Some General Theorems of Incremental
Thermoelectroelasticity

A. Montanaro
University of Padua

Abstract

We extend to incremental thermoelectroelasticity with biasing fields
certain classical theorems, that have been stated and proved in linear
thermopiezoelectricity referred to a natural configuration. A unique-
ness theorem for the solutions to the initial boundary value problem,
the generalized Hamilton principle and a theorem of reciprocity of
work are deduced for incremental fields superposed on finite biasing
fields in a thermoelectroelastic body.
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1 Introduction

In the last decades, with the increasing wide use in sensing and actuation,
materials exhibiting couplings between elastic, electric, magnetic and thermal
fields have attrached much attention.

In order to give certainty to experimental results and applications, the
interest of many researchers turned to the mathematical fitting of these to-
pics.

Many applications have their mathematical formulation within a linear
framework, and the theoretical study began from this context.

Foundamental is Nowacki’s paper [1], where a uniqueness theorem for the
solutions of the initial boundary value problems is proved in linear thermo-
piezoelectricity referred to a natural state, i.e., without biasing (or initial)
fields. Hence Nowacki [2] also deduced a generalized Hamilton principle and
a theorem of reciprocity of work.

Li [3] generalized the uniqueness and reciprocity theorems for linear thermo-
electro-magneto-elasticity referred to a natural state.



Aouadi [4] establishes a reciprocal theorem for a linear theory in which
the heat flux is considered as a constitutive independent variable, a rate-type
evolution equation for it is added to the system of constitutive equations, and
the entropy inequality is stated in the form proposed by Miiller [5].

lesan [6] uses the Green-Naghdi theory of thermomechanics of continua
to derive a linear theory of thermoelasticity with internal structure where in
particular a uniqueness result holds.

Related works on thermoelasticity and thermoelectromagnetism can be
found in [7] to [11].

The classical linear theory of thermopiezoelectricity assumes infinitesimal
deviations of the field variables from a reference state, where there are no
initial mechanical and electric fields. In order to describe the response of
thermoelectroelastic materials in the presence of initial fields one needs the
theory for infinitesimal fields superposed on initial fields, and this can only
be derived from the fully nonlinear theory of thermoelectroelasticity. The
equations of nonlinear thermoelectroelasticity were given in Tiersten [12].
Yang [13] then derived from [12] the equations for infinitesimal incremental
fields superposed on finite biasing fields in a thermoelectroelastic body with
no assumption on the biasing fields.

Here we extend the aforementioned three Nowacki’s theorems [1], [2] to
incremental thermoelectroelasticity with initial fields.

We explicitly refer to the incremental theory [13], hence below we rewrite
from this paper, with the same notations, some formulae and results on
constitutive equations of incremental thermoelectroelasticity.

Of course, the theorems proved here just reduce to the ones in Nowacki’s
[2] by neglecting the initial fields.

In the uniqueness theorem in Section 4 we assume that in the initial
state entropy does not depend on time and temperature is uniform. For the
theorem of reciprocity of work in Section 6 we assume that in the initial state
both entropy and temperature fields do not depend on time.

2 Equations of Nonlinear Thermoelectroela-
sticity

2.1 Balance laws and constitutive equations

Consider a thermoelectroelastic body that, in the reference configuration,
occupies a region V with boundary surface S. The motion of the body is
described by

Y = %’(XL; t) )



where y; denotes the present coordinates and X the reference coordinates
of material points with respect to the same Cartesian coordinate system.

Let Kij, po, fj, AL, pe, 0, n, Qr and v respectively denote the first
Piola-Kirchoff stress tensor, the mass density in the reference configuration,
the body force per unit mass, the reference electric displacement vector, the
free charge density per unit undeformed volume, the absolute temperature,
the entropy per unit mass, the reference heat flux vector, and the body
heat source per unit mass. Then we have the following equations of motion,
electrostatics, and heat conduction written in material form with respect to
the reference configuration:

Krir + pofi = poli » (1)
AL,L = PE, (2)
pogﬁ = _QL,L + P07, (3)

The above equations are adjoined by constitutive relations defined by the
specification of the free energy 1 and heat flux Qp:

