaction if
there was at least one instance of such a pattern with itemsets in consecutive positions in
the transaction. For both the sequential patterns that start and end in the same station,
the percentage of single trips is about 25%. The only significant sequential pattern that
has a lower percentage is the one that starts from Main & First and that ends in 7th &
Flower. This is probably due to the large distance between the two stations. Instead,
the sequential pattern with the highest percentage of single trips is the one that starts
from Main & First and that ends in Union Station West Portal. This sequential pattern
probably catches the flow of people that ride to the Union Station.





Chapter 7

Mining Statistically Significant
Paths in Time Series Data from an
Unknown Network

In this Chapter, we consider the problem of mining statistically significant paths in time
series data from an unknown network. Let us remember that in the previous Chapter,
we studied the problem of mining statistically significant sequential patterns and we
defined efficient strategies to sample datasets from the distribution described by the null
hypothesis, which were at the core of our approach. In this Chapter, instead, we consider
the mining of paths in time series data generated by an unknown network, which is
another type of sequential data. In such a scenario, the definition of efficient strategies
to sample datasets from the distribution described by the null hypothesis is even more
challenging, since such time series are constrained by the structure of a network. To
solve this difficult task, we proposed two strategies to generate random data from our
generative null model using random walks, which allow us to employ the statistical
hypothesis testing framework and techniques based on permutation testing, analogous of
the ones used in Chapter 6, to mine significant paths. Part of the contributions described
in this Chapter appear in [85], while an extended version is currently under review in the
journal Knowledge and Information Systems, invited among the best papers accepted at
IEEE ICDM’21.
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Caspita: italian exclamation indicating surprise,
e.g., “Caspita! Such significant paths are really surprising.”

7.1 Introduction

Time series data mining [32, 70, 17] is a fundamental data mining task that covers a
wide range of real-life problems in various fields of research such as economic forecasting,
telecommunications, intrusion detection, and gene expression analysis. Even if the
common purpose is to extract meaningful knowledge from the data, many different
problems and approaches have been proposed over the years, ranging from anomaly
detection [93, 34] to motif discovery [44], from clustering [33] to classification [92].
However, in many real life scenarios, time series data are generated by networks, and
thus are sequences of vertexes representing paths constrained by the structures and the
distributions that define such networks. Very often, one has access to a collection of time
series but does not know the distribution on the network that generated them, or the
structure of such a network. As an example, consider a survey on the paths traveled by
people with the underground service of a given city. In such a scenario, one has a dataset
that represents a limited number of paths from a network, defined by the underground
structure, but does not know the distribution defined by the entire population that uses
such a service.

In this Chapter, we study the problem of mining statistically significant paths from
an unknown network. We assume to have a time series dataset, defined as a collection
of time series, and that such time series are paths generated from an unknown network.
Each time series is then a sequence of vertexes of the network. In such a scenario, we are
interested in mining unexpected paths from the dataset. Standard techniques usually use
the frequency or the number of occurrences as extraction criteria, with the aim of finding
interesting paths, but, in many real applications, such metrics are not enough to find
paths that provide useful knowledge. For example, paths that appear only few times in a
dataset may be over-represented if we consider the distribution of the network underlying
the data, or vice-versa, paths that appear a lot of times may be under-represented. Thus,
techniques based on such metrics may led to several spurious discoveries. In addition,
since we do not know the network underlying the data, we can not directly find over- or
under-represented paths.

We then introduce caSPiTa, an algorithm to find statistically significant paths over-
(or under-) represented from time series data considering a generative null model based on
meaningful characteristics of the observed dataset, while providing guarantees in terms
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of the false positives employing the Westfall-Young (WY) method. Our generative null
model is based on the observed number of occurrences of paths of a given length, with the
idea that such paths represent well-known substructures of the underlying network. In
the simplest case, they are paths of length one, that are edges of the underlying network.
Then, such a null model is used to test the significance of paths of a given, higher, length,
which are the paths of interest mined from the observed dataset. The intuition is to
create a generative null model that is able to explain the number of occurrences of shorter
paths, and to check whether such a generative null model is able to also explain the
observed number of occurrences of the paths of interest. Otherwise, such paths can be
considered significant, in the sense that they appear more (or less) times than expected
under such a generative null model. Let us consider, as an example, a network composed
by the web-pages of a website, and suppose that we want to find sequences of web-pages
visited more (or less) than expected w.r.t. the underlying distribution of the network,
defined by the navigation of the users on the website. Given the application or the
structure of the network, there may be some well-know substructures, defined as short
sequences of web-pages, that are traversed by the users that visit such a website with a
particular distribution. Again, let us note that in the simplest case, the substructures
are paths of length one, that represent a direct link between two web-pages. Thus, in
such a scenario, one may be interested in finding if such substructures also explain the
number of observed occurrences of longer paths, or if such longer paths are significant
due to some external factors causing their number of occurrences.

7.1.1 Our Contributions

In this Chapter, we introduce the problem of mining statistically significant paths in time
series data from an unknown network. In this regard, our contributions are:

• We introduce the problem of mining statistically significant paths in time series data
from an unknown network, defining a generative null model based on meaningful
characteristics of the observed dataset.

• We introduce caSPiTa, an algorithm to mine statistically significant paths (over-
or under-represented) from a time series dataset, while providing guarantees on the
probability of reporting at least one false positive, i.e., the FWER. We also discuss
an extension of caSPiTa to simultaneously mine both types of paths.

• We introduce g-caSPiTa, a variant of caSPiTa to mine statistically significant
paths (over- or under-represented) while providing guarantees on the generalized
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FWER, which allows to increase the statistical power of the algorithm, with the
drawback of tolerating the presence of a few false positives.

• We introduce an alternative interesting scenario in which caSPiTa can be applied,
which consists in mining paths that are significant w.r.t. a null model based on
data from a different dataset.

• We perform an extensive suite of experiments that demonstrates that caSPiTa is
able to efficiently mine statistically significant paths in real datasets while providing
guarantees on the false positives.

Let us note that throughout the Chapter, unless otherwise noted, we only describe
the scenario in which one is interested in mining statistically significant paths that
occur more times than expected under the null hypothesis (over-represented paths), for
clarity of presentation. However, all the reasoning are still valid to mine paths that
occur less times than expected (under-represented paths). In particular, we discuss the
mining of under-represented paths in Section 7.3.5 and our open source implementation
of caSPiTa mines over- and under-represented paths. In addition, results for both
scenarios are shown in the experimental evaluation.

7.1.2 Related Work

In significant pattern mining, the dataset is seen as a collection of samples from an
unknown distribution, and one is interested in finding patterns significantly deviating
from an assumed null hypothesis, i.e., distribution. Many variants and algorithms have
been proposed for the problem. We point interested reader to the survey [26], and
recent works that employ permutation testing [45, 60]. Even if our work falls within
the framework of significant pattern mining, such approaches are orthogonal to our
work, which focuses on finding significant paths, i.e., patterns, from time series that are
constrained by a network structure.

Many works have been proposed to detect anomalies in sequential data [93, 23],
employing several definition of anomalies, and considering different types of patterns.
For example, [34] defines a pattern as surprising if its frequency differs substantially
from that expected by chance, given some previously seen data. Lemmerich et al. [42],
instead, considers the mining of subgroups, defined by subsets of attributes, that exhibit
exceptional transition behavior, i.e., induce different transition models compared to the
ones of the attributes that describe the entire dataset. Although our approach adopts a
definition of significant pattern based on how the number of its occurrences differs from
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the one expected under an appropriate model, similarly to other works, we consider the
setting in which the data represent paths from a weighted and directed graph, which
results in a different problem. In fact, this aspect makes our work closer to the task of
detecting anomalies in temporal graph [53, 5], i.e., graphs that evolve over time. However,
even if our work considers data generated by a network and aims to find paths whose
number of occurrences is significant w.r.t. the network’s distribution, we consider the
scenario in which we do not know the network, and we have only access to a sample.

The only work that considers the problem of finding anomalous paths in time series
data from an unknown network is [40]. In this work, the authors propose an algorithm,
HYPA, to find anomalous length k paths using a null model based on length k− 1 paths.
In particular, they aim to find length k paths whose number of occurrences in a dataset
is anomalous w.r.t. a null model based on the number of occurrences of length k − 1
paths in the same dataset. Reducing the difficult problem of detecting anomalous length
k paths to the easier problem of detecting anomalous edges in a k-th order De Bruijn
graph, they describe a strategy based on the hypergeometric distribution to compute
a score for each length k path, where the score describes the level of anomaly of such
a path. Even if our approach is inspired by [40], our work differs from it in many key
aspects. First of all, we aim to find length k paths whose number of occurrences in a
dataset is significant w.r.t. a null model based on the number of occurrences of length h

paths, with h ∈ {1, . . . , k− 1} provided in input by the user, and not only with h = k− 1
as in [40]. In such a direction, it is not clear if HYPA can be modified to consider a
more general length h ∈ {1, . . . , k − 1}. Finally, while our approach employs the WY
method to correct for multiple hypothesis testing providing guarantees in terms of false
positives, [40] uses fixed thresholds to define interesting patterns, which does not provide
any guarantee.

