
Sede Amministrativa: Università degli Studi di Padova
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Abstract

A Gaussian graphical model (GGM) is a family of multivariate normal distributions

whose conditional independence structure is represented by an undirected graph. The

vertices of the graph represent the variables and every edge missing from the graph

implies that the corresponding entry of the concentration matrix, which is the inverse

of the covariance matrix, is equal to zero; see Lauritzen (1996).

The seminal paper by Højsgaard and Lauritzen (2008) introduced colored GGMs which

are undirected graphical models with additional symmetry restrictions on the concen-

tration matrix in the form of equality constraints on the parameters, which are then

depicted on the dependence graph of the model by colorings of edges and vertices.

The application of colored GGMs was motivated by the need of reducing the number

of parameters when estimating covariance matrices of large dimensions with relatively

few observations. On the other hand, there exist applied contexts where symmetry

restrictions naturally follow from substantive research hypotheses of interest. A rele-

vant instance is provided by the problem of joint learning of multiple graphical models,

where the observations come from two or more groups sharing the same variables. The

association structure of each group is represented by a network and it is expected that

there are similarities between the groups. In this framework, the literature has mostly

focused in the case where the groups correspond to independent experimental condi-

tions so that every network is a distinct unit, disconnected from the other networks; see

Tsai et al. (2021) for a review. On the other hand, in the case of paired data, the two

groups are not independent because two sets of homologous variables are observed on

every statistical unit. There is therefore the additional difficulty that the two groups are

not independent. Hence, the respective networks need not to be disconnected (Ranciati

et al. 2021), and there may also exist symmetries involving edges across the two groups.



In this thesis, we focus on the application of colored GGMs to the joint learning of

graphical models for paired data that, in the following, we shortly call colored graphical

models for paired data (PDCGMs). Although the symmetric restrictions implied by

a colored GGM may usefully reduce the model dimensionality, the problem of model

identification is much more challenging than with classical GGMs because both the

dimensionality and the complexity of the search spaces highly increase. For the con-

struction of efficient model selection methods it is therefore imperative to understand

the structure of model classes. In this work, we consider PDCGMs and show that this

class of models forms a non-distributive lattice with respect to model inclusion order,

denoted by �C. We then introduce a novel partial order, �τ , for this class of models

and call it the twin order. Such order coincides with the model inclusion order if two

models are model inclusion comparable but that also includes order relationships be-

tween certain models which are model inclusion incomparable. We show that the class

of PDCGMs forms a complete distributive lattice with respect to the twin order and

then we use this lattice to implement a coherent backward elimination stepwise model

search procedure.

Gabriel (1969) introduced the following principle, termed coherence: “in any procedure

involving multiple comparisons no hypothesis should be accepted if any hypothesis im-

plied by it is rejected”. We remark that, for convenience, we say “accepted” instead of

the more correct “non-rejected”. Consider some goodness-of-fit tests for testing models

at a given level α so that for every model in a given class we can apply the test and deter-

mine whether the model is rejected or accepted. In this context, the coherence principle

is typically implemented by requiring that we should not accept a model while rejecting

a more general model; see, for instance, Edwards and Havránek (1987). Hence, under

this formulation of the coherence principle, in a greedy search procedure if a model is

rejected then all of its submodels are considered rejected without further testing, and

the lattice with respect to model inclusion represents the natural framework to imple-

ment the procedure. However, we show that the model inclusion lattice for PDCGMs

does not provide a proper structure of the coherence principle. On the other hand, the

coherence principle can be properly implemented on our distributive lattice under the

twin order that seems to represent the natural structure for the implementation of step-

wise backward elimination procedures for PDCGMs. We therefore introduce a backward

elimination stepwise procedure with local moves on our distributive lattice that satisfies

the coherence principle. This procedure is implemented in the statistical programming

language R (see R Core Team 2021) and its behavior is investigated on simulated data.



Finally, this procedure is applied to the identification of the brain network from fMRI

data.





Sommario

Un modello grafico gaussiano (GGM) è una famiglia di distribuzioni normali multivariate

la cui struttura di indipendenza condizionale viene rappresentata mediante un grafo non

orientato. I vertici del grafo corrispondono alle variabili ed ogni arco assente dal grafo

implica che il corrispondente elemento della matrice di concentrazione, ossia l’inversa

della matrice di varianze e covarianze, è uguale a zero; si veda Lauritzen (1996).

I modelli grafici colorati, introdotti da Højsgaard and Lauritzen (2008), sono una fa-

miglia di modelli grafici gaussiani con ulteriori vincoli di simmetria implementati come

vincoli di uguaglianza negli elementi della matrice di concentrazione. Questi modelli

sono rappresentati mediante grafi con vertici ed archi colorati assegnando, in modo op-

portuno, colore uguale ad archi e vertici tra loro “simmetrici”. L’utilizzo dei modelli

grafici colorati fu motivato inizialmente dalla necessità di ridurre il numero di parametri

nell’apprendimento di grafi con elevato numero di vertici in presenza di una limitata

numerosità campionaria. Vi sono però contesti applicativi nei quali i vincoli di simme-

tria emergono naturalemente come quesiti scientifici di interesse. Un esempio rilevante

è dato dall’apprendimento congiunto di network multipli nei quali le osservazioni pro-

vengono da due o più gruppi che condividono lo stesso insieme di variabili. In questo

contesto, la ricerca si è focalizzata principalmente nel caso in cui i gruppi sono associati

a contesti sperimentali indipendenti tra loro e quindi un network è associato ad ogni

gruppo e i vari network sono sconnessi tra loro; si veda Tsai et al. (2021) per una rasse-

gna. Tuttavia, nel caso di dati appaiati i due gruppi di interesse non sono indipendenti

tra loro perché i due insiemi di variabli omologhe sono misurate sulla stessa unità osser-

vata. Ne segue che, in questo caso, i due network non sono sconnessi tra loro (Ranciati

et al. 2021) e vi possono essere anche simmetrie che coivolgono archi a cavallo tra i due

network.



Oggetto di questa tesi è l’applicazione di modelli grafici colorati all’apprendimento con-

giunto di modelli grafici per dati appaiati. Sebbene i vincoli di simmetria implichino

naturalemente una riduzione della dimensionalità del modello, il problema dell’appren-

dimento del modello dai dati è estremamente complesso dato che la dimensione dello

spazio di ricerca è molto maggiore rispetto a quella dei tradizionali modelli grafici non

colorati. Per la costruzione di procedure di ricerca che siano efficienti è fondamentale

comprendere la struttura dello spazio di ricerca. In questo lavoro noi consideriamo i

modelli grafici colorati per dati appaiati (PDCGM) e mostriamo che se si utilizza il

tradizionale ordinamento basato sulla relazione di sottomodello (ordinamento model in-

clusion), questa famiglia forma un reticolo non-distributivo. Introduciamo quindi una

nuova relazione oridine, che chiamiamo ordinamento twin che coincide con l’ordinamen-

to model inclusion quando i due modelli considerati sono uno un sottomodello dell’altro,

ma che introduce anche delle relazioni di ordine addizionali tra modelli che sono non

comparabili in termini di model inclusion. Mostriamo quindi che la faimiglia di PDCGM

forma un reticolo distributiovo rispetto all’ordinamento twin e quindi utilizziamo questa

struttura per introdurre una procedura di apprendimento di tipo stepwise.

Gabriel (1969) ha introdotto il seguente principio detto principio di coerenza “in una

procedura in cui vengono verificate ipotesi multiple, una qualunque ipotesi non dovrebbe

essere accettata quando, al contempo, un’ipotesi implicata da questa viene rifiutata”.

Si noti che, per brevità, in questa formulazione utilizziamo il termine “accettata” invece

del termine più rigoroso “non-rifiutata”. Si consideri un test di livello α che può essere

applicato al confronto di modelli in una procedura di apprendimento. In questo con-

testo, il principio di coerenza viene solitamente applicato richiedendo che non si deve

accettare un qualunque modello quando un modello più generale è rifiutato; si veda, ad

esempio, Edwards and Havránek (1987). Quindi, nell’implementazione di una procedu-

ra stepwise backward elimination coerente se un modello è rifiutato allora tutti i suoi

sottomodelli sono automaticamente rifiutati senza necessità di confronto esplicito, e il

reticolo ottenuto dalla relazione d’ordine model inclusion sembra essere la struttura più

naturale per l’implementazione di questo tipo di procedura. Tuttavia, noi mostriamo

che per la famiglia di modelli grafici colorati per dati appaiati l’applicazione del prin-

cipio di coerenza richiede ragionamenti più sofisticati e che l’applicazione automatica

di questo principio sulla base del reticolo model inclusion porta ad effettuare dei passi

che violano il principio di coerenza. Invece, il reticolo basato sulla relazione twin per-

mette di identificare tali passi non coerenti e sostituirli con dei passi che rispettano il

principio di coerenza. Questa variazione conferisce inoltre efficienza alla procedura. La

procedura è implementata nel linguaggio R (veda R Core Team 2021) , le sue proprietà



sono illustrate mediante una serie di applicazioni a dati simulati ed, infine, utilizzata

per l’identificazione di un brain network sulla base di dati fMRI.
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Introduction

Overview

Chapter 1: Background

This thesis deals with colored Gaussian graphical models and, more specifically, with the

lattice structure which can be used to represent the model spaces formed by these models

under a particular partial order. This chapter provides the required background, which

is designed as follows. Firstly, we briefly overview the theory of partially ordered sets and

lattices. We use Hasse diagrams to represent them diagrammatically and consider two

relevant cases given by the set inclusion lattice and the set partition lattice. Secondly,

we introduce undirected graphs and colored graphs; moreover, the associated lattice

structures of these graph spaces are also described. Thirdly, we review the literature

of graphical models and present the associated model structures for the families of

uncolored undirected graphical models and colored graphical models.

Chapter 2: Colored graphs and colored graphical models for

paired data

This chapter is devoted to the analysis of the lattice structures of the search spaces.

Particularly, we identify the family of colored graphical models for paired data as a

subfamily of the general colored graphical models. Accordingly, we define colored graphs

for paired data and investigate the structure of the set of these graphs. The structure

of Chapter 2 is designed as follows. We consider graphical models for paired data and,

in the first two sections of this chapter, we formally define this specific class of models.

The family of graphical models for paired data is associated with the family of colored

graphs for paired data, and we then provide a comprehensive analysis of the structure of

the family of such graphs. More concretely, in the third section, we firstly consider the

model inclusion order, as in Gehrmann (2011), and show that colored graphs for paired

3



4 Main contributions of the thesis

data form a complete non-distributive lattice. On the other hand, we also identify a

relevant sublattice of the colored graphs for paired data based on a given fixed uncolored

graph that is complete and distributive under the model inclusion order.

The main result of this chapter is the introduction of a novel order that we call the

twin order, shown in the fourth section. The connections of this novel order with the

traditional model inclusion order are also described. Furthermore, we show that, under

the twin order, the family of colored graphs for paired data forms a complete distributive

lattice. The meet and the join operations on this lattice can be efficiently computed

because they coincide with the set intersection and the set union operations.

Chapter 3: Model search over the twin lattice

The selection of colored graphical models from data is a major challenge because the

number of different models grows super-exponentially with the number of variables. In

this chapter, we focus on greedy search methods which perform local moves on the

lattice structure of model space. In this framework, it is crucial to deal efficiently with

the lattice structure. Thus, we implement a backward elimination stepwise procedure

on the twin lattice and show that it is more efficient than an equivalent procedure on

the model inclusion lattice. Furthermore, we show that the use of the twin lattice allows

us to avoid an incoherent step in the model search. The performance of the proposed

procedure is evaluated on simulated data and applied to the identification of a brain

network from functional MRI data.

Main contributions of the thesis

The novel contributions in this thesis are given in Chapter 2 and Chapter 3.

The results of Chapter 2 are theoretical and concern the structure and properties of the

search spaces, and in more detail,

1. we formally define the family of colored graphs for paired data and the associated

family of colored graphical models for paired data;

2. we consider the model inclusion order and show that the search space of colored

graphs for paired data forms a complete non-distributive lattice; moreover, the

sublattice obtained by considering the subset of the colored graphs for paired data

with the fixed uncolored graph forms a complete distributive lattice;

3. we introduce a novel partial order for the family of colored graphs for paired data

and call it the twin order ;
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4. we show the connections existing between the model inclusion order and the twin

order;

5. we show that, under the twin order, the family of colored graphs for paired data

forms a complete distributive lattice where the meet and the join operations on

such lattice are efficiently specified because they coincide to the set intersection

and the set union operations.

The results of Chapter 3 concern the construction of a backward elimination stepwise

procedure on the twin lattice that is implemented in the R language. In more detail,

1. we consider the principle of coherence and show that a backward elimination

stepwise procedure on the model inclusion lattice includes an incoherent step;

2. we specify a backward elimination stepwise procedure on the lattice based on the

novel twin order that avoids the incoherent step;

3. the novel procedure based on the twin order is shown to be more efficient than a

similar approach on the model inclusion lattice from the simulation experiments

and the application to the fMRI data;

4. we implement the model selection procedure for PDCGMs under the twin order

on simulated data and real data by the scripts written in the R programming

language, found at https://github.com/NgocDung-NGUYEN/backwardCGM-PD.

https://github.com/NgocDung-NGUYEN/backwardCGM-PD




Chapter 1

Background

The aim of this chapter is threefold. In the first part, we provide a brief overview

of the theory of partially ordered sets and lattices, which play a major role in the

description of the structure of model spaces. We also learn how to represent them

diagrammatically and consider two relevant specific cases given by the set inclusion and

the set partition lattices. In the second part, we introduce undirected graphs and colored

graphs. Moreover, the lattice structures associated with these graph spaces are also

described. Finally, we shall give some basic views of the literature on graphical models

and present the associated model structures for the families of undirected graphical

models and colored graphical models.

1.1 Partial orders and lattices

In this section, we introduce partial orders and their graphical representation by means

of an Hasse diagram. Then, we describe lattices and consider two relevant cases: the

set inclusion and the set partition. For a more detailed account of partial orders and

lattices, see Birkhoff (1940), Schechter (1996, Chapter 3), and Grätzer (2002).

1.1.1 Partially ordered sets and partial orders

The Cartesian product of two sets A and B is the set of all possible ordered pairs (a, b)

consisting of elements a in A and b in B; more specifically, it is defined by

A×B = {(a, b) | a ∈ A, b ∈ B}. (1.1)

7



8 Section 1.1 - Partial orders and lattices

The term relation is used as a mathematical structure to trace the relationship between

the elements of two or more sets, or between the elements on the same set. A binary

relation over sets A and B is a subset of the Cartesian product A×B.

Example 1.1. Let A = {1, 2, 3} be a set. Then, the Cartesian product of the set A×A
is given by

A× A = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)}.

The relation “greater than”, denoted by >, on the set A = {1, 2, 3} is the binary relation

over A× A given by {(3, 1), (3, 2), (2, 1)} ⊆ A× A.

Let A be a non-empty set. We consider a binary relation � so that for a pair of elements

a, b ∈ A, if a � b holds then we say that a is related to b. Moreover, the set A is called

a partially ordered set or poset and � a partial ordering relation if � is

• reflexive: a � a;

• antisymmetric: a � b and b � a implies a = b;

• transitive: a � b and b � c implies a � c,

for all a, b, c ∈ A. We denote a poset A with partial ordering relation � by 〈A,�〉.

Example 1.2. We consider the divisibility relation, i.e. {(a, b) | b is a divisor of a},
denoted by |, on the set A = {3, 18, 30, 45, 90}. Then, the set A equipped by | is a poset

and we can write 〈A, |〉.

Let 〈A,�〉 be a poset and a, b ∈ A. We say a ≺ b if a � b and a 6= b. When it holds

that neither a � b nor b � a then a and b are incomparable. Furthermore, a is covered

by b (or b covers a), denoted by a ≺· b, if a ≺ b and there is no element c ∈ A such that

a ≺ c ≺ b.

Example 1.2 (continued). Continue the previous example of the poset 〈A, |〉, the

elements 18 and 30 are incomparable by the order |, however, both 18 and 30 cover 3.

In addition, let H a subset of A, then a ∈ A is an upper bound of H if h � a for all

h ∈ H. We call a the least upper bound or supremum of H if every upper bound b of H

satisfies a � b and hence we write a = supH. Similarly, a ∈ A is a lower bound of H if

a � h for all h ∈ H. We call a the greatest lower bound or infimum of H if every lower

bound b of H satisfies b � a and then we write a = inf H. Remark that, the supremum

(or infimum) of a set is unique if it exists.
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An element a in a poset 〈A,�〉 is called minimal if it is not greater than any other

element in A. If there is one unique minimal element a, we call it the minimum element

or the smallest element. Similarly, an element a is called the maximal element if it is

not smaller than any other element in A. If the maximal element is unique, we call it

the maximum element or the largest element.

It is a convention that sup ∅ is the smallest element in A, called zero, if it exists, and

inf ∅ is the largest element in A, called unit, if it exists. To shorten the notations, we

write 0̂ to denote the zero and 1̂ to denote the unit.

Example 1.2 (continued). The zero and the unit in the poset 〈A, |〉 are determined

as 0̂ = 3 and 1̂ = 90.

1.1.2 Hasse diagram

It is useful to represent a partial order graphically. Since a partial order is a binary

relation, it can be represented by means of a directed graph where the vertices are

elements of A and there is a directed edge from a to b if a is related to b through the

partial order �, i.e. a � b, for any elements a, b in A.

