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A B S T R A C T

This work covers many research aspects of model-based and data-
driven control techniques for permanent magnet synchronous mo-
tor drives, suitable for both isotropic motor, such as Surface Perma-
nent Magnet (SPM), and anisotropic motors which are interior per-
manent magnet (IPM) and synchronous reluctance machines (SyRM).
On one hand, the research interest on model-based algorithms for
electric drive applications is constantly growing. On the other hand,
the interest in data analysis is constantly growing and this leads to
an increasing attention towards data-enabled methods in all branches
of science and engineering. This revolution has a significant impact
on the control engineering too. Data-driven control design consists
in synthesizing a controller using the data collected on the real sys-
tem, without defining and identifying a parametric model for the
plant. Improvements in the computational power and the develop-
ment of dedicated hardware solutions are making these complemen-
tary methods, that serve the same purpose, suitable for fast-dynamic
industrial applications. The thesis is structured as follows. The first
part gives the background knowledge needed to develop the top-
ics covered in the following. This comprehends an introduction to
the machines and drives, and some basic-concepts of model-based
and data-driven control theory. The framework of optimization based
algorithms is considered. In particular, the Continuous-Set (CS) ap-
proach to Model Predictive Control (MPC) is investigated, which is
stated as a quadratic programming (QP) problem type, where feasi-
ble system constraints are included directly in the optimization prob-
lem. The second part deals with two aspects of MPC: the offset-free
formulation in presence of model uncertainties is addressed, and a
custom and efficient QP solvers for electric drives applications is pre-
sented, where usually limited computational hardware is available.
Finally, the data-driven control of electric machines is investigated,
with particular attention on the comparison of performance and com-
putational aspects with respect the model-based approach.
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S O M M A R I O

Il lavoro di tesi copre molti aspetti di ricerca sulle tecniche di controllo
basate sul modello e sui dati, applicate agli azionamenti dei motori
sincroni a magneti permanenti, adatti sia ai motori isotropi, come il
motore a magneti permanenti superficiali, sia ai motori anisotropi
che, ovvero a magneti interni e macchine a riluttanza. Da un lato,
l’interesse della ricerca sugli algoritmi basati su modelli per appli-
cazioni agli azionamenti elettrici è in costante crescita. Dall’altro lato,
l’interesse per l’analisi dei dati è in costante crescita e questo ha por-
tato a una crescente attenzione verso algoritmi basati sui dati, in
tutti i rami della scienza e dell’ingegneria. Questa rivoluzione sta
avendo un impatto significativo anche sull’ingegneria del controllo.
La progettazione di controllori così detti "data-driven" consiste nel
sintetizzare un controllore utilizzando i dati raccolti sul sistema reale,
senza definire o identificare un modello parametrico per l’impianto.
I miglioramenti nella potenza di calcolo e lo sviluppo di soluzioni
hardware dedicate stanno rendendo entrambe metodi adatti ad ap-
plicazioni industriali con elevate dinamiche.

La tesi è strutturata come segue. La prima parte fornisce al-
cune conoscenze necessarie per sviluppare gli argomenti trattati
nel seguito. Questo comprende un’introduzione alle macchine e
agli azionamenti, e alcuni concetti di base della teoria del controllo
basata sul modello e dai dati. Vengono considerati poi algoritmi
basati sull’ottimizzazione. In particolare, viene studiato l’approccio
Continuous-Set (CS) al Model Predictive Control (MPC), che è visto
come un tipo di problema di programmazione quadratica (QP), dove
i limiti di ingresso e uscita del sistema sono inclusi direttamente nel
problema di ottimizzazione. La seconda parte si occupa di due aspetti
dell’MPC: viene affrontata la formulazione senza offset in presenza
di incertezze del modello, e viene presentato un solutore QP per-
sonalizzato ed efficiente per applicazioni agli azionamenti elettrici,
dove solitamente è disponibile una limitata potenza di calcolo. Infine,
viene studiato il controllo data-driven applicato ai motori elettrici,
con particolare attenzione alle prestazioni e agli aspetti computazion-
ali.
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1
I N T R O D U C T I O N

1.1 the importance of research

Research and innovation proved to be among the most powerful of European
policies to boost the Union’s economies and competitiveness at the global
scale. With its ability to drive growth, to create up to 320.000 new highly
skilled jobs by 2040 and to leverage approximately 11 euro of additional
investments for each euro invested at the European level, the Research and
Innovation (R&I) policy is an engine of the green and digital transitions on
the continent and stairways to ‘the future we want’.

These words are included in the Development Goal (DG) Research
and innovation strategy plan 2020-2024 [1], which will contribute to
all six headline ambitions1 of the von der Leyen2 Commission, as well
as contributing to a modern, high performing and sustainable Euro-
pean Commission. The DG will deliver important parts of the recov-
ery plan for Europe based on climate, digital, health and resilience.

In this enormous plan, which involves not only the European Com-
munity but it strictly requires the collaboration with all the other
countries, it emerges that on 9 March 2021, the Commission presented
a vision and avenues for Europe’s digital transformation by 2030. This
vision for the EU’s digital decade evolves around four cardinal points:
skills, governments, business and infrastructure. Among the key goal,
it is highlighted that it is expected that more than 75% of EU com-
panies will make use of Cloud/Artificial Intelligence (AI)/Big Data
technologies. Thus, data represent the central point around which
new technologies will be developed. This innovation process that is
radically changing the way of life, can be pursued only with research,
which has the fundamental role of exploring and developing new
technologies and pave the way for the future of human society and
our planet.

1.2 the future of power electronics

The technology of power electronics has practically attained maturity
after five decades of dynamic evolution. In the future, there will be

1 the European Council’s strategic agenda for 2019-2024 set the work of the European
institutions around six headline ambitions for Europe for this period: a European
Green Deal, a Europe fit for the digital age, an economy that works for people, a
stronger Europe in the world, promoting our European way of life, a new push for
European democracy.

2 Ursula von der Leyen is the President of the European Commission from 2019 to
2024.
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tremendous emphasis on power electronics applications in the areas
of industrial, residential, commercial, transportation, aerospace, and
electric utility systems [2].

With the development towards Industry 4.0, the requirement for
“Smart-Systems” and autonomy in industry drives and automation
demands higher levels of intelligence from the power electronic sys-
tems used to facilitate correct power flow. With an estimated €36

billions predicted to be spent on inverters and drive systems in 2022,
academic and industrial research and development identifies the
power electronic inverter as being the critical driver for Industry 4.0
in the coming years [3]. The development of power electronic build-
ing blocks has led to the ability to rapidly prototype and develop
industry motor drives for a wide range of applications and power
levels, but for true autonomy to be possible, the power electronic in-
verter must now be developed as a “Smart” unit, capable of not only
adapting its operation to any electrical supply/load fluctuations, but
also be self-configurable to account for changes in operational condi-
tions. Such conditions include the ability to adapt to required circuit
topology changes, whether customer-requested (application based)
or because of fault conditions/damaged components (protection and
reliability based). Improvements in efficiency may also be achieved
through software-defined control of the topology and switching
states of the semiconductor switches, whilst further modularity im-
provements may be incorporated with the ability to autonomously
add/remove sensors and actuators to increase data collection and
functionality of the system.

Two other drivers for the development of power electronics had
been clearly identified for the new decade: CO2 reduction to stop
the climate change and digitalization. Thus, as previous said, in the
coming decades it is expected to see increasing emphasis on very
high-specialized research and developments in system modulariza-
tion, analysis, modeling, real time simulation, design and experimen-
tal evaluations. Power electronics will have increasing impact not
only in global industrial automation and high efficiency energy sys-
tems, but also on energy conservation, renewable energy systems,
and electric/hybrid vehicles. The resulting impact in mitigating cli-
mate change problems due to man-made environmental pollution is
expected to be considerable [2].

1.3 contribution of the thesis

Together with power electronics development, a fundamental factor
in industrial automation is the electromechanical conversion, where
electric drives, consisting of an electric motor supplied by a frequency
converter, play a major role. Efficiency and performance depict the
essential and unavoidable targets in up-to-date projects. Both the
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goals can be achieved using Permanent Magnet Synchronous Mo-
tor (PMSM). They have been adopted in high dynamic applications
since the 1980s, when rare–earth magnetic materials and low-cost
electronics devices were introduced in the market. The main features
of PMSM are the high torque and power density and the high ef-
ficiency. Their relatively high production cost is one of the reasons
that limited their diffusion. Nevertheless, nowadays their strengths
are overcoming their limitations and they are gaining new attentions.
In particular, car manufacturers are choosing PMSM for their electric
and hybrid cars. In fact, the special features for adjustable-speed op-
eration which distinguish PMSMs from other classes of AC machines
were already shown in the very early 1986 [4]. The Global electric mo-
tor market report, a recent research by Allied Market Research, has
revealed that the global electric motor market size was $96,968 mil-
lion in 2017, and is projected to reach $136,496 million in 2025. [5].
Thus, the vehicle market, which has a great impact in society, even
for non-experts or non-engineers, can be the "engine" of the new in-
dustrial revolution, allowing electric motors to be a central key point
in the digital revolution in all other industries.

The rise in demand for superior and efficient machine in any
industrial sector, requires the development of a suitable and high-
performance control unit. In this thesis, two complementary ap-
proaches are investigated for accomplishing these requirements.
On one hand, model-based control is explored. In particular, the
paradigm of Model Predictive Control (MPC) is deeply investi-
gated for controlling synchronous motors. MPCs strategies have
been investigated for two decades as advanced control method for
power electronics applications. The basic concept of MPC combines
optimization-based techniques and plant model. The future plant
dynamic is estimated by means of models and the actions (inputs)
on the plant are computed by optimizing a certain performance ex-
pression. The idea of MPC was introduced in chemistry industries,
where the higher computational effort with respect to standard con-
trollers was possible thank to the usually relatively slows dynamics
of the system [6], [7]. Improvements in the computational power
of modern Digital Signal Processor (DSP)s and the development of
dedicated hardware solutions are making these algorithms suitable
for industrial implementations, representing a promising strategy
for electric drives applications [8],[9]. In particular, for the above-
mentioned challenges of high penetration of electrical technologies
in many industrial sectors, the importance of finding custom solution
for the specific applications will require high-level of competences,
strong mathematical background and the ability of adapt different
existing mathematical tools for satisfying a specific requirement. In
this scenario, the deployment of advanced control algorithms will be
of paramount of importance. Furthermore, model-based control ap-
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proaches such MPC requires much more computational effort with
respect standard Proportional-Integral-Derivative (PID) controllers.
This fact sounds in contrast with standard controller hardware that
is used for power converters, with a limited amount of memory
and computational speed (up to some hundreds of MHz). For these
reasons, the thesis will focus on computational aspects of MPC algo-
rithms, proposing a fast method that enables the control strategy to
be implemented even in low-cost DSP platforms.

On the other hand, a different approach is investigated, spurred
by the ongoing digital revolution. The growing importance of data in
the digital area is investigated in the field of electric drives. In this
direction, data driven control methods are analyzed. This paradigm
represents the counterpart of model-based methods, which exploit
a model of the system to design a controller. Conversely, The data-
driven approach, aims to build a control algorithm using only col-
lected input and output data from the system to be controlled. These
strategies go to the direction of the aforementioned smart-inverter,
where automatic procedures can be designed to self-build the control
of the motor without having knowledge of its parameters, geometry
or structure.

These two different approaches, which are deeply investigated,
highlighting the computational aspect of the presented strategies.

1.4 outline of the thesis

In the following, the contents of the each Chapter are briefly de-
scribed:

chapter 2 In this chapter, fundamentals components governing an
electrical drive are presented. The PMSM working principles are
reported. The basic transformations from stationary to rotating
reference frame and vice versa of a three-phase system of quan-
tities are defined, together with the power converter description
and modulations strategies;

chapter 3 This part introduces the basic theory concepts of model
predictive control as a quadratic programming optimal control
problem, with a brief overview of main strategies adopted in
electric drives;

chapter 4 In this chapter it is presented some fundamental con-
cepts of the investigated data-driven approach to control. In
particular, the behavioral system theory is briefly described

chapter 5 This chapter deals with a presentation of some model or-
der reduction techniques, which will be useful to join the data-
driven control method with a proposed fast quadratic program-
ming solver.
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chapter 6 In this chapter, the MPC paradigm is applied to the cur-
rent control of synchronous motor drives. The intent is to com-
pare the velocity form and the MPC with disturbance observer.
A theoretical analysis of the MPC coupled with disturbance ob-
servers and the equivalence between these formulations and the
velocity form is presented.

chapter 7 This chapter presents an effective method for solving
MPC for the current control loop of synchronous motor drives
with input constraints. The related quadratic programming
problem requires an iterative solver to find the optimal solu-
tion. The solver is deeply illustrated, showing its feasibility for
real-time applications in the microseconds range by means of
experimental tests.

chapter 8 This chapter exploits the concept presented in Chapter 4

with the aim of proposing a potential transition from model-
based towards data-driven optimal control strategies. As start-
ing point, the MPC paradigm is considered. The, a complete
data-driven approach, named Data EnablEd Predictive Control
(DeePC) is presented. The theory behind these techniques is re-
viewed and design applied for the first time to the design of
the current controller of synchronous permanent magnet motor
drives.

chapter 9 The aim of this chapter is to propose a method for en-
abling the real-time implementation of the DeePC control algo-
rithm, exploiting the Quadratic Programming (QP) solver for-
mulation presented in Chapter 7 and the model order reduction
method presented in Chapter 5.





2
P E R M A N E N T M A G N E T S Y N C H R O N O U S M O T O R S

The fundamental equations of a permanent magnet synchronous mo-
tor are presented. Linear current-flux relations are considered. Then,
the three-phase power converter is introduced, together with the con-
cept of space vector modulation.

2.1 electric drives

An Electrical Machine (EM) is a machine which at least one source
of energy ( received or delivered ) are of electrical nature. In particu-
lar, the interest of this work is concentrated on those machines that
convert the electrical energy into mechanical energy (and vice versa):
they are called electro-mechanical machines. In the most cases, these
machines use magnetic field to convert the electric energy into me-
chanical one, exploiting the physical principle described by Faraday’s
law. This principle is known as electro-mechanical energy conversion. An
electric drive is defined as a drive that uses an electric actuator, i.e. a
electric machine, usually in operation from motor, in which a conver-
sion of energy from electric to mechanical takes place. In the past,
EMs were usually employed as motor or generator at nearly constant
speed, imposed by the grid frequency. The introduction of the concept
of electric drives raised from the necessity of controlling the EMs for
industrial applications. The control of these devices is performed by
manipulating measured quantities, i.e. voltages, currents, speed and
rotor position. This opportunity is made possible thank to the pres-
ence of a particular equipment that interposes the source of electrical
energy (usually the grid) and the drive, which are the static converter
with a power electronics devices (such as diodes, thyristor, transis-
tor etc..). A principle scheme of the physical system is presented in
Figure 2.1, where the scheme of a common control architecture is re-
ported. The double arrow represents the energy direction, which in-
stantaneously can flow from the electric energy source to the load and
vice-versa. The saturation block considers the physical limits, avoid-
ing overstressing the system.

2.2 permanent magnet synchronous machines

In this section the development of the mathematical model of a
Permanent Magnet Synchronous Motor (PMSM) in the stator and ro-
tor reference frame is derived. The permanent magnet synchronous
motor is a three phase EM with windings displaced 120◦ electrical

9
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Figure 2.1: Scheme of electric drives with a common control architecture.

degrees in space. Since in general a PMSM is a non-linear, strong cou-
pling system, electromagnetic relations are very complicated. In order
to simplify the mathematical model of PMSM, some assumptions are
made as follows:

Assumption 1 Three-phase stator windings are symmetrical and difference
of each phase is 120◦ electric angle;

Assumption 2 Magnetic saturation, eddy current loss and hysteresis loss
are neglected;

Assumption 3 No load EMF of stator windings is sine wave;

Assumption 4 Stator winding current produces only sine distribution of
magnetic potential in the air gap, ignoring the high-order harmonic of mag-
netic field;

Assumption 5 Conductivity of permanent magnet is zero.

Previous assumptions help to derive an electro-mechanical model of
the machine, whose complexity is a trade-off between the accuracy
of the model and computational complexity. The coordinate transfor-
mations of three-phase magnitudes commonly used in the study and
design of control strategies in PMSM is shown in Figure 2.2.
θr and ωr denote respectively the angular mechanical position and
velocity of the rotor respect to the reference on the phase a on the
stator. The machine sketched in Figure 2.2 has a single pole pair for
simplification, but making use of a general number of pole pairs p,
the electrical rotor position and speed id computed as follow:

θe = pθm

ωe = pωm

(2.1)
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Figure 2.2: Stator (αβ) and rotor (dq) reference frame applied to a PMSM.

2.2.1 Stator Reference Frame

In general, a physical three phase winding system distributed with
120◦ between each phase can be simplified with a linear transforma-
tion, leading to a two phase system 90◦ shifted (see Appendix A).
The transformation from three-phase to two-phase quantities can be
written in matrix form as1:[

Sα

Sβ

]
=

2

3

[
1 −1

2 −1
2

0
√
3
2 −

√
3
2

]SaSb
Sc


Sαβ = Tabc/αβSabc

(2.2)

where Sa,Sb,Sc denote a general signal in the original 3-phase refer-
ence frame, while Sα,Sβ are the two-phase orthogonal components
after the transformation. The choice of the constant 2

3 in (2.2) is in-
tended for maintaining unaltered the signal’s magnitude across the
transformation, although from a power perspective, in order to be
consistent, the constant need to be added as a reciprocal factor. The
inverse relationship is written as:SaSb

Sc

 =

 1 0

−1
2

√
3
2

−1
2 −

√
3
2


[
Sα

Sβ

]

Sabc = Tαβ/abcSαβ

(2.3)

Transformation (2.2) and (2.3) are also known as Forward and Inverse
Clarke-transformations.

1 Here it assumed that the windings are star connected and the system is balanced, i.e.
the zero sequence component is null.
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2.2.2 Rotor Reference Frame

The idea of the rotor reference frame transformation is to attach the
rotating time-dependent signals in the αβ- coordinate, to a system
which forms a rigid body with the machine rotor. In order to obtain
this, the variables are transformed into a reference frame rotating at
the electrical angular speed ωe, thus fundamental frequency signals
component and inductances will no longer depend on rotor position,
becoming constant quantities. Since the transformation arises in an
ideal context, where all the original signals are purely sinusoidal, the
relationship between rotor and stator reference frames is described as
follow:[

Sd

Sq

]
=

[
cosθ sinθ

−sinθ cosθ

][
Sα

Sβ

]
Sdq = Tαβ/dqSαβ

(2.4)

The elimination of position dependency from the machine variables
is the main advantage. The inverse rotation, to transform from the
rotating to the stationary reference frame is straightforward:[

Sα

Sβ

]
=

[
cosθ −sinθ

sinθ cosθ

][
Sd

Sq

]
Sαβ = Tdq/αβSdq

(2.5)

Transformation (2.4) and (2.5) are also known as Forward and Inverse
Park-transformations.

2.2.3 Voltage Balance

The stator windings consist of individual coils, which are connected
and wounded in different slots. With previous assumptions, the coils
are assumed to be sinusoidally distributed along the stator circumfer-
ence. In Figure 2.2, each phase is depicted as single coil together with
their resultant magnetic axes. The electrical dynamic equations of the
three-phase system can be written as follow2:ua

ub

uc


︸ ︷︷ ︸
uabc

=

Rs 0 0

0 Rs 0

0 0 Rs


︸ ︷︷ ︸

R

+
d

dt

λaλb
λc


︸ ︷︷ ︸
λabc

(2.6)

where ua,ub,uc are the terminal voltages, ia, ib, ic are the phase cur-
rents, λa, λb, λc are the flux linkages and Rs is the winding resistance.

2 All the quantities are function of time t. The explicit time-dependence has been
omitted to simplify the notation
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The flux linkage of each phase presents two components: one due to
the iabc currents, and one due to the presence of permanent magnets
placed in the rotor. Thank to the assumption of no magnetic satura-
tion or eddy current effects, the superimposition principle holds, and
the following relation can be written3:λaλb

λc

 =

 La Mab Mac

Mba Lb Mbc

Mca Mcb Lc


︸ ︷︷ ︸

Labc

iaib
ic


︸ ︷︷ ︸
iabc

+
d

dt

λmg,a

λmg,b

λmg,c


︸ ︷︷ ︸
λmg,abc

(2.7)

where La,Lb,Lc and Mij, i = a,b, c, j = a,b, c are the self and mutual
inductances respectively. λmg,i, i = a,b, c represents flux linkage with
each stator phase due to the magnets placed in the rotor. The back-
Electro Motive Force (back-EMF) are defined as follow:

ea =
d

dt
λmg,a = −Λmgωe cos (θe −

π

2
)

eb =
d

dt
λmg,b = −Λmgωe cos (θe −

π

2
−

2π

3
)

ec =
d

dt
λmg,c = −Λmgωe cos (θe −

pi

2
−

4π

3
)

(2.8)

Combining (2.7) and (2.8), in matrix form the voltage balance be-
comes:

uabc = Riabc + Labc
d

dt
iabc +

d

dt
Labc iabc + eabc (2.9)

By applying the transformation (2.2) to (2.9), the voltage equation in
the αβreference frame is:

uαβ = Riαβ +
d

dt
Lαβ

d

dt
iαβ + eαβ (2.10)

where Lαβ = Tabc/αβLabcT
−1
abc/αβ

.
The αβ transformation can be generalized to the rotating orthog-

onal reference frame dq with the direct d and quadrature q axes
presented in (2.4). The angular position of the dq reference frame
is defined θe, which is the angle between the d-axis of the rotating
reference frame and the a-axis of the three-phase system. By apply-
ing (2.4) with θ = θe to (2.10) the mathematical model of a linear
synchronous machine n the dq reference frame is obtained:

udq = Ridq + Ldq
d

dt
idq +ωeJLdqidq + edq (2.11)

where:

udq =

[
ud

uq

]
, idq =

[
id

iq

]
, edq =

[
0

ωeΛmg

]
Ldq =

[
0 −1

1 0

]
(2.12)

3 Further details on flux-current relations and self and mutual inductance expressions
can be found in [10].
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(a) SPM (2 poles). (b) IPM (4 poles). (c) SyRM (4 poles).

Figure 2.3: Example of cross section of the three different types of syn-
chornous motors.

The inductances matrix becomes constant due to the new reference
frame which rotates integral with the rotor. It is implicitly consid-
ered that the dq inductances are directly derived transforming op-
portunely the matrix Labc in (2.7). The inductances matrix loses the
position dependency then they become time invariant:

Ldq =

[
Ld 0

0 Lq

]
(2.13)

Rewriting the (2.12) per components it can be observed the dq flux
components:

ud = Rsid + Ld
d

dt
id −ωe Lqiq︸ ︷︷ ︸

λq

uq = Rsiq + Lq
d

dt
iq +ωe(Ldid +Λmg︸ ︷︷ ︸

λd

)

(2.14)

The rotational reference frame imposed by (2.5) is synchronous with
the magnetic flux produced by the rotor and all the flux contribution
of the permanent magnet lies on the d-axis as stated in (2.14). This
concept is at the basis of the Field Oriented Control (FOC).

In general, if iron saturation effects are considered, the flux linkage
becomes a function of the stator currents, and the relations become
nonlinear. See for instance [11] for further details.

2.3 mechanical model and electromagnetic torque

The electromagnetic torque expression of a synchronous motor ex-
pressed in the dq rotating reference frame is [12]:

τ =
3

2
p(λdiq − λqid) +

W ′
fld

θm
(2.15)

W ′
fld is the magnetic coenergy, which is a function of currents and

mechanical angle. It includes all the effects which are not consid-
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ered at the fundamental frequency model (i.e., for instance, cogging
torque). Its definition is

W ′
fld(i, θm) = iλ−Wfld(λ, θm) (2.16)

where Wfld is the magnetic energy. The first term of (2.15) returns the
average electromechanical torque generated by the motor, assuming
an integral–slot winding motor. Finally, it is worth noting that (2.15)
describes the torque production even in presence of the magnetic sat-
uration and, in case of a linear motor, it can be simplified using the
motor inductances as:

τ =
3

2
p(λmgiq + (Ld − Lq)idiq) (2.17)

Two different contributions can be recognized in equation (2.17), de-
pending on the magnetic circuit that results from stator and rotor of
the machine. The first one represents the torque related to the inter-
action between the rotor permanent magnets flux and the stator cur-
rent. The second one is the reluctance torque which implies only sta-
tor–generated field. Anisotropic machines present different magnetic
paths between d and q axis. In an Interior Permanent Magnet (IPM),
magnets are placed inside the rotor, and for d-axis the inductance re-
sults in general lower than the inductance of the q-axis, due to the
fact that in q-axis flux path pass through iron that has a higher value
of permeability. The Synchronous Reluctance Motor (SyRM) is charac-
terized by the lack of permanent magnets then the generated torque is
based exclusively on the reluctance principle. In case Ld = Lq, the ma-
chine reduces to an Surface Permanent Magnet (SPM) and the reluc-
tance contribution to the torque is zero. Here the rotor and the mag-
net displacement are designed in order to have the same magnetic
structure with respect the stator. An example of these three different
motor geometries are reported in Figure 2.3 Finally, the mechanical
expression of the motor, including the load, is:

τ = τL +Bmωm + Jm
d

dt
ωm (2.18)

where Bm and Jm are the viscous friction coefficient of the system and
the moment of inertia of the system, respectively. The load torque τL
is independent from position and motor speed.

2.4 three-phase inverter

The power electronics module represents the fundamental compo-
nent of an AC drive. In fact, it allows the efficient transformation
of DC quantities, from DC power source (e.g. vehicle battery), to AC
quantities which are suitable for operating the 3-phase electrical ma-
chine connected as a load. The use of a power converter allows the
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Figure 2.4: Schematic representation of a three-phase voltage source in-
verter.

motor to be controlled for variable speed applications, with high pre-
cision, fast dynamics position and torque control. In Figure 2.4 it is
represented a basic scheme of a three-phase voltage source converter.
The DC-link is represented by two series-connected constant voltage
sources, where large capacitances are often used to maintain a con-
stant valued of the DC voltage. The central point O is conventionally
adopted as reference point. The six electronic controlled valves can
be either turned on and off via a proper external signal. In particular,
in the Figure 2.4 are represented the commonly used Insulated-Gate
Bipolar Transistor (IGBT), which are suitable for medium power ap-
plications (up to some kW) and relatively high switching frequency
(up to 15 kHz) [13], but other power electronics components can be
adopted accordingly to the application. When the switch is turned on
by the drive circuit, the IGBT allows the current flowing in the arrow
direction. The reverse conducting characteristic is achieved by adding
an anti-parallel diode to the IGBT. The two switches connected to the
same phase, respectively the high side and the low side driver, form
the leg of the inverter and allow the phase to be alternatively con-
nected to viO = +Vdc

2 or viO = −Vdc

2 , with i = a,b, c. The switching
can be open and closed alternatively, and it is avoided the simultane-
ous conduction of drivers belonging to the same leg, otherwise this
would lead to a short circuit of the DC power source. In the two-
level configuration, the total number of switch configurations are 8

and they are resumed in Table 1. Applying the definition of a space
vector4, 6 of the 8 states are represented by six state vectors of ampli-
tude 2

3 udc and offset by π
3 respectively, describing the vertices of a

hexagon centered in the origin of the axes in the stationary reference
frame (also known as αβ plane), see Figure 2.5.

The six-step mode operation of the two-level inverter consists in
controlling the three upper switches cyclically, so that their state is 1

for one half-period and then 0 in the remaining half-period, with a
phase shift between the states of the inverter branches of 2π

3 .

4 See Appendix A.
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Table 1: Total number of operation of the proposed QP method in the worst
case scenario.

STATE S1 S2 S3 van vbn vcn

s0 0 0 0 0 0 0

s1 1 0 0
2
3 −1

3 −1
3

s2 1 1 0
1
3

1
3 −2

3

s3 0 1 0 −1
3

2
3 −1

3

s4 0 1 1 −2
3

1
3

1
3

s5 0 0 1 −1
3 −1

3
2
3

s6 1 0 1
1
3 −2

3
1
3

s7 1 1 1 0 0 0

Figure 2.5: Space vectors produced by the 8 possible states of a three-phase
two-level inverter.