To the best of our knowledge, our work is the first approach that employs the statistical
hypothesis testing framework to mine paths, i.e., patterns, from time series constrained
by the structure and the distribution of an unknown network, while providing rigorous
guarantees on the probability of reporting at least one false positive, i.e., the FWER.

7.1.3 Organization of the Chapter

The rest of the Chapter is structured as follows. Section 7.2 contains the definitions and
concepts used throughout this Chapter. Section 7.3 describes our algorithm caSPiTa,
besides all related concepts, and the discussion of possible extensions of our approach.
Section 7.4 describes an alternative scenario in which caSPiTa can be applied, which
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considers two datasets. Section 7.5 reports the results of an extensive suite of experiments
performed to evaluate the effectiveness of caSPiTa on real and pseudo-artificial datasets.

7.2 Preliminaries

We now provide the definitions and concepts used in the Chapter. First, in Section 7.2.1,
we describe the task of mining paths in time series data from a network. Then, in
Section 7.2.2, we define, similarly to [74], the concept of k-th order De Bruijn graph
used to define our generative null model. Finally, in Section 7.2.3, we refresh concepts of
hypothesis and multiple hypothesis testing, and apply it for significant path mining.

7.2.1 Mining Paths in Time Series Data from a Network

Let us define a network N = (G, ω) as a directed graph G = (V, E) and a weight function
ω : E → [0, 1]. V = {v1, v2, . . . , v|V |} is the vertices set, where each v ∈ V is called
vertex, and E = {(u, v) : u, v ∈ V } is the edges set, where each (u, v) is an ordered pair of
vertices, called edge. An edge (u, v) is an incoming edge of the vertex v and an outgoing
edge of the vertex u. Denoting with (u, :) an outgoing edge of u, for each vertex u ∈ V ,
we have ∑

(u,:)∈E

ω((u, :)) = 1,

that is, the weights of the edges from u represent a probability distribution. Fig. 7.1
(left) shows an example of network.

A path w = {vi0 , vi1 , . . . , vi|w|} of length |w| on the network N is an ordered sequence
of |w| + 1 vertices such that (vij

, vij+1) ∈ E ∀j ∈ {0, . . . , |w| − 1}. Let us note that a
vertex v ∈ V is a path w = {v} of length |w| = 0. A path w = {w0, w1, . . . , w|w|} occurs
in a path q = {q0, q1, . . . , q|q|} starting from position s ∈ {0, . . . , |q| − |w|}, denoted by
w ⊂ q(s), if and only if w0 = qs, w1 = qs+1, . . . , w|w| = qs+|w|. We say that the path w is a
sub-path of the path q. The number of occurrences Occq(w) of w in q is the number of
times that w occurs in q, that is,

Occq(w) = |{s ∈ {0, . . . , |q| − |w|} : w ⊂ q(s)}|.

A time series dataset D = {τ1, τ2, . . . , τ|D|} from a network N is a bag of |D| transac-
tions, which are paths on N . Given a path w on N , the number of occurrences OccD(w)
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of w in D is the sum of the number of occurrences Occτ (w) of w in τ , ∀ τ ∈ D, that is,

OccD(w) =
∑
τ∈D

Occτ (w).

Given a positive integer ℓ, the task of mining paths of length ℓ from a time series
dataset D from a network N is the task of mining the set WD(ℓ) of all paths of length ℓ

that occur at least once in D and the number of their occurrences, that is,

WD(ℓ) = {(w, OccD(w)) : |w| = ℓ ∧OccD(w) > 0}.

With an abuse of notation, in the following we use w ∈ WD(ℓ) to indicate that
∃(w, OccD(w)) ∈ WD(ℓ).

7.2.2 k-th Order De Bruijn Graph

Given a directed graph G = (V, E) and an integer k > 0, the k-th order De Bruijn
graph Gk = (V k, Ek) of G is a directed graph where each vertex vk ∈ V k is a path
of length k − 1 on G, i.e., vk = {vi0 , vi1 , . . . , vik−1}, and an ordered pair (vk, uk), with
vk = {vi0 , vi1 , . . . , vik−1}, uk = {uj0 , uj1 , . . . , ujk−1} ∈ V k, it is an edge of Gk if and only
if vit = ujt−1 ∀t ∈ {1, . . . , k − 1}. Thus, each edge (vk, uk) ∈ Ek is a path of length k on
G, since (vk, uk) = {vi0 , vi1 = uj0 , vi2 = uj1 , . . . , vik−1 = ujk−2 , ujk−1}. Let us note that G

itself is a 1-st order De Bruijn graph of G. Fig. 7.1 (right) shows an example of k-th
order De Bruijn graph.

Example 10. Let us consider as an example the network N = (G, ω) (left) and the 2-nd
order De Bruijn graph G2 = (V 2, E2) of G (right), both shown in Fig. 7.1. The network
N = (G, ω) is composed by the directed graph G = (V, E), with V = {A, B, C, D} and
E = {(A, C), (A, D), (B, A), (B, D), (C, B)}, and by the weight function ω, such that
ω ((A, C)) = 0.3, ω ((A, D)) = 0.7, ω ((B, A)) = 0.8, ω ((B, D)) = 0.2, and ω ((C, B)) =
1.0. The paths w = CBAC and q = BAD are example of paths on N , respectively of
length |w| = 3 and |q| = 2. The 2-nd order De Bruijn graph G2 = (V 2, E2) of G is
composed by V 2 = {AC, AD, BA, BD, CB}, where each vertex v2 ∈ V 2 represents a path
of length 1 on G, and by E2 = {(AC, CB), (BA, AC), (BA, AD), (CB, BA), (CB, BD)},
where each edge (v2, u2) ∈ E2 represents a path of length 2 on G, i.e., ACB, BAC,
BAD, CBA, and CBD.
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Fig. 7.1 Example of network and of De Bruijn graph. It shows the network N = (G, ω)
(left) and the 2-nd order De Bruijn graph G2 = (V 2, E2) of G (right).

7.2.3 Multiple Hypothesis Testing for Paths

The task of mining statistically significant paths requires to identify paths whose number
of occurrences in a dataset D is significant, or unexpected, w.r.t. the distribution of the
weight function of the network that generated such data. To assess the significance of a
path, the framework of statistical hypothesis testing (see Section 2.5.1) can be employed.
For each path w, let Hw be the null hypothesis that the number of occurrences OccD(w)
of w on D well conforms to the number of its occurrences in random time series data
generated from the network N = (G, ω). We define a random dataset D̃ as a collection
of random data which contains the same number of paths of interest, i.e., length k paths,
of the original dataset D and that is generated from the graph G in accordance with the
weight function ω. That is, a path from a vertex u ∈ V continues with vertex v ∈ V

with probability ω(u, v). In addition, the starting vertices (of full transactions or of single
paths) observed in the original dataset D are preserved in the random dataset D̃.

Let us remember that under the null hypothesis, the number of occurrences of w

is described by a r.v. Xw, and in order to assess the significance of w, a p-value pw is
commonly computed. In our scenario, the p-value pw of w is the probability of observing
a number of occurrences, under the null hypothesis, at least as large as the number of
occurrences OccD(w) of w in D, that is,

pw = Pr [Xw ≥ OccD(w)|Hw] .

Let us note that for our null hypotheses there is not a closed form for Xw and thus
the p-values can not be computed analytically. However, they can be estimated by a
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Monte Carlo (MC) procedure (see Section 2.5.1) as

pw = 1
M + 1

(
1 +

M∑
i=1

1
[
OccD̃i

(w) ≥ OccD(w)
])

, (7.1)

where D̃i, with i ∈ {1, . . . , M}, are M random time series datasets generated in accordance
with the distribution described by the null hypothesis.

As already discussed, the statistical hypothesis testing framework is commonly used
to provide guarantees on the false discoveries, i.e., paths flagged as significant while they
are not. When a single path w is tested for significance, flagging w as significant when
pw ≤ α, where α ∈ (0, 1) is the significance threshold, guarantees that the probability
that w corresponds to a false discovery ≤ α.

The situation is completely different when several paths are tested simultaneously
since the expected number of false discoveries, for a fixed α, linearly grows with the size
of the set of tested hypotheses, posing a severe multiple hypothesis correction problem [58].
To solve this issue, a common approach is to identify a corrected significance threshold
δ ∈ (0, 1) that provides guarantees on the Family-Wise Error Rate (FWER), defined as
the probability of reporting at least one false positive.