When we deal with a partial order, we know that the relation is reflexive, transitive,

and antisymmetric. This allows us to simplify the graphical representation of a partially

ordered set 〈A,�〉 by taking the following steps:

• (reflexivity) remove all edges from a vertex to itself,

• (transitivity) remove all transitive edges, i.e. if a � b � c, we delete edge from

a to c but retain the other two edges from a to b and from b to c,

• (antisymmetricity) if a � b then the vertex b appears above the vertex a, hence

we remove directions of edges assuming that they are oriented upwards

for a, b, c ∈ A. The resulting graph looks far simpler and it is called a Hasse diagram.

Example 1.2 (continued). Let’s continue with the consideration of the poset 〈A, |〉.
The directed graph corresponding to this relation is shown in Figure 1.1a, on the other

hand, Figure 1.1b displays the corresponding Hasse diagram. As it can be seen, the

Hasse diagram is a useful tool which completely describes the associated partial order.
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3

45 30 18

90

(a)

3

45 30 18

90

(b)

Figure 1.1: Graphical representations for the division relation | on the set
{3, 18, 30, 45, 90} by (a) the directed graph, and (b) Hasse diagram.

1.1.3 Lattices

Many important properties of an ordered set A are expressed in terms of the existence

of certain upper bounds or lower bounds of subsets of A. One of the most important

classes of ordered sets defined in this way is lattices introduced in Birkhoff (1940); see

also Grätzer (2002), and Davey and Priestley (2002). In particular, a poset 〈A,�〉 is a

lattice if inf H and supH exist for every finite non-empty subset H of A. Moreover, a

poset 〈A,�〉 is called complete if inf H and supH also exist for H = ∅.

Example 1.3. Figure 1.2 shows a complete poset; however, this poset is not a lattice

since c and d are upper bounds of {a, b} but c and d are not comparable.

c d

a b

Figure 1.2: Hasse diagram of a complete poset that is not a lattice.

For a lattice A and a, b ∈ A, we might write

a ∧ b = inf{a, b} and a ∨ b = sup{a, b},
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and refer to ∧ as the meet operation and to ∨ as the join operation. Furthermore, a

non-empty subset H of a lattice A is a sublattice of A if

a, b ∈ H =⇒ a ∧ b ∈ H and a ∨ b ∈ H.

A lattice A is distributive if for all a, b, c ∈ A,

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c). (1.2)

We can understand that a distributive lattice is a lattice in which the join operation ∨
and the meet operation ∧ distribute over each other, i.e. the distributivity law is satisfied

by the meet and the join operations. Distributivity is a fundamental property that

facilitates the implementation of efficient procedures and representation in lattices; see,

among others, Habib et al. (2001), Davey and Priestley (2002), Munro and Sinnamon

(2018). The Hasse diagram of Figure 1.1b is called a “diamond”, because of its structure.

The following theorem shows that a distributive lattice cannot contain a diamond as a

sublattice.

Theorem 1.1 (Davey and Priestley (2002, Chapter 4.10)). Let A be a lattice. A is not

distributive if and only if A has a sublattice isomorphic to the diamond or the pentagon

as given in Figure 1.3.

(a) (b)

Figure 1.3: Graphical representations for lattices containing (a) the diamond struc-
ture, and (b) the pentagon structure.

Example 1.2 (continued). Consider the poset represented in Figure 1.1b. It can be

checked that this poset is a complete lattice where 0̂ = 3 and 1̂ = 90. However, this is

not distributive by means of a counter example:

45 ∨ (30 ∧ 18) = 45 ∨ 3 = 45 that is different to (45 ∨ 30) ∧ (45 ∨ 18) = 90 ∧ 90 = 90.
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Another way to prove the non-distributivity of this lattice is that the diamond is contained

as a sublattice in its structure.

1.1.4 The set inclusion lattice

For any finite set A, the power set of A, denoted by P(A), is the set of all subsets of A

including the empty set ∅ and A itself. The power set carries a natural order, namely

set inclusion ⊆. More formally, for any sets A1, A2 ∈ P(A), the set A1 is a subset of

the set A2, denoted A1 ⊆ A2 if all elements of A1 are also elements of A2. Hence, the

power set P(A) equipped by ⊆ is a poset and we can write 〈P(A),⊆〉.

Example 1.4. The power set of A = {1, 2, 3} is the set

P(A) = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}},

which is equipped by inclusion relation ⊆. Thus, in the poset 〈P({1, 2, 3}),⊆〉, the sets

{1, 2} and {1, 3} are incomparable; moreover, both {1, 2} and {1, 3} cover {1}.

Dealing with this lattice is especially straightforward because the meet and join opera-

tions coincide with the set intersection “∩” and the set union “∪”, respectively. Hence,

this is a distributive lattice because the union and the intersection distribute to each

other. Moreover, it is complete because the zero is the empty set and the unit is the set

A.

{1, 2, 3}

{1, 2} {1, 3} {2, 3}

{1} {2} {3}

∅

Figure 1.4: Hasse diagram of the lattice 〈P({1, 2, 3}),⊆〉.
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1.1.5 The set partition lattice

Let A be a set, and a partition of A is a collection of non-empty subsets A1, . . . , Am of

A such that each element of A is in exactly one of those sebsets; more formally,

A = A1 ∪ · · · ∪ Am, Ai ∩ Aj = ∅, (1.3)

for every i, j ∈ {1, . . . ,m}, i 6= j. Thus, the sets A1, . . . , Am are pairwise disjoint sets,

and their union is A. The subsets A1, . . . , Am are called the parts or classes of the

partition (see e.g. Brualdi 1977, Chapter 2). A class with a single element is called

atomic and a class which is not atomic is composite.

The set of partitions of a finite set is a well-known instance for the case of non-

distributive lattice. Before demonstrating it, we need to specify the ordering relationship

for the set of partitions of A, called P (A). More specifically, for any finite set A, a par-

tition P1 is a refinement of a partition P2; or,

P1 ≤ P2 for P1, P2 ∈ P (A)

whenever P1 is finer than P2, or, put differently, whenever P2 is coarser than P1, i.e., if

every set in P2 can be expressed as a union of sets in P1. This relation ≤ on the set of

partitions of A is a partial order. The meet and the join operations are more convoluted

than in the set inclusion lattice. More concretely,

(A) the meet P1 ∧ P2 is the partition whose sets are the pairwise intersections of sets

of P1 and P2, and it is the coarsest which refines both P1 and P2;

(B) the join P1 ∨ P2 is the partition whose sets are exactly a union of sets from both

P1 and P2, and it is the finest which is simultaneously refined by P1 and P2.

We refer the readers to Canfield (2001) and Pittel (2000) for more details and discussion.

Example 1.5. We consider two partitions P1 and P2 of a set {1, 2, 3, 4, 5, 6} where

• P1 = {{1, 3}, {2}, {4, 5}, {6}}, and

• P2 = {{1}, {2}, {3}, {4, 5, 6}}.

By (A), the meet ∧ of P1 and P2 is determined as the partition {{1}, {2}, {3}, {4, 5}, {6}}
that is coarser than {{1}, {2}, {3}, {4}, {5}, {6}}. On the other hand, by (B), the parti-

tion {{1, 3}, {2}, {4, 5, 6}} is specified as the join ∨ of P1 and P2 which is finest among

upper bound partitions {{1, 2, 3}, {4, 5, 6}}, {{1, 3}, {2, 4, 5, 6}}, and {{2}, {1, 3, 4, 5, 6}}.
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Figure 1.5: Hasse diagram of the lattice of partitions of a set A of three distinct
elements ordered by the refinement ≤. A red colored region indicates a subset of A
that forms a member of the enclosing partition. Uncolored dots indicate single-element
subsets or atomic subsets.

Under these operations, the poset 〈P (A),≤〉 is a complete lattice where the zero is

the partition of A into |A| atomic classes and the unit is the partition made up of one

composite class containing all of possible elements in A. Furthermore, the set partition

lattice is typically non-distributive, as shown in the following example.

Example 1.6. We consider A a set of three distinct elements. Thus, A has five parti-

tions displayed in Figure 1.5 where each shaded (red) area a subset of a specified partition

of A. The partiton on the top is a single set of three elements whereas the partition on

the bottom has three single-element subsets. As we can see, the structure of P (A) in

this example contains a diamond and this is sufficient to show that 〈P (A),≤〉 is a non-

distributve lattice.

1.2 Graphs, color classes and colored graphs

In this section, we introduce the families of undirected graphs and colored graphs to-

gether with their associated lattice structures. For more detail, we refer the reader to

Gross and Yellen (2003), Bondy and Murty (2008).

1.2.1 Undirected graphs

An undirected graph, denoted by G = (V,E), consists of a set of vertices V and a set

of edges E ⊆ {(i, j) ∈ V × V, i < j}. If one wishes to make clear which graph is under

consideration, V (G) and E(G) can be used to denote the vertex set and edge set of the

graph G. V = {1, 2, . . . , p} is shortened as V = [p].
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1

2

3

4

(a)

1

2

3

4

(b)

1

2

3

4

(c)

Figure 1.6: Example of (a) an undirected graph, (b) a complete graph, and (c) an
empty graph. The three graphs here use a common vertex set V = [4].

The vertices of a graph are drawn as black dots or circles and edges are drawn as straight

lines between the vertices. A graph is complete if all possible edges are present and empty

if it has no edges. To calculate the number of edges in a complete graph with p vertices,

we think about the situation starting from the perspective of the first node: This node

is connected to p − 1 other nodes; If we move to the second node, it adds p − 2 more

connections, and so forth. So we have
∑p

i=1(p− i) = p(p− 1)/2 edges.

Example 1.7. An example of a graph G = (V,E) is given in Figure 1.6a where the

vertex set V = {1, 2, 3, 4} and the edge set E = {(1, 2), (1, 3), (2, 4), (3, 4)}. Moreover,

illustrations of the complete graph and the empty graph with V = [4] are displayed in

Figures 1.6b and 1.6c, respectively.

A path of length k from a vertex v to a vertex u is formed by a sequence of distinct

vertices (v ≡ v0, v1, . . . , vk ≡ u) such that (vi, vi+1) is an edge for all 0 ≤ i < (k − 1).

1

2

3

4

5

Figure 1.7: An undirected graph G = (V,E) with the vertex set V = [5].

If there is an edge (u, v) between vertices u and v, then the edge (u, v) is said to be

incident with u and v and vertices u, v are adjacent.

In a graph G, the degree of a vertex v is the number of edges of G which are incident to

v and is denoted by d(v). A vertex with degree zero is an isolated vertex.
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The neighbourhood of a vertex v in G, denoted by ne(v), is the set of vertices which are

adjacent to v. Whereas cl(v) = {v} ∪ ne(v) is the closure of v. Therefore, the degree of

v in G is equal to the cardinality of its neighbourhood.

Example 1.8. An example for the graph in Figure 1.7 is considered where the vertex 4

in G is adjacent to vertices 1, 3, and 5, therefore, its degree is 3 with neighbourhood set

ne(4) = {1, 3, 5}. Furthermore, as we can see, there are three paths between vertices 1

and 2, namely (1, 3, 2), (1, 4, 3, 2), and (1, 4, 5, 3, 2); however, there is no path of length

k = 1 because vertices 1 and 2 are not adjacent.

1.2.2 The lattice structure of undirected graphs

Consider the family of undirected graphs with the vertex set V , denoted by UV . A

natural partial order within this family is given by the edge set inclusion. More formally,

for two graphs G = (V,E(G)), H = (V,E(H)) ∈ UV , the partial order of graphs G and

H is defined on the edge set inclusion, that is

G ≤ H whenever E(G) ⊆ E(H) (1.4)

so that the meet operation and the join operation are specified as follows

G ∧H = (V,E(G) ∩ E(H)) and G ∨H = (V,E(G) ∪ E(H)), (1.5)

respectively. Therefore, it is straightforward to see that 〈UV ,≤〉 is a complete distribu-

tive lattice where the zero is the empty graph and the unit is the complete graph.

1

2

3

4

G = (V,E(G))

≤

1

2

3

4

H = (V,E(H))

Figure 1.8: Example of the partial order between two undirected graphs G and H
in U[4].

Example 1.9. We consider two graphs G = (V,E(G)) and H = (V,E(H)) in U[4]

which are displayed in Figure 1.8 where

E(G) = {(1, 2), (1, 3), (2, 4)}, E(H) = {(1, 2), (1, 3), (2, 4), (3, 4)}.
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It is apparent that E(G) ⊆ E(H) and therefore G ≤ H.

1.2.3 Color classes and colored graphs

There are many general and widely applicable concepts of graph colorings (see e.g.

Gross and Yellen 2003, chapter 5). One of them deals with partitioning the underlying

set of a structure into parts where each of which satisfies a given requirement. In

particular, let G = (V,E) be an undirected graph. A vertex coloring of G is a partition

V = {V1, . . . ,Vk} of V where V1, . . . ,Vk are refered as vertex color classes. Similarly, an

edge coloring of G is a partition E = {E1, . . . , Eh} of E where E1, . . . , Eh are refered as

edge color classes. We call G = (V , E) a colored graph.

On the other hand, the uncolored version of G = (V , E) is the undirected graph G =

(V,E) obtained by removing colors from G. More formally, the vertex set V is obtained

by merging vertex color classes, i.e. V =
⋃k
i=1 Vi, and the edge set E is obtained by

merging edge color classes, i.e. E =
⋃h
j=1 Ej.

Similar to the case of (uncolored) undirected graphs, V(G), E(G) are used to indicate

respectively the vertex coloring and the edge coloring of the specified graph G. For any

vertices (respectively, edges) belonging to the same color class, those vertices (respec-

tively, edges) are depicted in the same color. Note that, the atomic color classes are

displayed in black color, in other words, the black color is used for vertices and edges

standing alone in a color class. In order to make color classes readable also in black

and white printing, we use different symbols to denote them. Remark that, the black

vertices or the black edges with no symbols marked on them are not to be interpreted

as being in the same color class.

1
∗

2

3

4
∗

|

|

Figure 1.9: A colored graph G = (V, E) based on the uncolored undirected graph
G = (V,E) shown in Figure 1.6a.

Example 1.10. One possible colorings of the graph G = (V,E) in Figure 1.6a is dis-

played by Figure 1.9. In this colored graph G = (V , E), the vertex set V is partitioned

into three vertex color classes V = {{1, 4}, {2}, {3}} where vertices 1 and 4 are depicted
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in red and they are marked with an asterisk. Moreover, the edge coloring is a partition

of E into three edge color classes E = {{(1, 2), (2, 4)}, {(1, 3)}, {(3, 4)}} where (1, 2)

and (2, 4) are depicted in green and they are marked with a dash. Since vertices 2 and 3

form two distinct atomic color classes, thus they are depicted in black and left unmarked.

Similarly, edges (1, 3) and (3, 4) also stand alone in two distinct atomic color classes,

thus they are drawn via black straight lines without any symbols marked on them.

1.2.4 The lattice structure of colored graphs

The lattice structure of undirected graphs is based on the set inclusion ordering relation

and it inherits the important properties of this type of lattice. On the other hand, colored

graphs are specified by partitions of the vertex set and the edge set, for this reason,

Gehrmann (2011) introduced a lattice of colored graphs based on the set partition

order.

Consider the set CV of colored graphs with the vertex set V , then following the definition

from Gehrmann (2011), for G = (V(G), E(G)),H = (V(H), E(H)) ∈ CV defined on

underlying uncolored graphs G = (V,E(G)) and H = (V,E(H)), we say G �C H
whenever

(C.i) G ≤ H;

(C.ii) V(G) ≥ V(H);

(C.iii) every edge color class in E(G) is a union of color classes in E(H).

It can be readily checked that “ �C ” defines a partial order on CV .

Example 1.11. Consider the colored graphs G = (V(G), E(G)) and H = (V(H), E(H))

in C[4] represented in Figure 1.10 where

V(G) = {{1, 4}, {2, 3}}, E(G) = {{(1, 2), (1, 3), (2, 4)}}

and

V(H) = {{1, 4}, {2}, {3}}, E(H) = {{(1, 2), (2, 4)}, {(1, 3)}, {(3, 4)}}.

with their (uncolored) underlying graphs G = (V,E(G)) and H = (V,E(H)) shown in

Figure 1.8. It holds that G �C H because all of the conditions (C.i)-(C.iii) is satisfied;

specifically,

(i) G ≤ H since E(G) ⊆ E(H) (see Example 1.9);
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(ii) V(G) ≥ V(H) since the subset {2, 3} in V(G) is a union of subsets {2}, {3} in

V(H), where the relation “ ≥ ” between sets V(G) and V(H) is specified in Section

1.1.5;

(iii) the edge color class {(1, 2), (1, 3), (2, 4)} in E(G) is a union of color classes {(1, 3)}
and {(1, 2), (2, 4)} in E(H).

1
∗

2
∗∗

3
∗∗

4
∗

|

|

|

G = (V(G), E(G))

�C

1
∗

2

3

4
∗

|

|

H = (V(H), E(H))

Figure 1.10: Example of the partial order between two colored graphs G,H ∈ C[4].

Moreover, Gehrmann (2011) proved that 〈CV ,�C〉 is a complete lattice with meet and

join operations given by

G ∧ H = (V(G) ∨ V(H), E∗(G) ∨ E∗(H)), (1.6)

and

G ∨ H = (V(G) ∧ V(H), E∗∗(G) ∧ E∗∗(H)), (1.7)

where ∧ and ∨ are the meet and the join operations between partitions defined in (A) and

(B), respectively, in Section 1.1.5. Moreover, E∗(G) ⊆ E(G), E∗(H) ⊆ E(H) are maximal

with the property that they are partitions of the same set of edges inside E(G)∩E(H),

and E∗∗(G) = E(G) ∪ {{E(H) \ E(G)}}, E∗∗(H) = E(H) ∪ {{E(G) \ E(H)}}.
The zero in 〈CV ,�C〉 is given by the empty graph in which all vertices are of the same

color and the unit is the complete graph with atomic color classes. Figure 1.11 illustrates

the zero and the unit in 〈C[4],�C〉.
A weak point of the lattice of colored graphs with respect to the lattice of undirected

graphs is that it does not hold the important property of the distributivity. This follows

from the fact that the set partition lattice is not distributive as shown below.