The solution to the problem of adjusting the amplitude of the out-
put voltage of the inverter, together with an improvement of the low-
frequency harmonic content, is obtained by introducing a modulation
technique, commonly known as Pulse-Width-Modulation (PWM).
An extensive description of different modulation techniques can be
found in [14].

The simplest modulation method is called Sinusoidal Pulse Width
Modulation Sinusoidal Pulse-Width-Modulation (SPWM), shown in
Figure 2.6. A duty cycle is generated by the feedback controller, which
expresses the desired voltage reference to apply at the machine termi-
nal. The duty cycle of each phase is compared with a carrier, whose
frequency is much higher than the frequency of the fundamental volt-
age component.

It is possible to generate within each interval Ts = 1
fs

, with fs the
carrier frequency, a voltage uaO with an average value equal to the
one assumed by the voltage reference in the same time interval, mak-
ing uaO have its positive value +udc

2 for a portion Ton of Ts, and its
negative value −udc

2 for the remaining portion Toff. Considering an
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(a) Carrier and reference voltage signals (sinusoids) with aplitude 0.6 p.u.

(b)

(c)

(d)

(e) Current of phase a.

Figure 2.6: SPWM example: the three sinusoids in Figure 2.6(a) are com-
pared with the triangular carrier. Figure 2.6(b),Figure 2.6(c) and
Figure 2.6(d) are the voltage between each terminal of the in-
verter with respect the point O. It also plotted the fundamental
voltage component, and in Figure 2.6(e) it is reported the a-phase
current, assuming balanced three phase motor.
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(a) Sectors. (b) Vector projection in the first sector.

Figure 2.7: SVPWM sectors and example of duty cycles computation.

interval k, the resulting duty cycle for the switch of an inverter leg is
computed as:

δk =
uk

udc
+ 0.5 (2.19)

where uk is the voltage reference sampled at instant k. In case of a
three-phase sinusoidal voltage reference5

ua = Um cos(ωt+ θ0)

ub = Um cos(ωt+ θ0 −
2π

3
)

ub = Um cos(ωt+ θ0 −
4π

3
)

(2.20)

the duty cycles (2.19) represented in Figure 2.6 for each phase leg
become:

δa,k =
uα,k

udc
+ 0.5

δb,k =
1

udc
(−0.5uα,k +

√
3

2
uβ,k) + 0.5

δc,k =
1

udc
(−0.5uα,k −

√
3

2
uβ,k) + 0.5

(2.21)

being uα, uβ the components related to the space vector generated by
(2.20) (see Appendix A). The maximum modulus for the space vector
is equal to udc

2 with a duty cycle equal to one, which coincides with
the maximum value of the phase voltages.

For having higher values of the fundamental component of the
phase voltage, one can in principle add a homopolar component δ0
to the sinusoidal duty cycles. In this way the maximum voltage deliv-
ered by the inverter becomes udc√

3
.

5 In this work it is assumed that the load is always represented by a three-phase
symmetric RL load with balanced back-EMF.
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An alternative way to handle the voltage reference realization is
the so called Space Vector Pulse-Width-Modulation (SVPWM). The
objective of SVPWM technique is to approximate the reference volt-
age vector using the eight switching patterns. The reference vector
is then synthesized using a combination of the two adjacent active
switching vectors and one or both of the zero vectors. The illustrative
procedure is shown in Figure 2.6, where the hexagon is divided in
6 sector. The voltage vector components uα and uβ are the input of
the SVPWM algorithm, which firstly identifies the sector of interest.
Then, as shown in Figure 2.7(b) for the first sector, the duty cycles are
obtained by the combination of the voltage vector 100 and 110 as in
the following:

||u100|| =
||uαβ||

sin(2π3 )
sin(

π

3
−∠uαβ)

||u110|| =
||uαβ||

sin(2π3 )
sin(∠uαβ).

(2.22)

Then, it is necessary to calculate the Ton time of the selected inverter
states within the sampling period Ts, yielding to:

T100 = Ts
3

2udc
||u100||

T110 = Ts
3

2udc
||u110||

(2.23)

The remaining time of the entire period Ts, the null vector (000 or
111) is applied: T000 = 1− T100 − T110. If the sum T100 + T110 (as an
example) exceeds 1, the duty cycle saturates and the inverter reaches
the over-modulation range. Here it is possible to implement different
techniques which allow the transition from the over-modulation re-
gion to the six-step operation mode, i.e., where the voltage reference
are the 6 active states of the converter. As an example, see [15]. For
a complete description of different strategies for implementing the
SVPWM, see [14]. Notice that, even if the SPWM with third harmonic
injection and the SVPWM could be considered different strategies, it
has been shown the equivalence between the two approaches, under
certain circumstances [16].



3
M O D E L P R E D I C T I V E C O N T R O L

This chapter presents a very brief introduction to the principles of
Model Predictive Control (MPC). In particular, the problem family of
Linear Time Invariant (LTI) systems with linear constraints is consid-
ered.

3.1 key ingredients of mpc

MPC is a form of control in which the current control action is ob-
tained by solving on-line, at each sampling instant, a finite horizon
optimal control problem, using the current state of the plant as the ini-
tial state; the optimization yields an optimal control sequence and the
first in this sequence is applied to the plant [17]. The MPC provides
a way to design state-feedback and tracking control laws, solving an
optimization problem. Some basic notions of state-feedback controls
are reported in Appendix B. While its idea is relatively old [6], [7],
only the recent development of hardware with higher computational
powers enables its implementation in systems with fast dynamics,
making these algorithms suitable for industrial implementations in
applications such as electrical drives. The most important character-
istics of MPC, which make it flexible and suitable for a large number
of applications, are the possibility to:

• formulate the control as an implementation problem, where dif-
ferent objectives can be considered;

• explicitly include in the control problem formulation state and
input constraints;

• synthesize the model-based controller empirically by means of
simple experiments.

The main ingredients of an MPC algorithm are:

• a model of the process, usually in discrete-time domain;

• input, output, and state constraints;

• a cost function to be minimized;

• an optimization solver;

• the so called Receding Horizon (RH) principle (see Figure 3.1),
which can be explained as follows. At any time instant, based on

21
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k kk+1 k+1k+N k+N+1k+2

u(k +m)

predicted output

u(k +m)

Input voltageInput voltage

predicted output
y(k +m)

y(k +m)

Figure 3.1: Receding horizon principle.

the available process information, solve the optimization prob-
lem is solved with respect to the future control sequence, but
only the first input is effectively applied to the system. Then,
at the next time instant, a new optimization problem is solved.
It is worth noting that, by means of RH, a time invariant feed-
back control law is obtained even if a finite horizon optimization
problem is solved at any time instant.

3.2 quadratic optimization problem

The MPC, in general, belongs to the family of quadratic optimiza-
tions problem. In the following, some basic concepts of constrained
optimization are introduced and the family of problems that will be
considered is described. In particular, convex optimization problems
are considered.

A set C is convex if the line segment between any two points in C

lies in C, i.e., if for any x1, x2 ∈ C, and any θ with 0 ⩽ θ ⩽ 1, it holds
that

θx1 + (1− θ)x2 ∈ C.

In Figure 3.2(a) it is reported an example of a convex and non-convex
domain. A convex optimization problem is one of the forms

minimize f0(x)

subject to fi(x) ⩽ 0, i = 1, ..., j

aT
ix = bi, i = 1, ...,k

(3.1)

where f0, ..., fj : Rn → R are convex, i.e. satisfy

fi(αx+βy) ⩽ αfi(x) +βfi(y)

for all x,y ∈ Rn and all α,β ∈ Rn with α+ β = 1,α ⩾ 0,β ⩾ 0. The
set of points for which the objective and all constraint functions are
defined,

D =

j⋂
i=0

dom fi ∩
k⋂

i=1

dom hi
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(a) Convex set. (b) Non convex set.

Figure 3.2: An example of simple convex and nonconvex set. Figure 3.2(a)
the hexagon, which includes its boundary, is convex. Fig-
ure 3.2(b) the kidney shaped set is not convex, since the line
segment between the two points is not contained in the set.

and it is called the domain of the optimization problem. A point x ∈
D is said to be feasible if it satisfies the constraints. The problem
(3.1) is said to be feasible if there exists at least one feasible point,
and infeasible otherwise. The set of all feasible points is called the
feasible set or the constraint set. The optimal value p∗ of the problem
(3.1) is defined as

p∗ = inf{f0(x)|fi(x) ⩽ 0, i = 1, .., j, hi(x) = 0, i = 1, ...,k}.

The convex optimization problem (3.1) is called a Quadratic Pro-
gramming (QP) if the objective function is (convex) quadratic, and
the constraint functions are affine 1. In a quadratic program, a convex
quadratic function is minimized over a polyhedron. This constrained
optimization problem does not admit an explicit solution, but it can
be solved by means of QP solvers based on iterative methods.

3.3 mpc formulation

Firstly, consider the LTI system:

x(k+ 1) = Ax(k) +Bu(k)

y(k) = Cx(k) x0 = x(0)
(3.2)

where the state x ∈ Rn, u ∈ Rm is the control variable, and y ∈ Rp is
the output variable. The aim is to find the sequence of control inputs
that steers the system from its initial state x0 at time sample k (it can
be assume k = 0 as starting point without loss of generality) to the
origin. This is known as regulation problem. The optimization problem

1 A set C ⊆ Rn is affine if the line through any two distinct points in C lies in C, i.e.,
if for anu x1, x2 ∈ C nd θ ∈ R, θx1 + (1− θ)x2 ∈ C. In other words, C contains the
linear combination of any two points in C
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consists of computing, at each time instant k, the control sequence
u(k),u(k+ 1), ...,u(k+N) that minimizes the finite horizon quadratic
cost function:

argmin
u(k+i),x(k+i)

J(x,u,k) =
N−1∑
i=0

||x(k+ i)||2Q + u(k+ i)||2R + ||x(k+N)||2S

subject to x(k+ i+ 1) = Ax(k+ i) +Bu(k+ i) i = 0, ...,N− 1

y(k+ i) = Cx(k+ i) i = 0, ...,N− 1

x0 = x(k)

u(k+ i) ∈ U i = 0, ...,N− 1

x(k+ i) ∈ X i = 0, ...,N− 1

y(k+ i) ∈ Y i = 0, ...,N− 1

(3.3)

where Q ⩾ 0, R > 0, S ⩾ 0 are matrices of suitable dimensions.2 In
MPC, the positive integer N is usually called the prediction horizon
length.

3.3.1 Unconstrained Solution

The cost function is based on the predicted effects of the control se-
quence, i.e. on the predicted future states. A closed-form expression
of the control law can be obtained if limitations of x,u,y are neglected.
Assuming this case, one way to find the solution of problem (3.3) can
be derived recalling the expression of free and forced response of
system (3.2):

x(k+ i) = Aix(k) +

i−1∑
j=0

Ai−j−1Bu(k+ j), i > 0. (3.4)

2 The relations ⩾ and > indicates a semi-positive definite and positive definite matrix,
respectively.
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where the first term of (3.4) is the free response due to non-null initial
state condition, while the second one is the forced response when the
input u is applied to the system. Letting

X(k) =



x(k+ 1)

x(k+ 2)
...

x(k+N− 1)

x(k+N)


,A =



A

A2

...

AN−1

AN


,U(k) =



u(k)

u(k+ 1)
...

u(k+N− 2)

u(k+N− 1)


,

B =



B 0 0 · · · 0 0

AB B 0 · · · 0 0

· · · · · · · · · · · · · · · · · ·
AN−2B AN−3B AN−4B · · · B 0

AN−1B AN−2B AN−3B · · · AB B


it follows that

X(k) = Ax(k) +BU(k). (3.5)

Defining the matrices, with N block on the diagonal,

Q =



Q 0 · · · 0 0

0 Q · · · 0 0

· · · · · · . . . · · · · · ·
0 0 · · · Q 0

0 0 · · · 0 S


,R =



R 0 · · · 0 0

0 R · · · 0 0

· · · · · · . . . · · · · · ·
0 0 · · · R 0

0 0 · · · 0 R,


and observing that

arg min
u()

J(x(k),u(),k) = arg min
U

J̃(x(k),U(k),k) (3.6)

where

J̃(x(k),U(k),k) = XT(k)QX(k) +UT(k)RU(k). (3.7)

Recalling (3.5), it follows that

J̃(x(k),U(k),k) = (Ax(k) +BU(k))TQ(Ax(k) +BU(k)) +UT(k)RU(k)

= xT(k)ATQAx(k) + 2x(k)TATQBU(k) +UT(k)(BTQB+R)U(k).
(3.8)

Equation (3.8) has some important properties. The matrix BTQB+R

of the quadratic term is symmetric and positive-definite3, since R > 0.

3 A symmetric matrix M with real entries is positive-definite if the real number zTMZ

is positive for every nonzero real column vector z
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The minimum of (3.8) can be computed by setting to zero its gradient
with respect to U(k). Thanks to the property of positive-definiteness,
the matrix BTQB+R is invertible. It results the optimal control se-
quence

U∗(k) = −(BTQB+R)−1BTQAx(k). (3.9)

Note that this solution depends on the prediction of the state, along
the considered horizon, based on the current state x(k). In fact, defin-
ing

K = (BTQB+R)−1BTQA =


K(0)

K(1)
...

K(N− 1)

 , K(i) ∈ Rm×n (3.10)

it is possible to write

U∗(k) = −


K(0)

K(1)
...

K(N− 1)

 x(k) (3.11)

or

u∗(k+ i) = −K(i)x(k), i = 0, 1, ...,N− 1. (3.12)

The resulting control law in (3.12) is an open loop solution, at least
for i > 0. However, by applying the RH principle, the state feedback
control law is obtained

uMPC(k) = −K(0)x(k). (3.13)

It is worth noting that in the nominal case here considered, there-
fore in absence of disturbances or modeling errors, closed-loop and
open-loop solutions coincide, while in the presence of disturbances or
model uncertainties only the first solution of the sequence coincides.

3.3.2 Tracking reference signals and disturbances

The basic MPC formulation previously introduced is now extended
to cope with tracking problems and systems affected by disturbances.
Let the system be described by

x(k+ 1) = Ax(k) +Bu(k) +Md(k)

y(k) = Cx(k) + d(k)
(3.14)

where d ∈ Rp is a disturbance, assumed to be known at the cur-
rent time instant k and, possibly, in the future prediction horizon. the



3.3 mpc formulation 27

objective is tracking the output variable reference signal yref in the
future prediction horizon. It is worth noting that

x(k+ i) = Aix(k) +

i−1∑
j=0

Ai−j−1(Bu(k+ j) +Md(k+ j))

y(k+ i) = Cx(k+ i) + d(k+ i)

(3.15)

and the quadratic cost function to be minimized includes a term
weighting the future error variable

J(x(k),u(),k) =
N−1∑
i=0

||yref(k+ i) − y(k+ i)||2Q + ||u(k+ i)||2R+

+ ||yref(k+N) − y(k+N)||2S

(3.16)

Based on the previous formula, it is possible to write

Y(k) = Acx(k) +BcU(k) +McD(k) (3.17)

where

Ac =



CA

CA2

...

CAN−1

CAN


,D(k) =



d(k)

d(k+ 1)
...

d(k+N− 1)

d(k+N)


,

Bc =



CB 0 0 · · · 0 0

CAB CB 0 · · · 0 0

· · · · · · · · · · · · · · · · · ·
CAN−2B CAN−3B CAN−4B · · · CB 0

CAN−1B CAN−2B CAN−3B · · · CAB CB



Mc =



CM 0 0 · · · 0 0

CAM CM 0 · · · 0 0

· · · · · · · · · · · · · · · · · ·
CAN−2M CAN−3M CAN−4M · · · CM 0

CAN−1M CAN−2M CAN−3M · · · CAM CM


Now letting

Yref(k) =



yref(k+ 1)

yref(k+ 2)
...

yref(k+N− 1)

yref(k+N)


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Again it is obtained that

arg min
u()

J(x(k),u(),k) = arg min
U

J̃(x(k),U(k),k) (3.18)

where

J̃(x(k),U(k),k) = (Yref(k) − Y(k)) ′Q(Yref(k) − Y(k)) +U ′(k)RU(k) =

= (YO(k) −Acx(k) −BcU(k) −McD(k)) ′Q(Yref(k) −Acx(k)−

BcU(k) −McD(k)) +U ′(k)RU(k)

(3.19)

This cost function must be minimized, as before, with respect to the
future values u(k+ i) of the control, and possibly under suitable con-
straints on x, u, y. It is worth mentioning that J̃ depends on the future
reference signals and disturbances, which often result unknown. In
these cases, it is reasonable assuming

yref(k+ i) = yref(k), d(k+ i) = d(k), (3.20)

i.e., the reference is considered to be constant within the prediction
horizon, as well as the disturbance.

3.3.3 Constant Reference Tracking

Assume that the reference signal is constant, i.e. yref(k) = yref. In
this case, provided that p ⩽ m and the system does not have any
invariant zero, it is possible to compute a steady-state (x̄, ū) such that

x̄ = Ax̄+Bū

yref = Cx̄
(3.21)

Thus, the performance index to be minimized as

J(x(k),u(),k) =
N−1∑
i=0

||yref(k+ i) − y(k+ i)||2Q + ||u(k+ i) − ū||2R+

+ ||yref(k+N) − y(k+N)||2S
(3.22)

so that J = 0 for y(k + i) = yref and u(k + i) = ū. Then, it also
a common design choice to consider as decision variable the input
increments ∆u(k+ i) ≜ u(k+ i)−u(k+ i−1). It is then easy to extend
the previous considerations to this case. However, the computation of
the steady-state pair (x̄, ū), which leads to zero output error, cannot be
performed in case of unknown disturbances and/or modeling errors.
Hence, it is advisable to resort alternative formulations guaranteeing
the incorporation of an integral action in the control law. This will be
the focus of Chapter 6.
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3.4 control horizon

A large value of N is often chosen to include in the prediction horizon
all the main process dynamics, so that also the number of optimiza-
tion variables u(k), u(k+ 1), ..., u(k+N− 1) is large at the price of
an heavy computational load associated with the solution of the opti-
mization problem to be solved on-line. For this reason, and in order
to obtain a less aggressive control action , many industrial algorithms
allow one to define a control horizon 0 < Nu < N and to consider
the additional constraints

u(k+ i) = u(k+ i− 1), i = Nu, ...,N− 1 (3.23)

or

∆u(k+ i) = 0, i = Nu, ...,N− 1 (3.24)

when the system is described in incremental form. Correspondingly,
the performance index to be considered, for example becomes

J(x(k),∆u(),k) =
N−1∑
i=0

||yref(k+ i) − y(k+ i)||2Q+

Nu−1∑
i=0

||∆u(k+ i)||2R + ||yref(k+N) − y(k+N)||2S

(3.25)

and all the previous developments can be easily extended to include
in the problem formulation this new set of constraints. Note that these
constraints can be explicitly considered when computing the output
prediction.

3.5 quadratic programming solvers

A rich set of good QP algorithms is available today. Different algo-
rithms have been investigated, based on the so called Karush-Khun-
Tucker optimality conditions of the problem (3.1) [18]. Regarding the
specific problem of MPC, on one hand, a possible alternative to online
optimization would be explicit MPC, which pre-solves the optimiza-
tion problem offline [19]. In particular, the algorithm considers the
set of all parameters of the problem, then it founds the control action
for all the possible regions of such space. Explicit MPC allows one to
solve the optimization problem off-line for a given range of operating
conditions of interest. By exploiting multi-parametric programming
techniques [20], explicit MPC computes the optimal control action
offline as an explicit function of the state and reference vectors, so
that online operations reduce to a simple function evaluation. Such a
function is piece-wise affine in most cases, so that the MPC controller
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maps into a lookup table of linear gains. However, as the dimension of
parameters space grows in dimension, the logarithmic search time re-
quired in the online stage and polynomial memory occupancy make
explicit MPC feasible only for small problems, with few inputs and
a short horizon. As an example, the multi-parametric toolbox [21] is
a popular MATLAB toolbox which implements various explicit meth-
ods, such as multi-parametric quadratic programming, that aim at
providing approximation of the solution to the QP problems at the
benefit of reduced offline and online complexity.

On the other hand, iterative methods solve QP problems online and
most of them can be classified according to the way they handle the
inequality constraints [22]. The most common methods are:

• Active Set (AS) methods start with a guess which inequality
constraint will hold with equality (which is called active) at the
optimal solution and solve the resulting equality constrained
QP problem. If it turns out that this guess was not correct, it is
updated until the optimal solution is found [23] [24].

• Interior Point (IP) methods, which are based on the idea of re-
moving the inequality constraints and to penalizing constraint
violations in the objective function. However, a non-quadratic
penalty term (e.g. logarithmic) needs to be used. The resulting
equality-constrained nonlinear programming problem is then
solved by means of, for instance, Newton’s method [18];

• Gradient Projection (GP) methods iteratively compute a step to-
wards the solution of the unconstrained QP problem and then
project this step onto the feasible set [25],[26].

When assessing suitability of a given MPC algorithm in general or
for a specific MPC problem at hand, the following numerical aspects
should be considered:

1. Type of inequality constraints, i.e., whether (3.1) includes only
input or also output bounds, or even general constraints;

2. cost function type: if all matrices Q, R and S are positive definite,
the resulting QP is strongly convex, which is a desirable feature
for most MPC algorithms to work reliably;

3. System dynamics: if system dynamics are unstable, the QP prob-
lem formulation tends to become ill-conditioned;

Another criterion of paramount importance when choosing MPC al-
gorithms is numerical performance in terms of computational speed.
In particular, worst-case execution times are of highest importance as
they ensure that the algorithm can run online reliably within each
sampling period [22].
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Figure 3.3: Classification method of MPC strategies for power electronics
and electric drives applications [27].

3.6 mpc in power electronics and electric drives

MPC has established itself as a promising control methodology in
power electronics [27, 28]. Several variants of MPC have been devel-
oped and implemented in power converters used in applications such
as electrical drives. MPC schemes can be classified into two main cat-
egories. On one hand, MPC is implemented as an indirect controller,
i.e., the controller computes the modulating duty ratio which is fed
into a modulator for generation of the switching commands. On the
other hand, MPC can be designed as a direct controller exploiting the
discrete nature of the power converter, thus dedicated modulator is
not required. Consequently, the elements of the control input vector
are the switching signals, implying that it is an integer vector.

The survey in [27], a well-detailed description of different MPCs
formulation is provided. In particular, all different approaches in
power electronics applications are summarized in Figure 3.3. Direct
MPC schemes include controllers with reference tracking, hysteresis
bounds and implicit modulator. Direct MPC with hysteresis bounds
was the first rudimentary version of this type of controllers devel-
oped for power electronic converters. This algorithm employs hys-
teresis bounds within which the variables of interest, such as the
stator currents. The second group of direct MPC strategies can be
further divided into two subgroups. The first one includes methods
that manipulate not only the switching signals, but also their appli-
cation time in an attempt to emulate the behavior of Pulse-Width-
Modulation (PWM) techniques. This is done by computing both the
optimal switch positions and the associated duty cycles. The second
group consists of direct MPC methods that are combined with pro-
grammed PWM, i.e., modulation methods that uses a fixed mod-
ulation interval. The switching pattern and the switching instants
are computed offline based on some optimization criteria, such as
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minimization of the current Total Harmonic Distortion (THD). Pro-
grammed PWM is implemented in the form of selective harmonic
elimination [29–31], or optimized pulse patterns [32].

Direct MPC with reference tracking, also known as Finite Control
Set (FCS)-MPC, is probably the most favored method in academia
due to its well-reported advantages such as its intuitive design proce-
dure and straightforward implementation [33]. In these methods, the
converter DC-bus voltage is not modulated within one control period.
Thus, the voltage that can be applied to the motor is selected among a
finite set of candidates that depends on the power converter topology.
In case of a three-phase two levels inverter, there are eight candidate
voltages, which correspond to the eight possible switch configura-
tions (see Chapter 2). The FCS-MPC offers several advantages. Firstly,
the modulator removal eases the current regulation scheme, directly
taking into account the discrete nature of a power converter. Secondly,
the average switching frequency is reduced with respect to the PWM-
based solutions. The FCS-MPC results, an effective control method
for high power converters [13], where the minimization of switch-
ing losses can lead to an increase of the inverter efficiency. Finally,
the MPC framework is suitable for including additional constraints,
e.g. maximum output currents. The main drawback of using FCS
predictive controllers is the computational burden that increases ex-
ponentially with the prediction horizon. A nondeterministic polyno-
mial time-hard optimization problem has to be solved on-line at each
control period. This represents a relevant issue for real-time appli-
cations. However, the availability of more powerful micro-controllers
and more efficient solvers for the optimization task permit, nowadays,
to overcome the issue.

The MPC-type which are considered in this work is highlighted in
Figure 3.3. Recently, the combinatorial complexity has been severely
reduced in FCS-MPC, with a consequent gain in its popularity
[34]. However, regarding the MPC as QP problem, also known as
Continuous Control Set (CCS)-MPC, implementing efficient algo-
rithms which can solve the optimization problem in limited hard-
ware at relatively high sampling frequency still represent a challenge.
Some recent publications are going into this direction, addressing
the problem of designing efficient methods for online CCS-MPC for
motor control and embedded in a low-cost platform [26],[35]. Thus,
in this work it will be presented an efficient custom QP solver for
electric drives applications, whose computational complexity can be
easily evaluated and the worst-case computational cost is uniquely
determined.



4
D ATA - D R I V E N C O N T R O L T H E O RY

This chapter aims to provide a short introduction on data-driven con-
trol theory, which will be useful for developing data-driven lgorithms
for electric drives purposes. In general, the behavior of three-phase
electric machines is described by the voltage balance equations. This
model is characterized by motor parameters, such as stator and/or ro-
tor phase resistance of the conductors, self and mutual inductances,
depending on the type of machine. In many cases, this model is
available, and different control strategies can be implemented. Model-
based techniques have been largely investigated in literature, showing
promising performances. However, in applications where the control
needs to be design for an unknown machine, these techniques may
be useless. The idea of data-driven control approach arises to over-
come this limit. Instead of design the control based on motor model,
this strategy considers only Input/Output (I/O) data collected from
the motor (for instance voltages and currents). Several data-driven
strategies can be pursued. In this work, the tracking problem is stated
as a constrained Quadratic Programming (QP) problem, pursuing
an Model Predictive Control (MPC)-type approach. Among possible
data-driven strategies, the Data EnablEd Predictive Control (DeePC)
and the Subsapce Predictive Control (SPC) are presented.

4.1 model predictive control framework

Consider the discrete-time system given by:

x(k+ 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k),
(4.1)

where A ∈ Rn×n,B ∈ Rn×m,C ∈ Rp×n,C ∈ Rp×n,D ∈ Rp×m x(t) ∈
Xn, u(k) ∈ Rm,y(t) ∈ Rp. Giving a desired reference trajectory r =

[r0, r1..], input and output constraints, apply control inputs such that
the output of the system (4.1) tracks the reference trajectory. In the
case when the model of the system is known in state space form, the
MPC strategy can be stated. MPC relies on a QP problem type. The
following optimization algorithm is considered:

33
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min
u,x,y

=

N−1∑
k=0

(
||yk − rt+k||

2
Q + ||uk||

2
R

)
subject to xk+1 = Axk +Buk

yk = Cxk +Duk

x0 = xt

uk ∈ U

yk ∈ Y, ∀k ∈ {0, ...,N− 1},

(4.2)

where N ∈ Z>0 is the time horizon, Q ∈ Rp×p is the output cost
matrix and R ∈ Rm×m is the control cost matrix. The classical MPC
problem (4.2) is solved considering the receding horizon principle,
i.e only the optimal input solution u∗

0 is applied to the system. The
optimization problem is resolved at each time step.