The Westfall-Young (WY) method [95] is a multiple hypothesis testing procedure
based on permutation testing that results in high statistical power. As we discussed
in Section 2.5.1, it directly estimates the joint distribution of null hypotheses using P

datasets obtained from the distribution described by the null hypothesis. For every
random dataset D̃i, with i ∈ {1, . . . , P}, it computes the minimum p-value p

(i)
min over all

paths of interest in D̃i. Finally, it estimates the corrected significance threshold δ∗ as the
α-quantile of the P minimum p-values, that is,

δ∗ = max
{

δ :
P∑

i=1
1
[
p

(i)
min ≤ δ

]
≤ αP

}
, (7.2)

with α ∈ (0, 1) the FWER threshold.

7.3 caSPiTa: Mining Statistically Significant Paths

In this Section, we describe our method caSPiTa, mining statistiCAlly Significant Paths
In Time series dAta, to mine statistically significant paths in time series data generated
by a network, while controlling the probability of having at least one false discovery, i.e.,
the FWER. Given a time series dataset D from an unknown network N , we aim to mine
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statistically significant paths, which are paths that have a number of occurrences on D
that is surprising, i.e., higher than the expected number of their occurrences under the
null hypothesis. In particular, given two natural values k, h ∈ N+, with k > h, we aim to
mine length k paths from D whose number of occurrences are not due to the number of
occurrences of length h paths observed in D, with the idea that such paths of length h

represent some well-know substructures in the underlying and unknown network.
The idea behind caSPiTa is the following. First, we mine all the paths WD(k) of

length k from the time series dataset D. Since we do not know the network N from which
D has been generated, we can not directly infer the statistical significance of such paths
w.r.t. N , and thus we need to construct a new network, i.e., a generative null model,
from the dataset D. Such a generative null model is then used to generate random time
series datasets in order to estimate the p-values and to compute the corrected significance
threshold δ∗ using the WY method. We now describe the generative null model employed
by caSPiTa.

7.3.1 Generative Null Model

In this Chapter, we aim to find length k paths whose number of occurrences in D are
not due to the number of occurrences of shorter length h paths in D. Thus, we construct
a generative null model in accordance with the number of occurrences of the paths of
length h in D, and then we test the significance of the paths of length k using such a
model. Given a time series dataset D, generated by an unknown network N = (G, ω),
and h ∈ N+, we define the h-th order generative model Nh(D) of the time series dataset D
as a network Nh(D) = (Gh, ωh), where Gh is the h-th order De Bruijn graph of G (based
on D, since the entire structure of G is unknown), and ωh is a weight function. The h-th
order De Bruijn graph Gh = (V h, Eh) is composed as follows: V h = {w ∈ WD(h− 1)},
while Eh is constructed as defined in Definition 7.2.2. Thus, each vertex vh ∈ V h is a
path of length h− 1 in D (and thus on G), while each edge (uh, vh) ∈ Eh represents a
path of length h in D (and thus on G). With an abuse of notation, in the following we
use (uh, vh) to indicate both the edge in Gh and the corresponding path on G. Finally,
the weight function ωh is defined as follows: ∀(uh, vh) ∈ Eh,

ωh
(
(uh, vh)

)
=

OccD
(
(uh, vh)

)
∑

(uh,:)∈Eh OccD ((uh, :)) .

Let us note that the weight function ωh of the h-th order generative null model Nh(D)
is defined using the observed number of occurrences of length h paths, and that each
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Fig. 7.2 Example of generative null models. It shows N1(D) (left) and N2(D) (right),
respectively the 1-st and the 2-nd order generative null model of D = {τ1 = BAD, τ2 =
CBAC, τ3 = CBAD, τ4 = AD}.

edge of Nh(D) represents a path of length h. Thus, Nh(D) correctly represents the
distribution of the number of occurrences of the paths of length h in the dataset D. An
example of generative null models is shown in Fig. 7.2.

Example 11. Let us consider the following dataset D = {τ1, τ2, τ3, τ4}, which is a possible
time series dataset from the network N shown in Fig. 7.1 (left), as an example:

τ1 = BAD

τ2 = CBAC

τ3 = CBAD

τ4 = AD.

Fig. 7.3 shows N1(D) (left) and N2(D) (right), respectively the 1-st and the 2-nd order
generative null model of D. Let us note that the two generative models represent different
probability distributions for the paths of length > h, e.g., the path w = BAD has a
probability of 0.75 of being generated in N1(D) while it has a probability of 0.67 in N2(D).
In addition, let us note that they are based on the dataset D and not on the network N

that generated D. Indeed, they have some missing edges w.r.t. the network N (that is a
1-st order De Bruijn graph of itself) and its 2-nd order De Bruijn graph G2, respectively,
both shown in Fig. 7.1.

As explained in Section 7.2.3, to compute the p-values pw of the paths w ∈ WD(k)
and to estimate the corrected significance threshold δ∗, we require random data generated
from the generative null model. In the following two Sections, we introduce two different
strategies to generate random datasets D̃ that contain the same total number T of paths
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of length k of the original dataset D, that is,

T =
∑

w∈WD(k)
OccD(w) =

∑
w∈WD̃(k)

OccD̃(w). (7.3)

First, we describe the transactions oriented generation (TOG) strategy, a natural way to
generate random datasets performing a series of random walks that generate random
transactions with characteristics similar to the ones of the transactions in D. To overcome
some issues of this strategy when it is applied to large generative null model, we then
introduce the paths oriented generation (POG) strategy, an alternative approach that
directly generates random length k paths. For this second strategy, we also introduce an
approximation based on the binomial distribution that allows to estimate the p-values
avoiding expensive MC procedures.

7.3.2 Transactions Oriented Generation (TOG) Strategy

In this Section, we explain how to generate random datasets D̃ from the generative null
model Nh(D) defined above using the TOG strategy. The idea is to perform a series of
random walks that generate random transactions τ̃ with characteristics similar to the
ones of the transactions τ ∈ D. Characteristics that are natural to consider and that we
want to preserve are:

• the dataset D̃ has the same number of transactions of D;

• each transaction τ̃ ∈ D̃ has the same length of the corresponding transaction τ ∈ D;

• each transaction τ̃ ∈ D̃ starts from the same vertex (of the generative null model)
of the corresponding transaction τ ∈ D.

Let us note that to preserve such characteristics guarantees to preserve also the total
number T of length k paths in the dataset. As a motivation to consider such characteristics,
let us consider the case in which the dataset D contains transactions that represent
visits of some users in a website. In such a scenario, we are interested in preserving the
web-pages from which the visits start, since they probably are homepages (or web-pages
from which the users typically start their navigation). In addition, by preserving the
length of the transactions, we preserve the number of web-pages that the users visit in a
single navigation on the website.

Let sτ be a path of length |sτ | = h− 1 such that sτ ⊂ τ (0), that is, sτ is the vertex
of Nh(D) from which the transaction τ starts. The TOG strategy is the following. For
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each τi ∈ D, we perform a random walk on Nh(D) of |τi| − (h− 1) steps, starting from
the vertex sτi

. At each step, the random walk moves from a vertex vh to a vertex uh

with probability ωh
(
(vh, uh)

)
. The path generated from such a random walk is then

the transaction τ̃i ∈ D̃ that corresponds to the transaction τi ∈ D, with |τi| = |τ̃i|.
Performing all the |D| random walks, we generate the random dataset D̃. Let us note
that a random walk may reach a vertex without outgoing edges before performing the
desired number of steps, generating a shorter transaction, and thus not preserving the
second characteristic (and neither T ). In such a case, we discard the transaction and
repeat the random walk until we generate a transaction τ̃i with |τ̃i| = |τi|.

The TOG strategy is the most natural way to generate random data from the
generative null model. However, when the generative null model is large, as happens
in many real applications, the number of paths contained in a dataset is only a small
fraction of the gargantuan number of paths that can be generated as sub-paths of such
long transactions. Thus, the corrected significance threshold δ∗ obtained with the WY
method could be very small, resulting in few or even zero reported significant paths. In
addition, depending on the structure of the generative null model, to generate such long
transactions may be computationally expensive for the high number of transactions that
we need to generate and discard before reaching the desired lengths.