Let G = (V(G), E), H = (V(H), E), and K = (V(K), E), where edge colorings of G,H
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1
∗

2
∗

3
∗

4
∗

(a)

1

2

3

4

(b)

Figure 1.11: Colored graphs represent (a) the zero and (b) the unit in the lattice
〈C[4],�C〉.

and K are all equal to a common edge coloring E , i.e.

E(G) = E(H) = E(K) = E ,

with E a specified partition from the set E. If the distributivity law was satisfied in

〈CV ,�C〉 then, we would have

G ∨ (H ∧K) = (G ∨ H) ∧ (G ∨ K)

for all V(G),V(H),V(H) ∈ P (V ), E ∈ P (E). Now,

G ∨ (H ∧K) = (V(G) ∧ (V(H) ∨ V(K)), E)

(G ∨ H) ∧ (G ∨ K) = ((V(G) ∧ V(H)) ∨ (V(G) ∧ V(K)), E) ,

due to (1.6) and (1.7). However,

V(G) ∧ (V(H) ∨ V(K)) 6= (V(G) ∧ V(H)) ∨ (V(G) ∧ V(K)),

for all V(G),V(H),V(K) ∈ P (V ) since 〈P (V ),≤〉 is not distributive. Thus 〈CV ,�C〉 is

non-distributive either.

1.3 Covariance matrices, concentration matrices and

concentration graphs

Let V = {1, . . . , p} be the finite set with the cardinality |V | = p, and Y ≡ YV a vector

of continuous random variables indexed by V . The covariance matrix of Y, denoted by

Σ, is a symmetric and positive definite matrix giving the covariances between each pair
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of elements of Y. More specifically,

Σ = Var(Y) =


σ11 σ12 . . . σ1p

σ21 σ22 . . . σ2p
...

...
. . .

...

σp1 σp2 . . . σpp

 ,

where

σii = Var(Yi), σij = Cov(Yi, Yj)

for all i, j ∈ V .

We can split YV ∈ Rp into two subvectors YA ∈ Rp1 and YB ∈ Rp2 ,

YV =

(
YA

YB

)
, with p1 + p2 = p.

Hence, A and B are two subsets of V such that

V = A ∪B, A ∩B = ∅,

where the cardinalities of A and B are p1 and p2, respectively. It is realized that the

covariance matrix of YV has been partitioned into four parts as shown below

Var(YV ) = Σ =

(
ΣAA ΣAB

ΣBA ΣBB

)
,

where ΣAA and ΣBB are the covariance matrices for the random vector YA and YB,

respectively. And ΣAB is the covariances between the elements of YA and YB.

We write ΣAA|B to denote the covariance matrix of YA | YB, which is the residual

vector deriving from the linear least squares predictor of YA on YB, see e.g. Whitakker

(1990). Hence, the covariance matrix ΣAA|B can be computed as

ΣAA|B = ΣAA − ΣABΣ−1BBΣBA,

see Chatfield and Collins (2018), Krzanowski (2000). ΣAA|B is also called the partial

covariance matrix and {σij|B}i,j∈A are its elements.

For i, j ∈ A, the partial correlation coefficient between two variables Yi and Yj given

YB, denoted by ρij|B, can be computed in terms of σij|B as follows
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ρij|B =
σij|B√
σii|Bσjj|B

. (1.8)

A partial correlation coefficient is a measure of the linear dependence of a pair of random

variables, belonging to a collection of random variables, in the linearly adjusted influence

of the remaining variables in the collection.

The inverse of the covariance matrix is called the concentration matrix or precision

matrix of Y, and we denote it by Θ = Σ−1, with elements {θij}i,j∈V . Suppose that we

partition the concentration matrix in a corresponding manner as above, that is

Θ =

(
ΘAA ΘAB

ΘBA ΘBB

)
;

by the inverse of a block partitioned matrix, we get the result

Θ−1AA = ΣAA|B.

The relation between the partial correlation coefficients and the concentration matrix

is expressed by the following lemma.

Lemma 1.2. Let YV be a random vector indexed by V = [p] and Θ = {θij}i,j∈V = Σ−1

the concentratrion matrix of YV . Then, the partial correlation coefficient between Yi

and Yj, given all others YV \{i,j}, can be computed from the entries of the matrix Θ as

ρij|V \{i,j} = − θij√
θiiθjj

, ∀i, j ∈ V. (1.9)

Moreover, the diagonal elements θii of Θ are reciprocals of the conditional variances

given the remaining variables, i.e.

θii = Var(Yi | YV \{i})
−1, ∀i ∈ V. (1.10)

The extended proof of this lemma can be found in Lauritzen (1996) and it is proved

compactly here below.

Proof. If Y is partitioned into (YA,YB)T such that YA = (Yi, Yj) and YB = YV \{i,j}

for any i, j ∈ V , then the partial correlation between variables Yi and Yj given the

remaining variables can be written as

ρij|V \{i,j} =
(Θ−1AA)12√

(Θ−1AA)11(Θ
−1
AA)22

= − (ΘAA)12√
(ΘAA)22(ΘAA)11

. (1.11)
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The second equality holds by the simple inversion formula of 2× 2 matrix(
(Θ−1AA)11 (Θ−1AA)12

(Θ−1AA)21 (Θ−1AA)22

)
= Θ−1AA =

1

|ΘAA|

(
(ΘAA)22 −(ΘAA)12

−(ΘAA)21 (ΘAA)11

)
.

Remember that ΘAA is a concentration matrix of (Yi, Yj), thus, ΘAA is a matrix made

up of elements

ΘAA =

(
θii θij

θji θjj

)
.

Hence, by replacing (ΘAA)12 = θij, (ΘAA)11 = θii, (ΘAA)22 = θjj into the equation

(1.11), we obtain (1.9).

Furthermore, if A = {i} and B = V \ {i}, then

θii = Var(Yi | YV \{i})
−1, ∀i ∈ V,

by the relation

Θ−1AA = ΣAA|B = Var(YA | YB).

Let G = (V,E) be an undirected graph with the vertex set V = {1, . . . , p} and Θ the

concentration matrix of random vector YV = (Y1, . . . , Yp)
T with the corresponding set

of vertices V . We say that Θ is adapted to G if

(i, j) /∈ E(G) implies θij = 0 (1.12)

for any i 6= j and i, j ∈ V . The graph G is called a concentration graph of YV .

The concentration graph G is called a conditional independence graph or independence

graph of YV when there is no edge between the vertices if the random variables cor-

responding to the vertices are conditional independent given the rest of the random

variables. More specifically, the concentration graph G = (V,E) is a independence

graph of YV with V = [p] if

(i, j) /∈ E(G) implies Yi ⊥⊥ Yj | YV \{i,j}. (1.13)

Example 1.12. We consider the graph G = (V,E) in Figure 1.6a and Y[4] = (Y1, Y2, Y3, Y4)

is a random vector. We obtain the concentration matrix Θ of Y[4] that is adapted to G
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as

Θ =


θ11 θ12 θ13 0

∗ θ22 0 θ24

∗ ∗ θ33 θ34

∗ ∗ ∗ θ44

 ,

where θ14 = θ23 = 0 since the edges (1, 4) and (2, 3) are missing in G; moreover, G is

called the independent graph of Y[4], i.e. Y1 ⊥⊥ Y4 | (Y2, Y3) and Y2 ⊥⊥ Y3 | (Y1, Y4).

Due to the symmetric nature of the concentration matrix Θ, only the upper triangular

portion is usually defined. Hence, the entries with the star “ ∗” has the same value as

the opposite corner of the matrix.

1.4 Graphical models

The graphical model for random variables Y is a single family of probability distribu-

tions for Y with the intuitive representation of relationships between variables given

by graphs. When the family of distributions is multivariate normal then we speak of

the Gaussian graphical models or covariance selection models (see e.g. Dempster (1972),

Whitakker (1990)). In Section 1.4.1, we will begin from the family of multivariate Gaus-

sian models where no statistical independencies are assumed to hold. Next, in Section

1.4.2, we will present the overwiew of Gaussian graphical models, which is a popular

used family of probabilistic models by restricting of conditional independence of selected

pairs of variables, given the remaining ones, in term of the undirected graph. A spe-

cial case of equality constraints for the Gaussian distribution is symmetry constraints.

The model can be represented by vertex and edge colored graphs, where parameters

associated with equally colored vertices or edges are restricted to being identical. We

call the family of these models colored graphical models. Hence, Section 1.4.3 is devoted

to one of the types of such restrictions is equality between specified elements of the

concentration matrix (RCON), introduced in Højsgaard and Lauritzen (2008). For each

section above, we also review recent results on maximum likelihood estimation of such

models.

1.4.1 Multivariate Gaussian distribution

Let Y ≡ YV be a vector of continuous random variables indexed by V = {1, . . . , p}.
We say that Y follows a multivariate normal (or Gaussian) distribution with a mean
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vector µ ∈ Rp and a covariance matrix Σ if Y has the density function

f(y|µ,Σ) = (2π)−p/2|Σ|−1/2 exp
{
−(y − µ)TΣ−1(y − µ)/2

}
, (1.14)

where |Σ| is the determinant of Σ. Then, we write Y ∼ Np(µ,Σ). Moreover, the

conditional distribution of YA | YB = yB is a multivariate normal with the covariance

matrix, denoted by ΣAA|B,

ΣAA|B = Var(YA | YB = yB).

In the multivariate normal distribution, the conditional independence is simply reflected

in the concentration matrix of the distribution through zero entries. Namely, we have

the following proposition.

Proposition 1.3. Consider the random vector Y ∼ Np (µ,Σ), then it holds for i, j ∈ V
with i 6= j that

Yi ⊥⊥ Yj | YV \{i,j} ⇐⇒ ρij|V \{i,j} = 0 ⇐⇒ θij = 0.

Indeed, in the case of the jointly normal distribution, the partial correlation ρij|V \{i,j} is

zero if and only if Yi is conditionally independent from Yj given YV \{i,j}. This property

does not hold in the general case.

Our interest is for the structure of Σ (or Θ) and for the rest of the section we assume

without loss of generality that µ = 0. Then the probability dentisity function of Y can

be rewritten in term of Θ as

f(y|Θ) = (2π)−p/2|Θ|1/2 exp
{
−yTΘy/2

}
= (2π)−p/2|Θ|1/2 exp

{
−1

2
tr(ΘyyT )

}
. (1.15)

The expression (1.15) shows that the normal distribution with µ = 0 belongs to the

regular exponential family with the canonical parameter Θ and the canonical statistic

−yyT/2. We can find more detail in Lauritzen (1996), Rencher and Christensen (2012),

Tong (2012), and Chatfield and Collins (2018).

Then, given a sample y(1), . . . ,y(n) of independent random vectors from a multivariate

normal distribution with covariance matrix Σ, the log-likelihood function for Θ = Σ−1
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can be written as

l(Θ) =
n

2
log |Θ| − 1

2

n∑
i=1

(y(i))TΘy(i)/2 (1.16)

=
n

2
log |Θ| − 1

2
tr

{
Θ

(
n∑
i=1

y(i)(y(i))T

)}
(1.17)

=
n

2
log |Θ| − n

2
tr(SΘ), (1.18)

where S = n−1
∑n

i=1 y(i)(y(i))T = yTy/n is the sample covariance matrix.

Following Lauritzen (1996), in the multivariate normal model with zero mean, the max-

imum likelihood estimate of the unknown concentration matrix exist if and only if S is

positive definite. This happens with probability one if n ≥ p and never when n < p.

When the maximum likelihood estimate of Θ exists, it is given by

Θ̂ = S−1. (1.19)

1.4.2 Gaussian graphical models

Definition 1.1. Let G = (V,E) be an undirected graph with the vertex set V =

{1, . . . , p} and YV a random vector indexed by V . Then, YV is said to satisfy the

Gaussian graphical model with the graph G = (V,E) if

(i) YV follows the jointly normal distribution with Σ = Var(YV ), and

(ii) Θ = Σ−1 is adapted to G.

In other words, as in Lauritzen (1996, section 5.2 ), Maathuis et al. (2018, section 8.5),

and Cox and Wermuth (2014, chapter 2), the Gaussian graphical model for YV with the

graph G is given by assuming that YV follows a multivariate normal distribution which

obeys the undirected pairwise Markov property with respect to G.

Let S+(G) be the set of symmetric and positive definite matrices which have zero ele-

ments whenever there is no edge in G, i.e.

S+(G) = {MT = M,M � 0 s.t. Mij = 0 whenever (i, j) /∈ E(G)}. (1.20)

Then the Gaussian graphical model for Y can be compactly described as

Y ∼ Np(0,Σ), Θ = Σ−1 ∈ S+(G). (1.21)
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Therefore, the sparsity pattern of the inverse covariance matrix Θ gives the conditional

independence relationships among the variables. That is,

(i, j) /∈ E(G) =⇒ θij = ρij|V \{i,j} = 0 ⇐⇒ Yi ⊥⊥ Yj | YV \{i,j}.

The model where no conditional independence restrictions are assumed to hold is called

the saturated model.

Example 1.13. For example, let Y[4] = (Y1, Y2, Y3, Y4)
T be the vector of four random

variables and Var(Y) = Σ where

Σ =


7/6 1/3 1/3 1/6

∗ 7/6 1/6 1/3

∗ ∗ 7/6 1/3

∗ ∗ ∗ 7/6

 then Θ =


1 −1/4 −1/4 0

∗ 1 0 −1/4

∗ ∗ 1 −1/4

∗ ∗ ∗ 1

 .

From the concentration matrix Θ, we get the structure of the graph G = (V,E) associated

with Y[4], namely, the vertex set V = {1, 2, 3, 4} and the edge set E = {(1, 2), (1, 3), (2, 3), (3, 4)}
as in Figure 1.6a.

Since Gaussian graphical models only pose constraints on the concentration matrix

Θ, i.e. Θ ∈ S+(G), it follows that the Gaussian graphical model is itself a regular

exponential model with canonical statistic equals −S(G)/2 where S(G) is an incomplete

matrix with entries

S(G)ij = sij, for (i, j) ∈ E or i = j,

and the entries S(G)ij for i 6= j and (i, j) /∈ E are left unspecified. Here {sij}i,j∈V are

elements of the sample covariance matrix S. The maximum likelihood estimate of Σ is

unique and it is denoted by Σ̂ = {σ̂ij}i,j∈V such that Σ̂−1 ∈ S+(G) and

σ̂ij = sij = S(G)ij

for every (i, j) ∈ E(G) or i = j.

1.4.3 RCON models: equality restrictions on concentration

RCON models are Gaussian graphical models which place equality constraints on the en-

tries of the concentration matrix Θ = Σ−1. For a model whose conditional independence

structure is represented by the graph G = (V,E), the restrictions can be represented

by a graph coloring (V , E) with the vertex coloring V representing constraints on the
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entries on the diagonal of Θ and the edge coloring E representing constraints in the

off-diagonal entries. In particular, as in Højsgaard and Lauritzen (2008),

Definition 1.2. An RCON model on G = (V , E) is a Gaussian graphical model with

some additional equality constrains, namely that

θuu = θvv if u, v ∈ Vj for some j, (1.22)

and for u 6= v, w 6= t,

θuv = θwt if (u, v), (w, t) ∈ Ek for some k. (1.23)

Roughly speaking, whenever two vertices u, v ∈ V belong to the same vertex color class,

the corresponding two diagonal entries θuu and θvv are restricted to being identical.

Similarly, two edges (u, v), (w, t) ∈ E of the same color represent the constrain θuv = θwt.

Suppose that the colored graph G is made up of (V , E) such that

V = {V1, . . . ,Vr} and E = {E1, . . . , Es},

for r, s ≥ 1. For each vertex color class Vk ∈ V , k = 1, . . . , r, let T k be the p×p diagonal

matrix with entries T kuu = 1 if the vertex u ∈ Vk and zero otherwise. Similarly for each

edge color class Eh ∈ E , h = 1, . . . , s, let T h be a symmetric p× p matrix with T huv = 1

if the edge (u, v) ∈ Eh and zero otherwise. Therefore, given a colored graph G = (V , E),

the concentration matrix Θ in RCON model can be rewritten as

Θ =
∑
c∈V∪E

θcT
c, θ ∈ Rr+s (1.24)

where c refers to a color class in V ∪ E .

Let S+(V , E) be the set of symmetric and positive definite matrices which are written

as the sum in (1.24). Formally, the distribution of a random vector Y is said to lie in

the RCON model represented by the colored graph G = (V , E) if

Y ∼ Np(0,Σ), Θ = Σ−1 ∈ S+(V , E). (1.25)

Example 1.14. By the graph coloring (V , E) of the graph G in Figure 1.9 where

V = {{1,4}, {2,3}}, E = {{(1,2), (1,3), (2,4)}, {(3, 4)}},
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for each color class in V ∪ E, we have that

T red =


1 0 0 0

0 0 0

0 0

1

 , Tblue =


0 0 0 0

1 0 0

1 0

0

 ,

T violet =


0 1 1 0

0 0 1

0 0

0

 , T 34 =


0 0 0 0

0 0 0

0 1

0

 .

Hence, the RCON model represented by the graph G in Figure 1.9 is specified as

Y ∼ N4(0,Σ), Θ = Σ−1 ∈ S+(V , E)

where

S+(V , E) =

M
T = M,M � 0 s.t. M =


θ θ θ 0

θ 0 θ

θ θ34

θ


 .

