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Abstract

Factorization models are a mathematical representation of multidimensional data objects as a
collection of simpler components. For instance, a matrix can be characterized as a sum of latent
rank one components, where the number of addends is generally much lower than the dimensions
of the matrix. Factor models are commonly used across a variety of disciplines to deal with data
sets whereby a large number of observed variables is thought to reflect a smaller number of latent
variables. However, it can be challenging to infer the relative impact of the different components
as well as the number of components. To address this issue, it has become popular to rely on
overfitted factorization models that avoid strict constraints on either the number of factors and the
ordering of the data. In the Bayesian framework, increasing shrinkage priors on latent elements
have been proposed, allowing the introduction of infinitely many factors, albeit with impact
decreasing with the component index, such that the unnecessary ones can be adaptively removed
by increasingly shrinking their coefficients close to zero as the component index increases. These
flexible approaches are usually named infinite factorization models.

This thesis aims to provide an overview on infinite factorization models, presenting the state
of the art, discussing the limitations of the current models, and gradually composing a general
Bayesian infinite factorization framework that includes novel methods to address such deficiencies.
In particular, we consider the role of sparsity in the latent low-rank elements, as being crucial to
improve the inference and facilitate interpretation. Firstly, we focus on the effect of the sparsity
induced by the usual approximation of the infinite model through a truncated version to facilitate
the posterior inference. In this regard, it is fundamental to carefully assess how the truncation
criterion affects the inference performance and the factor model representation. We propose a
novel truncation criterion that relates the level of truncation to the factor contribution to the
global data variability, allowing one to easily calibrate the algorithm's parameters. Secondly, we
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careful investigate the role of local sparsity within the low-rank latent elements by introducing
a new general class of infinite factorization models. In this framework, we provide theoretical
support to verify desirable shrinkage properties of the prior, including robustness to large signals
and the sparsity behaviour to the increasing number of factors or dimension of the data. The
main novelty of the proposed class of models lies on the dependence of the local sparse pattern
of the latent elements on auxiliary information which is supposed to inform on the similarity
among variables, that correspond to columns of the data matrix. This structure enables us to
fill a key gap of the current infinite factor models that do not accommodate grouped variables
and other nonexchangeable structures. We also propose extending this class to the more general
class of matrix decomposition models. Symmetrically to the use of the exogenous information
about variables, the matrix decomposition model also embeds auxiliary information about the
row entities of the data matrix, enabling us to model the dependence through structured sparse
latent elements with respect to both the matrix dimensions. A novel estimation algorithm inspired
by boosting approaches is designed, overcoming the computational limits of the current Markov
chainMonte Carlo approaches and the nonidentifiability issue which characterizes all the overfitted
factorization models.

Practical gains with respect to the current state of art are demonstrated in simulation studies and
discussed in real data applications, further illustrating benefits in terms of parameter estimations
and model interpretation. Football player tracking data represent the common thread of the thesis.
They motivate the introduction of the novel methodologies to address the challenges arising from
the need of extracting valuable knowledge from a high dimensional dataset representing a complex
phenomenon. The amount of information included is such that several aspects of interest can
be explored. In this thesis, we focus on three of them: similarities among players, positional and
technical predictors of the dangerousness of an action, and player run heatmaps. In all these
cases, thoughtful insights and representations are provided, sheding ligth on the potential of our
approach. However, the generality of the proposed framework is expected to impact many other
application fields.



Sommario

I modelli fattoriali sono una rappresentazionematematica di dati multidimensionali tramite una
collezione di oggetti più semplici Per esempio, unamatrice di dati può essere descritta da una somma
di componenti latenti a rango uno, dove il numero di componenti è solitamente molto più piccolo
delle dimensioni della matrice. I modelli fattoriali vengono utilizzati frequentemente per l'analisi
di dati in varie discipline, quando si suppone che un insieme di variabili osservate sia esprimibile
con un numero più piccolo di variabili latenti. Ad ogni modo, può risultare molto difficile capire
il numero e il peso delle diverse componenti latenti. Per rispondere a questo problema, si sta
diffondendo l'utilizzo di modelli fattoriali sovra parametrizzati che evitano l'imposizione di vincoli
sia sul numero di fattori che sull'ordinamento dei dati. Nel contesto bayesiano, si sono affermate
delle distribuzioni a priori con compressione crescente che permettono di avere infiniti fattori, ma
con impatto decrescente rispetto all'indice di componente, in modo tale che i fattori non necessari
vengano rimossi comprimendone a zero i rispettivi coefficienti, in misura tantomaggiore al crescere
dell'indice di componente. Questi modelli flessibili sono generalmente identificati con il nome di
modelli infinito fattoriali.

Questa tesi si pone l'obbiettivo di fornire una panoramica sui modelli infinito fattoriali, presen-
tandone lo stato dell'arte, discutendone i limiti e costruendo in modo incrementale una struttura
generale per modelli bayesiani infinito fattoriali che includa nuovi metodi per sopperire a tali
mancanze. In particolare, la tesi tratta il ruolo della sparsità negli elementi latenti di basso rango, in
quanto cruciale per migliorare l'inferenza e facilitare l'interpretazione del modello. Inizialmente,
focalizziamo la nostra attenzione sull'effetto della sparsità indotta dall'usuale approssimazione
dei modelli a infiniti fattori dovuta a troncamento, effettuata per facilitare l'inferenza sulla dis-
tribuzione a posteriori. A tal proposito, è importante valutare attentamente come il criterio di
troncamento influisca sulla capacità di inferenza e sulla rappresentazione del modello. Proponiamo
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quindi un nuovo criterio di troncamento che pone in relazione il livello a cui viene troncato il
modello con il contributo dei fattori alla spiegazione della variabilità totale dei dati, permettendo
così di calibrare più facilmente i parametri dell'algoritmo. In secondo luogo, analizziamo il ruolo
della sparsità locale negli elementi latenti a basso rango introducendo una nuova classe generale
di modelli a infinito fattori. In questo scenario, forniamo gli strumenti teorici per verificare delle
proprietà di compressione della distribuzione a priori, tra le quali la robustezza ai segnali evidenti e
il comportamento della sparsità al crescere del numero di fattori o della dimensione dei dati. La
maggior novità della classe di modelli proposta risiede nella specificazione della struttura di sparsità
degli elementi latenti come dipendente da informazione ausiliaria che informi circa la similarità tra
le variabili, che corrispondono alle colonne della matrice di dati. Questa specificazione permette di
rispondere ad uno dei punti aperti degli attuali modelli a infiniti fattori che non permettevano la
possibilità di indurre gruppi o altre strutture tra variabili. Proponiamo anche di estendere questa
classe alla più generale classe dimodelli per decomposizione dimatrici. Inmodo simmetrico rispetto
a quanto fatto con l'informazione esogena sulle variabili, il modello per la decomposizione di ma-
trici include informazione aggiuntiva riguardante anche le righe della matrice di dati, consentendo
di modellare la dipendenza lungo entrambe le dimensioni della matrice tramite elementi latenti
con sparsità strutturata. Si definisce un nuovo algoritmo di stima ispirato dai metodi boosting,
superando i limiti computazionali dei metodi basati su catene diMarkovMonte Carlo e il problema
di non-identificabilità che caratterizza tutti i modelli fattoriali sovra-parametrizzati.