Y =yY(Eun, Wi, 0), QL= Qr(Exn, Wi, 0, On) (4)

where
Evn = (Yj, mYy;,n — 0mn)/2, Wy =—0¢ um, O =0rn (5

are the finite strain tensor, the reference electric potential gradient, and the
reference temperature gradient; of course, d,/n is the Kronecker delta, and
¢ is the electric potential. Hence, by using 1 the constitutive relations (4)
of [13] are deduced for Kp;, A, n; here we rewrite them from [13]:

0 1
K= yi,APanlﬁL + JX1,jeo(Ej B — 3 iEidji)
o oY
AL:gOJXL’jEj_pOTVVL’ 77:_80 ) (6)

with E; = —¢ ;. Recall that the heat-flux constitutive relation (4)q is re-
stricted by

Q0. <0. (7)
Note that, in particular, (4), includes the case in which @Qj; is linear in

@L; that iS,
Qu = —runr(0, Wa) Oy (8)



2.2 The initial boundary value problem for a thermoe-
lectroelastic body

To describe the corresponding boundary conditions to add to the field equa-
tions (1)-(3), three partitions (S, Si2), @ =1, 2, 3, of the boundary surface
S = 0B can be assigned. For mechanical boundary conditions, deformation
7; and traction ?; per unit undeformed area are prescribed, respectively,
on Si; and Sia; for electric boundary conditions, electric potential é and
surface-free charge A per unit undeformed area are prescribed, respectively,
on Sy and Sso; while for thermic boundary conditions, temperature 0 and
normal heat flux @ per unit undeformed area are prescribed, respectively,on
S31 and S3z. Hence, we can write

y; =¢; on Sip, K;;N., =K; on S (‘'mechanical’) 9)

p=¢ on Sy, AN, =—A on Sy, (‘electric’)  (10)
=6 on Sy, Q.N,=Q on Ss ("thermic’) , (11)

where N = (Np) is the unit exterior normal on S and
SilUS/L'QIS, SﬂﬂSig:@ (Z:L 2, 3) (12)

We put

Abody = (f'm PE; 7) ) Asurf = (glv Ki7 (57 Au 07 Q) ) (13)

A = (Abodya Asurf) = (fza PE; 7 gia Kia &a Aa éa Q) . (14)

Apody, Apody, and A are said to be the (external) body-action, surface-action,
and action, respectively. The initial conditions have the form

yi(X, 0) = fi(X), %:(X), 0) = g:(X),
0(X, 0) = h(X),  &(X,0)=i(X) (Xe€B, t=0),  (15)

where
T=(fi gi b, 1)

are prescribed smooth functions of domain V. The initial boundary value
problem is then stated as: assigned Apoay, to find the solution (¢, 6, y;) in
B to the constitutive relations (6) and field equations (1)-(3) which satisfies
the boundary conditions (9)-(11) and initial conditions (15) for given Agyrs
and T.



3 Biasing and incremental fields

In incremental theories three configurations are distinguished: the reference,
initial and present configuration.

3.1 The Reference Configuration

In the reference state the body is undeformed and free of all fields. A generic
point at this state is denoted by X with rectangular coordinates Xy. The
mass density in the reference configuration is denoted by p,.

3.2 The Initial Configuration

In the initial state the body is deformed finitely under the action of a pre-
scribed initial action

A = (Mg Ay ) = (2 00, 7% 500 K7, 000 A°,0°,.Q7) 0 (16)
Zody = ( 7;07 p%> 70> ) gurf = (g;’)a Kioa éo, AO? éo’ QO> . (17)
The position of the material point associated with X is given by
Yo =Ya(X, 1),
with the Jacobian of the initial configuration denoted by
J, = det(yg’L) )
The initial fields
Yo =Ya(X, 1), ¢°=0%(X,t), 6°=0°(X,1) (18)

satisfy the equations of nonlinear thermoelectroelasticity (1)-(12) under the
prescribed action A°. The electric potential, electric field and temperature
field are denoted by ¢°(X, t), W$ = —¢°, and 0°(X, t), respectively.

In studying the incremental fields the solution to the initial state problem
is assumed known.

3.3 The Present Configuration

To the deformed body at the initial configuration, infinitesimal deformations,
electric, and thermal fields are applied. The present position of the material
point associated with X is given by v;(X, t), with electric potential ¢(X, ¢)
and temperature (X, t).