7.3.3 Paths Oriented Generation (POG) Strategy

To overcome the issue of the TOG strategy, we now describe an alternative approach to
generate random data. In the POG strategy, instead of generating long transactions, we
generate single random paths w of length |w| = k. In particular, from the generative null
model Nh(D) defined above, we generate random datasets D̃, which are bags of paths of
length k, where the number of paths w of length |w| = k that start in each vertex (of
the generative null model) is the same in the two datasets D and D̃. Let us note that to
preserve such a characteristic guarantees to also preserve the total number T of length k

paths in the dataset.
Let us remember that sw is a path of length |sw| = h− 1 such that sw ⊂ w(0), that is,

sw is the vertex of Nh(D) from which the path w starts, and let S = {sw : w ∈ WD(k)}
be the set of vertices of Nh(D) from which starts at least one path w ∈ WD(k). To
generate random paths, for each vertex s ∈ S, we perform a series of random walks of
k − (h− 1) steps on Nh(D), until we generate

ns =
∑

w∈WD(k):sw=s

OccD(w) (7.4)



132 Mining Statistically Significant Paths

random paths w of length |w| = k that start from such a vertex s. Then, the bag of all
the paths of length k generated from all the vertices s ∈ S is the random dataset D̃. Let
us note that |D̃| = ∑

s∈S ns = T . As explained above, let us remember that at each step
the random walk moves from a vertex vh to a vertex uh with probability ωh((vh, uh)).
Thus, each random walk generates a path of length k or a path of length < k that ends
in a vertex without outgoing edges. Since we are interested in paths of length k, we
discard all generated paths of length shorter than k.

While the POG strategy overcomes the issue of the TOG strategy explained above
reducing the space of paths that can be generated from the generative null model, it still
requires expensive MC procedures to estimate the p-values, and such procedures could
be computationally prohibitive for large datasets. In the following Section, we introduce
a method to approximate the p-values for the POG strategy avoiding the MC procedure.

Binomial Approximation for the p-values

In this Section, we illustrate an approach to approximate the p-values pw of paths w

of length |w| = k when the POG strategy is used to generate random data. First, we
compute with which probabilities such paths are generated under the POG strategy. Let
us consider a random walk that starts from a vertex s ∈ S and that performs k− (h− 1)
steps on Nh(D), and let Ws be the set of all paths that can be generated by such a
random walk. As explained above, the set Ws contains paths of length |w| = k and,
eventually, paths of length |w| < k that end in a vertex without outgoing edges. Let
RW (w) be the set of edges of Nh(D) that the random walk traverses to generate the path
w ∈ Ws. From the definition of random walk, the probability Pr(w) that the random
walk generates w ∈ Ws starting from s is

Pr(w) =
∏

(uh,vh)∈RW (w)
ωh
(
(uh, vh)

)
.

Let us note that ∑w∈Ws
Pr(w) = 1. Let Ek be the event that the random walk starting

from s generates a path of length exactly k and let Wk
s ⊆ Ws be the set of paths w ∈ Ws

with |w| = k. Since in the POG strategy we discard paths shorter than k which could
be generated by the series of random walks, then the probability of generating the path
w ∈ Wk

s is
Pr(w | Ek) = Pr(w ∩ Ek)

Pr(Ek) , (7.5)
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where Pr(w ∩Ek) = Pr(w) for all w ∈ Wk
s and 0 otherwise, and Pr(Ek) = ∑

w∈Wk
s

Pr(w).
Again, let us note that ∑w∈Wk

s
Pr(w | Ek) = 1, and that if Ws\Wk

s = ∅, then Pr(w |
Ek) = Pr(w).

Example 12. Let us consider the 2-nd order generative null model N2(D) shown in
Figure 7.3 (left), as an example. For k = 3, starting from the vertex BA and performing
k − (h− 1) = 2 steps, a random walk can generate the paths of length 3 BAAE, BAAB

and BACE, or can reach the vertex AD just after one step, generating the path of length
2 BAD. The probabilities of all these paths are: Pr(BAAE) = 0.15, Pr(BAAB) = 0.35,
Pr(BACE) = 0.3, and Pr(BAD) = 0.2, and then the probability of generating a path of
length 3 starting from the vertex BA is Pr(E3) = 0.8. Thus, the probabilities of the length 3
paths under the POG strategy are: Pr(BAAE | E3) = 0.1875, Pr(BAAB | E3) = 0.4375,
and Pr(BACE | E3) = 0.375, shown in Figure 7.3 (right).

Since from a given vertex s ∈ S, we generate exactly ns (see Equation 7.4) length
k paths, then the number of occurrences OccD̃(w) of a path w ∈ Wk

s in the random
dataset D̃ follows a binomial distribution, that is, OccD̃(w) ∼ Bin(ns, Pr(w | Ek)). For a
fixed vertex s ∈ S, this is true for all the paths w ∈ Wk

s , but the binomial distributions
corresponding to these paths are not independent, and thus, the computation of the
p-values pw as

pw = Pr [Bin(ns, Pr(w | Ek)) ≥ OccD(w)] (7.6)

considers a number of paths that is in expectation ns, and not exactly ns as for the
original POG strategy. (Note that, as a consequence, the total number of considered
paths of length k is T in expectation.) However, in our experimental evaluation, we
empirically show that the p-values for the binomial approximation are within one order of
magnitude of the corresponding MC p-values, and, thus, that the binomial approximation
is a valid approach to approximate the p-values for the POG strategy, avoiding expensive
MC procedures.

Let us note that while this approximation does not require the generation of M

random datasets D̃ to estimate the p-values, caSPiTa still requires the generation of P

random datasets D̃ for the WY method. However, the binomial approximation can also
be used to approximate the minimum p-value in the P random datasets. Thus, given the
observed dataset D, we compute the p-values for all paths w ∈ WD(k) using Equation 7.6.
Then, we generate a series of P random datasets D̃ required by the WY method using
the POG strategy. For all the P random datasets D̃, we compute the minimum p-value
over all the paths w ∈ WD̃(k), where the p-value pw of w is computed with Equation 7.6
replacing OccD(w) with OccD̃(w).



134 Mining Statistically Significant Paths

Fig. 7.3 Example of paths oriented generation. It shows the 2-nd order generative null
model N2(D) and the starting vertex BA (left), and the probabilities of all paths of
length 3 under the POG strategy (right).

7.3.4 Analysis

In this Section, we describe in detail our algorithm caSPiTa and formally prove its false
positives guarantees. Algorithm 13 shows the pseudo-code of caSPiTa. Its inputs are
the time series dataset D, the FWER threshold α ∈ (0, 1), the order h > 0 of the the
generative null model, and the paths length k > h. For a given generation strategy, (i.e.,
TOG or POG), caSPiTa first mines the setWD(k), of all paths w of length |w| = k that
occur at least once in D (line 1). Then, it constructs the generative null model Nh(D)
(line 2) as explained in Section 7.3.1, and it uses Nh(D) to compute the p-values of the
paths w ∈ WD(k) (line 4). The p-values can be computed with a MC procedure using
Equation 7.1 (for both generation strategies), and thus generating M random datasets,
where M is a parameter set by the user, or with the binomial approximation using
Equation 7.6 (for the POG strategy). To compute the corrected significance threshold δ∗,
it then employs the WY method, which requires the generation of P random datasets
(line 6), where P is a parameter set by the user. For each random dataset D̃i, with
i ∈ {1, . . . , P}, it mines the set WD̃i

(k) (line 7) and then it computes the minimum
p-value p

(i)
min over all paths w̃ ∈ WD̃i

(k) (line 9). For the computation of such p-values,
the considerations made above are still valid. The corrected significance threshold δ∗ is
then computed using Equation 7.2 (line 11). If δ∗ > α, then we set δ∗ = α, corresponding
to an uncorrected threshold. Finally, the output is the set of paths w ∈ WD(k) such that
pw < δ∗ (line 12). Theorem 22 proves that the output of caSPiTa has FWER ≤ α.

Theorem 22. The output of caSPiTa has FWER ≤ α.
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Algorithm 13: caSPiTa
Data: Time Series Dataset D, FWER Threshold α ∈ (0, 1), Order h > 0 of the

Generative Null Model, Paths Length k > h.
Result: Set SW with FWER ≤ α.