I dati di tracciamento dei giocatori di calcio rappresentano il filo conduttore della tesi. Moti-
vano l'introduzione dei nuovi metodi come risposta alle problematiche poste dal dover estrarre
conoscenza da un insieme di dati ad alta dimensionalità che descrive un fenomeno complesso. La
quantità di informazione in questi dati è tale che vi sono diversi aspetti di interesse da esplorare.
In questa tesi, ci concentriamo su tre di essi: similarità tra giocatori, predittori posizionali e tattici
della pericolosità di un'azione e heatmaps di corsa dei giocatori.In tutti questi casi, vengono fornite
riflessioni approfondite e rappresentazioni che mettono in luce le potenzialità del nostro metodo.
Ad ogni modo, data la generalità dell'approccio proposto, è lecito aspettarsi che vi sia un impatto
su molti altri campi di applicazione.
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1 Introduction

i Overview

i.i Tracking data in football

Data and statistics about football are commonly based on ball-related events, due to the manual
system of data collection. Recently, advances in computer vision techniques have made it possible
to automatically track every player on the pitch at discrete but very frequent time points. It should
be emphasised that although these methods were introduced around ten years ago (Barros et al.,
2007; Liu et al., 2009), it is only in the last couple of years that they have started to be routinely used.
The time points frequency is such that the positions and the velocities of all the players and the ball
are available at multiple times in a second, providing all necessary information to describe any game
situation. For instance, we may be interested in estimating the probability that a certain shot is
scored, given all the available information at the moment the shot is taken. Models to address this
issue, usually named expected goals models, have been developed both in academia (e.g. Pollard
& Reep, 1997) and by football analysts (Caley, 2015), but they have never relied on full tracking
data, leading to well-known biases (Mackay, 2017). Data including the positions and velocities of
all players on the pitch should now allow shot situations to be distinguished in terms of objective
scoring probability. Despite recent remarkable attempts (Fernández et al., 2019), we are far from
achieving such an objective because of the difficulty in handling such huge quantities of data.

In this thesis, we have access to new-generation tracking data provided byMathAndSport1. This
motivates the development of statistical methods that aim to be able to extract and summarize
valuable knowledge from the large amount of information available to provide useful and easily

1MathAndSport s.r.l. is a sport analytics company based in Milan: https://www.mathandsport.com/

1

https://www.mathandsport.com/


2 introduction

accessible insights in such a new and complex context. Each player or action in the game can
now be described by a large number of indicators. When the interest of the coaching staff or
media is focused on a single aspect of football, the proliferation of data and indices represents an
undoubted advantage, since it is likely that a suitable indicator addressing such a specific aspect
exists. Nevertheless, football insiders are more often interested in detecting general traits and
macro-trends to evaluate the impact of strategic decisions or assess and compare different players.
Recognizing and isolating such traits might be challenging. To address this issue, we will focus on
factorization models that are routinely used to express large statistical objects in terms of simpler
components. Due to the broad applicability of the factorization models and to the generality of
the methodology, in this thesis we will develop models and algorithms that are expected to impact
many application fields beyond football player tracking data.

i.ii Factorization models

Factorization models are a well known mathematical representation used across a variety of
disciplines, and are based on the idea that one canmore easily characterize structure in complex data
by utilizing a collection of simple components. For example, a matrix or tensor can be characterized
as a sum of rank one components. Suppose that a n × p matrix of data y is available, where
i = 1, . . . , n indicates the subjects, and j = 1 . . . , p indicates the variables. The likelihood
for y under a general class of factorization models can be expressed as L(y;H,Λ,Σ), where
H = {ηih, i = 1, . . . , n h = 1, . . . , k} and Λ = {λjh, j = 1, . . . , p, h = 1, . . . , k} are
matrices with rank k, and Σ is a matrix of additional parameters. There are many important
special cases of this class, including Gaussian linear factor models (see Roweis & Ghahramani,
1999, for a discussion), exponential family factor models (Jun & Tao, 2013), Gaussian copula factor
models (Murray et al., 2013), latent factor linear mixed models (An et al., 2013), probabilistic matrix
factorization (Salakhutdinov & Mnih, 2008), underlying Gaussian factor models for mixed scale
data (Reich & Bandyopadhyay, 2010), and functional data factor models (Montagna et al., 2012).

To be effective in dimensionality reduction, the number of simpler components k is generally
much lower thanmin(n, p). In this case, the factor decomposition is condensing the available
information into latent aggregates, which could be potentially meaningful. In view of this, factor
models are commonly used in many applications to deal with data sets whereby a large number
of observed variables p is thought to reflect a smaller number k of latent variables, especially if
the latent constructs present an easy interpretation, as the individual skills and behaviours in
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psychology (see, e.g. Fabrigar et al., 1999, for an extended review) or economics (Heckman et al.,
2006). In studying biological activity (Carvalho et al., 2008) and diseases (West, 2003), factors
analysis has been largely applied to summarize gene expression through latent aggregates that are
possibly associated to variables of interest.

A small number of components k enables us to obtain a sparse representation of an object of
interest, which is particularly attractive when n and p are huge, even when we are not interested in
bringing hidden and meaningful relations to light. For instance, the envelope model (Cook et al.,
2010) for multivariate regression is based on the key assumption that some aspects of the response
vector are stochastically constant as the p predictors vary, meaning that a coefficient matrix can be
represented in a k-dimensional subspace of its column space. This is equivalent to representing
the coefficient matrix as a product between a smaller rank matrix and an orthonormal basis of the
subspace. The choice of k is crucial in order to represent the minimum subspace that is relevant to
the regression.

More generally, in factorization models, it can be challenging to infer the relative impact of the
different components as well as the number of components k. Although there is a rich literature,
selection of k is far from a solved problem. In unsupervised settings, it is common to fit the model
for different choices of k and then choose the value with the best goodness-of-fit criteria. For
likelihood models, the Bayesian information criteria is particularly popular. It is also common
to use an informal elbow rule, selecting the smallest k such that the criteria improve only a small
amount for k + 1. In specific contexts, formal model selection methods have been developed. For
example, taking a Bayesian approach, one can choose a prior for k and attempt to approximate
the posterior distribution of k using Markov chain Monte Carlo; see Lopes & West (2004) for
linear factor models, Miller & Harrison (2018) for mixture models, and Yang et al. (2018) for
matrix factorization. Although such methods are conceptually appealing, their computation can
be prohibitive outside of specialized settings. A popular idea to address this issue is by including
infinitely many components having impact decreasing with the component index. Such flexible
approaches were proposed by Rousseau & Mengersen (2011) for mixture models and Bhattacharya
&Dunson (2011) forGaussian linear factormodels, and they are usually named infinite factorization
models.

In this thesis, we will focus on Bayesian factorization models characterized by the underlying
Gaussian structure

y = f(z), z = HΛ⊤ + ϵ, vec(ϵ) ∼ Nnp(0,Σ), (1.1)
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withH ann×k factormatrix,Λ a p×k loadingsmatrix, ϵ an independent errormatrix, andwhere
f is a deterministic transformation andNq(µ,Σ) denotes the multivariate Gaussian distribution
with mean µ and variance matrixΣ.

Class (1.1) includes most of the cases mentioned above. For instance, when the row vectors
ϵi· and ηi· of ϵ andH are Gaussian random vectors and f is the identity function, model (1.1)
is a Gaussian linear factor model. With similar assumptions for ϵi· and ηi·, and assuming the
transformations yij = F−1

j {FN (zij)}, with FN (zij) the cumulative distribution function of
the standard Gaussian distribution, model (1.1) is a Gaussian copula factor model (Murray et al.,
2013). Exponential family factor models (Jun & Tao, 2013), probabilistic matrix factorization
(Salakhutdinov & Mnih, 2008), and underlying Gaussian models for mixed-scale data (Reich &
Bandyopadhyay, 2010) can be obtained by appropriately defining the elements in (1.1), whereas
multivariate response regression models belong to this framework whenH depends on a covariate
matrix x.