One of the crucial ingredient of the MPC is that it requires the pre-
cise knowledge of the system to be controlled. Furthermore, when the
state is not completely measured, one need to consider an estimated
state for setting initial conditions. For complex system, this can be a
cumbersome and expensive process. For these reasons, it is presented
a data-driven algorithm that does not require any particular model of
the process.

4.2 data-enabled predictive control

Classical system theory relies on a representation of the process that
includes a mathematical model of the system, as presented in Sec-
tion 4.1. Here, the point of view of the Behavioral System Theory1 is
considered, where the nature of a dynamical system is identified by
the subspace of signal space in which trajectories of the system live.
The idea behind DeePC relies on this concept.

Some useful definitions are given in the following.

Definition 4.2.1 A dynamical system is a 3-tuble (Z>0,W,B), whereZ⩾0

is the discrete-time axis, W is a signal space, B ⊆WZ⩾0 is the behaviour.

Definition 4.2.2 Let (Z⩾0,W,B) be a dynamical system.

(i). It is linear if W is a vector space and B is a linear subspace of WZ⩾0 .

(ii). It is time invariant if B ⊆ σB where σ :WZ⩾0 →WZ⩾0 is the for-
ward time shift defined by (σω)(t) = ω(t+ 1) and σB = {σω|ω ∈
B}.

(iii). It is complete if B is closed in the topology of point-wise convergence.

1 See [36] for a complete description.
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If a dynamical system satisfies (i)-(iii) is equivalent to finite dimen-
sionality ofW. The system class (Z⩾0,Rm+p,B) is denoted by Lm+p

where m,p ∈ Z⩾0. With abuse of notation, it is possible to identify
a dynamical system in Lm+p by simply indicate its behavior B. It is
defined now the trajectory of the system truncated to a window of
length T as the following set:

B = {ω ∈ (Rm+p)T | ∃v ∈ ω ∈ B s.t. ωt = vt, 1 ⩽ t ⩽ T}

This represents the set of trajectories truncated to a window of length
T. Without loss of generality it can be indicated B as the product
space of two sub-behaviours Bu and By , where Bu ⊆ (Rm)Z⩾0 and
By ⊆ (Rp)Z⩾0 are the space of input and output signals respectively,
that correspond to any trajectory ω that can be written as ω = [u,y]T.

Definition 4.2.3 A system B ∈ Lm+p is said to be controllable if for every
T ∈ Z>0, ω1 ∈ BT , ω2 ∈ B there exists ω ∈ B and T ′ ∈ Z>0 such that
ωt = ω1

t for 1 ⩽ t ⩽ T and ωt = ω2
t−T−T ′ for t > T + T ′.

In a brief, a behavioral system is said to be controllable if any two
trajectories can be patched together in a finite time.

The following definition denotes one of the most important prop-
erties on which DeePC is based.

Definition 4.2.4 Persistency of Exitation Let L, T ∈ Z>0 such that T ⩾ L.
The signal u = [u1, ....uT ]

T ∈ RTm is said to be persistently exiting of order
L if the Hankel matrix:

HL(u) :=


u1 · · · uT−L+1

...
. . .

...

uL · · · uT


is full of rank.

One can also represent the behavioral system in the traditional state
space representation. The state space representation of minimum or-
der (i.e the one with the smallest state dimension) is called minimal
representation and it is indicated as n. Another important parameter
that is introduced is the lag of the system, indicated as ℓ(B), which
is defined as the smallest integer ℓ ∈ Z>0 such that the observability
matrix Oℓ(A,C) := [C,CA, ...,CAℓ−1]T has rank n(B). These defini-
tions are used in the following Lemma.

Lemma 4.2.1 Let B ∈ Lm+p and B(A,B,C,D) a minimal input/out-
put state representation. Let Tini,N ∈ Z>0 with Tini ⩾ ℓ(B) and
[uini,u,yini,y]T ∈ BTini+N.
Then there exist a unique xini ∈ Rn(B) such that

y = ON(A,C)xini +T (A,B,C,D)u
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The Lemma 4.2.1 means that, if a sufficiently long collection of initial
I/O data of the system [uini,yini]

T is given, then the state to which
the system is driven by the sequence of inputs uini is univocally
determined. Now the Fundamental Lemma is introduced. This is the
main results of the work presented in [37].

Lemma 4.2.2 (Fundamental Lemma) Consider a controllable system Let
B ∈ Lm+p. Let T,t ∈ Z>0 and ω = [u,y]T ∈ BT. Assume u to be
persistently exiting of order t+n(B).
Then colspan(Ht(ω)) = Bt.

Note that in order to satisfy the persistency of excitation, it is required
that T ⩾ (m+ 1)(t+n(B))− 1. The Lemma 4.2.2 says that the system
identification procedure of the model can be replaced by constructed
any trajectories of a Linear Time Invariant (LTI) system using a finite
number of data sampled generated by a sufficient rich input signal.
The Lemma 4.2.2 affirms that each trajectory of the system can be de-
scribed by a linear combination of the Hankel matrix columns. This
allow to exploit this matrix to predict future behavior of the LTI sys-
tem, and design optimal control inputs.

4.3 algorithm for deepc

This section is dedicated to the explanation of how the data driven
control is derived from the results of Lemma 4.2.2. A complete expla-
nation can be found in [38]. Other references of previous or similar
works can be found here [39],[40],[41].

4.3.1 Input/Output Data Collection

It is considered that the data is generated by an unknown controllable
LTI system B ∈ Lm+p. Choose T,Tini,N ∈ Z>0 such that T ⩾ (m+

1)(Tini + N +n(B)) − 1. Consider:

ud = [ud
1 , ...,ud

T ]
T ∈ RTm yd = [yd

1 , ...,yd
T ]

T ∈ RTp

that are sequence of I/O collected (indicated with superscript d). As-
sume ud to be persistently exited of order Tini +N+n(B). Consider
now the following partition, which divides the I/O samples in past
and future data:

(
UP

UF

)
:= HTini+N(u

d),

(
YP

YF

)
:= HTini+N(y

d)

where:

• UP contains the first Tini block rows of HTini+N(u
d) (respec-

tively for YP with HTini+N(y
d));
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• UF contains the remained N block rows of HTini+N(u
d) (respec-

tively for YF with HTini+N(y
d));

4.3.2 State estimation and trajectory prediction

By exploiting Lemma 4.2.2, it is possible to reconstruct any Tini +N

length trajectory of a system BTini+N. A trajectory [uini,yini,u,y]T

belongs to BTini+N if and only if it exists g ∈ RT−Tini−N+1 such that:


UP

YP

UF

YF

g =


uini

yini

u

y

 (4.3)

Intuitively, the trajectory [uini,yini]
T identifies the initial state xini

of the system, which is the initial point for the prediction of future
trajectory.

4.3.3 DeePC Implementation

Given a desired output reference trajectory r = [r0, r1, ..] ∈ (Rp)Z>0,
the aim is to build a controller that finds optimal inputs for the un-
known system exploiting the procedure just described. The ingredi-
ents for building the optimization problem are the following:

• N ∈ Z>0 the time horizon length;

• past I/O data [uini,yini]
T ∈ BTini

, Tini > ℓ(B) ;

• input constraint set U ⊆ Rm;

• output constraint set Y ⊆ Rp;

• output cost matrix Q ∈ Rp×p;

• input cost matrix R ∈ Rm×m.

Now, the following optimization problem is set, following the opti-
mization framework of MPC of Section 4.1;
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min
g,u,y

=

N−1∑
k=0

(
||yk − rt+k||

2
Q + ||uk||

2
R

)

subject to


UP

YP

UF

YF

g =


uini

yini

u

y


uk ∈ U

yk ∈ Y, ∀k ∈ {0, ...,N− 1}

(4.4)

Here, u and y are not independent decision variables, since they are
completely described by the matrices UF and YF respectively. The
following algorithm represents the DeePC implementation:

Algorithm 1
Input: [ud,yd]T ∈ BT, reference trajectory r ∈ RNp, past data
[uini,yini]

T ∈ BTini
, constraint sets U and Y and performance ma-

trices Q and R.
1: Solve (4.4) for g∗.

2: Compute the optimal input sequence u∗ = UFg.

3: Apply the receding horizon.

4: Set t = t+ 1 and update uini and yini to the Tini most recent
input/output measurements.

5: Return to 1.

4.4 solution of the problem

4.4.1 Constrained solution of DeePC

The optimization problem in (4.4) requires in general an iterative QP
solver. In this work, applications of such algorithms will be presented
in Part iii, and output constraints are not considered. This approxi-
mation of the problem (4.4) speeds up the algorithm and the compu-
tation is reduced. The main disadvantage might be the undesirable
dynamics of the outputs, but in most of the presented applications,
a tolerance on the overshoot during step transients is allowed, while
the input constraints are more stringent. Thus, outputs constraints
will not be considered from here on out. Input constraints are as-
sumed to be linear in the input variable u. The problem in (4.4) can
be rewritten as:
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min
u,y,g

(
||yref − y||2Q + ||u||2R

)

s.t.


UP

YP

UF

YF

g =


uini

yini

u

y

 , lb ⩽ Fu ⩽ ub
(4.5)

lb,ub ∈ RmN and F ∈ Rs×pN, where s denoted the number of
constraints. The optimization problem is first solved with respect to
g. Thus, both input u and output y are eliminated from the mini-
mization problem according to the equality constraints UFg = u and
YFg = y. Exploiting these relations and explicitly the norm-2 operator,
the following problem is written:

min
g

(
(yref − YFg)

TQ(yref − YFg) + gTUT
FRUFg

)
s.t.

[
UP

YP

]
g =

[
uini

yini

]
, lb ⩽ FUFg ⩽ ub

(4.6)

After a few manipulations, a standard QP problem is obtained, con-
taining both equalities and inequalities constraints:

min
g

(1
2
gT2(YT

FQYT
F +UT

FRUF)g− 2(yref,TQYF)g+ yref,TQyref
)

s.t.

[
UP

YP

]
g =

[
uini

yini

]
, lb ⩽ FUFg ⩽ ub

(4.7)

From equation (4.7), it is quite straightforward to identify the Hessian
matrix and the liner term:

H := 2(YT
FQYF +UT

FRUF) c := −2YT
FQyref (4.8)

Constraints can be condensed in a single expression as follows:

uini

yini

lb

 ⩽

UP

YP

UF

g ⩽

uini

yini

ub

 (4.9)

The standard qp problem formulation is then obtained:

min
g

1

2
gTHg+ cTg

s.t. lbA ⩽ Ag ⩽ ubA

(4.10)
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All the dimensions of just defined matrices are listed below:

g ∈ RmL×1, H ∈ RL×L

c ∈ RL×1, A ∈ R((m+p)Tini+mN)×L

UF ∈ RmN×L, YF ∈ RpN×L

UP ∈ RmTini×L, YP ∈ RpTini×L

lbA,ubA ∈ R((m+p)Tini+mN)×1

(4.11)

where L := T − Tini −N+ 1. The problem can be solved by standard
QP solvers, e.g. using quadprog Matlab command or third parties
solvers such as qpOASES or OSQP. In this work, qpOASES has been ex-
tensively uses for his robustness, simplicity and the possibility to in-
terface it with Matlab Simulink and real time prototyping platforms.

4.4.2 Unconstrained solution of DeePC

Sometimes it is preferred to avoid the online implementation of a QP
solver, especially due to computation hardware limitations. In partic-
ular, the problem dimension of the considered a data-driven control
method could increase significantly with the size of I/O collected
data. For this reason, it is preferable neglecting input constraints and
finding a closed-form expression of the control law.

4.4.2.1 Case I: linear system and noise-free output measurements

A direct solution for the control problem stated in (4.7) can be ob-
tained neglecting both output and input constraints. The equality
constraints on vector g suggest that any N-long future trajectory of
a system that starts from the input-output sequence [uini,yini]

T can
be calculated as:

g = M
†
Pwini +Φz, MP =

[
UP

YP

]
(4.12)

where M
†
P is the Moore-Penrose pseudo-inverse of the past trajecto-

ries Hankel matrix MP, whereas Φ is a basis of the kernel of MP and
wini is a compact expression of the vector [uini,yini]

T . It is worth
noticing that both Φ and M

†
P can be pre-computed off-line using the

training data set. The just obtained expression for g is replaced in the
unconstrained version of (4.10). Thus, a reduced order optimization
problem is obtained, whose unknown is just the vector z (considering
the hessian term H as H

2 , with a slight abuse of notation with respect
the one defined in (4.8)):
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min
z

(M†
Pwini+Φz)TH(M†

Pwini+Φz)+dT (M†
Pwini+Φz) (4.13)

Expanding the matrix products and ignoring terms that do not de-
pend on z:

min
z

1

2
zT
(
2ΦTHΦ

)
z+

(
2wT

ini(M
†
P)

TH+ dT
)
Φ z (4.14)

The new Hessian matrix and linear term of the problem are respec-
tively:

Ĥ := 2ΦTHΦ

d̂ := ΦT
(
2HM

†
Pwini + d

)
The new problem can be directly solved, provided that the reduced
Hessian is positive definite. It is again remarkable the fact the Hessian
inversion can be pre-computed off-line, reducing the overall compu-
tational effort The unconstrained solution of z can be computed as:

z∗ = −Ĥ−1 d̂ (4.15)

Then, the unconstrained optimal control input solution is found sub-
stituting (4.15) in (4.12), recalling that u = UFg:

u∗ = UFg
∗ = UF(M

†
Pwini +Φz∗)

= UF(M
†
Pwini −ΦĤ−1 d̂)

= UF(M
†
Pwini −ΦĤ−1ΦT

(
2HTM

†
Pwini + d

)
)

= UF

(
M

†
P − 2ΦĤ−1ΦTHTM

†
P)︸ ︷︷ ︸

Kini

wini + 2UFΦĤ−1ΦTYT
FQ︸ ︷︷ ︸

Kr

yref

(4.16)

⇒ u∗ = Kiniwini +Kry
ref (4.17)

The optimal unconstrained solution is expressed as a combination
of the initial condition vector wini and the reference vector yref, as
reported in (4.17). Only the first optimal input is then applied, in
a receding horizon manner. Note that he matrices Kini and Kr can
be computed offline. Thus, the computational cost of this algorithm
reduces to a number of multiplications that depends linearly on Tini

and yref.
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4.4.2.2 Case II: linear system and output measurements with noise

In real systems, such as electric motors, the speed and current mea-
surements are affected by noise. In particular, one can consider that
the output measurements can be affected by bounded but unknown
noise. The problem formulation should be modified in this case. Let
consider the following modified cost function:

min
u,y,g,σy

(
||yref − y||2Q + ||u||2R + η||σy||

2 +β||g||2
)

s.t.


UP

YP

UF

YF

g =


uini

yini

u

y

+


0

σy

0

0


(4.18)

The term σy in (4.18) has been introduced as slack variable on initial
conditions. The noise represents uncertainties in measured data, and
this uncertainty is penalized in the cost function. In addiction, a term
that penalized the norm of g is taken into consideration, as it intro-
duces robustness in the optimization problem [42]. This idea relies
on the fact that the optimal solution should be relatively "small" in
presence of unknown uncertainties, otherwise it could diverge. The
optimization problem is similarly solved as the one in Section 4.4.2.1.
The complete passages for solving the problem (4.18) can be found
in Appendix C.1. Again, it can be shown that the optimal control in-
put is the results of linear combinations between the initial conditions
and reference.

4.5 subspace predictive current control

An alternative way for building a data-driven controller was pro-
posed by Van Overschee and De Moor in 1999 [43], namely the SPC.
The idea behind this approach is slightly different with respect the
DeePC, even if the initial data and the algorithm output are similar.
In particular, a collection of measured I/O trajectories are used also
by SPC as initial data. The output of the SPC algorithm is a data-
driven controller and not a state-space representation of the system,
similarly to the DeePC.

As a preliminary step, measured data are reorganized into the al-
ready defined Hankel matrices UP, UF, YP and YF. Then, the idea con-
sists into building a linear predictor of the form YF = Lw[UP YP]

T +

LuUF between, on one hand, future outputs and, on the other hand,
initial trajectory and future inputs

The predictor matrix L = [Lw, Lu] is computed as the least square
solution of:
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min
L

∣∣∣|YF − L

UP

YP

UF

 |
∣∣∣2 (4.19)

L can be found by means of the Moore-Penrose pseudo-inverse, i.e.
L = YF[UP, YP, UF]

†. Alternatively, numerically stable algorithms can
be implemented, such as QR-decomposition. The main difference be-
tween SPC and DeePC is the technique adopted to get rid of noise
in the measurements. On one hand, a slack variable is included in
the DeePC algorithm. On the other hand, a Singular Value Decom-
position (SVD) of the initial trajectory predictor matrix Lw is per-
formed, i.e. Lw = U1 S1 V

T
1 . Inspecting S1, dominant singular val-

ues are found and Lw is reconstructed using a truncated version of
S1. The number of dominant values give also an information of the
system dimension, that can be compared to the expected one.

The SPC uses the same optimization framework of Section 4.1:

min
u

(
(r− y)TQ(r− y) +uTRu

)
s.t. y = Lw[uini, yini]

T + Luu

(4.20)

Main differences with the DeePC algorithm are the equality con-
straints and the problem unknown. Equality constraints depend, in
fact, on how training data are exploited. On the other hand, the prob-
lem is solved for the future output sequence u and not for the vector
g. A closed form solution of (4.20) can be found, since the uncon-
strained problem is here considered. Moreover, only the first optimal
input of the sequence u is applied, in a receding horizon manner. In
conclusion, the control law can be resumed in a compact form as:

u(k) = Lcrr− Lcw[uini, yini]
T

Lcr = Maux(1 : m, :)LT
uQ,

Maux = (R+ LT
uQLu)

−1,

Lcw = LcrLw

(4.21)
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Algorithm 2 Subspace Predictive Control SPC.

Input: Input-output measurements [ud,yd]
T for the off-line stage; ref-

erence trajectory r, performance matrices Q and R and initial trajec-
tory uini and yini for the on-line stage.

1: (Training) Build Hankel matrices UP, UF, YP and YF.

2: (Off-line) Find the solution of the least squares problem
minLu,Lw

||Yf − (Lu Lw)(UP YP UF)
T||2 for Lw and Lu.

3: (Off-line) Compute the SVD decomposition Lw = U1S1V
T
1 and

approximate Lw by inspecting the dominant singular values.

4: (On-line) Apply the first solution of the control sequence (uncon-
strained solution): u = (R+ LTuQLu)

−1LTuQ(r− Lw[uini,yini]
T).
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M O D E L O R D E R R E D U C T I O N

In this chapter, a brief introduction to Model Order Reduction (MOR)
techniques is presented. In particular, the parametric Proper Orthog-
onal Decomposition (POD) method is discussed, which will be ex-
ploited in Chapter 9 for building a reduced data-driven model of the
electric drive.

5.1 introduction

The real-time control of large-scale dynamical systems, due to the
inherent large-scale nature of the models, leads to unmanageable de-
mands on computational resources. MOR aims to reduce the com-
putational burden by generating reduced models that are faster and
cheaper to manage, yet accurately represent the original large-scale
system behavior. This means that in an early stage of the process, the
most basic properties of the original model must already be present in
the smaller approximation. At a certain moment the process of reduc-
tion is stopped. At that point all necessary properties of the original
model must be captured with sufficient precision. All of this has to
be done automatically. In more recent years much research has been
done in the area of the MOR. Consequently, a large variety of meth-
ods is available. Some are tailored to specific applications, others are
more general. Some basic notions that are necessary to understand
how model reduction techniques work are given in the following sec-
tions. In particular, the focus is on the broad class of problems for
which the equations representing the system dynamics depend on
a set of parameters and the goal is to characterize system response
for different values of the parameters. These parameters may enter
the models in many ways, representing, for example, material prop-
erties, system geometry, system configuration, initial conditions, and
boundary conditions. This parametric dependence presents a unique
set of challenges for model reduction, since one cannot create a new
reduced model for every change in the parameter values. Hence, the
desired approach is to generate a parametric reduced model, that
approximates the original full-order dynamical system with high fi-
delity over a range of parameters. This is the goal of parametric model
reduction. The following notes follow the approach presented in [44],
where a complete and exhaustive survey on parametric model re-
duction is presented. Furthermore, some very well-written textbooks
have been consulted [45, 46]

45
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5.2 projection-based model reduction

In this section, the system structure that is for interest for the MOR
algorithms are presented. The focus in on the projection-based strate-
gies, which, in principle, rely on the concept of truncating the solution
of the original system in an appropriate basis.

5.2.1 Parameterized Dynamical System

Consider the linear dynamical system, parameterized with d param-
eters p = [p1, ...,pd]

T ∈ Ω ⊂ Rd, with Ω bounded domain:

D(p)ẋ(t,p) = K(p)x(t,p) +B(p)u(t)

y(t,p) = C(p)x(t,p)

x(0,p) = 0

(5.1)

where t ∈ [0,∞), x(t,p) ∈ Rn is the state vector, u(t) ∈ Rm and
y(t,p) ∈ Rq represent the inputs (excitations) and outputs (measure-
ments) of the model. The state space matrices have the dimensions
D(p), K(p) ∈ Rn×n, B(p) ∈ Rn×m and C(p) ∈ Rq×n. Thus dimen-
sion of parametric model (5.1) is n. The following are considered: for
every p ∈ Ω, D(p) is non-singular and the original model (5.1) is
asymptotically stable for every p ∈ Ω. This means that the eigenval-
ues of the matrix λD(p) −K(p) have negative real parts.

The aim is to represent the original large-scale model (5.1), where
n is usually very large (for example hundreds of thousands), with a
reduced model of the form:

Dr(p)ẋr(t,p) = Kr(p)xr(t,p) +Br(p)u(t)

yr(t,p) = Cr(p)xr(t,p)

xr(0,p) = 0

(5.2)

Such that the reduced output yr(t,p) ∈ Rq is a good approximation
of y(t,p) with respect to a certain error measure. The reduced state-
vector has length r ≪ n and the reduced state-space matrices have
dimensions Dr(p),Kr(p) ∈ Rr×r, Br(p) ∈ Rr×m and Cr(p) ∈ Rq×r.
Thus, the dimension is reduced from n to r ≪ n. A graphical descrip-
tion of this process is given in Figure 5.1.

5.2.2 Projection-Based Model Reduction

Parametric model reduction can be approached from a variety
of viewpoints. This work focuses on projection-based approaches.
Firstly, consider the general projection-based reduction approach for
a system with no parametric dependence; i.e.,

Dẋ(t) = Kx(t) +Bu(t)

y(t) = Cx(t)
(5.3)
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Figure 5.1: Model Order Reduction Principle.

The goal is to approximates the unknown state quantities in a basis of
reduced dimension and projects the system (5.3) onto a suitably de-
fined low-dimensional subspace. In particular, choose r-dimensional
test and trial subspaces, denoted by V and W, respectively, where
r ≪ n. Define the associated basis matrices V ∈ Rn×r and W ∈ Rn×r,
where V = Ran(V) and W = Ran(W), with Ran denoting the range.
Using the approximation that the full state x(t) evolves in the r-
dimensional subsbace V, it can be written as x(t) ≈ Vxr(t), where
xr(t) ∈ Rr. Using this approximation in (5.3):

DVẋr(t) = KVxr(t) +Bu(t) + res (5.4)

then, defining the residual res = DVẋr(t)−KVxr(t)−Bu(t), the most
used method to find the matrix W is to impose the so-called Petrov-
Galerkin condition, i.e.:

WT (DVẋr(t) −KVxr(t) −Bu(t)) = 0 (5.5)

In this way, the residual is constrained to be orthogonal to the sub-
space defined by W. The reduced system becomes:

Drẋr(t) = Krxr(t) +Bru(t)) = 0

yr(t) = Crxr(t)
(5.6)

where the reduced matrices are given by

Dr = WTDV

Kr = WTKV

Br = WTB

Cr = CV

(5.7)

5.2.3 Methods for Model Reduction

There are several approaches that can be used to construct a Reduced
Order Model (ROM). A depth description of such methods can be
found in [46]. A list of possible algorithms is given in the following:
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1. Rational Interpolation methods, (moment-matching and Padé-
type approximation methods), which in principle find an ap-
proximation of the system transfer function;

2. Balanced Truncation methods, which is one of the most com-
mon techniques for approximating linear dynamical systems
without parametric dependency. In the parametric setting, this
strategy can be employed to construct local reduced models at
given parameter values;

3. POD, which, in contrast to the rational interpolation methods
that formulate the basis computation task in the frequency do-
main, POD formulations typically use the time domain.

This work presents the POD methods, which will be used in Chap-
ter 9.

5.3 projection framework for parameterized systems

In the case of a system with no parametric dependence, the reduced
quantities in (5.7) are precomputed constant matrices, and the re-
duced model can be evaluated with no further reference to the full
model. However, in the case of a parameterized system, the reduced
model will also be parameter dependent. Several challenges arise in
achieving efficient construction and evaluation of a reduced model as
the parameters vary.
The first challenge is how to introduce parametric dependence into
the basis matrices V and W. One option is to construct "global" basis
matrices over the parameter space, that is, a single matrix V and a
single matrix W, each of which captures parametric dependence by
embedding information regarding the entire parameter space (e.g.,
information collected by sampling multiple parameter values).
A second option is to construct "local" basis matrices. That is, con-
sider K parameter sample points p̂1, ..., p̂K. For the realization of the
dynamical system corresponding to p̂i (i.e., D(p̂i)ẋ(t) = K(p̂i)x(t) +

B(p̂i)u(t),y(t) = C(p̂i)x(t)), the state-space matrices are constant,
and one computes appropriate local basis matrices Vi and Wi (i.e.,
Vi and Wi denote the basis matrices corresponding to the parameter
p̂i).

A second challenge is achieving efficient evaluations of the para-
metric reduced model in the case that a global basis is used. For ex-
ample, for a given V and W consider evaluating Kr(p) = WTK(p)V .
For general parametric dependence, Kr cannot be pre-computed; in-
stead, evaluating the reduced model for a new parameter value p

requires computing K(p) and subsequent pre and post-multiplication
by WT and V , respectively. These operations all depend on the (large)
dimension n of the original problem. Fortunately, in some cases the
structure of the problem admits an efficient strategy. For example,
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consider the case of affine parameter dependence1 with M+ 1 terms:

K(p) = K0 +

M∑
i=0

fi(p)Ki (5.8)

where the scalar function fi determine the parametric dependency,
which can be nonlinear, and Ki ∈ Rn×n for i = 0, ...,M are parameter
independent. Then the reduced matrix is given by

Kr(p) = WTK(p)V = WTK0V +

M∑
i=0

fi(p)W
TKiV (5.9)

For affine parametric dependence in the other matrices D(p), B(p),
and C(p), analogous expressions can be derived for the reduced-order
counterparts. The two most important advantages of an affine param-
eterization are listed below:

1. Once the basis matrices V and W are chosen, the component
reduced-order matrices (e.g., WTKiV , i = 0, ...,M) can be a pri-
ori computed in the offline phase. Hence, the reduced model
for a given p can be constructed without referring back to the
original system, thus having a small online cost;

2. the ROM has the same parametric structure as the original one,
which may be appealing to designers who work with these mod-
els. Note that the affine representation in (5.8) always holds
for any K(p) by letting M = n2 and choosing Ki as matrices
with only one nonzero entry. However, for the affine representa-
tion to have the computational advantages discussed above, one
needs M ≪ n2 and explicit expressions for fi(p), i = 1, ...,M.

5.4 proper orthogonal decomposition

Due to its broad applicability to linear and nonlinear systems, the
POD has become widely used in many different application domains
as a method for computing the reduced basis [44].