1 W ← MinePaths(D, k);
2 Nh ← GenerativeNullModel(D, h);
3 foreach w ∈ W do
4 pw ← PValue

(
Nh, w, OccD(w)

)
;

5 for i← 1 to P do
6 D̃i ← RandomDataset(Nh, k, h);
7 Wi ← MinePaths(D̃i, k);
8 foreach w̃ ∈ Wi do
9 pw̃ ← PValue

(
Nh, w̃, OccD̃i

(w̃)
)
;

10 p
(i)
min ← min{pw̃ : w̃ ∈ Wi};

11 δ∗ ← min
{

α, max
{

δ : ∑P
i=1

(
1[p(i)

min ≤ δ]
)
≤ αP

}}
;

12 SW ← {(w, OccD(w), pw) : w ∈ W ∧ pw < δ∗};
13 return SW ;

Proof. Let us consider the P random datasets D̃i, with i ∈ {1, . . . , P}, generated by
caSPiTa for the WY method. Let us note that they do not contain any significant paths
of length k, since they are generated from the generative null model Nh, and thus from
the distribution described by the null hypothesis. Given δ ∈ (0, 1), the FWER FWER(δ)
obtained using δ as significance threshold can be estimated using Equation 2.3. That
is, estimated as the fraction, over P , of the number of datasets D̃i that contain at least
one path with p-value ≤ δ, and thus a path that would be reported as significant while
it is not when δ is used as significance threshold. Since caSPiTa uses the corrected
significance threshold δ∗ = max{δ : FWER(δ) ≤ α}, then its output has FWER ≤ α,
which concludes the proof.

We now provide a brief analysis of the time complexity of caSPiTa. The time
complexity tW to mine WD(k) and tN to construct Nh(D) are tW = tN = O(D), with
D = ∑

τ∈D |τ |, since they can be done with a single scan of the entire dataset. The time
complexity tMC

P to estimate the p-values of all paths w ∈ WD(k) using MC procedures
is tMC

P = O(M · tD̃ + |W(D(k)|), where tD̃ is the time complexity to generate a random
dataset D̃ and M is the number of random datasets to create. Let us note that tD̃

depends on the generation strategy, and that it is not trivial to bound it since we do not
know in advance the number of random walks that we need to generate D̃. However, our
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experimental evaluation empirically proves that such random datasets can be generated
with feasible computational time. In addition, the MC procedure is well-suited to
parallelization: when C cores are used to compute the p-values considering M random
datasets, each core computes the p-values on M/C random datasets, and the results are
then aggregated at the end. The time complexity tB

P to compute the p-values of all paths
w ∈ WD(k) using the binomial approximation is instead tB

P = O(|W(D(k)|), but it first
requires the computation of the probabilities of Equation 7.5. Such a computation has
time complexity O(|S| ·RMAX), where |S| is the number of starting nodes and RMAX is
the maximum, over all s ∈ S, number of vertices that can be reached in k − h steps on
Nh(D), starting from each vertex s. Finally, the time complexity of the WY method is
tW Y = O(P · (tD̃ + tp)), with P the number of random datasets to generate and tp one of
the two time complexity described above to compute the p-values.

As previously stated, while here we consider the mining of over-represented paths, all
our reasoning can be easily adapted to the mining of under-represented paths. Details in
such a direction are provided in the following Section.

7.3.5 Mining Under-Represented Paths

In this Section, we describe how caSPiTa can be modified to mine under-represented
statistically significant paths. Let us remember that in order to assess the significance of
a path w, we require to compute a p-value pw. To mine under-represented paths, the
p-value pw of w is the probability of observing a number of occurrences, under the null
hypothesis, at least as small as the number of occurrences OccD(w) of w in D, that is,

pw = Pr [Xw ≤ OccD(w)|Hw] ,

where Xw is the random variable which describes the number of occurrences of w under
the null hypothesis. As already said for the over-represented paths, since there is not a
closed formula for Xw under our null hypothesis, the p-value pw must be estimated with
a MC procedure (for both generation strategies) or with the binomial approximation (for
the POG strategy). Using a MC procedure, pw can be estimated as

pw = 1
M + 1

(
1 +

M∑
i=1

1
[
OccD̃i

(w) ≤ OccD(w)
])

, (7.7)

where D̃i, with i ∈ {1, . . . , M}, are M random time series datasets generated from the
distribution described by the null hypothesis. Instead, using the binomial approximation,
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pw can be estimated as

pw = Pr [Bin(ns, Pr(w | Ek)) ≤ OccD(w)] , (7.8)

where Pr(w | Ek) is the probability of generating w under the POG strategy and ns is
the number of paths to generate from the same starting vertex of w. Thus, Algorithm 13
can be simply modified to mine under-represented paths computing the p-values pw of
the paths w ∈ W (line 4) with a MC procedure using Equation 7.7 (for both generation
strategies) or with the binomial approximation using Equation 7.8 (for the POG strategy).
The same approach must be employed to compute the p-values pw̃ of the paths w̃ ∈ Wi

(line 10) in the P random datasets for the WY method.
In the case one is interested in mining both types of paths, over- and under-represented,

it is possible to speed up the execution of caSPiTa mining both types of paths simultane-
ously. Indeed, since the only difference in the two versions of caSPiTa is the computation
of the p-values, it is possible to perform all the other operations only once and to compute
both types of p-values (both for the paths of the original and of the random datasets for
the WY method). Thus, we obtain two different significance thresholds, one for the over
and one for the under-represented paths, to test the respectively p-values. Let us note
that this approach is a valid strategy to speed up the execution avoiding unnecessary
re-computations but the false positives guarantees are still valid for the two types of paths
separately, i.e., the set of returned over-represented paths has FWER ≤ α and the set of
returned under-represented paths has FWER ≤ α, separately. Instead, if one is interested
in mining over- and under-represented paths obtaining false positives guarantees for both
types of paths simultaneously, i.e., the set of returned over- and under-represented paths
has FWER ≤ α, the following strategy is a possible solution. Given the FWER threshold
α ∈ (0, 1), to compute the two corrected significance thresholds considering α/2, i.e.,

δ∗ ← max
{

δ :
P∑

i=1

(
1[p(i)

min ≤ δ]
)
≤ αP

2

}
,

each with the respectively p-values. Using the union bound, it is easy to prove that the
resulting output, consisting of both over- and under-represented paths, has FWER ≤ α.

7.3.6 Controlling the Generalized FWER

In this Section, we illustrate how caSPiTa can be modified to mine statistically significant
paths while controlling the generalized FWER [41]. In several real applications, one
may be interested in tolerating a small amount of false discoveries in order to increase
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the power of detecting significant paths, still obtaining guarantees on the false positives.
In such cases, methods to discover significant paths while controlling the generalized
FWER are preferred to methods controlling the FWER. Given a positive integer g, the
generalized FWER g-FWER is defined as the probability of reporting at least g false
positives, that is, if FP is the number of false positives, then g-FWER = Pr[FP ≥ g]. For
a given value δ, let g-FWER(δ) be the g-FWER obtained when δ is used as corrected
significance threshold, that is, by reporting as significant all paths with p-value ≤ δ. The
WY method can be used to estimate the FWER FWER(δ) obtained using δ as corrected
significance threshold as

g-FWER(δ) = 1
P

P∑
i=1

1
[
p(i)

g ≤ δ
]

,

where p(i)
g is the g-th smallest p-values over all paths of interest in the random dataset

D̃i. Thus, given a g-FWER threshold α ∈ (0, 1), the corrected significance threshold δ∗

is obtained as
δ∗ = max{δ : g-FWER(δ) ≤ α}.

Algorithm 13 can be simply modified to mine statistically significant paths with
g-FWER ≤ α. To obtain such guarantees, it is sufficient to substitute lines 10 and 11,
respectively, with

p(i)
g ← g-th min{pw̃ : w̃ ∈ Wi}

and
δ∗ ← max

{
δ :

P∑
i=1

(
1[p(i)

g ≤ δ]
)
≤ αP

}
.

Let g-caSPiTa be such a modified version of our algorithm. (Let us note that 1-caSPiTa
corresponds to the original caSPiTa.) Theorem 23 proves that the output of g-caSPiTa
has g-FWER ≤ α.

Theorem 23. The output of g-caSPiTa has g-FWER ≤ α.

The proof is analogous to the proof of Theorem 22.

7.4 Mining Statistically Significant Paths from Dif-
ferent Datasets

In this Section, we illustrate another interesting scenario in which our algorithm caSPiTa
can be applied. Let us suppose to have two datasets, D1 and D2, and that such two
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datasets are taken from the same network N , but in different circumstances, e.g., in
different temporal points, or maybe that they represent data generated from two different
populations, e.g., men and women. In such a scenario, one may be interested in finding
paths from one of the two datasets that are statistically significant considering the
distribution represented by the other dataset. Thus, it is possible to use a slightly
modified version of caSPiTa, considering the dataset D1 to generate the h-th order
generative null model Nh(D1) and then, to consider the paths mined from the other
dataset WD2(k), and to compute their significance using Nh(D1). Differently from the
scenario described above, in this setting it is also possible to mine statistically significant
paths of length k considering the h-th order generative null model with k = h.

7.5 Experimental Evaluation

In this Section, we report the results of our experimental evaluation on multiple pseudo-
artificial and real datasets to assess the performance of caSPiTa for mining statistically
significant paths from an unknown network.