The fields y;(X, t), ¢(X, t), 0(X, t) satisfy (1)-(3) under the action of
the external action (14).



3.4 Equations for the incremental fields

Let € be a small and dimensionless number. The incremental process €(y', ¢!, 61)
for (y, ¢, 0) superposed to the initial process (y°, ¢°, 6°) is assumed to be
infinitesimal and, therefore, we write:

Yi = 0ia (Y2 + €Ya) ¢ =¢° +e¢, 0=0"+e0", (19)

Corresponding to (19), the other quantities of the present state can be written
as:

A A4 A (20)

where, due to nonlinearity, higher powers of € may arise. For the incremental
action we have

Al%ody = ( i17 p}:}’a 71> ) ‘Aiurf = (gzlv f(ila éla Al: él: Ql) . (21)
-/41 = (Abodya Asu?“f) = (filv p}_ﬁh /717 g117 f(i17 &17 Alv éla Q1> . (22)

We want to derive equations governing the incremental process

(w:=y', o', 0").
From (19) and (20), we can further write:

Exp 2 E%; +eEy;, W 2XWP+eWl, ©,209 +:0], (23)
where
Efr = (yZKygL —0K1)/2, Ell(L = (yg,Kyé,L + yZ,Lyé,K)/Qa
Wi =—-¢°, Wi =—¢!, =07, Op=10",. (24)

Substituting (19)-(24) into the constitutive relations (1)-(3), with some very
lengthy algebra, the following expression are obtained [13]:

KMi = (Sm(Kjowa + &TK]l\/[a) s AM = A?\/l + é?A}\/I ,

N0’ +en', Qu = Q% +eQy (25)
where
K, = GMaryty, 1 + RLMa¢71L — pol\ bt (26)
Al = Rynaty, v — Luned'y + poPut’ (27)
n' = Ayt v — PMCb,lM +ab', (28)
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Q= Annatio, N — Bund'y + Cn0' + Fyntly . (29)
By putting

E
KMNa = —AmNes  Kyny = Bun, ku=-Cu, tun=—Fun,
the latter rewrites as
1 E 1 1 1
QM = _RMNaua,N_KMN¢7N_KM0 _KMNH,N' (30)

In (26)-(29), Gz, are the effective elastic constants, Ry, are the ef-
fective piezoelectric constants, Ay, are the effective thermoelatic constants,
Ly;n are the effective dielectric constants, P, are the effective pyrolectric
constants, « is related with the specific heat. Their expressions are [13]:

0*y o

Grary = Y2 1po=———"—" —(0°, ES5, W9) da L~ s
Kaly yoc7Mp 8EKM8ELN 8EKL< AB A) ’Y+gK L

(907 E;)!Ba WZ) yg,L + Po

8%

Rpyvy = —Pom(eov ESp, W3) yz,M + KLy

a2w o o o o
AM’Y - _m(e ’ EAB7 WA) yn/,L)
82¢ ° ° o 8277/) ) ) i
LM '00(9WM(9W (9 ’ EAB’ WA) _'_ZMN’ PM = _8WM89(6 ; EA37 WA)u
Y, 0Qur 0 o
o = 002 (0 EAB: WA) AMNq/ = ﬁ(@ s EAB? WA) y%L = —KMN~
0Qw , .
Byn = aWM (0°, B9, W3) = w2,
0Qn , ., O0w
CM aeM(e EABv WA) = —Rm, FMN 8@]\;(0 EAB? WA) = —KMN ,
where

IKoly = €olo [WSWEJ)(XK,ﬁXL,v = XiyX1,p) + WEWJ(Xk,a XL p = Xk, 5XLa)
+WEWE( Xk~ XL 0 — XK,aXL,4)/2 — Wo?W;)XKvﬁXL’/’} ’ (32)
YKLy = EOJO(W;XK,QXL,V - W(;)XK,'YXL7OL - Wq(/)XK,aXLa) ) ZMN = gojoXMvaXNvO"

In (29) we have introduced the s-notation to allow comparison between the
proofs written here and those written in [2]. The following symmetries hold:

Grary = Gryka Lyn = Ly (33)



3.5 Restriction on the incremental heat flux

Now we show that the restriction (7) on the heat flux (4),, together with the
condition

Q7 =0 for ©7 =0, (34)

implies an analogous restriction on the incremental heat flux (29), that is,
Q;0; <0. (35)

Indeed, substituting Q7 = Q% +£Q}, O = 09 +OL in (7), we obtain
(@5 +2Q1) (0% +e0}) <0, (36)

which for ©7 = 0, by (34), yields (35). Note that the choice (8) for the heat
flux response function satisfies (34).

