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A B S T R A C T

This dissertation includes many research activities in the area of Model
Predictive Control (MPC) of Permanent Magnet Synchronous Motor
(PMSM) drives. Predictive controllers represent indeed a promising
architecture in electric drives applications, because of high dynamic
performances, intuitive tuning, possibility to include constraints in
the control problem solution and flexibility in the definition of the
control objectives.

Two main problems arise for the real-time implementation of the
architecture, namely the high computational burden and the parame-
ter sensitivity. Nowadays, the former issue is nearly considered over-
come. Improvements in the computational power of the new genera-
tion of microprocessors, new hardware such as Field Programmable
Gate Array (FPGA)s and advanced computing algorithms are available.
The second problem is still open and different approaches are under
investigation. This work focuses on those methods based on the ex-
ploitation of measured data to enhance the performances of purely
model-based designed predictive controllers. The contribution of the
thesis is structured in two parts.

The first part deals with the model-free predictive control of syn-
chronous motor drives, in the context of finite-set predictive control.
As previously mentioned, one of the main drawbacks of model-based
control is the need of an accurate knowledge model of the plant.
However, parameters variations or mismatches, as well as of model
non-linearity and uncertainties always affect the model parameters
identification. A model-free approach allows to avoid such issues by
using a non-parametric adaptive model. The key advantage of this
method is that the control is self-adapting to any synchronous motor
and any operating condition, thus easing the matching between mo-
tor and inverter. The current variations predictions are estimated by
means of past measurements, stored into look-up-tables. As a further
step, the existing look-up-table based parameter-free techniques are
overcome. In particular, the past current measurements are manipu-
lated by a recursive least square filter. Finally, Discrete Space Vector
Modulation (DSVM) technique is coupled to the model-free approach.
Compared to previous parameter-free solutions, the latter modula-
tion strategy allows to achieve a significantly lower current harmonic
distortion at the same control frequency, while keeping the switching
frequency value at bay.

The second part of the thesis deals with the development of data-
driven control methods for the control of electric drives. A possi-
ble transition from model-based towards data-driven optimal current
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control of synchronous motors is discussed. The discussion starts
from a model predictive current control algorithm which uses the
parametric model of the motor. Second, the Prediction Error Method
(PEM) is analyzed, where a state-space model is identified from data
to estimate the motor current dynamics. Moving toward data-driven
controls, the Subspace Predictive Control (SPC) is proposed, where a
reduced model is constructed based on the singular value decompo-
sition of raw data. The final step is represented by a complete data-
driven approach, named Data-EnablEd Predictive Control (DeePC),
where raw data are directly exploited by the controller. Some of these
techniques are applied for the first time to the design of the current
controller of synchronous permanent magnet motor drives. Design
guidelines are provided to practitioners for the proposed application
and a way to address offset-free tracking is discussed. The theory
behind data-driven controller is then applied to the disturbance esti-
mation problem, namely the behavioral control theory. A data-driven
moving horizon estimator is derived, analyzed and applied to the es-
timation of load torque disturbances. The design of the cost function
behind the estimation problem is deeply discussed.

All the control schemes proposed or presented in the thesis are
real-time implemented on embedded hardware. Simulations and ex-
perimental results are widely used to validate the research activities.

vi



S O M M A R I O

Questo lavoro di tesi include attività di ricerca svolte nell’area del con-
trollo predittivo di azionamenti con motori sincroni a magneti perma-
nenti. I controllori predittivi rappresentano un’architettura promet-
tente, caratterizzata da alte prestazioni dinamiche, facilità di proget-
tazione, dalla facilità nell’inclusione dei vincoli nella soluzione del
problema di controllo e dalla flessibilità nella definizione dell’indice
di prestazione dell’azionamento.

Tali architetture soffrono di due problematiche fondamentali nella
implementazione in tempo reale: l’elevato onere computazionale e la
sensitività parametrica. Al giorno d’oggi, il primo problema si può
considerare superato, grazie al progresso della potenza di calcolo e
allo sviluppo di algoritmi sempre più efficienti. La seconda problem-
atica è tutt’ora aperta. Questa tesi si concentra su algoritmi che mi-
rano a sfruttare le misure raccolte dall’azionamento per migliorare le
prestazioni del controllore predittivo. Il lavoro di tesi è stato suddi-
viso in due parti principali.

La prima parte si focalizza su una tipologia di controllo predit-
tivo noto come model-free. Il vantaggio chiave di questo metodo è che
l’azionamento è in grado di adattarsi a qualsiasi motore sincrono e
a qualsiasi condizione di lavoro. Le correnti future di un motore sin-
crono sono stimate a partire da dati rilevati in precedenza e memo-
rizzati in tabelle di look-up. In un secondo momento, il precedente
controllore model-free è stato superato. In particolare, le misure di cor-
rente sono state manipolate attraverso un filtro ricorsivo ai minimi
quadrati. Infine, il controllore model-free è stato ulteriormente miglio-
rato implementando la tecnica discrete space vector modulation. Rispetto
alle precedenti soluzioni model-free, quest’ultima strategia di modu-
lazione permette di ottenere una distorsione armonica significativa-
mente inferiore nelle correnti a parità di frequenza di controllo, non
incrementando eccessivamente il valore della frequenza di commu-
tazione.

La seconda parte della tesi riguarda schemi di controllo denomi-
nati data-driven, sempre nell’ambito del controllo predittivo di aziona-
menti elettrici. In particolare, si propone una possibile transizione da
un controllo di corrente predittivo progettato unicamente a partire da
un modello parametrico, a un controllo basato unicamente basato su
dati. Il primo schema considerato è un controllore predittivo di tipo
model-based standard. In secondo luogo, viene analizzata l’architettura
PEM-MPC, nella quale viene identificato un modello in spazio di stato.
Adottando un approccio sempre più data-driven, viene proposto il
SPC, caratterizzato dall’identificazione di un modello ridotto costru-
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ito tramite la decomposizione ai valori singolari di opportune ma-
trici contenenti direttamente misure di corrente raccolte dal motore.
L’ultimo passo è costituito da un approccio completo basato sui dati,
denominato DeePC, in cui le misure raccolte vengono direttamente
sfruttate dal controllore. Molte di queste tecniche sono state applicate
per la prima volta alla progettazione del controllore di corrente di
motori sincroni. Il medesimo approccio data-driven è stato successiva-
mente applicato al problema della stima dei disturbi. In particolare si
propone una tecnica di progettazione dello stimatore moving-horizon,
analizzato e applicato alla stima dei disturbi della coppia di carico.

Tutti gli schemi di controllo proposti e descritti in questo lavoro di
tesi sono stati implementati in tempo reale. Motivo per cui, tutte le in-
novative architetture di controllo proposte sono validate da numerosi
test sperimentali.
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1
I N T R O D U C T I O N

Climate change and environmental degradation are two of the most
important challenges of this century. The European Union accepted
these challenges in the 2019, announcing the ambitious European Green
Deal. Adopting this strategy, the European Union aims to become the
first climate-neutral continent within the 2050. Socio-economic conse-
quences of a such innovative strategy are unavoidable.

COVID-19 pandemic has probably accelerated the timings of this
long-term transition. In fact, the economic recovery after the pan-
demic represents a stimulating chance to transform European econ-
omy towards a resource-efficient, modern and competitive one. For
this reason, one third og the 1.8 trillion euro investments from the
European Recovery Plan, namely the NextGenerationEU plan, and the
EU’s seven-year budget will finance the Green Deal.

Two of the emerging policies driving the NextGenerationEU plan
are the Make it Green and the Make it Digital. The former policy aims
to the climate-neutral continent. Innovations of the public a private
transport, energy-efficient buildings and renewable energy are the
leverages to realize this scenario. The latter policy provides a fur-
ther tool for the climate change challenge, which is the digitalization.
Artificial intelligence will assume a key-role in the reduction of the
human footprint. For instance, big-data and their smart usage could
further reduce the impact of the transport, industry and buildings
consumption.

Research and innovation are essentials in the realization of the
Green Deal. Thus, the European funding program Horizon Europe fi-
nances both research and innovations with a budget of 95.5 billion of
euro within the 2027. One third of the budget is dedicated to the clus-
ters digital-industry-space and climate-energy-mobility. The areas of
intervention of the funding campaign includes artificial intelligence,
advanced computing and big-data, energy supply and storage and
smart, electrified and efficient mobility.

Electric motors are an enabling technology in the climate change
challenge. In fact, electric machines are present in almost every strate-
gic field, such as transport, generation from renewable energy sources,
industry and buildings. Generation from renewable energy is often
enabled by electric generators, for instance the wind-turbines gener-
ation. Moreover, electrification of the transports requires again elec-
tric motors. For these reasons, it is evident that improvements in the
electric motor technology have consequence in the efficiency improve-
ment of the entire chain.

1
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High efficiency and high performances are met by PMSMs. These
machines have high torque and power density, specifications that are
fundamentals also from the commercial point of view. Performances
are strongly influenced by the materials adopted for the permanent
magnets. Rare-earth magnets guarantee the highest torque and power
density, such as Neodymium based magnets. Unfortunately, price
and performances do not meet, since rare-earth materials and their
production is almost a Chinese monopoly (almost 80% of the pro-
duction). This means also that the price fluctuates significantly. Thus,
Synchronous Reluctance (SyR) motors are becoming more and more
popular in the industry. These machines are designed without perma-
nent magnets, reducing the overall price. However, lower torque and
power density are achieved, limiting the fields of application of such
motor technology.

Further improvements of the electro-mechanic conversion efficiency
performed by PMSM can be achieved both by means of design opti-
mization and improvements of the control strategies. On one hand,
advanced computing and artificial intelligence help the optimization
at the design stage. Differential evolution methods [83] can be used
to accomplish the design specifications, finding the best compromise
for the application. On the other hand, advanced control strategies
are available nowadays to improve the performances of the electric
motor drive, without acting on the machine design. This solution is
often of particular interest for electric motor manufacturers. In fact,
the power converter that control the motor could be manufactured by
a different company.

MPC have been investigated for two decades as advanced control
method both for grid-connected converter and synchronous motor
drives. MPC is an optimization based technique used in regulation or
tracking control problems. The future plant dynamic is estimated by
means of models and the actions (inputs) on the plant are computed
by optimizing a certain performance expression. This method has al-
ready found effective industrial application in the first field [74], i. e.
grid-connected converters. In this area, in fact, the efficiency of the
converter can be drastically enhanced. MPC represents indeed an ex-
ample of advanced computing for the application. In fact, MPC was de-
signed for slowly-evolving systems, such as chemical processes, and
not for real-time embedded fast applications, such as the control of
electric motor drives. The difference of time scales is about hundreds
order of magnitudes, from seconds or minutes to milli-seconds or
hundreds of micro-seconds.

Research on theoretical aspects related to MPC is steadily grow-
ing, pushed by the new interest in data analysis [78]. One of the
most promising aspects under investigation regards the exploitation
of measured data to further improve the performances of MPCs. These
aspects are of great interest also for the electric motor drives. Exploit-



1.1 outline of the thesis 3

ing data measured from PMSM opens the possibility of designing new
smarter and data-driven controllers. In particular, two main strands
are found, depending on the how data are exploited in the MPC frame-
work. On one hand, data could be used to build adaptive controllers.
Such control type is becoming popular in the electric drive area as
model-free [46] methods. The intuition behind these methods is that
data are capable to predict the fast electric drives dynamics even
more accurately than analytical models. It is reminded that the com-
putational time bottleneck is fundamental in embedded applications,
limiting the complexity of analytical models. Thus, the model-free
paradigm represents a promising alternative to the parametric ana-
lytical paradigm. On the other hand, data could be exploited to com-
mission an offline data-driven model [18]. The offline commissioning
solves the time limitations issue. Thus, even advanced machine learn-
ing methods are available for the model commissioning [72].

This thesis contains several contributions in the field of model-free
and data-driven control of electric drives. In fact, the objective pur-
sued in the research activity is to improve the performance of model
predictive control in the electric drives area, through the effective us-
age of data collected from the plants. The performances and efficiency
of the overall drive are considered as essential features, which not al-
ways meet. Performances are often what the market ask for. How-
ever, efficiency is becoming more and more relevant, pushed also
by renewed social attention on the climate challenge highlighted by
the European guidelines. Academics and researchers in the indus-
trial engineering area are asked to find a road in there. This disser-
tation wants to provide some humble contributions towards smarter
and more data-driven control of electric drives. Moreover, the author
hopes to stimulate discussions and to promotes interests in other fu-
ture research projects.

1.1 outline of the thesis

Hereinafter the dissertation structure is briefly presented.

part i presents the theoretical foundation and the mathematical
background. The part is divided in three chapters:

• Chapter 2 presents the Permanent Magnet Synchronous motor.
Mathematical model of the motor is derived including some
non linear phenomena, such as the iron saturation.

• Chapter 3 provides a brief presentation of Model Predictive
Control, with particular focus on the power electronics area.
In particular, Finite Set and Continuous Set strategies are dis-
cussed.
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• Chapter 4 presents some ideas and theorems of the behavioral
system theory, which is widely exploited in data-driven control.

part ii resumes the contributions in the area of model-free control
of electric drives and it is structured in three main chapters.

• Chapter 5 presents some relevant contributions concerning the
real-time implementation of model-free controls, with particu-
lar focus on the stagnation problem.

• Chapter 6 illustrates an innovative parameter-free method which
exploits recursive least square estimators to build an adaptive
model-free controller.

• Chapter 7 discusses a further contribution to the parameter-
free solution, improving the previous technique. In a nutshell,
the model-free paradigm and the discrete space vector modu-
lation are coupled. This permits to improve the performances
of the drive, reducing both the Joule losses and the switching
frequency.

part iii reports the contributions in the sphere of data-driven con-
trol of electric drives, which is divided in two parts.

• Chapter 8 discusses the novel data-driven control paradigm.
The electric drives field is one of the first area of application
of this control methods. The technique is discussed providing
also some design guidelines.

• Chapter 9 presents the discussion of a new disturbance estima-
tor based on the behavioral system theory, similar to a data-
driven moving horizon estimator. The estimator equations are
derived, then it is applied to the problem of estimating load
torques disturbances.



Part I

B A C K G R O U N D K N O W L E D G E

The models behind the essential components of an electric
drive are developed, focusing on synchronous motors and
the power electronics. Some of the non-linear phenom-
ena that affects the control of these plants are presented
and included in the modeling stage, further complicat-
ing the model of the drive. This thesis presents predictive
control techinques which goes to an opposite direction.
In details, in the following parts simple adaptive models
are presented, exploiting measured data to take into ac-
count of all the non linearities. In this part a brief descrip-
tion of model predictive control is provided, focusing on
the power electronics applications and on the concepts of
finite-set and continuous set methods. Finally, some con-
cept regarding the behavioral system theory are described
in order to ease the understanding of the data-drive con-
trol paradigm.





2
S Y N C H R O N O U S M O T O R S E L E C T R I C M O D E L

PMSMs are AC machines characterized by a phase stator windings,

usually star-connected, displaced
2π

3
electrical radiants in space. The

stator windings consist of individual coils connected and wounded
in the stator slots, in order to approximate a sinusoidal distribution
along the stator circumference. This sinusoidal distribution can be
replicated around the circumference for several times, depending on
the motor pole-pairs number p. The rotor is separated from the stator
by the so called airgap. Permanent magnets are placed in the rotor,
producing a flux which do not depends on the stator current. The
periodicity of the magnets around the rotor circumference matches
the stator number of pole-pairs number. Magnets materials depend
on the torque density that need to be achieve. Rare-earth magnets,
such as Neodymium of Samarium-Cobalt, are the one that guarantee
the highest performances, achieving also the most compact designs.
However, the cost of these materials is quite high. Thus, even mag-
net with lower performance or even pure SyR are of interest in many
industrial applications. The interaction between the magnet flux and
the armature current flux produces the motor torque.

PMSM are usually distinguished on the basis of the rotor geome-
try. Figure 2.2 reports some of the most relevant categories. Surface
Permanent Magnet (SPM) machines are characterized by a magnets
displacement along the rotor surface Figure 2.2a. Since the magnetic
relative permeability of the magnets is similar to the one of the air,
the magnetic behavior of the rotor is isotropic, i. e. the flux finds an
uniform iron path along the rotor circumference. In Interior Perma-
nent Magnet (IPM) motors or Permamente Magnet Assisted Reluc-
tance (PMAREL) motors magnets are inserted inside the rotor iron (Fig-
ure 2.2b), resulting in an anisotropic magnetic behavior. In fact, the
magnetic reluctance seen by the stator depends on the rotor position,
since the stator armature-current produce a flux which finds different
iron paths depending on the rotor position. The machine presents a
so called saliency or a reluctance effect, which can add a beneficial
contribution to the total torque. An extreme example of anisotropic
topology is the one of the SyR machines, as shown in Figure 2.2c. No
magnets are mounted on the rotor and the motor torque is entirely
produced by the reluctance effect.

In the following subsection a model is derived for permanent mag-
net synchronous machines. In the modeling it is assumed a slot-less
sinusoidal stator winding distribution and a sinusoidally distributed
magnetic field at the airgap. This permits a simple model of the ma-

7



8 synchronous motors electric model
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Figure 2.1: Overview of the stator and rotor reference frames commonly
used to represent PMSM: one pole-pair machine.

chine, which results suitable for the application of many control ar-
chitectures, included optimization-based methods, e. g. MPC. Before
going throw more formal details, it is worth listing the three funda-
mental reference frame that are considered for deriving the motor
models (Figure 2.1):

• the stationary abc reference frame is the one defined by the
stator windings coils, and it is depicted by the dashed lines in
the figure;

• the stationary αβ system, composed by two orthogonal axes
and aligned along the phase a axis (depicted with solid blue
lines);

• the rotating dq reference frame, aligned along the permanent
magnet flux and synchronous with it, depicted by solid red
lines. The d-axis angle is denoted as θe = pθm, being the θm
the rotor position with respect to the a-axis. Moreover, the same
axis rotates at an angular speed ωe = pωm, being the ωm the
angular rotor speed. It is worth highlighting that the electric
speed and position are related to the periodicity of the electric
quantities. This clarifies why they are influenced by the pole-
pairs number.
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Figure 2.2: PMSM topologies.

2.1 voltage balance : ideal magnetic model

The motor voltage balance equation of each phase is composed by
the resistive voltage drop and the contribution of the flux linkage
derivative [48]:

ua = Rsia +
dλa

dt

ub = Rsib +
dλb
dt

uc = Rsic +
dλc

dt

, (2.1)

where ua,ub and uc are the terminal voltages, ia,ib and ic are the
phase currents and λa,λb and λc the stator flux linkages. The time
dependence of all these signals is neglected here to keep a compact
and simple notation. Moreover, the stator windings resistance Rs is
assumed equal for each phase.

The voltage induced by the stator flux derivative has two main
contributions. In particular, the first contribution is due to the fluxes
produced by the stator currents, whereas the second one is due to the
fluxes produced by the permanent magnets mounted on the rotor, if
present:

λa = Laia +Mabib +Macic + λpm,a

λb = Lbib +Mbaia +Mbcic + λpm,b

λc = Lcic +Mcaia +Mcbib + λpm,c

. (2.2)
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La, Lb and Lc are the phase self-inductances, whereas Mab = Mba,
Mbc = Mcb and Mac = Mca are the mutual inductances between
the phases. It is remarked that in this section the iron saturation phe-
nomena is neglected.

Self and mutual inductances, as well as the permanent magnet flux
contributions are position dependent quantities and they have a pe-
riodicity related to the electric angle θe. In order to be more clear,
the position dependency is provided for the permanent magnet flux
terms:

λpm,a = Λpm cos(θe)

λpm,b = Λpm cos(θe −
2

3
π)

λpm,c = Λpm cos(θe −
4

3
π)

, (2.3)

where Λpm is the amplitude of the permanent magnet flux-linkage.
The value of Λpm is influenced by many factors, such as the rotor
geometry, the materials, the airgap thickness and the number of turns
in the stator windings.

Equation (2.1) can be written in a compact matrix form. Matrix no-
tation is widely used in this work since it results particularly suitable
for the implementation of MPC algorithms. First it is worth defining
the back-Electro Motive Force (EMF) along the three stator axes, de-
noted as ea, eb and ec:

ea =
dλpm,a

dt
= −Λpmωe sin(θe)

eb =
dλpm,b

dt
= −Λpmωe sin(θe −

2

3
π)

ec =
dλpm,c

dt
= −Λpmωe sin(θe −

4

3
π)

. (2.4)

Thanks to this definition, the compact matrix form of the voltage bal-
ance equation 2.2 results:

uabc = Rsiabc +
dλabc

dt
= Rsiabc +

dLabciabc
dt

+ eabc. (2.5)

All the phase signals are condensed in vectors:

uabc =

ua

ub

uc

 , iabc =

iaib
ic

 , λabc =

λaλb
λc

 , eabc =

eaeb
ec

 , (2.6)

whereas self and mutual inductances are stacked in the symmetric
matrix:

Labc =

 La Mab Mac

Mba Lb Mbc

Mca Mcb Lc

 . (2.7)
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Three-phase systems are often represented in the αβ0 reference
frame. The essential details about the transformation from abc to
αβ0 frames can be found in AppendixA.1. Since PMSM are balanced
three-phase systems, the homopolar component (A.1) is null, thus ne-
glected. The simplified Clarke transformation matrix (A.2) is applied
to (2.5), obtaining:

uαβ = Rsiαβ +
dλαβ

dt
= Rsiαβ +

dLαβiαβ

dt
+ eαβ, (2.8)

where Lαβ = TαβLabcT
T
αβ and

uαβ =

[
uα

uβ

]
, iαβ =

[
iα

iβ

]
, λαβ =

[
λα

λβ

]
, eαβ =

[
eα

eβ

]
. (2.9)

It is noticed that the term Rsiαβ should be interpreted as an element-
wise product. In other words, it represents a diagonal matrix, having
all the diagonal elements equal to the stator resistance Rs.

Finally, the Park transformation (A.4) is applied to (2.8). This sim-
plifies all the position dependent parameters, i. e. inductances and
back-EMFs, to constants:

udq = Rsidq+
dλdq

dt
+ωeλdq = Rsidq+Ldq

didq

dt
+ωeJLdqidq+edq,

(2.10)

where the dq vectors and matrices are:

udq =

[
ud

uq

]
, idq =

[
id

iq

]
, λdq =

[
λd

λq

]
, edq =

[
0

ωeΛpm

]
. (2.11)

When transforming quantities in the rotating reference frame, an ad-
ditional skew-symmetric matrix

J =

[
0 −1

1 0

]
(2.12)

appears in the equation, because of the Park operator derivative (A.6).
Even if motional cross-coupling terms appear in the model, the induc-
tance matrix becomes simply:

Ldq =

[
Ld 0

0 Lq

]
. (2.13)

Depending on the motor topology, the two inductances can be equal,
e. g. SPM machines, or different, e. g. IPM, PMAREL and SyR motors. For
sake of completeness, the matrix equation (2.10) is decomposed in the
two d and q components:

ud = Rsid + Ld
did
dt

−ωeLqiq

uq = Rsiq + Lq
diq

dt
+ωeLdid +ωeΛpm

(2.14)
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(a) d-axis flux. (b) q-axis flux.

Figure 2.3: Example of non-linear flux-current curves: SyR motor case.

λ

i
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inductance:

x0

λ = f(i)
λ(x0)

Lapp = λ(x0)
x0

l = dλ(x)
di

∣∣
i=x0

Figure 2.4: Difference between apparent and differential inductances.

The proposed simple linear model is particularly suitable for isotropic
SPM and IPM, characterized by an almost linear magnetic saturation
curve. Its simplicity is one of the main benefits for the control design
purpose. On the opposite, the model could be very rough for SyR

machines (see Figure 2.3), for which the iron-saturation phenomena
should be considered for the current regulators tuning.

2.2 voltage balance including the flux non-linearity

A dq model is presented in this section, suitable for highly saturated
motors, such as SyR machines. The procedure that brings the voltage
balance equation from the three-phase reference frame to the rotating
one is similar to the one described in the previous section. However,
being the flux-current relationships non linear it is hard to define self
and mutual inductances. For this reason, a slightly different analysis
is required.

It is useful to rewrite (2.10), highlighting the introduced non linear-
ity in the flux-linkages expressions:

udq = Rsidq +
dλdq(idq)

dt
+ωeλdq(idq) (2.15)
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(a) ld (b) lq

(c) ldq

Figure 2.5: Example of incremental inductances maps: SyR motor case.

The chain rule is applied to this expression in order to extract the
dependency on the motor currents:

df(x1, x2, . . . , xn)
dt

=
δf

δx1

∣∣∣
x1=x0

1

δx1
δt

+ · · ·+ δf

δxn

∣∣∣
xn=x0

n

δxn

δt
(2.16)

Applying the chain rule to the voltage balance equation, it is obtained:

dλdq

dt
= f(idq) ≈ λdq(idq)

∣∣∣
idq=x0

+
δλdq

δidq

∣∣∣
idq=x0

δidq

δt
(2.17)

In the electric drives field, the Jacobian, i. e. the matrix containing the
partial derivatives of the fluxes with respect to the current, hereinafter
is denoted as ldq. It is known also as the matrix of the self and cross-
differential inductances:

ld(idq) =
dλd
did

, ldq(idq) =
dλd
diq

lqd(idq) =
dλq

did
, lq(idq) =

dλq

diq

(2.18)
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Moreover, the linearized flux λdq(idq)
∣∣∣
idq

is often written as function

of the apparent inductances, defined as:

L
app
d (idq) =

λd(idq)

id
, L

app
dq (idq) =

λd(idq)

iq

L
app
qd (idq) =

λq(idq)

id
, Lappq (idq) =

λq(idq)

iq

. (2.19)

In the following, the matrix of apparent inductances is denoted as
Lapp
dq (idq). Figure 2.4 provide a graphical interpretation of the dif-

ference between the concepts of differential and incremental induc-
tances. Figure 2.5 shows an example of incremental inductances maps
for a SyR motor.

The dq voltage balance model, accounting of the non-linear mag-
netic characteristics, results:

udq = Rsidq + ldq(idq)
didq

dt
+ωeL

app
dq (idq)idq (2.20)

2.3 state-space representation

The state-space representation is probably the most widespread frame-
work to represent dynamical systems in the modern control engi-
neering. Moreover, the MPC adopts the discrete-time version of these
representations for the controller synthesis. As a consequence, the
continuous-time and discrete-time state-space model of the voltage
balance equation (2.10) are derived. A state-space representation of
the non-linear model can be obtained following the same steps de-
scribed in this subsection for the linear one.

According to the state-space framework, Linear Time Invariant (LTI)
system dynamics are described by n states x(t), i. e. variables which
fully describe the behavior of a plant. These plant states are not al-
ways fully available and measurable. The subset of available signals
is named output y(t), which has dimension p ⩽ n. The control acts
on the system through m inputs u(t). States dynamics are described
by:

dx(t)

dt
= Acx(t) +Bcu(t)

y(t) = Ccx(t)
, (2.21)

where Ac is the state matrix, Bc is the input matrix and Cc is the
output matrix.