The goals of the evaluation are the following:

• To prove that for small datasets, caSPiTa is able to find statistically significant
paths with both generation strategies, i.e., TOG and POG, using the MC procedure,
while for larger datasets the binomial approximation is necessary to provide useful
results;

• To prove that the binomial approximation is a valid approach to approximate the
p-values for the POG strategy;

• Focusing on the POG strategy with the binomial approximation, to prove that
caSPiTa and its modified version g-caSPiTa are able to find large sets of statis-
tically significant paths in pseudo-artificial and real large datasets, while avoiding
false positives, and compare caSPiTa with HYPA [40];

• To prove that caSPiTa is able to find statistically significant paths in the scenario
in which the generative null model is constructed considering data from an other
dataset (see Section 7.4).

7.5.1 Implementation, Environment, and Datasets

We implemented caSPiTa in Java. We performed all the experiments on the same
machine with 512 GB of RAM and 2 Intel(R) Xeon(R) CPU E5-2698 v3 @ 2.3GHz, using
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Table 7.1 Datasets characteristics. The Table reports: |D|: number of transactions;
Avg |τ |: average transaction length; Max |τ |: maximum transaction length; for the 1-st
generative null model N1(D), |V 1|: number of vertices; |E1|: number of edges.

Dataset D |D| Avg |τ | Max |τ | N1(D)
|V 1| |E1|

BIKE10 3025 1.54 11 10 76
BIKE20 5080 1.90 21 20 279
BIKE 38651 7.51 232 237 10269
FLIGHT 17447803 1.63 15 455 69234
WIKI 51307 5.76 434 4169 59530

Java 1.8.0_201. To parallelize the MC procedures, we used Apache Spark Java API version
3.1.1. Our open-source implementation of caSPiTa and the code developed for the tests
and to generate the datasets are available at https://github.com/VandinLab/CASPITA.
In all the experiments, we fixed the FWER threshold to the commonly used value α = 0.05.
In all the experiments, we mined over- and under-represented paths simultaneously,
considering the FWER guarantees separately for the two types of paths. To compare
with HYPA [40], we used their implementation available online,1 considering the “rpy2”
version. In the following, we describe the datasets used in the evaluation, and how we
generated them. Their characteristics are shown in Table 7.1:

• BIKE: data on the bike sharing service of Los Angeles. Each vertex is a bike station,
while each transaction represents the sequence of bike stations that a given bike
visits. We considered the 2019 data of the “Los Angeles Metro Bike Share trip
data”,2 containing single trips in the format of starting station, ending station, and
an unique numerical identifier of the bike, among other information. We collected
the temporal ordered sequence of bike stations that each bike visited. Such a
sequence is a transaction in our dataset. In the case of data anomalies, i.e., an
ending station of a trip does not correspond to the starting station of the following
trip, we split the sequence where the gap happens, creating two transactions.

• BIKE10 and BIKE20: smaller versions of the BIKE dataset. From BIKE, we only
considered the 10 or 20 vertices, respectively, that occur most frequently times,
and collect all the transactions that only contain such vertices.

1https://github.com/tlarock/hypa
2https://bikeshare.metro.net/about/data/

https://github.com/VandinLab/CASPITA
https://github.com/tlarock/hypa
https://bikeshare.metro.net/about/data/
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• FLIGHT: data of the commercial flights in the USA. Each vertex is an airport, while
each transaction represents the sequence of airports visited in a single itinerary by
a passenger. We considered the 2019 data of the “Origin and Destination Survey:
DB1BCoupon”.3 Such data contains single flights in the format of origin and
destination airports, an unique numerical identifier of the itinerary that contains
the flight, and the sequence number of the flight inside the itinerary. We collected
the temporal ordered sequence of airports that each passenger visited in a single
itinerary, sorting the airports using the sequence numbers. Such a sequence is a
transaction in our dataset.

• WIKI: it contains human navigation paths on Wikipedia, collected through the
human-computation game Wikispeedia [94]. Each vertex is a Wikipedia web-page,
while each transaction is a sequence of web-pages visited by an user during a game.
We considered the data “paths finished”,4 that represent finished games.

7.5.2 Generation Strategies Comparison

In this Section, we compare the results obtained by caSPiTa with the TOG or POG
strategies that employ MC procedures, and the POG strategy that uses the binomial
approximation, on BIKE10 and BIKE20.

The experiments have been performed with P = 1000, M = 105, k ∈ {2, . . . , 5}, and
h ∈ {1, . . . , k − 1}. The results are reported in Table 7.2. For BIKE10, the smallest
dataset, the number of significant paths obtained with the TOG and POG strategies
with MC procedures differs from at most 1, for all combinations of parameters. The
same is true when the POG strategy with the binomial approximation is used. In all the
cases, caSPiTa reported at most 3 statistically significant paths, which is not surprising
since BIKE10 only contains few distinct paths. For BIKE20, the situation is different.
For some combinations of parameters (shown in bold in Table 7.2), caSPiTa with the
MC procedures did not report any significant (over-represented) paths, while it reported
some paths (from 1 to 8) when the binomial approximation is used. In all such cases, the
MC estimates resulted in a corrected threshold δ∗ = 1/(M + 1), corresponding to the
minimum achievable p-value considering M random datasets. Thus, to be able to mine
paths, one has to consider a larger value of M , which is infeasible with larger datasets,
or to resort to the binomial approximation. This phenomenon appeared with k > h− 1,
that is, when a large number of distinct paths can be generated, even for a small dataset

3https://www.transtats.bts.gov/Fields.asp?gnoyr_VQ=FLM
4https://snap.stanford.edu/data/wikispeedia.html

https://www.transtats.bts.gov/Fields.asp?gnoyr_VQ=FLM
https://snap.stanford.edu/data/wikispeedia.html
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Table 7.2 caSPiTa results with BIKE10 and BIKE20. The Table reports: k: paths
length; h: order of the null model; for each dataset, BIKE10 and BIKE20, |W|: number
of distinct paths of length k; T : number of total paths of length k; for each generation
strategy, TOG (T), POG (P), and POG with binomial approximation (B), |SW|: number
of significant paths reported, over (+) and under (−) represented.

k h
BIKE10 BIKE20

|W| T
|SWT | |SWP | |SWB| |W| T

|SWT | |SWP | |SWB|
+ − + − + − + − + − + −

2 1 164 1630 3 3 3 3 3 3 978 4553 11 12 9 8 11 8

3 1 163 575 1 2 2 2 2 2 997 2320 0 9 0 7 8 7
2 1 2 1 2 1 2 2 8 1 6 1 5

4
1

104 210
0 2 0 2 1 2

713 1220
0 4 0 5 4 5

2 0 1 1 1 1 1 0 7 0 4 0 4
3 0 1 0 0 0 0 0 4 0 2 0 2

5

1

57 83

0 2 0 2 0 2

450 661

0 2 0 2 2 2
2 0 1 1 0 1 0 0 3 0 2 1 2
3 0 0 0 0 0 0 0 1 0 1 0 1
4 0 0 0 0 0 0 0 0 0 1 0 1

such as BIKE20. This emphasizes the issue of the TOG strategy described above, that
is, the gargantuan number of paths that must be considered with the generation of long
transactions.

We then compared the p-values from the POG strategy obtained with the MC
procedure and the binomial approximation. Note that while in the MC procedure the total
number of length k paths starting from a vertex is fixed to the value observed in the data,
using the binomial approximation such a property holds only in expectation. Thus, the
p-values from the two approaches will be different. However, by comparing the p-values5

for all paths (over- and under-represented) of BIKE10 and BIKE20 with k ∈ {2, . . . , 5}
and h ∈ {1, . . . , k − 1}, and considering M ∈ {104, 105, 106} random datasets for the
MC estimates, we observed that the p-values for the binomial approximation are within
one order of magnitude of the corresponding MC p-values, and that the difference
between binomial p-values and MC p-values is lower than the standard deviation of
the MC estimates (obtained from 5 estimates of the MC p-values). Furthermore, the
binomial approximation is several orders of magnitude faster than the MC procedure

5We only considered p-values ≥ 1/(M + 1), since lower p-values require larger M to be correctly
estimated with the MC procedure.
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(few milliseconds against over 40 seconds, considering the maximum execution time for
both strategies and using 8 cores to parallelize the MC estimates).

7.5.3 Results for POG Strategy with Binomial Approximation

Since the results of the previous Section demonstrated that the POG strategy with the
binomial approximation is necessary to mine statistically significant paths from large
datasets, and that the p-values for the binomial approximation are within one order
of magnitude of the corresponding MC p-values, in this Section we focus on such a
version of caSPiTa. First, we investigated the false positives guarantees of caSPiTa
on pseudo-artificial datasets, also performing a comparison with HYPA, and then we
executed it on real datasets.