3.6 Incremental field equations

By substituting (19)-(25) into (1)-(3) and (9)-(11), we find the governing
equations for the incremental fields

Ko + Pofh = poiia, (37)
po (0°7" + 0°) = Qi s + poy'- (39)

Introducing the constitutive relations (26)-(29) into the incremental equa-
tions of motion (37), the equation of the electric field (38), and the heat
equation (39), for fl =0 we have

CTYMozL'yu'y7 LM + RLMa¢}LM - pOAMoce}M = Po Uq ) (40)
Ryrnyty, Ny — LMNQZZINM + POPMQ}W = P}E ) (41)

pob”( Aaryit, ar — Pardyy + 0" ) + po'ii°

= ”f/[N(b,lNM + “Me,lM + K'MNH}NM + KMNala, NM T Po ’Yl : (42)



4 Uniqueness theorem of the solution of the
incremental differential equations

In the present Section we assume 7° = 0 and ©% = 0, i.e. the initial
temperature field 6° is uniform. This holds true when the initial state is
static. We follow step by step the proof of Nowacki [2] and put in evidence
any difference when it will appear.

A modified version of energy balance is needed. It follows by substituting
the virtual increments by the real increments

Ouq
5uo¢:%dt:vadt, U, M = U, m Al ,

in the principle of virtual work
/ (£ = pofia) Suq AV + g Ko buq dS = / Ko Ota, i dV . (43)
o o VO

Thus the fundamental energy equation

/ (2 = pota)vadV +/S KovadS = / KL g dV (44)
o o VO

is obtained, where we substitute the constitutive relations (26). Hence

Y= po0a )vadV + | KyvadS
/ (a p )
VO SO

- /VO (GMaLyu'y,L + RLMaQS,lL - poAMael) ua,M dV7 (45)

thus

< (W) = | fhvadv+ [ KavadS+ [ (pohusad’ = Russady) o dV |

dt
(46)

where W is the work of deformation and K is the kinetic energy:

1 1
W - 5 \/‘\/o GMOAL'YUOL,Mu'Y’LdV’ ]C - 5 /Vo povavadv' (47)

Now, to eliminate the term [i.0 poAnsad' o, 1 V', we multiply by 6' the
heat-conduction equation (42), where 7° = 0, and integrate over V?; after
simple transformations we obtain

E
/Vo Do O Anpe o, ar AV = %/g 0'¢', Ny dS +
+’;—L/S 0'N, dS + %/S 010", Ny dS + ’“gﬂ/s o LNy dS  (48)

. 1 d
P/ 011 / 011 _ _ u
+Lvop9¢7Ldv+90 VO,OQ’VdV dtp (X + X0+ Xo + Xu),



where

7):

230 /v e (49)

Xo = “ML | 0etdv, x="0 [ ohetav,

Xo = "'ML / 01,004V, Xy = “MLC" / 0"t £V . (50)

Note that this equation differs from the corresponding Eq.(25) in [2] by the
terms Xy, X and x,. Now, substituting (48) into (46), we are lead to the
equation

d 1 )
Z(WHE+P) + (x + X0 + X5 + Xa) :/Vofavadv+/soKavadS+

E
+ 5L [ 0% NydS + T [ 0'Nuds + SEE [ 010Ny dS + (51)

1 ) i
+ %/ PO Y AV — / (RLMaQb,lL Ua, i — PolPrr 91¢,1M) dv
Vo Vo
To eliminate the term
/Vo (RLMaGb,lL Ua, . — PoPrr 0"y )dV

in Eq.(51) we substitute the constitutive relations (27) into the time-derivative
of the equation of the electric field (38) with pg = 0. Multiplying the obtai-
ned equation by ¢! and integrating over the region of the body, we obtain