The PMSM voltage balance equation (2.10) can be easily written us-
ing this formalism, by posing:

Ac =

 −
Rs

Ld
ωe(t)

Lq

Ld

−ωe(t)
Ld
Lq

−
Rs

Lq

 , Bc =


1

Ld
0

0
1

Lq

 (2.22)
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and rearranging (2.10) in

didq(t)

dt
= Ac(t) +Bcudq(t) +Bcedq(t). (2.23)

It is worth noticing that the state matrix is time variant, since it de-
pends on the operating speed. Thus, the system results linear parame-
ter varying, in the parameter ωe. Moreover, the back-EMF can be inter-
preted as a time variant disturbance acting on the plant. The states of
the PMSM voltage balance equation are the dq current, which coincide
to the outputs. Finally, the input is the vector of dq voltages. Other
solutions can be found in literature, e. g. the motor flux linkages can
be assumed as states.

Modern drive systems are almost exclusively implemented on a
digital hardware with constant sampling interval, denoted Ts. Several
techniques are available for discretizing model (2.23), starting from
Euler methods, to the Tustin methods or even exact discretization.
The discretized form of (2.21) results

x(k+ 1) = Ax(k) +Bu(k) (2.24)

where A and B are the discrete form of Ac and Bc, respectively. Their
expressions depend on the adopted discretization technique.

The computational effort is the balance needle, when choosing the
discretization method. Exact expressions require the computation of
matrix exponentials and integrals [36]. The expressions are here re-
ported, included the full computation for A as example:

A = eAcTs = e
−Ts

RsL∆
LdLq

c1 −
RsLΣ
LdLq

s1 ωes1

−ωes1 c1 +
RsLΣ
LdLq

s1


B =

( ∫Ts

0

eAcτdτ
)
Bc

. (2.25)

being LΣ and the L∆ the average and the semi-sum of the inductances

Ld and Lq, c1 = cosh(λTs), c2 =
sinh(λTs)

λ
and λ =

√(RsLΣ
LdLq

)2
−ω2

e.

The full expression of B is even more complicated and it can be found
in [36]. For this reason, the exact method is rarely adopted in drives
applications, even if new FPGA hardware unlocks these computations.

Taylor approximations of the exact discretization process reach of-
ten the desired accuracy. Since the sampling rate is relatively high
with respect to the dynamics, first order truncation is sufficient. The
forward Euler difference is indeed the most widespread solution and
also the most adopted for MPC architectures. According to this method,
current derivatives are approximated as

didq

dt
≈

idq(k+ 1) − idq(k)

Ts
. (2.26)
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The resulting discrete-time state-space model of the voltage balance
equation is:

idq(k+ 1) = A(k)idq +Budq(k) +Bedq(k). (2.27)

where

A = I+TsAc =


1− Ts

Rs

Ld
Tsωe(k)

Lq

Ld

−Tsωe(k)
Ld
Lq

1− Ts
Rs

Lq

 , B = TsBc =


Ts

Ld
0

0
Ts

Lq

 .

(2.28)

2.4 electromagnetic torque and mechanical equation

As a final step in the motor modeling description, the electromagnetic
torque expression is derived. The non linear magnetic model is con-
sidered for sake of generality. In addition, the torque expression will
be exploited in a simple model that approximate the dynamic of the
electro-mechanical energy conversion.

The active power absorbed by the motor is computed as:

p =
3

2
uT
dqidq (2.29)

It is reminded that the factor 3/2 is due to the fact that the Clarke
transformation is not power invariant (see AppendixA.1). Substitut-
ing (2.15) in the just presented equation, it is obtained:

p =
3

2

(
Rsidq +

dλdq

dt
+ωeλdq

)T
idq

=
3

2
Rsi

T
dqidq +

3

2

(dλdq

dt

)T
idq +

3

2
pωmλT

dqidq

(2.30)

Assuming that the flux λdq derivative is null (which is coherent with
the simplified modeling of the motor presented), the power expres-
sion contains two terms:

• the Joule losses produced in the motor windings
3

2
Rsi

T
dqidq;

• the electromagnetic power
3

2
pωmλT

dqidq.

The PMSM torque is computed by dividing the electromagnetic power
by the mechanical speed:

τ =
3

2
pλT

dqidq =
3

2
p
(
λdiq − λqid

)
. (2.31)

In case of linear magnetic model a useful and meaningful expres-
sion of the torque is obtained:

τ =
3

2
p(Ld − Lq)idiq +

3

2
pλpmiq (2.32)
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+
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−
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Figure 2.6: Overall scheme of the linear motor model.

Two different contributions are easily recognized in the expression,
and they are due to two different principles. On one hand, the first
term is due to the interaction among the rotor permanent-magnet flux
and the stator currents. On the other hand, the second term called the
reluctance torque, is due to the interaction between the stator current
flux and the rotor magnetic anisotropic geometry (if present). SPM

motor torques are characterized by the permanent magnet contribu-
tion only. On the opposite, SyR machines are characterized by the lack
of magnets, resulting in a torque which is only due to the reluctance
principle. PMAREL and IPM motors are in between the two cases pre-
sented, taking advantages of both the contributions.

An accurate modeling of the mechanical dynamic of a PMSM results
quite complicated. Non-linear viscous friction, backslash and many
other non-linear phenomena could affect the system. For this reason,
a simplified first order model is often adopted

J
dωm

dt
= Bωm + τ+ τL, (2.33)

at least for control design purposes. In the equation J represent the
motor inertia, B accounts for a linear viscous friction and τL resumes
all the loading torques that are independent from the motor position
and speed. The overall motor model, including both the electrical and
mechanical dynamic, is shown in Figure 2.6.

2.5 power converter model

The power converter represents the core element of an electric drive
circuit. The converter manages the energy conversion from DC elec-
tric quantities to AC ones. Figure 2.7 reports the example of a three-
phase two-levels converter, known also as three-phase two-levels in-
verter, which is the topology considered in this thesis since it is prob-
ably the most widespread in industry.

A DC capacitor stabilizes the voltage and filters high frequency
disturbances. The regulation of the available DC-bus voltages is per-
formed by the six electronic switches. Depending on the applica-
tion, the switches are realized by means of different technologies.
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Figure 2.7: Three-phase two-levels voltage source inverter topology.

Insulated Gate Bipolar Transistor (IGBT)s are preferred in case of high
voltages and currents and relatively low switching frequencies. In
case of opposite specifications, Metal Oxide Semicondutor Field Ef-
fect Transistor (MOSFET)s are adopted. Different strategies are avail-
able to perform the modulation of this voltage, i. e. to select the state
of the switches (on or off), see for instance Section 3.1. Anti-parallel
diodes are added in the circuitry to allow the reverse conducting in
the switches.

In case of a three-phase inverter, three branches of switches are
present, namely legs. Each leg is formed by a couple of switches.
Regardless the modulation strategy applied, switches lying in the
same leg are turned on and off in an alternative fashion. This pre-
caution needs to be adopted, in order to avoid short-circuit of the DC
source. As a consequence, eight admissible combinations of switches
are available, known also as fundamental voltages. These combinations,
listed in Table 1, are associated to eight fundamental voltage vectors
in the stationary αβ reference frame, shown in Figure 2.8. The voltage
vectors αβ components can be parametrized as function of the vector
index idx:

uα,idx =
2

3
UDC cos

(2π
3
(idx− 1)

)
uβ,idx =

2

3
UDC sin

(2π
3
(idx− 1)

) , idx = 1, 2, . . . , 6. (2.34)

which are also named active vectors. The two zero vectors u0 and u7

have obviously null components.
The abc representation reported in the same figure is relevant, too.

It provides three hints regarding regarding the transition between the
fundamental vector.

First, the transitions that involves vectors on opposite edges are the
most expensive, in terms of switching effort. In fact, all the switches
of the converter need to change their states. Fort this reason, a well
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Table 1: Configuration of the inverter switches for the eight fundamental
voltages. State 1 means that the switch is on, whereas 0 means that
the switch is off.

Voltage S1 S2 S3 uan ubn uan

u0 0 0 0 0 0 0

u1 1 0 0 2/3UDC −1/3UDC −1/3UDC

u2 1 1 0 1/3UDC −2/3UDC 1/3UDC

u3 0 1 0 −1/3UDC 2/3UDC −1/3UDC

u4 0 1 1 −2/3UDC 1/3UDC 1/3UDC

u5 0 0 1 −1/3UDC −1/3UDC 2/3UDC

u6 1 0 1 1/3UDC −2/3UDC 1/3UDC

u7 1 1 1 0 0 0

uβ

uα

u1

u2
u3

u4

u5 u6

u0, u7

2
3
UDC

a

c

b

u0

(0, 0, 0)
u1

(1, 0, 0)

u3

(0, 1, 0)

u5

(0, 0, 1)
u6

(1, 0, 1)

u2

(1, 1, 0)

u7

(1, 1, 1)

u4

(0, 1, 1)

Figure 2.8: The fundamental voltage vectors in the stator reference frames
αβ and abc.

designed Finite Set (FS) MPC should avoid these transitions. On of
these transition is highlighted in Figure 2.8 by a dash-dotted red line.

Secondly, transitions between fundamentals vectors located on the
same face of the three-dimensional cube require always no more than
two transition. In Figure 2.8 it is highlighted the case of u1, u2, u6

and u7, which represents the right face of the cube.
A third interesting fact that is evident form the abc representation

regards the two zero fundamental vectors u0 and u7. In particular,
any active voltage vector can be reached from one of the two null
vectors with only two commutations.

2.5.1 Inverter non-idealities

In the previous section an ideal model was proposed for a three-phase
inverter. This model is widely adopted in the control of electric drives,
because of its simplicity. However, if a detailed description of motor
currents dynamics is desired, the just developed representation could
result too rough. In fact, many non-ideal phenomena were neglected,
mostly due to the real functionality of th electronics devices. This
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subsection aims to introduce some of them, in order to grasp the
complexity of the actual system.

First of all, all the electronics components, i. e. diodes and transis-
tors, are not perfect conductors. Voltage drops are introduced in the
circuit, due to the activation voltage and the internal resistance. This
means that when these devices are connected to the motor windings,
they increase at least the overall resistance. In other words, a more
accurate model of a drive should include both the motor stator resis-
tance and the voltage drop due to the electronic devices. Being more
precise, the additional voltage drop is different if a transistor or the
related anti-parallel diode is conducting.

A second source of uncertainty in the inverter model is due to the
transition between on and off states of the electronic devices. These
transitions require a certain amount of time, which depend to the
technology of the device, too. From the point of view of the equiva-
lent voltage applied to the motor windings, these phenomena adds a
further discrepancy with respect to the ideal model.

Finally, as a last example of inverter non-linearity, the dead-time
effect is reported. Dead-time are introduced in the transistors con-
trol to avoid short circuits on the DC-bus when two transistors of
the same leg are switched. In fact, the transitions between on and off
state are not instantaneous, as mentioned above. After commanding
the turning-off condition to a switch that was in a conducting mode, a
short time interval is added, before commanding the activation of the
other switch of the same leg. The dead-time is a short time interval
added when a switch is commanded to be turned-off that was in a
conduction mode, before activating the other switch on the leg. Dur-
ing this time the switch ends the transients toward the off-state and
both the switches of the legs are off before the turning-on command.



3
M O D E L P R E D I C T I V E C O N T R O L

The Model Predictive Control (MPC) was introduced in the late 1960s,
with the introduction of parametric state-space models. This control
methodology gained quickly popularity in many applications, partic-
ularly where accurate models were available, e. g. in aerospace and
chemistry. The design of this class of regulators consists of two steps.
First, the dynamics of the process are modeled, often by means of
simple parametric LTI models, whose parameters are obtained with
system identification routines. Modeling and identifying the plant is
often the most expensive and time-consuming part of control design
[19]. Then, the second step is the design of an optimal control law,
based on the identified plant model.

According to the MPC framework, the control actions, i. e. the plant
inputs, are obtained solving an open-loop optimal control problem
for a finite prediction horizon, at each control period. The regulator
relies on the system model to predict the process states in a future
horizon. Then, the optimal control sequence is found by minimizing
a pre-defined cost function. The cost function commonly includes a
penalty on a certain set-point tracking and a penalty on the input
effort.

MPC differs from other optimization-based techniques, e. g. Linear
Quadratic Regulator (LQR), in the way of applying the optimized con-
trol sequence. In particular, the control action is applied in a receding
horizon manner. This means that only the first control input of the
sequence is applied each control step, discarding all the others. The
control sequence is recomputed each control step, taking into account
new measurements collected from the plant. As a consequence, the
control inputs are adjusted to improve the set-point tracking perfor-
mances.

The procedure behind the MPC can be resumed as:

• Prediction of the system state dynamics with a model for a se-
lected number of future time steps, the so called prediction hori-
zon (see Figure 3.2).

• Resolution of an online optimization problem, in order to obtain
the optimal sequence of actions determined by the cost function.

• Adoption of a receding horizon strategy, which in turns implies
the application of the first control input of the computed se-
quence to the plant.

The controller design is described hereinafter (Figure 3.1). In the
description it is assumed that the full states of the system are avail-

21
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Figure 3.1: Block scheme of a MPC controller
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Figure 3.2: MPC working principle.

able, thus state and outputs are equivalent. This is due to the fact
that this hypothesis holds for the current control of synchronous mo-
tor drives, which is the main application described in this dissertation.
In most of the industrial applications, included the ones in the power
electronics area, discrete-time LTI or linear parameter varying state-
space models are used to represent the plant dynamics of interest,
e. g. (2.27). According the state-space framework, the future states of
the system can be predicted starting from (2.24):

x(k+ 1) = Ax(k) +Bu(k)

x(k+ 2) = Ax(k+ 1) +Bu(k+ 1) = A2x(k) +ABu(k) +Bu(k+ 1)

x(k+ 3) = A3x(k) +A2Bu(k) +ABu(k+ 1) +Bu(k+ 2)

· · ·

x(k+N) = ANx(k) +

N−1∑
z=0

AN−z−1Bu(k+ z)

(3.1)

A compact matrix expression of the predicted states sequence is ob-
tained by stacking the future states in the vector X = [x(k+1), . . . , x(k+
N)]T and future inputs in U = [u(k), . . . ,u(k+N− 1)]T :

A =


A

A2

...

AN

 , B =


B 0 · · · 0

AB B 0
...

...
...

. . .

AN−1B AN−2B · · · B


→ X = Ax(k) + BU.

(3.2)
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In a nutshell, the future predicted states sequence depends only on
the initial condition x(k) and the sequence of future inputs U.

The second step in the design is the definition of an online prob-
lem, i. e. the cost function selection. In literature, most of applications
adopt a cost which is quadratic with respect to the optimization vari-
able, i. e. the input sequence U. In particular, the cost function in-
cludes the Euclidean norm of the tracking error and the input effort:

J = q(x∗(k+ 1) − x(k+ 1))2 + ru(k)2+

+ q(x∗(k+ 2) − x(k+ 2))2 + ru(k+ 1)2+

+ q(x∗(k+ 3) − x(k+ 3))2 + ru(k+ 2)2 + · · ·+
+ q(x∗(k+N) − x(k+N))2 + ru(k+N− 1)2

=

N∑
z=1

(
∥x∗(k+ z) − x(k+ z)∥2Q + ∥u(k+ z− 1)∥2R

)
, (3.3)

subject to

x(k+ z+ 1) = Ax(k+ z) +Bu(k+ z) (3.4)

y(k+ z) = Cx(k+ z) (3.5)

umin ⩽ u(k+ z) ⩽ umax (3.6)

ymin ⩽ y(k+ z) ⩽ ymax. (3.7)

where q and r are weighting coefficients, whereas Q and R are often
weighting diagonal matrices, having q and r as diagonal elements,
respectively. It is reminded that these weighting matrices may have
non-equal diagonal element and be non-diagonal in the general case.

The equality constraints (3.4) and (3.5) introduce the knowledge of
the plant model in the optimization, while the inequality constraints
(3.6) and (3.7) define input and output constraints. x∗ is the reference
to track, the matrix Q weights the tracking error, whereas R penalizes
the input effort.

The expressions of x(k + z + 1) and u(k + z) can be substituted
in the cost function (3.3), and the formulation can be condensed in
compact matrix form:

min
∆U

(
X∗ −X

)T
Q
(
X∗ −X

)
+UTRU

s.t. X = Ax(k) + BU,
(3.8)

where X∗ = [x∗(k+ 1), . . . , x∗(k+N)]T , while Q,R are positive defi-
nite diagonal square weighting matrices.

The just defined optimization problem is a Quadratic Programming
(QP) problem type and it can be represented using a standard form:

min
U

J =
1

2
UTHU−dTU+ c. (3.9)
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H = BTQB + R represents the N ×N Hessian matrix, d =
(
X∗ −

Ax(k)
)T

QB the N×1 linear term vector and c =
(
X∗−Ax(k)

)T(
X∗−

Ax(k)
)

a constant term.
Being at least R positive definite, the problem is strictly convex, i. e.

a unique solution always exists. Moreover, this problem class can be
solved in closed form, without using any iterative solver, when no
constraints are included in the optimization, i. e. when (3.4) and (3.5)
are neglected. This aspect is of particular interest for embedded ap-
plications, e. g. the control of electric drives, where the computational
time needs to be of the order of hundreds of µs.

Taking the gradient of J and imposing its expression to zero, the
optimal unconstrained solution results:

∇J = 0 = HU − d ⇒ Uopt = H−1d. (3.10)

Finally, according to a receding horizon policy, only the first solu-
tion uopt(k) is applied to the plant. All the other solutions are dis-
carded.

MPC represents a promising architecture in electric drives applica-
tions, because of high dynamic performances, relatively easy tuning
and possibility of including constrains in the problem resolution [69,
77]. However, the higher computational cost with the respect to PI
controllers was a critical disadvantage in the last decades for the real-
time implementation. Nowadays fast processors and new platforms
hardware, e.g. Digital Signal Processor (DSP)-FPGA solutions, are avail-
able, thus interest in MPC is steadily growing [77].

Concerning the specific area of the electric motor drives, technol-
ogy advances in the production of new motors, such as IPM motors,
PMAREL motors and pure SyR motors expand the application areas
of the predictive control paradigm [64]. In fact, various aspects con-
cerning the optimal functioning of the motor drive can be consid-
ered in the MPC problem, such as the reduction of common-mode
voltage [33], field-weakening operations of IPM motors [51], thermal
stress of the power converters [24] or even special machines, such as
dual three-phase motors [54]. Many successful implementations of
this control strategy can be found for almost every synchronous mo-
tor topologies, such as SPM [7] and IPM motors [58] or SyR motors [3].
Even if most of these examples are related to the regulation of elec-
tric quantities of the motor, e. g. currents, electromagnetic torque or
fluxes, MPC has been used in the regulation of the motors speed [13,
31, 84], too.

3.1 finite set and continuous set methods

When MPC is applied in the control of an electric motor drive system,
two main categories of methods are found in literature, which refers
to Continuous Set (CS) and FS methods.
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unfeasible one. In the second case the optimum u

′′opt lies on the
hexagon edge. FS-MPC feasible set: only the verteces are feasible
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Table 2: Overview of some QP solvers. The acronyms are: IP: Interior point;
AS: Active Set; ADMM: Alternating Method of Multipliers, FGM:
Fast Gradient Method.

Solver References Target Methods Licence

FORCES Pro [89] NL-MPC, very general QPs IP, ADMM, FGM proprietary

HPIPM [30] LQP IP 2-clause BSD

ODYS [16] QP, Embedded MPC AS proprietary

OSQP [71] QP ADMM Apache 2.0 License

qpOASES [29] QP AS 2-clause BSD

Techniques falling into the former group are also known as indirect
[7, 41, 66]. These methods are indirect meaning that a modulation
strategy must be coupled to the MPC, e. g. the Pulse Width Modula-
tion (PWM). As a consequence, the control input constraints, i. e. the
voltage applied to the motor windings, are defined by a polytopic
region in a stationary reference frame, which depends on the power
converter topology. In case of a three-phase two-levels inverter the re-
gion has an hexagonal shape (see Figure 3.3a). The QP problem associ-
ated to these methods is solved in an unconstrained fashion or in the
constrained fashion, implementing a proper solver as in [76]. In the
cited paper, for instance, an open source software named qpOASES
[28], developed by H. J. Ferrau et all., is used to solve the constrained
linear QP problem associated to the MPC algorithm. qpOASES is a
C++ software package which exploits a parametric active-set tech-
nique as solver, which implements several tools to improve the nu-
merical stability of the solution and it provides an interface of the
software package with other external software, in particular MAT-
LAB Simulink. A list of other available solvers for online QP optimiza-
tion is reported in Table 2. The main drawback of CS approach is



26 model predictive control

Table 3: Survey of MPCs for electric drive applications. The acronyms are:
NL: Non Linear; E-MPC: Explicit-MPC.

Constraints
References Year Controlled Variable Model Method

Input Output
Tested Motors Platform

[7] 2009 Speed&Currents LTI E-MPC ✓ ✓ SPM dSPACE 1004

[55] 2012 Speed+Torque/Flux LPV E-MPC ✓ ✓ IM-PMSM Sharc ADSP 21062 + TMS320C6713

[67] 2013 Currents LPV FGM ✓ IPM TMS320F240

[15] 2015 Currents LTI AS ✓ ✓ SPM F28335 Delfino

[34] 2019 Currents LPV AS ✓ IPM dSPACE 1006

[16] 2021 Currents LTI AS ✓ ✓ SPM F28335 Delfino

[90] 2021 Currents NL AS ✓ SRM dSPACE 1007

that the modulation strategy adds further computational burden to
the overall scheme. Moreover, the efficiency of the drive is not signif-
icantly improved by the technique, even if dynamic performances of
the plant are improved. Thus, its applications are limited to the areas
where fast dynamics are required. Despite these disadvantages, more
and more MPC solutions of this type are being publishing in the last
years, see for instance Table 3. This suggests that many improvements
are expected in the very next future.

The FS techniques are also known as direct [44, 79], and they are
valid candidate in the current control of PMSM. According to these
techniques, the converter DC-bus voltage is not modulated within
one control period. Thus, the voltage that can be applied to the PMSM

windings is selected among a finite set of candidates that depends
on the power converter topology. In case of a three-phase two lev-
els inverter, there are eight candidate voltages, which correspond to
the eight possible switch configurations, as remarked in Figure 3.3b.
Advantages of these methods are bringing them close to effective in-
dustrial applications. Firstly, the modulator removal eases the regu-
lation scheme, directly taking into account the discrete nature of a
power converter. Secondly, the average switching frequency of power
converters are reduced with respect to the PWM-based solutions, re-
ducing the inverter commutation losses. In addition, the switching
frequency can be manipulated by properly tuning the cost function
[22], accomplishing desired design specifications. These techniques,
in fact, represent an effective control method for high power convert-
ers [74], where the minimization of switching losses can lead to an
increase of the inverter efficiency. For this reason, the industry finds
it more attractive than CS techniques. Finally, the simplicity of the FS

allows to include additional constraints in the MPC cost function, e.g.
maximum output currents, or to design non-linear costs. The main
drawback of FS-MPCs is the computational burden, which increases ex-
ponentially with the prediction horizon. It scales much faster than CS

algorithms with increasing prediction horizons. A Nondeterministic
Polynomial time (NP)-hard optimization problem has to be solved
online at each control period. This represents a relevant issue for real-
time applications. However, the availability of more powerful micro-
controllers and more efficient solvers for the optimization task permit,
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nowadays, to overcome the issue. The most widespread solvers pro-
posed for such problem class are the branch and bound and the sphere
decoding [74]. Heuristic methods are available to further speed up the
optimization solution, too. More details regarding the solvers for FS-
MPC are given in Chapter 7.4. A second drawback is the increase of
the motor currents distortion [45], which in turns can increase the
Joule losses if too large sampling times are used or if the method is
applied to machines characterized by small inductances.





4
B E H AV I O R A L S Y S T E M T H E O RY

The data-driven predictive controllers presented in this thesis are
based on the behavioral system theory. This approach to the linear con-
trol theory is not so popular in literature, in particular when con-
sidering electric drives applications. For this reason, a brief introduc-
tion about this framework of the control engineering is presented.
It is remarked that the aim of this section is to provide some ideas
and concepts of the topic, without including too much mathematical
formalism. A complete and formal description of the behavioral sys-
tem theory can be found in [85]. Even if the first works were written
around the 2000s, many recent theoretical contributions have been
published in the last years, for instance [56] and [96]. This confirms
that the topic is still very hot in the control community.

The notation of this section is slightly different from the rest of
this thesis. In fact, it is chosen to be as coherent as possible with the
notation used by Willems [85], whose research group was one of the
first that worked on the topic.

4.1 preliminaries and notation

Classical control design techniques are essentially model-based, mean-
ing that a representation of the plant, i. e. a model, is built to cor-
rectly design the control law. This is the case of MPC methods pre-
sented in Section 3. On the contrary, data-driven controllers do not
need such prior knowledge on the system, and they provide con-
troller design procedures that requires only on a dataset of sampled
Input/Output (I/O) measurements from the plant.

According to the behavioral system theory, the mathematical model
that was used to represent the system nature is replaced by the sub-
space of the system signals. In particular, this subspace contains all
the trajectories of the system dynamics. Even if it is not trivial, this
methodology represents the standard way of proceeding for real-life
control applications characterized by high dimensional models. In
fact, the controllers design is performed starting from observations
of trajectories, since it is rarely available a parametric representation
of the plant [57].

It is first introduced the concept of trajectory, or behavior, of an LTI

system. The trajectory is a sequence of samples of the tuple w(z) =

[u(z);y(z)], where u(z) and y(z) are the system input and output,
respectively. A T -long trajectory is, for instance, w(1),w(2), . . . ,w(T).

29
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Within a T -long trajectory, it is possible to define some L-long sub-
set, such that 1 ⩽ L ⩽ T , which are simply snapshot on the plant
dynamics:

[w(1),w(2), . . . ,w(L)]

[w(2),w(3), . . . ,w(L+ 1)]

. . .

[w(T − L+ 1),w(T − L+ 2), . . . ,w(T)]

The corner stone of the behavioral system theory is probably the
Willems Fundamental Lemma. This lemma aims to answer the follow-
ing question: which conditions need to be verified by these L-long
windows in order to span the whole space of trajectories that the sys-
tem can produce? [85] The answer to this question will conclude this
overview on the behavioral system theory.

In the behavioral language, a discrete-time dynamical system B is
defined as a 3-dimensional tuple (T, W,B) where T ⊆ R is the time,
W represents a signal space and B ⊆ WT the behavior. The analysis
is restricted to discrete-time causal finite-dimensional systems, thus
the adopted time axis is T = Z⩾0. Some simple concepts of the linear
control theory, such as the concepts of linearity of a system and time-
invariance, are reported in this framework.

Definition 4.1.1. [57] Let (Z⩾0, W,B) be a dynamical system.