5.4.0.1 Time Domain POD

POD was introduced for the analysis of turbulent flows by Lumley
in [47]. POD basis vectors are computed empirically using sampled
data collected over a range of relevant system dynamics, typically us-
ing the method of snapshots, introduced by Sirovich [48]. Consider a
set of snapshots, x1, x2, ..., xns, which are state solutions computed at
different instants in time and/or different parameter values, where
xj ∈ Rn denotes the jth snapshot and one collects a total of ns < n

1 This is the situation that will be presented in Chapter 9.
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snapshots. More specifically, write xj = x(tj;pj), where tj and pj are,
respectively, the time and parameter values for the jth snapshot. De-
fine the snapshot matrix X ∈ Rn×ns whose jth column is the snapshot
xj. The Singular Value Decomposition (SVD) of X is:

X = UΣYT (5.10)

where the columns of the matrices U ∈ Rn×ns and Y ∈ Rns×ns are
the left and right singular vectors of X, respectively. Σ ∈ Rns×ns =

diag(σ1,σ2, ...,σns), where σ1 ⩾ σ2 ⩾ ... ⩾ σns ⩾ 0, are the singular
values of X. The POD basis V is selected as the r left singular vectors
of X that correspond to the r largest singular values, generating an
orthonormal basis. The POD basis is optimal in the sense that, for an
orthonormal basis of size r, it minimizes the least squares error of
snapshot reconstruction,

min
V∈Rn×r

||X−VVTX||2F = min
V∈Rn×r

ns∑
i=1

||xi−VVTxi||
2
2 =

ns∑
i=r+1

σ2
i . (5.11)

The square of the error in (5.11) is given by the sum of the squares
of the singular values corresponding to those left singular vectors not
included in the POD basis. Thus, the singular values provide quan-
titative guidance for choosing the size of the POD basis. A typical
approach is to choose r so that∑r

i=1 σ
2
i∑ns

i=1 σ
2
i

> κ, (5.12)

where κ is a desired tolerance. The numerator of (5.12) is often re-
ferred to as the energy captured by the POD modes. Since the POD
basis is constructed from sampled solutions, the POD method makes
no assumptions about the form of the full model; POD applies to
both linear and nonlinear systems, as well as to parameter varying
systems. It is important to note that the optimality of the POD basis
applies only to error in reconstruction of the snapshots, not to the
error in solution of the reduced model. Thus, the choice of snapshots
is critical to the quality of the reduced model.

5.4.0.2 Adaptive Parameter Sampling via Greedy Search

The choice of parameter sampling points is a critical issue that arises
in all methods of calculating the basis. In POD methods, one must
select the parameter samples to which the snapshots are computed.
For problems with a small number of parameters, a structured or
random sampling method (e.g., grid-based sampling) is the simplest
approach and, with a sufficiently large number of samples, will gen-
erate a rich dataset covering the parameter space. Greedy sampling
methods for model reduction approach the task of choosing param-
eter sample points one by one in an adaptive manner. The general
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steps in the greedy sampling approach are as follows. First, given a
current reduced model,

Dr(p)ẋr(t,p) = Kr(p)xr(t,p) +Br(p)u(t)

yr(t,p) = Cr(p)xr(t,p)
(5.13)

find the parameter value for which the error between the reduced
model and the full model is largest:

p̂ = arg max
p

||y(· ;p) − yr(· ;p)||2 (5.14)

Second, solve the full model at p̂ to generate new information with
which to update the reduced model. Then, with the updated reduced
model, repeat these two steps until the error is acceptable. This
method has since been applied in conjunction with POD methods
[49–51] and rational interpolation methods [52]. The key advantage
of the greedy approach is that the search over the parameter space
embodies the structure of the problem, so that the underlying system
dynamics guide the selection of appropriate parameter samples.

5.5 discussion

The main steps which are involved in projection-based model reduc-
tion of parameterized systems can be summarized as follows:

1. Choose the parameter values at which to sample. This may be
done at once as a first step or in an iterative fashion.

2. Evaluate the full model for each sampled parameter, which
might involve evaluating system matrices and solving linear
systems, or evolving the full model dynamics, depending on
the reduction method chosen.

3. Build the reduced basis, using a local or global strategy.

4. Project the equations to produce the reduced-order state-space
matrices.

5. Use the resulting reduced model for simulation, optimization,
control, or uncertainty quantification.

POD is the most generally applicable among the possible methods,
since it relies only on snapshots of the underlying system solutions.
As a result, the POD basis can be computed easily, even when the
simulation is a black-box code. Finally, the POD can also be applied
to general nonlinear problems, since computation of the POD basis
does not rely on a specific problem structure.
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I N T E G R A L M O D E L P R E D I C T I V E C U R R E N T
C O N T R O L F O R S Y N C H R O N O U S M O T O R D R I V E S

Model Predictive Control represents an affirmed optimal control strat-
egy, able to handle multi-variable systems and their input-output
constraints. However, Model Predictive Control (MPC) does not pro-
vide an integral control action for reference tracking control prob-
lems. Several methods have been proposed to overcome this limita-
tion. Standard MPC methods include a disturbance observer to han-
dle unmodeled uncertainties, such as external disturbances and pa-
rameter mismatches. Among these formulations, the authors focus
on the velocity form MPC, which considers the incremental formu-
lation of the motor state space model. This formulation gets rid of
the bias errors in reference tracking problems. In this chapter, the
MPC paradigm is applied to the current control of synchronous mo-
tor drives. The intent is to compare the velocity form and the MPC
with disturbance observer. A theoretical analysis of the MPC coupled
with disturbance observers and the equivalence between these for-
mulations and the velocity form is presented. Input constraints are
included in the MPC optimization process, thus requiring an online
quadratic programming solver. Experimental tests consider a 1 kW
anisotropic synchronous motor. Numerical aspects regarding the op-
timization problem are investigated for both methods.

6.1 introduction

Permanent Magnet Synchronous Motor (PMSM) drives are nowadays
an affirmed technology in applications where high performance mo-
tion control is required. In fact, PMSMs present significant merits due
to minimal rotor Joule losses, high power density and large torque-
to-inertia ratio. Despite these advantages, designing high precision
controllers for PMSM drives is a rather challenging problem because
of (i) the complex and non-linear dynamics to be controlled and (ii)
the presence of disturbances (also time varying), due to load changes,
uncertainties on the mechanical/electrical parameters of the system
and sensitivity to environmental operating conditions.

The research interest on model-based algorithms for electric drive
applications is constantly growing. Improvements in the computa-
tional power of modern Digital Signal Processor (DSP)s and the devel-
opment of dedicated hardware solutions are making these algorithms
suitable for industrial implementations. MPC represents a promising
strategy for electric drives applications [8],[9]. MPC theory relies on

55
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the presence of two main features: a model of the process to be con-
trolled and a proper cost function to be minimized. Considering the
PMSM current-reference tracking problem, MPC exploits the motor
model to compute optimal voltage inputs over a future finite receding
horizon time.

In general, the higher is the accuracy of the model, the better
the MPC performs. Concerning PMSM current control, the machine
model presents a non-linear behavior, e.g., the non-linearity induced
by magnetic saturation effects. Thus, an accurate description of cur-
rent dynamics would imply the modeling of complex non-linear
relations among electric quantities. As a drawback, such a precise
representation of the model could drastically increase the controller
complexity, reducing its reliability. As a consequence, a relatively sim-
ple linear model is widely adopted for current tracking MPCs. When
a non-linear representation of the system is needed, efficient numeri-
cal methods are required to reduce the computational complexity, as
proposed in [53] and [23].

In literature, two main MPC strategies have been proposed for
power electronics and electric drives applications. The first refers to
the Finite Control Set (FCS)-MPC, where the discrete nature of the in-
verter is exploited for solving the optimization problem [54],[55]. In
details, the solution of the current tracking problem is found among
the eight possible switch configurations of a two level voltage-source
inverter. This solution leads the controller to be very attractive for
electric drives applications, where high sampling frequencies are usu-
ally adopted. The second refers to the Continuous Control Set (CCS)-
MPC, where MPC is stated as a Quadratic Programming (QP) prob-
lem type [56–58]. The problem can be formulated in explicit or im-
plicit form. Implementations of explicit MPC are proposed and an-
alyzed in [59]. Similarities and differences between implicit and ex-
plicit formulations have been studied in [60]. Newly, in [35, 61], the
CCS-MPC has been successfully implemented as PMSM current con-
trol, fulfilling all the requirements of embedded control. Moreover,
recent publications include also the nonlinear MPC framework [62].
The authors remand to [27] for a complete and exhaustive survey on
MPC applications in power electronics field.

Several advantages are gained by adopting an MPC scheme. First,
MPC can easily handle multiple-input multiple-output systems [7],
whereas a decoupling of the dq axes and compensation strategies
are required by traditional Proportional-Integral-Derivative (PID)
controllers to keep a simple implementation [63]. Furthermore, con-
straints related to the system physics can be lightly included in the
optimization problem (e.g. see [64]).

One of the main drawbacks that affects MPC performances is repre-
sented by model uncertainties. In particular, a defective knowledge of
the motor parameters and the presence of unmodeled external distur-
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bances cause an error in current prediction. This causes the control
action to guide the system along a different trajectory from the ref-
erence one, producing a bias error between the reference and actual
controlled variables. Many solutions have been proposed to overcome
this limit. In [65], an overview on disturbance and uncertainty estima-
tion and attenuation techniques for PMSMs is presented. In [66], a ro-
bust MPC controller is designed adopting an extended state observer,
reducing the sensitivity against the stator inductance mismatch. Com-
pared to [66], the disturbance observer or the velocity form are de-
signed to provide integral action to the control, rather than estimate
inductive parameters. Moreover, a moving horizon estimator is imple-
mented as disturbance observer for a PMSM in [67]. Recently, in [68],
the MPC algorithm has been coupled with resonant controllers to re-
duce the effect of unmodeled periodic disturbances. Even for the FCS-
MPC a recent research proposes a Disturbance Observer (DOB) to
improve the robustness against uncertain parameters for three-phase
inverters [69]. Furthermore, in [70–72], the multistep-MPC has proven
to be a viable method for improving the transient and steady-state be-
havior of the predictive current controller for medium voltage drives.

Only very few publications have analyzed the design of CCS-
MPCs for electric drives. Inspired by [73], the offset-free MPC that
includes a DOB is considered. In particular, a steady-state Kalman
filter DOB is reviewed. Moreover, the velocity form of MPC is pre-
sented, which hereinafter will be referred as Integral-Model Predic-
tive Control (I-MPC). In principle, it is obtained by considering the
incremental formulation of the motor state-space model. In litera-
ture, velocity form of CCS-MPCs have been recently presented for
the current control of an induction motor [74] and a PMSM [75].
However, the strategy presented in [75] belongs to the FCS-MPC
version. The purposes of this work are manifold and listed in the
following. First, guidelines for the design of CCS offset-free MPC
with DOBs are given. Second, experimental validation of the benefits
introduced by the integral action in presence of model uncertainties
are provided. Third, the comparison between the two control solu-
tions is conducted with experiments, in terms of performance and
computational aspects, giving indications of when one solution may
be preferred over the other. Fourth, the robustness against motor
parameter variations is analyzed for the velocity form and MPC with
steady-state Kalman filter DOB. Finally, the focus is on numerical
problems and constraints inherent in real-time control for electrical
drive applications.

6.2 model predictive current control of a pmsm drive

The idea behind MPC approach consists in predicting the future be-
havior of a system exploiting an internal model. Thanks to the predic-
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tion step, MPC computes the optimal control action over time, mini-
mizing an appropriate cost function. The internal model adopted by
MPC is often the discrete-time state-space representation of the pro-
cess:


x(k+ 1) = Ax(k) +Bu(k) + h(k)

y(k) = Cx(k)

(6.1)

where x ⊆ Xn,u ⊆ Um,y ⊆ Rp are the state, input, and output
vectors, respectively, whereas Xn, Um and Rp are their admissible
sets. A disturbance term h(k) is included too.

The state-space representation of the PMSM electrical variables dy-
namics, expressed in the dq reference frame synchronous with the
rotor flux [57] is considered. The matrices and vectors in (6.1) assume
the following form:

A =

 1−
Ts R

Ld

Tsωme(k)Lq
Ld

−
Tsωme(k)Ld

Lq
1−

Ts R

Lq

 ;B =


Ts

Ld
0

0
Ts

Lq



x(k) =

id
iq

 ;u(k) =

ud

uq

 ;h(k) =

 0

−
Tsωme(k)Λpm

Lq


where Ts is the sample time, id and iq are the dq axis currents, ud and
uq are the dq applied voltages. C in (6.1) is the identity matrix. More-
over, Ld and Lq are the dq PMSM inductances, respectively, and R is
the stator phase resistance. The back-Electro Motive Force (back-EMF)
induced by the presence of permanent magnets is modeled as a dis-
turbance term h(k). This term depends on the electric speed ωme(k)

and on the flux linkage Λpm. Instead of using u(k) as control input,
it is convenient to adopt the input increment ∆u(k) = u(k)−u(k− 1).
The optimal future N input increments ∆u(k + z) to be applied to
the PMSM are computed on the basis of the following cost function J

minimization process:

min
∆u(·)

J = min
∆u(·)

N−1∑
z=1

∥y∗(k+ z) − y(k+ z)∥2Q+

+

N−1∑
z=0

∥∆u(k+ z)∥2R + ∥y∗(k+N) − y(k+N)∥2S

s.t. x(k+ z+ 1) = Ax(k+ z) +Bu(k+ z) + h(k+ z)

∆u(k+ z) = u(k+ z) − u(k+ z− 1)

(6.2)
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where N is the prediction horizon length, y = [ id, iq]T is the pre-
dicted current vector, y∗ =

[
i∗d, i∗q

]T is the reference current vector,
and Q, R, S are weighting matrices.

6.3 integral action

The MPC optimality solution is measured by the cost function value.
However, if a model mismatch occurs in matrices A, B or in the vec-
tor h(k), the calculated voltage reference ∆u(k) does not guarantee
an unbiased current reference tracking, even if the value of the cost
function is zero. A conventional MPC scheme without a disturbance
observer, in fact, introduces only a proportional action for a tracking
problem.

In this section an integral action is included inside the MPC prob-
lem formulation (6.2). A different form of the state-space represen-
tation, known as velocity form, is required to guarantee this feature.
The relevant difference between standard MPC and I-MPC is that the
latter considers an incremental state space model formulation (see
(6.3)). The new state is obtained by subtracting the equation (6.1) eval-
uated in the k+ 1 sample from the same equation evaluated at sample
k, defining ∆x(k+ 1) = x(k+ 1) − x(k):

∆x(k+ 1) = A∆x(k) +B∆u(k) (6.3)

The back-EMF term h is elided, since both motor speed and perma-
nent magnet flux does not change significantly within a sample pe-
riod. The I-MPC problem statement can be rewritten in a standard
MPC form using the state augmentation technique. First, the output
equation of (6.1) has to be rearranged in a incremental form:

y(k+ 1) − y(k) = C(x(k+ 1) − x(k)) = C∆x(k+ 1)

→ y(k+ 1) = CA∆x(k) + y(k) +CB∆u(k)
(6.4)

The augmented form of state equation (6.1) is reached by stacking ∆x

and y in a new state variable denoted xm:

[
∆x(k+ 1)

y(k+ 1)

]
=

[
A 0n×p

CA 1p×p

][
∆x(k)

y(k)

]
+

[
B

CB

]
∆u(k)

ym(k) =
[
0p×n 1p×p

] [∆x(k)
y(k)

] (6.5)

Then, the system is rewritten in a conventional state-space form with
the new augmented state variable xm ∈ Rn+p and new matrices de-
noted Am and Bm, derived from (6.5):
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xm(k+ 1) = Amxm(k) +Bm∆u(k)

ym(k) = Cmxm(k)
(6.6)

The analysis of the new system permits to understand the differ-
ence between a conventional MPC and an I-MPC. The eigenvalues of
the augmented system matrix Am are in fact:

det(λ1n+p −Am) = det

[
λ1n −A 0n×p

−CA λ1p − 1p

]
= (λ− 1)p det(λ1n −A)

(6.7)

where p integrators are added to the eigenvalues of original matrix A

thanks to the incremental formulation. This fact proves why I-MPC,
differently to MPC, assures the rejection of constant disturbances in
the output reference tracking.

6.3.1 Constrained solution of I-MPC

MPC framework permits to easily handle input or output inequality
constraints. However, a constrained optimization problem requires
in general a high computational effort. In the last years, some real-
time oriented QP solvers have been proposed [24] for solving this
class of problems. In particular, the solver qpOASES has both a MAT-
LAB Simulink and a dSPACE interface, allowing real-time testing
on dSPACE hardware, e.g. MicroLabBox. All QP solvers require a
standard constraints matrix in the form M∆U ⩽ b to compute the
constrained solution. The simplest constraints that can be included
in (6.2) are the input voltage ones. In the case of a three-phase two-
level inverter, the feasible voltage set is represented by an hexagonal
convex region in a stationary reference frame, reported in Figure 6.1.
Considering a one-step-long prediction horizon and an incremental
formulation for the input voltages, all six constraints inequalities are
described by the following matrix expression:

mTT−1

(
∆ud(k)

∆uq(k)

)
⩽ −mTT−1

(
ud(k− 1)

uq(k− 1)

)
+ uT

lim

m =

[√
3 0 −

√
3 −

√
3 0

√
3

1 1 1 −1 −1 −1

]
ulim = 2/

√
3UDC

(
1 1/2 1 1 1/2 1

)
(6.8)

where T−1 is the well-known inverse Park transformation. It is re-
minded that the model used for the predictions is the dq one, as
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Figure 6.1: Voltage constraints in a stationary reference frame. One of the six
equations that define the feasible set is reported as an example.

presented in Section 6.2. As an example, the first column defines the
equation of constraint in Figure 6.1. The (6.8) can be rewritten in the
form M∆U ⩽ b straightforwardly, where the matrix M is defined as
mTT−1.

The same approach used for a one-step-long prediction horizon can
be easily extended in the case of longer horizons. A bigger M matrix
has to be defined, in particular its size is (2N) × (6N). The motor
model, in fact, has two control inputs, i.e., the dq voltage components,
and six constraints equations, i.e., the ones defined in (6.8).

6.4 velocity form and disturbance model equivalence

The offset-free tracking can be achieved by different MPC formula-
tions. In particular, the velocity form of MPC is considered as an
alternative strategy with respect to disturbance model and observers.
However, recent results reported in [73] show that the velocity form
represents an equivalent formulation of a particular case of distur-
bance and model observer. To have a clear and concise explanation,
the steady-state Kalman filter estimator is considered. This represents
the benchmark in linear offset-free MPC. In the following, the main
result and new considerations about the implementation of offset-
free MPC in electric drives applications are presented. It is worth
noting that the following theoretical results hold for Linear Time In-
variant (LTI) systems. The matrix A in Section 6.2 contains speed de-
pendence terms. As suggested in [35], the system is linearized for a
constant value of speed (i.e., the base speed ΩN). Then, if a different
speed is set, the DOB will try to estimate it as a discrepancy from the
"nominal" model.
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6.4.1 Disturbance and Model Observer

To get an offset-free tracking an augmented model including the dis-
turbance as state variable is first defined; then, a state observer is de-
signed to estimate the disturbance. Let us consider the system (6.1).
The general augmented model is introduced:

x(k+ 1) = Ax(k) +Bu(k) +Bdd(k)

d(k+ 1) = d(k)

y(k) = Cx(k) +Cdd(k)

(6.9)

where d ∈ Rnd is the disturbance state. Once defined, the augmented
state ξ = [x;d], (6.9) can be rewritten as:

ξ(k+ 1) = Aaξ(k) +Bau(k)

y(k) = Caξ(k)
(6.10)

where Aa :=

[
A Bd

0 I

]
, Ba :=

[
B

0

]
and Ca :=

[
C Cd

]
. It is assumed

that the system (6.10) is observable. The disturbance state d is not
controllable by the input in (6.10). However, using the above assump-
tion, the disturbance estimation is used to remove its influence from
the controlled variable u. The disturbance estimation consists of two
steps.

In the former step, known as prediction step, the future state and
output are predicted by means of the augmented model:

ξ̂∗(k) = Aaξ̂(k− 1) +Bau(k− 1)

ŷ∗(k) = Caξ̂
∗(k)

(6.11)

ξ̂∗(k) and ŷ∗(k) denote the predicted state and output, respectively.
In the latter, known as filtering step, the augmented state ξ(k) is es-
timated exploiting the measurements y, and the estimated state is
denoted as ξ̂(k):

ξ̂(k) = ξ̂∗(k) +Kae(k) (6.12)

where e(k) = y(k) − ŷ∗(k) indicates the output prediction error and
Ka = [Kx;Kd] ∈ Rn+nd is the observer gain matrix for the augmented
system (the block Kx multiplies the state x, whereas Kd multiplies the
disturbance). The two steps (6.11) and (6.12) can be also condensed
in the following single equation:

ξ̂(k) = Aaξ̂(k− 1) +Bau(k− 1) +Kae(k) (6.13)

The asymptotic stability of the observer (6.13) is guaranteed if the
matrix [Aa − KaCaAa] (i.e., the observability matrix) has all eigen-
values within the unit circle. In [73, Proposition 17], it is reported the
procedure for designing offset-free MPC schemes using a disturbance
model.
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6.4.2 Velocity Form

The velocity form, named I-MPC, exploits the definitions of the state
increment ∆x(k) = x(k) − x(k − 1) and input increment ∆u(k) =

u(k) − u(k− 1). The nominal model can be rewritten introducing an
augmented state variable ξ∆ = [∆x;y]:

ξ∆(k+ 1) = A∆ξ(k) +B∆∆u(k)

y(k) = C∆ξ(k)
(6.14)

where A∆ :=

[
A 0

CA I

]
, B∆ :=

[
B

CB

]
and C∆ :=

[
0 I

]
In general, the

outputs y are measured, whereas the state ∆x may not be measurable.
In this case a state observer is required too. According to the velocity
form approach, the disturbance is estimated by means of the same
Kalman filter presented in (6.11) and (6.12), which can be written as:

ξ̂∆(k) = A∆ξ̂∆(k− 1) +B∆∆u(k− 1) +K∆e(k) (6.15)

where K∆ := [K∆x
;Ky]. Since the outputs are measured in our applica-

tion, it is a common choice to set Ky = I, thus ŷ(k) = y(k). It follows
that the matrix [A−K∆x

CA] needs to have the eigenvalues inside the
unit circle to have an asymptotically stable observer.

6.4.3 Equivalence Between Velocity Form and Disturbance Model and Ob-
server

The equivalence result between the velocity form and the disturbance
model/observer form was shown firstly in [76]. The same authors
gave a final and complete description in [73]. The most relevant result
of the work, is here reported:

Theorem 6.4.1 [73, Theorem 22] Consider the velocity form model (6.14)
and observer (6.15), with a stable output observer gain K∆ = [K∆x

; I]T . This
is equivalent to use the following disturbance model and observer gains:

Bd = K∆x
; Cd = I−CK∆x

; Kx = K∆x
; Kd = I (6.16)

Moreover, if the state is measurable, the matrices become:

Bd = I; Cd = 0; Kx = I; Kd = I (6.17)

Assuming (6.17), the observability matrix [Aa − KaCaAa] has all its
eigenvalues equal to zero.

6.5 simulation results

In this section, the effectiveness of the integral action in the control
loop is pointed out. This is shown by considering the effect of pa-
rameter mismatches neglecting the velocity form or the presence of
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Figure 6.2: MPC to I-MPC switch: Ld and Lq mismatch. The inductance pa-
rameters of the motor are halved. At first, the current tracking
is performed using MPC with no observer. At t=1s the I-MPC is
selected.
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Figure 6.3: I-MPC: Unconstrained vs Constrained implementation. Voltage
are normalized with respect to 2/3UDC.

a state observer. Secondly, a comparison between the unconstrained
and constrained formulation of the I-MPC is given in transient condi-
tions. Finally, tuning guidelines are provided.

6.5.1 Benefits of the Integral Action in Presence of Parameter Mismatches

The Interior Permanent Magnet (IPM) motor parameters are reported
in Table 2, whereas the motor lamination is shown in Figure 6.4. The
control uses the model (6.1) to predict future currents and the algo-
rithm is executed in discrete time, with sample period Ts = 100 µs.
The simulation is performed as follows: the IPM motor speed is kept
constant; in the first part, the MPC with velocity form or observer
has been used as current controller. Then, a switch with the I-MPC
algorithm is performed. This allows for comparing the two strategies,
focusing on the dq current reference tracking and the integral action
of the current error between references and measurements.

Thanks to commissioning procedures, both the inductance Ld and
Lq change of almost a factor 2 inside the feasible operating current
range of the machine. Thus, motor inductances during simulations
are halved, approximating the steady-state full load operation. In Fig-
ure 6.2(a) and Figure 6.2(b), it is possible to notice that, after the
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Figure 6.4: Structure of the IPM machine prototype (12 slots, 8 poles).

switch, I-MPC compensates effectively the steady state error in the
reference tracking. Moreover, in Figure 6.2(c) and Figure 6.2(d), the
rise of the error integral is stopped when I-MPC is applied at instant
1 s. This means that I-MPC grants an integral action and so an unbi-
ased tracking reference.

6.5.2 Unconstrained vs Constrained Implementation

The main benefits of implementing a constrained version of I-MPC
controller are obtained when the solution of the unconstrained prob-
lem exceed the voltage constraints. In this condition, the policy
adopted for the unconstrained solution is to project the optimal
voltage computed keeping constant the ratio between its components.
The maximum value of the voltage vector magnitude is UDC/

√
3, i.e.

the value of the radius of the circle inscribed in the hexagonal region
shown in Figure 6.1. This policy does not assure optimal results, as
proved by the simulation summarized by Figure 6.3. The motor is
driven in current control mode, keeping its speed constant at the
nominal value. A current reference equal to the nominal Maximum
Torque per Ampere (MTPA) point is applied.

The current transient is much faster in the constrained case for both
the d and q current components (Figure 6.3(a) and Figure 6.3(b)).
This is reasonably due to the fact that unconstrained I-MPC does
not entirely exploit the available DC-bus voltage (Figure 6.3(d)). Nev-
ertheless, the selection of a consistently different current trajectory
greatly influences the transient (Figure 6.3(c)). Projecting the voltage
maintaining the phase, in fact, avoids the fact that the d-axis current
has a faster dynamic, due to a lower inductance (Table 2). This jus-
tifies the constrained I-MPC choice of increasing the d current value
first, inducing a trajectory which is longer in the dq current plot (Fig-
ure 6.3(c)), but actually much faster in the time domain.

6.5.3 Tuning Guidelines

One of the main issue about MPC design and optimal control in
general is how the choice of weight matrices in (6.2) affects the con-
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Table 2: Interior permanent magnet motor nominal parameters.

IPM Motor Data

Pole Pair Number 4

Phase resistance R 1.5 Ω

Direct inductance Ld 34 mH

Quadrature inductance Lq 86 mH

Nominal current IN 6 A(pk)

PM flux-linkage Λpm 0.2 Vs

DC-bus voltage UDC 300 V

Nominal Power PN 1 kW

Nominal Speed nN 1000 rpm

trol performances. The answer is still not uniform in literature, and
several heuristic techniques have been presented. In this work, the
penalty on the tracking terms (i.e. the weight matrices Q and S) have
been set equal to the identity matrices, and the matrix R that pe-
nalizes the control input increments is manually tuned. The relative
weights among this matrices determine the control performance. On
one hand, a relatively low penalty on the control input compared to
the one on tracking term y∗ −y causes a faster current dynamics, but
with the drawback of consuming more energy (i.e. the control algo-
rithm will find higher values of ∆u) and current overshoots are em-
phasized. On the other hand, larger values of R reduce the overshoot,
having an impact also on the current rising-time.

The effect of the regularization term on the control action can be
evaluated by considering the MPC problem (6.2) written for N = 1.
Moreover, it is assumed that the input constraints are satisfied. The
MPC in (6.2) can be condensed in matrix form:

min
∆u

1

2
∆uTH∆u+∆uTc (6.18)

where

H = 2(BTQB+ R) = 2

( Ts

Ld
)2q+ r 0

0 ( Ts

Lq
)2q+ r


c = −2BTQ(yr −Ax(k) −Bu(k− 1) − d(k))

(6.19)

The matrix C has been omitted since it is the identity matrix. If r = 0,
the algorithm performs as a dead-beat predictive controller. In fact,
the optimal solution would be (ignoring the term Q):

∆u∗ = −H−1c = B−1(yr −Ax(k) −Bu(k− 1) − d(k)) (6.20)
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Figure 6.5: Test bench.

and the value is computed in order to achieve the reference in one
time step interval, i.e. the control input is computed based on the
error between the reference and the predicted output. However, the
control input variation is introduced to mitigate this effect. In fact,
choosing r ̸= 0 the solution is weighted by:

∆u∗ =

 1

( Ts
Ld

)2q+r
0

0 1

( Ts
Lq

)2q+r

 c (6.21)

Now, the control input variation can be modified by acting on r. As
can be seen from (6.21), the value of r should depend on the sam-
pling time Ts and the inductance values. As long as the r coefficient
is increased, the current dynamics is slowed. This effect is typical of
transients, where large values of ∆u are usually required. The compu-
tation with a larger prediction horizon is more complicated, but the
same idea holds.