Consistent with the literature on Bayesian factor models (see, e.g. Arminger & Muthén, 1998),
we rely on error termswith diagonal covariancematrixΣwith inverse gammapriors on the diagonal
elements and specify prior distributions onH andΛ. Recently, suitable increasing shrinkage priors
onΛ have been proposed (Bhattacharya & Dunson, 2011; Legramanti et al., 2020), allowing the
introduction of infinitely many factors, namely k = ∞, with the loadings elements increasingly
shrunk towards zero as the component index increases. This allows us to specify an infinite
factorization model that can be accurately approximated through a truncated version, which
facilitates the inference computation.

ii Main contributions of the thesis

Despite the spread of the infinite factorization models, existing methods present a lack of careful
consideration of the structure induced by the prior, limiting the use of such models in practical
applications. Firstly, the truncation criteria currently applied in the increasing shrinkage prior
are heuristic and not invariant to the scale of the data. This leads to difficulties in calibrating the
algorithm's parameters with negative consequences on the representation of large data through
a small number of components. Secondly, the literature lacks investigation on how to handle
sparsity and, in particular, how to induce shrinkage structure. A careful consideration of these
aspects could help to detect hidden relation patterns among variables and to promote an easier
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interpretation of the latent components. Finally, practical uses of the current increasing shrinkage
priors are limited both by slow estimation methods and the fact that are thought to address model
where the dependence structure among subjects i = 1, . . . , n is carefully and strictly specified.

Motivatedbothby these limitations and thenew challenges raised by the advances in football data
collection technology, in this thesis we gradually compose a general Bayesian infinite factorization
framework that includes novel methods to address such limitations and effectively apply factor
models to football player tracking data as well as to other contexts. In each chapter, practical gains
are demonstrated in simulation studies and discussed in real data applications, further illustrating
benefits in terms of parameter estimations and model interpretation. Specifically, the thesis is
organized as follows.

InChapter 2, wepresent anoverviewof the current increasing shrinkagepriors that are specifically
designed to include infinitely many factors k = ∞ in the Gaussian linear factor model

yi = Ληi· + ϵi·, ηi· ∼ Nk(0,Ψ), ϵi· ∼ Np(0,Σ), Σ = diag(σ21, . . . , σ
2
p), (1.2)

with Ψ a k × k covariance matrix. Assuming the error term ϵi· independent of ηi·, the matrix
Ω = var(yi·) can be expressed as Ω = ΛΨΛ⊤ + Σ. These methods are designed to facilitate
posterior computation via simple Gibbs sampling algorithms, approximating the infinite model
through a truncated version. In this regard, it is important to carefully consider which truncation
criterion should be adopted. A discussion about this is outlined in this chapter, as well as a new
proposed truncation criterion. Such a criterion allows a more intuitive and general way to calibrate
the algorithm's parameters relating the level of truncation to the factor contribution to the global
data variability. Following this idea, it is easy to note the remarkable importance of using methods
that are invariant to the scale of the data. Part of the results reported in the second chapter are
presented in Schiavon & Canale (2020).

Chapter 3 presents a new general class of infinite factor models, named generalized infinite
factorization models, which is designed for underlying Gaussian factor models yij = fj(zij)with
zi· = Ληi· + ϵi·. In this framework, we report a careful discussion on the shrinkage properties
of increasing shrinkage priors. Based on the rich literature about shrinkage priors outside the
factorization context, we provide theoretical support to verify desirable properties in our general
framework. These properties include robustness of the prior to large signals and the asymptotic
behaviour of the prior to the increasing dimension of the data. Another key gap of the existing
methods is the lack of accommodation for grouped variables and other nonexchangeable structures.
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We address this issue in the new class of models defining the prior onΛ as dependent on a meta-
covariate matrix w informing about the sparsity similarities among the different variables j =

1, . . . , p. Simulation and application studies show the benefits of using our approach with respect
to the current state of the art both in terms of variance inference and model interpretation. Part of
the results reported in the third chapter are presented in Schiavon et al. (in press) and Schiavon &
Canale (2021).

In Chapter 4, we propose extending the generalized infinite factorization models approach
to the more general class of matrix decomposition models. Symmetrically to the prior onΛ, we
define a shrinkage prior on the elements ofH as depending on a covariate matrix x, promoting
the identification of complex dependence structures related to similarities among the subjects.
To estimate the model, we design a novel algorithm inspired by gradient boosting approaches,
overcoming the computational limits of the current Markov chain Monte Carlo approaches with
which we also come up against in Chapter 3. In addition, this algorithm naturally handles and
solves the nonidentifiability issue which characterizes all the overfitted factorization models. The
application of the algorithm to a dataset of player tracking heatmaps provides thoughtful insights
and representations of a complex phenomenon, enlightening on the potential of this approach
with high-dimensional data.

Finally, Section 5 provides some final remarks on the achievements of this thesis and on future
possible developments.



2 Infinite factorization models

i Background

In recent decades, the sparse structure of the variance matrix characterizing factor models has
been particularly attractive for dimensionality reduction purposes, and several recent works have
mainly concerned on estimating the variance and covariance matrix, rather than the factor loadings
(see Kastner, 2019, for an example in econometrics). Because of this fact and to the aforementioned
challenges from the choice of the number of components k, it has become popular to rely on
overfitted factorization models that avoid strict constraints on either the number of factors and
the ordering of the data (Frühwirth-Schnatter & Lopes, 2018), since a unique identification of the
loadingsmatrix is not necessary. TheBayesian approachproposedbyBhattacharya&Dunson (2011)
for Gaussian linear factor models considers more than enough factors, albeit with shrinkage priors
that adaptively remove unnecessary ones by shrinking their coefficients close to zero. Given model
(1.2), the authors specify the variance of each element λjh (j = 1, . . . , p;h = 1, . . . , k) as the
product between a local scale φjh and a factor-specific scale θh. An increasing shrinkage behaviour
on the columns of Λ through a multiplicative gamma process prior on θh (h = 1, . . . ,∞) is
imposed, allowing the introduction of infinitely many factors, k = ∞. Specifically, the prior onΛ
proposed by Bhattacharya & Dunson (2011) can be written as

λjh | φjh, θh ∼ N(0, φjhθh), θh = ϑhρh, (2.1)

ρh =
h−1∏
l=0

ϑl, ϑ0 = 1, ϑ−1
1 ∼ Ga(a1, b1), ϑ−1

m ∼ Ga(a2, b2), m ≥ 2.

7
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Expression (2.1) induces a class of scale-mixture of Gaussian shrinkage priors (Polson& Scott, 2010)
for the loadings. Under this construction, the columns ofΛ progressively play a less important
role in characterizing the covariance structure of the data and their value is increasingly shrunk
towards zero, so that we can control and discard redundant factors. The authors specify an inverse
gamma prior on the local scale, setting φ−1

jh ∼ Ga(ν/2, ν/2), whereGa(a, b) denotes a gamma
distribution with mean a/b and variance a/b2.

Similar in spirit is the more recent cumulative stick-breaking process proposed by Legramanti
et al. (2020), who introduced a spike-and-slab structure (Mitchell&Beauchamp, 1988) that increases
the mass on the spike for later columns. Thanks to the convenient notation we introduced, the
cumulative stick-breaking prior can be represented under the same setting (2.1), fixing local scales
to one and defining factor-specific scale priors

ϑ−1
h ∼ Ga(aθ, bθ), ρh = Ber(1− πh), h = 1, . . . ,∞,

withBer(p) denoting a Bernoulli distribution with mean p. The process πh = pr(θh = 0) (h =

1, . . . ,∞) follows a stick-breaking construction,

πh =
h∑

l=1

ul, ul = vl

l−1∏
m=1

vm, vm ∼ (1, α), (2.2)

with Be(a, b) the beta distribution with mean a = a/(a+ b), such that πh+1 > πh is guaranteed
for any h = 1, . . . ,∞ and limh→∞ πh = 1 almost surely. The main difference with respect to
the multiplicative gamma process lies on the separation between the parameters that control the
rate of shrinkage of redundant factors from those regulating the magnitude of the nonneglectable
factors. To induce a continuous shrinkage prior on every λjh, the authors suggested possibly
adjusting the definition of θh as θh = ρh(ϑh − θ∞) + θ∞, where θ∞ is positive but close to zero.