1. It is linear if W is a vector space and B is a linear subspace of WZ⩾0 .

2. It is time invariant if B ⊆ σB, where σ : WZ⩾0 → WZ⩾0 is the
forward time shift defined by (σw)(t) = w(t+ 1) and σB : {σw|w ∈
B}.

The system class (Z⩾0, Rw,B) can be denoted by Lw, which is
represented hereinafter only by its behavior B. Some important in-
variants associated to the system class are:

• w is the variable cardinality, if B ∈ Lw, then w(B):= w;

• m ∈ Z⩾0 is the input cardinality;

• p ∈ Z⩾0 is the output cardinality defined as p := w(B) −m;

• n(B) si the state cardinality. Every behavior B ∈ Lw=m+p

admits an equivalent I/O representation in state space form:
B(A,B,C,D) that can be computed as:

B(A,B,C,D) := {w ∈ (Rm+p)Z},

such that σx = Ax+Bu

and y = Cx+Du
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with matrices A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n and D ∈
Rp×m. Thus, the state cardinality n = n(B) defines the the
order of the minimal representation B(A,B,C,D).

• l(B) ∈ Z⩾0 is the lag of the system, defined as the smallest
integer l such that the observability matrix:

Ol(A,C) := [C,CA, . . . ,CAl−1]T

has rank n(B).

A restriction of the behavior in a time window of length T as:

BT = {wp ∈ (Rm+p)T | there is wf, such that wp ∧wf ∈ B}

where wp ∧wf denotes the concatenation of trajectories wp and wf.
This represents the set of all the T -long trajectories of the system.

A system behavior B can be rewritten also as the product space
of two sub-behaviors By ⊆ (Rm)Z⩾0 and Bu ⊆ (Rp)Z⩾0 which are
respectively, the input and output signal spaces. Thus, any trajectory
w can be written highlighting the input-output partition:

w :=

[
u

y

]
.

A fundamental property of a behavior is the controllability:

Definition 4.1.2. [57] A system is said to be controllable if for every T ∈
Z⩾0, w1 ∈ BT , w2 ∈ B there exist w ∈ B and T ′ ∈ Z⩾0 such that
wt = w1

t for 1 ⩽ t ⩽ T and wt = wt−T−T ′ for t > T + T ′.

This concept of controllability has a very practical meaning. In fact,
this property is satisfied when any two trajectories of a given system
can be patched together in finite time.

Selected a number of rows equal to L, the Hankel matrix associated
to the signal w = [w1,w2, . . . ,wT ] is defined as:

HL(w) =


w(1) w(2) . . . w(T − L+ 1)

w(2) w(3) . . . w(T − L+ 2)
...

...
...

w(L) w(L+ 1) . . . w(T)

 . (4.1)

In order to develop a controller based on behavioral system theory,
it is crucial the persistency of excitation condition:

Definition 4.1.3. [85] Given, L, T ∈ Z⩾0 such that T ⩾ L. The signal
f ∈ RTm, is said to be persistently exciting of order L if the Hankel matrix
HL(f) is full rank.
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In other words, a given signal is persistently exciting of a given
order (assume L), if the trajectories that form the column of (4.1) are
not trivial.

Given an initial trajectory, wini ∈ BTini
, with Tini ⩾ l(B), and an

input sequence ur, the state can output can be steered to a desire
value:

Lemma 4.1.1. [57] Let B = (A,B,C,D) and B ∈ Lm+p be a minimal
input/state/output representation.
Then for all wini ∈ (Rm+p)Tini , with Tini ⩾ l(B) and wr = [ur,yr]

T ,

wini ∧wr ∈ BTini+Tr
⇒ there is unique xini ∈ Rn(B) such that

yr = OTr
(A,C)xini + TTr

(A,B,C,D)ur,

where TTr
is the lower triangular Toeplitz matrix:

TTr
(A,B,C,D) =


D 0 . . . 0

CB D . . . 0
...

. . . . . .
...

CATr−2B . . . CB D

 . (4.2)

It is highlighted that, if matrices A,B,C,D are known, it the initial
state xini is obtainable. This lemma coupled with the theory of the
MPC represents a first step towards the design of predictive controllers
from a set of measurements.

As conclusion of this short review on the behavioral system theory,
the fundamental lemma is reported:

Lemma 4.1.2. [85] Given T , t ∈ Z⩾0. Consider a controllable, linear and
time invariant system B with w = col(u,y) ∈ BT a T samples long
trajectory, also consider a persistently exciting input u of order t+n(B).
Then, any t samples long trajectory w ∈ Bt can be written as a linear
combination of the columns of Ht(w), i.e.

colspan(Ht(w)) = Bt .

This lemma provides the enabling result for data-driven controls.
In fact, it states that any trajectory of the system can be described, or
a predicted, by a predictor computed as linear combination of Hankel
matrix columns (4.1). Which in turns means that, given a measured
trajectory w, a controlling input ur and an initial state wini that meet
imposed constraint (i.e. persistency of excitation), any future N-step-
long trajectory can be estimated as:

wini ∧wr ∈ BTini+Tr
⇐⇒ ∃g, such that

HTini+Tr
(w)g = col(wini, col(ur,y)),

(4.3)
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where the equation:

HTini+Tr
(w)g =


uini

yini

ur

y

 (4.4)

is a linear system having as unknowns the auxiliary variable g and the
future output trajectory y. A more detailed explanation and proofs of
all the lemmas reported in this chapter can be found in [85].

The take-to-home messages of this brief overview on the behavioral
system theory are resumed:

• the lemma (4.1.2) permits to substitute the system identification
procedure of the model-based design. Parametric models are
replaced by linear combinations of available snapshots on the
system behavior;

• the fundamental lemma (4.1.2) provides also guidelines for the
choice of the length of these snapshots;

• lemma (4.1.1) assures that, knowing the initial condition of a
system, it is possible to uniquely predict its output, when ex-
cited by a given input sequence, starting from data samples re-
arranged in proper Hankel matrices (4.1).





Part II

M O D E L - F R E E P R E D I C T I V E C O N T R O L

Mode-free predictive control is an emerging branch of the
finite-set model predictive control of electric drives. The
voltage balance model of synchronous motors is replaced
by non-parametric adaptive models in the estimation of
the future machine currents. All the parameters of this
non-parametric model are online estimated by means of
observers. The accuracy of the states prediction achieved
with these methods is impressive, considering that only a
few a-priori knowledge of the plant is available. Promis-
ing results are obtained also in terms of overall drive ef-
ficiency. A reduction of the current harmonic distortion
and reduction of the switching frequency can be achieved
with this method, reducing the Joule losses and the com-
mutation losses, respectively.
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In model-based predictive current control schemes the current predic-
tions are based on the state-space model of the system, conveniently
written in a dq reference frame synchronous to the rotor position
(2.23). The prediction accuracy is strongly influenced by the knowl-
edge of the parameters, for which several identification techniques
are available [35, 58, 61, 65].

Several approximations are commonly introduced to simplify the
system description, such as linear magnetic flux-current characteris-
tics (2.10), constant stator resistance and absence of magnetic cross-
coupling between the direct and quadrature axes. As a consequence,
parameter mismatches always affect the model, because of the electric
load changes induced by either the iron-saturation (2.20) (particularly
evident in SyR motors) or the temperature variation. Parameters mis-
match can be reduced by the use of observers, which anyway pose
the problem of convergence, stability and accuracy. Online parame-
ter tracking also improves any model-based scheme, at the price of
higher computational and tuning efforts.

A different approach is considered in this chapter. The conventional
description of the system is abandoned, moving to a model-free con-
cept firstly introduced by Lin et al. [49]. The motor current variations
caused by the application of each of the eight inverter base voltage
vectors Figure 2.8 over a switching interval are stored in two Look-
Up Table (LUT)s, one for each axis. The LUTs content is continuously
updated online. A key parameter of a model-free predictive current
control is the LUTs update frequency.

If the frequency is too low, the scheme suffers of stagnation problem,
described in [50]. In a nutshell, if a voltage vector is not applied for
many consecutive time steps, the stored information regarding the
related current variation is obsolete and unreliable. Long stagnation
periods could compromise even the system stability.

In order to avoid stagnation, several methods have been presented.
They can be divided in two groups: direct and indirect anti-stagnation
methods. A first simple, but bulky, method for increasing the update
frequency is obtained with the direct anti-stagnation algorithm pro-
posed by the same authors in [50]. A minimum refresh frequency is
imposed for the current LUTs. If one of the base voltages is not applied
for a predefined time window, the voltage vector is forcedly imposed
as next voltage reference. In other words, MPC optimum detection is
neglected and the updated information is retrieved at the cost of an
increase of the current ripple.

37
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A smart anti-stagnation algorithm is proposed in [20], where an in-
direct LUTs reconstruction is presented. Current LUT update is based
on the mathematical relationships that link the inverter input voltages.
The knowledge of the last three current variations permits an approx-
imated update of the other LUTs elements. The update is obtained
without penalizing the current ripple as in [50], since the updating
frequency is high enough to prevent stagnations. Furthermore, the
current ripple and the update frequency are not so strictly linked, as
in the previous model-free predictive control solutions [49, 50].

In this chapter an up-to-date algorithm is described, which further
increases the updating frequency of the LUTs, while maintaining the
cost function minimization and by taking advantage only on the past
current measurements. The LUTs update is guaranteed after each cur-
rent measurement and it skips any stagnation completely.

The scope of the model-free control architecture is to avoid the need
of motor parametric models. This is a particularly valuable feature for
plug-and-play drives connected to motors with few or no parameters
available. Examples are general purpose drives and ac drives for com-
pressors adopted in cooling equipment (sometimes the motor is not
accessible at all). In this light, the model-free predictive control is a
promising control strategy for electric motors and it is worth attention
from researchers.

5.1 theory of deadbeat model-free control

The idea underlying this first Model-Free (MF) solution is to keep the
computational cost as low as possible. For this reason, the cost func-
tion behind the MPC (3.3) is simplified as much as possible. In details
the input effort is not penalized (r = 0) and the prediction horizon
N is set equal to one. Under these assumptions, the cost function J

defined assumes the following form:

J(uz) = ∥i∗dq − izdq(k+ 1)∥2 (5.1)

The MPC is equivalent to a deadbeat control. It is reminded that
i∗dq =

[
i∗d; i∗q

]
is the reference current vector and izdq = [ îd; îq] is

the dq vector of the predicted currents due to one of the eight base
inverter voltage vectors uz (Figure 2.8). Of course, more complex cost
functions can be adopted at the price of a higher computational load
and an additional tuning of cost function gains [32, 88]. For instance,
a thermal stress based MPC was implemented in [24]. However, the
performance of a model predictive current control depends on the
current prediction accuracy, which is the topic of this chapter. In this
light, the adoption of (5.1) seems appropriate, since it allows a fair
comparison with other predictive control techniques.
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Following the principle of simplicity, the just obtained optimization
problem is solved by means of enumeration. This means that the cost
is evaluated for each dq base voltage, whose components are:uz

dq = 2
3Udc

[
cos((z− 1)

π

3
− θe), sin((z− 1)

π

3
− θe)

]T
z ∈ [1, . . . , 6]

uz
dq =

[
0, 0
]T

z = 0, 7

(5.2)

where Udc is the inverter bus voltage. The pedix dq, which denotes
the reference frame, is omitted in the following to ease the notation.

The model-free control is applied to a SyR machine, whose electric
parameter are time-varying and depend on the working point. The
considered motor magnetic flux linkages suffer of severe saturation
effects, as proved by Fig. 5.1, in particular non-null cross-saturation
inductances (see Section 2.2). Therefore, a specific motor characteri-
zation is required to achieve the correct system model, which usu-
ally implies laboratory tests and facilities, and data post-processing.
The commissioned parameter should be then inserted in a non-linear
model, as the one proposed in (2.20).

It is convenient to introduce the expression of motor current vari-
ations due to the application of a voltage vector. Their expression
are easily derived from the continuous-time state-space model of the
current derivatives (2.23):

∆iz(k+ 1) = TsAci(k) + TsBcu
z(k) (5.3)

Opposite to model-based control, the considered model-free algo-
rithm uses only the current measurements without information about
motor parameters. Each of the seven base voltage vectors, if applied,
results in current variations on both d and q axes that can be stored
in two different LUTs. The seven current variations at time step k due
to the seven voltage vectors are supposed to be known and actual:

i(k) − i(k− 1) = ∆iz(k) (5.4)

According to the FS policy, the cost function (5.1) is evaluated seven
times at each control period. The next-step currents are estimated as
follows:

î
z
(k+ 1) = i(k) +∆iz(k)

î
z
(k+ 2) = î

z
(k+ 1) +∆iz(k+ 1)

(5.5)

where i(k) are the current measurements at time k and ∆iz(k) is the
current variation due to the vector uz(k) which has been already de-
cided at time (k− 1). The voltage vector to be applied at time (k+ 1)

is selected by means of (5.1).
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Figure 5.1: Magnetic flux linkages of the considered SyR motor at different
currents and an example of d-axis apparent Ld and differential
ld inductances.
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Figure 5.2: Current variations δiz in a SyR motor with the six active vectors
uz at different rotor position: ϑe = 0 (left) and ϑe = π/3 (right).

Each of the current variations in (5.4) can be split in two compo-
nents:

∆iz(k) = δi0(k) + δiz(k) (5.6)

where δi0 = [δi0d; δi0q] is the natural response and δiz = [δizd; δizq] is
the forced response to an active voltage vector uz. In case of u0, it is
straightforward that ∆i0 = δi0.

Since the values of ∆iz are obtained from measurement, they in-
herently contain information about the real behaviour of the SyR mo-
tor close to the actual working point. Fig. 5.2 shows an example of
current variations δiz(k), z ∈ [1 . . . 6], relative to two different rotor
positions. For simplicity, it is assumed i(k) = 0. Due to the anisotropy
of the SyR motor, the same active voltage vectors induce different cur-
rent variations, depending on the rotor position ϑe. In general, it is
∆iz = f(i, z, ϑe). Similarly, the current variations associated to the
natural response depends on the actual currents and the motor back-
electromotive force, i.e. the speed ωe, so that δi0 = f(i,ωe). LUTs can
be initialized with all zeros. In fact, the algorithm would automati-
cally proceeds applying all the base voltage to recover the response
of the system, if a zero current reference is commanded. Alternatively,
opposite base voltages could be applied in a row to obtain a smoother
and safer initial start-up, i.e., (u1, u4), (u2, u5) and (u3, u6).

The LUTs content should be updated with the highest possible fre-
quency to assure that the stored current variations return reliable in-
formation about the actual working point of the SyR motor. However,
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Figure 5.3: Discrete time representation of the control horizon.

only one voltage vector per control period step can be applied with
a finite-set model predictive control algorithm. It implies that only
one pair of current measurement variations ∆i stored in the LUTs can
be updated based on the latest current measurement. For the sake of
current prediction accuracy, the remaining six pairs of ∆i should be
updated with a different strategy.

5.2 the updating of the current variations luts

As mentioned above, a possible drawback of the model-free approach
is the stagnation effect [20, 50]. It happens when one (or more) element
of the LUTs are not updated for many time steps, which means that a
voltage vector has not been used for several switching cycles.

The FS algorithm applies just one (out of seven) base voltage vector
for an entire control period Tc. The anti-stagnation solution proposed
in [8, 20] uses the current variations relative to the last three periods
to reconstruct all the other (older) four ones. A weak point is that the
reconstructions are made for use in the prediction horizon time span,
when the rotor electrical position ϑe may have changed.

There are also a couple of possible situations that can corrupt the
mechanism. The first case is when only two voltage vectors are ap-
plied for a long interval and thus only two couple of LUTs elements
are actually updated. Even worse the second case, when only one
vector is applied. These two cases may prevent a stable length of the
LUTs construction tail (see Fig. 5.3). The problem of the stagnation,
i.e. the lengthening of the LUTs construction tail, was quite evident
since the very beginning. A constant tail length was guaranteed in
the seminal paper [50] at the price of non-optimal base voltage vector
choices, which cause current ripple inhomogeneities.

The weak points outlined above require an indispensable improve-
ment for the practical application of the model-free control paradigm.
In a nutshell, the goal is to maximize the updating frequency of the
current variations ∆iz. The goal can be obtained by the method de-
scribed in Sect. 5.2.1 and 5.2.2. Furthermore, the rotor electrical posi-
tion variation can be accounted for as explained in Sect. 5.2.3.
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Figure 5.4: Voltage vector sequences. The rotation by multiples of π/3 of the
selected (black) vectors returns the same sequence type. Dotted
vectors in sequence 2 means that the sequence is obtained by
either vector u2 or u6.

5.2.1 The voltage triplet identification

The proposed LUTs update method is based on the identification of
particular combinations of three different voltage vectors referred to
as triplet, whereas the specific combination they form is called se-
quence.

Six sequences can be defined as shown in Fig. 5.4. It is important to
underline that the highlighted vectors are just examples to graphically
define the sequences. For instance, sequence 1 is formed by either the
vectors (1, 2, 3) or (2, 3, 1), as well as (3, 1, 2). Furthermore, sequence
1 is formed by either the vectors (3, 4, 5) or (5, 6, 1), including all the
possible permutations.

The sequences can be used to define mathematical relationships
that allow to reconstruct the four current variations due to the re-
maining four voltage vectors, as it is reported in Sect. 5.2.2. A practi-
cal example is also reported in [8]. Since the current reconstructions
depends on the sequence type, it is convenient to define an algorithm
for the sequence identification.

The first step of the solution proposed consists in defining a buffer
Bu = [uz(t3);uz(t2);uz(t1)] containing the last three applied voltage
vectors, where uz(t1) corresponds to the latest applied voltage vector
and uz(t3) to the oldest one, that is t3 < t2 < t1. The buffer is
updated by following two rules:

• the three voltage vectors must be different;

• the buffer is time oriented, i.e. the indexes are stored according
to the chronological order of the related voltages.

The buffer updating rules guarantees that the three voltage vectors
are suitable to form a triplet.

The k-permutations of n base vectors are the different ordered ar-
rangements of a k-element subset. In the present case, n = 7, k = 3

and the permutations are n!/(n− k)! = 210, so that the identification
of the triplets is not trivial.
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Figure 5.5: Examples of angular displacement and distance d calculation
between active vectors. Reference vectors are u1 (left) and u3

(right), respectively.

As a second step, one defines the distance as the normalized phase
displacement between uz(t1) and the other two voltage vectors of the
buffer. The two distances are stored in a buffer Bd = [d1,d2], where
d1 is the distance between uz(t1) and uz(t3), and d2 is the distance
between uz(t1) and uz(t2). The distances are calculated according to
an anticlockwise positive direction and they are defined only in the
set [−2;−1; 0; 1; 2; 3]. With reference to Fig. 5.5, with a voltage buffer
uz(t1) = u1, uz(t2) = u6 and uz(t3) = u3, the buffer of distances is
Bd = [2,−1].

The sequence identification process is shown in Fig. 5.6. It can
manage all possible combination, including the special case of a zero-
voltage vector in the three-element buffer. The remaining sequences
can be identified by defining simple rules on the distances in the
three-element buffers. For example, the sequence 1 is identified when
one of following rule applies to the buffer Bd:

|d1|, |d2| ⩽ 2 and d1d2 = 2 or d1d2 = −1 (5.7)

Sequence 2 is detected by the rule:

d1d2 = −2 or d1 = 3 or d2 = 3 (5.8)

The use of the distances to identify the sequence results in a com-
putationally fast method. Only a handful of if statements is necessary
to carry out the sequence identification, allowing the algorithm imple-
mentation even on basic microprocessors.

The sequence identification process is shown in Fig. 5.6. It manages
all possible combinations, including the special case of a zero-voltage
vector in the three-element buffer.

5.2.2 Current variations reconstruction

The vectorial relationships between the magnitude of the current vari-
ations can be calculated for each sequence. The mathematical equa-
tions are reported in Table 4. A practical example of LUTs updating is
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Figure 5.7: Sequence 6 current variations representation.

reported in [8]. For instance, one may consider the buffer of voltages
equal to (u4(k− 2),u2(k− 1),u1(k)). The sequence identification pro-
cedure described in Sect. 5.2.1 result in the identification of sequence
2. Thus, the remaining four elements of the LUTs current variations,
i.e. the ones corresponding to the voltage vectors u0, u3, u5 and u6,
can be updated by means of the calculations reported at the second
row in Table 4.

It is worth highlighting that sequence 6 does not allows the re-
construction of the remaining four elements. It represents a linearly
dependent combination with two opposite active vectors and a zero
voltage vector. Therefore, LUTs are not updated in that occurrences.

However, these combinations are still useful for the sake of current
variations updating. For the sake of clarity, an example of sequence
6 (1, 4, 0) and related current variations is reported in Fig. 5.7. The
current variation ∆i0 can be derived as the mean of the variations
caused by the voltage vectors u1 and u4:

∆i0 =
∆i1 +∆i4

2
(5.9)

The oldest current variation among ∆i0, ∆i1 and ∆i4 is updated by a
new value obtained by manipulating (5.9).
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Table 4: Updating relationships for the current variations LUTs updating
Sequence Rule Rule Rule Rule

Seq. 1 ∆i0 = ∆i1 +∆i3 −∆i2 ∆i4 = 2∆i0 −∆i1 ∆i5 = 2∆i0 −∆i2 ∆i6 = 2∆i0 −∆i3

Seq. 2 ∆i0 = 1
2(∆i

1 +∆i4) ∆i3 = ∆i2 +∆i4 −∆i0 ∆i5 = 2∆i0 −∆i2 ∆i6 = 2∆i0 −∆i3

Seq. 3 ∆i4 = 2∆i0 −∆i1 ∆i3 = ∆i2 +∆i4 −∆i0 ∆i5 = 2∆i0 −∆i2 ∆i6 = 2∆i0 −∆i3

Seq. 4 ∆i4 = 2∆i0 −∆i1 ∆i2 = ∆i1 +∆i3 −∆i0 ∆i5 = 2∆i0 −∆i2 ∆i6 = 2∆i0 −∆i3

Seq. 5 ∆i0 = 1
3(∆i

1 +∆i3 +∆i5) ∆i2 = 2∆i0 −∆i5 ∆i4 = 2∆i0 −∆i1 ∆i6 = 2∆i0 −∆i3
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Figure 5.8: Projections of a vector rotating at a constant speed when Lq < Ld

5.2.3 Compensation of the dq reference frame rotation

Let consider a steady state working condition. The forced current re-
sponses components [δizd δizq]

T induced by the z-th stationary volt-
age vector are sinusoidal (5.6), as the z-th voltage dq projections
[δuz

d δuz
q]

T . Moreover, during steady state operation, a current vari-
ation due to u0 and measured at any (k−m) step, with m > 1, is
equal to the one measured at (k− 1), without any further approxima-
tion. These considerations can be used to compensate the effect of the
rotor rotation on the estimated ∆iz.

At every Tc, the current measurement updates the most recent el-
ement of the triplet. The remaining two elements are older, e.g. they
could be 2, 3 or more control periods old. Therefore, the current recon-
struction of all the other current variations by means of the technique
proposed may be affected by an error if the position variation effect is
not properly compensated. An effective and simple anti-ageing tech-
nique is proposed in this section.

The current variations due to active vectors are sinusoidal and they
depend on the electromechanical position ϑe. Therefore, it is possible
to correct them by taking advantage of this property. After the anti-
age compensation, every element of the triplet will be considered to
be one Tc old.

First of all, it is worth reminding that δi0 is supposed to be known.
Thus, the forced response δiz(k− 1) can be extrapolated also in the
model-free approach:

δiz(k− 1) = ∆iz(k− 1) − δi0(k− 1) (5.10)

The rotations of the vectors uz describe a circle in the dq voltage
plane, whereas the rotations of vectors δiz describe an ellipse in the
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dq current plane, due the motor magnetic anisotropy (Fig. 5.8). In
particular, the ellipse semi-major axis of length a is placed along the
lower inductance q-axis. The ellipse semi-minor axis of length b is
thus placed along the d-axis.

The measured currents variations δiz(k−m), with m ⩾ 2, can be
used to calculate δiz(k− 1). Actually, the problem consists into esti-
mating the future projections (x1(ϑe),y1(ϑe)) of a vector rotating at
constant speed, starting from a previous position (x0(ϑe),y0(ϑe)) and
knowing the time or angular displacement ∆ϑme between the points
(Fig. 5.8):

∆ϑe = ωe(k−m+ 1)Tc (5.11)

During each control period the motor speed is considered as a con-
stant. In principle, the projections (x1 = δizd(k− 1),y1 = δizq(k− 1)

could be calculated as follows:

δizd(k− 1) = δizd(k−m) cos(∆ϑe)−

δizq(k−m)
a

b
sin(∆ϑe) (5.12)

A similar expression holds for the computation of δizq(k− 1). Unfortu-
nately, the ratio a/b is unknown, and it also depends on the current
level that influences the motor magnetic saturation. Not excluding
more sophisticated solutions, the easiest way is to neglect the term
multiplied by the ratio, taking advantage of the fact that ∆ϑe is very
small in one control iteration. As a consequence, the projections can
be approximated as follows:δizd(k− 1) ≈ δizd(k− 2) cos(ωeTc)

δizq(k− 1) ≈ δizq(k− 2) cos(ωeTc)
(5.13)

The compensation proposed in (5.13) was adopted. It is worth high-
lighting that the compensation requires the computation of just one
cosine function and two multiplications.

5.3 results and discussion

The experimental test bench adopted in this section consists of a SynR
motor connected to an isotropic surface permanent magnet motor act-
ing as a virtual load. Two different SynR prototype motors were con-
sidered, whose plate data have been reported in Table 5. The control
drive algorithm was implemented in a MicroLabBox dSpace hardware.
The control period Tc was set at 100µs and it corresponds to the up-
dating time of the voltage vector output. The bus voltage was set at
300V.

The schematic of the proposed model-free-based AC drive is re-
ported in Fig. 5.9. The proposed model-free algorithm was also im-
plemented in simulation to gain additional information which ease
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Figure 5.9: Model-free predictive current control (dotted) in an electric drive.
The state of switch SW1 determines the drive operating condi-
tions.

Table 5: Nameplate data of the motors under test

Motor Data Symbol SyR1 SyR2

Pole pairs p 2 2

Phase resistance R 16Ω 4.7Ω

Direct inductance Ld 1H 0.4H

Quadrature inductance Lq 0.3H 0.08H

Nominal current IN 3A 5.6A

Nominal speed ωN 500 rpm 1500 rpm

Nominal torque τN 8.1N m 10.2N m

the demonstration. The motor models implemented in the simulation
were comprehensive of the magnetic saturations by means of LUTs as
in Fig. 5.1.

In order to prove the feasibility of the proposed model-free ap-
proach, it is important to demonstrate the usefulness of the sequence
identification. To this aim, several simulations were carried out and
two different results are reported in the histograms of Fig. 5.10. The
simulation was relative to motor SyR1 (Table 5) and state SW1 = 0

in Fig. 5.9, i.e. with an active speed control loop, at steady state and
no load. The remarkable utilization of sequence 6 indicates the im-
portance of considering also that sequence, neglected in [20]. The
measured quantities are reported in per unit (p.u.) to ease the discus-
sion and results comparisons. In particular, the currents were normal-
ized with respect to IN/

√
2 due to the adopted Maximum-Torque-per-

Ampere (MTPA) strategy. The speed measurements were normalized
with respect to the rated value ωN.