False Positives Guarantees

In this Section, we report the results of our experimental evaluation to assess the false
positives guarantees of caSPiTa using pseudo-artificial datasets. Starting from a real
dataset, we created its h-th order generative null model, which we used to generate
random datasets using the POG strategy. Each random dataset is then a bag of paths
of a given length k > h that does not contain any significant path of length k (since
they have been generated in accordance with the generative null model). We then
executed caSPiTa on each random dataset, with parameters h and k corresponding
to the ones used to generate the random dataset, and we checked whether caSPiTa
reported some paths, which would be false positives by construction. We considered
BIKE10 and BIKE20 as starting real datasets, k ∈ {2, . . . , 5}, and h ∈ {1, . . . , k − 1},
mining under and over-represented paths. Given a real dataset, we generated 20 random
datasets for each combinations of h and k, obtaining a total number of 400 runs for
each real dataset. We then estimated the FWER as the fraction of runs with at least
one false positive. Table 7.3 (g=1) shows the obtained results. For BIKE10, caSPiTa
obtained an estimated FWER of 0.75% with P = 100, 1.25% with P = 1000, and 0.5%
with P = 10000. Instead, for BIKE20, it obtained an estimated FWER of 2.25% with
P = 100, 1.75% with P = 1000, and 3.25% with P = 10000. These results show that the
false positives guarantees of caSPiTa are even better than the theoretical ones, which
are ≤ 5% using α = 0.05, and that P = 100 is enough to obtain such guarantees. Using
these random datasets, we also made a comparison with HYPA. Let us remember that
HYPA employs a fixed threshold β to flag as anomalous a path, without any theoretical
guarantees. We used β ∈ {0.00001, 0.001, 0.05}, which are, respectively, the minimum,
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Table 7.3 g-FWER estimates for g-caSPiTa with pseudo-artificial datasets obtained
from BIKE10 and BIKE20. The Table reports: P : number of random datasets for
the WY method; g: number of false positives considered in the g-FWER; for each real
datasets, BIKE10 and BIKE 20, g-FWER (%): estimate of the g-FWER in percentage.

BIKE10 BIKE20
g-FWER (%) g-FWER (%)

P\g 1 2 5 10 1 2 5 10
100 0.75 0.50 0.75 0.25 2.25 1.25 0.25 0.50
1000 1.25 0.50 0.75 0.25 1.75 0.25 1.25 0.75
10000 0.50 1.25 0.10 0.10 3.25 1.25 0.25 0.50

the most commonly used, and the maximum value used in [40], and k ∈ {2, . . . , 5}. (For
h, HYPA always considers h = k − 1, thus we only used this value.) For BIKE10, it
obtained an estimated FWER of 40.63% with β = 0.05, 15.63% with β = 0.001, and 0.0%
with β = 0.00001. Instead, for BIKE20, it obtained an estimated FWER of 60.63% with
β = 0.05, 32.50% with β = 0.001, and 1.25% with β = 0.00001. These results show that
HYPA is able to return anomalous paths achieving low FWER with the correct threshold,
but also emphasize the importance of having a strategy, as the one that we employ, to
compute such a threshold in an automatic way, since the usage of fixed thresholds may
lead to many spurious discoveries, or to a low statistical power.

Finally, considering the same pseudo-artificial datasets, we assessed the false positives
guarantees of g-caSPiTa with g ∈ {2, 5, 10}. We executed g-caSPiTa in each random
dataset and then we estimated the g-FWER as the fraction of runs with at least g false
positives. Table 7.3 shows all the obtained results. Similarly to what has been observed
with 1-caSPiTa, i.e., the original version of caSPiTa, the results show that the false
positives guarantees of g-caSPiTa are even better than the theoretical ones since all the
g-FWER estimates are (far) below 5%, and P = 100 is enough to obtain them.

7.6 Results with Real Datasets

We then executed (g-)caSPiTa on some real datasets, i.e., BIKE, WIKI, and FLIGHT.
Tables 7.4, 7.5, and 7.6 report the results obtained with P = 100, k ∈ {2, . . . , 5},
h ∈ {1, . . . , k − 1}, and g ∈ {1, 2, 5, 10}. For the computational time, we only reported
the values for g = 1, since the others are analogous. Considering g = 1, for all the datasets,
and for almost all combinations of parameters, caSPiTa reported some significant paths.
It is interesting to notice that the number of over-represented paths is almost always (some
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Table 7.4 g-caSPiTa results with BIKE. k: paths length; h: order of the null model;
|W|: number of distinct paths of length k; T : number of total paths of length k; for each
g, number of reported significant paths: over- (+) and under- (−) represented; Time (s):
execution time in seconds for g = 1.

k h |W| T
g = 1 g = 2 g = 5 g = 10 Time (s)
+ − + − + − + −

2 1 90.5K 252K 197 28 256 47 374 84 453 98 150

3 1 172K 221K 118 40 159 60 226 85 311 117 350
2 1 8 4 17 7 29 10 38 375

4
1

179K 195K
80 15 127 22 153 40 184 65 662

2 10 7 14 15 19 25 21 33 639
3 0 3 0 4 0 12 0 15 713

5

1

166K 174K

71 6 98 6 115 9 130 19 855
2 17 3 19 5 31 10 39 16 514
3 0 1 1 3 1 3 2 9 458
4 0 1 0 2 0 4 1 7 365

Table 7.5 g-caSPiTa results with WIKI. See Table 7.4 for the meaning of the reported
values.

k h |W| T
g = 1 g = 2 g = 5 g = 10 Time (s)
+ − + − + − + −

2 1 155K 244K 160 53 222 82 346 134 424 175 264

3 1 169K 194K 219 6 334 16 443 27 549 34 384
2 8 12 11 13 22 25 27 34 495

4
1

139K 147K
193 1 319 2 425 3 535 3 765

2 16 6 20 8 39 10 51 16 747
3 2 2 4 6 6 12 7 12 594

5

1

106K 108K

113 0 154 0 243 0 327 0 1.03K
2 7 0 9 0 18 1 39 1 371
3 0 1 0 2 0 5 4 8 269
4 0 0 0 0 1 1 1 1 211
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Table 7.6 g-caSPiTa results with FLIGHT. See Table 7.4 for the meaning of the reported
values.

k h |W| T
g = 1 g = 2 g = 5 g = 10 Time (s)

+ − + − + − + −

2 1 574K 11.1M 96.5K 16.4K 102K 19.2K 111K 23.2K 115K 26.1K 5.73K

3 1 849K 5.16M 132K 36 140K 50 144K 75 149K 92 10.0K
2 128K 1.63K 134K 2.13K 140K 2.81K 144K 3.25K 13.3K

4
1

406K 530K
19.2K 0 22.0K 0 25.1K 0 26.6K 0 2.85K

2 10.4K 30 14.8K 34 19.2K 43 22.0K 52 1.99K
3 3.11K 19 3.84K 24 5.00K 50 5.95K 66 1.52K

5

1

127K 155K

6.66K 0 7.92K 0 9.39K 0 10.1K 0 43.9K
2 4.28K 0 5.16K 0 6.35K 0 7.07K 0 1.31K
3 1.80K 5 2.32K 7 3.30K 8 4.01K 8 723
4 884 2 1.30K 2 1.87K 3 2.23K 4 638

orders of magnitude) greater than the number of under-represented paths. In addition,
for a fixed value of k, the number of over-represented paths always decreases considering
higher values of h. The number of under-represented paths, instead, always decreases for
BIKE, while increases and then decreases for FLIGHT and WIKI, highlighting different
substructures in the three underlying networks. The computational time ranges from
under 3 minutes (BIKE with k = 2, h = 1) to over 12 hours (FLIGHT with k = 5, h = 1).
Let us note that FLIGHT has over 17M transactions, but we are still able to analyze it
with a reasonable running time. The combination k = 5 and h = 1 is always the most
expensive from a computational point of view, since it requires to generate longer paths
and also to analyze a large number of vertices to compute the probabilities of Equation 7.6.
Overall, these results show that caSPiTa is able to efficiently mine significant paths from
real datasets, with feasible computational time even in huge datasets. Considering g > 1,
for all the datasets, and for almost all combinations of parameters, g-caSPiTa reported
more significant paths, both over and under-represented, w.r.t. the paths reported by the
original version of caSPiTa. In particular, for BIKE, g-caSPiTa with g = 2 reported
on average 77% more paths than caSPiTa,6 188% more with g = 5, and 330% more
with g = 10. For WIKI, instead, g-caSPiTa with g = 2 reported on average 70% more
paths than caSPiTa, 194% more with g = 5, and 286% more with g = 10. Finally, for
FLIGHT, g-caSPiTa with g = 2 reported on average 22% more paths than caSPiTa,
61% more with g = 5, and 86% more with g = 10. Let us note that even if we were
allowing very few false positives, the number of reported paths increased considerably.