By (1.24) and (1.25), the density function of Y can be written as

f(y | Θ) = (2π)−p/2|Θ|1/2 exp

{
−1

2

∑
c∈V∪E

θc tr(T cyyT )

}
.

Here θ is a (r+s) dimensional vector of canonical parameters and t = (−t1/2, . . . ,−tr+s/2)

are determined as the canonical statistics with tc = tr(T cyyT ) for c ∈ V ∪ E .

Following Højsgaard and Lauritzen (2008), since the restrictions are linear in the con-

centration matrix, an RCON model is a linear exponential model and the maximum

likelihood estimates of the unknown parameters are uniquely determined by equating

the canonical sufficient statistics to their expectation.

1.5 Structure of model spaces

Typically, a family of statistical models can be naturally embedded with a partial order

induced by the model inclusion relation; more concretely, given two models M1 and M2,

if M1 is contained by M2, denoted M1 ⊆M2, then we can say that M1 is “smaller” than

M2, or equivalently, M1 is a submodel of M2. In order to perform model selection, it
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is useful to understand the properties of model spaces. Therefore, in this section, the

model structures of the families of (uncolored) undirected graphical models and colored

graphical models are investigated by studying the properties on the lattice structure of

the associated model space.

1.5.1 Undirected graphical model space

Consider the family of undirected graphical models. Every model is characterized by

the associated undirected graph and model inclusion coincides with edge set inclusion.

Hence, the search space of undirected graphical models is a complete distributive lattice.

More formally, let MV be the family of undirected graphical models represented by

undirected graphs in UV . Then 〈MV ,⊆〉 is a complete distributive lattice with the

submodel relation induced by the edge set inclusion on UV , that is

M(G) ⊆M(H) if and only if G ≤ H, (1.26)

for M(G),M(H) ∈ MV represented by graphs G,H ∈ UV . The meet is represented by

the model associated with graph (V,E(G) ∩ E(H)) and the join is represented by the

model associated with graph (V,E(G)∪E(H)). The zero is the graphical model where all

of the selected variables are assumed to be independent pairwisely which is represented

by the empty graph, and the unit is the undirected graphical model represented by the

complete graph where no statistical independencies between any pair of variables hold.

Example 1.15. In Example 1.9, it is apparent that G ≤ H since E(G) ⊆ E(H),

therefore, we can say that the undirected graphical model represented by G is a sub-

model of the undirected graphical model represented by H.

1.5.2 Colored graphical model space

Consider the family of colored graphical models. Each model is represented in terms

of the colored graph, and the model inclusion is inherited by the set partition relation.

Therefore, the search space of colored graphical models is the complete non-distributve

lattice. More precisely, let MV be the family of colored graphical models represented

by colored graphs in CV . Then, 〈MV ,⊆〉 is a complete non-distributive lattice with the

submodel relation induced by the partial order of CV based on the set partition ordering

relation, that is

M(G) ⊆M(H) if and only if G �C H. (1.27)
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for two colored graphical models M(G),M(H) ∈ MV represented by colored graphs

G,H ∈ CV . The zero is the colored graphical model where all parameters corresponding

to the vertices are assumed to be identical and parameters corresponding to the edges

are assumed to be all zero. The unit coincides to the unit of the family of undirected

graphical models where there are no symmetry constraints on the parameters associated

to vertices and edges.

Example 1.16. We assume that G and H are two colored graphs specified in Example

1.11 where G �C H. This implies that the colored graphical model M(G) represented

by G is a submodel of the colored graphical model M(H) represented by H through the

model inclusion.
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Colored graphs and colored

graphical models for paired data

This chapter is devoted to the analysis of the lattice structures of the search spaces.

Particularly, we consider graphical models for paired data and, in the first two sections

of this chapter, we formally define this specific class of models. The family of graphical

models for paired data is associated with the family of colored graphs for paired data, we

then provide a comprehensive analysis of the structure of the family of such graphs. More

concretely, in the third section, we consider the model inclusion order, as in Gehrmann

(2011), and show that colored graphs for paired data form a complete non-distributive

lattice. After that, we identify a relevant sublattice of the colored graphs for paired

data based on a given fixed uncolored graph that is complete and distributive under the

model inclusion order.

The main result of this chapter is the introduction of a novel order that we call the

twin order, shown in the fourth section. The connections of this novel order with the

traditional model inclusion order are also described. Furthermore, we show that, under

the twin order, the family of colored graphs for paired data forms a complete distributive

lattice. The meet and the join operations on this lattice can be efficiently computed

because they coincide with the set intersection and the set union operations.

2.1 Colored graphical models for paired data

We consider the case of paired data where the variables on every statistical unit are

measured in “pairs” in the sense that every variable is uniquely associated with an

homologous, or twin, variable.

33
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Example 2.1. Consider the brain network
from functional magnetic resonance imaging
(fMRI) data such that:

• variables Yi’s are associated with regions
of interest (ROIs);

• for every variable Yi on the left hemi-
sphere, there is an homologous variable
on the right hemisphere.

Hence, for paired data, the vector of random variables YV can be partitioned as YV =

(YL,YR)T and every variable in YL corresponds to a variable in YR. In this way, in

a graphical model analysis, the graph associated with YV can be split, without loss

of generality, into a “L”eft part and a “R”ight part and it is of interest to explicitly

consider symmetries both between and across the left and the right parts of the network.

More concretely, in paired data, there are specific types of symmetries which are nat-

urally of interest: (1) a vertex might be symmetric to its homologous vertex; (2) one

edge might be symmetric to its homologous edge, where two edges are homologous if the

endpoints of one edge are vertices that is homologous to the endpoints of another. Note

that, if an edge has both vertices in the left part of the network then its homologous

edge has both vertices on the right part. On the orther hand, if one edge is across the

left and the right parts, also its homologous edge has a vertex on the left and another

vertex on the right part.

So far, we have used the term “symmetry” in an informal way. There exist different

ways to formally implement symmetries. In colored graphical models, symmetries are

implemented as equality constraints on the parameters and therefore they may imply

equal correlations, equal partial correlations or equal concentrations.

For the moment, we restrain from adopting a specific approach and more generally deal

with colored graphs and color classes encoding the symmetries for paired data.

2.2 Colored graphs for paired data

We formally introduce colored graphs for paired data as follows.

Definition 2.1. Let G = (V , E) be a colored graph on the vertex set V = [p]. We say



Chapter 2 - Colored graphs and colored graphical models for paired data 35

that G is a colored graph for paired data (PDCG) if there exists a partition V = L ∪R
of V with L ∩R = ∅ such that

1. |L| = |R| and every vertex in L is uniquely associated with a vertex in R;

2. every vertex color class is made up of either a single vertex or a pair of homologous

vertices;

3. every edge color class is made up of either a single edge or a pair of homologous

edges.

Example 2.2. Consider the colored graph G = (V , E) shown in Figure 2.2 on the vertex

set V = [6] where the network is divided into two parts (in the shaded grey areas)

such that V = L ∪ R with L = {1, 2, 3} and R = {4, 5, 6}. In this network, vertices

1, 2, and 3 in L are uniquely associated with vertices 4, 5, and 6 in R, respectively.

Moreover, the vertex coloring is made up of atomic classes {1} and {4}, and composite

classes containing two homologous vertices, namely {2, 5} and {3, 6}. Similarly, the edge

coloring is also made up of atomic classes {(2, 3)} and {(3, 5)}, and composite classes

{(1, 2), (4, 5)} and {(1, 6), (3, 4)} where each of which contains a pair of homologous

edges. Therefore, with such characteristics, G = (V , E) is called a colored graph for

paired data.

L R

1

2 ∗

3∗∗

4

5∗

6∗∗

| |

o o

Figure 2.2: A colored graph for paired data on the vertex set V = [6] where V is
partitioned into L = {1, 2, 3} and R = {4, 5, 6}. Every symmetric twin vertices or
every symmetric twin edges are depicted in the same color, and marked by the same
symbol. The black color indicates vertices or edges which stand alone in the color
classes.

In the analysis of paired data problems, the partition of V into L and R is always known,

and therefore, this is the case we consider and assume without loss of generality that

|L| = |R| = p/2 = q and L = {1, . . . , q} and R = {q + 1, . . . , p}. Hence, we denote that

SV the family of PDCGs with the vertex set V .
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2.3 The set partition lattice of PDCGs

Clearly, SV is strictly contained by CV in the sense that the set of PDCGs SV is a

subfamily of the set of colored graphs CV . Therefore, we consider the partial order �C
based on the set partition order of Section 1.2.4, and, with such order, we investigate

the structural properties for the lattice structure on the set SV . In fact, we consider

two following PDCGs:

(a) the family of colored graphs for paired data on the given fixed uncolored graph,

(b) the more general case where both the uncolored graphs and the symmetries are

unknown,

and show that, under the partial order �C, the family of models in (a) forms a complete

distributive lattice whereas in (b) it forms a complete lattice with non-distributivity.

2.3.1 Colored graphs for paired data on a given fixed uncolored

graph

Consider an undirected graph G = (V,E) and let SG be the set of colored graphs for

paired data with the uncolored version G. If G,H is a pair of colored graphs in SG, the

partial order �C can be simplified as follows: G �C H if and only if

(CSG .i) V(G) ≥ V(H);

(CSG .ii) E(G) ≥ E(H),

where ≥ is the partial order in the set partition lattice defined in Section 1.1.5. Indeed,

since G and H have a fixed uncolored version then the edge set inclusion between two

underlying undirected graphs is always satisfied. Moreover, for that reason, we can

write compactly the condition about the edge color classes of two considered graphs by

the order on the poset 〈P (E),≤〉 since E(G), E(H) in this case are partitions of a given

fixed edge set E.

The following proposition states that the set of the colored graphs for paired data on a

given fixed uncolored graph under the partial order “ �C ” forms a complete distributive

lattice. More specifically,

Proposition 2.1. The poset 〈SG,�C〉 with the partial order “ �C ” defined by conditions

(CSG.i) and (CSG.ii) is a complete distributive lattice where the meet operation is

G ∧ H = (V(G) ∨ V(H), E(G) ∨ E(H)) ,
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and the join operation is

G ∨ H = (V(G) ∧ V(H), E(G) ∧ E(H)) ,

where ∧ and ∨ denote the meet and the join operations of two partitions defined in

Section 1.1.5.

The unit is the uncolored graph G. The zero is the colored graph in which there are

|V |/2 composite vertex color classes where each class contains exactly two twin vertices,

and pairs of twin edges presenting in the graph G are blocked into composite edge color

classes.

Proof. We start by proving that the special case of the set of partitions of a set A, where

each partition is made up of either atomic sets or composite sets including exactly two

(homologous) components, forms a distributive lattice where the meet and the join are

the intersection and the union of atomic sets and composite sets, respectively. Then, we

apply this idea to the case of colored graphs for paired data on the given fixed uncolored

graph in SG.

1. Firstly, we shall declare the special case of partitions of a set for a paired data

problem, namely, there are two types of color classes: atomic color classes contain-

ing only one vertex or one edge, and composite color classes containing either two

twin vertices or two twin edges, if they exist in the underlying graph. Therefore,

we denote, for a partition P of a set A,

atom(P ) = {all atomic sets in P},
comp(P ) = {all composite sets in P}.

This implies that P = atom(P ) ∪ comp(P ). We now show how to compute the

join P∨ = P1 ∨ P2 for any P1, P2 ∈ P (A); in this way, it follows that P∨ exists.

Obviously P1 ≤ P∨ and P2 ≤ P∨. By the definition of the partial order for the set

of partitions of A in Section 1.1.5, we have that:

• for any a ∈ atom(P∨), it holds that a ∈ atom(P1) and a ∈ atom(P2) so that

atom(P∨) ⊆ atom(P1) ∩ atom(P2);



38 Section 2.3 - The set partition lattice of PDCGs

• for any a ∈ comp(P1), it holds that a ∈ comp(P∨), and for any a ∈ comp(P2),

it also holds that a ∈ comp(P∨). Hence,

comp(P∨) ⊇ comp(P1) ∪ comp(P2).

Since P∨ is the smallest partition which is larger than both P1 and P2, P∨ is chosen

as fine as possible, that is

atom(P∨) = atom(P1) ∩ atom(P2) and comp(P∨) = comp(P1) ∪ comp(P2).

(2.1)

Similarly, if we compute the meet P∧ = P1 ∧ P2 for any P1, P2 ∈ P (A), then we

can imply that P∧ exists. Clearly, P∧ ≤ P1 and P∧ ≤ P2. By the definition of the

partial order ≤ in P (A), we have that:

• for any subset a ∈ atom(P1), a ∈ atom(P∧); moreover, for any subset a ∈
atom(P2), a ∈ atom(P∧) also. Hence, it implies that

atom(P∧) ⊇ atom(P1) ∪ atom(P2);

• for any subset a ∈ comp(P∧), a ∈ comp(P1) and a ∈ comp(P2) then

comp(P∧) ⊆ comp(P1) ∩ comp(P2);

Since P∧ is the largest partition which is smaller than both P1 and P2, P∧ is chosen

as coarse as possible, that is

atom(P∧) = atom(P1) ∪ atom(P2) and comp(P∧) = comp(P1) ∩ comp(P2).

(2.2)

2. We apply (2.1) and (2.2) for partitions of the vertex V and the edge set E. As a

consequence, for two colored graphs G,H ∈ SG, the meet operation of G and H is

the colored graph (V∧, E∧) where atomic and composite classes in V∧ and E∧ are

computed in (2.1), namely

V∧ = V(G) ∨ V(H) =
(

atom(V(G)) ∩ atom(V(H))
)
∪
(

comp(V(G)) ∪ comp(V(H))
)

E∧ = E(G) ∨ E(H) =
(

atom(E(G)) ∩ atom(E(H))
)
∪
(

comp(E(G)) ∪ comp(E(H))
)
;
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and the join operation of G and H is the colored graph (V∨, E∨) where atomic and

composite classes in V∨ and E∨ are computed in (2.2), namely

V∨ = V(G) ∧ V(H) =
(

atom(V(G)) ∪ atom(V(H))
)
∪
(

comp(V(G)) ∩ comp(V(H))
)

E∨ = E(G) ∧ E(H) =
(

atom(E(G)) ∪ atom(E(H))
)
∪
(

comp(E(G)) ∩ comp(E(H))
)
.

The zero is the smallest colored graph (V0, E0) in SG, with the vertex coloring and

the edge coloring as coarse as possible, so that

atom(V0) = ∅, comp(V0) = {{i, j} for all i, j are twin in V };
comp(E0) = {{(i, j), (r, s)} for any (i, j), (r, s) are twin in E},

and the atomic classes containing edges that are not in any subsets in comp(E0).
The unit is the largest colored graph (V1, E1) in SG, which has the vertex coloring

and the edge coloring are as fine as possible, it means that

atom(V1) = {{i} for all i ∈ V }, comp(V1) = ∅;
atom(E1) = {{(i, j)} for all (i, j) ∈ E}, comp(E1) = ∅.

Moreover, in this special case, the distributive law is satisfied since the meet and

the join operations are translated by the union and the intersection of atomic

classes and composite classes, particularly in (2.1) and (2.2).

The complexity in the computation of the meet and the join for the set partition lattice,

as given in (A) and (B) of Section 1.1.5, for the set of colored graphs for paired data on

the given fixed uncolored graphs SG, makes their implementation not straightforward.

A side results of Proposition 2.1 are more efficient ways to carry out these operations

by means of the set intersection and the set union. Specifically, the following corollary

gives more details about the forms of the meet and the join of PDCGs on the given

fixed uncolored graph in SG.

Corollary 2.2. Under the conditions of Proposition 2.1, the meet operation can be

computed as

G ∧ H = (V(G) ∨ V(H), E(G) ∨ E(H))
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where

V(G) ∨ V(H) =
(

atom(V(G)) ∩ atom(V(H))
)
∪
(

comp(V(G)) ∪ comp(V(H))
)

E(G) ∨ E(H) =
(

atom(E(G)) ∩ atom(E(H))
)
∪
(

comp(E(G)) ∪ comp(E(H))
)
.

And the join operation can be computed

G ∨ H = (V(G) ∧ V(H), E(G) ∧ E(H))

where

V(G) ∧ V(H) =
(

atom(V(G)) ∪ atom(V(H))
)
∪
(

comp(V(G)) ∩ comp(V(H))
)

E(G) ∧ E(H) =
(

atom(E(G)) ∪ atom(E(H))
)
∪
(

comp(E(G)) ∩ comp(E(H))
)
.

Here, atom(P ) = {all atomic sets in the partition P} and comp(P ) = {all composite sets

in the partition P}.

Proof. This follows immediately from the proof of Proposition 2.1.

* *

* *

* *

** ** * *

**

* *

****

Figure 2.3: Hasse diagram of the lattice structure of the set of colored graphs for
paired data, SG, based on the given fixed uncolored graph G, where G = ([4], E(G))
is represented at the top.
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Example 2.3. Figure 2.4 displays an undirected graph G = ([6], E) together with the

zero and the unit of SG. Note that, the zero is the colored graph where all of twin vertices

and twin edges are symmetric whereas the unit is the uncolored graph G where vertices

and edges stand alone in atomic color classes.
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Figure 2.4: Representations of (b) the zero and (c) the unit on the lattice of PDCGs
based on (a) the given fixed uncolored graph G, 〈SG,�C〉.

2.3.2 General case for colored graphs for paired data

We consider now the set of colored graphs for paired data on the vertex set V with

no restrictions on the (uncolored) graph structure denoted by SV . This forms a proper

subfamily of the family of colored graphs. Hence, we can consider the family of SV and

the partial order �C. In this way, we obtain a complete lattice where the zero is the

empty graph with |V |/2 composite vertex color classes, and each class contains exactly

two twin vertices, and the unit is the uncolored complete graph. However, the lattice

in this case is not distributive as shown in the following counterexamples.