5.3.1 Anti-stagnation capability

The anti-stagnation capability of the model-free predictive current
control with the reconstruction method described in Sect. 6.2 is eval-
uated for the motor named SyR1 (Table 5). Two model-free predic-
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Figure 5.10: Sequences during 1 s observation at steady-state and no load
(simulation with motor SyR1, SW1 = 0).

tive current control methods are compared: first the one proposed in
[20], then the one presented in Sect. 6.2. The quantization of the cur-
rent measurements was also implemented. The results are reported
in Fig. 5.11. The former method suffers of small stagnation effects,
which results in straight segments in Fig. 5.11 (top figure). Actually,
it was found out that Seq. 6 was applied during those intervals. Un-
der the same operating conditions, the simulation was repeated by
implementing the proposed model-free algorithm that includes the
sequence 6 and the rotation compensation. The results are reported
at the bottom of Fig. 5.11, where the stagnation effect is effectively re-
duced and an example of LUT content is also highlighted. In the same
figure, one can note the presence of small bumps, for example at
ϑe ≈ π/2. It has been found that they depend on measurement noise
in the currents. They may affect one or more ∆iz of the triplet that are
used to estimate the current variations due to the remaining voltage
vectors (not included in the triplet), according to Table 4. The linear
combinations of Table 4 can either emphasize or reduce the effects
of the current errors (originally present in the measurements) and as-
sociated to a specific voltage vector in Figure5.11. These bumps are
transient situations that are readily fixed by the self-repairing feature
of the model-free technique, within one electrical period of the rotor
position. In other respects, the effect of bumps itself can be limited by
both an higher switching and a more accurate current sensing.

5.3.2 Prediction error maps

This sub-section discusses the current prediction error in different
working conditions. Several simulations are carried out and the cur-
rent prediction of the model-based and model-free schemes are ob-
tained for both motors of Table 5. The prediction error is calculated
as follows:

ε% =

∥∥∥∥∥ î(k+ 1) − i(k+ 1)

IN

∥∥∥∥∥ · 100 (5.14)
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Figure 5.11: Time evolution at constant speed of the LUT for the q-axis cur-
rent without (top) and with (bottom) considering Seq. 6 (SyR2,
simulation, SW1 = 0).

Fig. 5.12 shows the normalized difference defined as:

∆ε% = ε%model-based − ε%model-free (5.15)

That is, a positive value (e.g. ∆ε = 2%) in a given normalized work-
ing point means that the prediction obtained by model-based control
is worse of 2% with respect to the prediction obtained by model-free
control. The comparisons were carried out for both SyR1 (Fig. 5.12a)
and SyR2 (Fig. 5.12b). The results of Fig. 5.12a establishes that for SyR1

the model-based prediction is always better than the model-free one.
Conversely, the result of Fig. 5.12b relative to SyR2 exhibits large por-
tions of speed-torque plane (i.e. some working conditions) in which
the model-free has a prediction error fairly lower than the model-
based solution. This does not establish any superiority of a method
over the other, also because a rather simple model with unsaturated
inductances was used. But it leaves the way open to further investiga-
tions and improvements on both sides.

For a fair comparison, the model-based predictive current control
should be supported by proper motor parameters self-commissioning
procedures [5, 35, 59, 65] or online parameter estimator algorithms [4,
27, 68].

As regards the model-free technique, the major weak point is that
the prediction relies on past measurement, and strongly depends
on rotor position. At higher speed, the past measurements become
quickly obsolete. The compensation described in Sect. 5.2.3 aims at
reducing this flaw. Of course, the prediction error can be mitigated
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(a) SyR1 (b) SyR2

Figure 5.12: Normalized difference of the prediction error between model-
based and model-free (simulation, SW1 = 1).

by increasing the switching frequency of the inverter, as proven in [8],
by accepting increasing switching losses.

5.3.3 Results of steady-state tests

In this sub-section, a MTPA control strategy is selected [47]. Neglecting
on purpose any motor saturation, an approximated MTPA strategy
yields equal current references, i.e. i∗d = i∗q. In polar coordinates, the
MTPA trajectory has a constant angle equal to 45°. Other choices are of
course available, and in particular the one proposed in [60]. It is worth
pointing out that there are MTPA techniques that do not require motor
parameters knowledge, thus in favor of a full model-free electric drive.
The resulting complete drive scheme is reported in Fig. 5.9.

Two different steady-state tests are carried out at various load levels
and two speeds, namely 25% and 75% of the rated speed. The results
are reported in Fig. 5.13 and 5.14, respectively.

During the tests, a switch from model-free and model-based pre-
dictive current control is performed. The operation at light load are
reported in Fig. 5.13c and 5.14c: the transitions are smooth and there
are almost no differences between the two control schemes. The ob-
tained results are still comparable even at high load torque, as shown
in Fig. 5.13d and 5.14d. On one hand, it can be seen that the model-
free control exhibits a slightly higher current ripple at high speed. On
the other hand, the model-based control suffers a dependence on the
load torque, as expected.

5.3.4 Results of dynamic tests

The tests results reported in this section are obtained with the speed
reference maintained by the load motor, while the motor under test is
set to current control mode only (SW1 = 1). A current step is imposed
to one of the dq-axes. Therefore, no torque is produced and the speed



5.3 results and discussion 51

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1
Model-free

Model-based
cu

rr
en

t
i d

(p
.u

.)

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1

Model-free

Model-based

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1
Model-free

Model-based

time (s)

cu
rr

en
t
i q

(p
.u

.)

(c) τ∗m = 25% rated load
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Figure 5.13: Comparison between model-based and model-free predictive
current control at different load values and at ωm = 25%ωN

(SyR1, experimental, SW1 = 1).

is not affected, allowing a fair comparison of the current responses
between model-free and model-based approaches.

At the startup, the information stored in the current variations LUTs
suffer of stagnation since no voltage vectors have been applied yet.
However, as soon as one (random) voltage vector is applied on the
motor, the LUTs information is updated as inherent feature of the
proposed technique, just after 3 period Tc. A stable behavior of the
currents is then guaranteed even at the startup of the motor drive.

The current measurements obtained for SyR1 are reported in Fig. 5.15

and 5.16. The results of the model-based predictive current control
are obtained by keeping the inductances in (2.27) at constant values
reported in each figure. It is evident how the model-based predictive
current control transients are influenced by parameter mismatches,
whereas the model-free scheme simply has no parameters to tune.
And despite its simplicity, the model-free control guarantees bench-
marking dynamic performances.

To test the generality of the conclusions, the same experiment is
carried out with motor SyR2, which presents a rather different motor
parameters set (see Table 5). The results are reported in Fig. 5.17 and
5.18. As the model-based control, it was verified that the proposed
model-free control allows operations in the full speed and torque
ranges.

The results confirm that almost identical behavior in the dynamic
is obtained by model-free and model based predictive controls. The
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Figure 5.14: Comparison between model-based and model-free predictive
current control at different load values and at ωm = 75%ωN

(SyR1, experimental, SW1 = 1).

steady state current ripple is worst in the model-free scheme com-
pared to the case when the model-based predictive current control
adopts the correct value for the inductances. However, this aspect of
the model-free approach could be improved by proper design of a
specific cost function in (5.1).
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(a) Step on d-axis, i∗q = 0

(b) Step on q-axis, i∗d = 0

Figure 5.15: Current measurements with different motor parameters (SyR1,
experimental, SW1 = 1, ωm = 0.25ωN).
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Figure 5.16: Current measurements with different motor parameters (SyR1,
experimental, SW1 = 1, ωm = 0.75ωN).



54 model-free predictive current control

0 0.01 0.02 0.03 0.04

0

0.5

1

Ld

0.2Ld

model-free

cu
rr

en
t
i d

(p
.u

.)

(a) Step on d-axis, i∗q = 0

0 0.01 0.02 0.03 0.04

0

0.5

1

Ld

0.4Lq

model-free

time (s)

cu
rr

en
t
i q

(p
.u

.)

(b) Step on q-axis, i∗d = 0

Figure 5.17: Current measurements with different motor parameters (SyR2,
experimental, SW1 = 1, ωm = 0.25ωN).
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Figure 5.18: Current measurements with different motor parameters (SyR2,
experimental, SW1 = 1, ωm = 0.75ωN).
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R E C U R S I V E L E A S T- S Q U A R E E S T I M AT I O N F O R
PA R A M E T E R - F R E E C O N T R O L

Parameter-free predictive current control is generally based on a finite-
set of voltage vectors. The first work in this field, [49], adopted LUTs
for storing the current variations related to each of the eight base
voltage vectors. This information is used to predict the best voltage
vector to be applied, according to a predetermined cost function. As
discussed in the previous chapter, the method suffered of a stagnation
problem, due to the fact that if a voltage vector is not applied for
many consecutive time steps, the stored information regarding the
related current variation becomes obsolete. Two methods have been
proposed to partially solve the stagnation problem so far. A direct
method, proposed in [50], consists in modifying the cost function to
force arbitrarily the application of voltage vectors not applied for long
time. Of course, the arbitrary modification of the cost function acts as
a disturbance in pursuing the desired control target. Conversely, in-
direct method have been proposed in the previous chapter, based on
the publications [8, 12], to avoid the modification of the cost func-
tion. The LUTs update is carried out by reconstructing the current
variations by specific mathematical relationships among the inverter
voltage vectors at the cost of an increased complexity of the control
algorithm. The information obsolescence is emphasized by both the
fast changing of the operating point and the motor speed.

The research behind the solution described in this chapter is still
around a parameter-free finite-set MPC current controller, but the prob-
lem of stagnation is definitely overcome by a new approach to the cur-
rent prediction. To this aim, the model for the current prediction is
derived by a particular recasting of the standard dq voltage equation.

The parameter-free method requires four coefficients, that are es-
timated by taking advantage of the information nested in the past
measured current variations induced by known voltage vectors. A
Recursive Least Squares (RLS) algorithm carries out the task of adapt-
ing the model parameters runtime. The theoretical background be-
hind this solution refers to grey box modeling AppendixB. The sen-
sitivity of the current prediction on both the operating point and the
speed is greatly reduced.

6.1 set-up of the non-parametric model

A finite-set MPC current controller requires a model of the current
behavior to predict synchronous motors dynamic. In order to design

55
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a finite-set MPC scheme that does not need any motor information,
all the parameters used in the prediction phase have to be on-line
identified.

To ease the mathematical representation, only the d-axis equation
of a synchronous motor is considered. Equation of the q-axis dynamic
is identical and lead to similar results, as summarized at the end of
this Section.

ud = Rid +
dλd(id, iq)

dt
−ωeλq(id, iq)

= Rid + ld(id, iq)
did
dt

−ωeλq(id, iq)
(6.1)

The magnetic cross-coupling between d and q axes is neglected.
The motor current dynamic is commonly described on the basis of

the discretized voltage balance in the dq synchronous reference frame.
In turn, the discretization of the current derivative yield did/dt ≈
∆id(k)/Tc = (id(k) − id(k− 1))/Tc, where Tc is the control sampling
time. The last of (6.1) can be discretised at time kTc as follows:

∆id(k)

Tc
= −

Rid(k) − λq(k)ωe(k)

ld(k)
+

ud(k)

ld(k)
(6.2)

where λq(k) = λq(id(k), iq(k)) and ld(k) = ld(id(k), iq(k)). Equiva-
lent equations can be written also for the q-axis. To ease the mathe-
matical representation the time step dependence (k) is omitted in the
rest of the chapter, whereas preference is given to highlight the de-
pendence of the motor parameters and quantities on the dq currents.

The d-axis current increment (6.2) can be represented as the sum of
two terms. The first one is obtained by applying a null voltage to the
system:

δi0d(id, iq,ωe) = −
RTc

ld(id, iq)
id + Tcωe

λq(id, iq)
ld(id, iq)

(6.3)

The second term is obtained by the application of one of the other six
(active) voltage vectors of the inverter:

δifd(id, iq, ϑe, v) =
Tc

ld(id, iq)
2Udc

3
cos
(
(v− 1)

π

3
− ϑe

)
(6.4)

where ϑe is the electric angle, Udc is the DC-bus voltage and v ∈ U ≜
[1 . . . 6] is the index of the applied voltage vector. The overall current
variation in (6.2) can be expressed as:

∆id(k) = δi0d(id, iq,ωe) + δifd(id, iq, ϑe, v) (6.5)

By putting

p1,d ≜ δi0d(id, iq,ωe); p2,d ≜
Tc

ld(id, iq)
2Udc

3
(6.6)
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the d-axis current variation (6.5) can be rearranged as follows:

∆ivd =
[
1, cos

(
(v− 1)

π

3
− ϑe

)] [
p1,d, p2,d

]T
= ϕv pd (6.7)

The vector of coefficients pd is defined as [p1,d, p2,d]
T . It is worth

pointing out that the regressors ϕv change with the considered volt-
age vector v. Finally, the current variations can be calculated by means
of (6.7) without prior knowledge of the motor parameters, provided
that the elements of pd are known.

Similarly, the q-axis current variations are calculated as:

δi0q(id, iq,ωe) = −
RTc

lq(id, iq)
iq − Tcωe

λd(id, iq)
lq(id, iq)

(6.8)

δifq(id, iq, ϑe, v) =
Tc

lq(id, iq)
2Udc

3
sin
(
(v− 1)

π

3
− ϑe

)
(6.9)

An identical approach is used to obtain the pq coefficients that de-
scribe the q-axis current variations, i.e. ∆ivq = δi0q + δifq, leading to:

∆ivq =
[
1, sin

(
(v− 1)

π

3
− ϑe

)][
p1,q, p2,q

]T
= ϕv pq (6.10)

6.1.1 The Recursive Least Square Estimator

The elements of pd and pq have to be estimated online. For the sake
of duality, only pd estimation is discussed, bearing in mind that pq

can be estimated using the same approach. It is worth highlighting
that pd is time variant. In particular, p1,d depends both on the op-
erating speed and magnetic iron saturation, see (6.3), whereas p2,d

depends only on magnetic iron saturation, see (6.4).
The RLS technique is one of the most widespread method for esti-

mating parameters during normal operations of a process [70]. It is
particularly suited for applications that require adaptability to differ-
ent working conditions. For these reasons it was adopted for estimat-
ing p1,d and p2,d that are the working point dependent coefficients.

The standard algorithm consists of a set of equations that can be
solved recursively:

G(k) = Q(k− 1)ΦT (k)(ΦQ(k− 1)ΦT (k) + fI)−1

p̂d(k) = p̂d(k− 1) +G(k) (y(k) −Φ(k)p̂d(k− 1)) (6.11)

Q(k) =
1

f
(Q(k− 1) −G(k)Φ(k)Q(k− 1))

The estimated parameter vector p̂d(k) is computed recursively mini-
mizing the error between measured current variation stored in y and
the model presented in (6.7). The same set of equations apply for
the estimation of p̂q(k), too. Matrix G(k) is the gain matrix and it
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Figure 6.1: Different cases evaluation for the regressors vector ϕ calculation.

weights the error between measurements and estimations in the coef-
ficients vector updates. The regressors matrix Φ(k) = [ϕv(k), ϕv(k−

1), . . . ]T includes all the regressors vectors ϕv related to the mea-
sured current variations involved in the p̂d(k) estimation, i.e. the
ones related to the measurements y(k) = [∆ivd(k), ∆i

v
d(k− 1), . . . ]T.

Finally, Q(k) is the estimation error covariance matrix. A forgetting
factor f is also introduced in (6.11) to properly weight the old data in
the estimation, and its value determination is discussed in Sect. 6.3.2.

Being two the number of elements in p̂d(k), the vector y(k) should
have at least size 2 × 1 (and Φ(k), accordingly, at least size 2 × 2).
In other words, at least two current variations measurements are re-
quested in (6.11).

There are several possibility to select the measurements y(k). A
first solution consists of using the last two measured current varia-
tions, i.e. ∆ivd(k− 1) and ∆ivd(k), independently from the voltages ap-
plied in the considered control periods. A situation that may occur is
when the same voltage vector is applied in two (or more) consecutive
time steps. The RLS might turn out to be an ill-conditioned problem,
and unexpected results could be obtained. In turn, it is difficult to
estimate two different parameters from very similar measurements.

Another solution is to exploit the last measured current variation
∆ivd(k), whereas the second variation ∆ivd(k−M) is measured M time
instants before. Therefore, the vector of measurements in (6.11) is de-
fined as:

y(k) = [∆ivd(k), ∆i
v
d(k−M)] (6.12)

The value of M is equal to the number of time steps from the appli-
cation of a voltage vector different from the one applied at the begin-
ning of (k− 1). This corresponds to Case I of Fig. 6.1. For instance,
the same voltage vector can be applied for M consecutive time steps.
Thus, the previous voltage vector different respect to the one applied
at (k− 1) can be found at (k−M− 1).

Adopting the second strategy, the RLS algorithm works within a
variable length time window. The minimum length is equal to two,
as shown in the Case II of Figure 6.1. It happens when two different



6.2 motor parameter-free predictive control algorithm 59

(11)

p̂d

(12)

z−1

ivd(k)

z−M

y(k) Φ(k)

z−(M+1)

z−2

fQ(0)

v(k + 1)
(13)-(15)

ϑe(k)

z−M

Figure 6.2: Implementation of the RLS algorithm for estimating p̂d. The
same applies for p̂q estimation.

voltages are applied in two consecutive time steps. The last applied
voltage vector gives:

ϕv(k) =
[
1, cos

(
(v(k− 1) − 1)

π

3
− ϑe(k)

)]
(6.13)

whereas the last different voltage vector v(k−M− 1) returns:

ϕv(k−M) =
[
1, cos

(
(v(k−M− 1) − 1)

π

3
− ϑe(k−M)

)]
(6.14)

so that the regressors vector actually used in (6.11) is:

Φ(k) = [ϕv(k), ϕv(k−M)] (6.15)

The outlined algorithm is summarised in the block schematic of Fig. 6.2.
In steady state conditions, the estimated p̂d(k) values are not in-

fluenced by the time window length. The free response (6.3) and the
amplitude of(6.4) are constant when id, iq and ωe are constant.

The estimation of p̂d(k) is critical during transients, in particular
when Case I of Figure6.1 occurs. The old measurement ∆id(k−M)

carries information of the system in a previous operating point. There-
fore, an error on the coefficients p̂d estimation occurs. It is hard to
draw a theoretical analysis on this side effect, since many different
cases can happen. Therefore, this aspect is discussed by means of
simulations and experiments in Sec. 6.3. Furthermore, it is expected
that the choice of the forgetting factor f affects the transient behavior
of the RLS algorithm.

6.2 motor parameter-free predictive control algorithm

The aim of this section is to show how the current predictions can
be calculated without the knowledge of the motor parameters. The d-
axis current variation can be obtained by (6.7) using p̂d, which can be
calculated as in (6.11), instead of pd. The q-axis current variation can
be obtained using the coefficients p̂q in (6.10). The optimal voltage
vector u to be applied at time k + 1 is obtained by minimising the
error

e(k) = i∗ − î(k+ 2) (6.16)
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Figure 6.3: Scheme of the parameter-free predictive current control algo-
rithm. The state of the switch SW determines either current
(SW = 1) or speed (SW = 2) control mode.

which corresponds to the following minimisation problem

v(k+ 1) = min
v∈U

eT (k) · e(k) (6.17)

where i∗ is the vector current references at time step (k + 1) and
î(k+ 2) is the vector of the current estimates. In this work, the predic-
tion horizon is set at 2 to compensate for the computation delay in
the digital implementation of the finite-set model predictive control
algorithm.

The first step to solve the problem in (6.17) is computing the current
estimate at time (k+ 1). The voltage vector u(k) is known and î(k+ 1)

can be calculated applying (6.7) just once for each of the dq currents.
The second step is to calculate the current estimates at time (k+ 2).

Since the voltage vector has not been decided yet, it is necessary to
evaluate the current prediction for all the voltage vectors in the set
U. The current estimates î(k+ 2) can be calculated by applying (6.7)
for each of the voltage vectors in U. The solution that satisfies the
problem in (6.17) is thus selected and the voltage vector reference
u(k + 1) is obtained accordingly. In other words, the output of the
problem (6.17) is the index v(k+ 1), i.e. the index of the voltage vector
to be applied at time instant (k+ 1).

It is worth noting that (6.7) requires the electrical position ϑe. Since
the voltage reference is actually applied at time (k+ 1), it is correct
to use the electrical position at time (k + 1). However, ϑe(k + 1) is
unknown. It is possible to estimate its value by imposing that the
speed variation during one time step Tc is negligible. Therefore, the
position ϑe(k+ 1) can be estimated assuming a constant speed within
the prediction horizon, i.e. using a linear extrapolation:

ϑ̂e(k+ 1) = ϑe(k) +ωe(k)Tc (6.18)

The scheme of the proposed motor parameter-free predictive cur-
rent control is summarised in Fig. 6.3 . The updating logic for the
value of M is quite simple: the condition v(k− 1) ̸= v(k−M) must
always be satisfied and M must be as low as possible. It is straight-
forward that the minimum value of M is 2.
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Table 6: Parameters of the motor under test

Motor Data Symbol Values

Pole pairs p 2

Phase resistance R 4.6Ω

Direct inductance Ld 0.16H

Quadrature inductance Lq 0.45H

Permanent Magnet flux-linkage Λpm 0.12V s

Nominal current IN 6A

Nominal speed ωN 700 rpm
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Figure 6.4: d-axis covariance Q and current at the startup.

6.3 parameter-free mpc : experimental results and dis-
cussion

The proposed control scheme has been implemented by means of a
dSPACE MicroLabBox board. The rig layout consists of two motors
mechanically coupled. The motor under test is PMAREL synchronous
motor. A second motor is mechanically coupled to the PMAREL motor
and acts as a programmable load. Motor parameters are provided in
Table 6 All the tests were carried out with a constant DC bus of 300V.

The currents responses in the following results are reported in
p.u.. Where it is not specified, the normalization quantities corre-
spond to the MTPA operating point at nominal current, i.e. (id, iq) =
[−4.42A, 4.05A]. The speed results are also normalized with respect
to the nominal speed value.

6.3.1 Initialization of the RLS algorithm

At the startup, the RLS algorithm in (6.11) is initialized with a null esti-
mated coefficient vector, i.e. p̂d(0) = [0; 0], and an identity covariance
matrix Q(0). This is a common solution when a priori information are
not available [70]. Motor nameplate parameters could be exploited to
initialize the estimators, if available. However, this would go slightly
in contrast with a complete parameter-free approach.
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Figure 6.4 (left) reports the evolution of the covariance matrix Q el-
ements at the startup. The random initialization of the covariance ma-
trix does not influence significantly the current transients, as shown
in Figure 6.4 (right). It is worth noting that the application of an in-
appropriate voltage vector following a wrong current prediction has
limited effects on the current transient, both in time and amplitude.
Actually, the RLS algorithm modifies the covariance matrix to correct
the prediction. The availability in few control periods Tc of a reliable
prediction assures quite limited effects on the controlled current at
startup. Anyway, the amplitude on the current transients is strictly
related to the ratio between the bus voltage and the inductances of
the motor, as inferable from (6.4). The higher the ratio, the smaller
the control period required to get satisfactory performances.

As a general remark, large inductances are quite normal in syn-
chronous motors with dominant reluctance torque component as in
the present case. Nevertheless, there can be a large variability in the
inductance value for other motor topologies. As one can observe from
(6.11), the updating of the covariance matrix Q(k) is influenced only
by the regressor vector Φ and the forgetting factor f and not by motor
parameters. After few control periods one can assume that the predic-
tion algorithm works correctly. The dynamics of the current control
are still influenced by the motor inductances, but their values are not
relevant for a successful motor startup.

6.3.2 Tuning of the forgetting factor

The only parameter that has to be tuned in the proposed scheme is
the forgetting factor f in (6.11). The PMAREL motor is dragged at its
nominal speed ΩN by the load motor. The switch SW in Fig. 6.3 is in
the state 1. Three current steps, each with a different value of forget-
ting factor f, are performed on the d-axis. The results are reported in
Fig. 6.5a. Similar results can be obtained on the q-axis.

The coefficients evolution during the current steps are reported in
Fig. 6.5b, Fig. 6.5c and Fig. 6.5d. The coefficients values were normal-
ized with respect to the nominal current IN. It is worth noting that
in Fig. 6.5 the coefficients do not start from zero since the recording
started when the motor was already in the steady state condition. For
the sake of showing the complete transient of the coefficients, a longer
time window was used compared to the one in Fig. 6.5a.

The forgetting factor value influences directly the promptness of
the coefficients pd and pq estimation. In fact, it can be noticed from
in Fig. 6.5b that the higher the value of f, the slower the estimation of
p2,d. This is an intrinsic feature of the RLS algorithm in (6.11): a value
of f close to one means that the oldest measurements are equally
weighted to estimate the actual value of the coefficients. On the con-
trary, smaller values of f force the RLS algorithm to consider only the
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Figure 6.5: Tuning of the forgetting factor f: d-axis current step with f1 = 0.9,
f2 = 0.94, f3 = 0.98.

latest measurements, but increasing the value of the covariance Q as
inferable from (6.11).

The delay in the case of f = 0.98 does not affect significantly the
d-axis current dynamics reported in 6.5a. This is due to the fact that
the differential inductance ld does not change considerably during
the current step (see (6.4)).

An interesting result of the test in Fig. 6.5 is obtained by observ-
ing p̂1,q in Fig. 6.5d. Before the current step, i.e. at zero dq-axes
currents, p1,d is null, while p1,q is not null. This is due to the back-
electromotive force induced by the permanent magnets as inferable
from (6.8), since λd(0, 0) = Λpm. As a final remark, the data collected
during the current step have shown that the current prediction error
is not significantly affected by the choice of the forgetting factor, at
least within the normal range adopted in RLS algorithms.

6.3.3 Influence of speed on the estimation

It is worth recalling that parameters p1,q and p1,d are also strongly
influenced by the operating speed as inferable from (6.3) and (6.8),
respectively. The PMAREL motor speed is controlled by means of a PI
speed regulator, which corresponds to the switch position SW = 2 in
Fig. 6.3.
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Figure 6.6: Estimation of p1,d and p1,q during a speed ramp.

A speed ramp transient is commanded at no load condition from
zero till the nominal speed. The results are reported in Fig. 6.6. The
d-axis coefficient p1,d increases linearly with the speed because of
the motional term in (6.3). The coefficient p1,q increases as well, but
with a rather different slope. It is quite straight from (6.8) that the
current variation δi0q value depends on the differential inductance lq
and the d-axis flux λd. However, lq is considerably higher than ld and
thus the slope of the current variation is smaller. A higher slope of
the coefficient p1,q is obtained by increasing the permanent magnet
flux linkage, such as the case of interior permanent magnet motors.
The experiment has also revealed that a speed variation increases the
noise of the current prediction error, but the compensation given by
(6.18) assures that the error remains within a range of ±1% of the
rated current.