In both models, representing the current state of art, the increasing shrinkage allows one to accu-
rately approximate the likelihoodL(y; Λ,Ψ,Σ) byL(y; Λk∗ ,Ψk∗ ,Σ), withΛk∗ containing the
first k∗ columns of the infinite matrixΛ andΨk∗ the first k∗ rows and columns ofΨ, lessening the
computational burden. Posterior inference for truncated infinite factor models can be conducted
in different ways. For fixed truncation k∗, one could run separate Gibbs samplers for each value of
k∗ to choose the best k∗. Clearly, this approach would lead to computational hurdles, especially for
large p, where a large grid of possible k∗ values should be tested. An alternative would be to con-
sider a varying k∗ and implement a reversible jump Markov chain Monte Carlo approach (Lopes
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& West, 2004), a formally valid solution that still remains not convenient from the computational
viewpoint. A computationally efficient proposal introduced in Bhattacharya & Dunson (2011) and
followed in Legramanti et al. (2020) consists in defining an adaptive Gibbs sampler that attempts
to infer the best value of k∗ while it runs. In this way, a single run of the algorithm is sufficient to
choose the number of latent factors and to draw from the posterior distributions of the parameters.
The value of k∗ is adapted only at some Gibbs iterations by discarding redundant factors and, if
no redundant factors are identified, by adding a new factor by sampling its parameters from the
prior distribution. Convergence of the Markov chain is guaranteed by satisfying the diminishing
adaptation condition in Theorem 5 of Roberts & Rosenthal (2007), by specifying the probability
of occurrence of an adaptive iteration t as equal to pr(t) = exp(α0 + α1t), where α0 and α1

are negative constants, such that frequency of adaptation decreases exponentially fast. In every
adaptive iteration, redundant factors are discarded according to a specific criterion. If no redundant
factors are identified, a new factor is added by sampling its parameters from the prior distribution.
The truncation criteria clearly play a central role in determining the final number of factors and,
consequently, the posterior inference. In the adaptive Gibbs sampler for the multiplicative gamma
process factor model, for example, the authors considered as redundant those factors characterized
by loadings having all their elements λjh within a neighbourhood of zero. In other terms, at each
adaptive iteration, the quantitymh = max1≤j≤p{|λjh|} of every column h of Λ is compared
with a pre-determined threshold ζ , dropping the columns wheremh < ζ . We will argue that the
choice of the tolerance parameter ζ is a delicate issue and, motivated by a lack of clear guidelines
for choosing such a value, we propose an alternative truncation criterion for the multiplicative
gamma process model. We will show that our proposal is interpretable, robust with respect to
the dimension and scale of the data, and able to identify all important factors. Our contribution
further illustrates the importance of using criteria that are invariant to the scale of the data when
we apply any infinite factor model, including the cumulative shrinkage process factor model.
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ii A novel truncation criterion for infinite factorization
models

ii.i A new proposal

Our goal is to define a criterion that is interpretable, robust with respect to the dimension and
scale of the data, and able to identify all important factors. Under the class of models (1.2), letΛk∗

denote the matrix obtained by discarding the columns ofΛ from k∗ +1 onwards, or, equivalently,
setting them to zero. Our idea consists of truncating Λ such that the induced truncated model
Ωk∗ = Λk∗Ψk∗Λ

⊤
k∗ + Σ is able to explain at least a fraction τ ∈ (0, 1) of the total variability

of the data. To measure the induced truncation error ofΩk∗ , we use the trace ofΩ. The trace is
justified by the fact that the maximum error occurring in an element ofΩ due to truncation always
lies along the diagonal and by the relation between the difference of traces and the nuclear norm,
routinely used to approximate low rank minimization problems (Liu & Vandenberghe, 2010).

Heuristically, we would like to have

tr(Λk∗Ψk∗Λ
⊤
k∗) + tr(Σ)

tr(Ω)
≥ τ, (2.3)

but we will make this rule concrete later. In this way, the number of columns inΛ is still affected by
a subjective choice, the value of τ , but this can be decided according to a criterion that is consistent
with what is commonly done in other similar contexts (e.g. principal component analysis) and
independently from the value of p and the scale of the data.

As formal justification for this approach, we obtain an upper bound on the probability that
condition (2.3) is not satisfied. The following proposition provides conditions on prior (2.1) so
that the underestimation of it occurs by truncating decreases exponentially fast as k∗ increases.

Proposition 2.1: Let E(φjh) be finite for j = 1, . . . , p and h = 1, . . . ,∞ and E(θh) =

abh−1 with a > 0 and b ∈ (0, 1) for all h = 1, . . . ,∞. Let c > 0 be a sufficiently large number
such that c ≥ maxh=1,...,∞ ψhh. If

mΩ = min
j=1,...,p

⎡⎣E(σ−2
j ), E

⎧⎨⎩
( ∞∑

h=1

ψhhλ
2
jh

)−1
⎫⎬⎭
⎤⎦ <∞,
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then for any τ ∈ (0, 1),

pr
{

tr(Ωk∗)

tr(Ω)
≤ τ

}
≤
(

1

1− τ

)
ac

bH

1− b
mΩ

p∑
j=1

E(φj1).

Proof of Proposition 2.1. The trace ofΩ is tr(Σ)+tr(Λk∗Ψk∗Λ
T
k∗)+tr(Λ∆k∗Ψ∆k∗Λ

T
∆k∗

), where
Λ∆k∗ = Λ− ΛH andΨ∆k∗ = Ψ−ΨH . Hence, it is equivalent to rewriting the probability of
interest as

pr

{
tr(Λ∆k∗Ψ∆k∗Λ

T
∆k∗

)

tr(Ω)
≥ 1− T

}
.

By Markov’s inequality

pr

{
tr(Λ∆k∗Ψ∆k∗Λ

T
∆k∗

)

tr(Ω)
≥ 1− τ

}
≤ E

{
tr(Λ∆k∗Ψ∆k∗Λ

T
∆k∗

)

tr(Ω)

}/
(1− τ).

The expected ratio of two random variables u and v isE(u/v) = cov(u, 1/v) + E(u)E(1/v),
which allows us to writeE(u/v) ≤ E(u)E(1/v) if cov(u, 1/v) ≤ 0. Then, since the covariance
between tr(Λ∆k∗Ψ∆k∗Λ

T
∆k∗

) and tr(Ω) is nonnegative, the following inequality holds

E

{
tr(Λ∆k∗Ψ∆k∗Λ

T
∆k∗

)

tr(Ω)

}
≤ E{tr(Λ∆k∗Ψ∆k∗Λ

T
∆k∗

)}E
(

1

tr(Ω)

)
.

The trace tr(Λ∆k∗Ψ∆k∗Λ
T
∆k∗

) is equal to
∑p

j=1

∑∞
h=H+1 ψhhλ

2
jh. The variance of λjh is

E(λ2jh) = E(φj1)E(θh). Let c satisfy c ≥ maxh=1,...,∞ ψhh. Since E(φj1) is finite and
E(θh) = abh−1 with a, b positive constants and b < 1, then

E{tr(Λ∆k∗Ψ∆k∗Λ
T
∆k∗

)} ≤ ca
bH

1− b

p∑
j=1

E(φj1).