6We only considered combinations of parameters for which caSPiTa reported at least one significant
path.



7.6 Results with Real Datasets 147

Table 7.7 caSPiTa results on BIKE considering different datasets. The Table reports: k:
paths length; h: order of the null model; |W|: number of distinct paths of length k; T :
number of total paths of length k; (+): reported over-represented paths; (−): reported
under-represented paths.

k = h |W| T + −

1 5.79K 68.0K 256 120
2 5.51K 12.2K 30 9
3 1.19K 2.45K 14 1
4 436 786 4 0
5 124 203 0 0

Overall, these results show that to control the g-FWER is a valid strategy to increase
the statistical power for those applications which can tolerate a small number of false
positives.

7.6.1 Analysis of BIKE with caSPiTa

In this Section, we provide a brief analysis of some paths returned by caSPiTa from
BIKE. The over-represented path of length 2 with the lowest p-value and highest number
of occurrences is a path which starts and ends in “Ocean Front Walk & Navy" located in
Venice Beach. The fact that this path is over-represented indicates that people tend to
leave and then come back to this place, instead of moving to other parts of the city. For
example, such a pattern may capture the fact that people leave the beach to buy some
food and then immediately come back. Instead, the under-represented path of length 2
with the lowest p-value is a path which starts from “Union Station West Portal”, goes to
“Main & 1st", and then comes back. “Main & 1st" is located near the Los Angeles City
Hall, the center of the government of the city, while “Union Station West Portal” is near
the Union Station, the main railway station of the city. The fact that this path is under
represented is probably due to the fact that a lot of people move from the station to the
city hall, and vice-versa, but in particular moments of the day, i.e., in the morning and
in the evening. Thus, even if the two direct links are very popular, it is uncommon to
see this entire path. These are only two example of paths mined by caSPiTa, but they
highlight its capability in detecting real life trends.

Finally, we investigated the capability of caSPiTa in mining significant paths in the
scenario in which the generative null model is created considering a different dataset (see
Section 7.4). Using the procedure to generate BIKE described above, we generated a new
dataset, NEWBIKE, considering the 2020 data from the same website. We then used
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the original BIKE dataset to create the h-th order generative null model and we tested
on it the significance of length k paths mined from NEWBIKE. Given the pandemic
situation that involved the world, one may be interested in finding changes in the habits
of the people defining a model based on paths traveled in 2019 to test paths traveled in
2020. Table 7.7 reports the results obtained with k = h ∈ {1, . . . , 5} and P = 100. (For
NEWBIKE, we only considered full transactions that can be generated by the generative
null model obtained from BIKE.) Again, it is possible to notice that caSPiTa returned
paths for almost all combinations of parameters, and that the number of over-represented
paths is always higher than the number of under-represented paths. Overall, these results
demonstrate that caSPiTa is able to mine paths also in such a scenario.



Chapter 8

Conclusions

In this Chapter, we summarize the contributions of this Thesis and discuss some possible
future research directions. In this Thesis, we contributed novel scalable and rigorous
results on the mining of patterns in sequential data in different scenarios.

In Chapter 3, we studied the task of mining frequent sequential patterns through
sampling. In particular, we studied the Vapnik-Chervonenkis (VC) dimension of sequential
patterns, introducing a novel and efficient upper bound on such a measure. We then
developed the first sampling-based algorithm to mine rigorous approximations of the
frequent sequential patterns, with guarantees defined in terms of false positives or
false negatives, that hinges on the novel bound on the VC-dimension. Our extensive
experimental evaluation showed that our sampling-based algorithm for mining frequent
sequential patterns produces high-quality approximations using samples that are small
fractions of the whole datasets, thus vastly speeding up the frequent sequential pattern
mining task on very large datasets.

In Chapter 4, we introduced the task of mining true frequent sequential patterns,
defined as sequential patterns that are frequently generated by the underlying gener-
ative process of the data. In particular, we developed an algorithm to mine rigorous
approximations of the true frequent sequential patterns, with guarantees defined in terms
of false positives or false negatives, using results on the VC-dimension introduced in
Chapter 3. Our extensive experimental evaluation showed that techniques like the one
we introduced in this Chapter are necessary for mining frequent sequential patterns w.r.t.
an underlying generative process avoiding false positives or false negatives, and that
our algorithm provides high-quality approximations even better than guaranteed by its
theoretical analysis.

In Chapter 5, we introduced the task of mining statistically robust patterns from
a sequence of datasets, defined as patterns whose probabilities w.r.t. the underlying
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generative processes of the data follow well specified trends through the sequence of
datasets, which naturally arises in several applications. We provided a general framework
for such a problem and developed gRosSo, an algorithm to identify approximations
of the statistically robust patterns with probabilistic guarantees on false discoveries or
false negatives. We then applied it to identify statistically robust sequential patterns and
statistically robust itemsets, using previous results on the VC-dimension of sequential
patterns and itemsets. Our extensive experimental evaluation showed that gRosSo
significantly improves over the naïve approach which ignores the uncertainty in the
data, and that it identified interesting patterns in real datasets, providing high-quality
approximations.

In Chapter 6, we introduced the task of mining statistically significant sequential
patterns, defined as sequential patterns that appear more frequently than expected under
a null model that randomizes the order of the itemsets in the dataset. We proposed three
efficient strategies to generate random datasets from the aforementioned null model and
developed ProMiSe, an algorithm for mining significant sequential patterns employing
the generation strategies, within the Westfall-Young (WY) method, to properly control
the Family-Wise Error Rate (FWER). We then developed I-ProMiSe, an alternative,
more efficient but less statistically powerful version of ProMiSe, for mining significant
sequential patterns from massive datasets employing previous results on the VC-dimension
of sequential patterns. Our extensive experimental evaluation showed that ProMiSe
and I-ProMiSe efficiently extract significant sequential patterns in real datasets while
correctly controlling the FWER.

In Chapter 7, we introduced the task of mining statistically significant paths in
time series data from an unknown network, defined as patterns that occur more or less
than expected given the distribution of the underlying network that generated the time
series. We proposed an appropriate null model of the data, based on the concept of
De Bruijn graph, and described two strategies to generate random time series data
from it. We then developed caSPiTa, an algorithm for mining statistically significant
paths (over- or under-represented) employing the generation strategies, within the WY
method, to properly control the FWER. We developed an alternative version of caSPiTa,
g-caSPiTa, for mining statistically significant paths while controlling the generalized
FWER (g-FWER), in order to increase the statistical power of caSPiTa tolerating a
few false positives. Our extensive experimental evaluation showed that (g-)caSPiTa is
able to efficiently mine large sets of significant paths from real datasets, while correctly
controlling the (generalized) FWER.



151

There are many possible extensions of the contributions of this work and new directions
for future research. For the scenario of mining patterns from samples from unknown
probability distributions, i.e., Chapters 4, 5, and 6 (for I-ProMiSe), while we employed
the VC-dimension to bound the maximum deviation, any uniform convergence bound
can be used in our frameworks. In particular, recent results based on the Monte Carlo
empirical Rademacher averages [55, 56] derived sharp, data-dependent, uniformly valid
confidence bounds on the expectations of sets of functions from random samples, that
can be applied to our scenarios in order to increase the statistical power.

For the statistically robust pattern mining task, while we applied our framework
for mining statistically robust sequential patterns and itemsets, other pattern mining
tasks can be taken into consideration, such as subgroup discovery [6, 7, 36] and subgraph
mining [31]. Other interesting directions are to consider the problem in a streaming
setting for the data [39, 1] and to take into account more types of trends, than emerging,
descending and stable, for the true frequencies of the patterns.

For the scenario of mining significant patterns, i.e., Chapters 6 and 7, while we
focused on bounding the FWER (or g-FWER), different approaches would be to bound
the False Discovery Rate (FDR) [8, 9], defined as the expected ratio of false discoveries
among all reported patterns, or the False Discovery Proportion (FDP) [71, 72], defined
as the probability of rejecting a set of hypotheses with a fraction of false discoveries
higher than a given threshold. In such a direction, the work by Komiyama et al. [38]
proposed a strategy to correctly control the FDR in the significant pattern mining
scenario introducing the notion of “quasi-testability”, which allows to reduce the number
of hypotheses to test by removing the ones that are very unlikely to be significant. By
combining such a notion with the step-up method [30], their approach successfully control
the FDR. An interesting question is whether their approach can be extended to work
in our scenarios. Finally, another interesting direction is to derive efficient strategies to
identify the top-k significant sequential patterns and top-k significant paths, as already
done in other significant pattern mining scenarios [60].
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