/ Apé' Nag dV + / AWk dv = 0. (52)
Se Ve
Using the relations (27) and (52), after simple transformations we obtain
/ AWy =
d
— /V (RLMO/UQ MWL + LLMWMWL + poPL

dt
— — [ AjNpotas,

(0'W}) = poPLO'W})dV =

from which

/ (RKMa%,MW} - pOPKGIW}() AV =
d d

- —/ ALNgotds — g -
So

= £(p0PK /V PWLav)

(53)
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where

1
€ = 5 Licu /V WhWhav. (54)
In view of Egs.(51) and (53), we arrive at the modified energy balance
d
g(w+/c+7>+5+pop,(/v O'WkdV) + (X + xo + Xo + Xv) =

:/ fo{vadvju/ KovadS +
Vo So

E
+ 50 [ 99l Nyas + 5L [ o'Nyds + S [ 0l NydS + (59)
1
o | pe0ytav — [ AlNiotas.
00 Vo SO

The energy balance (55) makes possible the proof of the uniqueness of the
solution.

We assume that two distinct solutions (u}, ¢!, 6Y) and (u/, o', 6'")
satisfy Eqgs.(37)-(39) and the appropriate boundary and initial conditions.
Their difference

~

(ﬂi _ u; . u;/7 (,]3 _ ¢1/ . ¢1//7 - 91/ — (91//)

therefore satisfies the homogeneous equations (37)-(39) and the homogeneous
boundary and initial conditions. Equation (55) holds for (i, ¢, 6).

In view of the homogeneity of the equations and the boundary conditions,
the right-hand side of Eq.(55) vanishes. Hence

d
dt(W+IC+P+S+pOPK/ OWEAV) = —(x + Xo + Xo + Xu) <0,

(56)

where the last inequality is true since by (30), (50) and (35) we have

(e ) = g [ QO V. (57)

The integral in the left-hand side of Eq.(56) vanishes at the initial instant,
since the functions ;, ngS, 6 satisfy the homogeneous initial conditions. On
the other hand, by the inequality in (56) the left-hand side is either negative
or Zero.

Now we assume (i — #i7) below; note that (ii¢) is the sufficient condition
of J. Ignaczak, written in [2] on pages 176-177.

(¢) The initial deformation y? realizes that the tensor Gz, is positive-

definite, so that W > 0 by (47).
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(77) The tensor Ly is positive-definite so that, by (54), £ > 0.
(#4i) Ly is a known positive-definite symmetric tensor, g; = p, Py is a
vector, and ¢ = p,a/20° > 0; consider the function

A0, W) = (64 + 20" g W} + L, WiW;5
A is nonnegative for every real pair (', W}!), provided
|gI| S C)\m

where J\,, is the smallest positive eigenvalue of the tensor L.
Under these three assumptions, (56) implies

A

G, =0, 6=0 W,=0,

which imply the uniqueness of the solutions of the incremental thermoe-
lectroelastic equations, i.e.,

ul — u// 91/ — 91//’ W]l/ — WI]_// ]

7 70
Moreover, from the constitutive relations we have that

17 __ 1 n 17 17 17 1n
K, =K A=A, no=n .

Ia »

5 On the generalized Hamilton’s principle

We define the free energy, electric enthalpy, and potential of the heat flow
respectively by

1 «
1/11 = §GMaL'yua,Mu7,L + RLMaﬁb,lLUa,M - P091 AMaua,M - PM¢,1M + 591} )
X ) (58)
H' = @/Jl - iLABW,}lWé = @Ul - §LAB(I),1ACI),IB7 ' = Q}w Q}M; (59)
note that, by (30) the latter becomes
1
Whence
OH*' OH*' OH"
- K! — _Al — —pnt 1
Quanr M OW] LoTog TP (61)

12



o _ Or

M

Lastly we define two functionals
M= / (H' + po'0" — flus)dV — / (Klua —Alg)as — (63)
Vo Sn
and
U= / (L= poln'0°0" + 160" +10"6" +9'0"))dV + [ 6'QdS, (64)
Vo o

Eqs.(58)-(64) generalize Eqgs.[2, (36)-(38)].
The generalized Hamilton’s principle has the form
to to
o (K-T)dt =0, & Wwdt=0 (65)
t1 t1
The virtual processes

(0ua, 660", 0¢")

of the body must be compatible with the conditions restricting the process
of the body. Moreover the virtual processes must satisfy the conditions

Sun (X, t1) = dua (X, ta) = 0, 60'(x, t1) = 601 (x, to) = 0, 0p*(x, t1) = 66 (x, t2) = 0.