Since tr(Ω) = tr(ΛΨΛT) + tr(Σ), we know that tr(Ω) ≥
∑∞

h=1 ψhhλ
2
jh + σ2j for any j in

1, . . . , p, where σ2j is the jth diagonal element ofΣ. Then, for any j in 1, . . . , p, we obtain

1

tr(Ω)
≤ 1∑∞

h=1 ψhhλ
2
jh + σ2j

,
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and, consequently,

E

{
1

tr(Ω)

}
≤ E

(
σ−2
j

)
, E

{
1

tr(Ω)

}
≤ E

⎧⎨⎩
( ∞∑

h=1

ψhhλ
2
jh

)−1
⎫⎬⎭ .

Therefore, sincemΩ = minj=1,...,p

[
E(σ−2

j ), E

{(∑∞
h=1 ψhhλ

2
jh

)−1
}]

<∞, then

pr
{

tr(Λk∗Ψk∗Λ
T
k∗) + tr(Σ)

tr(Ω)
≤ τ

}
≤
(

1

1− τ

)
a c

bH

1− b
mΩ

p∑
j=1

E(φj1),

as stated by the proposition.

Note that generally, in infinite factormodels, the parametersσ2j (for j = 1 . . . , p) are identically
distributed according to an inverse gamma distribution. This fact guaranteesE(σ−2

j ) constant
and finite for every j = 1, . . . , p. In particular, all the conditions of Proposition 2.1 hold for the
multiplicative gamma process under the condition of Theorem 1 of Bhattacharya & Dunson (2011)
and for the cumulative shrinkage process of Legramanti et al. (2020).

To apply rule (2.3) through an adaptive Gibbs sampler, in theory, we should have a realization of
the matrixΩ, which is in fact not observed. Hence, in practice, rule (2.3) translates to the following
operative procedure for the multiplicative gamma process factor model, whereΨ = Ik. Consider
the empirical estimator of tr(Ω) given by t̂r(Ω) =

∑n
i=1

∑p
j=1 y

2
ij/n, assuming that the data have

been transformed to have mean zero. Let σ2(t)j the draw of the parameter σ2j at the t-th iteration
of the Markov chain. The full conditional posterior expected value of

∑p
j=1 σ

(t)2
j under the

multiplicative gamma process specification is a linear transformation of
∑n

i=1(yij − λ
(t)⊤
j· η

(t)
i· )

2,
which is also the sample deviance estimate of the residuals e(t)ij = yij − λ

(t)⊤
j· η

(t)
i· at the t-th

iteration. Thus, we can write

n t̂r(Ω) =
p∑

j=1

n∑
i=1

y2ij =

p∑
j=1

n∑
i=1

e
(t)2
ij + S(t),

where we interpret S(t) =
∑p

j=1

∑n
i=1(y

2
ij − e

(t)2
ij ) as an estimate of the variability due to the
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factors at iteration t. In particular, S(t) can be decomposed as the sum of

s
(t)
h =

p∑
j=1

n∑
i=1

λ
(t)
jhη

(t)
hi (yij + e

(t)
ij ),

for h = 1, . . . , k(t) and where k(t) is the number of factors at iteration t. Considering each s(t)h as
the contribution of the h-th column to S(t), we discard the columns ofΛwith lowest s(t)h while

n−1
(∑p

j=1

∑n
i=1 e

(t)2
ij + S(t)

)
t̂r(Ω)

> τ, (2.4)

is satisfied for a fixed τ ∈ (0, 1).

A remarkable property implied by this procedure, reported in the following lemma, is that it
guarantees a finite and deterministic upper bound on the number of factors, for any τ ∈ (0, 1).

Lemma 2.1: Let k(t+1) denote the number of latent factors after the truncation at iteration t,
determined as the minimum number of summands s(t)h such that condition (2.4) is satisfied. Let tκ
the iteration corresponding to the κ-th adaptation and κ̃ = ⌈k(0) − 1− (1− τ)−1⌉, where k(0) is
the starting number of factors. Then, for any t ≥ tκ̃ and for any τ ∈ (0, 1),

k(t+1) ≤ 1

1− τ
+ 1.

Proof of Lemma 2.1. Consider the decomposition

nt̂r(Ω) =
p∑

j=1

n∑
i=1

e
(t)2
ij +

k(t)∑
h=1

s
(t)
h .

Let s(t)m denote the minimummin1≤h≤k(t){s
(t)
h } between the summands. Then,

s(t)m k(t) ≤ nt̂r(Ω)−
p∑

j=1

n∑
i=1

e
(t)2
ij ≤ nt̂r(Ω),
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from which s(t)m /nt̂r(Ω) ≤ 1/k(t). If k(t) > 1/(1− τ), then s(t)m /(nt̂r(Ω)) < 1− τ and

τ < 1− s
(t)
m

nt̂r(Ω)
=
n−1(

∑p
j=1

∑n
i=1 e

(t)2
ij + S(t) − s

(t)
m )

t̂r(Ω)
,

which implies

τ <
n−1(

∑p
j=1

∑n
i=1 e

(t)2
ij + S(t))

t̂r(Ω)
,

which satisfies condition (2.4). Therefore, k(t+1) ≤ k(t) − 1. By algorithm construction k(t) ≤
k(t−1) + 1 and, given t ≥ tκ̃, with κ̃ = ⌈k(0) − 1− (1− τ)−1⌉, we can observe

k(t+1) ≤ 1

1− τ
+ 1.

This result, which at a glance seems trivial, is in fact very important as, for a given ζ , using in the
adaptation step the criterion of Bhattacharya & Dunson (2011), k∗ does not have a deterministic
upper bound. See the next section for details.

ii.ii Relations with alternative criteria

Consider the issue of choosing ζ in the algorithm proposed in Bhattacharya & Dunson (2011)
and recalled in Section i. Let∆k∗ = (Λ − Λk∗)(Λ − Λk∗)

T such that we can decompose the
matrixΩ asΩ = ∆k∗ + Λk∗Λ

⊤
k∗ +Σ, sinceΨ is the identity matrix in the multiplicative gamma

process. Then,

max
1≤j≤p

{Ωjj} ≥ max
1≤j≤p

{∆k∗
jj } = max

1≤j≤p

{
+∞∑

h=k∗+1

λ2jh

}
≥

max
1≤j≤p, h>k∗

{λ2jh} = max
h>k∗

m2
h.

Therefore, if ζ is big enough so that the posterior probability that
√
max1≤j≤p{Ωjj} is smaller

than ζ is close to one, then a fortiori also the posterior probability thatmh < ζ is close to one
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for all h > k∗ and for any possible truncation level k∗. This will lead to the highly deprecable
consequence of discarding almost all the columns ofΛ. In particular, the relation presented in the
next theorem shows that an unwisely large ζ could determine poor results in terms of explained
variance.

Theorem 2.1: Consider the set of valuesmh = max1≤j≤p{|λjh|} (h = 1, . . . ,+∞), and
the subset

Mτ =
{
mh for h = 1, . . . ,+∞ : mh >

√
(1− τ)tr(Ω)

}
.

Let τ ∈ (0, 1) such that the posterior probability pr(Mτ = ∅ | y) is close to zero. Let Λζ denote
the matrix defined discarding every column h of the random Λ such that mh < ζ . If ζ is big
enough so that the posterior probability that minmh∈{Mτ}mh < ζ is close to one when Mτ is not
empty, then the posterior probability

pr

{
tr(ΛζΛ

⊤
ζ ) + tr(Σ)
tr(Ω)

< τ | y

}

is close to one.