Example 2.4. We consider three colored graphs for paired data G,H and K on the

vertex set V = [6] shown in the first row of Figure 2.5. It is clear that the distributive

law does not hold in this case because

G ∨ (H ∧K) 6= (G ∨ H) ∧ (G ∨ K)

demostrated in Figure 2.5. One can prove that 〈SV ,�C〉 is a non-distributive lattice.
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Figure 2.5: A counterexample of the non-distributivity of PDCGs G,H, and K on
the lattice 〈S[6],�C〉.

Example 2.5. Figure 2.6 shows intuitively another counterexample about the non-

distributivity of the lattice 〈SV ,�C〉. Particularly, the diamond structure contained as a

sublattice on the set of the considered PDCGs with four vertices shown in Theorem 1.1.

(1)

p p

(2) (3)

(4)

14

Figure 2.6: The diamond structure of the sublatice of 〈S[4],�C〉.
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2.4 The novel partial order for the set of PDCGs

and its properties

In this section, we introduce some notations and terminologies that facilitate the search

for a novel partial order and the subsequent proofs on the set of colored graphs for

paired data. We then define a novel partial order for the class of colored graphs for

paired data and show that, with such order, the family of colored graphs for paired

data is a complete distributive lattice. Moreover, the connections between the model

inclusion and the novel partial order are also described.

2.4.1 Notations and terminologies of important quantities

In a paired data problem, the graph G has an even number of vertices p and we set

q = p/2. Hence, for every vertex i ∈ V with i ≤ q, there exists an homologous, or twin,

vertex i + q ∈ V . Then, we partition the vertex set V into two disjoint subsets L and

R such that

V = L ∪R with L ∩R = ∅,

where we let L = {1, . . . , q} and R = {q + 1, . . . , p}. The application considered in this

thesis concerns the paired data from the left and the right hemispheres of the brain.

1

2

3

4

5

6

L R

Figure 2.7: The vertex set V = [6] is split into two disjoint subsets L = {1, 2, 3}
and R = {4, 5, 6}.

Next, we will introduce the twin correspondence which identifies whether or not a pair

of vertices (edges) is a twin. More formally, the twin correspondence, denoted by τ(·),
is the function defined as

τ(i) =

i+ q, if i = 1, . . . , q,

i− q, if i = q + 1, . . . , p.
(2.3)
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Note that, τ = τ−1, in other words, τ(τ(i)) = i for every i ∈ {1, . . . , p}. Furthermore,

for a non-empty subset A ⊆ V , we write

τ(A) = {τ(a), a ∈ A}.

In order to label the correspondence between elements of L and R on a graph, for every

i ∈ L, we put i′ = τ(i) so that the set R can be written as R = {1′, . . . , q′}. Therefore,

by the property of τ(·), for every i ∈ L, we have that

τ(i) = i′ and τ(i′) = i.

We say that two vertices i, j ∈ V are twin vertices of G if

τ(i) = j, or, equivalently τ(j) = i.

By this definition, we can see that there is a twin correspondence τ between elements

in L and elements in R which is illustrated by Figure 2.8. where

1 1′

2 2′

q q′

L R

τ

τ
...

τ

Figure 2.8: Relationship between the set L and the set R is presented by the twin
function.

τ(L) = {τ(1), . . . , τ(q)} = {1′, . . . , q′} = R,

corresponding to,

τ(R) = {τ(1′), . . . , τ(q′)} = {1, . . . , q} = L.

Therefore, in a graph with p vertices, there will be p/2 pairs of twin vertices.

We also apply the function τ to ordered pairs of vertices, that is to potential edges,

τ ((i, j)) = (τ(i), τ(j)) , for every i, j ∈ V.
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Similar to the case of vertices, we apply τ(·) with sets of egdes as follows. We say that

a pair of edges (i, j) and (r, s) are twin edges if

τ ((i, j)) = (r, s) or, equivalently τ ((r, s)) = (i, j).

Example 2.6. In the complete graph of 6 vertices, there are six possible pairs of twin

edges. Figure 2.9 displays twin edges connecting vertices within sets L and R, namely

(1, 2), (1′, 2′), (1, 3), (1′, 3′) and (2, 3), (2′, 3′), and, Figure 2.10 displays twin edges con-

necting vertices across L and R, namely (1, 2′), (2, 1′), (1, 3′), (3, 1′) and (2, 3′), (3, 2′).

On the other hand, Figure 2.11 illustrates some pairs of edges that are not twin.

Therefore, in general, on the graph of p vertices, there are p(p − 2)/4 possible pairs of

twin edges.
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Figure 2.9: Pairs of twin edges connecting vertices within L and R in graph with 6
vertices, namely, (a) (1, 2), (1′, 2′), (b) (2, 3), (2′, 3′), and (c) (1, 3), (1′, 3′).
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Figure 2.10: Pairs of twin edges connecting vertices across L and R in the graph
with 6 vertices, namely, (a) (1, 2′), (2, 1′), (b) (1, 3′), (3, 1′), and (c) (2, 3′), (3, 2′).
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Figure 2.11: Examples of pairs of edges which are not twin edges, namely, (a)
(1, 2), (1′, 3′), (b) (1, 2), (1, 2′), and (c) (1, 2′), (3, 1′).

Let FV = {(i, j) ∈ V × V, i < j} be a set of all possible edges in the complete graph on

vertex set V = [p] with |FV | = p(p− 1)/2. Therefore, the edge set E of a graph G will

be a subset of FV , i.e. E ⊆ FV . We partition FV into pairwise disjoint subsets FL, FR

and FT such that

FV = FL ∪ FR ∪ FT , with FL ∩ FR = FL ∩ FT = FR ∩ FT = ∅

where

• FL is the set of all possible edges “on the left”

FL = {(i, j) ∈ FV | i, j ∈ L} ∪ {(i, j) ∈ FV | i ∈ L, j ∈ R, i < τ(j)}; (2.4)

• FR is the set of all possible edges “on the right”

FR = {(i, j) ∈ FV | i, j ∈ R} ∪ {(i, j) ∈ FV | i ∈ L, j ∈ R, i > τ(j)}; (2.5)

• and FT is the set of all possible edges connecting twin vertices

FT = {(i, j) ∈ FV | i ∈ L, j ∈ R, i = τ(j)}. (2.6)

Note that, for V = [p], it holds that

|FT | =
p

2
, |FL| = |FR| =

p(p− 2)

4
.

Moreover, for any subset A of the edge set FV ,

τ(A) = {(τ(i), τ(j)) for all (i, j) ∈ A}.
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And hence, the sets FL and FR are connected by a twin correspondence, that is

FL = τ(FR), FR = τ(FL). (2.7)

which is displayed in Figure 2.12. Furthermore, it is clear that

τ(FT ) = FT .

(i, j) (i′, j′)

(i, j′) (i′, j)

FL FR

τ

τ

Figure 2.12: Relationship between the set FL and the set FR is presented by the
twin function.

Example 2.7. We consider a complete graph where the vertex set V = [6] is partitioned

into L ∪ R where L = {1, 2, 3} and R = {1′, 2′, 3′}. The set FV is therefore determined

by listing 6(6 − 1)/2 = 15 possible edges in this graph such that FV = FL ∪ FR ∪ FT
where

FL = {(1, 2), (1, 3), (1, 2′), (1, 3′), (2, 3), (2, 3′)},
FR = {(1′, 2′), (1′, 3′), (1′, 2), (1′, 3), (2′, 3′), (2′, 3)},
FT = {(1, 1′), (2, 2′), (3, 3′)},
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which are all displayed by graphs in Figure 2.13. The connection between FL and FR is

specified in this example as folows

FL FR FR FL

(1, 2)
τ7−→ (1′, 2′), (1′, 2′)

τ7−→ (1, 2)

(1, 3)
τ7−→ (1′, 3′), (1′, 3′)

τ7−→ (1, 3)

(1, 2′)
τ7−→ (2, 1′), (2, 1′)

τ7−→ (1, 2′)

(1, 3′)
τ7−→ (3, 1′), (3, 1′)

τ7−→ (1, 3′)

(2, 3)
τ7−→ (2′, 3′), (2′, 3′)

τ7−→ (2, 3)

(2, 3′)
τ7−→ (3, 2′), (3, 2′)

τ7−→ (2, 3′).

1

2

3

1′

2′

3′

(a)

1

2

3

1′

2′

3′

(b)

1

2

3

1′

2′

3′

(c)

Figure 2.13: The partition of F[6] into (a) FL, (b) FR and (c) FT .

For a graph G = (V,E), the partition of FV into FL, FR and FT naturally induces a

partition of E into

EL = E ∩ FL, ER = E ∩ FR, ET = E ∩ FT , (2.8)

so that

E = EL ∪ ER ∪ ET with EL ∩ ER = EL ∩ ET = ER ∩ ET = ∅.

An edge (i, j) in EL is a twin edge when τ((i, j)) is an element of ER or, equivalently,

if (i, j) ∈ τ(ER). Hence, the subset of EL of edges with a twin is given by EL ∩ τ(ER).

Example 2.8. From Figure 2.14, we get the edge set E of the graph as

E = {(1, 2), (2, 3), (1, 3′), (1′, 3), (1′, 2′), (2′, 3), (1, 1′)}
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1

2

3

1′

2′

3′

Figure 2.14: An undirected graph G = (V,E).

and by (2.8), sets EL, ER, and ET in this graph are determined as below

EL = {(1, 2), (2, 3), (1, 3′)},
ER = {(1′, 2′), (3, 2′), (3, 1′)},
ET = {(1, 1′)}.

Moreover, we can see that (1, 2), (1′, 2′) and (1, 3′), (3, 1′) are pairs of twin edges shown in

Figure 2.14. Therefore, if we consider edges (1, 2) and (1, 3′), which are representations

for twin edges, they are elements of the set EL ∩ τ(ER) whereas (2, 3) is not because

(2′, 3′) is missing in the graph G.

When we consider an edge (i, j) ∈ EL ∩ τ(ER), there are two possibilities of the color

class for (i, j) and its twin τ(i, j), that is

Case 1: (i, j), τ(i, j) form a color class, i.e.

{(i, j), τ(i, j)} ∈ E ;

Case 2: (i, j), τ(i, j) forms two color classes, i.e.

{(i, j)}, {τ(i, j)} ∈ E .

1

2

3

1′

2′

3′

| |

Case 1

1

2

3

1′

2′

3′

Case 2
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The set of edges (i, j) ∈ EL ∩ τ(ER) which fall into the second case forms the set

EL ⊆ EL, more formally,

EL = {(i, j) ∈ EL ∩ τ(ER) | {(i, j)} ∈ E}. (2.9)

Obviously, the following sequence of inclusions hold for EL ⊆ EL ∩ τ(ER) ⊆ EL ⊆ E.

Additionally, edges in EL ∩ τ(ER) belonging to the same edge color class with their

twins are elements of the set (EL ∩ τ(ER)) \ EL.

A witty explanation for the use of notation EL is that the double strokes on the letter

refer to twin edges which are present in a graph; and the black color on the double

strokes is also the color represented for these twin edges in the graph because they

belong to the atomic color classes.

Similarly, we call L a set of vertices i ∈ L under the condition that i, τ(i) are in the

atomic color classes. More formally,

L = {i ∈ L | {i} ∈ V}, (2.10)

and hence, we get that L ⊆ L ⊂ V .

Example 2.9. For the PDCG of Figure 2.16 it holds that V = {{1, 1′}, {2, 2′}, {3}, {3′}}
and E = {{(1, 2), (1′, 2′)}, {(1, 1′)}, {(1, 3′)}, {(2, 3)}, {(3, 1′)}, {(3, 2′)}}. The vertex set

V is split into L = {1, 2, 3} and R = {1′, 2′, 3′}. Thus, L ⊆ L and L = {3} since

{3}, {3′} forms atomic classes in V, and L\L = {1, 2} presents vertices that belong to the

composite color classes with their twin. Furthermore, the edge set E can be obtained by

merging color classes in E, therefore, from E, we get that EL = {(1, 2), (1, 3′), (2, 3)}, ER =

{(1′, 2′), (3, 1′), (3, 2′)} and ET = {(1, 1′)}. The edges having their twin in the graphs

form EL ∩ τ(ER) = {(1, 2), (1, 3′)}. By convention above, EL contains edges in EL ∩
τ(ER) that form atomic classes, namely, EL = {(1, 3′)}; and, EL ∩ τ(ER) \ EL refers

to edges belonging to composite classes together with the twin, which equals {(1, 2)} in

this case. For the rest of atomic classes in E, they can be found by E \EL ∩ τ(ER) and

E \ τ(EL) ∩ ER.

These sets allow us to give an efficient representation of PDCGs.

Proposition 2.3. Let G = (V , E) be a PDCG with uncolored version G = (V,E). Then

the sets (V,E,L,EL) provide an alternative, equivalent, representation of G.

Proof. A PDCG G is made up of two components: vertex color classes V and edge color

classes E , such that each color class in V or E forms an atomic class or a composite
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Left Right

1
∗∗

2
∗

3

1′
∗∗

2′
∗

3′

| |

Figure 2.16: A colored graph for paired data G = (V, E).

class with maximum two homologous elements. About the vertex color classes, we

will show that (V,L) is an one-to-one representation for V . Particularly, we assume

that V = [p] and it is split into L and R where L = [q] with q = p/2. By (2.10),

L = {i ∈ L | {i} ∈ V}, or, equivalently, L = {i ∈ L | {i}, {τ(i)} ∈ V}, which presents

atomic classes in V . Moreover, L\L = {i ∈ L | {i, τ(i)} ∈ V} presents composite classes

in V .

About the edge color class, with a similar argument, we shall prove that (E,EL) is an

one-to-one representation for E . We firstly note that, Equation (2.9) can be written

fully as EL = {(i, j) ∈ EL ∩ τ(ER) | {(i, j)}, {τ(i, j)} ∈ E}. Furthermore, if an edge

(i, j) ∈ E has its twin in the graph, E contains either {(i, j)}, {τ(i, j)} or {(i, j), τ(i, j)};
otherwise, it is presented as an atomic class in E . Thus, EL, E \ EL ∩ τ(ER), and

E \ τ(EL) ∩ER present atomic classes and EL ∩ τ(ER) \ EL refers to composite classes

in E , where EL, ER are induced from E by steps described above.

2.4.2 Associated lattice structure for the set of PDCGs and its

structural properties

In this section, we will define the novel partial order for PDCGs on the vertex set V

such that it inherits the efficient properties from the set inclusion lattice.

Definition 2.2. For two PDCGs G,H ∈ SV , we say G �τ H if and only if

(τ .i) E(G) ⊆ E(H),

(τ .ii) L(G) ⊆ L(H),

(τ .iii) EL(G) ⊆ EL(H).
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Then, “ �τ ” defines a partial order on the set of PDCGs on the vertex set V , SV , and

we call it the twin order.

Example 2.10. Consider two PDCGs G,H ∈ S[4] displayed in Figure 2.17, where

Graph G : L(G) = {2}, E(G) = {(1, 2), (1′, 2′), (1, 1′), (1, 2′)}, EL(G) = ∅;
Graph H : L(H) = {1, 2}, E(H) = {(1, 2), (1′, 2′), (1, 1′), (1, 2′), (1′, 2)}, EL(H) = {(1, 2)}.

1
∗

2

1′
∗

2′

| |

G

�τ

1

2

1′

2′

| |

H

Figure 2.17: Example of the partial order �τ between two colored graphs for paired
data G and H in S[4].

As we can see, G �τ H because all of conditions (τ .i), (τ .ii), and (τ .iii) are satisfied for

G and H in this case. Nevertheless, G and H are incomparable by the order �C since it

violates the third condition, namely, the color class {(1, 2′)} ∈ E(G) is not the union of

{(1, 2′), (1′, 2)} ∈ E(H).

If we restrict to the set of PDCGs on the given fixed uncolored version then the orders

�τ and �C coincide. Precisely, this is stated in the following proposition.

Proposition 2.4. The partial order �C coincides with the partial order �τ in the class

of colored graphs SG.

Proof. To show Proposition 2.4, for any pair of colored graphs G,H ∈ SG, we should

prove that conditions defined in the partial order �C are equivalent to conditions defined

in the partial order �τ . In particular,

1. (CSG .i) =⇒ (τ .ii). If V(G) ≥ V(H), it means that every color class in V(G) is a

union of color classes in V(H), then for any vertex i ∈ L(G), i.e. {i}, {i′} ∈ V(G),

it follows i ∈ L(H).

(CSG .i)⇐= (τ .ii). V(G) ≥ V(H) holds for those vertices in L(G) or L\L(H). And

in the case of i ∈ L(H) \ L(G), this means {i, i′} ∈ V(G) and {i}, {i′} ∈ V(H), so

condition (CSG .i) is satisfied.
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2. (CSG .ii) =⇒ (τ .iii). It can be proved similarly to the previous instance of (CSG .i)

=⇒ (τ .ii).

(CSG .ii) ⇐= (τ .iii). Since E(G) = E(H) = E, we consider the two following cases:

(a) for any (i, j) /∈ EL ∩ τ(ER), the condition E(G) ≥ E(H) is satisfied;

(b) for any (i, j) ∈ EL ∩ τ(ER), the condition E(G) ≥ E(H) is also true with the

same argument, as in the proof above.

In the general case, the lattice under the twin order �τ respects the model inclusion

order �C as shown in the following proposition.

Proposition 2.5. For any G,H ∈ SV , if G �C H then G �τ H.