6.3.4 Influence of current on the estimation

In order to show the load influence on the coefficients p̂d and p̂q

estimation, a q-axis current ramp test was carried out. The result is
reported in Fig. 6.7. The speed was maintained by the load motor, and
the motor under test was control in torque mode by selecting SW = 1

in Fig. 6.3.
The coefficient p̂2,q estimation is reported in Fig. 6.7b and it allows

to draw interesting considerations. Its value changes with the current,
that is the terms in (6.9) are changing with the load. Therefore, the
value of p̂2,q is strongly related to the value of the differential induc-
tance lq. A visual comparison between the coefficient p̂2,q and the
parameter lq in Fig. 6.7b and 6.7c, respectively, confirms this relation-
ship.

In case of unknown motor applied to the drive, it is possible to find
out a magnetic anisotropy by simply observing the values of p̂2,d and
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Figure 6.7: Estimation of δifq amplitude during a q current ramp: Ω = ΩN,
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p̂2,q. Different magnetic characteristics imply different inductances
and thus different coefficients. This feature of the proposed algorithm
goes toward the evolution of plug-and-play drives.

The experiment led also to the conclusion that the current predic-
tion errors remain negligible because the RLS algorithm is able to track
efficiently the variation of the differential inductance due to the mov-
ing working point (see Fig. 6.7).

6.3.5 Comparison between the control algorithms

For the sake of generality, the presented algorithm is compared with
other two different predictive control algorithms. It was recently pro-
posed a new control paradigm including the model-free concept [8, 12,
49, 50]. The parameter-free technique is inherently close to the model-
free paradigm and the comparison between them is proposed. In par-
ticular, the technique proposed in [8] was used as term of comparison.
Furthermore, the results of the same tests obtained with a model-
based MPC controller are reported, too. Differential inductances and
motor fluxes are not constant in the model, such as in (6.2). The im-
plemented model-based MPC featured an interpolation algorithm to
obtain the correct magnetic fluxes based on the dq-axes currents. The
stator resistance variation is neglected in the implementation.

A load step test was carried out at different speeds. The motor un-
der test was controlled in speed control mode, i.e. SW = 2 in Fig. 6.3.
The load reference is thus set by the PI speed regulator and the cur-
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Figure 6.8: Comparison between the finite-set current controllers at the nom-
inal point.
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rent references are obtained by means of the MTPA curve. Two dif-
ferent speed values were considered aiming at showing the perfor-
mances of the proposed algorithm along the whole nominal speed
range of the motor under test.

A high-speed test was carried out by maintaining the nominal
speed. The nominal load was applied step like and the results of
speed and currents measurements are reported in Fig. 6.8a and 6.8b,
respectively. It is known from literature [8] that the model-free so-
lution reduces its performances for increasing speed and load. The
prediction error is calculated by the difference between the predicted
and measured currents and the results are reported in Fig. 6.8d and
Fig. 6.8e for d- and q-axes, respectively. The improvements in the cur-
rent prediction of the parameter-free technique respect to the model-
free ones are quite relevant. Finally, the prediction errors of the pro-
posed algorithm are comparable with the ones obtained by the model-
based MPC solution. The results are surprisingly quite similar, even
though the latter solution remains slightly superior.

Comparable results are obtained also at low speed (Fig. 6.9), where
the model-free solution of [8] is less affected by the speed-dependent
terms, but it is still dependent on the load. The prediction error re-
sults of Fig. 6.9d and 6.9e confirms the better accuracy of the pro-
posed solution. Furthermore, the results of the proposed solution are
very close to the model-based MPC ones.

In general, the proposed solution allows to sensibly improve the
performances of the model-free solution. This is due to the filtering
effect of the RLS algorithm in (6.11) which permits a rather better cur-
rent variation estimation. Under the light of the results in Fig. 6.8
and 6.9, it is reasonable to say that a more sophisticated estimation
scheme, such as the RLS, justifies the efforts of constructing a proper
model of the system under consideration. The key-point of the pro-
posed technique is to consider only the current variations and de-
scribe them by means of an equivalent model using a description
similar to the free and forced response of the motor currents.
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C U R R E N T R I P P L E M I N I M I Z AT I O N

One of the main limitations of the parameter-free algorithm derives
from the FS nature of the controller, for instance the control frequency
could be kept low due to computational power limitation. The con-
trol frequency is often chosen to be equal to the frequency of switches
state updating. The cardinality of the voltage vector set is thus limited
to the eight base voltage vector Figure 2.8, and the problem of finding
the optimum solution is reduced. However, if the control frequency
is not high enough, the currents harmonic distortion could be signif-
icant. Of course, increasing the switches state adaptation frequency,
thus the control frequency, results in a higher switching frequency.
In addition, a high current ripple induces torque oscillation, which
result in acoustic noise and vibrations in the system.

In order to improve the current harmonic content, the switches
state updating frequency should be increased. However, the control
frequency should be decoupled from the switches state updating one
to keep the computational effort at bay. This is the underlying concept
of the DSVM introduced in [14]. According to the DSVM, the control pe-
riod is divided in a discrete number of sub-periods. Any of the eight
inverter base voltage vectors can be applied in each sub-period. Ac-
cording to a benchmark DSVM, the voltage vectors synthesized by the
modulation are mapped in LUT, which are usually built offline [95].

In the MPC framework, the DSVM is treated as a predictive con-
troller with prediction horizon equal to the number of sub-periods.
The discrete nature of the inverter switches positions implies that the
MPC problem is non-deterministic Polynomial-time hard (NP-hard),
i.e. it scales exponentially with the prediction horizon length. Proper
solvers have been presented in literature to tackle this issue, such as
the branch and bound and the sphere decoding methods [74]. The adop-
tion of proper solvers is crucial to limit the computational effort at
an affordable amounts. As an alternative, the selection of the optimal
inverter switches position vector to be applied to the motor windings
can be performed by exploiting both offline considerations and online
optimization, such as in [62].

Finding a proper tuning of the MPC for accomplishing both a re-
duced harmonic content and a low switching frequency could be a
quite troublesome aspect [44]. Thus, many FS-MPC solutions in litera-
ture implement a deadbeat version of the algorithm, [82]. Deadbeat al-
gorithms are also very popular in the area of model-based predictive
controllers [82, 94]. Parameter-free MPC algorithms massively adopt
the deadbeat approach, even if not straightforwardly indicated in lit-

69



70 current ripple minimization

erature. This allows to minimize the tuning effort. For instance, the
forgetting factor of two RLS estimators is the online design parameter
of the controller proposed in [12].

7.1 motor parameter-free currents prediction

The synchronous motor currents dynamics in (2.10) can be rewritten
as follows:

idq(k+ 1) = idq(k) + (A− I)idq(k) +Bh(k) +Budq(k) (7.1)

where I is the 2× 2 identity matrix. The equivalent grey-box model,
introduced in the previous chapter, is derived from (7.1) suitable for
online adaptation of the working point-dependent parameters. The
method adopts the following adaptive model:

idq(k+ 1) = idq(k) + ŵ(k) + Ŵ(k)udq(k)

ŵ(k) =

[
p1,d

p1,q

]
, Ŵ(k) =

[
p2,d 0

0 p2,q

]
(7.2)

where p1,d, p1,q, p2,d and p2,q are generic coefficients, not to be in-
tended equivalent to the motor parameters of (2.10). The coefficients
in (7.2) are estimated online by means of a recursive least square algo-
rithm. The standard algorithm consists of a set of equations that can
be solved recursively:

G(k) = Q(k− 1)ΦT (k)(Φ(k)Q(k− 1)ΦT (k) + fI)−1

p̂(k) = p̂(k− 1) +G(k) (y(k) −Φ(k)p̂(k− 1)) (7.3)

Q(k) =
1

f
(Q(k− 1) −G(k)Φ(k)Q(k− 1)).

The vector of measurements can be

y(k) =

[
id(k) − id(k− 1)

id(k− 1) − id(k− 2)

]
when p̂(k) =

[
p1,d

p2,d

]
(7.4)

because the identification of two coefficients, e.g. [p1,d; p2,d], requires
two independent set of measurements. A vector of measurements for
the q-axis coefficients estimation can be obtained in the same fashion
of (7.4) by replacing:

y(k) =

[
iq(k) − iq(k− 1)

iq(k− 1) − iq(k− 2)

]
when p̂(k) =

[
p1,q

p2,q

]
. (7.5)

Therefore, past currents and switches configurations are exploited to
estimate all the coefficients, without resorting to motor parameter
information. The regressors vector Φ is [1; ud] when the d-axis co-
efficients are estimated by means of (??), or [1; uq] alternatively. The
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forgetting factor f can be chosen as reported in [73]. The gain matrix
G(k) and the covariance matrix Q(k) are calculated at each time step
(k) by the recursive least square algorithm. Finally, the vector ŵ(k) is
obtained by considering the first element of vector p̂(k) for each axis,
whereas the two non-zero elements of matrix Ŵ(k) are obtained from
the second element of vector p̂(k), again one for each axis. In order
to avoid the resolution of a rank deficient least-square problem, the
recursive least square algorithms work within a variable length time
window (see [73] Sect. II.A).

The advantages that the proposed adaptive model brings along are
manifold. First of all, the model (7.2) is quite general and it can be
adopted for several synchronous motor topologies without additional
commissioning effort. In other words, either permanent magnet and
reluctance synchronous motors can be described by (7.2). The adap-
tive model modifies the coefficients values of Ŵ and ŵ in (7.2) to
track the synchronous motor model parameters variations. Thus, sta-
tor resistance and inductances variations are both taken into account.
The adaptive model can replace, for instance, the use of LUTs for the
inductive parameters, that are often included in the model-based MPC

algorithm [77].
The current prediction at future time k + 2 can be calculated as

follows

îdq(k+ 2) = idq(k+ 1) + ŵ(k) + Ŵ(k)udq(k+ 1). (7.6)

Equation (7.6) can be used to predict current values at k+ 2+n, with
n ⩾ 1, at the price of lower accuracy due to the constant value as-
sumption of the coefficients value in ŵ(k) and Ŵ(k). The adaptive
model (7.2) relies on the coefficients adaptation to account for the
innovation brought by the currents evolution.

7.2 deadbeat predictive current control design

The main goal of the chapter is to propose a deadbeat predictive cur-
rent control algorithm performing a reduced current ripple compared
to existing motor parameter-free algorithms. The control frequency
should be kept at a low value for the sake of computational burden
reduction. The switching frequency is a consequence of the adopted
switches state updating frequency, which is selected to be a fraction
of the control frequency. Therefore, two different time scales are in-
troduced to distinguish between control and switches state updating
frequency. The former is denoted by the time index kc, whereas the
latter by ks. The equivalent control period Tc is selected as an in-
teger multiple of the switches state update period Ts. An example
of the different time variables is reported in Fig. 7.1, where a ratio
Tc/Ts = N = 3 was selected for the sake of a clearer representation.
The choice of N will be discussed in Sect. 7.3.1.
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Figure 7.1: Set of αβ voltage vectors that can be synthesised using a stan-
dard FS controller and the DSVM method.

In order to minimize the tracking error, a quadratic cost function
is adopted in this paper. A detailed overview of alternative cost func-
tions formulation are reported in [44]. A prediction horizon N is used
to exploit the adaptive model (7.2)

min
u(·)

N∑
z=1

∥i∗dq − idq(ks + z)∥2

s.t. idq(ks + 1) = idq(ks) + Ŵudq(ks) + ŵ(ks)

. (7.7)

In turn, the solution of (7.7) consists of a sequence of switches con-
figurations. In the original parameter-free controller [12], the reced-
ing horizon policy was adopted. Thus, the optimization problem is
solved for every sampling period Ts. It is worth reminding that a dig-
ital delay of one control step occurs between the computation of the
optimal control action and its application. The delay is compensated
by means of an open loop prediction, as described in [74].

7.2.1 DSVM application to the motor parameter-free controller

A three-phase two level inverter can generate only eight base voltage
vectors in the αβ stator reference frame, corresponding to the eight
possible configurations of inverter switch positions. Hereinafter these
vectors are denoted as: u1 = [1 0 0]T , u2 = [1 1 0]T , u3 = [0 1 0]T , u4 =

[0 1 1]T , u5 = [0 0 1]T , u6 = [1 0 1]T , u7 = [0 0 0]T and u8 = [1 1 1]T . The
fundamental vectors are reported in Fig. 7.1 by means of black dots.
It is worth noticing that a zero voltage vector can be generated by two
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Figure 7.2: Overview of the control scheme architecture. Continuous-line
(magenta) and dashed-line (cyan) indicate the Tc and Ts sam-
ples times, respectively.

switches configurations, i.e u7 and u8: the choice between the two of
them is driven by the minimization of switching events.

According to the DSVM, the control period Tc is divided in an inte-
ger number of shorter sub-period Ts. Different base voltage vectors
can be potentially applied at each one of these Ts-long sub-periods.
From a predictive controller point of view, the MPC problem solution
is calculated at every Tc. The RLS algorithm described in Sect. 7.1 is
run with a period Ts to better track the coefficients p̂ evolution. In
other words, the time variable k from (7.1) to (7.6) should be rewrit-
ten by using the time variable ks. Therefore, the validity of equations
(7.1)-(7.6) is general for any value of N.

For the sake of simplicity, it is convenient to set the prediction
horizon length N equal to the number of sub-periods. The different
sample rates of the main blocks that compose the proposed control
scheme are sketched in Fig. 7.2. As a result, the DSVM enlarges the set
of equivalent voltages that can be synthesized within a control period
Tc. The augmented set of voltages is represented by orange squares
in Fig. 7.1, where a number of sub-periods N = 3 was chosen.

As the number of sub-periods N increases, problem (7.7) becomes
more and more computationally expensive. In fact, the number of
equivalent vectors grows in an exponential rate, and so does the num-
ber of cost function evaluations. Moreover, each equivalent voltage
vector can be obtained with different combinations of the base vec-
tors u1, . . . ,u8. The proposed deadbeat motor parameter-free predic-
tive controller adopts one of the most up-to-dated methods to solve
the control problem, i.e. the one proposed in [62]. The idea behind
this method is to separate the current tracking problem (7.7) from the
selection of the optimal combination of base voltages.

The tracking problem is solved very efficiently in terms of the
equivalent voltage vector. In fact, the cost function is first evaluated
for the six central voltages of the hexagon sectors. An example of sec-
tor and its center is reported in Fig. 7.1, in particular sector 6. Once
the voltage vector returning the lowest cost is found, all other vec-
tors that belong to the same sector are evaluated. Considering 3 sub-
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Figure 7.3: Flow chart of the DSVM parameter-free MPC (N = 3).

periods, 15 cost evaluations are computed, instead of evaluating all
the 37 equivalent vectors. This number is obtained by considering
the sectors centers, i.e. 6, the number of voltage vectors in the sector,
i.e. 8, and only one zero voltage vector. Then, the voltage vector of
the remaining set returning the lowest cost is considered and it is
synthesized in such a way that the number of inverter switches com-
mutations is minimized. The minimization of the switching events
is computationally cheap due to offline considerations (maximum 4

cases need to be considered). Extensive considerations and detailed
discussions are reported in [62]. The idea of separating the tracking
problem from the switching minimization can be extended to a dif-
ferent number of sub-periods. A flow chart of the overall deadbeat
parameter-free algorithm is reported in Fig. 7.3. The distinctive fea-
tures with respect to previous model-free schemes discussed int this
thesis are highlighted.
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Figure 7.4: Test rig layout.

Table 7: Parameters of the prototype SyR motor under test

Motor Data Symbol Values

Pole pairs p 2

Phase resistance R 4.6Ω

Direct inductance Ld 0.25H

Quadrature inductance Lq 0.08H

Nominal current IN 8.5A

Nominal d-axis current Id,N 3.6A

Nominal q-axis current Iq,N 7.7A

Nominal speed ωN 500 rpm

7.3 experimental results and discussion

The motor under test was a SyR motor, whose plate parameters are
reported in Table 7. A dSPACE MicroLabBox hardware was used for
the real-time implementation, featuring a 2GHz NXP QorlQ P5020

microprocessor. The test rig is reported in Fig. 7.4. The inverter bus
voltage was set at ubus = 300V. The SyR motor under test was dragged
by a speed-controlled PMSM load motor during all tests reported in
this Section.

Six control schemes were compared, three FS-MPC algorithms and
three DSVM based predictive control algorithms. Model-based control
schemes, i.e. the ones that adopt the parametric model of the PMSM

(2.10), are denoted with the acronym Model-Based (MB). The sam-
pling frequency of the finite-set algorithms was fs = 10 kHz and
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Figure 7.5: Switching frequency and current THD as function of the number
of sub-periods of the DSVM.

it coincided with the control frequency. The DSVM schemes shared
the same control frequency of the FS ones. However, they differed in
terms of sampling frequency, which is three times higher (N = 3),
if not specified. It is worth recalling that the oversampling was ex-
ploited by the RLS estimators to update the parameter-free adaptive
model. No tuning parameters are requested in (7.7) for the predic-
tive controllers. A forgetting factor f = 0.98 was selected in (6.11),
following the design guidelines discussed in [73]. In conclusion, the
only remaining parameter that has to be selected is the number of
sub-periods, as discussed in Sect. 7.3.1.

On the one hand, two model-based MPC scheme were implemented.
One exploited the nominal motor parameters for the current predic-
tion, whereas the other a more accurate model. The model was de-
signed to take into account the effects of the iron-saturation. More-
over, a third FS controller was implemented, i.e. the deadbeat version
of the parameter-free method proposed in [73]. On the other hand,
two model-based MPC schemes adopting a DSVM architecture were im-
plemented for the sake of comparison. As for the FS case, one scheme
implemented the nominal motor model, whereas the other one the
more accurate model. Finally, the novel DSVM controller based on the
parameter-free algorithm proposed in this paper was tested and com-
pared to the previous alternatives.

All the quantities reported in the results are normalized with re-
spect to their nominal value, reported in Table 7.

7.3.1 Selection of the number of sub-periods

The only parameter that needs to be selected when implementing the
parameter-free DSVM algorithm is the number of sub-periods within
one control period. This parameter was selected by means of a com-
missioning test of the SyR motor at its nominal operating point (Ta-
ble 7). In particular, the SyR motor drive was in current control mode,
while the opposite load motor was keeping the speed constant at the
rated value. Four different number of sub-periods were analyzed.

During the commissioning, the average switching frequency of the
inverter and the Total Harmonic Distortion (THD) of the phase cur-
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rents were monitored. On the one hand, the average switching fre-
quency reflects the losses due to the switching. The average switch-
ing frequency was measured starting from the switches states gener-
ated by the controller implemented in the dSPACE hardware. On the
other hand, currents THD is selected as performance index to prove
and quantify the current ripple reduction. Indeed, THD is the most
adopted index by practitioners and the most widespread in literature.
A lower THD results in reduced joule losses in the stator windings and
a lower torque ripple. Phase currents THD was measured by means of
current probes and an oscilloscope (Fig. 7.4).All the results are re-
ported in Fig. 7.5.

The two considered performance indexes conflicts when the num-
ber of sub-periods increases. In particular, the switching frequency
grows with the number of sub-periods, while the current THD has
an opposite trend. After the commissioning test, the design of the
controller can be carried out harmonizing it with the requirements
of the application. It is selected a number of sub-periods equal to
three, which i the best trade-off to minimize the current THD. Indeed,
choosing four sub-periods allows a small reduction of the ripple at a
price of a relevant increase of the switching. It is worth highlighting
that the model-free algorithm is capable of self-adapting the coeffi-
cients p̂ for any number of sub-periods. Therefore, the number of
sub-periods can be varied even during online operations thanks to
the adaptability characteristics of the proposed model-free solution,
provided that sufficient computational power is available. All the re-
sults reported hereinafter regarding DSVM based algorithms adopts
three sub-periods, which results in a sampling frequency of 30 kHz.

From practitioners point of view, it is of primary interest to know
whether the computational burden of the designed deadbeat con-
troller is higher than the one of a benchmark FS controller with re-
ceding horizon running at 30 kHz. On the one hand, a FS controller
would solve N = 3 times the MPC optimization problem by evaluating
the 8 base voltages reported in Fig. 7.1. It results cheaper to evalu-
ate 7 base voltages, thus considering the two zero vectors u7 and u8

together. Then, if a zero vector is optimal, the one that involves the
minimum switching effort is applied. In conclusion, the cost func-
tion is evaluated 21 times every Tc. On the other hand, the proposed
deadbeat parameter-free method requires 15 cost evaluations every
Tc, as already discussed in Sect. 7.2.1. Thus, a lower number of cost
evaluations is achieved with respect to a conventional FS controller.
Nevertheless, the computation time required to identify the optimal
switching pattern increases by the number of sub-periods.

In general, it is difficult to state which solution is computation-
ally cheaper, since it depends on the adopted hardware and on the
code generation procedure, too. Therefore, the average turn-around-
time of the controller for several number of sub-periods is reported
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Table 8: Average turn-around-time of the considered controllers for different
number of sub-periods N.

N MB MB+LUT parameters parameter-free

1 10µs 13.6µs 13.7µs

2 10.6µs 14.3µs 14.3µs

3 12µs 15.5µs 15.5µs

4 12.6µs 16.4µs 16.5µs

in Table 8, as comprehensive computational burden index. This is a
common choice for evaluating the computational complexity of a pre-
dictive control algorithm, such as in [1, 91]. It is worth noting that
the proposed parameter-free scheme guarantees a computation time
similar to the one of a model-based MPC which adopts an accurate
motor model.

7.3.2 Analysis of the phase current distortion
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Figure 7.6: Comparison of the current THD of the different controllers for
different operating speeds.

The main motivation for combining the DSVM method with the
parameter-free scheme is to reduce the ripple in the motor currents.
Therefore, several tests were performed in order to analyze the ripple
in the entire operating speed range of the SyR motor, considering all
the six predictive controllers implemented in the paper. The results
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(c) FS: 20% of the nominal speed.
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Figure 7.7: Motor phase current at steady state for two operating speed and
considering different control strategies.

are reported in Fig. 7.6, categorized according to the type of modula-
tion technique used (FS or DSVM).

As a first consideration, the current THD obtained using the DSVM

technique (Fig. 7.6a) is always lower than the one obtained with the FS

method (Fig. 7.6b), regardless of the working speed and the predictive
control algorithm. Indeed, this is a well-known result in literature [82].
Moreover, the model-based algorithms that exploit a more accurate
model outperform the ones that implement just the nominal model,
regardless of the adopted modulation technique.
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Figure 7.8: Map of the analyzed points. Squares denote the points sug-
gested by the EN 50598-2 standard. The considered points are
red-colored.

The current THD analysis for both model-based and parameter-free
algorithms was performed. The parameter-free schemes achieve a cur-
rent THD which is equal or lower than their model-based counterparts
within the whole considered speed range. This may be justified by
the fact that even the SyR motor model that accounts for the iron
saturation does not fully describe the dynamics of the currents. It is
worth highlighting, indeed, that the proposed accurate model could
neglect some non-linear phenomena. The authors are aware that these
phenomena may be included in the motor model. However, an even
more accurate model requires additional commissioning effort. More-
over, the current predictions evaluations become more computation-
ally expensive. Therefore, the simple parameter-free adaptive model
appears to be a reasonable compromise between having good perfor-
mances in terms of currents THD and maintaining a relatively cheap
prediction model.

The phase currents are reported for two particular operating speed
in Fig. 7.7, for sake of completeness. The parameter-free schemes are
compared to the model-based algorithms that use the more accurate
motor model. The phase shift between the current measurements is
introduced on purpose for the sake of clarity. The current ripple re-
duction obtained thanks to the DSVM methods Fig. 7.7a-7.7b with re-
spect to the FS ones Fig. 7.7c-7.7d is evident. The improvement in the
waveform is achieved especially in the peaks of the sinusoids, where
low current derivatives are required. In fact, the DSVM unlocks the
possibility of synthesizing voltage vectors of lower magnitude (see
Fig. 7.1). Thus, the current variations become smoother.

In order to provide quantitative results, some relevant motor oper-
ating points are considered, as shown by the grid reported in Fig. 7.8.
The selected points are similar to the ones suggested by the EN50598-
2 standard, which regards the efficiency evaluation of the drive sys-
tem. The obtained THD results are reported in Table 9 for each point
of the grid. The proposed parameter-free method exhibits promising
results with respect to the model-based MPC. The percentage improve-
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Table 9: THD (%) comparison between the three controllers, considering the
red points of Fig. 7.8.

Point parameter-free MB η MB+LUT η

P1 5.7 8.2 -31 6.9 -18.1

P2 3.6 5.8 -37 3.9 -5.7

P3 3.0 4.9 -39 3.2 -5.9

P4 6.0 8.7 -31 6.9 -13.4

P5 3.8 6.0 -37 3.8 -0.5

P6 2.7 4.6 -42 2.9 -7.0

P7 6.9 8.9 -22 7.2 -3.8

P8 3.8 6.1 -37 4.1 -5.7

P9 2.6 4.4 -41 2.6 -1.9

ments of the current THD achieved by the proposed technique can be
calculated as

η =

(
1−

THDMB − THDMF

THDMB

)
· 100 (7.8)

The results in terms of THD differences are reported in Table 9. From
the efficiency point of view, the reduction of current THD is propor-
tional to the reduction of Joule losses cause by the additional har-
monics components of the motor currents. The results of Table 9 con-
firms that the proposed model-free algorithm consists a remarkable
improvement of Joule losses reduction compared to a model-based
solution with constant parameters.

7.3.3 Analysis of the switching frequency

The DSVM technique permits a reduction of the current THD at a price
of an increase of the average inverter switching frequency. For this
reason, the current THD analysis performed in the section above is
supported by an analysis of the average inverter switching frequency
fsw, reported in Fig. 7.9.

All the DSVM based control algorithms (Fig. 7.9a) produce a switch-
ing frequency on average higher with respect to the FS ones (Fig. 7.9b).
This is, in general, a good initial results. The implemented DSVM algo-
rithms, characterised by 3 sub-periods, allow a maximum switching
frequency three times higher than the FS ones. Thus, the frequency is
increased less than linearly. Moreover, it is noticed that the switching
frequency of the FS algorithms always decreases when increasing op-
erating speeds. This is mainly due to the fact that the motional cross
coupling term in (2.10) is proportional to the speed. Thus, in steady
state condition, the current derivatives are lower at high speed, when
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Table 10: Switching frequency (kHz) comparison between the three con-
trollers, considering the red points of Fig. 7.8.

Point parameter-free MB η MB+LUT η

P1 6 6.7 -11 6.1 -1.6

P2 2.7 7.4 -64 4.0 -34

P3 3.5 7.1 -51 4.9 -28.4

P4 4.7 7.2 -35 5.8 -19.2

P5 4.6 7.3 -38 5.1 -11.4

P6 4.4 6.8 -35 5.0 -12.7

P7 6.2 7.1 -13 6.2 -0.2

P8 5.2 5.9 -12 5.5 -5.1

P9 5.8 6.1 -5 5.8 -0.2

the cross coupling counterbalances the input voltage term, reducing
the overall available voltage.