Proof of Theorem 2.1. Consider the case of Mτ not empty, denoting p∅ = pr(Mτ = ∅ | y)
the posterior probability of the complementary event. Let h∗ denote the index of the minimum
element belonging toMT , and pmh∗ denote the posterior probability pmh∗ = pr(mh∗ < ζ |
y,Mτ ̸= ∅), conditionally onMτ not empty. Consider the eventmh∗ < ζ , so that the index h∗

belongs to the set of column indicesHζ that defines the column of the random matrixΛ− Λζ .
Then,

tr
{
(Λ− Λζ)(Λ− Λζ)

⊤
}
=

p∑
j=1

∑
hζ∈Hζ

λ2jhζ
> m2

h∗ ≥ (1− τ)tr(Ω),

from which

tr
{
(Λ− Λζ)(Λ− Λζ)

⊤}
tr(Ω)

> 1− τ

tr(ΛζΛ
⊤
ζ ) + tr(Σ)
tr(Ω)

< τ.
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In other terms, Mτ ̸= ∅ and mh∗ < ζ are sufficient conditions to guarantee {tr(ΛζΛ
⊤
ζ ) +

tr(Σ)}/tr(Ω) < τ .

Therefore,

pr

{
tr(ΛζΛ

⊤
ζ ) + tr(Σ)
tr(Ω)

< τ | y

}
> pr

(
m2

h∗ ≥ (1− τ)tr(Ω) | y
)
= pmh∗ (1− p∅).

When τ and ζ are chosen large enough that p∅ is close to 0 and pmh∗ is close to 1, we obtain

pr

{
tr(ΛζΛ

⊤
ζ ) + tr(Σ)
tr(Ω)

< τ | y

}

close to 1.

Theorem 2.1 further sheds light on the importance of carefully considering the scale of the data,
represented here by the trace ofΩ, to explain the variance of the data through the factor model
Ωζ = ΛζΛ

⊤
ζ +Σ.

On the other side, ζ may be too small, leading to an unnecessarily large number of irrelevant
factors. Specially, for large p, the probability of having all values of |λjh| smaller than ζ goes to zero
exponentially. The consequence is that an unnecessarily large set of columns is kept. In general,
for a given ζ , the number of factors determined according to the procedure in Bhattacharya &
Dunson (2011) is random and unbounded.

While our method is defined for the multiplicative gamma process model, its guidelines provide
useful practical suggestions for the application of the cumulative shrinkage process of Legramanti
et al. (2020). According to the aforementioned notation, the columns to discard are naturally
identified as those modelled by the spike θ∞, while, in the columns retained, λjh is modelled by
the slab, and specifically, it is marginally distributed as a Student's t -distribution with 2aθ degrees
of freedom. Consider the ratio r between the two posterior full conditional probabilities that a
column is modelled by the spike and the slab, respectively. Then, r is affected by the trace ofΩ. In
particular, in those cases where the slab marginal distribution can be approximated by a normal
distribution, i.e., when aθ is large, ifΩ is scaled by a factor c, the new ratio between probabilities
rc is given by rc = rc. For this reason, despite a standardization procedure not being included in
the original algorithm (Legramanti et al., 2020), it appears crucial in applications.
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iii Simulation experiments

To illustrate the performance of the different criteria, a simulation study has been conducted.
This also enables a comparison of the behaviour of the different methods when the scale of the
problem changes, which has been ignored in previous studies.

Specifically and consistently with Legramanti et al. (2020), we simulate 20 independent data
sets with n = 100 observations from the Gaussian linear factor model yi ∼ Np(0,Λ0Λ

⊤
0 + Ip)

by sampling the loadings λjh0 independently from a Gaussian distribution with mean zero and
variance ς2 with h ≤ k, k finite, and ς ∈ {1, 50}. We consider three different scenarios based
on different dimensions ofΛ, and specifically we let (p, k) ∈ {(20, 5), (50, 10), (100, 15)}. We
compare the performance of differentmodels and criteria, namely themultiplicative gammaprocess
with adaptation algorithm and ζ = 10−4 as in Bhattacharya & Dunson (2011), the multiplicative
gamma process with adaptation based on the criterion described in Section ii.i with τ = 0.999,
the cumulative shrinkage process as in Legramanti et al. (2020), and the cumulative shrinkage
process fitted on the standardized data assuming θ∞ = 0.01 and aθ = 15. The hyperparameters
of the four algorithms, unless otherwise specified, are assumed to be equal to those specified in
Section 4 of Legramanti et al. (2020). Table 2.1 reports the median of the posterior mean of a

Table 2.1: Median and interquartile range of the estimatedE(k∗|y) for the differentmodels and truncation
criteria.

ς (p, k) MGPζ MGPτ CUSP0 CUSPstd
Q0.5 IQR Q0.5 IQR Q0.5 IQR Q0.5 IQR

1 (20, 5) 20.00 0.00 9.72 1.21 5.00 0.00 5.00 0.00
(50, 10) 49.99 0.29 14.02 0.95 10.00 0.00 10.00 0.00
(100, 15) 93.16 2.12 17.80 0.30 15.00 0.00 14.00 1.00

50 (20, 5) 20.00 0.00 7.01 0.81 11.15 2.23 5.14 0.41
(50, 10) 50.00 0.12 10.77 0.37 21.35 4.45 10.00 0.00
(100, 15) 94.82 2.31 15.97 0.27 15.00 0.07 14.50 1.00

CUSP, cumulative shrinkage process; MGPζ , multiplicative gamma process with truncation criterion
as in Bhattacharya & Dunson (2011); MGPτ , multiplicative gamma process with truncation criterion
proposed in Section ii.i; Q0.5, median; IQR, interquartile range.

Monte Carlo estimate of the number of factorsE(k∗|y) and its interquartile range. To limit the
computational time, we fix, in the algorithms, the maximum value of k∗ equal to p. We notice
that the standard multiplicative gamma process is severely biased. This bias is due to the difficulty
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of defining a value for ζ without taking into consideration the scale or the dimension of the data.
Our proposal based on the interpretable quantity τ instead consistently estimates the number of
factors and is robust to the scale of the data. Moreover, the last two columns of Table 2.1 show that
the standardization in the cumulative shrinkage process is fundamental for performing adequate
inference on the parameters in different contexts.

In addition to the posterior mean of k∗, we also compute the computational time of each
procedure, a Monte Carlo estimate of the mean squared error

∑p
j=1

∑p
l=j E{(ωjl − ωjl0)

2 |
y}/{p(p+1)/2}, whereωjl andωjl0 are the elements jl ofΩ andΩ0 = Λ0Λ

⊤
0 +Ip, respectively.

Furthermore, we also compute the logarithmof the pseudo-marginal likelihood, a convenient index
derived from predictive considerations (Gelfand & Dey, 1994). The median and the interquartile
range of these quantities are reported in Tables 2.2--2.4.

Table 2.2: Median and interquartile range of the estimated mean squared error for the different models
and truncation criteria.

ς (p, k) MGPζ MGPτ CUSP0 CUSPstd
Q0.5 IQR Q0.5 IQR Q0.5 IQR Q0.5 IQR

1 (20, 5) 0.76 0.21 0.77 0.20 0.73 0.24 0.70 0.22
(50, 10) 2.08 0.38 2.09 0.30 2.13 0.32 2.34 0.25

(100, 15) 3.69 0.37 3.65 0.37 3.70 0.44 5.64 0.62

50 (20, 5) 13.38 4.00 12.57 2.74 11.98 3.78 3.19 1.71
(50, 10) 26.27 2.85 26.52 5.00 20.72 2.57 11.12 3.49

(100, 15) 99.64 53.56 72.19 47.08 287.38 140.13 28.29 3.11

CUSP, cumulative shrinkage process; MGPζ , multiplicative gamma process with truncation criterion as in
Bhattacharya & Dunson (2011); MGPτ , multiplicative gamma process with truncation criterion proposed in
Section ii.i; Q0.5, median; IQR, interquartile range.
To facilitate reading the results have been scaled by a factor of 10−6 when ς = 50.