Proof. Consider two colored graphs G,H ∈ SV such that G �C H, this means that

conditions (C.i)-(C.iii) hold. We need to prove that conditions (τ .i)-(τ .iii) also hold for

a pair of G and H. Indeed, (C.i) coincides with (τ .i) by the definition of the partial

order of undirected graphs in Section 1.2.2. Moreover, (C.ii) ⇐⇒ (τ .ii) holds since it

is proved in the first point of the proof of Proposition 2.4. Therefore, it is sufficient to

show that if the condition (C.iii) is satisfied then the condition (τ .iii) is also satisfied,

which is shown in the following.

(C.iii) =⇒ (τ .iii). For any edge (i, j) ∈ EL(G), it holds that (i, j) and τ(i, j) belong to

E(G) so that {(i, j)} and {τ(i, j)} are atomic classes in E(G). Since G �C H then (C.iii)
is true, i.e. every class in E(G) is a union of classes in E(H). It follows that (i, j) and

τ(i, j) must be in E(H) so that {(i, j)} and {τ(i, j)} are also atomic classes in E(H),

which implies (i, j) ∈ EL(H). Hence, we can conclude that EL(G) ⊆ EL(H).

With the conditions (τ .i), (τ .ii), and (τ .iii) in the definition of the partial order in

〈SV ,�τ 〉 defined above, we have the following results.

Theorem 2.6. The family of PDCGs on the vertex set V , SV , equipped with the partial

order �τ is a complete distributive lattice where

1. the meet operation is the colored graph

G ∧ H =
(
V, E(G) ∩ E(H), L(G) ∩ L(H), EL(G) ∩ EL(H)

)
;

2. the join operation is the colored graph

G ∨ H =
(
V, E(G) ∪ E(H), L(G) ∪ L(H), EL(G) ∪ EL(H)

)
;
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(1)

p p

(2) (3)

(4)
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(a)

(1)
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(b)

Figure 2.18: Sublattices of colored graphs for paired data in SV ordered by (a) the
twin order �τ and (b) the model inclusion order �C .

3. the zero is an empty graph with L(0̂) = ∅ and EL(0̂) = ∅, and

4. the unit is a complete graph with atomic color classes in vertices and edges, i.e.

L(1̂) = L and EL(1̂) = FL.

We call the lattice SV with the twin order �τ the twin lattice.

1
∗

2
∗∗

1′
∗

2′
∗∗

(a)

1

2

1′

2′

(b)

Figure 2.19: Colored graphs represent (a) the zero, and (b) the unit in 〈S[4],�τ 〉.

Proof. The proof of the theorem is designed as follows: first, we prove 〈SV ,�τ 〉 is a

lattice by determining the explicit forms of the corresponding meet and join operations,

where the meet and the join are defined by the set intersection and the set union
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operations, respectively. As a consequence, we find the zero and the unit on the lattice

structure of SV , from which the completeness holds. Finally, we prove that the lattice

〈SV ,�τ 〉 is distributive since the meet and join operations distribute to each other.

1. Let G ∈ SV be a colored graph such that

L(G) = L(G1) ∩ L(G2), E(G) = E(G1) ∩ E(G2), EL(G) = EL(G1) ∩ EL(G2),

for any G1,G2 ∈ SV . Obviously, G is a lower bound of G1 and G2 according to the

�τ relation. Suppose that G ′ is the infimum of G1 and G2, i.e. G ′ = G1 ∧ G2. This

means that G ′ is a lower bound of G1,G2 and G �τ G ′. Moreover, since G ′ �τ G1
and G ′ �τ G2 then by the definition of the partial order �τ on SV , we have

(a) L(G ′) ⊆ L(G1) and L(G ′) ⊆ L(G2),

(b) E(G ′) ⊆ E(G1) and E(G ′) ⊆ E(G2),

(c) EL(G ′) ⊆ EL(G1) and EL(G ′) ⊆ EL(G2),

which implies that

L(G ′) ⊆ L(G1) ∩ L(G2), E(G ′) ⊆ E(G1) ∩ E(G2), EL(G ′) ⊆ EL(G1) ∩ EL(G2).

Hence, G ′ �τ G. By the antisymmetry of the partial order, we get that G ′ ≡ G.

2. A similar argument can be applied for the proof of the join operation. Particularly,

let G ∈ SV be a colored graph such that

L(G) = L(G1) ∪ L(G2), E(G) = E(G1) ∪ E(G2), EL(G) = EL(G1) ∪ EL(G2),

for any G1,G2 ∈ SV . Obviously, G is an upper bound of G1 and G2 by �τ relation.

Suppose that G ′ is the supremum of G1 and G2, i.e. G ′ = G1 ∨ G2. This means

that G ′ is an upper bound of G1,G2 and G ′ �τ G. Moreover, since G1 �τ G ′ and

G2 �τ G ′ then by the definition of the partial order �τ on SV , we have

(a) L(G ′) ⊇ L(G1) and L(G ′) ⊇ L(G2),

(b) E(G ′) ⊇ E(G1) and E(G ′) ⊇ E(G2),

(c) EL(G ′) ⊇ EL(G1) and EL(G ′) ⊇ EL(G2),

which implies that

L(G ′) ⊇ L(G1) ∪ L(G2), E(G ′) ⊇ E(G1) ∪ E(G2), EL(G ′) ⊇ EL(G1) ∪ EL(G2).
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Hence, G �τ G ′. By the antisymmetry of the partial order, we get that G ′ ≡ G.

3. The zero is the smallest element in SV , if it exists, that is

L(0̂) ⊆
⋂
G∈SV

L(G) = ∅, E(0̂) ⊆
⋂
G∈SV

E(G) = ∅.

Moreover, the sets L(0̂) ⊇ ∅ and E(0̂) ⊇ ∅, therefore, L(0̂) = ∅ and E(0̂) = ∅,
which also implies that EL(0̂) = ∅.

4. The unit is the largest element in SV , if it exists, that is

L(1̂) ⊇
⋃
G∈SV

L(G) = L, E(1̂) ⊇
⋂
G∈SV

E(G) = FV

where EL(1̂) is as large as possible, i.e.

EL(1̂) ⊇
⋃
G∈SV

EL(G) = FV .

Since L(G) ⊆ L for all G ∈ SV then L(1̂) = L. Similarly, E(1̂) = FV with the

number of asymmetric homologous edges as large as possible, i.e. EL(1̂) = FL.

Therefore, 〈SV ,�τ 〉 forms a complete lattice where the distributivity law can be verified

by the ∧,∨ operations through the intersection and the union of sets L, E and EL.



Chapter 3

Model search over the twin lattice

The selection of colored graphical models, given some data, is a major challenge because

the number of different models grows super-exponentially with the number of variables.

In this chapter, we focus on greedy search methods which perform local moves on the

lattice structure of the model space, as efficiently as possible. We implement a backward

elimination stepwise procedure on the twin lattice, and show that it is more efficient

than an equivalent procedure on the model inclusion lattice. Furthermore, we show

that the use of the twin lattice allows us to avoid an incoherent step in model search,

which will be explained in Section 3.2. The performance of the proposed procedure is

evaluated on simulated data and applied to the identification of a brain network from

functional MRI data.

3.1 Dimensions of the search spaces and related works

In this section, we will compare the dimensions of the model spaces of uncolored graph-

ical models with colored graphical models for paired data. The results of Gehrmann

(2011) for the general family of colored graphs show the super-exponentially growth of

the dimension of the colored graph space. For example, when p is 4 or 6, the number of

uncolored graphs is 64 and 32, 768, respectively, whereas the number of colored graphs

is 13, 155 and 2.127469 × 1012, instead. In our context, we consider colored graphs for

paired data which is a subset of general colored graphs. A general formula for the di-

mension of such space is not available, however, with p = 4 or p = 6, the numbers of

colored graphs for paired data are 400 and 1, 000, 216, respectively. An easier task is to

compare the number of perfectly-paired uncolored graphs with that of perfectly-paired

PDCGs. In this case, for a given number of vertices p, there are p(p−2)/4 possible pairs

of twin edges where each pair has two possibilities of colorings. Therefore, the number

57
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of perfectly-paired colored graphs for paired data is given by the product of the number

of colorings on twin vertices, 2p/2, multiplied by the sum of the number of colorings on

k pairs of twin edges times the number of uncolored graphs having exactly k pairs of

twin edges on the edge set E, which is 2k
( p(p−2)

4
k

)
. More formally, it is specified as

2p/2
p(p−2)/4∑
k=0

2k
(p(p−2)

4

k

)
,

whereas the number of perfectly-paired uncolored graphs with p vertices can be com-

puted as
p(p−2)/4∑
k=0

(p(p−2)
4

k

)
= 2p(p−2)/4.

(a) (b) (c)

Figure 3.1: Perfectly-paired uncolored graphs with (a)-(b) one pair of homologous
edges, and (c) two pairs of homologous edges on the vertex set of 4 vertices.

Figure 3.2 shows the comparison on the logarithmic scales of the number of “perfectly-

paired” uncolored graphs in black, and the number of “perfectly-paired” colored graphs

for paired data in blue when p varies from 2 to 20 vertices. Intuitively, we found that the

number of graphs from both of such cases grows super-exponentially with the number

of vertices p; however, the number of “perfectly-paired” PDCGs grows faster than the

number of “perfectly-paired” uncolored graphs.

It is also interesting to consider the complete graph. Indeed, there is only one complete

graph on p vertices, but the number of possible colorings of the twin vertices and the

twin edges on the complete graph is given by

2
p
2
+

p(p−2)
4 = 2

p2

4 ,

and it is clear that also in this case the number of PDCGs on the complete graph grows

super-exponentially with the number of vertices. Figure 3.3 gives the logarithmic scale

of numbers of colored graphs for paired data where the case of the complete uncolored

graphs is presented in red and dots and the case of the perfectly-paired uncolored graphs

is presented in blue. The dimensions of PDCGs based on two such uncolored graphs

are computed with different number of vertices p from 2 to 20.
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Dimensions of model spaces on the 'perfectly−paired' case

Figure 3.2: Logarithmic scale of the number of “perfectly-paired” (uncolored) graph-
ical models (illustrated in black) and the number of “perfectly-paired” colored graph-
ical models for paired data (illustrated in blue) with different even number of vertices
p from 2 to 20.

The above discussion on the dimension of the model space shows that, for the family

of colored graphical models, model search is much more challenging than for the family

of (uncolored) undirected graphical models. Indeed, model search of colored graphical

models is a relatively recent area of research, and the computational complexity of the

existing procedures is such that they can be applied only to a much smaller number of

variables with respect to the existing procedures for undirected graphical models.

In this thesis, we focus on greedy search procedures. Within this framework, Gehrmann

(2011) investigated the properties of the model inclusion lattice of colored graphical

models and implemented greedy search procedures for four relevant subfamilies of col-

ored Gaussian graphical models to exploit the lattice structure with respect to model

inclusion. The examples considered in their work involve at most models with 5 vari-

ables.

Although we focus on greedy search procedures, the structure of model space can be

useful also under other approaches. For example, in a Bayesian framework, Li et al.

(2020) explored the search space of RCON models by the local moves, which combines
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Figure 3.3: Logarithmic scale of numbers of colored graphical models for paired data
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the linear regression with a double reversible jump Markov chain Monte Carlo method.

This approach is conducted for data set with up to 11 variables. However, in order to

reduce the computational complexity, some simplifying assumptions are required.

Alternatively, Ranciati et al. (2021) proposed the penalized likelihood method with a

fused type penalty function, introduced in Tibshirani et al. (2005), to learn multiple

networks in a context of dependent samples. Specifically, they applied their method to

a problem involving 70 variables. Nevertheless, this method cannot be directly compared

with ours because we also consider symmetries involving edges across the two groups.

For other works on the application of penalized likelihood methods on colored graphical

models, we see also Vinciotti et al. (2016) and Li et al. (2021).
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3.2 Principle of coherence

In this section, we will discuss about the coherence principle in the model testing and

investigate the coherent steps through two relevant examples of the lattices of PDCGMs.

The principle of coherence was introduced in Gabriel (1969) where it is stated that: “in

any procedure involving multiple comparisons no hypothesis should be accepted if any

hypothesis implied by it is rejected”. The implementation of the coherence principle in

model search procedures is usually done by stating that “a procedure involving testing

a set of model ought not accept a model while rejecting a more general model” (see

Edwards and Havránek 1987). For simplification, we will say the “accepted” model

instead of the “non-rejected” model. Hence, if a model M is rejected then all its sub-

models should be also rejected. For this reason, the coherence is naturally implemented

in model inclusion lattices which make explicit the submodel relation. A great practical

advantage on the usage of the coherence principle is to reduce the number of hypotheses

needed to be tested. Thereby, on the construction of a feasible model selection proce-

dure, it allows us to reduce considerably the number of tested models in the searching

path. Although coherence is not the only one desideratum property (see e.g. Izbicki and

Esteves (2015), Bickel and Patriota (2019) for other properties), it is by far the most

emphasized one in the literature of multiple hypothesis testing (see e.g. Gabriel (1969),

Antoch and Hanousek (2001), Sonnemann (2008), Gehrmann (2011), Edwards (2012,

chapter 6), Patriota (2013), and references therein). It is therefore both theoretically

important and practically convenient to use the coherence principle in model search

procedures. Furthermore, the implementation of this principle strongly depends on the

type of models considered and, in the case we are considering, on the lattice structure

used to encode the model space. In the following example, we show that, for the family

of PDCGMs, the implementation of the coherent step is subtler than in traditional (un-

colored) undirected graphical models, and one cannot deal with it by only considering

model inclusion relation.

Example 3.1. We apply Edwards-Havránek method on the sublattice structure of RCON

models represented by the colored graphs for paired data with the set of 4 vertices, under

the model inclusion displayed in Figure 3.4. The aim of this procedure is to identify

the simplest models that are accepted. In this context, we will test four hypotheses

for models represented respectively by graphs (1), (2), (3), and (4). We assume that

at the significance level α, by the chi-square approximations for the distributions of the

corresponding likelihood ratio test relative to the saturated model, we reject the hypothesis

for (1) and accept simultaneously hypotheses for (2) and (3). Hence, this is not coherent
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Figure 3.4: Sublattice structure of colored graphs for paired data with the set of 4
vertices under the model inclusion �C .

in the sense that we can conclude that on the concentration matrix the corresponding

parameters θ21′ = 0 and θ12′ = 0 but cannot accept that they have the same value.

Figure 3.5 gives the sublattice according to the twin order for 5 PDCGMs represented by

the colored graphs of Figure 3.4. Notice that, models (1), (2), and (3) are now arranged

in a two-layer structure. Thus, in the backward elimination stepwise procedure we will

test model (1) first then apply the appropriate coherent step for models (2) and (3).

In particular, in this procedure, at one-step movement, if the model testing for (1) is

accepted then we will test the model represented by (4). It makes sense if the testing

of the model represented by (4) is rejected then we can implicitly understand that

models represented by (2) and (3) are both simultaneously rejected; otherwise models

represented by (2) and (3) are both simultaneously accepted. On the other hand, if the

testing model for (1) is rejected then we will further test (2) and (3) and reject (4). In

this case, it also makes sense if the tests for (2) and (3) are both rejected or one of them

is accepted.

The rest of this chapter is devoted to the implementation of a backward elimination

stepwise procedure for the family of PDCGMs on the lattice under the twin order �τ .
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Figure 3.5: Sublattice structure of colored graphs for paired data with the set of 4
vertices under the twin order �τ .

3.3 Greedy search on the twin lattice

In this section, we will describe step-by-step the backward elimination stepwise pro-

cedure with the coherent moves on the lattice of PDCGMs under the twin order �τ ,
defined in Section 2.4.2. More specifically, we consider the family of colored graphical

models for paired data restricting the equality constraints on the concentration matrix

(see Højsgaard and Lauritzen 2008) when a statistical test at level α is applied to decide

whether a model is rejected or non-rejected. Remark that, we will say the “accepted”

model instead of the “non-rejected” model. We remark that backward elimination step-

wise procedures on the model inclusion lattice have two main drawbacks:

1. they implicitly involve an incoherent step as shown in Section 3.2,

2. in order to explore the lattice structure, one has to obtain neighboring models

computed by applying the meet operation which, inherited from the set partition

lattice, is computationally demanding.
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Therefore, we propose a method that adapts the idea from the backward elimination as

well as respects the principle of coherence such that we can employ convenient properties

from the twin order �τ in the model search. We can visually compare the twin lattice

with the model inclusion lattice by noticing that, in the Hasse diagram representation

of the model inclusion lattice, the model on the top is the saturated model and every

model M is directly linked to a set of nearest submodels, which are �C incomparable

and all of them have the same dimension. We will refer to these models as to the

neighbor submodels of M. The twin lattice “refines” this structure by splitting each

set of neighbor submodels into an upper layer and a lower layer, as in Figure 2.18.

Accordingly, our procedure specifies coherent moves between these two layers.

3.3.1 The backward elimination stepwise procedure on the twin

lattice

Particularly, we start from the saturated model, and set the rejection sets associated

to the upper and lower layers, respectively R1 and R2, are equal to the empty set. At

each stage of the algorithm, for the upper layer, we only consider models that are �τ
incomparable with models in R1, then, by the likelihood ratio testing at level α, we

update the rejection set R1 by adding rejected models to it. For the lower layer, we

only consider models that are �τ incomparable with models in R2 and �τ smaller than

models having any symmetric twin edges in R1. Similarly, by the likelihood ratio testing

at level α, we update the rejection set R2 by adding rejected models to it. Finally, the

locally optimal model is chosen among models that do not belong to R1∪R2. We repeat

the procedure until the searching of the algorithm in the iterative manner exceeds the

maximum number of iterations. This number is optional. Furthermore, inside the loop

of the procedure, the algorithm will stop when models in the set of neighbors at the

current stage are all rejected. The procedure is described in detail below.