Hence, performing the variations in the second of Eqgs.(65) and observing
that

SH' = Kyro0ta v — pon 60" + AL5®! (66)
and
to

/ (IC - H) dt =

t1
" Po . . 1 11 1 1 A1l
= [Cat] [ Biaia = H = pan'0" + flua)aV + [ (Klua—A'0")as]. (67)
we have

to

t2
5[ (K-)dt = / dt | / (— poiiadua — Klgabua,n — ALO®', + flouy)dV
t1 t1 °
Klou, — A'ég')ds | . 68
+ [ (RKadua = A1og")as] (68)
Hence by the identities
_Kia((sua),L = _<K[1/a5ua),L + (Kllza,L)(suCH
A1L(5¢1),L = (A};5¢1),L - (A}J’L)égbl, (69)
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we have
to
t1
+ [ (= KlpabuaNadS — AL56' Ny )dS + / (Kloua — Alsg')ds).
Se Se
Thus we have
t2
/ di [/ (= poiia + Ko s + f1) 600 dV + / Al 6t dV
o ? Vo El

t1

+ /., (K = K}goNar)duadS — .. (A'+ A} Ny )dotdS | = 0. (71)

Since the variations du, and d¢' are arbitrary, Eq.(71) is equivalent to
the equations governing the incremental motion and electric field, completed
by the appropriate boundary conditions. These equations and boundary
conditions coincide with those written above.

Next we perform the required variation in the second of Egs.(65) by ob-
serving that

_or or , or ., or
6F = méuavN + 80771[/60712 + W}Légb’[] + %59
= —KZMNQG}M(s’U,a’N + QiéG}L - mﬁNﬁ}Méqﬁ}L — /@MG}M(SHl . (72)

By (64) we have
to
) Udt =
t1

to . . . .
- /t dt| / (8T — o (6°668" + 6°66") — poo (656" +6166%) — p,'56)) AV
+ /., 00" Q dS|

to
= ; dt[/va (— HMLQQ}M(SUa,L + Q};(Se,lL - “fJLO,lM6¢,1L - 'LiMQ,lM&gl

+po['0°00" — (776°607)] + p,[1°0" 36" — (n°0760")] — poy' 66" )dV

L
+ /., 0 Qds|. (73)

Note that

to - 2
/ (Foro0n)dt = [i0760"] " =0 (v, =0,1), (74)

t1

14

o [ (K-)dt = /ttz dt [/ (= poiiadtia + Ko ar + 1) 0ua + Al 4661V

(70)



since 00! =0 at t; and t,. Also by using the identity
((lLb>,L = CLL7Lb -+ CLLbyL (75)

we obtain

1)
) Vdt =

t1

- / at] [ Qb+ polit0 10" ='1)0'av — [ (QLN, —Q)ab' ds]
Jy dt[/ (HMLO‘G}M&‘O«L + “?Je,llfS(ﬁ,lJ + HLG}L(S(gl) dV}(76)
with

/ Fatzal rOtia, L AV = Kaspa| - / 0L, S dV + / 0"\ NiSu, dS] (77)
Vo ’ vo So

/V R 0h001, AV = [ - /V 000" AV + /S 6" Nido' ds]. (78)

Hence, by performing the variation (76) with the variations dug,d¢" that
vanish, and with 66! arbitrary, we obtain that (76) reduces to

to to
o [T war = / dt[/vo (QL 1 — w18 + poli'6° + 6" —~1))56" dV

t1 t1
—/ QLN. —Q)é6" ds|. (79)

Thus (i) the variational equation (65)y performed with

Sty = 0 = J¢* (80)
15 equivalent to the entropy balance
QL.+ po(0'0° + 10" —7') = 0 (81)
and the boundary condition for the heat flow
QINL =Q, (x€S5) (82)
if and only if
kK = 0. (83)

Alternatively, by performing the variation (65), with all the variations
Sy, 0@, 60 arbitrary, we deduce that

(17) the variational equation (65)y is equivalent to the entropy balance
(81) and the boundary condition for the heat flow (82) if and only if

E
HLZO, RMLZO, HMLQZO.
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6 Theorem of Reciprocity of Work

Next we extend the theorem of reciprocity of work following some steps in [2]
on pages 179-182, where it is referred to linear thermoelectroelasticity in a
natural configuration. Here there are some essential changes imposed by the
presence of the initial fields. We assume that the body is homogeneous and
moreover that the initial state is static, so that in particular o = 0, n°=0.
Here we do not assume that #° is uniform.