In the literature, finding a systematic way to design control param-
eters when constraints are included is still a challenge. Thus, a rigor-
ous calculation of tuning weights is found to be cumbersome. From
the author’s perspective, there is always a mismatch between models
which are used in simulations for finding the tuning parameters, and
the real test bench experiments. The model always partially repre-
sents the real physics. The effects of noise, external disturbances, and
sensor accuracy are just a few examples of phenomena that are very
difficult to represent exactly in the simulation environment. Thus, the
tuning parameters are always adjusted in the experimental stage. Pre-
vious considerations provide guidelines to find the order of magni-
tude of the regularization term, which is often related to the values
of the dq inductances.
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Figure 6.6: Control scheme architectures.

6.6 experimental results

The test bench in Figure 6.5 consists of a master Surface Permanent
Magnet (SPM) motor directly connected to the motor under test. The
drive has been tested experimentally using a dSPACE MicroLabBox,
a compact development system for laboratory purposes which has
dual-core real-time processor at 2 GHz and dedicated electric motor
control features, which provides the six commands to the inverter.
After initialization, the program reads the phase currents from the in-
verter current sensors, the mechanical speed and rotor position from
the encoder placed on the motor shaft. Speed is hold by the mas-
ter motor, while the current loop controller (MPC/I-MPC) calculates
the voltage references for the Pulse-Width-Modulation (PWM), which
gives the duty cycle signals for the six gates of the inverter connected
to the motor under test. Current and speed measurements are syn-
chronized with the PWM.

The first part of this section is devoted to show the effectiveness
of the integral action introduced by I-MPC scheme. Tests have been
carried out considering the velocity form MPC formulation and the
MPC without any disturbance observer. The effect of parameter mis-
match is analyzed. A schematic representation of the control scheme
architecture is shown in Figure 6.6. The experiments on dynamic per-
formance and parameter sensitivity have been conducted with the
already presented IPM motor (see Table 2).

The second part of this section considers the comparison between
the I-MPC and the MPC with steady-state Kalman filter as DOB.
The aim is to show the effectiveness of both control solutions with
a particular attention to numerical aspects. Regarding these two con-
trol schemes, the computational burden in the worst-case scenario
(i.e. when the solver performs the maximum number of iterations)
is about 70 µs for both the algorithms. These tests are carried out
considering a PWM switching frequency of 8 kHz to allow the im-
plementation of the constrained controller on the dSPACE MicroLab-
Box. This choice allows the controller to be implemented with N = 3.
The computational cost of the MPC is strictly related to the predic-
tion horizon length. The dimension of the problem grows as far as
this parameter increases. Thus, the computation time required by the
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solver is highly correlated with the selected prediction horizon too.
The computational effort can be reduced if a customized solver is
designed, allowing the prediction horizon, the sampling frequency
or both to be increased, with benefits in term of dynamic responses
and disturbance rejection properties. This study will be presented in
Chapter 7.

6.6.1 Sensitivity Analysis

It is worth mentioning that the adopted IPM motor exhibits a high
harmonic content on the back-EMF, since it is designed with a tooth
wound stator winding. Hereafter, a comparison between the two pro-
posed predictive control strategies is shown in terms of parameter
sensitivity.

As just mentioned, the main advantage of I-MPC over MPC is
the integral action that vanishes bias errors in the reference tracking
when constant disturbances, as parameter mismatches, are presented
in the control loop. In Figure 6.7, a complete sensitivity analysis of
all the parameters presented in both MPC and I-MPC controllers
is shown. Nominal control values of Ld, Lq, R and Λpm have been
changed of 10%, 20%, 50% and 100% during a steady state MTPA
working point condition, operating at 500 rpm. As can be noticed,
MPC shows both bias and variance increasing errors in tracking ref-
erence when the disturbance grows. Only the resistance R does not
badly affect the control performance, as expected. On the other hand,
I-MPC seems to be robust to all the parameters mismatches. However,
it is worth mentioning that there are cases, where a constant distur-
bance can increase the variance error in tracking a certain reference,
as shown in next paragraphs. In fact, even offset-free MPCs have their
intrinsic bandwidth limits and thus, if the disturbance is too severe,
variance errors arise and the stability can be compromised.

6.6.2 MPC Performance Comparison

In this section, the offset-free MPC with disturbance observer (Sec-
tion 6.4.1) designed as in Section 6.4.3 and the I-MPC (Section 6.4.2)
schemes are compared. For this purpose, the IPM motor has been
tested in different operating conditions. Three tests are presented: a
current transient, a sensitivity analysis in steady-state and during a
speed transient. These experiments have been conducted using the
regularization term in the cost function (6.2) equal to R = 0.003I for
both the schemes, where I is the identity matrix of suitable dimen-
sion. The dq currents have been normalized with respect the nominal
peak current in Table 2.
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Figure 6.7: Parameter sensitivity test: nominal control values of Ld
((a),(e),(i)) Lq ((b),(f),(j)), R((c),(g),(k)) and Λpm ((d),(h),(l)) have
been changed of 10%, 20%, 50% and 100% during a steady state
MTPA working point condition, operating at 500 rpm.

6.6.2.1 Current Transient

A current step transient is shown in Figure 6.8, where an MTPA
working point has been set as reference. The test is performed the
drive base speed. The two MPC schemes have the same performance
as confirmed by the dq current transients in Figure 6.8(a) and Fig-
ure 6.8(b). Furthermore, the steady-state torque waveform is reported
in Figure 6.8(c). The oscillations are mainly due to the master PMSM
that introduces harmonics. Figure 6.8(d) proves that the solver finds
the optimal solution to the voltage limits in the first instants. The
number of iterations required by the solver for finding the solution
during the transient are the same for both MPC control schemes. The
test has been repeated at 10% of the base speed and it is reported in
Figure 6.9. By comparing Figure 6.8(a), Figure 6.8(b) and Figure 6.9, it
is possible to note that the speed and the external mechanical system
represented by the master motor impacts on the control performance.
In fact, both the MPC solutions show very good tracking performance
at low speed with a lower harmonic contents. However, the dynamic
is influenced by the lower value of the back-EMF. As can be seen from
Figure 6.9, the two algorithms show an overshoot and an undershoot,
then the controllers stabilize the currents at the desired reference. The
different behavior can be justified by the choice of the tuning param-
eters, which have been selected in order to satisfy acceptable perfor-
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Figure 6.8: Step current at nominal speed.

mance in all the speed range. This allows both to maintain a simple
control structure and to perform offline hessian computations. Better
results could be obtained with the addition of a feed-forward term,
but this goes beyond the scope of the work. With the presented ex-
periments, it has been shown that both the algorithms have similar
performance during transients, whose dynamics almost overlap.

6.6.2.2 Lq Sensitivity

The sensitivity analysis test is shown in Figure 6.10. The value of Lq
has been doubled at time instant 0.18 s, similar as before, during a
steady-state operating condition. This test also confirms that the two
control schemes operate in the same manner. Both solutions are able
to get rid of this parameter mismatch without introducing an offset
in current tracking. In particular, the d-axis current is not affected by
Lq mismatch. However, the q-axis current increases its variance error.

6.6.2.3 Speed Variation

The last test aims at showing the effect of speed variation in current
tracking capacity of the two MPC scheme, combined with a Lq pa-
rameter variation. The test is performed as follows: the current MTPA
working point is set as current reference and steady-state condition
is reached. Then, starting from 100 rpm, the master motor performs
a speed ramp up to 700 rpm. Results of this test are shown in Fig-



6.6 experimental results 73

0 0.05 0.1

time (s)

-1

-0.5

0

d
-c

u
rr

en
ts

 (
p
.u

.)

velocity MPC

Kalman + MPC

ref

(a) d-current tracking.

0 0.05 0.1

time (s)

0

0.5

1

q
-c

u
rr

en
ts

 (
p
.u

.)

velocity MPC

Kalman + MPC

ref

(b) q-current tracking.

Figure 6.9: Step current at 10% of the nominal speed.
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Figure 6.10: Steady state test. The Lq value of the control is doubled at time
t =0.18 s.

ure 6.11. The Figure 6.11(a) and Figure 6.11(b) report the dq current
tracking during the speed transient, using the nominal value of the
q-axis inductance. Instead, Figure 6.11(c) and Figure 6.11(d) represent
the same test, but using an Lq value which is three times the nominal
one. This test highlights some limitations of these algorithms. In fact,
the combination of the speed variation with the discrepancy of the
Lq parameter negatively affects the performance of the control. The
variation error increases slightly with speed while maintaining the Lq
nominal value. However, the oscillations increase significantly if there
is a large deviation of the parameter, especially in the current of the
q axis. Acceptable performances could be obtained by using different
weighting factors in the cost function for different speed values.

6.6.3 Computational Cost

One of the most important aspects in MPC applications is the compu-
tational cost of the algorithm. This depends on several factors, such
as the choice of the solver, the conditioning number of the matrix that
must be inverted to solve the optimization problem and the type of
DOB that is used to eliminate offset errors. In fact, one should also
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Figure 6.11: Speed ramp from 100 to 700 rpm. Comparison between Lqnom

and 3Lqnom .

include the calculation time required by the DOB, because it is part
of the standard MPC algorithms.

In this work, both I-MPC and MPC with steady-state Kalman filter
adopt qpOASES as solver. The authors decided to implement qpOASES
because it is a free, widely used, open source QP solver (thus it per-
mits the reproducibility) and it allows the online implementation on
the platform dSPACE MicroLabBox. Regarding the QP conditioning,
it has been observed that for this particular configuration the velocity
form results of the same conditioning of the standard formulation,
since the Hessian of the cost function and the constraint matrix have
the same condition number. In particular, the Hessian matrices have
a condition number approximately equal to one, which indicates that
the problem is well conditioned. Therefore, even working with a sin-
gle precision, an accurate solution can be guaranteed.

The linear term of the cost function is computed for an incremental
state in the case of the I-MPC. This can badly affect the convergence
speed of the iterative solver, which is handling the constrained QP
problem. However, the authors studied the number of iterations re-
quired by the solver during limit conditions for both I-MPC and MPC
coupled with steady-state Kalman filter. The results of test are shown
in Figure 6.12.

The test procedure is as follows: the IPM motor is hold at nominal
speed by the master motor. The DC value of the bus is 300 V. However,
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Figure 6.12: Iteration test: comparison between velocity MPC and MPC with
steady-state Kalman filter. Unfeasible references are set and the
solver finds solutions at voltage limits.
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its value is limited for the control to 150 V via software. Therefore, a
current reference is given that cannot be realized by the current con-
trol. As can be seen from Figure 6.12(a) and Figure 6.12(b), the I-MPC
and the MPC with Kalman cannot reach the references, and the sys-
tem stabilizes its working point accordingly with the bus limit. In
fact, Figure 6.12(c) indicates that both controllers find optimal solu-
tions to the voltage limits. It is worth noting that, in Figure 6.12(c),
there is a drop of the voltage in the commutation between phases
due to the motor inductances, which refers to the voltage notch [77].
The number of iterations performed by qpOASES are compared in Fig-
ure 6.12(d), and shows that they are comparable. This confirms that
both strategies work with the same computation time. The number
of iterations indicates the convergence ratio of the solution. As can
be seen, when no iterations are performed, the controller acts as a
Linear Quadratic Regulator (LQR); i.e. when the unconstrained solu-
tion is still feasible and no constraints are violated. Further numerical
properties of these algorithms could be investigated by considering
other solvers.

6.6.4 Final Considerations and Remarks

The experimental results are summarized with some considerations
concerning the case for which one of the proposed control architec-
ture may be preferred with respect to the other. One of the most im-
portant concerns about MPC design in industrial applications (a part
of the computational aspects) arises from the parameter choice of
the controller. If a Kalman filter-type observer is selected, one should
consider which type of noise affects the system. In particular, an es-
timation of the covariance matrices for model and process noise is
required. This means that the size of the parameter vector increases.
From the authors’ perspective, reducing the number of tuning pa-
rameters leads to an attractive method for industrial applications. In
particular, when the number of parameters to be tuned want to be
reduced (thus making the process simple also for non-high special-
ized personnel) and when the performance requirements are not so
demanding, the velocity form MPC should be preferred for its sim-
plicity.

In this work, the focus has been the MPC framework where both
observer and velocity form can be applied. Nevertheless, the observer
can also be used in other control architectures, whereas the velocity
form is restricted to the MPC framework. Instead, in the case that
a specific closed-loop performance is required and, for instance, ac-
curate knowledge of sensors is also available, the implementation of
MPC with DOB is preferred. The author is also aware that very re-
cent publications in the control community are going in the direction
of “self-calibration” of optimization-based controllers [78]. This can
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represent a promising strategy to overcome the curse of MPCs tuning.
It is highlighted that the aim is not to defend one solution over the
other, but to find some interesting and practical aspects which can be
of interest for the scientific community and industrial applications.

6.7 discussion

In this work the velocity form of a continuous control set model pre-
dictive controller has been proposed to control the current loop of an
interior permanent magnet synchronous motor. This formulation has
been compared with the MPC algorithm coupled with a disturbance
observer, using a steady-state Kalman filter. The theoretical analysis
of these two schemes has been reported, showing that the incremen-
tal state space formulation, which characterized the velocity form of
MPC, corresponds to a particular choice of the standard MPC with
the disturbance observer. These formulations allow overcoming tradi-
tional issues known for model predictive control approach, such as
steady state bias errors due to parameter uncertainties and constant
external disturbances. Theory validation is achieved by comparing
the two controllers in different operating conditions. In particular, the
control behavior in case of parameter mismatches has been studied.
The proposed current MPC in velocity form is able to compensate
the steady state error due to mismatches, rejecting bias errors. Fur-
thermore, tuning guidelines for the MPC have been provided. More-
over, it has been shown that the two MPC versions have similar per-
formances. Thus, the velocity MPC can be considered as an easy and
quick method for designing offset-free MPCs. The computational cost
of the schemes has been analyzed through experimental results, using
the open source solver qpOASES for the optimization problem. Future
research will consider a multilevel converter topology, which usually
presents lower harmonic content. In addition, other solvers and a cus-
tomized design of the entire controller will be considered to further
investigate numerical properties.





7
FA S T S O LV E R F O R I M P L I C I T C O N T I N U O U S S E T
M O D E L P R E D I C T I V E C O N T R O L O F E L E C T R I C
D R I V E S

This chapter presents an effective method for solving Continuous
Control Set (CCS)-Model Predictive Control (MPC) for the current
control loop of synchronous motor drives with input constraints, al-
lowing for reaching the maximum voltage feasible set. The related
quadratic programming problem requires an iterative solver to find
the optimal solution. The real-time certification of the algorithm is
of paramount importance to move the technology toward industrial-
scale applications. The total number of operations can be computed
in the worst-case scenario; thus the maximum computational time
is known a priori. The solver is deeply illustrated, showing its feasi-
bility for real-time applications in the microseconds range by means
of experimental tests. Promising results are obtained with respect to
general purpose solvers.

7.1 introduction

MPC is an advanced optimization-based control strategy that is gain-
ing more and more popularity in the power electronics framework
[8, 28]. Increasing availability of computational power and enhance-
ment of optimization strategies have made MPC suitable for fast dy-
namics, as electric drives. In this framework, MPC has been mostly
implemented in the Finite Control Set (FCS) form [79–81]. As been
reported in Chapter 3, second type of MPC refers to the CCS-MPC
technique, which requires the modulator for synthesizing the opti-
mal voltage reference. However, it provides fixed switching frequency
of the converter and it works efficiently with longer sampling inter-
vals [82]. Several improvements on the computational performances
of solvers adopted for handling the optimization problems underly-
ing the MPC led to the establishment of this technology. The MPC
problem can be formulated in explicit or implicit form, whose simi-
larities and differences are discussed in [60] (see also Chapter 3). The
explicit form considers the optimization problem as a piece-wise lin-
ear function of the parameters and solves it offline [19]. However, the
computational cost grows significantly with the parameter space [83],
thus limiting its applicability for industrial applications. Implemen-
tation of explicit MPCs is proposed and analyzed in [57, 59]. The
implicit form, instead, requires an online iterative algorithm for solv-
ing the Quadratic Programming (QP) problem. A significant reduc-

79
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Table 3: Overview of some QP solvers. The acronyms are: IP: Interior point;
AS: Active Set; ADMM: Alternating Method of Multipliers, FGM:
Fast Gradient Method.

Solver References Target Methods Licence

FORCES Pro [84] NMPC, very general QPs IP, ADMM, FGM proprietary

HPIPM [85] LQP IP 2-clause BSD

ODYS [83] QP, Embedded MPC AS proprietary

OSQP [86] QP ADMM Apache 2.0 License

qpOASES [87] QP AS 2-clause BSD

Table 4: Survey of MPCs for electric drive applications. The acronyms are:
LTI: Linear Time Invariant; LPV = Linear Parameter Variant; NL:
Non Linear; E-MPC: Explicit-MPC.

Constraints
References Year Controlled Variable Model Method

Input Output
Tested Motors Platform

[57] 2009 Speed&Currents LTI E-MPC ✓ ✓ SPM dSPACE 1004

[88] 2012 Speed+Torque/Flux LPV E-MPC ✓ ✓ IM-PMSM Sharc ADSP 21062 + TMS320C6713

[58] 2013 Currents LPV FGM ✓ IPM TMS320F240

[61] 2015 Currents LTI AS ✓ ✓ SPM F28335 Delfino

[89] 2019 Currents LPV AS ✓ IPM dSPACE 1006

[83] 2021 Currents LTI AS ✓ ✓ SPM F28335 Delfino

[62] 2021 Currents NL AS ✓ SRM dSPACE 1007

tion of the computational burden of CCS-MPCs has been achieved by
implementing the unconstrained version of the QP problem, where
a closed-form expression of the CCS-MPC solution exists. However,
this approximation suppresses the MPC advantage of including fea-
sible limits in the control law. This has spurred a renewed research
interest towards constrained solutions.

The development of efficient QP solvers is now enabling the real-
time implementation of CCS-MPCs. Gradient methods [58, 90] and
active set methods [87] are the two most widespread kind of solvers
for the considered application. In Table 3, a set of existing QP solvers
and some of their principal features are reported. Software packages
containing solvers for fast embedded optimization are available too,
e.g., acados [91]. Moreover, solver-libraries designed for MPC prob-
lems have been presented, e.g., MATMPC [92].

The constrained CCS-MPC for electric motor drive applications has
gained interest over the last decade. Table 4 resumes some of the most
relevant papers related to this topic. In [83], an active set solver has
been successfully implemented on a Texas Instrument Digital Signal
Processor (DSP) for CCS-MPC torque control of a Permanent Mag-
net Synchronous Motor (PMSM), proving that the technology is ma-
ture for industrial applications. The work is based on the results of
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[93], where the same authors provided the exact complexity certi-
fication of the Golfarb-Idnani algorithm [94]. Thus, in these works,
an upper bound of the computation time in the worst-case scenario
has been demonstrated. Moreover, in [62], a nonlinear CCS-MPC is
presented for the Synchronous Reluctance Motor (SyRM). The work
proves the flexibility of the MPC framework in tackling the nonlinear
flux-current characteristics of such motors. However, the QP solver
adopted for the specific application is a general purpose one, which
is effective at the price of an increased complexity. Nevertheless, the
computational burden is of paramount importance for embedded ap-
plications, and the emerging need from recent research advances is
to design purpose-built algorithms.

In this work, we propose an efficient and fast method for solving
the specific QP problem arising from MPC implementations for ap-
plications where a power converter is adopted. In particular, the al-
gorithm is presented for the current control of synchronous motors,
where limited computational hardware is usually available. The MPC
implementation adopts a linear time-invariant model of the dynamic
and considers linear input voltages constraints.

The model is formulated in the dq rotating reference frame, mak-
ing the voltage feasible set rotating synchronously with the rotor po-
sition. The proposed QP solver takes advantage of the specific shape
of the feasible set and the cost function to achieve a computationally
efficient formulation that allows for exploiting the maximum voltage
deliverable by the converter, i.e., a hexagonal region in the station-
ary reference frame, centered in the origin. The proposed algorithm
adopts the choice of N = 3 prediction steps and Nu = 1 control
horizon length, which has been assessed as a good trade-off between
accuracy and computational effort [83].

A complete description of the QP solver is presented, allowing an
easier replication of the algorithm. Moreover, computational perfor-
mances in the worst-case scenario are assessed both in terms of num-
ber of operations and in experimental conditions. The high accuracy
of the algorithm is then assessed comparing with qpOASES.

7.2 mathematical model

The electrical dynamic equations of the synchronous motor is de-
scribed with respect to the rotating dq-reference frame as follows (for
simplicity we omit the time-dependence) [95]:

d

dt
idq = Acidq +Bc

(
udq +wdq

)
, (7.1)

where idq = [id iq]
T, udq = [ud uq]

T, wdq = [wd wq]
T and
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Ac =

 −Rs

Ld
ωe

Lq

Ld

−ωe
Ld

Lq
−Rs

Lq

 , Bc =

 1
Ld

0

0 1
Lq

 , (7.2)

where ud, uq, id and iq are the dq-axis voltages and currents, respec-
tively, Rs is the windings resistance, ωe the electrical speed, whereas
Ld and Lq are the dq-axis stator inductances. Assuming perfect
knowledge of the parameters and neglecting model inaccuracies, the
vector wdq includes only the back-Electro Motive Force (back-EMF),
i.e., wdq = [0 −ωeλpm]T, being λpm the permanent magnet flux
linkage.

Discretizing model (7.1) adopting Euler integration with sampling
time Ts, yields to the following discrete-time model

x(k+ 1) = Ax(k) +Bu(k) +Bw(k), (7.3)

where B = TsBc, A = I+ TsAc, being I the identity matrix, and where
x = [id, iq]T denotes the state and the subscript on u(k) and w(k) are
neglected for simplicity.

In practice, significant unmodeled disturbances and nonlinear dy-
namics are present, due, e.g., to iron saturation, parasitic effects and
harmonic modes introduced by the non-ideal rotor geometry, and
to the speed dependence of matrix Ac, which has been obtained by
linearizing around the nominal speed. To address this issue in real ex-
periments an observer is implemented to obtain an estimate of both
x(k) and w(k) for all k, thus improving the tracking performance of
the controller and guaranteeing offset free tracking. More precisely,
the state of the model (7.3) is augmented with the disturbance w, and
it is estimated via a Kalman Filter as proposed in [96].

7.3 model predictive control of pmsm currents

The Linear Time Invariant (LTI) model (7.3) is used as the prediction
model in the MPC problem, whose ultimate goal is to track the de-
sired currents profiles xref = [irefd irefq ]T.

The following quadratic functional cost is adopted

J =

N−1∑
j=0

(
||xref(k+ j+ 1) − x(k+ j+ 1)||2Q

)
+

+

Nu−1∑
i=0

(
||∆u(k+ i)||2R

)
+ ||xref(k+N) − x(k+N)||2S

(7.4)

where Q, S and R are weighting matrices and ∆u(k) denotes the dif-
ferential input, i.e., ∆u(k) = u(k) − u(k− 1).
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At each time step k, the optimal control move is obtained by solving
the following optimal control problem:

min
∆u,x

J

s.t. x(k+ 1) = Ax(k) +Bu(k) +Bw

∆u(k) = u(k) − u(k− 1)

uαβ(k+ j) = T(θe)u(k+ j) ∈ Uαβ, j = 0, 1, ...,Nu

(7.5)

where T(θe) is the Park anti-transformation matrix, being θe the elec-
tric angle, Uαβ represents the feasible voltage region for uαβ =[
uα uβ

]T , and where the term w is assumed to be constant in the
prediction horizon and equal to the estimate ŵ(k − 1) provided by
the Kalman filter at the previous step.

Observe that Uαβ is the maximum voltage deliverable by the con-
verter, i.e., an hexagonal region in the stationary reference frame, cen-
tered in the origin. Effective methods to manage the transition from
sinusoidal output voltage with a linear voltage gain characteristic to
six-step operation can be implemented [15]. A feasible solution veri-
fies the following inequalities:

F∆u(k) ⩽ f

F =

 1 1 1 −1 −1 −1

√
3 0 −

√
3 −

√
3 0

√
3


T

T(θe),

f =
2uDC√

3

[
1 0.5 1 1 0.5 1

]T
− Fu(k− 1)

(7.6)

Assuming, as anticipated, that N = 3 and Nu = 1 (and so it will be
hereafter) the condensed problem of (7.5) results in

min
∆u(k)

J(∆u(k)) :=
1

2
∆u(k)TH∆u(k) + cT∆(k) + const,

s.t. F∆u(k) ⩽ f (7.7)

where H ∈ R2×2, c ∈ R2×1 and where F∆u(k) ⩽ f defines a hexagon,
which is the rotated and translated version of Uαβ according to the
transformation T(θe) and u(k− 1). Clearly the region F∆u(k) ⩽ f is
composed of six segments lying on six lines that, hereafter, we denote
as ℓi for i = 1, ...6, being ℓi associated to the constraint F(i, :)∆u(k) ⩽
f(i). Now, let ∆u∗ be the optimal solution of (7.7), then the applied
control input at time k is

u∗(k) = u∗(k− 1) +∆u∗(k).

In the αβ-plane the optimal control input is then uαβ(k) = T(θe)u(k).
We conclude this section by considering a particular scenario that

will play an important role in the proposed algorithm, namely the
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case where only one constraint is imposed, e.g., the constraint associ-
ated with the line ℓi∗ . The optimal control problem to be solved is

min
∆u(k)

J(∆u(k)) s.t. F(i∗, :)∆u(k) ⩽ f(i∗)

and the solution is computed by solving the almost equivalent uncon-
strained problem

min
∆u(k)

J(∆u(k)) + λi∗(F(i
∗, :)∆u− f(i∗))2 (7.8)

for λi∗ sufficiently high to guarantee a negligible distance from the
constraint. Basically, in (7.8) the functional cost J has been augmented
with a penalty function forcing the solution to stay on the active con-
straint. Note that the problem in (7.8) admits a simple analytical solu-
tion.

7.4 algorithm description

In this section, the QP solver algorithm is described. First, the initial
assumptions are listed, then, the algorithm is discussed, considering
different cases that may occur during the search of the solution. The
solver is based on the idea of solving a constrained QP problem with
the constraints described in (7.6), with a finite succession of iterations,
each one being analytical solutions of unconstrained problems. In
particular, at the beginning, the optimal solution of the unconstrained
version of problem (7.7) is computed in closed form as

∆uuc = −H−1c, (7.9)

assessing the maximum number of possible active constraints, that
depends on the relative position of the hexagon defining the voltage
limits with respect to the unconstrained optimal solution. Four differ-
ent situations can then occur:

0. The solution is optimal and feasible, i.e., the optimal uncon-
strained solution lies within the feasible voltage set, and it is
applied as reference for the inverter;

1. one constraint is not satisfied (see for example Figure 7.2);

2. two consecutive constraints are not satisfied (see Figure 7.3);

3. three consecutive constraints are not satisfied (see, e.g., Fig-
ure 7.4).

Notice that, in the figures, the unconstrained solution

u∗
αβ = T(θe) (u(k− 1) +∆u∗)

and the respective feasible set Uαβ are represented in the αβ-plane.
As mentioned before, a simple roto-translation allows for mapping
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Figure 7.1: Cost function contours in αβ-plane for anisotropic and isotropic
motor. The hexagon represents the feasible voltage set, while the
center of the contours is the unconstrained solution.
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Figure 7.2: One constraint violation: the solution is found by adding the
penalty function represented by the red line to the cost.

the dq-plane into the αβ one, making the representations equivalent
in qualitative terms. In order to better clarify the last three points,
we propose a deepening on the shape of the function cost and the
relative positioning of the hexagonal constraint.