It is worth reporting that the performances of MGPτ in terms of runtime, mean squared error,
and logarithm of the pseudo-marginal likelihood are comparable to or even better than those
of the original cumulative shrinkage process implementation. This fact suggests that the poor
performance of the multiplicative gamma process discussed in the comparison in Legramanti et al.
(2020) could be mainly related to a misleading method to select the relevant latent factors. This
stresses the dramatic importance of an interpretable and general truncation criterion in infinite
factor models.
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Table 2.3: Median and interquartile range of the runtime in seconds for the differentmodels and truncation
criteria.

ς (p, k) MGPζ MGPτ CUSP0 CUSPstd
Q0.5 IQR Q0.5 IQR Q0.5 IQR Q0.5 IQR

1 (20, 5) 88.44 15.93 67.08 8.49 69.56 5.74 69.41 6.26
(50, 10) 308.4 5.97 156.04 7.98 160.77 5.09 165.23 3.93

(100, 15) 1425.62 39.77 338.41 9.35 369.01 7.05 369.28 6.40

50 (20, 5) 80.66 4.79 65.28 4.98 80.13 4.10 73.60 5.23
(50, 10) 304.93 10.62 151.00 10.59 201.37 11.18 169.61 2.87

(100, 15) 1425.99 39.23 333.03 9.23 380.14 8.36 363.35 12.20

CUSP, cumulative shrinkage process; MGPζ , multiplicative gamma process with truncation criterion as in Bhattacharya
& Dunson (2011); MGPτ , multiplicative gamma process with truncation criterion proposed in Section ii.i; Q0.5,
median; IQR, interquartile range.

iv Football player tracking data application

iv.i Dimensionality reduction of large indicators dataset

Player tracking data is emerging as a good testing ground for methods that aim to reduce the
dimensionality of large datasets to allow complex phenomena to be represented and visualized. For
instance, each player can be described by a large number of key performance indicators, although
it makes challenging to find an interpretable representation of the players and identify common
traits and similarities. Factor models seem particularly suitable for addressing this issue. The
large amount of data contained in the key performance indicators can be represented through a
lower dimensional set of latent factors, reducing dimensionality to a few dimensions that can be
visualized and interpreted through simple charts. Since there is no clue as to how many factors
should be considered to isolate and sufficiently represent the underlying covariance structure
among the indicators, we rely on the Bayesian infinite factor models framework, which allows a
flexible specification without imposing strict constraints.

We consider a dataset of n = 178 players described by p = 13 key performance indicators,
such as number of sprints, passes and conduction choices, pressure applied and received, and other
physical and technical metrics measured in a professional European league match and scaled per 90
minutes. We exclude from the dataset goalkeepers and players who played less than 60 minutes.
Due to data confidentiality agreements, both players and teams have been anonymized.
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Table 2.4: Median and interquartile range of the log-pseudo-marginal likelihood for the different models
and truncation criteria.

ς (p, k) MGPζ MGPτ CUSP0 CUSPstd
Q0.5 IQR Q0.5 IQR Q0.5 IQR Q0.5 IQR

1 (20, 5) −36.25 0.79 −36.24 0.78 −36.22 0.78 −36.22 0.78
(50, 10) −92.46 0.71 −92.43 0.74 −92.47 0.63 −92.55 0.82
(100, 15) −182.25 0.80 −182.53 0.85 −182.67 0.79 −188.23 7.77

50 (20, 5) −56.66 1.04 −56.39 0.89 −56.54 1.03 −80.40 3.27
(50, 10) −133.53 1.09 −133.15 0.70 −135.39 1.21 −216.16 2.06
(100, 15) −243.80 1.55 −242.52 0.95 −243.25 1.43 −445.23 60.46

CUSP, cumulative shrinkage process; MGPζ , multiplicative gamma process with truncation criterion as in Bhattacharya
& Dunson (2011); MGPτ , multiplicative gamma process with truncation criterion proposed in Section ii.i; Q0.5, median;
IQR, interquartile range.

To represent the players in a low-dimensional space, we define a multiplicative gamma process
factor model on the data. After standardizing the data, we set ν = 3, a1 = 1, a2 = 2, and b1 =
b2 = 1, consistent with the simulation experiments. Then, we run theGibbs sampler assuming the
current standard practice of adapting the number of factors as reported in Bhattacharya &Dunson
(2011) for different values of ζ ∈ {10−4, 10−3, 10−2}. We compare the dimensionality reduction
capacity of this approach with the results obtained by running the algorithm with adaptation
based on the criterion described in Section ii.i for different values of τ ∈ {0.75, 0.9, 0.95}. We
run the algorithms for 25, 000 iterations discarding the first 10, 000 iterations. Then, we thin the
Markov chain, saving every 5-th sample, and adapt the number of active factors at iteration twith
probability p(t) = exp(−1− 5 10−4t). We set the maximum number of factors equal to 2p.

The posterior mean of the number of factors for the two citeria is reported in Table 2.5. The

Table 2.5: Posterior mean of k∗ for the different truncation criteria and thresholds.

MGPζ MGPτ
ζ = 10−4 ζ = 10−3 ζ = 10−2 τ = 0.75 τ = 0.9 τ = 0.95

E(k∗ | y) 25.96 21.65 15.39 2.56 5.27 5.92

data dimension is not effectively reduced by applying the standard truncation criterion for any of
the three values of ζ . Instead, the last column of the table shows that, by applying our proposed
truncation criterion setting τ = 0.95, fewer than six factors are sufficient to explain around the
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95% of the model variance.

iv.ii Identifiability and two dimensional representation

We are interested in visualizing the set of players in a two-dimensional space. Therefore we con-
sider the space defined by the two first latent components under the multiplicative gamma process
with τ = 0.75, where two factors are able to represent a large part of the total variability of the key
performance indicators. The player i can be represented by an estimated summary of the couple
(ηi1, ηi2), as the posterior mean {E(ηi1 | y), E(ηi2 | y)}. Nevertheless, non-identifiability of
the latent structure creates problems in representing the posterior mean of the Markov chain
Monte Carlo samples. Indeed, bothΛ andH are only identifiable up to an arbitrary rotation P
with PP⊤ = Ik, then each sample could be drawn from a different rotation, making difficult to
summarize the elements ofΛ andH through their posterior means. This is a well known problem
in Bayesian factor models, and there is a rich literature proposing post-processing algorithms that
align posterior samples ofΛ andH so that one can then obtain interpretable posterior summaries.
In particular, we follow the algorithm proposed and implemented by Poworoznek et al. (2021) in
the R package infinitefactor. The algorithm firstly applies the varimax orthogonal rotation
(Kaiser, 1958) to the samples to maximize the sum of the variances, then it switches the sign and
the order of columns to align all the samples to a pivotal matrix. Refer to McParland et al. (2014),
Aßmann et al. (2016), and Roy et al. (2019) for alternative post-processing algorithms in related
contexts.

Looking at the posterior mean of the aligned matrix of theΛ samples, reported in Table 2.6, we
can roughly attribute meanings to the factors according to the most loaded performance indicators
in each column of the table. The first factor mainly concerns the space available for each player,
whereby high values of η·1 indicate players who are not pressed and have a high chance of receiving
or conducting the ball. Consistently, the first factor also explains the players in terms of gain
obtained through passes and increase in the dangerousness of the actions. The second factor,
instead, explains the run performances of the players represented by applied pressure, the number
of sprints, and sprint distance. Figure 2.1 represents the players by plotting the posterior mean of
η·1 and η·2 estimated on the aligned Markov chain Monte Carlo samples. Colours highlight the
association between the first factor and the role of the player. In fact, as we might expect, strikers
are generally constrained to play in tight spaces and under considerable pressure. The second
factor appears independent from the first, showing heterogeneity in physical performance over
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Table 2.6: Posterior mean of the aligned samples ofΛ truncated at k∗ = 2.