The Laplace transform of functions v = v(x, t),

v(x, p) = /OOO e Pu(x, t)dt, (84)

will be used below.
Consider two sets of causes A!, AY for incremental processes, and re-
spective effects (uq, ¢, 0), (ul, ¢', §'). Starting from the equations of motion

Kll/a,L + Pofo = polia, KLa L+ pof /a ) (85)

taking their Laplace transform, multiplying each by #°, then multiplying the
first by @', and the second by ,, and making the difference of their integrals
over the instantaneous region V', assuming that the initial conditions for the
displacements are homogeneous, we obtain the integral equation

/O@(Fﬂ,a _FLa) v+ /V (K, iy, — K i) dV = 0, (86)

where F, = pofa, F'a = pofl. Now, by the identity (75) and the divergence
theorem, we have

/oeo(KaLzT Ko 102) dV = /000 KL, — Kiug ) Ny dS

Moo

— | (KLOW), L — Ka(0°15) 1) dV

VO

Lo a

/ 0 (KL, o, — Kl gta) dV = /S (KL, — Klatia) N, dS
= |0 L (Kows = KM ) vV — | 0°( KL (), 1 — KEa(wa) 1) dV (87)
Vo

Hence by the latter equation and the constitutive relations (26), Eq.(86)
becomes

/ 0°(Fallo = FlaTia) AV + @(WILQU’Q - ?Eaﬂa) N dS
+ / (ol 1a(0' T — 0T, ) + Riny (ww WI — & WE)]dV

- /0(90)7L<Kﬁaua ~ KL w,)dv = 0, (88)
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which is the analogue of Eq.(54) in [2].

Next we shall make use of the heat-conduction equation (81) for both the
systems of loadings, rewritten in the form

- B -
1 T r
—(@QM,M) — pol)t = —Po(eo) ) (89)
since we have B
n° = 0. (90)
Hence by Eqgs.(30) and (28) we obtain
Ua NL ¢! 0 "
I ST
_ —1 - 7
_pPO(AM’Yu%M - PM¢,M + 059 ) = _pO(%) . (91)

Multiplying the latter by #° we have

70 UaNL | 5 Pinm 0, m
0 (KJLNa go tRMN " 5y 9o + KL 60 TRMNT g go )
_ . 5 gl
= 2Pl (Massti ar = Pas xoas +08) = 8, (7). 52)

XV/rite the latter equality for both the states, multiply the first equation by
01 and the second by 6! ; we obtain

A o o, .
01,60(@1\;& QNL + EJN 9]\;M + KL 9 + KN é\;M)
a1 9o = - il 217 Do v
— ppol" 07 (Aar iy, ar — Pard ypg +08) = —0 Qopo(@) : (93)
and
Vv Uq, NL' ¢ 0 91 '
9190(/@% go -+ ﬁN gJN + Ky, 0L + KN g/iN )
. o ) - 17
— ppol 0% (Aary @y s — Py + 08" ) = 00 QOpO(%O) . (94)

By taking the integral over V' of the difference between the last two equa-
tions, we obtain the analogue of Eq.(57) in [2], that is,

KLNa / oo (0 ’“aej)“ or “GNL) AV + k¥ y / 90(91,¢ ng - 91925;/;”) dv +
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1/

—9199’0M)dv+

m/ eo(elf%lo —91900) v + IQMN/OQO(QUG’I‘;V;V[

+p /V D807 ( — Mgy s — PaWht) 4 87 (Aagy @ ar + PaVHy) ] dV +

= ‘

e (E T yav = 0.