7.4.1 Regions of Violated Constraints

In this section we expressed the functional cost J in terms of uαβ.
It turns out that the level set curves are centered in uuc

αβ, where the
eccentricity depends on the ratio of the dq inductances and the orien-
tation depends on the electric angle. Figure 7.1 shows two examples
of cost function shapes in the αβ-plane, where Figure 7.1(a) repre-
sents the case of an Interior Permanent Magnet (IPM) motor, while
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(b) Vertex solution.

Figure 7.3: Two constraint violations. Figure 7.3(b) represents the case 2c),
where the one constraint violation procedure is followed, and
the solution is on an intersection.

Figure 7.1(b) shows the case of an SPM motor. In both cases, a rep-
resentative hexagonal feasible voltage set in the αβ-plane induced by
(7.6) is reported. Notice that, due to the magnetic isotropic typical
of an Surface Permanent Magnet (SPM), the level curves become cir-
cumferences. Consequently, depending on the type of motor, a priori
knowledge of the cost function shape can be obtained.

By analyzing the six inequalities associated with the rows of F and
f in (7.6) and relying on the convexity of the level curves of the
cost function, it is possible to relate the relative position of the un-
constrained optimal solution with respect to the hexagonal feasible
voltage set with the number of violated constraints. In Figure 7.5, a
graphical representation is shown, where each region is identified by
a number from 0 to 3, which indicates the number of violated con-
straints of an optimal solution located in the corresponding region.
In the following, for each of these cases, a tailored solution strategy
is described.

7.4.2 Algorithm Steps

A detailed description of the steps of the algorithm is proposed below,
categorized according to the relative location of the unconstrained
solution ∆uuc with respect to the cost function (see Figure 7.5).

7.4.2.1 One Constraint Violation

If ∆uuc lies within the triangle adjacent to the segment of the hexagon
lying on the line ℓi (see Figure 7.5), the feasible optimal solution cer-
tainly lies on the segment itself. A representative example is shown
in Figure 7.2, where solutions are plotted, as before, in the αβ-plane.
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Figure 7.4: Three constraint violations.

The feasible solution is then computed according to the following
steps:

1. The solution of the problem (7.8) is computed considering as
constraint ℓi1, i.e., with i∗ = i, namely ∆uoa;

2. a feasibility check is then operated, computing

hj := F(j, :)∆uoa − f(j) ⩽ 0 for j = i− 1, i+ 1; (7.10)

a) if ∆uoa does not violate any constraint, then ∆u∗ = ∆uoa

and lies on the segment;

b) if ∆uoa violates the next constraint2 ℓi+1, i.e., if hi+1 > 0,
thus ∆u∗ is the intersection between ℓi with ℓi+1;

c) if hi−1 > 0, ∆u∗ is the intersection between ℓi with ℓi−1.

1 To simplify the description of the algorithm we refer to constraint ℓi as the constraint
lying on line ℓi.

2 The constraints are cycled through with a counterclockwise direction in a circular
buffer fashion, i.e., the subscript i+ n = mod (i− 1+ n, 6) + 1 for any integer n

where mod is the modulo operator.
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Figure 7.5: Portions of αβ-plane identified by the hexagon lines identified
by the number of input constraints that are overcome simultane-
ously by the unconstrained optimal solution which lies within
that region.

7.4.2.2 Two Constraint Violations

The case where the unbounded solution lies in a region that crosses
two consecutive boundaries of the feasible set is illustrated in Fig-
ure 7.3. In this case, ∆u∗ lies on one of two consecutive constraints ℓi,
ℓi+1, for some i in the range [1, 6]. More precisely, depending on the
location of the unconstrained solution and the cost function shape,
three different situations can occur:

• the feasible solution lies within one of the hexagon segments
that lies either on ℓi or on ℓi+1 (see Figure 7.3(a));

• the feasible solution lies on the intersection of ℓi and ℓi+1;

• the feasible solution lies on one of the extremal vertexes of one
of the hexagon segments, i.e., those that are not originated by
the intersection of ℓi and ℓi+1 (see Figure 7.3(b)).

The feasible solution is then computed according to the following
steps:

1. The solution to the problem (7.8) is computed considering as
constraint ℓi, i.e., with i∗ = i, namely ∆uoa;

2. a feasibility check is then operated, computing hj as in (7.10)
for j = i+ 1, i− 1;

a) if ∆uoa does not violate any constraint, then ∆u∗ = ∆uoa;

b) if hi+1 > 0, thus ∆u∗ lies on ℓi+1 itself and the one con-
straint violation procedure can be applied (Figure 7.3(a));

c) if hi−1 > 0, ∆u∗ is intersection between ℓi with ℓi−1 (Fig-
ure 7.3(b)).



7.5 computational analysis 89

7.4.2.3 Three Constraints Violations

The last possible condition is reported in Figure 7.4, where the un-
constrained solution detects three violated boundaries in which the
optimal feasible solution can lie. With the same notation adopted in
the previous section, the three consecutive constraints are denoted by
ℓi, ℓi+1 and ℓi+2 for some i in the range [1, 6]. Three different situa-
tions can then occur:

• the feasible solution lies within one of the hexagon segments
that lies or on ℓi or on ℓi+1 or on ℓi+2;

• the feasible solution lies on the intersections of ℓi and ℓi+1 and
ℓi;

• the feasible solution lies on one of the extremal vertexes of one
of the hexagon segments, i.e., those that are not originated by
the intersection of ℓi and ℓi+1 and ℓi+2.

The feasible solution is then computed according to the following
steps:

1. The solution to the problem (7.8) is computed considering as
constraint ℓi+i, i.e., with i∗ = i + 1 (the central violated con-
straint), namely ∆uoa;

2. A feasibility check is then operated, computing hj as in (7.10)
for j = i+ 2, i;

a) if ∆uoa does not violate any constraint, then ∆u∗ = ∆uoa

(Figure 7.4(a));

b) if hi+2 > 0 (or hi > 0), ∆u∗ certainly lies on ℓi + 2 (or ℓi
respectively) and the one constraint violation procedure can
be applied; Figure 7.4(b), Figure 7.4(c) and Figure 7.4(d)
summarized the possible situations.

7.5 computational analysis

In the previous section we described an algorithm to solve the con-
strained QP (7.5) that exploits the cost function shape to provide a
solution in a fixed number of operations. The procedure results to
be accurate and efficient in terms of computational burden. The com-
putational performance of the algorithm is hereafter compared with
those of the open-source tool qpOASES.

7.5.1 Comparison with qpOASES

In this section, we show that the proposed method achieves compet-
itive performances and requires a low computational effort. qpOASES
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Table 5: Overview of the SyRM motor and control parameters.

Motor Data Symbol Value

Pole pairs p 2

Phase resistance R 1Ω

d-axis inductance Ld 0.2H

q-axis inductance Lq 0.06H

Nominal current IN 6Apeak

Nominal d current IN,d 3A

Nominal q current IN,q 5.2A

Nominal speed ΩN 700 rpm

Prediction Horizon N 3

Control Horizon Nu 1

Input Weight d-axis rd 0.0001

Input Weight q-axis rq 0.0002

Prediction Error Weight q,s 1

Table 6: Averaged time comparison between the proposed method and
qpOASES for different number of steps.

Avg Time (µs)

Proposed Method qpOASES

Step 0 1.6 28.2

Step 1 1.65 30.4

Step 1.5 1.67 30.4

Step 2 1.7 30.0

Step 2.5 1.72 30.0

is an open source software, it is very robust and suitable for medium-
small scale problems, and it can be considered as a very good bench-
mark in terms of solution accuracy. The MPC problem is built consid-
ering the motor under test (Table 5). The averaged time required by
the proposed method is compared with the one of the open source
solver qpOASES in MATLAB environment. The solvers were run on a In-
tel(R) Core(TM) i7-8700 CPU 3.20GHz and they were tested consider-
ing all the possible cases presented in Section 7.4. The problems were
run one million times, averaging the time spent for the computation.

The numerical results are presented in Table 6. The following val-
ues have been chosen to distinguish among the cases:

• 0 if the unconstrained solution is feasible;
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• 1 the algorithm performs the one constraint violation procedure,
and the new solution is feasible (step 2 a) in 7.4.2);

• 1.5 if the one constraint violation indicates a solution found in
the intersection (step 2 b) or c));

• the value of 2 refers to the case where two of (7.8) are solved.

• finally, 2.5 corresponds to the worst-case scenario where, in the
two and three constraint violations, the solutions is on a vertex
after solving (7.8) twice.

As can be noticed, the proposed solver finds the MPC solution with
cheaper computational cost with respect to qpOASES. We highlight
that, for the worst-case scenario, where the solution violates three
constraints and the optimal one is on a hexagon vertex, the average
computation time remains very limited. Thus, the execution time of
this case is considered the upper bound for the control algorithm cost.

7.5.2 Worst-Case Computational Cost

Considering the relevance of real-time feasibility certification for algo-
rithms that aspire to large-scale industrial applications, we propose
a worst-case performance analysis. Since the computational perfor-
mances strongly rely on the specific implementation, we propose a
quantification of the computational cost required by the proposed
method with the total number of algebraic operations performed to
find the solution in the worst-case scenario. The sequence of opera-
tions is listed below:

1. Compute the unconstrained solution; (7.9);

2. feasibility check (7.10) ⇒ solution unfeasible ;

3. find new solution (7.8);

4. feasibility check (7.10) ; ⇒ solution unfeasible;

5. find new solution (7.8) ;

6. feasibility check (7.10); ⇒ solution unfeasible;

7. find the solution among the vertices.

The corresponding number of operations is reported in Table 7. It is
worth noting that step 7) does not require any additional algebraic
operations. In conclusion, the peculiarities of the proposed method
are highlighted: the maximum number of steps are fixed; hence, the
total number of operations can be evaluated and the maximum run
time can be easily determined depending on the specific hardware.
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Table 7: Total number of algebraic operation of the proposed QP method in
the worst-case scenario.

PHASE SUM./SUB. PRODUCTS DIVISIONS

1) 7 10 2

2) 15 12 -

3) 15 28 2

4) 15 12 -

5) 15 28 2

6) 15 12 -

7) - - -

TOTAL 82 102 6

7.6 experimental results

Slave motor

Slave inverter

Master motor

Master inverter dSPACE
MicroLabBox

Master panel

Figure 7.6: Test-bed layout.

The test bench adopted for the experiments is shown in Figure 7.6.
It consists of a master motor (surface-mounted PMSM) directly con-
nected to the SyRM motor under test. The controllers have been im-
plemented in a dSPACE MicroLabBox, a compact development sys-
tem for laboratory purposes which has dual-core real-time processor
at 2 GHz and dedicated electric motor control features, which pro-
vides the gate signals for the inverter and performs all the acquisi-
tions from current and position sensors.

7.6.1 Solution Accuracy

First, a reduced value of the DC bus was set for the controllers in
order to achieve an unfeasible working point, where the solvers are
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Figure 7.7: Comparison between qpOASES and the proposed method when
an unfeasible working point is set. The subscript 1 in Figure 7.7(a)
refers to qpOASES, while the other one to the proposed method.

pushed to find solutions along the hexagon edges. During the test
qpOASES was used as solver and it is considered as the benchmark.
Then, the recorded data were used to build the MPC problem offline
and the voltage solutions were computed with the proposed method
for each time-step. This experiment is shown Figure 7.7. The volt-
ages are plotted in per unit with respect the average value of the DC
bus. The solutions found by qpOASES and our solver overlap, as con-
firmed by the voltage reference in Figure 7.7(a). In particular, some
test points are plotted in Figure 7.7(b) in the αβ-plane for the selected
time snapshots indicated in Figure 7.7(a). This confirms that the solu-
tions are found at limits and they are numerically identical.

7.6.2 Solver Performance

To evaluate the solver performance in terms of computational cost
we propose a current step transient in Figure 7.8, where the master
motor keeps the motor under test at its nominal speed, and the nom-
inal current value is set as reference. This condition represents one of
the most stressing tests for evaluating current controller performance.
Thus, it is expected that this represents the worst-case scenario for the
computational cost of the algorithms. Figure 7.8(a) and Figure 7.8(c)
show the dq currents transients, normalized with respect to the nom-
inal peak current value. The performance are very similar for the two
methods, with good tracking and steady-state accuracy. The most in-
teresting part of this test can be observed in Figure 7.8(b) and Fig-
ure 7.8(d), where the turnaround time of the algorithms is measured
by dSPACE. The time required by measurements acquisitions and
elaborations is about 8 µs. As an interesting result, it can be observed
that, while the proposed solver maintains a good accuracy in tracking
the currents, the good computational performance presented in Ta-
ble 7 are replicated in experimental environment. The former shows
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(e) Solver flag.
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Figure 7.8: Transient test: Comparison between qpOASES and the proposed
method at nominal currents and speed. In Figure 7.8(e) the flag
values are described in Section 7.5.1 The average time for mea-
surements acquisition and elaboration is about 8 µs.

a peak at the first instant with 14 µs, while the average time stabilizes
at 12 µs. In Figure 7.8(e) is also reported a flag value which indicates
at which step the proposed solver finds the optimal solution. Thus,
in the worst-case situation, the proposed solver needs 14 µs to find
the optimal voltages. Finally, the voltage solutions are compared in
Figure 7.8(f), which confirms that solutions are found on the limits
during this transient.
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Figure 7.9: Turnaround time of the QP algorithms considering an unfeasible
working point.

As a last confirmation of the averaged time required by the solvers
(i.e., the proposed algorithm and qpOASES) to perform all the compu-
tations, we report the turnaround time during the test of Figure 7.7
in Figure 7.9, where an unfeasible working point is considered. We
highlight that the time required by qpOASES is inevitably higher, be-
cause the generality of the considered solver increases the required
time to solve the problem.

7.7 discussion

In this work, a MPC strategy for the current control loop of syn-
chronous motor drives has been presented, including the input volt-
age feasible set. A fast and effective method for solving in real-time
the quadratic programming problem related to the MPC has been pro-
posed. The number of steps in the worst-case is fixed, thus the num-
ber of operations can be assessed in advance. One of the main features
of the proposed method is that real-time certification can be achieved.
Experimental results have been performed by using the open source
solver qpOASES as benchmark for comparing the optimal solution. The
proposed solver has shown very good accuracy and, considering the
worst-case scenario, the optimal voltage is found in few microseconds,
making it promising for its implementation in large-scale, real-time
industrial applications.
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D ATA - D R I V E N C O N T I N U O U S - S E T P R E D I C T I V E
C U R R E N T C O N T R O L F O R S Y N C H R O N O U S M O T O R
D R I V E S

Optimization-based control strategies are an affirmed research topic
in the area of electric motors drives. These methods typically rely on
an accurate parametric representation of the motor equations. This
chapter exploits the concept presented in Chapter 4 with the aim
of proposing a potential transition from model-based towards data-
driven optimal control strategies. As starting point, the Model Pre-
dictive Control (MPC) paradigm is considered, which exploits the
parametric model of the motor. Second, the discussion shifts to the
Prediction Error Method (PEM), where a state-space model is iden-
tified from data. Moving toward data-driven controls, the Subsapce
Predictive Control (SPC) is presented, where a reduced model is con-
structed based on the singular value decomposition of raw data. The
final step is represented by a complete data-driven approach, named
Data EnablEd Predictive Control (DeePC). The theory behind these
techniques is reviewed and design applied for the first time to the
design of the current controller of synchronous permanent magnet
motor drives. Design guidelines are provided to practitioners for the
proposed application and a way to address offset-free tracking is dis-
cussed. Experimental results demonstrate the feasibility of the real-
time implementation and provide comparisons between model-based
and data-driven controls.

8.1 introduction

The interest in data analysis is constantly growing, supported by an
unprecedented availability of computational power and memory stor-
age, as well as advances in optimization, statistics and machine learn-
ing. This leads to an increasing attention towards data-enabled meth-
ods in all branches of science and engineering. This revolution has a
significant impact on the control engineering too. Data-driven control
design consists in synthesizing a controller using the data collected
on the real system, without defining and identifying a parametric
model for the plant [39]. This is in contrast with model-based ap-
proaches, which rely on plant modeling and identification procedures.
The epitome of this model-based paradigm is arguably the Model Pre-
dictive Control (MPC), which has been applied to power electronics
control tasks for two decades, reaching an industrial and commercial
level [28].

99
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Continuous Control Set (CCS)-MPC methods for Permanent Mag-
net Synchronous Motor (PMSM) current control, which is the focus
of this work, rely on a state-space model of the motor to build the
predictive controller [89, 96, 97]. The parameters of this model can
be obtained by performing a careful experimental characterization.
These procedures often include many different tests and they require
specific measuring devices and proper test-bed setups. Then, the re-
sulting accurate model can be exploited in real-time by means of
look-up-tables. Alternatively, parameters could be estimated via of-
fline [98] or online [99] procedures. Self-commissioning and auto tun-
ing techniques are also consolidated strategies. In [100], an exhaustive
survey of research and state-of-art parameter identification and self-
commissioning methods for AC motor drives is discussed. In partic-
ular, these approaches are of interest when high performance control
is required with sensorless applications. Finally, many methods have
been proposed in literature to improve the robustness against param-
eter variations [66, 75, 101–103], although most of these strategies are
implemented for Finite Control Set (FCS)-MPCs.

The key idea behind data-driven predictive controllers is to avoid
the model identification stage entirely, and design the controller di-
rectly from collected Input/Output (I/O) data, e.g., voltage/current
samples. This approach overcomes the challenges of model selection
and identification, resulting of particular interest for many indus-
trial applications [104]. However, there are just a few examples of
data-driven control applications for electric motor drives. In [105],
an observer is coupled to an MPC to update the PMSM model, im-
proving its reliability. However, this approach still relies on a para-
metric model. Many effective techniques have been presented which
go toward the data-driven paradigm, named model-free [106–108] or
parameter-free [109] algorithms. In particular, [106] and [107] propose
to online update a non parametric model, but they rely on the hypoth-
esis that there are no data available for guessing an initial controller,
which might be too restrictive.

In this chapter a transition from model-based to data-driven control
design is presented, considering as application the current control of
PMSMs. This control task serves as a well-understood benchmark for
new methods, despite the fact that other traditional non-data-driven
methods yield satisfactory results for this application. The considered
framework on optimization-based control schemes, i.e. MPC-type so-
lutions. Firstly, state-of-the-art of CCS-MPC is recalled, whose model
is obtained through a previous motor characterization. Then, the dis-
cussion moves step by step towards more data-driven control designs,
exploiting just voltage and current measurements collected from the
motor. The PEM technique coupled with MPC is presented, which
is a consolidate solution for identifying a parametric model from
data [110]. A further step is represented by the SPC [43], where the
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collected data are processed offline by means of a least-square pro-
gram, and the resulting ARX predictor is de-noised by singular value
thresolding. This pseudo-identification procedure is used to build a
linear predictor for the currents dynamics. Finally, a completely data-
driven control algorithm is presented, named the DeePC [38, 42],
where the system identification process is totally avoided and the
collected data are directly used in the controller. This technique has
already found application in power electronics [40, 111, 112].

The contributions of this work are manifold:

• the perspective of data-driven control design using a predictive
control framework is deeply analyzed;

• the practical real-time implementation of data-driven methods
is demonstrated, which is not trivial since data-driven methods
are expensive in terms of computation and samples;

• it is shown that data-driven paradigm can be a systematic de-
sign tool for PMSM current controllers;

• discussion about computational aspects of the presented control
strategies is provided;

• as a technical contribution, the problem of the offset-free track-
ing for the SPC and DeePC methods is addressed;

• guidelines for the choice of the control parameters and excita-
tion input signals for this application are provided.

A relevant advantage of data-driven strategies is that they can be
easily implemented as automatic procedures that excite the system
with predefined input signals, perform offline calculations, and de-
liver a ready-to-use control law. No special skills or specialized com-
missioning personnel are required to set up the procedure. This ap-
proach could be interesting for some industrial challenges. For exam-
ple, in compressor for refrigeration equipment or submersible pumps,
offline characterizations cannot be performed when PMSMs are inac-
cessible. Another case of interest is multi-purpose drives, where al-
gorithms suitable for different PMSM topologies are needed. In addi-
tion, PMSM and inverter manufacturers are often different companies
and they were never meant to be integrated in the same application.
Moreover, if the motor drive needs to be manually re-tuned during
its life-cycle, data-driven procedures represent a simple and reliable
method to adapt the initial design.

8.2 model-based mpc of pmsm currents

According to the MPC paradigm, the future control input sequence
u = [u(k),u(k+ 1), . . . u(k+N− 1)]T is optimized in order to steer
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the predicted future output y = [y(k+ 1),y(k+ 2), . . . y(k+N)]T to a
desired reference r = [r(k+ 1), r(k+ 2), . . . r(k+N)]T . Only the first
optimal input of the sequence u(k) is applied to the plant (reced-
ing horizon principle). Thus, the following optimization problem is
solved at each control period:

min
u,x,y

(
∥y− r∥2Q + ∥u∥2R

)
(8.1a)

subject to x(k+ 1) = Ax(k) +Bu(k), y = Cx, (8.1b)

u(k) ∈ U, k = 0, . . . ,N− 1 (8.1c)

where N is the prediction horizon, Q ⩾ 0 and R > 0 are two weight-
ing matrices, A and B represent the state space model used to pre-
dict the output y = Cx, and U is the input feasible set. If the the
set U is neglected, the problem is referred to unconstrained, and it
has a closed-from solution of reduced computational burden. On the
opposite, if the constraints are included, the optimization problem
becomes a Quadratic Programming (QP) which requires an online
solver like qpOASES, as in [95], but it is still easily solvable in real-
time.

In the context of PMSM currents control, future currents are esti-
mated by exploiting a parametric model, based on the voltage bal-
ance equations, represented in the dq reference frame, synchronous
with the rotor flux. The equations are arranged in a state-space form:

idq(k+ 1) = Aidq(k) +Budq(k) +Bh(k)

A =

 1− Rs
Ts

Ld
ωe

Lq

Ld
Ts

−ωe
Ld
Lq

Ts 1− Rs
Ts

Lq

 , B =


Ts

Ld
0

0
Ts

Lq

 (8.2)

where Rs is the stator winding resistance, Ts is the sampling period,
ωe is the electric angular speed and Ld and Lq are the d and q-axis
inductances, respectively. Moreover, idq and udq are the dq currents
and voltages, respectively. udq are the inputs of the system whereas
idq are the states. Finally, h = [0−ωeΛpm]T is the back-Electro Mo-
tive Force (back-EMF) due to permanent magnet flux linkage Λpm.
In the considered application, the full state, i.e. motor currents, is
measurable. This model neglects the cross-saturation phenomena, as
well as iron-saturation and back-EMF harmonics effects. Thus, the
model can result as oversimplified for some PMSM topologies, such
as pure reluctance motors. However, many CCS-MPCs proposed in
literature work with even more simplified models, obtaining indeed
good results. In particular, the dependence of matrix A on the op-
erating speed ωe is neglected, preferring a constant A matrix for
the real-time implementation [35]. It is worth noticing that the data-
driven paradigm overcomes the issues coming from assumptions on
the model structure.
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Figure 8.1: Scheme of the data collection process.

An integral action is included in the MPC formulation by means of
the velocity form of the MPC problem (8.1) [73], in order to achieve an
unbiased current reference tracking (see Chapter 6). The discussion
about the offset-free data-driven control is given in Section 8.3.3.

8.3 towards data-driven control of pmsm drives

Concerning the currents control of PMSMs, a data-driven controller
is built from the input dq voltages udq and the measurements of the
resulting dq currents idq. Then, a current reference tracking prob-
lem is stated, completely analogous to the one presented in (8.1). In
contrast to the parametric model (8.2) used in the MPC solution, a
non-parametric model is adopted, consisting of raw measurements ar-
ranged in a matrix representation. The construction of this model hap-
pens offline, therefore it is not an adaptive controller. A data-driven
controller design procedure consists of two steps:

• A data collection step, followed by offline rearrangement of the
voltages/currents samples into proper matrices;

• An online program, when the tracking problem is solved, with
the voltages/currents samples matrices acting as a constraint.
In this online step, the controller has access to the latest I/O
(voltage/current) samples and optimizes the predictions over
an horizon of N steps.

8.3.1 Data Collection and Offline Computations

All the considered data-driven designs begin from the collection of a
T -long sequence of I/O voltages uc and currents yc measurements
(Figure 8.1). The sequence uc = [uc

1;uc
2; ...;uc

T ] ∈ R2T contains the
inverter reference voltages and it fulfills the persistency of excitation
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Figure 8.2: Block scheme of the online controller.

Table 8: Overview of matrices dimensions for the considered PMSM current
control application.

Matrix H (uc) H (yc) UP YP UF YF Pw Pu M Φ A B

rows 2(Tini +N) 2(Tini +N) 2Tini 2Tini 2N 2N 2N 2N L L 2 2

columns L L L L L L 4Tini 2Tini 4Tini 2N 2 2

requirement [37, Corollary 2], that is the Hankel matrix of inputs in
(8.4) needs to have full raw rank. The selection of the input signal
is further discussed in Section 8.4.1. The resulting output sequence
contains the dq currents yc = [yc

1;yc
2; . . . ;yc

T] ∈ R2T .

8.3.1.1 PEM-MPC

In the PEM-MPC method, the coefficients of the state-space matrices
A and B used in (8.1b) are inferred from data by means of an ordinary
least-square problem1 that involves the sequence uc and yc:

min
A,B

T−1∑
k=1

∥xc(k+ 1) −Axc(k) −Buc(k)∥2 (8.3)

The main difference between the resulting model and the parametric
voltage balance equation (8.2) is that the latter inherently requires the
ad-hoc identification procedures to identify all the electric parame-
ters (Rs, Ld, Lq, Λpm). The PEM method, instead, does not enforce
any parametrization of the model and the resulting matrices can, in
general, have a structure that is different from the one of (8.2).

8.3.1.2 SPC

The theory presented in Chapter 4 for the SPC is here summarized.
In the SPC algorithm, the state-space model (8.1b) is replaced by a

1 It is referred to [40] for a discussion on how to solve this problem numerically.
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different algebraic constraint that relates the future currents trajectory
with the past Tini voltages/currents samples and the future N input
voltage samples.

To obtain this model, two Hankel matrices H (uc) and H (yc) are
built using the collected sequences uc and yc:

H (uc) :=


u1 u2 · · · uT−Tini−N+1

u2 u3 · · · uT−Tini−N+2

...
...

...

uTini+N uTini+N+1 · · · uT

 . (8.4)

The output matrix H (yc) is built in an analogous way from the sam-
ples yc. Then, the matrices are partitioned in Past and Future sub-
blocks:[

UP

UF

]
:= H (uc),

[
YP

YF

]
:= H (yc), (8.5)

where UP contains the first Tini block rows of H (uc), i.e. 2Tini rows,
and UF the remaining N block rows. The block Hankel matrices YP
and YF are similarly obtained. The dimensions of all the presented
matrices are summarized in Table 8 for convenience. The I/O block
Hankel matrices UP, UF, YP and YF are used in the SPC design to
construct an auto-regressive model with exogenous inputs (ARX) as
predictor [113]:

y = Pw

(
uini

yini

)
+ Puu, (8.6)

where uini,yini ∈ R2Tini are the past dq voltage and current samples,
respectively, u,y ∈ R2N are the future ones. The matrices Pw and Pu
are computed as in Chapter 4, Section 4.5. The term multiplied by Pw
is used to set the initial condition of the prediction. A Singular Value
Decomposition (SVD) of the initial trajectory predictor Pw can be per-
formed to mitigate the noise effect in the data [43]. Only the dominant
singular values are used to construct a reduced-rank matrix.