As for the THD analysis, the model-based controller that takes into
account the saturation in the iron results as the best between the
model-based solutions. However, the parameter-free paradigm grants
a slightly lower switching effort than the model-based one. The most
relevant improvements are achieved by the DSVM parameter-free al-
gorithm at low speed (Fig. 7.9a). In conclusion, the currents THD and
switching frequency analysis of the controllers highlights some bene-
ficial effects of the DSVM parameter-free approach. In fact, it permits
a significant reduction of the phase current harmonic content and, at
the same time, the lower increase of switching frequency between the
DSVM based controllers.

Quantitative results are reported in Table 10. They were obtained
by considering the working points defined in Fig. 7.8. The switch-
ing frequency plays an important role in the drive efficiency, which
may depend on the size of the drive and on the technology of the
inverter switches. Anyway, switching losses are always proportional
to the average switching frequency of the converter. The results re-
ported in Table 10 suggest that the proposed solution allows to obtain
lower switching frequencies than the model-based solution with con-
stant parameters. Actually, the switching frequencies of the proposed
model-free solution are very similar to the ones of the model-based
algorithm with LUT parameters, i.e. with the correct model for each
working point. Lower losses in the converter improve both the design
of the cooling system and the life cycles of the switches.



7.3 experimental results and discussion 83

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Speed (p.u.)

0

5

10

f sw
 (

k
H

z)

MB:nominal model

MB: LUT parameters

parameter-free

(a) DSVM controllers (N = 3).

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Speed (p.u.)

0

1

2

3

4

5

f sw
 (

k
H

z)

MB: nominal model

MB: LUT parameters

parameter-free

(b) FS controllers.

Figure 7.9: Comparison of the switching frequency among the different con-
trollers for different operating speed.

7.3.4 Step response analysis

The currents reference step responses are considered here to analyze
the dynamic performances of the proposed DSVM parameter-free con-
troller. All the tests are performed changing the current references
step-wise from zero to the nominal point Fig. 7.10-7.12. The dynam-
ics are repeated for two operating speed, namely at standstill and at
nominal speed, covering the entire working range of the motor. The
currents shape characteristics of Fig. 7.10 and 7.12 resemble the mag-
netic curve relationships. As a distinctive feature of every finite-set
algorithm, the transient responses are as fast as possible subject to
the available voltage.

From the rise time and overshoot point of view, all the algorithms
assure very good performances and are very similar between all the
schemes. This is, in fact, a distinguished feature of the MPC paradigm.
It is worth noticing that the parameter-free exhibits a similar dynamic
behavior of a model-based scheme, without any a-priori information
of the motor parameter. However, the model-based controllers that
adopt an accurate motor model tend to behave slightly better. In case
of the parameter-free algorithms, in fact, the model learning rate is
determined by the recursive least square estimator dynamics. The
dynamics of the estimated coefficients during the step responses in
Fig. 7.10 are reported in Fig. 7.11. The currents responses are faster
than the estimators ones. Thus, the parameter-free controller is adapt-
ing the model during the transients, while the accurate model-based
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(b) q-axis current: standstill.
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(c) d-axis current: nominal speed.
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(d) q-axis current: nominal speed.

Figure 7.10: Comparison of the step responses among the DSVM model-
based and parameter-free controllers at different speed.

controller exploits previously measured motor-parameters. This fact
justifies the minimal reduction of performances of the parameter-
free controller in terms of step response when compared to accurate
model-based schemes. Nevertheless, the steady-state current ripple
improvement achieved with the parameter-free approach counterbal-
ance the limited reduction of dynamic performances. The beneficial
effects of the adapted coefficients on the current ripple is thus a reduc-
tion of the THD as discussed in Sect. 7.3.2, which are comparable to
a model-based predictive current control algorithm with LUTs based
parameters.

7.4 solvers for the mpc problem

The MPC problem presented in (7.7), in the general case, may includes
a penalty on the input:

min
u(·)

N∑
z=1

∣∣|i∗dq − idq(ks + z)|
∣∣2 + λU

∣∣|∆udq(ks + z− 1)|
∣∣2

s.t. ∆udq(ks + z− 1) = udq(ks + z− 1) −udq(ks + z− 2)

(7.9)

which results in a penalization of the switching frequency of a fac-
tor λU. In fact, each voltage vector corresponds to a specific power
switches configuration (Table 1).
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Figure 7.11: Estimated coefficients dynamics vs current dynamic.

This problem, as already stated, is an NP-hard one, i. e. it is compu-
tationally expensive. A bulky and trivial solution to solve (7.9) is to
use the enumeration method, which turns out to be too time demand-
ing for the real-time constraints of the considered application. In fact,
the cost function is evaluated for all the possible switches configura-
tions to get the one that give the lowest cost. In details, the problem
scales exponentially with the value of N. One of the eight fundamen-
tal voltages can be applied every Ts (see Fig. 7.1). Since a prediction
horizon equal to 3 is used in the implemented controller, the number
candidates is 83 = 512.

Many general-purpose efficient algorithms are available to reduce
the computational burden of the MPC scheme, see [74]. In this paper,
the implementation of two solvers are analyzed, i.e. the branch and
bound and the sphere decoding methods.

7.4.1 The "branch and bound" solver

The branch and bound technique is a popular solver for integer opti-
mization problems. Let a candidate be a combination of voltage vectors
to be applied during one Tc. Let ub and lb be the upper and lower
bounds of an optimal cost J(uopt), respectively. The optimal solution
is the one having the lowest cost among all possible solutions. The
branch and bound technique allows to minimize the number of candi-
date solutions to be evaluated compared to the enumeration method.
Upper bounds of the cost function are obtained by evaluating the
cost expression for one of the voltage candidates in the set Fig. 7.1.
Typically, heuristics are used to decide which is the first candidate to
be evaluated, as it will be discussed in Sect. 7.4.3. The result of (7.9)
evaluated for the chosen first candidate sets the first value of ub.

Bearing in mind that in (7.9) the cost function is quadratic, a posi-
tive contribution to the cost value is calculated for each element of the
candidate under consideration. Let’s consider, for instance, a solution
that contains u1 as first vector (see Fig. 7.13, i.e. u1 is considered for
the first Ts out of three. A lower bound lb1 is calculated for such volt-
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(b) q-axis current: standstill.

0 0.01 0.02 0.03

time (s)

0

0.5

1

d
-c

u
rr

en
t 

(p
.u

.)

MB: nominal model

MB: LUT parameters

parameter free

(c) d-axis current: nominal speed.

0 0.01 0.02 0.03

time (s)

0

0.5

1

q
-c

u
rr

en
t 

(p
.u

.)

(d) q-axis current: nominal speed.

Figure 7.12: Comparison of the step responses among the FS model-based
and parameter-free controllers at different speed.

age vector. If lb1 > ub, all the leaves child of u1 can be removed from
further considerations. This operation is called pruning. On the other
hand, if the cost value obtained by considering one candidate, i.e. a
combination of three voltage vector for the entire Tc, is lower than
the ub, the upper bound is updated by the cost value of the same
candidate. Therefore, once all the possible candidates have been eval-
uated, the optimal solution is found to be the one returning the lowest
cost function. The pruning actions allow to reduce considerably the
amount of calculations to be carried out.

7.4.2 The "sphere decoding" solver

The sphere decoding solver works in a slightly different way. First,
the solution of problem (7.9) is computed removing the integer con-
straint that the solution must be one of the eight fundamental voltage
vectors. Since no other constraints are considered, the solutions is un-
constrained (3.10), which is much cheaper to compute. It is reminded
that it is simply uopt

unc = H−1d where H and d are the hessian matrix
and the linear term of the problem, respectively. More details about
how the matrices are computed can be found in [74]. Second, the
Cholesky decomposition of H is computed, i.e. H = VTV, where V

is a lower triangular matrix. The result allows to define ū = Vuopt
unc.
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lb1 > ub

lb7 < ub

J

lb

ub

lb8 > ub

lb1 < ub

u7

u1 u8lb1 > ub lb8 < ub

u1 u8

Ts

(ks + 1)Ts

(ks + 2)Ts

Figure 7.13: Branch and bound method principle.

The key idea behind the sphere decoding solver is that, given the
uopt
unc, the integer solution of (7.9) uopt

int is the one closest to ū, in
terms of the euclidean distance ρ = ||ū − Vuopt

int ||2. This distance,
named radius, is used to run a branch and bound search, which works
component-wise on the distance between vector ū and uopt

int . The ex-
tended description of the algorithm can be found in [74].

The main difference from the branch and bound solver is the prun-
ing technique in the search. One can consider again Fig. 7.13, and
the voltage u1 in the first layer of branching. Its pruning implies that
64 candidate solutions are not evaluated as candidate optimum. On
the other hand, let’s consider the case when ρ1 = ||ū(1) −Vu(1)||2 >

ρbest,u(1) = 0, where ρbest is the radius of the integer candidate
solution closer to ū available so far in the search process. Since u1 =

{0, 1}, the pruning of the candidate solutions starting with u(1) = 0

exclude half of set of candidates.

7.4.3 Heuristic methods

Even if the branch and bound or the sphere decoding solver are im-
plemented, a consistent number of cost evaluations could be required
to find the optimum. Also, the branch and bound technique is effec-
tive provided that an initial ub value is good enough.

Heuristic techniques are considered in this paper, which still iden-
tify the optimum of problem 7.9. It is noticed that starting with a
tight upper bound in the branch and bound or with small radius
in the sphere decoding algorithm speed-up the pruning process, i.e.
less candidate solutions are evaluated before finding the optimum. In
other words, it is convenient to initialize the search process with a
good candidate. In this work three heuristics are studied, as initial
guess of the optimum:
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Table 11: Parameters of the prototype IPM motor under test

Motor Data Symbol Values

Pole pairs p 4

Phase resistance R 1.5Ω

d-axis inductance (unsaturated) Ld 0.036H

q-axis inductance (unsaturated) Lq 0.084H

Permanent magnet flux-linkage Λpm 0.18V s

Nominal current IN 6.6A

Nominal speed ΩN 650 rpm

H1 the two sequences of three null voltage vectors, i.e. (u7,u7,u7)

and (u0,u0,u0);

H2 the solution computed at previous control period, which is the
most wide-spread one in case of receding horizon controllers;

H3 the projected unconstrained solution of the MPC problem, i.e. all
the switches positions are rounded to 0 or 1.

7.4.4 Solver performances

The solver performances are here analyzed, considering the proto-
type IPM motor, whose plate parameters are reported in Table 11. The
sampling frequency was set at fs = 30 kHz, whereas the inverter bus
voltage was ubus = 300V. For the sake of simplicity, the iron satura-
tion is neglected in the IPM motor model used in the simulations. The
operating speed in the simulation results is normalised with respect
to the nominal value, reported in Table 11.

Branch and bound and sphere decoding solvers applied to the proposed motor
parameter-free controller

The two solvers are compared on the basis of the average number
of candidate solutions evaluated before identifying the optimum of
the MPC problem (7.9). Results are reported in Fig. 7.15 and Fig. 7.16,
considering the IPM motor working at nominal current rate, but at dif-
ferent operating speed and with different weights value of the switch-
ing effort λU. A decrease of evaluated candidates with respect to the
enumeration method is obtained by both algorithms, bearing in mind
that 512 candidates should be tested with the enumeration methods.
The sphere decoding results to be more efficient than the branch and
bound solver. This is due to the fact that the sphere decoding method
is more efficient in the pruning process.
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(a) Zero vectors H1 (b) Old solution H2

(c) Unconstrained solution H3 (d) All heuristics H1+H2+H3

Figure 7.14: Number of candidate solutions evaluated at nominal current:
sphere decoding solver, MB controller.

The switching effort weight λU is of paramount importance in the
problem solution. When the weight value is too low, many candi-
dates need to be explored, as inferable from Fig. 7.1. If the switching
effort is not relevant, the equivalent voltages can be synthesised by
many different combinations of the eight base voltages. The current
reference tracking error, in fact, would dominate in the cost value cal-
culation. It is worth mentioning that, FS or DSVM schemes are usually
attractive for applications where the switching effort is relevant for
the converter, i.e. high λU values are expected. Thus, both the solvers,
in particular the sphere decoding, appear to be effective for these ap-
plications.

Effectiveness of the heuristics

The first heuristic to be considered was the application of the null volt-
age vectors, i.e. u7 = [1, 1, 1] and u0 = [0, 0, 0]. This heuristic method
resulted to be the worst one in terms of average evaluated candidates,
see Fig. 7.16a and Fig. 7.15a. When the speed increases, the number
of candidates increases since a higher equivalent voltage vector has
to be synthesised.

The solution of the MPC problem obtained for the previous control
period is, at steady state, a quite effective heuristic. The heuristic H2

returns a number of candidate evaluation that is not as good as ex-
pected if compared to the heuristic H1. The heuristic H1 is effective at
low speed with respect to heuristic H2, see for instance Fig. 7.15a and
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(a) Zero vectors H1 (b) Old solution H2

(c) Unconstrained solution H3 (d) All heuristics H1+H2+H3

Figure 7.15: Number of candidate solutions evaluated at nominal current
operation: branch and bound solver, RLS controller.

Fig. 7.15b. The reason of the poor performances of heuristic H2 was
found in the non-use of the receding horizon policy. On the contrary,
heuristic H2 would be often the best in case the receding horizon
is applied. This is due to the fact that there is a partial overlapping
between the prediction horizons of two consecutive control periods.
In other words, the part of the old solution related to the overlap-
ping time window represents a good guess for the next MPC problem,
provided that the prediction model is accurate. Anyway, a general
drawback of this heuristic was found in dynamic conditions.

The rounding of the unconstrained solution to the closest feasi-
ble switch position is another interesting alternative. The heuristic
H3 is quite convenient to implement for the sphere decoding solver,
since the unconstrained solution is strictly required by the algorithm.
Rounding the switching positions to zero or one is quite accurate
approximation of the solution, as proved by Fig. 7.16c and Fig. 7.15c.
This heuristic method appears to be the most effective one, reminding
that the receding horizon policy is not used.

For sake of completeness, the effect of all the heuristic methods to
calculate the initial value of the cost for the optimum solution are
reported in Fig. 7.16d and Fig. 7.15d. The obtained results benefit, as
expected, of the effects of all the described methods.
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(a) Zero vectors H1 (b) Old solution H2

(c) Unconstrained solution H3 (d) All heuristics H1+H2+H3

Figure 7.16: Number of candidate solutions evaluated at nominal current
operation: sphere decoding solver, RLS controller.

(a) Current TDD: model-based (b) Current TDD: parameter-free

(c) ⟨fsw⟩: model-based (d) ⟨fsw⟩: parameter-free

Figure 7.17: Comparison of the model-based and the parameter-free FS pre-
dictive controllers: ideal motor model.

Sphere decoding performances for the model-based and the motor parameter-
free controllers

The same simulation tests of Sect. 7.4.4 were performed by means of
a conventional model-based predictive controller, i.e. (2.23). The com-
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parison of Fig. 7.16 and Fig. 7.14 confirms that the RLS adaptive model
is as accurate as the model-based one. This fact is further confirmed
by Fig. 7.17, showing the controllers performances in terms of aver-
age switching frequency (⟨fsw⟩) and current Total Demand Distor-
tion (TDD). These are the two performance indices of greatest interest
from the industrial applications point of view [44]. Both the frequency
and the current distortion are almost the same for different operat-
ing speeds and tuning. In simulations, the parameter-free controller
could reach, at maximum, the same performances of the model-based
one. On the other hand, for the experiments, the parameter-free algo-
rithm is expected to be even more accurate. The RLS estimators cap-
ture also inverter non-linarities and motor time varying parameters,
that are neglected in the state space model adopted for the model-
based prediction (2.23).



Part III

D ATA - D R I V E N C O N T R O L

Data-driven control techniques have become increasingly
popular in recent years in the control community, due to
the availability of massive amounts of data and several
advances in data science. These control design methods
bypass the system identification step and directly exploit
collected data to construct the controller. Two of the most
promising data-driven algorithms are presented, namely
the Subspace Predictive Control algorithm and the Data-
Enabled Predictive Control algorithm. These methods are
real-time implemented for the current control of many
synchronous motor drives. The same mathematical frame-
work is exploited also for the design of data-driven es-
timators. The estimation of a load torque disturbance is
presented, as an applicative example.
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The interest in data analysis is constantly growing, supported by an
unprecedented availability of computational power and memory stor-
age, as well as advances in optimization, statistics and machine learn-
ing. This leads to an increasing attention towards data-enabled meth-
ods in all branches of science and engineering. This revolution has
a significant impact on the control engineering too. Data-driven con-
trol design consists in synthesizing a controller using the data col-
lected on the real system, without defining and identifying a para-
metric model for the plant [37]. This is in contrast with model-based
approaches, which rely on plant modeling and identification proce-
dures. The epitome of this model-based paradigm is arguably the
MPC, which has been applied to power electronics control tasks for
two decades, reaching an industrial and commercial level [77].

CS MPC methods for PMSM current control, which is the focus of
this chapter, rely on a state-space model of the motor to build the
predictive controller [9, 25, 34]. The parameters of this model can
be obtained by performing a careful experimental characterization.
These procedures often include many different tests and they require
specific measuring devices and proper test-bed setups. Then, the re-
sulting accurate model can be exploited in real-time by means of
look-up-tables. Alternatively, parameters could be estimated via of-
fline [81] or online [6] procedures. Self-commissioning and auto tun-
ing techniques are also consolidated strategies. In [59], an exhaustive
survey of research and state-of-art parameter identification and self-
commissioning methods for AC motor drives is discussed. In partic-
ular, these approaches are of interest when high performance control
is required with sensorless applications. Finally, many methods have
been proposed in literature to improve the robustness against param-
eter variations [21, 52, 80, 86, 92], although most of these strategies
are implemented for FS-MPCs.

The key idea behind data-driven predictive controllers is to avoid
the model identification stage entirely, and design the controller di-
rectly from collected I/O data, e.g. voltage/current samples. This ap-
proach overcomes the challenges of model selection and identifica-
tion, resulting of particular interest for many industrial applications
[87]. However, there are just a few examples of data-driven control
applications for electric motor drives. In [10], an observer is coupled
to an MPC to update the PMSM model, improving its reliability. How-
ever, this approach still relies on a parametric model. Many effec-
tive techniques have been presented which go toward the data-driven

95
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paradigm, named model-free [2, 73, 93] or parameter-free [53] algo-
rithms. In particular, [93] and [73] propose to online update a non-
parametric model, but they rely on the hypothesis that there are no
data available for guessing an initial controller, which might be too
restrictive.

A transition from model-based to data-driven control design is de-
scribed, considering as application the current control of PMSMs. This
control task serves as a well-understood benchmark for new methods,
despite the fact that other traditional non-data-driven methods yield
satisfactory results for this application. Optimization-based control
schemes are considered, i.e. MPC-type solutions. First a state-of-the-
art CS-MPC si presented, whose model is obtained through a previ-
ous motor characterization. Then, a further step towards data-driven
control designs is performed, exploiting just voltage and current mea-
surements collected from the motor. The PEM technique coupled with
MPC is presented, which is a consolidate solution for identifying a
parametric model from data [42]. A further step is represented by the
SPC [26], where the collected data are processed offline by means of a
least-square program, and the resulting Auto Regressive with eXoge-
nous inputs (ARX) predictor is de-noised by singular value thresol-
ding. This pseudo-identification procedure is used to build a linear
predictor for the currents dynamics. Finally, a completely data-driven
control algorithm is presented, named the DeePC [18, 19], where the
system identification process is totally avoided and the collected data
are directly used in the controller. This technique has already found
application in power electronics [11, 39, 40].

The novel contributions of this work are manifold:

• the perspective of data-driven control design is illustrated, us-
ing a predictive control framework;

• the practical real-time implementation of data-driven methods
is demonstrated, which is not trivial since data-driven methods
are expensive in terms of computation and samples;

• it is shown that data-driven paradigm can be a systematic de-
sign tool for PMSM current controllers;

• the computational aspects of the presented control strategies are
compared;

• as a technical contribution, the problem of the offset-free track-
ing for the SPC and DeePC methods is addressed;

• guidelines are provided for the choice of the control parameters
and excitation input signals for this application.

A relevant advantage of data-driven strategies is that they can be
easily implemented as automatic procedures that excite the system
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with predefined input signals, perform offline calculations, and de-
liver a ready-to-use control law. No special skills or specialized com-
missioning personnel are required to set up the procedure. This ap-
proach could be interesting for some industrial challenges. For exam-
ple, in compressor for refrigeration equipment or submersible pumps,
offline characterizations cannot be performed when PMSMs are inac-
cessible. Another case of interest is multi-purpose drives, where al-
gorithms suitable for different PMSM topologies are needed. In addi-
tion, PMSM and inverter manufacturers are often different companies
and they were never meant to be integrated in the same application.
Moreover, if the motor drive needs to be manually re-tuned during
its life-cycle, data-driven procedures represent a simple and reliable
method to adapt the initial design.

8.1 model-based continuous-set mpc of pmsm currents

According to the CS-MPC paradigm (Section 3.1), the future control
input sequence udq = [udq(k),udq(k+ 1), . . .udq(k+N− 1)]T is op-
timized in order to steer the predicted future currents idq = [idq(k+

1), idq(k+ 2), . . . idq(k+N)]T to a desired reference i∗dq = [i∗dq(k+

1), i∗dq(k+ 2), . . . i∗dq(k+N)]T . Only the first optimal input of the se-
quence udq(k) is applied to the plant (receding horizon principle).
Thus, the following optimization problem is solved at each control
period:

min
udq,idq

(
∥idq − i∗dq∥2Q + ∥udq∥2R

)
subject to idq(k+ 1) = Aidq(k) +Budq(k),

udq(k) ∈ U, k = 0, . . . ,N− 1

(8.1)

where, accordingly to the notation presented in Section 3, N is the
prediction horizon, Q ⩾ 0 and R > 0 are two weighting matrices,
A and B represent the state space model used to predict the future
currents and U is the input feasible set. If the the set U is neglected,
the problem is referred to unconstrained, and it has a closed-from so-
lution of reduced computational burden. On the opposite, if the con-
straints are included, the optimization problem becomes a QP which
requires an online solver like qpOASES, as in [75], but it is still easily
solvable in real-time. The weighting matrices tuning could be chal-
lenging. In case of LTI plants, the tuning can be performed offline
granting asymptotic stability. In real life, a semi-manual tuning is of-
ten preferred based on experiments.

In the context of PMSM currents control, future currents are esti-
mated by exploiting the parametric model, based on the PMSM voltage
balance equations, represented in the dq reference frame, presented
in (2.27).
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Table 12: Overview of matrices dimensions for the considered PMSM cur-
rent control application.

Matrix H (uc) H (yc) UP YP UF YF Pw Pu M Φ A B

rows 2(Tini +N) 2(Tini +N) 2Tini 2Tini 2N 2N 2N 2N L L 2 2

columns L L L L L L 4Tini 2Tini 4Tini 2N 2 2

In the considered application, the selected model neglects the cross-
saturation phenomena, as well as iron-saturation (2.20) and back-EMF

harmonics effects. Thus, the model can result as oversimplified for
some PMSM topologies, such as pure reluctance motors. However,
many CS-MPCs proposed in literature work with even more simpli-
fied models, obtaining indeed good results. In particular, the depen-
dence of matrix A on the operating speed ωe is neglected, preferring
a constant A matrix for the real-time implementation [17]. It is worth
noticing that the data-driven paradigm overcomes the issues coming
from assumptions on the model structure.

An integral action is included in the MPC formulation by means of
the velocity form of the MPC problem (8.1) [63], in order to achieve an
unbiased current reference tracking. The discussion about the offset-
free data-driven control is given in Sec. 8.2.3.

8.2 towards data-driven control of pmsm drives

Concerning the currents control of PMSMs, a data-driven controller is
built from the input dq voltages udq and the measurements of the
resulting dq currents idq. Then, a current reference tracking problem
is stated. In contrast to the parametric model (2.27) used in the MPC

solution, a non-parametric model is adopted, consisting of raw mea-
surements arranged in a matrix representation. The construction of
this model happens offline, therefore it is not an adaptive controller.
A data-driven controller design procedure consists of two steps:

• A data collection step, followed by offline rearrangement of the
voltages/currents samples into proper matrices;

• An online program, when the tracking problem is solved, with
the voltages/currents samples matrices acting as a constraint.
In this online step, the controller has access to the latest I/O

(voltage/current) samples and optimizes the predictions over
an horizon of N steps.

8.2.1 Data Collection and Offline Computations

All the considered data-driven designs begin from the collection of
a T -long sequence of I/O voltages uc and currents yc measurements
(Figure 8.1a). The sequence uc = [uc

1;uc
2; ...;uc

T ] ∈ R2T contains the
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Figure 8.1: Overview of the data collection step and the online program.

inverter reference voltages and it fulfills the persistency of excitation
requirement [85, Corollary 2], that is the Hankel matrix of inputs in
(8.3) needs to have full raw rank. The selection of the input signal is
further discussed in Sec. 8.4.1. The resulting output sequence contains
the dq currents yc = [yc

1;yc
2; . . . ;yc

T] ∈ R2T .

PEM-MPC

In the PEM-MPC method, the coefficients of the state-space matrices A
and B used in (2.28) are inferred from data by means of an ordinary
least-square problem1 that involves the sequence uc and yc:

min
A,B

T−1∑
k=1

∥xc(k+ 1) − Axc(k) − Buc(k)∥2 (8.2)

The main difference between the resulting model and the parametric
voltage balance equation (2.27) is that the latter inherently requires
the ad-hoc identification procedures to identify all the electric param-
eters (Rs, Ld, Lq, Λpm). The PEM method, instead, does not enforce
any parametrization of the model and the resulting matrices can, in
general, have a structure that is different from the one of (2.10).

1 It is referred to [39] for a discussion on how to solve this problem numerically.
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Figure 8.2: Hankel matrix construction.

SPC

In the SPC algorithm, the state-space model (2.23) is replaced by a
different algebraic constraint that relates the future currents trajectory
with the past Tini voltages/currents samples and the future N input
voltage samples.

To obtain this model, two Hankel matrices H (uc) and H (yc) are
built using the collected sequences uc and yc (Figure 8.2):

H (uc) :=


u1 u2 · · · uT−Tini−N+1

u2 u3 · · · uT−Tini−N+2

...
...