Procedure A: Stepwise backward elimination procedure for PDCGMs under

the twin order �τ

1. Start from the saturated model: M? ← saturated model;

2. Set R = R1 ∪R2 where R1 = R2 = ∅;

3. Split the set of neighbor submodels of M? into two layers according to �τ :

4. The upper layer:
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4.a The upper layer of the neighborhood of M? is denoted by N1(M?), which

can be obtained as follows:

• remove one vertex from L at a time;

• remove one edge from EL at a time;

• remove one edge e ∈ E such that e ≡ τ(e);

• remove both e, τ(e) ∈ E at a time if e /∈ EL.

Formally, N1(M?) = {M ∈ SV : M ≺·τ M?}, roughly speaking, N1(M?)

contains models M in SV such that M is covered by M? through the twin

order �τ ;
4.b The weakly rejected models in this layer are models in N1(M?) such that

they are submodels of any model in R1, i.e.

{M ∈ N1(M?) s.t. M�τ Mr for any Mr ∈ R1};

4.c N ′1(M?)← N1(M?) \ {weakly rejected models in step 4.b};
4.d Test models in N ′1(M?) and remove from N ′1(M?) the rejected models:

A1(M?)← N ′1(M?) \ {rejected models in N ′1(M?)};

4.e Update

R1 ← R1∪{weakly rejected models in step 4.b}∪{rejected models in N ′1(M?)};

5. The lower layer:

5.a The lower layer of the neighborhood of M?, denoted by N2(M?), is deter-

mined as: for anyM∈ N1(M?) which contains pairs of edges e, τ(e) ∈ E(M)

such that e 6= τ(e) and e /∈ EL(M), we:

• remove e, keep τ(e),

• remove τ(e), keep e,

for each such pair e, τ(e) in E(M);

5.b The weakly rejected models in the lower layer are models in N2(M?) such

that they are:

• submodels of any model in R2, i.e.

{M ∈ N2(M?) s.t. M�τ Mr for any Mr ∈ R2};
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• for each model in A1(M?) which contains pairs of twin edges e, τ(e) such

that e /∈ EL, the corresponding models in N2(M?) are weakly rejected.

5.c N ′2(M?)← N2(M?) \ {weakly rejected models in step 5.b};

5.d Test models in N ′2(M?) and remove from N ′2(M?) the rejected models:

A2(M?)← N ′2(M?) \ {rejected models in N ′2(M?)};

5.e Update

R2 ← R2∪{weakly rejected models in step 5.b}∪{rejected models in N ′1(M?)};

6. Update M? ← the model with the highest p-value among models in A1(M?) ∪
A2(M?);

Repeat steps 3-6 until one of the following stop conditions is satisfied:

• the iterative index exceeds the maximum number of iterations;

• models in the set of neighbors at the current stage are all rejected, i.e. A1(M?) =

A2(M?) = ∅.

We notice that, the set of neighbor submodels of the model M? is specified fully in

Steps 4.a and 5.a. Moreover, at each layer, we can summarize steps as follows:

• Steps 4.b and 5.b determine the weakly rejected models at each layer that are

submodels of any models in R1 and R2, respectively;

• Steps 4.c and 5.c update the set of neighbors of M? by removing weakly rejected

models;

• Steps 4.d and 5.d aim to apply the model testing and remove rejected models;

• Steps 4.e and 5.e update the rejection sets R1 and R2.

Finding the weakly rejected models at each stage at Steps 4.b and 5.b requires a costly

expensive computation since the larger the rejected sets in the further stage, the larger

the number of comparisons of each model in the neighborhood set with each rejected

model in R. To deal with this problem, it is sufficient to store the minimal models

of R1 and R2. However, seeking the minimal models in the increasingly large sets is

equally costly. Therefore, in practise, at each layer, (upper and lower), we follow a
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different approach for finding directly the set of neighbors N ′(·) at Steps 4.c and 5.c: we

apply the meet operation under the twin order, formulated in Theorem 2.6, between the

chosen model M? with each model in the accepted set A(·). We then update A(·) by

removing rejected models in N ′(·) after testing models via a certain goodness-of-fit test,

and continue the procedure until the stop conditions are satisfied. This idea is described

more clearly in the next part of the section by the R implementation below.
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3.3.2 R implementation

In the programming language R developed in R Core Team (2021), we express a colored

graphical model for paired data by a set including p and a list of (L, E,EL) where p is

an integer indicating the number of vertices, L is a vector of (sorted) integers from 1 to

p, and (E,EL) are two-column matrices with each row corresponding to one edge in the

graph.

For the computation of the maximum likelihood estimates, we use the rcox() function in

the gRc package developed by Højsgaard et al. (2007) in the statistical environment R.

With the setting of type = “rcon” as an argument in rcox(), the class of RCON models

is fitted, in other words, the concentration matrices are estimated with the additional

equality constraints implied by the input colored graphs.

For the model selection procedure in Section 3.3.1, we have written the function back-

wardCGMpd() which adapts the idea of backward method in the stepwise approach for

the family of PDCGMs under the partial order �τ . Then, all the operations we applied

here are induced by the twin order �τ . Furthemore, to specify more efficiently the

sets of neighbors N ′1 and N ′2 at Steps 4.c and 5.c, respectively, we wrote the function

meet.operation(), which is formally expressed as

N ′k(M?) = {M? ∧Ma for all Ma ∈ Ak}, k = 1, 2, (3.1)

where ∧ is the meet operation formulated in Theorem 2.6, M? is the locally chosen

model, and Ak, k = 1, 2 are sets of models updated by Steps 4.d and 5.d.
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To find Ak, k = 1, 2 conveniently such that we can control the the number of removed

models from a list in R, we start from the sets of neighbor submodels of the saturated

models, see Steps 4.a and 5.a.
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Figure 3.7: The set of neighbor submodels of the saturated model with 4 vertices
is split into two layers by the twin order �τ where models in the upper layer and the
lower layer can be found at Steps 4.a and 5.a.

Then, for the upper layer, after testing, we assign each model to an index 0 if it is re-

jected, and 1 otherwise. Hence, A1 contains models having the index 1. Next, for each

model having symmetric twin edges in the upper layer that is accepted, the correspond-

ing models in the lower layer are assigned to the index 0 and 1 for others. Then, we only

test models in the lower layer having the index 1 and update the vector of indices by 0

for rejected models. Thus, A2 contains models having the index 1 in the lower layer.

In this way, going to further stage, we can save the computation by working only Steps

4.c, 4.d, and 5.c, 5.d for the upper and lower layers, respectively, where

• Steps 4.c and 5.c are specified by Equation 3.1,

• Steps 4.d and 5.d are specified by updating the vectors of indices for each layer.

We note that, in the stepwise backward procedure for PDCGMs based on the twin order

�τ , the index 0 assigned to each model can be implicitly understood by saying that this

model either is rejected (i.e. the model found at Step 4.b or in the first point of Step

5.b) or need not to be tested in coherent step (i.e. the model in the second point of Step

5.b).
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3.4 Greedy search on the model inclusion lattice

To compare the performance of the procedure described above, applied on the twin

lattice of Section 3.3, in this section, we also carry out a similar backward elimination

stepwise approach on the lattice of PDCGMs under the model inclusion �C.

3.4.1 The backward elimination stepwise procedure on the model

inclusion lattice

On the model inclusion lattice of PDCGMs, the set of neighbors is remained in the same

layer instead of being split as in the approach for �τ . In this method, we also determine

the weakly rejected models and remove them from the set of neighbor submodels at

each stage. Every operation on the model inclusion lattice of PDCGMs is induced by

the order �C, found in Section 1.2.4. A sketch of the procedure is provided below.

Procedure B: Stepwise backward elimination procedure for PDCGMs under

the model inclusion �C

1. Start from the saturated model: M? ← saturated model;

2. Set the rejected set R = ∅;

3. Repeat

3.a The neighborhood of M?, denoted by N (M?), is obtained as follows:

• remove one vertex from L at a time;

• remove one edge from EL at a time;

• remove one edge e ∈ E at a time;

• remove both e, τ(e) ∈ E at a time if e /∈ EL.

Formally, N (M?) = {M ∈ SV : M ≺·C M?}, roughly speaking, N (M?)

constains modelsM in SV such thatM is covered byM? through the model

inclusion �C;

3.b The weakly rejected models are models in N (M?) such that they are sub-

models of any model in R, i.e.

{M ∈ N (M?) s.t. M�CMr for any Mr ∈ R};
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3.c N ′(M?)← N (M?) \ {weakly rejected models in step 3.b};
3.d Test models in N ′(M?) and remove from N ′(M?) the rejected models:

A(M?)← N ′(M?) \ {rejected models in N ′(M?)};

3.e Update

R ← R∪{weakly rejected models in step 3.b}∪{rejected models in N ′(M?)};

4. Update M? ← the model with the highest p-value among models in A(M?);

Until one of the following stop conditions is satisfied:

• the iterative manner exceeds the maximum number of iterations;

• models in the neighbor set at the current stage are all rejected, i.e. A(M?) = ∅.

3.4.2 R implementation

We have written the function backwardsubmodel() for the backward elimination stepwise

on the model inclusion lattice of PDCGMs. The use of the alternative representation

(V,E,L,EL), introduced in Section 2.4, is applicable conveniently to express PDCGMs

on the model inclusion lattice, even though operations on such lattice are determined

by the set of (V , E) as in Section 1.2.4. In this method, the terms “acceptance” and

“rejection” of models are decided by the likelihood ratio testing relative to the saturated

model at significance level α. Moreover, identifying weakly rejected models at Step

3.b requires much more computational effort, therefore, as for the twin lattice, the

function meet.operation.submodel() gets the set of neighbors N ′ based on components

(V,E,L,EL), obtained formally by

N ′(M?) = {M? ∧Ma for all Ma ∈ A}, (3.2)

where ∧ is the meet operation defined in Section 1.2.4, and A is the set of models

updated in Step 3.d. Identification of the set A is carried out similarly by starting the

set of neighbors of the saturated models determined in Step 3.a.

Then, after testing, we assign each model to 0 if it is rejected, 1 otherwise. Hence, the

set A contains models having the index 1. In this way, we can work only on Steps 3.c

and 3.d where
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Figure 3.8: The set of neighbor submodels of the saturated model with 4 vertices
by the model inclusion order �C .

• Step 3.c is obtained by Equation 3.2,

• Step 3.d is specified by update the vector of indices.

Although we perform the PDCGMs by the representation (V,E,L,EL) for easier ma-

nipulation, the computing of the meet operation between models is still computationally

expensive.

3.5 Comparison and implementation details

In this section, we conduct multiple numerical simulations to illustrate the performance

of the greedy search on the twin lattice compared to the model inclusion lattice of

PDCGMs. Furthermore, we apply the model selection procedures on fMRI data to

investigate the dynamic activity of brain regions between two hemispheres of the human

brain.

3.5.1 Numerical simulations

To illustrate the performance of the proposed methods on the lattices of PDCGMs based

on the twin order �τ , developed in Section 3.3, and the model inclusion �C, described

in Section 3.4, we present the explored simulation experiments as follows. We consider

two scenarios, called A and B, where the density of edges in A is sparser with dA = 18%

whearas the density of edges in B is denser with dB = 35%. On present edges, the

numbers of pairs of symmetric twin vertices and twin edges for each scenario are listed

in the below table.

We now have 8 cases of PDCGs presenting various densities of edges and symmetries

and corresponding to different values of p, visuallized by figures in Table 3.2. For each

case, first we generate an uncolored graph with the number of vertices depending on p

and the number of edges depending on the density given at each scenario. Then, the
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p
Scenario A Scenario B

(number of pairs) (number of pairs)

8
edges 1 symmetric, 1 asymmetric 3 symmetric, 1 asymmetric

vertices 1 symmetric, 3 asymmetric 3 symmetric, 1 asymmetric

12
edges 1 symmetric, 4 asymmetric 6 symmetric, 3 asymmetric

vertices 2 symmetric, 4 asymmetric 4 symmetric, 2 asymmetric

16
edges 2 symmetric, 7 asymmetric 10 symmetric, 5 asymmetric

vertices 2 symmetric, 6 asymmetric 6 symmetric, 2 asymmetric

20
edges 3 symmetric, 11 asymmetric 16 symmetric, 8 asymmetric

vertices 2 symmetric, 8 asymmetric 8 symmetric, 2 asymmetric

Table 3.1: The number of symmetric twin vertices and edges for scenaria A and B
for different numbers of vertices p from 8 to 20.

symmetries on twin vertices and twin edges are depicted by the same colors, which are

listed in Table 3.1.

Next, for each generated PDCG used as an input graph, the values of the concentra-

tion matrix, called Θ̃, are estimated by the rcox() function, where the input empirical

covariance matrix is the p× p equicorrelation matrix, with the diagonal entries equaling

1 and all off-diagonal entries equaling 0.5. Thus, Θ̃ is considered the “true” precision

matrix in the joint normal distribution of the simulated data.

We then sample the normal distributed random vector Y[p] with zero vector mean and

covariance matrix obtained by taking the inverse of Θ̃. The dimension of Y[p] varies in

{8, 12, 16, 20}, for fixed n = 100 independent random samples. These values are used

across 20 simulated datasets.

To express the computational efficiency computation of the methods investigated, we

calculate the amount of computer time taking to run algorithms by the proc.time()

function in the statistical environment R. This is a commonly used way to compute the

real elapsed time since the process was started. Then, for each case of the PDCG, we

make the elapsed time on average in seconds over 20 simulated datasets. The growth of

the computational cost is visuallized by the graphic tool ggplot, where the horizontal axis

presents values of p, and the vertical axis presents the averaged elapsed time in seconds,

as shown in Figure 3.9. Here, we perform two plottings corresponding to scenarios A

and B: the elapsed time of the procedure for the twin order �τ is displayed in red, and

the elapsed time of the procedure for submodel relation �C is displayed in blue.

Moreover, in order to evaluate how “good” the obtained models are, we compute some

performance scores, which measure the identification of the zero and symmetric struc-

tures. In particular, for the structure, we use the edge positive-predicted value (ePPV)
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Table 3.2: Generated colored graphs for paired data for scenarios A and B (from
left to right) with different number of vertices p (from top to bottom).

p Scenario A Scenario B

8

L1

L2

L3

L4

R1

R2

R3

R4

L1

L2

L3

L4

R1

R2

R3

R4

12

L1

L2

L3

L4

L5

L6

R1

R2

R3

R4

R5

R6

L1

L2

L3

L4

L5

L6

R1

R2

R3

R4

R5

R6

16

L1

L2

L3

L4

L5

L6

L7

L8

R1

R2

R3

R4

R5

R6

R7

R8

L1

L2

L3

L4

L5

L6

L7

L8

R1

R2

R3

R4

R5

R6

R7

R8

20

L1

L2

L3

L4

L5

L6

L7

L8

L9

L10

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

L1

L2

L3

L4

L5

L6

L7

L8

L9

L10

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10
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and the edge true-positive rate (eTPR), which are the proportions between the number

of true edges (eTP) and either the number of edges (#edges) in the selected graph, or

the number of edges eP in the true graph. Moreover, we also compute the edge true-

negative rate (eTNR) as the ratio between the number of true missing edges (eTN) and

the number of missing edges (eN) in the true graph. In other words, these quantities

ePPV =
eTP

#edges
, eTPR =

eTP

eP
, eTNR =

eTN

eN
,

measure the accuracy of the graph structure of models recovered from the model se-

lection procedure. For the identification of the symmetries, we define similarly the

symmetry positive-predicted value (sPPV) and the symmetry true-negative rate (sTNR)

which are computed as

sPPV =
sTP

#sym
, sTPR =

sTP

sP
, sTNR =

sTN

sN
,

where sTP, sTN, and #sym are the number of pairs of true symmetric edges, true

symmetric missing edges and symmetric edges in the estimated model. Moreover, sP

and sN are the number of pairs of symmetric edges and symmetric missing edges in the

true model.

According to the running time we recorded over 20 datasets, shown by the last column in

Table 3.9 and displayed by graphics in Figure 3.9, we can see that, in both scenarios, the

model selection procedure on the twin lattice, proposed in Sections 3.3, is considerably

faster than the similar approach on the model inclusion lattice, described in Section

3.4. The efficient computation of the greedy search on the twin lattice is evident as p

is larger. Although the averaged elapsed time of the procedure for �τ also grows, it

is still considerably smaller than the running time of the method for �C, which grows

super-exponentially with the number of vertices. This is due to the simplification in the

implementation of the operations in the lattice structure ordered by �τ , inherited from

the set inclusion lattice. Moreover, together with the elapsed time of the algorithm, we

also report the number of fitted models per algorithm by graphics in Figure 3.10. From

the obtained results of tested models in the local moves, we demonstrate the practical

advantage of the coherent step on the twin lattice of PDCGMs: this encourages us to

apply our search procedure to PDCGMs with a larger number of variables.

Furthermore, the recorded results in Table 3.3 are also taken on average over 20 simu-

lated data set. As far as the structure of the uncolored graphs is concerned, the models

obtained from the approach on the twin lattice have larger values of ePPV, eTPR,

eTNR, sTPR, sTNR almost everywhere, whereas sPPV is smaller than models from
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Figure 3.9: Averaged seconds on elapsed time from the backward elimination pro-
cedures based on the twin order �τ (illustrated in red) and the model inclusion �C
(illustrated in blue) of two scenarios A (on the left) and B (on the right).
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Figure 3.10: Averaged number of fitted models from the backward elimination
procedures based on the twin order �τ (illustrated in red) and the model inclusion
�C (illustrated in blue) of two scenarios A (on the left) and B (on the right).

the procedure on the model inclusion lattice. In two scenarios, both procedures gain

a similar recovery structure of the uncolored graphs. In particular, we get graphs that

are denser in the scenario A and graphs that are sparser in the scenario B. However,

the procedure based on the twin order �τ tends to recover models with “perfectly”

symmetric structure, which is evident in the scenario A. Nonetheless, this method has

a good performance behavior in terms of recovery of symmetries for the case of scenario

B, with higher proportions in sTPR relative to the number of edges eP in the simulated

graphs.