8.3.1.3 DeePC

The design of a DeePC controller is purely data-driven, as the data
block Hankel matrices defined in (8.5) are used in their raw form
in the controller. This method is based on the so called Fundamen-
tal Lemma of behavioral system theory [37] (see Chapter 4, Section 4.2),
which guarantees that (under persistency-of-excitation assumptions
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on uc) any trajectory of the system needs to satisfy, for a unique
g ∈ RL, the linear equations

UP

YP

UF

YF

g =


uini

yini

u

y

 . (8.7)

Implicitly, (8.7) serves as a predictor of the future N-long I/O volt-
ages/currents trajectory (u, y) based on Tini-long I/O initial trajec-
tory (uini, yini). If one considers (u, y) as free optimization variables,
the vector g that satisfies the first two block-equations of (8.7) can be
expressed explicitly as

g =

[
UP

YP

]† [
uini

yini

]
+Φz = M

[
uini

yini

]
+Φz, (8.8)

where † denotes the Moore-Penrose pseudo-inverse operator, and Φ

represents a basis of the kernel of M. Both Φ and M can be com-
puted offline using standard linear algebra routines. This decomposi-
tion allows expressing the future trajectory as a function of the lower-
dimensional variable z, and turns out to be useful in the online phase
of the unconstrained control problem, as explained in the next sub-
section.

8.3.2 Computational Aspects Regarding the Online Program

In the online stage, the MPC tracking problem (8.1) is solved, but with
different representations in place of (8.1b) depending on the adopted
data-driven method. Both the unconstrained and constrained solu-
tions are now discussed for each data-driven method, clarifying the
practicality of their real-time implementation from the computational
burden point of view.

8.3.2.1 PEM-MPC

PEM-MPC algorithm is completely analogous to a standard model-
based MPC, from the point of view of the online program. It is worth
remembering that two possible online controllers can be obtained,
depending on the presence or not of the constraints (8.1c). If the
problem is unconstrained ((8.1c) is absent), the PEM-MPC yields a
linear feedback controller [96] of the form u = Krr+ Kxx(k). On the
other hand, the QP problem requires an iterative solver as in [95],
if input constraints are included. In both situations, the complexity
of the PEM-MPC is the same of a standard model-based MPC, which
is amenable for real-time implementation on adequate hardware. The
dimension of the decision variable coincides with the one of u ∈ R2N,
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thus it scales linearly with the prediction horizon. In the considered
application, the full state of the system is available, but in general
the PEM-MPC requires a state estimator. The other two data-driven
methods, SPC and DeePC, do not require a state estimator, since they
naturally work with the plant outputs.

8.3.2.2 SPC

The SPC algorithm solves the same tracking problem (8.1) as in MPC
or PEM-MPC, but with the state-space model (8.1b) replaced by the
predictor (8.6):

min
u,y

||y− r||2Q + ||u||2R (8.9a)

subject to y = Pw

[
uini

yini

]
+ Puu (8.9b)

u(k) ∈ U, k = 0, . . . ,N− 1 (8.9c)

Similarly to the PEM-MPC, if the constraints (8.9c) are not present,
then the problem can be solved in closed-form by substituting the
predictor equation (8.9b) into (8.9a) and by setting the gradient of
the resulting convex quadratic cost to zero. The resulting online con-
troller is a linear feedback of the form u = Krr + Kini[uini,yini]

T .
If the constraints (8.9c) are present, the minimization program can
be solved online, at the same computational complexity of the PEM-
MPC one. In fact, the computational burden depends on the length
of u.

8.3.2.3 DeePC

The DeePC algorithm, because of the implicit form of the algebraic
constraint, requires the minimization over the decision variables
g,u,y:

min
g,u,y

||y− r||2Q + ||u||2R + λg||g||
2 (8.10a)

s.t.


UP

YP

UF

YF

g =


uini

yini

u

y

 , u(k) ∈ U, k = 0, ...,N− 1 (8.10b)

where λg adds a regularization on the decision variable g. In fact, if
noisy data are used, the Hankel matrices are full raw rank, but the
realized control error in (8.10a) could be different from the predicted
one. Thus, the term λg||g||

2 helps to robustify the control problem
[114, Section III.C]. In the unconstrained case, the problem can be
solved directly using the null-space representation presented in (8.8).
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The future currents and voltages sequences u and y are replaced in
(8.10a) with UFg and YFg, respectively, obtaining

min
z

||YF(M

[
uini

yini

]
+Φz) − r||2Q + ||UF(M

[
uini

yini

]
+Φz)||2R (8.11)

The solution of the problem is available in closed form as zopt =

H−1dT , where the Hessian matrix H and the linear term d are defined
as:

H := ΦTYT
FQYFΦ+ΦTUT

FRUFΦ

d :=
(
r− YFM

[
uini

yini

])T
QΦ−

(
UFM

[
uini

yini

])T
RΦ.

(8.12)

The Hessian inversion can be evaluated offline with proper numerical
techniques, further reducing the complexity of the scheme. More de-
tails on the closed-form solution of the unconstrained DeePC can be
found in [40]. Starting from the optimal value of zopt, (8.8) is used to
compute gopt, and, finally, the sequence of optimal input uopt. It is
still possible to condense this controller in a feedback law similar to
the SPC, with a decision variable that scales linearly with the predic-
tion horizon length. The constrained solution of (8.11) would instead
require an online QP solver. However, the dimension of the decision
variable g can be large, as it depends on the number of samples used
in (8.7). Thus, the real-time implementation of the DeePC algorithm
is still a challenging problem.

In conclusion, three main aspects differentiate the SPC and DeePC
methods [114]: the way the predictor is built, the underlying predic-
tion model and the variables over which the QP problem is solved. In
fact, the SPC forces a least-square fit to a Linear Time Invariant (LTI)
system model, whereas the DeePC does not.DeePC Thus, SPC is more
suited for LTI systems or linear parameter varying ones. On the other
hand, DeePC exhibits interesting features also when applied to non-
linear system, e.g. the grid connected inverter application shown in
[40]. Finally, SPC solves the tracking problem in the input u, whereas
the DeePC in g.

8.3.3 Integral Action

An integral action is needed to avoid bias errors in the currents ref-
erence tracking for the SPC and DeePC algorithms. For instance, the
back-EMF induced by the magnets acts as a constant disturbance in
the voltage equation, inducing a steady state error in reference track-
ing. Following the idea detailed in Chapter 6, the introduction of this
framework also for data-driven controllers is provided. For the MPC
and PEM-MPC algorithms, the integral can be included by formulat-
ing the optimization problem in its velocity-form [73]. The idea is to
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Figure 8.3: Offset-free tracking error: simulation of DeePC algorithm with
no integral action (before t = 1s) and when the offset-free imple-
mentation after t = 1s.

perform the data collection stage filling the matrices with incremental
data, e.g. ∆y = y(k) − y(k− 1). For instance, the DeePC problem in
(8.10) is written as follows:

min
g,∆u,∆y

||∆y− r ′||2Q + ||∆u||2R + λg||g||
2

subject to


U ′

P

Y ′
P

U ′
F

Y ′
F

g =


∆uini

∆yini

∆u

∆y


u(k) = u(k− 1) +∆u(k) ∈ U, k = 0, 1...,N− 1

r(k) ′ = r(k) − y(k), k = 1, ...,N

(8.13)

[U ′
PY

′
PU

′
FY

′
F]

T are the Hankel matrices filled with incremental data.
The optimization problem (8.13) is solved for g, then ∆u(k) is found.

The effectiveness of the proposed solution is shown in Figure 8.3.
The nominal current reference has been set and steady state is
reached, while the motor is kept at nominal speed. Before time
t = 1s, the standard data-driven formulation is considered as con-
troller. As can be seen, a bias appears in the tracking. At time t = 1s,
the controller designed with incremental data is selected and the bias
is removed.

8.4 experimental validation

The experimental validation on an interior permanent magnet motor
is proposed. The nominal parameters of the considered machine are
reported in Table 9. All the algorithms are real-time implemented on
the dSPACE MicroLabBox at a sample rate of Ts = 100µs.
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Table 9: Overview of the motor parameters.

Motor Data Symbol IPM

Pole pairs p 3

Phase resistance R 1Ω

d-axis inductance Ld 0.010H

q-axis inductance Lq 0.014H

PM flux-linkage Λpm 0.26V s

Nominal current IN 6.2Arms

Nominal d current IN,d −1.1A

Nominal q current IN,q 8.7A

Nominal speed ΩN 1000 rpm

8.4.1 Data Acquisition Step

The test designed to collect I/O data from the Interior Permanent
Magnet (IPM) motor consists of excitation with a random (detailed
below) dq voltage vectors sequence uc and the measurement of the
dq currents. Thanks to this choice, the rotor is not required to be
locked or to be maintained at standstill by another motor. The se-
lected zero-mean voltage sequence induces zero-mean currents and,
consequently, a zero-mean torque. Since the mechanical dynamic is
much slower than the electric one, the rotor remain at standstill even
if instantaneously the torque could be not zero. In addition non-linear
frictions help to avoid rotations of the motor.

The criteria to select the voltages amplitude is here discussed. The
motor is driven by a two-level voltage source inverter with a DC
bus voltage of 300V. The voltage sequence is generated by picking
the values from a uniform probability distribution in the interval
[−uexc,uexc]. A test is proposed to analyze the effects of uexc on the
sequence yc and the data-driven design. Figure 8.4(a) refers to sev-
eral excitation tests, characterized by different values of uexc. On one
hand, the maximum excitation voltage should be limited to avoid
over-currents, preserving a safe motor operation. The figure, in fact,
shows that the mean value of the currents samples are quite low with
respect to the nominal value. However, the nominal current value,
for the proposed motor, is achieved using uexc = 90V, i.e. the 30%
of the DC bus voltage. Higher excitation voltages should be avoided.
On the other hand, a too low voltage excitation could lead at least to
current sampling issues. Moreover, one needs to take into consider-
ation also other problems, i.e. if the information carried by the data
is rich enough to describe the current dynamics. The Pulse-Width-
Modulation (PWM) synthesis of low voltages could emphasize some
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(a) Output currents during the excitation tests for different uexc values: mean
and maximum output currents values.
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(b) Singular values analysis of Pw for different uexc values.

Figure 8.4: Overview of some key parameters of the data collection test.

inverter non-linearities, e.g. not properly compensated dead-times,
that are not of interest of our identification. In order to evaluate if the
data are collected properly, the dominant singular values of the ma-
trix Pw are analyzed (see the logarithmic plot in Figure 8.4(b)). The
number of dominant values should be coherent with the anticipated
dimension of the state, see Table 8. Two dominant values characterize
the considered dynamic, as expected.

8.4.2 Parameters Selection

In this section, the problem of parameters selection for designing the
data-driven controls is addressed. The prediction horizon length N

is chosen according to the MPC framework, i.e. N = 3. This value is
a good trade-off between accuracy and computational effort for this
application [35]. Moreover, all the these controllers share the same
cost function; thus, equal weighting matrices Q and R are chosen. In
particular, Q is the identity matrix, whereas R is the identity scaled
by a factor 0.0001. The robust formulation of the DeePC is considered,
and the related parameter in (8.10) has been set to λg = 0.1.

Two parameters that characterize the data-driven algorithms are
the length of the initial trajectory Tini and the number of samples T .
The trajectory [uini,yini]

T replaces the initial condition for the predic-
tion. Thus, it determines the inherent system state, and the parameter
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Figure 8.5: Accuracy of the data-driven predictors in the estimation of the
q-axis current variation.

Tini provides a complexity for the model. In [37], the system lag2 l is
used to find a lower bound for Tini. In particular, if Tini ⩾ l the system
prediction is uniquely determined. Thank to this criteria, the value
of Tini can be chosen even without knowing the system dimension,
but using an estimate of it. Since the system lag is known for the
considered application (i.e l = 1), it is set Tini = 1. The length T of
the recorded I/O vectors should be long enough to make sure that
the Hankel matrices have full rank. The Fundamental Lemma in [37]
gives a lower bound for T , whose value for the considered applica-
tion is T ⩾ 3(Tini +N+ 2) − 1. The parameters T is set to 100 samples,
which satisfies the inequality. All dimensions of the matrices can be
computed using Table 8.

8.4.3 Accuracy of the Data-Driven Predictor

The accuracy of the data-driven predictors is investigated in this sub-
section, taking the model-based MPC as benchmark. This analysis is
performed during steady state operation, when the motor is work-
ing at the nominal Maximum Torque per Ampere (MTPA) current
point (see Table 9) at standstill. During the tests the currents are reg-
ulated by standard Proportional-Integral-Derivative (PID) controllers.

2 The lag l of a linear system is the smallest integer value for which the observability
matrix O = [C CA...CAl−1]T has full rank.



8.4 experimental validation 113

0
DeePC

SPC

100

0.02

P
D

F
 [

1
/A

]

PEM

res [A]

200

0MPC
-0.02

(a) d-axis current.

0
DeePC

500

SPC 0.005

P
D

F
 [

1
/A

]

1000

PEM

res [A]

1500

0MPC
-0.005

(b) q-axis current.

Figure 8.6: Residual analysis of the prediction error: probability distribution
function of the residuals for the presented predictors.

The interest is on the open-loop prediction accuracy of the methods.
This means that the predictors are fed by current measurements and
the reference voltages computed by the PIDs. A first qualitative infor-
mation on the accuracy is provided by Figure 8.5(a) and Figure 8.5(b).
The figures show the comparison between the measured q-axis cur-
rent increments and the predicted ones, using respectively the predic-
tor obtained with (8.3) and (8.11). A good correspondence between
measurements and predictions for both the controllers is observed.

The residuals between measured and estimated currents are con-
sidered as performance index, as suggested in [105]. The results of
this analysis are reported in Figure 8.6. The figures show the esti-
mated probability density function of the d and q residuals for all
the described predictors. From literature [105], a zero mean normal
distribution of the residuals is expected, which is coherent with the
obtained results. The PEM-MPC predictor appears the most accurate
one, proving that using data to validate the commissioning tests is
an interesting tool. This could be observed also by the time-domain
figure Figure 8.5(a), since the predicted currents almost overlap the
measured ones.

8.4.4 Online Unconstrained Controller

In this a comparison between model-based and data-driven designed
controllers in terms of step current reference response is provided.
In particular, the reference r is changed from zero to the nominal
MTPA. The model-based MPC adopts the motor parameters which
were previously obtained by means of characterization procedures
(see Table 9). All the data-driven controllers are designed from the
same data recording, in particular the one defined by a uexc = 50V.

The online controllers are implemented in their unconstrained ver-
sions, to provide a fair comparison between all the methods. In fact,
the constrained version of the DeePC results too computationally de-
manding. The resulting control laws are reported in Figure 8.7 and
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Figure 8.9: Comparison of the step responses of model-based and data-
driven current controllers at standstill.

Figure 8.8. Namely, the MPC matrices are compared with the ones ob-
tained using the PEM-MPC in Figure 8.7, while the SPC and DeePC
control laws are compared in Figure 8.8. The colored heatmaps help
to compare the magnitude of the coefficients. Although the coeffi-
cient values differ among methods, their distribution is very similar,
for example in the location of the zeros. This means that the resulting
control action based on data could also take into account the cross
coupling terms. In particular, by observing Figure 8.7, the MPC and
PEM-MPC control laws are slightly different. Instead, the SPC and
DeePC control laws in Figure 8.7 are very similar, thus comparable
performances are expected.

The step responses are compared at standstill in Figure 8.9. It is
relevant that the data-driven designs allow achieving similar perfor-
mances with respect to the model-based controller. In fact, the com-
missioning effort of all the proposed algorithms in terms of measure-
ment apparatus, number of carried out tests and their complexity
and duration is much lighter compared to the characterization re-
quired to build an accurate model-based controller [100]. Among data
driven controllers, the DeePC is considered the most data-oriented
algorithm, because it uses raw data without any pre-processing. De-
spite the direct exploitation of raw data, it has almost the same perfor-
mance as the others. The same step response analysis also at nominal
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Figure 8.10: Comparison of the step responses of model-based and data-
driven current controllers at nominal speed.

speed rate in Figure 8.10 is reported. This test confirms the effective-
ness of the integral action included in the data-driven control frame-
work. The back-EMF and the state transition matrix A of the IPM
motor model (8.2) depend on the operating speed. Thus, a bias in the
current tracking should be observed if the integral action is missing
(as in Figure 8.3). The model-based MPC grants the overall best per-
formances, as expected, since the effort paid for the commissioning.
However, wit is highlighted that the proposed data-driven methods
are still very effective for the q-axis current. Moreover, other tools
can be used to further improve their behavior, in particular the one of
the DeePC (see [38]). In addition, accordingly to [115], a feed-forward
term can be nested in the controller to improve disturbance rejection
performances, without penalizing the overshoot in the dynamics. It is
therefore believed that there is much unexplored potential to improve
the performance to data-driven controllers.

8.5 discussion

In this work a transition path from model-based to data-driven de-
sign of PMSM current controllers is presented. Different data-driven
algorithms are considered: the prediction error method model pre-
dictive control, the subspace and the data-enabled predictive controls.
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All the algorithms were online implemented in the unconstrained ver-
sion, proving their online feasibility. Similar accuracy between model-
based and data-driven predictors is demonstrated with experimental
data. Experimental results show that all these controllers have com-
parable performance, considering the MPC with an accurate model
as benchmark. Moreover, among data-driven controllers, the DeePC
performs well both in steady-state and dynamics.

There are several challenges to address in the future. First, compar-
ison between data-driven and self-commissioning techniques would
be valuable. This could help to design effective strategies for the exci-
tation voltage signals. Second, the extension of data-driven methods
for nonlinear system is at the beginning. The possibility to automati-
cally include the motor and inverter nonlinearities in the control law
is of particular interest. Third, finding computationally efficient meth-
ods for implementing high-dimensional data-driven methods that in-
clude constraints in real-time is still an open challenge. Finally, other
future research will focus on online adaptation of data-driven control
structures and applications to other drives problems.





9
R E D U C I N G D ATA - D R I V E N C O N T R O L A L G O R I T H M
C O M P L E X I T Y V I A M O D E L O R D E R R E D U C T I O N

This chapter presents some preliminary results that has been obtained
during the last period as Ph.D. student. A possible approach for re-
ducing the computational cost in the online stage of data-driven con-
trol discussed in previous chapters is presented.

9.1 introduction

The aim of this chapter is to propose a method for enabling the real-
time implementation of the Data EnablEd Predictive Control (DeePC)
control algorithm, exploiting the Quadratic Programming (QP) solver
formulation presented in Chapter 7. In the previous chapter, it was
shown that, as the number of data used to build a data-driven model
of the electric drive increases, the computational cost of the DeePC
grows such that real-time feasibility is compromised. The problem
class considered has the objective function that is quadratic in the
unknowns, whose values must be delimited with respect to some
constraints, and the size of the problem is large. The key idea is to
exploit Model Order Reduction (MOR) techniques presented in Chap-
ter 5, approximating the large-scale system with dimension n with a
reduced order problem with order r. The reduced system is designed
in order to preserves a prescribed accuracy of the solution with re-
spect to the original problem. The main advantage of this strategy
is that the huge amount of computing cost is offline, and the online
cost is dramatically reduced. The steps from data collection to the re-
duced problem can be fully automated, and the introduction of the
MOR procedure reduces the computational complexity for the opti-
mization problem solver to solve in real time. This method is called
Data-Driven QP MOR, and it is presented for electric drives applica-
tions.

9.2 problem statement

The problem of designing a data-driven controller for the current
control loop of Permanent Magnet Synchronous Motor (PMSM)s is
analyzed. Data-driven controls have recently become popular among
the control research community, thanks to the digital revolution that
is bringing a huge change in all scientific fields. The availability of
data has raised the big question of how to use them to increase the
efficiency and safety of industrial processes. In electric drives applica-

119
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tions, the design of a data-driven controller aims at controlling motor
currents simply by using the system’s input and output data. This
procedure requires two main steps. The first one is the acquisition of
a certain number of sampled input (voltages) and output (currents)
data. Next, this data replaces the motor model in a Model Predictive
Control (MPC) framework. No identification step is preformed and
the optimization problem is usually a QP problem that needs to be
solved in real-time.

The following sections briefly recall the key ingredients of the previ-
ous chapters which are combined together for building the proposed
algorithm. These features are listed below:

• the DeePC algorithm, whose related constrained QP problem
dimension strictly depends on the number of used data;

• the custom QP solver proposed for MPC of electric drives;

• the adopted MOR technique, which represents the link between
the data-driven algorithm and the QP solver.

9.3 deepc algorithm for electric drives

The DeePC algorithm minimizes the following cost function with re-
spect to the decision variable g:

min
g,u,y

N−1∑
k=0

(
||y(k) − r(k)||2Q + ||u(k)||2R

)

s.t.


UP

YP

UF

YF

g =


uini

yini

u

y

 , uk ∈ U, k = 0, . . . ,N− 1

(9.1)

where UP, YP,UF, YF are Hankel matrices that contain the sampled
data and they have the following structure:

H (u) :=


u1 u2 · · · uT−LHank+1

u2 u3 · · · uT−LHank+2

...
...

...

uLHank
uLHank+1 · · · uT

 (9.2)

These matrices are obtained by partitioning the matrix (9.2) in past
and future sub-blocks:

(
UP

UF

)
:= H (uc),

(
YP

YF

)
:= H (yc) (9.3)
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where UP contains the first Tini block rows of H (uc), and UF the
remaining N block rows. The block Hankel matrices YP and YF are
similarly obtained. The design parameters are:

• N, which is the prediction horizon;

• Tini, which is the number of past samples to reconstruct initial
trajectory;

• T , representing the total number of samples.

The QP problem (9.1) includes inequality constraints for the voltage
solution vector and a solver is required. The dimension of the ma-
trices strictly depends on the choice of these parameters. One of the
main drawbacks of this method is represented by the presence of
noise in output measurements. To get rid of part of the noise effects,
the number of required samples drastically increases. Thus, the real-
time implementation of this strategy may be compromised.

9.4 model order reduction

Some insightful about MOR strategies has been provided in Chap-
ter 5. The main idea is that a high-dimensional state vector actually
belongs to a low-dimensional subspace. Given a general system of
equations Ax = b, with unknown vector x ∈ Rn, the aim is to find a
projection matrix V ∈ Rn×r such that x ≈ Vxr, with xr ∈ Rr reduced
order solution vector.

9.4.1 Proper Orthogonal Decomposition

Proper Orthogonal Decomposition (POD) is a suitable strategy for
approximating large-scale dynamical system with a reduced order
problem. This method consists in capturing dominant information of
the physical phenomenon through already calculated solutions, and
the construction from these of a small subspace with an orthonor-
mal base. Here, the idea is to exploit this method not for obtaining
a reduced data-driven model, but to directly reduce the optimiza-
tion problem. From (9.1), it can be observed that the optimization
problem depends on a number of parameters (e.g., current reference,
initial conditions). Hence, the reduced model should represent this
parameter dependency of the original system. The class of MOR al-
gorithms which aims at solving this problem are called Parametric
MOR (pMOR). Parametric model order reduction targets the broad
class of problems for which the equations governing the system be-
havior depend on a set of parameters. A general procedure to obtain
a parametric reduced problem with POD follows these steps:

1. define the set of parameters and their range of variability;
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2. solve the problem with an initial value of the parameters;

3. orthonormalize the solution vector v (using, e.g., Singular Value
Decomposition (SVD), QR or Modified-Gram–Schmidt algo-
rithm) with respect to previous solutions;

4. add the vector v to the projection matrix V ;

5. compute the reduced order model using V ;

6. test the accuracy of the solution with a number of random pa-
rameter values (greedy methods);

7. choose the combination of parameters which give the maximum
error;

8. repeat the procedure from step 3 to 7 until the error is less than
a desired tolerance.

9.5 implementation

This section presents a step-by step procedure to combine a quadratic
programming problem with model order reduction techniques for im-
proving the real-time feasibility of the data-driven control algorithm.
The first step is to consider the unconstrained QP problem. In this
framework, all the inequality constraints are ignored, but the equal-
ity constraints are considered. The MOR procedure is applied to
this problem, and the solution is compared with the one obtained
with qpOASES1 that solves the original problem. Once the compared
solutions are identical, except for a determined tolerance, the in-
equality constraints are included in the optimization problem and
reduced with MOR. The solution accuracy is again compared and
validated with qpOASES. The standard condensed formulation of (9.1),
presented in Chapter 8, is:

min
g

1

2
gTHg+ cTg (9.4)

where H ∈ RL×L,g ∈ RL, c ∈ RL. To combine the data-driven algo-
rithm with the QP solver, some required preliminary assumptions are
listed below:

• regarding the solver presented in Chapter 7, it considers as deci-
sion variable ∆u. In (9.13), one can easily express ∆u as function
of g, i.e., ∆u = u(k− 1) +UFg;

• it is introduced the control horizon Nu = 1 and the prediction
horizon N = 3, according to the QP solver implementation.

1 see Chapter 6 and Chapter 7 for more information about qpOASES solver.
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9.5.1 Equality Constrained QP

Starting from (9.1), the associated equality constrained optimization
problem is:

min
g,∆u,y

N∑
i=0

||ref(k+ i+ 1) − y(k+ i+ 1)||2Q+

Nu−1∑
i=0

||∆u(k+ i)||2R + λg||g||
2

subject to


UP

YP

UF

YF

g =


uini

yini

∆u

y


u(k) = u(k− 1) +∆u(k) ∈ U, k = 0, 1...,N− 1

(9.5)

Then, using the relations UFg = ∆u and YFg = ∆y, the problem (9.5)
can be solved with respect to the vector g. Condensing the problem
(9.5) in the standard QP form it results:

min
g

1

2
gTHg+ cTg

s.t. Aeg = be

(9.6)

where:

H = 2(YT
FQYF + λgIL×L +UT

FRUF);

c = −2YT
FQref, Ae =

[
UP

YP

]
, be =

[
uini

yini

]
(9.7)

and IL×L is the identity matrix of indicated dimension. There are sev-
eral methods that can be used to solve (9.7), such as the null space
method or range space method. Assuming the objective function of
the minimization problem to be a convex function, the necessary
conditions are also sufficient for optimality [18]. Let’s consider the
Karush–Kuhn–Tucker (KKT) system associated with problem (9.5):[

H AT
e

Ae 0

]
︸ ︷︷ ︸

KKTeq

[
g∗

µ∗
e

]
︸ ︷︷ ︸

x

=

[
−c

be

]
︸ ︷︷ ︸
ceq

(9.8)

The superscript ∗ indicates the optimal solution. Differently from
Chapter 7, the system in (9.8) is considered instead of using penalty
functions. In fact, the resulting optimization problem with penalty
function could be ill-conditioned because of the introduction of large
weight parameters on the constraints.
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The MOR strategy is applied to the relation (9.8). One can notice
that the optimization problem does not have constant matrices dur-
ing time. The current reference can change, and the initial conditions
are update at every control sample. This suggests that the reduced
problem should be able to represent the original one in the entire pa-
rameter space. The adopted technique is represented by a parametric
POD, which is a state-of-art MOR techniques [44].