...

uTini+N uTini+N+1 · · · uT

 . (8.3)

The output matrix H (yc) is built in an analogous way from the sam-
ples yc. Then, the matrices are partitioned in Past and Future sub-
blocks:[

UP

UF

]
:= H (uc),

[
YP

YF

]
:= H (yc), (8.4)

where UP contains the first Tini block rows of H (uc), i.e. 2Tini rows,
and UF the remaining N block rows. The block Hankel matrices YP

and YF are similarly obtained. The dimensions of all the presented
matrices are summarized in Table 12 for convenience. The I/O block
Hankel matrices UP, UF, YP and YF are used in the SPC design to
construct an ARX model as predictor [38]:

y = Pw

(
uini

yini

)
+ Puu, (8.5)
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where uini,yini ∈ R2Tini are the past dq voltage and current samples,
respectively, u,y ∈ R2N are the future ones. The matrices Pw and Pu

are computed solving the least-square problem

min
Pw,Pu

∥∥∥∥∥∥∥YF −
[

Pw | Pu

] UP

YP

UF


∥∥∥∥∥∥∥
2

, (8.6)

where Pw multiplies the two blocks

[
UP

YP

]
and Pu multiplies the block

UF. The term multiplied by Pw is used to set the initial condition of
the prediction. A Singular Value Decomposition (SVD) of the initial
trajectory predictor Pw can be performed to mitigate the noise effect
in the data [26]. In a nutshell, the matrix is decomposed as:

Pw = UΣVT = U



σ1

. . .

σk

ϵ1
. . .

ϵn


VT (8.7)

where U and V are two orthogonal matrices, whereas Σ is a diagonal
matrix. Moreover, σ1, . . . ,σk are the dominant singular values, while
ϵ1, . . . , ϵn are the negligible ones. The denoising is performed by re-
constructing the matrix Pw using matrices U and V, and a simplified
version of Σ which contains only the dominant singular values.

DeePC

The design of a DeePC controller is purely data-driven, as the data
block Hankel matrices defined in (8.4) are used in their raw form
in the controller. This method is based on the so called Fundamental
Lemma of behavioral system theory [85], which guarantees that (under
persistency-of-excitation assumptions on uc) any trajectory of the sys-
tem needs to satisfy, for a unique g ∈ RL, the linear equations

UP

YP

UF

YF

g =


uini

yini

u

y

 . (8.8)

Implicitly, (8.8) serves as a predictor of the future N-long I/O volt-
ages/currents trajectory (u, y) based on Tini-long I/O initial trajec-
tory (uini, yini). If (u, y) are considered as free optimization variables,
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the vector g that satisfies the first two block-equations of (8.8) can be
expressed explicitly as

g =

[
UP

YP

]† [
uini

yini

]
+Φz = M

[
uini

yini

]
+Φz, (8.9)

where † denotes the Moore-Penrose pseudo-inverse operator, and Φ

represents a basis of the kernel of M. Both Φ and M can be com-
puted offline using standard linear algebra routines. This decomposi-
tion allows expressing the future trajectory as a function of the lower-
dimensional variable z, and turns out to be useful in the online phase
of the unconstrained control problem, as explained in the next sub-
section.

8.2.2 Computational Aspects Regarding the Online Program

In the online stage, the MPC tracking problem (8.1) is solved, but with
different representations in place of (2.23) depending on the adopted
data-driven method. Both the unconstrained and constrained solu-
tions are now discussed for each data-driven method, clarifying the
practicality of their real-time implementation from the computational
burden point of view.

PEM-MPC

PEM-MPC algorithm is completely analogous to a standard model-
based MPC, from the point of view of the online program. It is worth
remembering that two possible online controllers can be obtained, de-
pending on the presence or not of the constraints (8.1). If the problem
is unconstrained ((8.1) is absent), the PEM-MPC yields a linear feed-
back controller [25] of the form u = Krr+Kxx(k). On the other hand,
the QP problem requires an iterative solver as in [75], if input con-
straints are included. In both situations, the complexity of the PEM-
MPC is the same of a standard model-based MPC, which is amenable
for real-time implementation on adequate hardware. The dimension
of the decision variable coincides with the dimension of u ∈ R2N,
thus it scales linearly with the prediction horizon. In the considered
application, the full state of the system is available, but in general
the PEM-MPC requires a state estimator. The other two data-driven
methods, SPC and DeePC, do not require a state estimator, since they
naturally work with the plant outputs.
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SPC

The SPC algorithm solves the same tracking problem (8.1) as in MPC

or PEM-MPC, but with the state-space model (2.23) replaced by the
predictor (8.5):

min
u,y

||y− r||2Q + ||u||2R (8.10a)

subject to y = Pw

[
uini

yini

]
+ Puu (8.10b)

u(k) ∈ U, k = 0, . . . ,N− 1 (8.10c)

Similarly to the PEM-MPC, if the constraints (8.10c) are not present,
then the problem can be solved in closed-form by substituting the
predictor equation (8.10b) into (8.10a) and by setting the gradient of
the resulting convex quadratic cost to zero. The resulting online con-
troller is a linear feedback of the form u = Krr+ Kini[uini,yini]

T . If
the constraints (8.10c) are present, the minimization program can be
solved online, at the same computational complexity of the PEM-MPC

one. In fact, the computational burden depends on the length of u.

DeePC

The DeePC algorithm, because of the implicit form of the algebraic con-
straint, requires the minimization over the decision variables g,u,y:

min
g,u,y

||y− r||2Q + ||u||2R + λg||g||
2 (8.11a)

s.t.


UP

YP

UF

YF

g =


uini

yini

u

y

 , u(k) ∈ U, k = 0, ...,N− 1 (8.11b)

where λg adds a regularization on the decision variable g. In fact, if
noisy data are used, the Hankel matrices are full raw rank, but the
realized control error in (8.11a) could be different from the predicted
one. Thus, the term λg||g||

2 helps to robustify the control problem [23,
Section III.C]. The absolute-value norm is an interesting alternative
which is studied in literature, in order to promotes the sparsity of g.
In other words, the optimal sequence should be generated by com-
bining a few trajectories of the data Hankel matrices. However, this
solution is too computationally demanding for real-time applications.

In the unconstrained case, the problem can be solved directly using
the null-space representation presented in (8.9). The future currents
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and voltages sequences u and y are replaced in (8.11a) with UFg and
YFg, respectively, obtaining

min
z

||YF(M

[
uini

yini

]
+Φz) − r||2Q + ||UF(M

[
uini

yini

]
+Φz)||2R (8.12)

The solution of the problem is available in closed form as zopt =

H−1dT , where the Hessian matrix H and the linear term d are defined
as:

H := ΦTYT
FQYFΦ+ΦTUT

FRUFΦ

d :=
(
r− YFM

[
uini

yini

])T
QΦ−

(
UFM

[
uini

yini

])T
RΦ.

(8.13)

The Hessian inversion can be evaluated offline with proper numeri-
cal techniques, further reducing the complexity of the scheme. More
details on the closed-form solution of the unconstrained DeePC can be
found in [39]. Starting from the optimal value of zopt, (8.9) is used to
compute gopt, and, finally, the sequence of optimal input uopt. It is
still possible to condense this controller in a feedback law similar to
the SPC, with a decision variable that scales linearly with the predic-
tion horizon length. The constrained solution of (8.12) would instead
require an online QP-solver. However, the dimension of the decision
variable g can be large, as it depends on the number of samples used
in (8.8). Thus, the real-time implementation of the DeePC algorithm is
still a challenging problem.

In conclusion, three main aspects differentiate the SPC and DeePC

methods [23]: the way the predictor is built, the underlying predic-
tion model and the variables over which the QP problem is solved. In
fact, the SPC forces a least-square fit to a LTI system model, whereas
the DeePC does not. Thus, SPC is more suited for LTI systems or linear
parameter varying ones. On the other hand, DeePC exhibits interest-
ing features also when applied to non-linear system, e.g. the grid
connected inverter application shown in [39]. Finally, SPC solves the
tracking problem in the input u, whereas the DeePC in g.

8.2.3 Integral Action

An integral action is needed to avoid bias errors in the currents ref-
erence tracking for the SPC and DeePC algorithms. For instance, the
back-EMF induced by the magnets acts as a constant disturbance in
the voltage equation, inducing a steady state error in reference track-
ing. Following this principle, this framework is introduced also for
data-driven controllers. For the MPC and PEM-MPC algorithms, the in-
tegral can be included by formulating the optimization problem in
its velocity-form [63]. The idea is to perform the data collection stage
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Figure 8.3: Offset-free tracking error: simulation of DeePC algorithm with
no integral action (before t = 1s) and when the offset-free imple-
mentation after t = 1s.

filling the matrices with incremental data, e.g. ∆y = y(k) − y(k− 1).
For instance, the DeePC problem in (8.11) is written as follows:

min
g,∆u,∆y

||∆y− r ′||2Q + ||∆u||2R + λg||g||
2

subject to


U ′

P

Y ′
P

U ′
F

Y ′
F

g =


∆uini

∆yini

∆u

∆y


u(k) = u(k− 1) +∆u(k) ∈ U, k = 0, 1...,N− 1

r(k) ′ = r(k) − y(k), k = 1, ...,N

(8.14)

[U ′
P, Y ′

P, U ′
F, Y ′

F]
T are the Hankel matrices filled with incremental data.

The optimization problem (8.14) is solved for g, then ∆u(k) is found.
The effectiveness of the proposed solution is shown in Figure 8.3.

The nominal current reference has been set and steady state is reached,
while the motor is kept at nominal speed. Before time t = 1s, the stan-
dard data-driven formulation is considered as controller. As can be
seen, a bias appears in the tracking. At time t = 1s, the controller
designed with incremental data is selected and the bias is removed.

8.3 simulation results

Three different PMSM topologies are considered in the simulations in
order to prove the flexibility of the data-driven approach: a SPM motor,
an IPM motor and a SyR motor. The nominal parameters of the three
machines are reported in Table 13. Some non-linear phenomena, such
as iron saturation, are neglected.
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Table 13: Overview of the main nominal parameters of the three syn-
chronous motors used for the simulations

Motor Data Symbol SPM IPM SyR

Pole pairs p 2 2

Phase resistance R 1.5Ω 2.7Ω 4.7Ω

d-axis inductance Ld 0.003H 0.02H 0.4H

q-axis inductance Lq 0.003H 0.110H 0.08H

PM flux-linkage Λpm 0.25V s 0.22V s 0V s

Nominal current IN 10A 4.2A 5.6A

Nominal d current IN,d 0A 2.8A 4A

Nominal q current IN,q 10A 3.1A 4A

Nominal speed ΩN 3000 rpm 2000 rpm 500 rpm
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Figure 8.4: Effect of the current measurement quantization in the singular
values magnitudes (SPM motor case).

8.3.1 Data acquisition step

In the data acquisition step a training sequence of random dq voltage
vectors is applied to the motor (see Sec. 8.2.1). The SPM machine is
considered for the following analysis.

The SPM motor is maintained at standstill by a second machine
while a zero-mean sequence of voltages is applied. The amplitude of
the training voltage vectors is limited to 10% the nominal voltage, i.e.
17V. In order to obtain a data-driven controller with integral action,
we adopt an incremental approach, as the one presented in [25]. In a
nutshell, we collect the current increments induced by the application
of a voltage increment within one sample period Ts = 100µs.

8.3.1.1 Effect of the current sensing in the design procedure

The differential current measurement could compromise the controller
design because of the resolution of the current sensing. It is worth
mentioning that very noisy measurement badly affect the Hankel ma-
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Figure 8.5: Experimental test: comparison between state space model and
data-driven predictor in terms of prediction error.

trices [18]. For this purpose, the authors analyze the effect of the noise
induced by different resolutions of the current sensing on the singu-
lar values of Pw (Sec. 8.2.2). Results are reported in Figure 8.4 for a
SPC controller with Tini = 1 and N = 3.

The electric motor model (2.10) has a dimension equal to 2. Thus,
it is expected to find 2 dominant singular value among the 4 that can
be obtained with the selected Tini and N. This is confirmed by Fig-
ure 8.4, where at least two order of magnitude separate the first two
singular values from the others, excluding the case of an unrealistic
quantization of 10%IN.

8.3.1.2 Accuracy of the data-driven predictor

The training test has been performed also on a test bed, considering
the SPM motor. The SPC matrices are derived. In order to check the
accuracy of the data-driven predictor stated in the equality constraint
of (8.10), the latter is compared with the voltage balance model (2.10).
The state space is indeed more accurate, as proved by Figure 8.5.
However, the data-driven predictor grants a similar accuracy with-
out requiring any parameter identification procedure on the motor.
The data-driven design procedure can be adopted as a tool to verify
the accuracy of the nominal motor model. Manufacturing tolerances,
in fact, could cause small discrepancies between nominal parameters
and the actual ones.

8.4 experimental validation

The authors propose the experimental validation on an interior per-
manent magnet motor. The nominal parameters of the considered
machine are reported in Table 14, while the test-bench layout is sim-
ilar to the ones reported in previous sections. All the algorithms, i.e.
the MPC, PEM-MPC, SPC and DeePC, are real-time implemented on the
dSPACE MicroLabBox at a sample rate of Ts = 100µs.
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Table 14: Overview of the motor parameters.

Motor Data Symbol IPM

Pole pairs p 3

Phase resistance R 1Ω

d-axis inductance Ld 0.010H

q-axis inductance Lq 0.014H

PM flux-linkage Λpm 0.26V s

Nominal current IN 6.2Arms

Nominal d current IN,d −1.1A

Nominal q current IN,q 8.7A

Nominal speed ΩN 1000 rpm

8.4.1 Data Acquisition Step

The test designed to collect I/O data from the IPM motor consists of ex-
citation with a random (detailed below) dq voltage vectors sequence
uc and the measurement of the dq currents via LEM sensors. Thanks
to this choice, the rotor is not required to be locked or to be main-
tained at standstill by another motor. The selected zero-mean voltage
sequence induces zero-mean currents and, consequently, a zero-mean
torque. Since the mechanical dynamic is much slower than the electric
one, the rotor remains at standstill even if instantaneously the torque
could be not zero. In addition, non-linear frictions help to avoid rota-
tions of the motor.

The criteria to select the voltages amplitude is here discussed. The
motor is driven by a two-level voltage source inverter with a DC
bus voltage of 300V. The voltage sequence is generated by picking
the values from a uniform probability distribution in the interval
[−uexc,uexc]. A test is proposed to analyze the effects of uexc on the
sequence yc and the data-driven design. Figure 8.6a refers to sev-
eral excitation tests, characterized by different values of uexc. On one
hand, the maximum excitation voltage should be limited to avoid
over-currents, preserving a safe motor operation. The figure, in fact,
shows that the mean value of the currents samples are quite low with
respect to the nominal value. However, the nominal current value,
for the proposed motor, is achieved using uexc = 90V, i.e. the 30%
of the DC bus voltage. Higher excitation voltages should be avoided.
On the other hand, a too low voltage excitation could lead at least
to current sampling issues. Moreover, other problems need to be con-
sidered, i.e. if the information carried by the data is rich enough to
describe the current dynamics. The PWM synthesis of low voltages
could emphasize some inverter non-linearities, e.g. not properly com-
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Figure 8.6: Overview of some key parameters of the data collection test.

pensated dead-times, that are not of interest of our identification. In
order to evaluate if the data are collected properly, the dominant sin-
gular values of the matrix Pw are analyzed (see the logarithmic plot
in Figure 8.6b). The number of dominant values should be coherent
with the anticipated dimension of the state, see Table 12. Two domi-
nant values characterize the considered dynamic, as expected.

8.4.2 Parameters Selection

In this section the problem of parameters selection is addressed for
designing the data-driven controls. The prediction horizon length N

is chosen according to the MPC framework, i.e. N = 3. This value is
a good trade-off between accuracy and computational effort for this
application [17]. Moreover, all the these controllers share the same
cost function; thus, equal weighting matrices Q and R are chosen. In
particular, Q is the identity matrix, whereas R is the identity scaled
by a factor 0.0001. The robust formulation of the DeePC is considered,
and the related parameter in (8.11) has been set to λg = 0.1.

Two parameters that characterize the data-driven algorithms are
the length of the initial trajectory Tini and the number of samples T .
The trajectory [uini,yini]

T replaces the initial condition for the predic-
tion. Thus, it determines the inherent system state, and the parameter
Tini provides a complexity for the model. In [85], the system lag2 l is
used to find a lower bound for Tini. In particular, if Tini ⩾ l the system

2 The lag l of a linear system is the smallest integer value for which the observability
matrix O = [C CA...CAl−1]T has full rank.
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Figure 8.7: Accuracy of the data-driven predictors in the estimation of the
q-axis current variation.
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Figure 8.8: Residual analysis of the prediction error: probability distribution
function of the residuals for the presented predictors.

prediction is uniquely determined. Thank to this criterion, the value
of Tini can be chosen even without knowing the system dimension,
but using an estimate of it. Since the system lag is known for the con-
sidered application (i.e l = 1), it is set Tini = 1. The length T of the
recorded I/O vectors should be long enough to make sure that the
Hankel matrices have full rank. The Fundamental Lemma in [85] gives
a lower bound for T , whose value for the considered application is
T ⩾ 3(Tini +N+ 2) − 1. T = 100 samples are selected, which satisfies
the inequality. All dimensions of the matrices can be computed using
Table 12.
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8.4.3 Accuracy of the Data-Driven Predictor

The accuracy of the data-driven predictors is investigated in this sub-
section, taking the model-based MPC as benchmark. This analysis is
performed during steady state operation, when the motor is working
at the nominal MTPA current point (see Table 14) at standstill. Dur-
ing the tests the currents are regulated by standard PI controllers.
The open-loop prediction accuracy of the methods is analyzed. This
means that the predictors are fed by current measurements and the
reference voltages computed by the PIs. A first qualitative informa-
tion on the accuracy is provided by Figure 8.7a and Figure 8.7b. The
figures show the comparison between the measured q-axis current
increments and the predicted ones, using respectively the predictor
obtained with (8.2) and (8.12). A good correspondence between mea-
surements and predictions is observed for both the controllers.

The residuals between measured and estimated currents are con-
sidered as performance index, as suggested in [10]. The results of
this analysis are reported in Figure 8.8. The figures show the esti-
mated probability density function of the d and q residuals for all
the described predictors. From literature [10], we expect a zero mean
normal distribution of the residuals, which is coherent with the ob-
tained results. The PEM-MPC predictor appears the most accurate one,
proving that using data to validate the commissioning tests is an in-
teresting tool. This could be observed also by the time-domain figure
Figure 8.7a, since the predicted currents almost overlap the measured
ones.

8.4.4 Online Unconstrained Controller

In this subsection the authors provide a comparison between model-
based and data-driven designed controllers in terms of step current
reference response. In particular, the reference r is changed from zero
to the nominal maximum-torque-per-ampere current in a step-wise
manner. The model-based MPC adopts the motor parameters which
were previously obtained by means of characterization procedures
(see Table 14). All the data-driven controllers are designed from the
same data recording, in particular the one defined by a uexc = 50V.

The step responses are compared at standstill in Figure 8.9. It is
relevant that the data-driven designs allow achieving similar perfor-
mances with respect to the model-based controller. In fact, the com-
missioning effort of all the proposed algorithms in terms of measure-
ment apparatus, number of carried out tests, and their complexity
and duration is much lighter compared to the characterization re-
quired to build an accurate model-based controller [59]. Among data
driven controllers, the DeePC is considered the most data-oriented al-
gorithm, because it uses raw data without any pre-processing. De-
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Figure 8.9: Comparison of the step responses of model-based and data-
driven current controllers at standstill.

spite the direct exploitation of raw data, it has almost the same per-
formance as the others. We reported the same step response analysis
also at nominal speed rate in Figure 8.10. This test confirms the ef-
fectiveness of the integral action included in the data-driven control
framework. The back-EMF and the state transition matrix A of the IPM
motor model (2.10) depend on the operating speed. Thus, a bias in
the current tracking should be observed if the integral action is miss-
ing (as in Figure 8.3). The model-based MPC grants the overall best
performances, as expected, since the effort paid for the commission-
ing. However, we underline that the proposed data-driven methods
are still very effective for the q-axis current. Moreover, other tools can
be used to further improve their behavior, in particular the one of
the DeePC (see [18]). In addition, accordingly to [43], a feedforward
term can be nested in the controller to improve disturbance rejection
performances, without penalizing the overshoot in the dynamics. We
therefore believe that there is much unexplored potential to improve
the performance to data-driven controllers.
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Figure 8.10: Comparison of the step responses of model-based and data-
driven current controllers at nominal speed.





9
D ATA - D R I V E N M O V I N G H O R I Z O N E S T I M AT I O N

In this chapter it is reported an original contribution of this thesis
regarding the input disturbance estimation problem, which is sum-
marized in Figure 9.1. In the scheme it is represented a standard
output tracking control problem for a LTI system P. In a nutshell, it is
desired that the process outputs y ∈ Rp track their reference r ∈ Rp

through the controller C that impose the input u ∈ Rm. However,
the control input applied to the plant is affected by a disturbance
w ∈ Rm. Thus, the actual input that determines the dynamic of the
system is u ′ = u+ w. In a first moment, it is assumed that the output
noise n is negligible, then the assumption is relaxed.

The first goal to achieve consists into estimating the disturbance
w without performing an identification of the process model. It is
straightforward that the main challenge in the identification is the ab-
sence of an available model of the process However, according to the
behavioral system theory Section 4, it is assumed to have a Ns-long
sequence of applied inputs ud ∈ RmNs and the related sequence of
outputs yd ∈ RpNs , i. e. same data samples of the process. In order to
solve the estimation problem it is required the persistency of excitation
property for the input sequence ud, as defined in Section 4.1.

In the following analysis, it is assumed that the input disturbance w

is always null when the input-output sequence (ud, yd) is collected
from the plant. Thanks to this assumption, the sequence of actual
process inputs u ′ = u +w is persistently excited, too. In fact, it is
remarkable that the persistency of excitation of u ′ could be lost for
certain sequence of disturbances, e.g. wd ≡ −ud → u ′d ≡ 0.

9.1 data driven input disturbance estimation

Let’s consider at first a controllable process P, which has input u ′

and output y. A sequence of input-output trajectories (ud, yd) has
been collected from the plant. It is reminded that ud ≡ u ′d. Since u ′d

is persistently excited, the Fundamental Lemma by Willems is applied.
The lemma states that any trajectory of a LTI system can be obtained
by computing a linear combination of the input-output Hankel ma-
trix columns. Thus, these matrices can be exploited to predict future
behavior of the system and design optimal estimators.

Let’s focus on the discrete nature of the input disturbance estima-
tion, as shown in Figure 9.2. Moreover, it is assumed to have an esti-
mation horizon length equal to Tini steps, which coincides with the
rows number of HTini

(ud) ≡ HTini
(u ′d).

115
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Figure 9.1: Input disturbance estimation problem.
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Figure 9.2: Overview of the estimation problem in a discrete time domain.

Considering the k-th step, the last measured output is y(k), in-
duced by the input u ′(k − 1) = u(k − 1) + w(k − 1). The simplest
input disturbance estimation problem that it is possible to build up
consists into estimating w(k− 1) given:

• a past sequence of inputs applied to the plant uini = [u(k −

Tini),u(k− Tini + 1), . . . ,u(k− 2)]T ∈ Rm(Tini−1);

• a past sequence od measured output yini = [y(k−Tini+1),y(k−
Tini + 1), . . . ,y(k− 1)]T ∈ Rp(Tini−1);

• the last applied control input u(k− 1) ∈ Rm;

• the last measured output y(k) ∈ Rp;

The idea behind a data-driven disturbance estimation consists into
computing which fictitious input û(k− 1) let the output evolve from
the initial trajectory (uini,yini) to the output y(k). The difference
between the actual input u(k− 1) and fictitious input û(k− 1) gives
the disturbance w(k− 1) affecting the process.

In order to treat the estimation problem in a data-driven frame-
work, the input-output Hankel matrices HTini

(ud) and HTini
(yd) are

decomposed in two blocks:(
UP

UF

)
:= HTini

(ud) = HTini
(u ′d),

(
YP

YF

)
:= HTini

(yd), (9.1)

where the matrices dimensions are respectively UP ∈ Rm(Tini−1)x(Ns−L),
YP ∈ Rp(Tini−1)x(Ns−L), UF ∈ Rm x(Ns−L) and YF ∈ Rp x(Ns−L).
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Thanks to the fundamental lemma, any trajectory (u ′,y) of the sys-
tem can be written as:

UP

YP

UF

YF

 g =


u ′

ini

yini

u ′(k− 1)

y(k)

 =


uini

yini

u(k− 1)

y(k)

+


wini

0p(Tini−1)

w(k− 1)

0

 , g ∈ RNs−Tini

(9.2)

where wini = [w(k−Tini),w(k−Tini+1), . . . ,w(k−2)]T ∈ Rm(Tini−1).
The disturbance plays in the system in the same way as the input.

Given uini, yini and u(k− 1), there is not a unique solution to the
problem (9.2), in general. However, uniqueness is reached if it holds
that Tini − 1 ⩾ ℓ(B), where ℓ(B) is the lag of the system imposes
uniqueness. The hypothesis needed to guarantee the uniqueness are
formalized by the Initial condition lemma. The idea behind this lemma
is the following. If a sufficiently long past trajectory of a system is
observed, then it is possible to identify the unique initial state from
which the system started to evolve.

9.1.1 Data driven simulation algorithm

Let’s assume that the process P is running with an initial null distur-
bance. Considering (9.2), this means that wini ≡ 0. At the k-th step
an input disturbance w(k) ̸= 0 occurs on the plant.

If a past estimation window of length Tini is observed, such that
Tini − 1 ⩾ ℓ(B), it holds that:

∃!g ∈ RNs−Tini s.t.

UP

YP

YF

 g =

 u ′
ini

yini

y(k)

 =

 uini

yini

y(k)

+

 wini

0p(Tini−1)

0

 .

(9.3)

Once solved the problem (9.3) in g, an estimated input for the (k-
1)st step û(k − 1) = UFg is computed. Since the true control input
u(k− 1) is known, the disturbance w(k− 1) acting on the system is
easily derived as:

w(k− 1) = û(k− 1) − u(k− 1) = UFg. (9.4)

The estimation is repeated every time step, meaning that the vector
of initial disturbances wini is updated and the problem is solved with
the upcoming y(k) and u(k− 1).

This first approach to estimate the input disturbance appears quite
rude. Each time step, in fact, the disturbance is recomputed without
any regularization. Thus, it is expected quite a noisy estimation in
presence of output noise.
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Algorithm 1 Data driven simulation for input disturbance estimation

Input: [ud,yd]T input-ouput data pre-collected from the plant, the
last Tini input-output measurements, split in [uini,yini,y(k)]T and
u(k− 1).

Solve (9.3) for g.
Estimate the (k-1)st input û(k− 1) = UFg.
Compute the input disturbance w(k− 1) as in (9.4).
Update the initial disturbances vector wini = [wini(m :

m(Tini−1));w(k− 1)]

Figure 9.3: Estimation of a constant load torque at nominal speed operation.