Readers can find the scripts written in the R language that implement the procedures de-

scribed in Sections 3.3 and 3.4 at https://github.com/NgocDung-NGUYEN/backwardCGM-

PD.
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Table 3.3: Performance measures of the model selection procedure for the lattice structure equiped by the partial orders �τ and �C .
Results are recorded as mean (and standard deviation) computed across the 20 replicated datasets for each scenario. Here, #edges
and #sym are computed as the average number of edges, average number of pairs symmetric edges, and their standard deviations are
rounded, while Time is on the average of seconds.

Scenario p Order
Graph structure Symmetries

Time(s)#edges ePPV% eTPR% eTNR% #sym sPPV% sTPR% sTNR%

A

8
�τ 7(2) 76.68 100.00 91.52 2(1) 41.67 95.00 89.44 4.02
�C 7(2) 75.41 100.00 91.30 2(1) 46.67 95.00 85.56 17.20

12
�τ 17(3) 71.22 97.92 90.37 6(1) 15.99 90.00 87.61 18.77
�C 17(3) 70.23 98.75 90.00 5(1) 17.34 90.00 83.91 108.55

16
�τ 27(4) 74.83 88.64 92.70 9(1) 18.53 85.00 89.43 89.10
�C 28(4) 70.98 87.05 91.48 8(1) 19.32 77.50 84.77 532.02

20
�τ 44(8) 64.24 82.21 89.49 16(3) 13.47 70.00 86.18 378.74
�C 46(7) 60.11 78.97 88.04 13(3) 11.97 51.67 80.00 2102.20

B

8
�τ 11(2) 84.54 89.50 89.72 5(1) 64.08 93.33 92.50 3.78
�C 11(2) 83.59 89.00 89.44 4(1) 64.83 85.00 85.83 14.56

12
�τ 23(4) 81.78 80.00 89.65 9(2) 56.28 79.17 87.35 19.43
�C 23(4) 81.25 78.48 89.53 7(2) 63.26 73.33 83.53 101.94

16
�τ 34(5) 72.49 57.86 87.63 12(2) 52.38 64.00 86.09 96.02
�C 31(4) 74.50 55.24 89.49 9(2) 63.36 54.00 82.97 522.97

20
�τ 51(9) 69.74 53.41 87.02 18(2) 48.17 54.38 84.07 451.71
�C 48(7) 67.81 48.64 87.22 12(2) 52.97 39.38 78.98 2226.35
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3.5.2 Application to fMRI data

In this section, the backward elimination stepwise procedures for PDCGMs based on the

twin order �τ and the model inclusion �C are applied to investigate the dynamic activity

of brain regions between two hemispheres via functional MRI data. This is a multimodal

imaging dataset coming from a pilot study of the Enhanced Nathan Kline Institute-

Rockland Sample project. A detailed description of the project, scopes, and technical

aspects can be found at http://fcon_1000.projects.nitrc.org/indi/enhanced/.

For the subjects in this study, data on personal covariates, such as anxiety diagnosis,

age, gender, and handedness, can be found at http://fcon_1000.projects.nitrc.

org/indi/CoRR/html/nki_1.html. The fMRI time series are recorded on 70 spatial

Region of Interests (ROIs) based on the Desikan atlas (see Desikan et al. 2006) at

404 equally spaced time. This is provided by Greg Kiar and Eric Bridgeford from

NeuroData at Johns Hopkins University, who graciously pre-processed the raw DTI

and R-fMRI imaging data available at http://fcon_1000.projects.nitrc.org/indi/

CoRR/html/nki_1.html, using the pipelines ndmg and C-PAC. Particularly, the R-

fMRI monitors brain functional activity at different regions via dynamic changes in the

blood oxygenation level depedent (BOLD) signal, when, in this study, the subjects are

simply asked to stay awake with eyes open. The data that we apply our methods on

are residuals estimated from the vector autogression models, carried out to remove the

temporal dependence (see Ranciati et al. 2021).

According to the available information on subjects, we focus on two participants, in-

dexed as subject 14 and subject 15, who have the same psychological traits with no

http://fcon_1000.projects.nitrc.org/indi/enhanced/
http://fcon_1000.projects.nitrc.org/indi/CoRR/html/nki_1.html
http://fcon_1000.projects.nitrc.org/indi/CoRR/html/nki_1.html
http://fcon_1000.projects.nitrc.org/indi/CoRR/html/nki_1.html
http://fcon_1000.projects.nitrc.org/indi/CoRR/html/nki_1.html
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neuropsychiatric diseases and right-handedness; however, the first person is only 19

years old while the second person is 57 years old. For each subject, we will study the

following 22 cortical regions in the frontal lobe which is the largest of our brain and

the center for planning, speaking, body movement control, as well as problem-solving.

We are also concerned with other 14 brain regions; some of them are in the anterior

temporal lobe, which plays a key role in semantic memory–our knowledge of objects,

people, words, and facts; and others are the superior, middle and inferior temporal

gyrus, parahippocampal and entorhinal areas, fusiform gyrus and temporal pole (see

Bonner and Price 2013, Raslau et al. 2015). The numbers of regions for each analytic

lobe are counted from both hemispheres. The estimated symmetric structure of the

brain networks allows us to explore the different brain activity on the cortical regions

of interests between two hemispheres, for each individual considered.

The obtained models from the model selection procedures on the twin lattice and on

the model inclusion lattice are summarized as colored graphs in Tables 3.4 and 3.5,

respectively. The anterior temporal and frontal lobes are represented by colored graphs

from the left to the right. From the top to the bottom, results relate to subjects 14

and 15. In these figures, each pair of homologous vertices and edges of the same colors

represents identical values of the associated entries on the diagonal and off-diagonal

in Θ, respectively. The recoveried structures and symmetries from models learned by

each procedure are shown in Table 3.6, where each column expresses (in order): the

numbers of edges (#edges), densities of the uncolored graphs (den.(%)), number of

asymmetric edges “on the left” and “on the right” (respectively #asymmetric EL and

#asymmetric ER); moreover, the last three columns of the table specify the number of

pairs of symmetric twin vertices (#pairs of symmetric vertices), the overall number

of pairs of twin edges (#pairs of edges), and the number of pairs of symmetric twin

edges (#pairs of symmetric edges).

From Table 3.6, we gather that PDCGMs obtained on the twin lattice and the model

inclusion lattice have the same characteristics. In particular, for both subjects, we find

that there are in fact only few symmetric vertices in the graphs. Namely, for subject

14, all of twin vertices in the the anterior temporal lobe are asymmetric, and there are

5 pairs of symmetric vertices among 11 pairs of twin vertices in the frontal lobe; for

subject 15, there are only 3 pairs of symmetric vertices from both of anterior temporal

and frontal lobes. Furthermore, on both of anterior temporal and frontal lobes, for

subject 14, the number of asymmetric edges “on the left” is larger than “on the right”,

while, for the subject 15, the number of asymmetric edges “on the right” is much larger

than “on the left”. However, compared to the models selected on the model inclusion



82 Section 3.5 - Comparison and implementation details

lattice, the models from the twin lattice are represented by colored graphs that are

denser with more “perfectly-paired” and “perfectly-symmetric” edges, shown in the last

two columns of Table 3.6.

The model selection procedure on the twin lattice, introduced in Section 3.3, is more ef-

ficient than the equivalent approach on the model inclusion lattice. More concretely, on

the anterior tempotal lobe, the backward elimination process on the twin lattice requires

30.24 elapsed seconds for fitting 1, 286 models for subject 14, and 25.25 elapsed seconds

for fitting 1, 138 models for subject 15; whereas, the process on the model inclusion lat-

tice requires 146.68 elapsed seconds with 3, 147 fitted models, and 134.02 elapsed seconds

with 2, 054 fitted models, respectively. Furthermore, on the frontal lobe, for subjects 14

and 15, the process on the twin lattice requires 577.72 elapsed seconds for fitting 8, 196

models, and 511.78 elapsed seconds to fit 7, 511 models, respectively, whereas, the pro-

cess on the model inclusion lattice requires 1767.05 elapsed seconds with 15, 311 fitted

models, and 1684.14 elapsed seconds with 14, 211 fitted models, respectively. Based on

the recorded results, the backward elimination stepwise procedure on the twin lattice

has the advantage of being computationally efficient on searching models with a large

number of variables, whereas the computation on the model inclusion lattice is too

demanding.

Accordingly, we extend the application of the backward elimination stepwise method on

the twin lattice, for the data sets for subjects 14 and 15, including p = 36 cortical regions

in both the anterior temporal and frontal lobes. For case of visualization, we analyze the

optimal models obtained into colored subgraphs, as shown in Figures 3.11 and 3.12 for

subjects 14 and 15, respectively, where the graphs in the first row have asymmetric edges

“to the left” and “to the right”; and the graphs in the second row have symmetric twin

edges within and across the two hemispheres. The computational time of the algorithm

for the subjects 14 and 15 are 7.95 hours and 7.4 hours, respectively. Moreover, it is

useful to detect symmetries on the graphical models, in particular, as we can see, for both

subjects, there are some symmetric vertices. In addition, the numbers of asymmetric

edges ”on the left” and ”on the right” behave similarly to previous analyses for the

anterior temporal and frontal lobes in the sence that, for the subject 14, the number of

asymmetric edges “on the left” is greater than “on the right”, which is the opposite for

subject 15.
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Table 3.4: Graphical representation of the colored graphical models for paired data
obtained from the application of the stepwise backward elimination procedure based
on the twin order �τ , proposed in Section 3.3, with the likelihood ratio test at the
significance level α = 0.05. The colored shaded vertices and colored edges represent
symmetric diagonal and off-diagonal concentrations, respectively. From left to right:
anterior temporal lobe and the frontal lobe. From top to bottom: subject 14 and
subject 15.

Subject Anterior temporal lobe Frontal lobe

14

L1

L2

L3

L4

L5

L6

L7

R1

R2

R3

R4

R5

R6

R7

L1

L2

L3

L4

L5

L6

L7

L8

L9

L10

L11

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

15

L1

L2

L3

L4

L5

L6

L7

R1

R2

R3

R4

R5

R6

R7

L1

L2

L3

L4

L5

L6

L7

L8

L9

L10

L11

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11
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Table 3.5: Graphical representation of the colored graphical models for paired data
obtained from the application of the stepwise backward elimination procedure based
on the model inclusion �C , described in Section 3.4, with the likelihood ratio test
at the significance level α = 0.05. The colored shaded vertices and colored edges
represent symmetric diagonal and off-diagonal concentrations, respectively. From left
to right: anterior temporal lobe and the frontal lobe. From top to bottom: subject
14 and subject 15.

Subject Anterior temporal lobe Frontal lobe

14

L1

L2

L3

L4

L5

L6

L7

R1

R2

R3

R4

R5

R6

R7

L1

L2

L3

L4

L5

L6

L7

L8

L9

L10

L11

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

15

L1

L2

L3

L4

L5

L6

L7

R1

R2

R3

R4

R5

R6

R7

L1

L2

L3

L4

L5

L6

L7

L8

L9

L10

L11

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11
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Table 3.6: Recorded results from the application to fMRI data of the backward elimination stepwise procedure on the twin lattice,
proposed in Section 3.3, and similar approach on the model inclusion lattice, described in Section 3.4.

Subject Lobe Order # edges den.(%)
# asymmetric # pairs of
EL ER symmetric vertices edges symmetric edges

14

Anterior �τ 43 47.25 12 6 0 13 9
temporal �C 40 43.96 13 10 0 9 5

Frontal
�τ 138 59.74 35 33 5 50 30
�C 127 54.98 37 34 5 36 23

15

Anterior �τ 63 69.23 11 16 3 25 15
temporal �C 58 63.74 10 16 3 20 13

Frontal
�τ 143 61.9 29 39 3 53 32
�C 136 58.87 31 42 3 44 26
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Figure 3.11: The analyzed colored graphs of the PDCGM for the subject 14 ob-
tained from the application of the stepwise backward elimination procedure based on
the twin order �τ , with the likelihood ratio test at the significance level α = 0.05.
The colored shaded vertices and colored edges represent symmetric diagonal and off-
diagonal concentrations, respectively. Figures (a) and (b) present asymmetric edges
“on the left” and “on the right”, respectively. Figures (c) and (d) present symmetric
twin edges between and across two hemispheres, respectively.
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Figure 3.12: The analyzed colored graphs of the PDCGM for the subject 15 ob-
tained from the application of the stepwise backward elimination procedure based on
the twin order �τ , with the likelihood ratio test at the significance level α = 0.05.
The colored shaded vertices and colored edges represent symmetric diagonal and off-
diagonal concentrations, respectively. Figures (a) and (b) present asymmetric edges
“on the left” and “on the right”, respectively. Figures (c) and (d) present symmetric
twin edges between and across two hemispheres, respectively.
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3.6 Other approaches

In this section, we will investigate other approaches in the model selection for the family

of colored graphical models for paired data.

3.6.1 Forward inclusion stepwise procedure on the twin lattice

In the previous section, we have shown that the backward elimination stepwise procedure

of the twin lattice for PDCGMs can be applied for a larger number of variables, in

particular, in the application to fMRI data, the model selection for PDCGMs on the

twin lattice with 36 variables has been carried out. However, with the desire to be able

to proceed in the higher dimensional setting, it is a good point to consider the forward

inclusion stepwise procedure. In this section, we will investigate the coherent step in the

forward selection on the lattice of PDCGMs under the twin order �τ .
Unlike the backward elimination, the forward inclusion method starts with a null model

(i.e. the model with full conditional independence restrictions) and proceeds to add

parameters one at a time until the stop condition is satisfied. Therefore, the forward

selection is used when the number of variables under consideration is very large, even

larger than the sample size. However, in the following example, we show that the

forward stepwise procedure on the twin lattice for PDCGMs cannot implement with the

coherent step.

Example 3.2. We apply the forward stepwise procedure on the sublattice of RCON

models for paired data represented by colored graphs with 4 vertices, displayed in Figure

3.13. We start from the null model which is represented by (1) and assume that, by

the likelihood ratio test relative to the null model at the significance level α, we accept

simultaneously the hypotheses (2) and (3). Hence, this is not coherent in the sense that

we can conclude that on the concentration matrix, the corresponding parameters θ12′ = 0

and θ21′ = 0 but cannot accept that they have the same value and are equal to zero, i.e.,

we cannot accept (1).

In the case we start from the null model and assume that it is accepted, then, by the

equivalent form of the principle of coherence in the model search procedures (see Edwards

and Havránek 1987), all models that include the null model are considered to be accepted.

With a tendency to choose the simplest model among accepted models in the model

selection, in this case, the null model is always selected.
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Figure 3.13: Sublattice structure of colored graphs for paired data with the set of
4 vertices under the twin order �τ .

3.6.2 Penalized likelihood approach

Another procedure that would be interesting to investigate in the model selection is the

penalized likelihood approach. This is an effective method attempting to find a sparse

and shrinkage estimator of the parameters, and thus model selection and estimation can

be conducted simultaneously.

More specifically, Yuan and Lin (2007) proposed the graphical lasso that employs an l1

penalty on the elements of the concentration matrix to encourage the sparsity and at

the same time give shrinkage estimates. However, this method cannot be implemented

on the PDCGMs since it encourages the number of missing edges without the symmetry

structure in the associated graph. Table 3.6.2 shows recorded results of selected models

obtained from the graphical lasso implemented in R to fMRI data. The optimal penalty

parameter in the glasso regularization is chosen by the extended Bayesian information

criterion (see Chen and Chen 2008). As we can see, the number of symmetric twin
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vertices and twin edges cannot be measured.

Moreover, as we mentioned in Section 3.1, the symmetric graphical lasso proposed in

Ranciati et al. (2021) cannot be applied to the case of our consideration of paired data

because variables YL and YR are not independent.
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Table 3.7: Recorded results from the application to fMRI data of the graphical glasso (glasso) approach.

Subject Lobe # edges den.(%) EL ER
# pairs of

symmetric vertices edges symmetric edges

14

Anterior
28 31.32 9 14 - 7 -

temporal

Frontal 114 49.57 53 50 - 34 -

15

Anterior
21 23.08 8 9 - 5 -

temporal

Frontal 106 45.89 54 41 - 28 -
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Concluding remarks

In this thesis, we mainly focus on the lattice structure and how to explore this lattice in

a greedy search procedure on the model space for the family of colored graphical models

for paired data.

The implementation of a greedy search procedure requires the specification of a number

of different aspects and the selected models of the procedure will depend on all the

choices made. One such choice concerns the specification of the structure of the model

space and the type of moves used to explore the model space. This thesis has concen-

trated on this part of the procedure. Other aspects that may be of interest concern the

comparison of alternative statistical tests used to compute the p-value as well as the

application of the multiple testing corrections to the p-value.

Although we have focused on a backward elimination stepwise procedure starting from

the saturated model, in the high dimensional setting, it may be more efficient to use

a forward inclusion stepwise procedure starting from the null model. One difficulty for

such a procedure is that the coherent step cannot be implemented on the twin lattice

for PDCGMs, as shown in Section 3.6. Moreover, to the best of our knowledge, the

recent penalized likelihood methods cannot be directly compared to our approach. In

particular, we consider the graphical lasso proposed in Yuan and Lin (2007) which en-

courages the sparsity without the symmetry of the associated graph, and the symmetric

graphical lasso proposed in Ranciati et al. (2021) which encourages the sparsity and the

similarity between two independent subgraphs. These problems are also discussed in

Section 3.6. These are all objects of future works.
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