The goal is to represent (9.8) with an explicit affine parameters de-
pendence. The parameter space includes the initial conditions wini =

[uini yini]
T ∈ R(m+p)Tini and the current reference ref = irdq ∈ RpN,

where m is the dimension of the system input (m = 2) and p the di-
mension of system output (p = 2), and irdq is the dq current reference
instant k. The dimension of these vectors depends on the choice of
N and Tini. In particular, the problem (9.8) can be rewritten as in the
following:

KKTeqx = (c1ref+ c2wini), (9.9)

cref ∈ R(L+(m+p)Tini)×pN and cref ∈ R(L+(m+p)Tini)×(m+p)Tini . Ap-
plying the POD method to (9.9), a reduced order problem is ob-
tained, i.e., the algorithm finds the matrix V∈R(L+(m+p)Tini)×r using
Galerkin projection (see Chapter 5), introducing a reduced variable
gr s.t. g ≊ Vgr. The introduction of this definition in (9.9) leads to:

KKTeqVgr ≊ (c1ref+ c2wini) + res (9.10)

and the matrix V is chosen such that the projection of residual res
onto the space spanned by the column of V is in the null space of V ,
i.e., VT res = 0. Thus, the reduced order system is obtained:

ˆKKTeqgr = (ĉ1ref+ ĉ2wini) (9.11)

where:

ˆKKTeq = VTKKTeqV ; ĉ1 = VTc1; ĉ2 = VTc2 (9.12)

Four matrices K̂KTeq ∈ Rr×r, ĉ1 ∈ Rr×mN, ĉ2 ∈ Rr×(m+p)Tini , and
V are obtained as output of the algorithm. There are several ways
to implement the POD method. A draft of the implemented algo-
rithm is reported in the Algorithm 3. In particular, a pseudo-random
approach has been selected. The idea is to build the projection ma-
trix V by randomly exploring the parameter space. This approach
has shown promising results in different applications [116–118]. Fur-
thermore, the residual evaluation is performed considering only the
variable g, because it is the variable of interest and the Lagrange mul-
tipliers are unnecessary to obtain the final solution.
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Algorithm 3 pMOR Algorithm of (9.8)
Input: Matrices KKTeq, be and c, which are parametric in uini,yini and ref.
The parameters ranges are: uini = [umin,umax],yini = [imin, imax], ref =

[refmin, refmax].
Step {0} Set initial values for parameters, i.e., uini = umin+umax

2 , yini =
ymin+ymax

2 , ref = refmin+refmax
2

Set res⋆ = +∞
Set Nrand (e.g. Nrand = 20)
Set a desired value of η (e.g. η = 10−4)
while res⋆ > η do

Step {1} Find the solution [g;µe] of (9.8)
Step {2} Update the orthonormal basis V

Step {3} Generate/Update the reduced order problem
Step {4} Generate Nrand random values of uini = [umin,umax], yini =

[imin, imax], ref = [refmin, refmax]

for h = 1, · · · ,Nrand do
Select the h-th random set of parameters,
Step {5} Find the solution [ĝ; µ̂e] of the reduced order problem
{6} Evaluate the residual, res, with respect to the full order problem

end for
Step {7} Find the set of parameters generated at step 4 which maximizes the
residual and assign the corresponding maximum residual to res⋆. The new
parameter set is used for solving step 1

end while
Output: Reduced order model and the projection matrix, i.e., ˆKKTeq =

VTKKTeqV ; ĉ1 = VTc1; ĉ2 = VTc2

9.5.2 Include Inequality Constraints

The inequality constraints on the input are the voltage limit equa-
tions of the inverter, that represent a hexagon centered to the origin
in a stationary reference frame. In a rotating reference frame (dq-
reference frame), the hexagon rotates with an angular speed which
is the electro-mechanical speed of the motor ωme = dθme

dt . The stan-
dard constrained QP problem is represented in (9.13).

min
g

1

2
gTHg+ cTg

s.t. Aeg = be

Aing ⩽ bin

(9.13)
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where matrices Ain and bin describe the hexagon and are reported
below:

F = MT(θe) =



1
√
3

1 0

1 −
√
3

−1 −
√
3

−1 0

−1
√
3


[

cos(θe) − sin(θe)

sin(θe) cos(θe)

]
,

Ain = FUF,

bin =
2uDC√

3
b− Fuk−1, b =

[
1 0.5 1 1 0.5 1

]T

(9.14)

uDC is the DC bus voltage, T(θe) is the dq to αβ matrix transfor-
mation, and uk−1 is the dq voltage at instant k− 1. The hexagon is
represented as six lines with proper angular coefficients. Introducing
the solver algorithm presented in Chapter 7, if an unfeasible solution
is found by the unconstrained QP problem, the number of constraints
that can be violated simultaneously can be one, two or three.

Briefly, if a constraint is violated, a penalty term on the cost func-
tion that penalized the related constraint is added. The possible steps
of the QP solver are described in Chapter 7. Here, it is recalled the
case where one constraint of the hexagon is violated. In fact, since
the algorithm considered one violated constraint at a time, the pro-
cedure at each step is closed to the case of one constraint violation.
Given the unconstrained solution of the problem (9.5) ∆uuc = UFg

uc,
if it violates one constraint (represented by an edge of the hexagon
and identified with index i, i = 1, ..., 6), the feasible optimal solution
certainly lies on the segment itself. The feasible solution is computed
according to the following passages:

1. The solution of the problem (9.13), namely ∆uoa, is computed
by considering the penalty related to the constraint i;

2. a feasibility check is then operated, computing

hj := F(j, :)∆uoa − f(j) ⩽ 0 for j = i− 1, i+ 1; (9.15)

a) if ∆uoa does not violate any constraint, then ∆u∗ = ∆uoa

and lies on the segment;

b) if ∆uoa violates one of the two adjacent constraints, the
solution is on the related intersection.

If the solution is unfeasible and it violates the constraint j (or the con-
straint j is considered at the current step if more than one boundary
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has been crossed), the following associated KKT system is considered:

 H AT
e Ain(j, :)T

Ae 0 0

Ain(j, :) 0 0


︸ ︷︷ ︸

KKTin

 g∗

µ∗
e

µ∗
in

 =

 −c

be

bin(j)


︸ ︷︷ ︸

rhs

(9.16)

As before, the aim is to find a reduced problem of (9.16). In this case,
the parameter space results larger than the equality constrained prob-
lem. In fact, the new parameters introduced by the inequality con-
straints are: the electric position θe, the bus DC value uDC, and the
index i of the considered constraint among the six which describe
the hexagon. Then, the algorithm proceeds as before with larger set
of parameters. The problem (9.16) has to be written explicating its
parameter dependence, as in the following:

KKTin = H1 +H2M(j, 1) cos(θe) +H3M(j, 2) cos(θe)

+H4M(j, 1) sin(θe) +H5M(j, 2) sin(θe);

rhs = c1ref+ c2[uini;yini]
T + c3uDCb(j)

+c4M(j, 1) cos(θe)uk−1

+c5M(j, 2) cos(θe)uk−1

+c6M(j, 1) sin(θe)uk−1

+c7M(j, 2) sin(θe)uk−1;

(9.17)

Thus, an affine representation of (9.16) with respect to the parameters
is obtained. The goal of MOR is to find a reduced system by finding
a projection matrix Vin.

9.6 validation test

In this section, some preliminary results are reported. In particular,
the method has been validated by evaluating the accuracy of the so-
lution found by the reduced system of (9.8) and (9.17).

9.6.1 Case Study

The DeePC algorithm in its incremental formulation has been consid-
ered, applied for controlling the current of the same Interior Perma-
nent Magnet (IPM) used in Chapter 8, whose parameters are given in
Table 10. The following parameters for the DeePC have been selected:

Tini = 1;N = 3;Nu = 1; T = 100; (9.18)

remebering from Chapter 4 that T ⩾ (m + 1)(Tini + N + nB) − 1,
where nB is an estimation of the state dimension, it results L =
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Table 10: IPM motor parameters.

Motor Data Symbol IPM

Pole pairs p 3

Phase resistance R 1Ω

d-axis inductance Ld 0.010H

q-axis inductance Lq 0.014H

PM flux-linkage Λpm 0.26V s

Nominal current IN 6.2Arms

Nominal d current IN,d −1.1A

Nominal q current IN,q 8.7A

Nominal speed ΩN 1000 rpm

T − Tini −N + 1 = 100. Thus, the dimension of the original high-
dimensional system (9.8) is L+ (m+p)Tini = 104, and for the system
with inequalities (9.16) is L + (m + p)Tini + 1 = 105, because it is
considered one constraint at a time. The tolerance for computing the
Reduced Order Model (ROM) has been set to ∋= 0.0001.

9.6.2 MOR of Equality Constrained Problem

The Algorithm 3 starts with an initial set of parameters. At a generic
iteration, the high-dimensional problem is solved (step 1), the matrix
V is updated by adding the solution by orthonormalization proce-
dure (step 2). The updated reduced model is built (step 3) and Nrand

number of parameters are generated randomly (step 4). The reduced
problem is tested (step 5) and the residual is evaluated (step 6). Then,
the while loop iterates until the residual between the solution of the
reduced model and the high-dimensional problem (step 7) is below
the tolerance µ.

In Figure 9.1, it is reported the trend of the residual during the
MOR process. As can be seen, the algorithm stops after six iteration.
It is highlighted that this number also indicates the dimension of the
reduced problem. It can be observed that the procedure stops with
a residual which approaches zero. This means that the resulting sys-
tem is drastically reduced in size and it describes the original high-
dimensional problem very accurately. The reduced problem is then
tested with another set of random parameters, which has not been
used during the building process. This is considered as a validating
test of the model. Furthermore, a comparison with the solution found
by the solver qpOASES has been performed. In Figure 9.2, there are re-
ported two examples of how the reduced model finds a very accurate
solution. These two tests have been conducted with two different sets
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Figure 9.1: Iterations performed by the MOR algorithm for reducing prob-
lem (9.8).

of parameters, randomly chosen in the parameter space. The solver
qpOASES computes the solution of the original high-dimensional prob-
lem (9.6), while the cross in Figure 9.2(a) and Figure 9.2(b) report the
solutions found with the reduced model. As can be seen, these solu-
tions overlap. This was expected since the residual in Figure 9.1 at
the final iterate is almost zero. The evident computational advantage
is that the problem has been reduced in size from dimension 104 to
dimension 6.

9.6.3 MOR of Inequality Constrained Problem

The same validation procedure presented in the previous section can
be applied to the problem (9.16). The MOR algorithm proceeds in
the same way of Algorithm 3. In Figure 9.3, it has been reported the
iterations performed by the MOR procedure, and now the reduced
model has dimension 9. As before, the algorithm ends with the last
iteration which approaches zero residual with respect to the high-
dimensional problem. As before, the obtained problem is validated
by comparing its solution with qpOASES. In this case, the parameters
are chosen such that the unconstrained solution is found outside one
constraint of the hexagon, since the QP solver presented in Chapter 7

consists in a finite succession of solutions found by considering one
constraint at time. Two examples of results have been reported in
Figure 9.4. Firstly, the proposed method uses the reduced system with
the equality constraints to find the unconstrained solution. Then, a
check of the feasibility is performed, and it results that one constraint
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(a) Test 1. (b) Test 2.

Figure 9.2: Validation examples: the solution computed by qpOASES of the
high-dimensional problem (9.8) with equality constraints is com-
pared with the one obtained with the reduced model, for a given
set of parameters. This problem is exploited for finding the un-
constrained solution.

Figure 9.3: Iterations performed by the MOR algorithm for reducing prob-
lem (9.8).

has been violated. Thus, the reduced problem with the considered
inequality constraint is solved. This solution is compared with the
one obtained by qpOASES with the original high-dimensional problem.
As result, the solution accuracy is preserved, while the problem has
been reduced in size of a factor 10.

9.7 discussion and future challenge

In this chapter, a possible way to overcome the problem of the com-
putational complexity of the DeePC algorithm has been proposed.
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(a) Test 1. (b) Test 2.

Figure 9.4: Validation examples: the solution computed by qpOASES of the
high-dimensional problem (9.16) with equality constraints is
compared with the one obtained with the reduced model, for
a given set of parameters. This problem is exploited for finding
the unconstrained solution.

In particular, when inequality input constraints are considered, the
cost for solving the optimization problem becomes a cumbersome
aspect, and the real-time feasibility of the algorithm is completely
lost. The proposed method aims at using more efficiently the custom
QP solver presented in Chapter 7, by considering a MOR technique,
which use a POD method, that drastically reduces the size of the
original high-dimensional data-driven model, while preserving accu-
racy of the solution. In particular, a parametric representation of the
data-driven model has been obtained, and the reduced parametric
problem has been exploited at solving the constrained MPC using
the QP solver for the current control of a synchronous motor. Prelim-
inary results demonstrate that this method can drastically reduce the
size of the data-driven model, at least of a factor 10. The accuracy of
the solution is preserved, and tests have been carried out that validate
the proposed strategy by comparing the solution found by the solver
qpOAES.

Future researches will focus on the possibility to further reduce the
size of the problem, testing other MOR techniques. There are several
challenges related to this problem: the first one is strictly related with
the data-driven strategy of the DeePC, and it is the possibility to take
into account nonlinearities of the system, and then exploits a suit-
able reduction strategy. Furthermore, a further investigation in the
reduced order modeling literature will help to find systematic way
to choose the size of the reduced model, while preserving a desired
accuracy.





C O N C L U S I O N S A N D F U T U R E D E V E L O P M E N T S

The research carried out in this thesis covered different aspects of con-
trol of electric drives. In particular, optimization-based control tech-
niques for synchronous motor drives have been studied, with a lot
of emphasis on computational aspects and deployments of such algo-
rithms.

Two complementary paradigms to control the machine have been
considered, i.e., the model-based and the data-driven approach. The
theory of Model Predictive Control (MPC) has been presented. It
has been highlighted the main MPC advantages of easily handling
multiple-input-multiple-output systems and the possibility to directly
include the physical limits of the machine into the optimization prob-
lem. The most widespread MPC method uses in power electronics ap-
plication is represented by the finite-set strategy. However, my thesis
analyzed the other approach to MPC, the continuous-set one, which
includes a modulation strategy for the inverter. With the presence of
input/output constraints, a Quadratic Programming (QP) problem
needs to be solved, requiring the presence of an iterative algorithm.

Two main aspects of MPC have been investigated: the integral ac-
tion of MPC and an efficient method for solving continuous-set prob-
lems in real-time. One one hand, it has been shown the comparison
between the velocity-form MPC and the MPC coupled with a Kalman
filter observer by means of experiments, with a focus on the com-
putational performance of the two approaches, adopting the solver
qpOASES for its versatility. The equivalence of these two methods has
been pointed out. The velocity-form MPC, which considers the incre-
mental formulation of the motor model, turns out to be an easy and
effective method for overcoming bias errors introduced by model de-
viations, with a reduced number of parameters to be tuned, thus mak-
ing the process simple also for non-high specialized personnel. On the
other hand, the problem implementing efficient algorithms which can
solve the optimization problem in limited hardware at high control
frequency has been addressed. It has been presented an efficient cus-
tom QP solver for electric drives applications, whose computational
complexity can be easily evaluated and the worst-case computational
cost is uniquely determined.

Then, data-driven controls have been presented for controlling mo-
tor currents using only input and output data collected from the
machine. Fundamental theory regarding these methods have been
recalled, in the case of linear systems. The Subsapce Predictive Con-
trol (SPC) and the Data EnablEd Predictive Control (DeePC), which

133



134 reducing data-driven control complexity via mor

solve an optimization problem have been analyzed and compared
with the model-based approach, showing promising performance.

The computational burden of data-driven algorithms is currently
under investigation. If a lot of data are needed, the complexity of the
optimization problem grows significantly, precluding the real-time
feasibility. The idea is to reduce the problem size via model order
reduction techniques, which find an approximation of the original
optimization problem by projecting it onto a smaller subspace. The
result is a considerably smaller problem, while keeping accuracy with
respect the original high-fidelity model. Then, the optimization prob-
lem could be solved exploiting the proposed solver.



Part IV

A P P E N D I X





A
S PA C E V E C T O R S

In this chapter are presented the mathematical instruments that are
essential to understand the analysis and modeling of electric ma-
chines. In particular, the notion of space vector is introduced, together
with the system coordinate transformation which are adopted in this
work.

A generic three-phase system is a quadrupole which characterized
by three terminals, called phases, and a fourth connector, the neutral
terminal. In Figure A.1 it is represented a general three-phase system
as a box, assuming the user convention. The behaviour of the sys-
tem is determinated by three currents (the phase currents ia(t), ib(t),
ic(t)) and a triad of voltages ua(t), ub(t), uc(t) that refer to the neu-
tral wire. The difference between phase voltages gives the so called
line-to-line voltages uab(t), ubc(t), uca(t), and at any instant their
sum is zero for the Kirchhoff’s voltage law. In principle, these mag-
nitudes are function of time. The introduction of appropriate mathe-
matical tools such as space vectors leads to introduce a considerable
simplification in the description of three-phase systems. A general
definition of space vector is given in (A.1).

g(t) =
2

3

(
ga(t) + gb(t)e

i 2π
3 + gc(t)e

i 4π
3
)

(A.1)

The variables ga,b,c(t) are real functions that may, for example, be
the three supply voltages or the phase currents, and they do not need
to be sinusoidal. Equation (A.1) allows to introduce a complex vector
g(t) that is associated to the triad ga,b,c(t). First, consider the case
that the three-phase functions of voltages and currents are instanta-
neously balanced, i.e. (A.2) holds for all the values of t.

g0(t) =
ga(t) + gb(t) + gc(t)

3
= 0 (A.2)

Equation (A.1) is a complex function, and it can be decomposed in
its real and imaginary part:

Re[g(t)] = gα(t) =
2

3
(ga(t) −

1

2
gb(t) −

1

2
gc(t))

Im[g(t)] = gβ(t)
2

3
(−

√
3

2
gb(t) +

√
3

2
gc(t))

(A.3)

If the relation (A.2) does not hold for all t, the system is said to be
unbalanced. The αβ transformation is still possible. The general gabc
can be decomposed as:
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Figure A.1: Representation of a space vector in αβ reference frame.

g(t)

gα(t)

gβ(t)

α

β

Figure A.2: Representation of a space vector in αβ reference frame.

ga = g ′
a + g0

gb = g ′
b + g0

gc = g ′
c + g0

(A.4)

where g ′
abc represents the balance component of gabc. The definition

in (A.1) can be still applied to (A.4) and it is demonstrated that:

g(t) =
2

3

(
ga(t) + gb(t)e

i 2π
3 + gc(t)e

i 4π
3
)
=

2

3

(
g ′
a(t) + g ′

b(t)e
i 2π

3 + g ′
c(t)e

i 4π
3
) (A.5)

i.e. the transformation does not contain the homopolar component.
The definition in (A.3) with the following notation: g = gα + jgβ,

indicates a function of time which is called space vector. In Figure A.2,
the space vector is represented with the two orthogonal component in
a complex plane, where the real axis is called α-axis and the β-axis is
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Figure A.3: Representation of a space vector in rotating dq reference frame.

the imaginary one. This transformation can be represented in matrix
form as following:gαgβ

g0

 =
2

3

1 −1
2

1
2

0 −
√
3
2

√
3
2

1
2

1
2

1
2


gagb
gc


⇒ gαβ0 = Tabc→αβ gabc

(A.6)

The relation in (A.6) is the known as Clarke’s transformation or αβ0-
transformation, and it is employed to simplify the analysis of three-
phase circuits. In (A.6) and from here on, the explicit time dependence
is omitted to simplify the notation. This relation is amplitude conserva-
tive, thank to the term 2

3 . The g0 component is also known as the
homopolar component.

Another useful mathematical tool is the so called Park’s transfor-
mation. Consider the Figure A.3, which shows that is possible to rep-
resent the space vector gαβ = |g|ejθαβ with respect to a rotating or-
thogonal reference frame, whose axes are called dq axes. The origin
of these reference frame coincides with the one of αβ axes, but it ro-
tates with an angular speed ωdq =

dθdq

dt . The rotational angle θdq is
in general a function of time. Observing the Figure A.3, the following
equivalent representation holds:

g
αβ

= |g|ejθαβ = |g|ej(γdq+θdq) = g
dq

ejθdq

⇒ g
dq

= g
αβ

e−θdq

(A.7)

Equation (A.7) points out the relation between αβ and dq reference
frame, which in compact matrix notation becomes:
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[
gd

gq

]
=

[
cos θdq sin θdq

− sin θdq cos θdq

][
gα

gβ

]

⇒ gdq = Tαβ→dq gαβ

(A.8)

The matrices Tabc→αβ and Tαβ→dq are the so called Clarke and Park
transformation matrices respectively. The inverse transformation is
computed by computing the inverse of the matrix Tαβ→dq. This is
an orthonormal matrix, i.e its inverse is equal to the transpose, as
represented in (A.9).

Tdq→αβ = T−1
αβ→dq = TT

αβ→dq =

[
cos θdq − sin θdq

sin θdq cos θdq

]
(A.9)

If one wants to consider even the homopolar component, the previous
relations are obtained by imposing the conservation of such compo-
nent. Matrices relations become:

Tαβ0→dq0 =

 cos θdq sin θdq 0

− sin θdq cos θdq 0

0 0 1



Tdq0→αβ0 =

cos θdq − sin θdq 0

sin θdq cos θdq 0

0 0 1


(A.10)



B
S TAT E - F E E D B A C K C O N T R O L

b.1 introduction

State-feedback control is a traditional way to stabilize a dynamical
system to the origin. However, the presence of disturbances on the
plant could significantly reduce the action of this controller. This re-
port gives a comprehensive description of how the integral action can
be included in state-feedback control in order to compensate constant
disturbances acting on the input signal. The possibility to include a
desired reference trajectory different from the origin is also described.

b.2 reference tracking

In the following, it is assumed that the open-loop dynamical system
completely reachable and observable. It has been shown that state
feedback control law brings the output y(k) to zero asymptotically.
The first step to introduce the possibility to make the output y(k)

track a generic constant set-point r(k) = r is to reformulate the control
input as follows (see Figure B.1).

u(k) = Kx(k) + v(k) (B.1)

v(k) = Fr(k) (B.2)

The state-space representation becomes:

x(k+ 1) = (A+BK)x(k) +BFr(k)

y(k) = Cx(k)
(B.3)

Figure B.1: Reference tracking with state-feedback control law.
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The design requires to choose the gain F properly to ensure refer-
ence tracking. The DC gain from the reference to the output has to be
a unit gain in order to have y(k) ⇒ r asymptotically. This condition
is shown in (B.4).

C(I− (A+BK))−1BF = I (B.4)

In the following the assumptions are that the number of inputs
equal to the number of outputs and the DC gain from u to y is invert-
ible, i.e. Cadj(I−A)B is invertible. Since the state feedback doesn’t
change the zeros in closed-loop, the relation in (B.5) holds.

Cadj(I−A−BK)B = Cadj(I−A)B (B.5)

Thus, the left side of (B.5) is also invertible. Combining this result
with (B.4), the gain F assumes the expression in (B.6).

F = (C(I− (A+BK))−1B)−1 (B.6)

The just presented procedure has the advantage to easily combine
the state-feedback control law with reference tracking. One problem
that may arise is the presence of model uncertainties and exogenous
disturbances which affect the dynamical process. In this case, the de-
sign of the gain F is not suitable because it is based on the nominal
representation of the process.

b.2.1 Integral action for disturbance rejection

There are many kind of disturbances and uncertainties that can af-
fect the dynamical system. For instance, the control actuator usually
contains several non-idealities. Furthermore, nominal parameters of
the process may be different from the actual values, or they can be af-
fected by different phenomena (temperature, pressure etc..). One way
to increase the robustness with respect disturbances is to introduce
an integral action in the control law. The following analysis considers
the presence of an input disturbance d(k) as represented in Fig. B.2.

Consider the problem of output regulation, i.e. the design of a con-
troller that drives the output y(k) to the reference r(k) ≡ 0, under the
presence of the input disturbance d(k). The first step is to augment
the open-loop system with the integral of the output vector repre-
sented in (B.7).

z(k+ 1) = z(k) + y(k) (B.7)

The equations in (B.8) represent the augmented open-loop state
space model.
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Figure B.2: Reference tracking with input disturbance d(k).

[
x(k+ 1)

z(k+ 1)

]
=

[
A 0

C I

][
x(k)

z(k)

]
+

[
B

0

]
u(k) +

[
B

0

]
d(k)

y(k) =
[
C 0

] [x(k)
z(k)

] (B.8)

The state z(k) is seen to be the integral of the error between the
reference r, and the output y. If it exists a compensator that stabilizes
the system, in steady state results thst z(l+ 1) = z(k), hence y ⇒ r in
steady state. Assuming that a stabilizing gain [HK] can be designed
for the system augmented with integral action of the form in (B.9) for
the system (B.8), then the limk→inf y(k) = 0 for all constant distur-
bances d(k) ≡ d.

u(k) =
[
K H

] [x(k)
z(k)

]
(B.9)

This can be easily verified by looking at the state-update matrix of
the closed-loop system in (B.10).

[
A 0

C I

]
+

[
B

0

] [
B H

]
(B.10)

This matrix has asymptotically stable eigenvalues by construction.
The last step is to generalize the just presented result for a generic

set-point tracking. The idea is to use the same feedback gains de-
signed earlier. Now the integral of the tracking error is considered, as
in (B.11).

z(k+ 1) = z(k) + (y(k) − r(k)) (B.11)

In Fig. B.3 it is represented the principle scheme of the controller.
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Figure B.3: Reference tracking with input disturbance d(k) and integral ac-
tion.



C
A P P E N D I X T E S T

c.1 appendix section test

Let’s consider the modified cost function (4.18). Substituting the ex-
pressions of u = UFg and y = UFg:

min
g,σy

(
||yref − YFg||

2
Q + ||UFg||

2
R + η||σy||

2 +β||g||2
)

s.t.

[
UP

YP

]
g =

[
uini

yini

]
+

[
0

σy

] (C.1)

Now, it is useful to develop matrix multiplications:

min
g,σy

(
gT (YT

FQYF +UT
FRUF +β)g+−2yT

refQYFg+ σT
yησy)

s.t. MP g = wini +

[
0

σy

] (C.2)

As before, a solution g of (C.2) can be written as the sum of a partic-

ular solution and one that is in the kernel of

[
UP

YP

]
:

g = Â
(

wini +

[
0

σy

])
+Φz, Â := M

†
P (C.3)

Then, substituting (C.3) in (C.2):

min
z,σy

(Âwini + Ârσy +Φz)TH(Âwini + Ârσy +Φz)

− 2yref,TQYF(Âwini + Ârσy +Φz) + σT
yησy

(C.4)

where Âr considers the last pTini columns of Â, and H = YT
FQYF +

UT
FRUF +β. Developing the matrix products:

min
z,σy

σT
y(Â

T
rHÂr + η)σy + zT (ΦTHΦ)z+ 2zTΦTHÂrσy

+ 2wT
iniÂ

THÂrσy + 2wT
iniÂ

THΦz

− 2yT
refQYFÂrσy − 2yT

refQYFΦz

(C.5)

Now, the following definitions are introduced:
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ε :=

[
z

σy

]
∈ RLz+pTini , Lz = dim{ker(MP)}

z = Izε, Iz := [ILz×Lz
0Lz×pTini

]

σy = Iσε, Iσ := [0pTini×Lz
IpTini×pTini

]

(C.6)

where the term I is the identity matrix with specified dimension. Sub-
stituting (C.6) in (C.5), the optimization problem can be solved with
respect to the new variable ε:

min
ε

1

2
εT 2

(
ITzΦ

THΦIz + ITs Â
T
rHÂrIs + ITz 2Φ

THÂrIs + ITsηIs

)
︸ ︷︷ ︸

:=Ĥ

ε

− 2
(
yT
refQYF(ÂrIs +ΦIz) − (wT

iniÂ
T
rH)(ÂrIs +ΦIz)

)
︸ ︷︷ ︸

:=d̂T

ε

⇒ ε∗ = (Ĥ+ ĤT )−1︸ ︷︷ ︸
:=G

d̂

(C.7)

Then, remembering the previous definitions, the optimal control
input can be obtained:

z∗ = Izε
∗ = IzGd̂

σ∗
y = Isε

∗ = IsGd̂
(C.8)

g∗ = Âwini + ÂrIsGd̂+ΦIzGd̂

= Âwini + (ÂrIs +ΦIz)Gd̂

= Âwini+

(ÂrIs +ΦIz)G
(
2
(
(ÂrIs +ΦIz)

TYT
FQyref − (ÂrIs +ΦIz)

T (HÂrwini)
)

=
(
Â− 2(ÂrIs +ΦIz)G(ÂrIs +ΦIz)

THÂr

)
wini+

2
(
ÂrIs +ΦIz)G(ÂrIs +ΦIz)

TYT
FQ
)
yref

u∗ = UF g∗

⇒ u∗ = Kini wini + Kr yref

(C.9)

Again, it has been shown that the optimal control input can be rep-
resented as linear combination of the initial conditions and desired
reference. Even in this case, the matrices Kini and Kr can be com-
puted offline.
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