9.1.1.1 A first application: Load torque estimation for the speed control
loop of a motor drive

A simple example is presented to ease the comprehension of the es-
timator and to show its performances. Let’s consider the torque bal-
ance equation on a motor shaft, described by the following state-space
model, based on (2.32) and (2.33):

x(k+ 1) = (1− Ts
B

J
)x(k) +

Ts

J
u(k) +

Ts

J
w(k), y(k) = x(k); (9.5)

The output y(k) of the system is the angular speed and it coincides
with the state. The control input u(k) is the motor torque, but a dis-
turbance torque w(k) affects the process. The main model parameters
are: the rotating inertia J = 53.56Kg/cm2, the viscous friction coeffi-
cient B = 10−5Kg m2/s, the nominal power PN = 3kW and the nom-
inal speed ΩN = 1500rpm. The complete list of model parameters
can be found at https://docs.rs-online.com/520d/0900766b814d71de.

pdf. A sampling time Ts equal to 1ms is selected.
A PI controller is implemented to accomplish the speed control

task. In details, the proportional gain is 0.5 and the integral gain is 20.
Both integrator output and PI output are saturated if they overcome
the nominal torque.

A first test is performed to collect input-output matrices to design
the observer. In details, Ns = 100 input-output trajectories are col-
lected from the motor, to build an observer with an estimation win-
dow equal to Tini = 10 time intervals.

The estimation of a constant load torque is pretty accurate, as proved
by Figure 9.3. On the left side, the speed reference tracking is re-

https://docs.rs-online.com/520d/0900766b814d71de.pdf
https://docs.rs-online.com/520d/0900766b814d71de.pdf
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Figure 9.4: Estimation of a periodic load torque at standstill.

ported to visualize the test performed. A step change of the load oc-
curs during the simulation. In the center the disturbance estimation
is reported. As already observed, the estimation is good, except close
to the transients.

On the right side, the integral of the error between estimated and
actual disturbance is shown. In particular, the estimation is unbiased,
since the integral seems not to grow.

On the other hand, the estimation of a periodic disturbance is quite
poor, see Figure 9.7. On the left, a torque disturbance of angular fre-
quency 0.1ΩN is pretty well tracked. However, as far as the frequency
increases, the estimators performances drop. In fact, the right figure
reporting a disturbance of frequency ΩN reveals an error of magni-
tude and phase of the estimated signal.

A more realistic control scheme is considered for sake of complete-
ness. In details, it is removed the hypothesis of having ideal torque
actuators, both from the motor and the load side. The torque actuator
dynamic is described by the following equation:

τ∗(k) = τ∗(k− 1) +
1

1+ Ts/(2πBWcl)
(u(k) − τ∗(k− 1)) (9.6)

where u(k) is the output of the speed controller, whereas τ∗(·) is the
actual torque applied by the motor. BWcl represent the bandwidth of
torque actuator, i.e. the current control loop bandwidth. BWcl is equal
to 200Hz in the considered example. In a nutshell, the current loop
dynamic is represented as a low pass filter.

In a realistic application, it would be required also a very low over-
shoot in the speed dynamic Figure 9.3. A filter is often designed for
the reference speed, to fulfill this requirement. The filter has the same
form of (9.6), with a different bandwidth BWref. A bandwidth of
BWref = 20Hz is used in the simulations. This permits us to avoid sat-
uration of the speed controller integrator. Thus, the estimator should
not be affected by non linearities due to input saturation.

The simulation reported in Figure 9.3 is repeated with the new
control architecture and results are resumed in Figure 9.5. On the left,
a significant improvement of the speed dynamic is noticed, both in
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Figure 9.5: Overall control architecture of the speed loop, considering non-
ideal torque actuators and a filter on the reference speed.

Figure 9.6: Estimation of a constant load torque at nominal speed operation,
non-ideal torque actuator case.

terms of step response and step load torque transients. The observer
still tracks the disturbance load torque accurately. However, poorer
dynamic performances are obtained, with respect to the ideal torque
actuator case. This is due to the fact that the actual torque input τ∗ is
no more accessible. u∗, in fact, is a slightly filtered version of τ∗.

The estimation of a periodic disturbance is considered, too (as in
Figure 9.7). Low frequency disturbances are still well tracked, as in
the case of ideal torque actuator. Quite similar performances are ob-
served also at high frequency load torques (Figure 9.6, on the right).
However, initial dynamic still needs some regularization.

9.1.1.2 A second example: Load torque estimation for the position control
loop of a motor drive

The same algorithm has been simulated for a slightly different case.
In details, the position dynamic is included, adding the equation
θ(k+ 1) = θ(k) + Tsω(k) to the model defined in (9.5). Shortly, the
following state-space model is adopted:[

ω(k+ 1)

θ(k+ 1)

]
=

[
1− Ts

B
J 0

Ts 1

][
ω(k)

θ(k)

]
+

[
1

0

]
u(k) +

[
−Ts

J

0

]
(9.7)

The motor position is controlled by an outer PI controller which gen-
erates the speed reference, as shown in Figure 9.8. In this case, the
output of the system is the position θ, while the control input is the
motor torque, as in the previous example. The output Hankel ma-
trices are built using the position of the motor, instead of the speed
ω.

The estimator performances are investigated in case of constant
load torque disturbance and during a ramp transient. The position
reference is set at θ∗ = 180ř. Results are resumed in Figure 9.10 and
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Figure 9.7: Estimation of a periodic load torque at standstill, non-ideal
torque actuator.

θ∗ ω∗ u∗ u+ + + 1
s

1
B+Js

ω θ
Cω(s)Cθ(s)

− −

+

w

Figure 9.8: Position control problem: block diagram.

9.9. The overall performances of the estimator are good, when the
torque disturbance is constant. On the opposite, when a load torque
ramp occurs, Figure 9.9 highlights quite poor results. First, a wide
spike is noticed in the estimation when the load changes in order
to filter the estimation. Thus, a regularized version of the estimation
problem is suggested to improve the dynamic. Moreover, during the
ramp an increase of the integral estimation error is observed. This
suggests that the estimator is not able to track a disturbance ramp
with zero integral error.

9.1.2 Regularized data driven estimator

In this section the estimation algorithm presented in Sec. 9.1.2 is re-
vised in order to regularize the estimation. As an extra benefit, a tun-
ing parameter is available to regulate the promptness of the estimator.

The estimation problem is rewritten as a quadratic optimization
problem. In details, the objectives to reach are a correct output esti-
mation and a smooth disturbance estimation:

min
ŷ(k),w(k−1),g

∣∣|y(k) − ŷ(k)|
∣∣2
Q
+
∣∣|w(k− 1) −w(k− 2)|

∣∣2
R

(9.8)

s.t.


UP

YP

UF

YF

 g =


uini

yini

u(k− 1)

ŷ(k)

+


wini

0p(Tini−1)

w(k− 1)

0

 (9.9)

It is worth noticing that the weight matrix R permits to filter the
estimated disturbance. The proposed estimation problem is solved in
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Figure 9.9: Disturbance estimator performances overview.

Figure 9.10: Position and speed reference tracking.

g. Thus, the estimated output ŷ(k) and w(k− 1) are substituted in the
optimization problem exploiting the available constraints:

min
g

∣∣|y(k) − YFg|
∣∣2
Q
+
∣∣|UFg− u(k− 1) −w(k− 2)|

∣∣2
R

(9.10)

s.t.

[
UP

YP

]
g =

[
uini

yini

]
+

[
wini

0p(Tini−1)

]
(9.11)

The problem can be solved using null-space methods reducing on-
line computations. A basis for the kernel of [UP; YP] is computed of-
fline and a simpler optimization problem is solved online, character-
ized by a smaller decision variable g ′.

9.1.2.1 Regularized torque disturbance estimation for the speed loop.

Let’s first consider the case of the load torque estimation for the speed
control loop, presented in Sec. 9.1.2.1. The estimator is simulated for
the case of non-ideal torque actuator and with the filter on the refer-
ence speed, described in the just mentioned section.

The benefits of having a regularized estimation problem are ev-
ident in case of constant load torque estimation (Figure 9.6). The
initial error in the estimation is drastically reduced with respect to
the case reported in Figure 9.6. Even the response to a step change
of the disturbance is improved.
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Figure 9.11: Disturbance estimator performances overview with regulariza-
tion in case of non-ideal torque actuator.

Figure 9.12: Disturbance estimator performances overview with regulariza-
tion in case of non-ideal torque actuator. Periodic load torque
disturbance.

The tuning of R plays a key role if it is desired to track high fre-
quency disturbances, i.e. with an angular frequency close to ΩN. In
Figure 9.12 the same simulation presented in Figure 9.7 is repeated
for the regularized algorithm. A lower weight (1 − 10% of the one
used in the previous simulation) should be chosen to obtain a good
tracking of the disturbance, keeping also a relatively small integral
error. However, this regularized version of the estimator does not per-
mit to perform a closed loop estimation.

9.1.2.2 Regularized torque disturbance estimation for the position loop.

The effects of the regularization in the input disturbance estimation
is shown for the position control example reported in Sec. 9.1.1.2. The
weight related to disturbance variation is set to 1% with respect to the
weight on the output estimation.

At first, a simulation is run, with the same conditions of the one
whose results are reported in Figure 9.9. The results obtained with
the new algorithm are reported in Figure 9.13. The smoothness of the
estimation is drastically improved with the new method. In particular,
the spikes that were affecting the estimation are almost elided. As in
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Figure 9.13: Disturbance estimator performances overview with regulariza-
tion.

the previous case, a rise of the integral error is still noticed during the
load torque ramp transient.

9.1.3 Moving horizon data-driven estimation

In this section the estimation algorithm presented in Sec. 9.1.2 is gen-
eralized for longer estimation horizons, trying to get good closed-
loop results. Longer estimation horizons mean that the past input-
output trajectories are split in two blocks:

• a T̂ini-long sequence, used to define an unique initial condition
of the system

• a N̂-long sequence, exploited in the estimation problem

This seems a natural generalization of the estimator, considering
the dual Data EnablEd Predictive Controller (DeePC). On one hand,
the algorithm presented in Sec. 9.1.2 corresponds to a DeePC scheme
with a 1-step long prediction horizon. On the other hand, the algo-
rithm presented in this section corresponds to a DeePC scheme with
a generic N̂-step long prediction horizon.

The estimation problem has to be slightly revised for the new al-
gorithm. In details, a cost function with three different terms: is pro-
posed

min
ŷ,w,g

∣∣|y− ŷ|
∣∣2
Q
+
∣∣|E1w− E2wold|

∣∣2
R
+
∣∣|w(k− 1) −wold(k− 1)|

∣∣2
P

(9.12)

s.t.


UP

YP

UF

YF

 g =


uini

yini

u

ŷ

+


wini

0pT̂ini

w

0

 (9.13)
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Figure 9.14: Overview of the estimation performances.

where y is the sequence of the last N̂ output measurements, w and
wold are the sequence of the last N̂ estimated disturbances at the k-th
and (k− 1)st step, respectively. Moreover, E1 is a vector that extract
all the element of w except the last one, whereas vector E2 extracts
all the element of wold except the first one. Finally, wold(k− 1) is the
last estimation of the input disturbance, i.e. the last element of wold.

The first term, as in (9.9), weights the tracking of the measured
outputs. The second term weights the trust on the (k− 1)st estima-
tion. Each step the sequence w = [w(k− N̂),w(k− N̂+ 1), . . . ,w(k−

1)]T is predicted. However, at (k− 1)st step an estimation for [w(k−

N̂),w(k− N̂+ 1), . . . ,w(k− 2)] is already available. If the data-driven
performs good predictions, the two sequences should be quite close.
Finally, the third term regularizes the last estimated disturbance, pre-
venting wide variations.

It results convenient to put together the last two terms, i.e. penal-
izing

∣∣|w − [wold;wold(k − 1)]|
∣∣2 with a different weighting matrix

RP. Then, the output and disturbance expressions are substituted to
obtain a function of the decision variable g:

min
g

∣∣|y(k) − YFg|
∣∣2
Q
+
∣∣|UFg− u−wold|

∣∣2
RP

(9.14)

s.t.

[
UP

YP

]
g =

[
uini

yini

]
+

[
wini

0pT̂ini

]
(9.15)

The obtained problem has the same form of (9.11), therefore it can
be solved with the same methods. Thanks to the new formulation
more interesting results are expected for the closed loop estimation,
as proved by the following simulations.

9.1.3.1 Load torque estimation for the speed control loop of a motor drive

The just described algorithm is used for the load torque estimation ex-
ample presented in Sec. 9.1.1.1. In particular, the more realistic case is
considered, with non-ideal torque actuator and filter on the reference
speed. A T̂ini = 5 and a N̂ = 5 are adopted.

First, the constant load torque disturbance case is considered. The
overview of the simulation in terms of speed dynamic, disturbance
estimation and integral of the estimation error are reported in Figure
9.14, as for the previous algorithms.
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Figure 9.15: Left: vector g coefficients at no load. Center: vector g coefficients
with a 90% load torque disturbance. Right: focus on the distur-
bance vector w estimation during the transients.

Figure 9.16: Overview of the estimation performances with sinusoidal load
torque disturbance with angular frequency ωN.

More interesting considerations can be done observing the coeffi-
cients of g and the estimated disturbance vector w, reported Figure
9.15. The g coefficients are quite constant before and after the load
torque level is changed. However, in the loaded case (center) the co-
efficients magnitudes are much higher, as expected. The transients is
analyzed in terms of the estimated disturbance (left). In this case, the
estimated disturbance describes a stepped pattern. For instance, the
fifth estimated w at the 5th time step is equal to the first estimated
w at the 10th step. This confirms that the prediction within the past
estimation horizon N̂ is quite accurate.

In addition, a simulation regarding the estimation of a sinusoidal
load torque of angular frequency ΩN (Figure 9.16) is proposed, too.
As in the previous case overall performances are good but the focus
should be on the g coefficients and the estimated disturbance, which
are reported in Figure 9.17. First, periodic values of g coefficients
are obtained solving the problem (9.13). Since the disturbance is peri-
odic, the decision variable g is periodic, too. Moreover, a nice stepped
pattern is observed for the estimated w vector. As for the previous
simulation, this means that the estimated disturbance within the past
prediction horizon N̂ is accurate.

Next step consists into plugging the estimated load torque in closed
loop together with the speed controller. As a first step, the integral
action is removed in the speed loop, believing that the data-driven
estimator can provide this contribute.
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Figure 9.17: Left: vector g coefficients. Right: Estimated w.

Figure 9.18: Load torque step from 0 to 90% TN at constant speed operation.
Left: speed dynamic. Center: load torque estimation. Right: in-
tegral of the speed tracking error.

In general, including the estimator information within the controller
results much more tricky, as could be expected. It turns out that all
the previous proposed algorithms give not interesting results. In de-
tails, the estimated torque has either wide oscillations or it simply
blows up. In order to reduce the oscillations, a low pass filter could
be implemented in cascade with the estimator, having the same band-
width of the speed reference filter. However, it is desired to obtain a
filtered estimation directly with the optimization problem statement.
Using the algorithm presented in this section the filter is no more
needed.

Thanks to this filter, it is possible to close the speed loop with the
load torque information. In Figure 9.18 the results are summarized
for constant torque disturbances and load torque step. The most in-
teresting figure is the one on the right, reporting the speed tracking
error integral. In details, the estimator replaces effectively the role of
the integrator keeping, preventing the rise of the integral error.
g coefficients and the estimated disturbance vector w are reported

in Figure 9.12. The pattern described by the coefficients is slightly
different from the one obtained in open loop, shown in Figure 9.15.
However, coefficients have similar magnitude. Moreover, coefficients
are almost constant for a constant torque, as expected. Then, during
the transient (right) the estimated disturbance vector is coherent.

The results related to the periodic load torque disturbance (torque
harmonics in the system) are reported in Figure 9.20. The coupling
of the estimator with the proportional controller is more aggressive
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Figure 9.19: Left: vector g coefficients at no load. Center: vector g coefficients
with a 90% load torque disturbance. Right: focus on the distur-
bance vector w estimation during the transients.

Figure 9.20: Sinusoidal load torque with angular frequency ΩN and ampli-
tude 10% TN. Left: speed dynamic. Center: load torque estima-
tion. Right: integral of the speed tracking error.

than the integral action granted by the previous PI controller. This
is confirmed by smaller oscillations in the speed. Nevertheless, the
torque disturbance information provided by the estimator is quite
accurate, as proved for instance by the integral of the estimation error.

The maps of g and w are reported in Figure 9.21, for sake of com-
pleteness. In addition, on the right the 2-norm of g for two periods
of the torque disturbance is reported. The norm is compared to the
one obtained for the open loop estimation (whose results were pre-
viously reported in Figure 9.16). As for the open loop estimation
of a sinusoidal load, a periodic pattern is observed in g coefficients,
which are slightly different in the two cases. However, if the g norm
is compared in the two cases, the values of open loop and closed loop
estimation are very close (notice that the y-axis is logarithmic). The
pattern described by w is quite similar to the one obtained for the
open loop case.
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Figure 9.21: Sinusoidal load torque with angular frequency ΩN and ampli-
tude 10% TN. Left: vector g coefficients. Center: estimated dis-
turbance vector w. Right: Norm of g comparison between open
and closed loop estimator.





10
C O N C L U S I O N S

The research presented in this work concerns new advances on model
predictive control of synchronous motor drives. Particular attention
is paid to the effective exploitation of data to possibly enhance the
performances of both continuous-set and finite-set architectures.

First finite-set algorithms are considered, focusing on the model-
free control branch. An improved finite-set model-free control is de-
scribed, based on current differences look-up-tables. Its remarkable
feature consists in the fact that no knowledge of the motor parame-
ters is assumed. Thus, the scheme results robust against parameters
mismatches. Steady state and dynamic performances are slightly infe-
rior, but reasonably comparable, to those of a model-based controller.
The developed solution may be convenient if motor manufacturers
do not provide detailed machine data and self-commissioning proce-
dures are hard or not convenient to realize. Main contributions with
respect to already existent solutions include the reduction of com-
putational cost and the compensation of the motor rotation in the
look-up-tables of measured currents. Then, the model-free solution is
significantly revisited by setting up a non-parametric model, whose
parameters are estimated by recursive least square filters. Relation-
ships between motor working conditions and estimated coefficients
are demonstrated, focusing separately on the roles of the speed and
the current. Design guidelines on the tuning of the forgetting fac-
tors in the recursive least square estimation are provided. Relevant
improvements in terms of prediction error and current tracking per-
formances are achieved by this second model-free solution, with re-
spect to previous works presented in literature. Finally, the discrete
space vector modulation is effectively coupled to the adaptive non-
parametric model. The resulting control architecture allows for a re-
duction of the current ripple that affects the parameter-free algorithm,
with respect to the finite-set version. This, in turn, allows to reduce
Joule losses in the stator windings, increasing the efficiency of the
drive. Thanks to the deadbeat implementation of the predictive con-
trol algorithm, the number of tuning parameters of the proposed al-
gorithm is minimal. Only one commissioning test is needed to tune
properly the number of sub-periods of the discrete space vector mod-
ulation. The total phase current distortion and the inverter average
switching frequency are evaluated for the first time for model-free
schemes. The proposed parameter-free discrete space vector modula-
tion algorithm results having a lower current distortion with respect
to the finite set version. The method outperforms even model based
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ones in many operating points. At the end, this last developed so-
lution emulates, sometimes outperforming, the behavior of model-
based controllers, but dribbling all the overwhelming critical issues
related to the model identification.

Secondly, continuous-set algorithms are considered, focusing on
the new data-driven control branch. The real-time feasibility of some
data-driven methods is proved, including the subspace predictive
control and data-enabled predictive control. This is not trivial seems
these methods are expensive in terms of computation and samples.
For this reason, computational aspects regarding constrained and un-
constrained predictive controllers are discussed. The problem of the
offset-free tracking is addressed for the first time for such class of al-
gorithms. Moreover, the data-collection test that is required by these
controllers is studied. Technical suggestions about the excitation sig-
nal and mathematical properties are derived, roving that the data-
driven procedure can be a systematic design tool also for permanent
magnet synchronous motor controllers. Finally, the problem of data-
driven estimation of disturbance is considered. A moving horizon
estimator is designed, making several considerations on the terms
that need to be included in the estimation problem. The estimation
of a load torque disturbance is considered as case study for such
method. Similar performances are found for model-based and data-
driven moving horizon algorithms while estimating constant and sin-
suoidal load torque disturbances.
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A
C L A R K E A N D PA R K T R A N S F O R M AT I O N

a.1 clarke transformation

the winding of a three-phase motor is distributed in such a way that
the spatial displacement of the windings of each phase are shifted

from each other by
2

3
π radiants. However, it is convenient to repre-

sent the three-phase circuit with an equivalent circuit, whose phase
are shifted by

π

2
radiants. The transformation between these two ref-

erence frames is known as Clarke transformation. Adopting a matrix
representation, its expression is:sα(t)sβ(t)

s0(t)

 =
2

3

1 −1
2 −1

2

0
√
3
2 −

√
3
2

1
2

1
2

1
2


sa(t)sb(t)

sc(t)

→ sαβ(t) = Tαβ0sabc(t),

(A.1)

where sabc(t) is a generic signal in the three-phase reference frame,
e. g. voltages or currents, while sαβ(t) is the signal in the new orthog-
onal reference frame. The reported transformation keeps all signals
amplitudes. Thus, the transformation is not power invariant and a
factor 3

2 must be included to preserve the coherence.
The homopolar component s0(t) is often neglected when consider-

ing star-connected three-phase windings, since it holds:

sa(t) + sb(t) + sc(t) = 0,

because of the Kirchhoff current law. Taking advantage of this further
hypothesis, the transformation simplifies to:

[
sα(t)

sβ(t)

]
=

2

3

[
1 −1

2 −1
2

0
√
3
2 −

√
3
2

]sa(t)sb(t)

sc(t)

↣ sαβ(t) = Tαβsabc(t). (A.2)

The simplified inverse transformation is:sa(t)sb(t)

sc(t)

 =

 1 0

−1
2

√
3
2

−1
2 −

√
3
2


[
sα(t)

sβ(t)

]
→ sabc(t) = TT

αβsαβ(t). (A.3)

With some abuse of notation the inverse transformation is often de-
noted also as T−1

αβ, even if the inverse of a rectangular matrix is not
defined.
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a.2 park transformation

The Park transformation is a transformation introduced to report sta-
tor dependent signals to a rotating reference frame. Most of electric
quantities in electric motors are position dependent, meaning that
their periodicity is related to the electric position θe, defined as the
product between the rotor position θm and the number of pole pairs
of the electric machine. Thus, the Park transformation permits to re-
port all these signals in a reference frame where they are constant.
This results very useful from the point of view of the control design.
The transformation from stator and rotor reference frames is defined
as:[

sd(t)

sq(t)

]
=

[
cos θe sin θe

− sin θe cos θe

][
sα(t)

sβ(t)

]
→ sdq(t) = Tdqsαβ(t), (A.4)

where sd(t) and sq(t) are the signals in the new rotating reference
frame, denoted as dq. When permanent magnets are mounted on the
rotor, the d axis is often aligned with the permanent magnet flux. The
inverse transformation is obtained with a simple matrix inversion,
resulting:[

sd(t)

sq(t)

]
=

[
cos θe − sin θe

sin θe cos θe

][
sα(t)

sβ(t)

]
→ sdq(t) = T−1

dqsαβ(t), (A.5)

It is worth noticing that, being the transformation a rotation, it is or-
thonormal. In fact, the determinant of Tdq is unitary and the column
of the same matrix are orthogonal each others. As a consequence, it
holds that T−1

dq = TT
dq.

It could be of interest the computation of the time derivative of the
Park transformation:[

cos θe sin θe

− sin θe cos θe

]
= ωe

[
− sin θe cos θe
− cos θe − sin θe

]
= ωe

[
0 1

−1 0

]
Tdq,

(A.6)

which is the product of the electric speed ωe, a skew-symmetric ma-
trix and the Park transformation matrix. In other words, it can be
interpreted as the product between the electric speed, a rotation of

π

2
and Tdq.



B
B L A C K B O X A N D G R E Y B O X M O D E L S

The model-free and the parameter-free control exploit model struc-
tures which are typical of the system identification framework [Ljung].
System identification is a procedure to build a mathematical model of
the dynamics of a system from measured data. The identified mod-
els can be of different types, depending on how much information
is exploited about the physics behind the dynamics. It is possible to
distinguish between:

• white box models if the model structure is based on physics prin-
ciples, whose parameters are estimated from measured data;

• grey box models, if the model is partially built from physics
equation and the rest is inferred from data;

• black box models, if both the model structure and its parameters
are unknown and they are directly estimated from I/O data.

The model adopted by the parameter-free control (6.7) is a customized
grey-box model. Its expression is here derived starting from the gen-
eral black box structure.

According to the black box structure, the output of a plant y at the
k-th time instant can be estimated by means of the previous outputs
and inputs u applied to the plant:

y(k) =− a1y(k− 1) − a2y(k− 2) − · · ·− any(k−n)

+ b1u(k− 1) + b2u(k− 2) + · · ·+ bmu(k−m) +w(k)
(B.1)

where w(k) denotes the output noise or, equivalently, the effect of
a disturbance ν acting on the plant dynamics, i. e. w(k) = ν(k) −

a1ν(k− 1) − a2ν(k− 2) − · · ·− any(k− n). Considering the voltage
balance equation of a PMSM (2.10), this disturbance comprehends at
least the back-EMF induced by the permanent magnets. In particular
this disturbance has a non-zero mean.

The more general class of black box model suitable to describe the
currents dynamics of a synchronous motor is the Box-Jenkins one:

y(k) =
B(z)

A(z)
u(k) +

C(z)

D(z)
e(k) (B.2)

where, adopting the z-transform notation,

A(z) =1+ a1z
−1 + a2z

−2 + · · ·+ anz
−n

B(z) =b0 + b1z
−1 + b2z

−2 + · · ·+ bnz
−m

C(z) =1+ c1z
−1 + c2z

−2 + · · ·+ cnz
−q

D(z) =1+ d1z
−1 + d2z

−2 + · · ·+ dnz
−r

(B.3)
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and e(k) is a zero mean white noise.
Assuming the polinomia A(z) and D(z) equal and C(z) unitary, the

ARX model is obtained:

A(z)y(z) = B(z)u(z) + e(z) (B.4)

The grey-box model behind the model-free control is obtained by
first fixing the degree of the non-zero polinomia in (B.3). In details, it
is set n = m = 1, obtaining

y(k) = −a1y(k− 1) + b0u(k) + b1u(k− 1) +w(k) (B.5)

Then, some information regarding the actual plant is exploited to fix
two of the parameters of the just presented black box model. Since a
digital delay of one control step occurs in the digital implementation
of FS MPCs, the term b1 is null. In other words, being at the k-th
time step, the controller computes a control action based on the k-th
current measurement, which is influenced by the previously applied
voltage. Finally, a further simplification of the black box model is
achieved by imposing a1 = 1.

The equivalence between the obtained grey-box model and the
model exploited for instance by the parameter-free controller is here
clarified:

id(k) = y(k) = id(k− 1) + p2,dud(k− 1) + p1,d

= y(k− 1) + b1u(k− 1) +w(k)
(B.6)
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