(95)
Finally, we make use of the equation for the electric field
EL,L = O, E/L,L = O (96)

Multiplying both by #°, the first by ¢, the second by ¢, subtracting the
results and integrating over the region of the body, we obtain

/o (AT, L (0°67) — AT L(6°67))dV = 0. (97)

By the identity (75) we have

/S (A1, 97— AV G)NLdS— | [AT @ 67) AV dY) L] dV = 0,

(98)

o
and thus
/ 0o (AlL ol — AL ¢1)NL dS — / 90 A1L¢1’ TL’E) dV

— [ F[AL@ML = BTN av = 0, (99)

[ P(@TeT - AF)Nas — [ (@), (AT - AT av
+ |0 (AW — AV W) dV = 0. (100)
Now we substitute the constitutive relation
AT, = Rinyily § — Lindly + poPLO"

in the third integral of the last equation. We obtain

| P(AT67 — AN S = [ (), (BT — A7) dV +

/Vo 0° [(RLNvuv N — Linoly + poPLel)Wll - (RLN’YW — Ling'n + poPLW) Wﬂ dV = ((10
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Thus

/SO @(EW — Alf ¢1)NL as — /VO(@)L (FL@ — Al’LE) dv
+ /.0 Ry (T 8 W — uf yWE) + po P (0T W =97 W) dV = 0. (102)

This equation is the analogue of Eq.[2, (61)].

Taking the expression for
/V 0 Ry, (i W — Ruyyul y WE)dV (103)
deduced from (102) and inserting this into (88) yields
- / (oo (07, — 0" T, 1) AV =

/ ) @(Eﬂ’a _ F’aﬂa) dV + 00 (K LT — Fgaﬂa)]\f 1 dS

60<A1 ¢1/ + Al ¢1)NL dS — 90 Al ¢1/ _ Al ¢1) dV
So

. / 90poPL(91W1f UL dv — / (6°), (K, — Kot ) AV, (104)

Now inserting (104) in (95) yields

. e
/fLNa/ @@1/% NE gt aNL)dV + ;@MN/ 90(@1/925 MN _Qlﬁb MN)dV N

6° g o o

. 791 791 / L 79 7917,

o 1 ’L _ 1 7L o 1 7J\U\4 _ 1 7]\U\/l
HL/OQ (9 / 00 6 00 )dV + RKMN /VOQ (0/ 00 0 00 )dv 4

TP, p,0°(— 07 Py Wy + 07 Py W) dV
+p{ /\/o @(Faﬂ/a — F/aﬂa) AV + @(Flmﬂ’a — Fgaﬂa) N, dS

n /SO@(AILW ~ AN, dS — / (@), (AT,97 — AV, ¢7) dV

VD

_ 00 o P orwl —guwl)dy —
Vo p L( L L)
a7
(T — g7 ) ay = 0. 1
+ Aop ( 00 ) V ( 05)

Next in the latter equality we transform the sum of the first four integrals.
Firstly note that by (84) we have

T:/ e Pdt = 1/p,
0
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h(X, t) . 1 e - L
(Fog) = o by ¢ hEs Ot = 5 RG),
= e

(106)

Hence by these equalities and the constitutive relation for the incremental
heat flux (30), the aforementioned sum of the four integrals equals

;/VO (07 QL, — 0T QY. ) av. (107)

Again by the identity
ab, ML = (ab,M)vL — (Z’Lb7M

and the divergence theorem, the sum (107) equals

]19{/ (61/@1 oY, )NL dS — / 91 QL_Ql Qv ) } (108)

By substituting the sum of the first four integrals in Eq.(105) by (108), we
obtain

L@ mavas - [ (@) o]
4 pPy / P, (— 6VTVE, + 6TWY;) dv

+ p[ / Oﬁ(Fag/a _F/aga) dv + ( —F{a%) Ny dS
+ [0(5L 87 - R Npas — [ (GO)L(KLW ~ AT, gT) v
— | TP (FWE -V W)av — | (%), (K, — K'atig) dV +
Vo Vo
1/ ?
+/ po(0"5; 9—) dvV = 0. (109)

The latter is the final form of the theorem of reciprocity of work, containing
all causes and effects. It generalizes Eq.[2, (62)], and reduces exactly to the
latter in case of vanishing initial fields, that is, when the initial configuration
is natural.
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