First factor Second factor

Pass availability 0.90 −0.10
Pass risk 0.13 0.10
Pass gain 0.22 0.01
Dangerousness increase 0.64 0.01
Conduction time 0.42 0.10
Transfer time 0.43 0.18
Covered area 0.84 0.10
Received pressure −0.95 −0.04
Applied pressure −0.23 −0.25
Walk distance 0.22 0.38
Sprint distance −0.03 0.87
Run distance 0.00 0.46
Number of sprints −0.12 0.93

the entire distribution of the first factor with very low sample correlation cor{E(η·1 | y), E(η·2 |
y)} = 0.01. However, looking at behaviour within the single groups defined by the role, we
observe a slightly positive association between physical performance and space available, with
sample correlation between factors equal to 0.19 and 0.38when we consider only the midfielder
or the striker group, respectively. This fact suggests an interesting perspective to underline the
importance of physical performance during a match and the advantages that can be obtained in
terms of dangerousness increase. More generally, Fig. 2.1 provides a useful tool for an immediate
assessment of overall player performance during a match.
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Figure 2.1: Posterior means of the aligned samples of the first two latent factors estimated by the multi-
plicative gamma process with τ = 0.75. To facilitate the representation, axis measures are set
such that 0 and 100 represent minimum and maximum observed values of the factors.





3 Generalized infinite factorization
models

i Structured shrinkage

Although overfitted factorizations and, specifically, infinite factor models are widely used in
different contexts, as in the recent low-rank regression model of Chakraborty et al. (2020), there
are two key gaps in the literature. The first one is a careful development of the shrinkage properties
of increasing shrinkage priors (Durante, 2017). Outside the factorization context and mostly moti-
vated by high-dimensional regression, there is a rich literature recommending specific desirable
properties for shrinkage priors. These include high concentration at zero to favour shrinkage of
small coefficients and heavy tails to avoid over shrinking large coefficients. Motivated by this princi-
ples, popular shrinkage priors have been developed including the Dirichlet--Laplace (Bhattacharya
et al., 2015) and horseshoe (Carvalho et al., 2010). Current increasing shrinkage priors, such as those
of Bhattacharya & Dunson (2011), were not designed to have the desirable shrinkage properties of
these priors. For this reason, ad hoc truncation and use of the horseshoe or Dirichlet--Laplace can
outperform increasing shrinkage priors in some contexts; for example, this was the case in Ferrari
& Dunson (2021).

A second gap in the literature on overfitted factorization priors is the lack of structured shrinkage.
The focus has been onpriors forΛ that are exchangeablewithin columns, with the level of shrinkage
increasing with the column index. However, it is common in practice to have meta-covariates
encoding features of the rows of Λ. For example, the rows may correspond to different genes
in genomics or species in ecology. There is a rich literature on incorporating gene ontology in
statistical analyses of genomic data (see, for example, Thomas et al., 2009), while in ecology it is

25
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common to include species traits in species distribution models (Ovaskainen & Abrego, 2020).
Considering the football application discussed in Section 2.iv, we could be interested in including
additional information about how the key performance indicators are measured to help with the
identification of sparsity patterns onΛ according to our prior knowledge on similarities between
indicators. Beyond the Bayesian literature, it is common to include structured penalties, with
the group lasso (Yuan & Lin, 2006) being a notable example. The widespread use of the group
lasso and the overlap group lasso (Jacob et al., 2009) for variable selection inspired the football
application we present in this chapter. Indeed, factor models can be particularly suitable when
we want to predict a variable of interested through the a large set of covariates, by performing a
variable selection approach replacing the original very many predictors with the low-dimensional
latent factors. In the football context we may be interested in modelling the dangerousness yRi
of an action i through a regression on a set of p key performance indicators yCi describing the
action. Then, we reduce the covariate dimensionality by considering a linear factor model for
the n× p+ 1matrix y = c(yR, yC), with sparse pattern onΛ inducing structured penalty on
regression coefficients.

Motivated by the aforementioned deficiencies of current factorizations priors, we propose in
this chapter a broad class of generalized infinite factorization priors, along with corresponding
theory and algorithms for routine Bayesian implementation. We will also present two applications
of such models in two very different contexts, i.e., regularized regression in football and covariance
modelling in ecology, showing the benefits provided by the structured shrinkage, regardless of the
application field.

ii Generalized infinite factor models

ii.i Model specification

Recalling the factor model notation previously introduced, we consider the following general
class of factor models,

yij = fj(zij), zi = Ληi + ϵi, ϵi ∼ fϵ, (3.1)
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with the function fj : ℜ → ℜ, for j = 1 . . . , p. In our motivating application, yij is the measure
of the j-th (j = 1, . . . , p) indicator of action i (i = 1, . . . , n). We refer to (3.1) as the class of
generalized factorization models.

Following common practice in infinite factor models (see Section i of Chapter 2), we avoid
imposing identifiability constraints onΛ and assume thatΨ is prespecified. Our focus is on a new
class of generalized infinite factor models where (2.1) holds and the novel class of priors ofΛ allows
infinitely many factors, k = ∞. In particular, the local φjh and the factor-specific θh scales are
independent a priori and supported on [0,∞)with positive probability mass on (0,∞). We let
N(0, 0) denote a degenerate distribution with all its mass at zero. Although we allow infinitely
many columns inΛ, (2.1) induces a prior forΩ supported on the set of p× p positive semi-definite
matrices under mild conditions reported in the following proposition.

Proposition 3.1: LetΠΛ⊗ΠΣ denote the prior on (Λ,Σ). LetΘΛ andΘΣ denote the sample
spaces of the matrices Λ and Σ, respectively. If E(φjh) = E(φlh) for every h, l ∈ {1, . . . ,∞}
and

∑∞
h=1E(θh) <∞, then, ΠΛ ⊗ΠΣ(ΘΛ ×ΘΣ) = 1.

Proof of Proposition 3.1. Assume Σ ∈ ΘΣ and (Ψ,Λ) ∈ ΘΨ × ΘΛ, with ΘΣ the set of p × p

positive semi-definite matrices with finite elements, and

ΘΨ ×ΘΛ =

{
Λ = (λjh), Ψ = (ψhh) :

∞∑
h=1

λjhψhhλsh <∞ ∀ j, s ∈ (1, . . . , p)

}
.

Due to independence, we can study the prior onΣ andΛ separately. The prior onΣ is defined
on the set of positive semi-definite matrices. Therefore, it is sufficient to prove that the elements
ofΛΨΛT are finite almost surely. Using Cauchy-Schwartz, it is straightforward to show that all
the entries of ΛΨΛT are finite if and only if

∑∞
h=1 ψhhλ

2
jh < ∞ (j = 1, . . . , p). Let c satisfy

c > maxh=1,...,∞ ψhh. Since

E(λ2jh) = E{E(λ2jh | φjh, θh)} = E(φjh)E(θh),

and E(φjh) = E(φj1) (j = 1, . . . , p; h = 1, . . . ,∞), it is sufficient that
∑∞

h=1E(θh) <

∞ to prove that
∑∞

h=1E(λ2jh) = E(φj1)
∑∞

h=1E(θh) < ∞ and then
∑∞

h=1 ψhhλ
2
jh <

c
∑∞

h=1 λ
2
jh <∞.

In contrast to most of the existing literature on shrinkage priors, we want to define a nonex-
changeable structure that includes meta-covariatesw informing the sparsity structure ofΛ. In our
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context, meta-covariates provide information to distinguish the p different variables as opposed to
traditional covariates that serve to distinguish the n subjects. Lettingw denote a p×mmatrix of
suchmeta-covariates, we choose the density function of the local scale elementsprφj

not depending
on the index h and such that

E(φjh | γh) = g(w⊤
j γh), γh = (γ1h, . . . , γmh)

⊤, γlh ∼ prγ (l = 1, . . . ,m) (3.2)

where g : ℜ → A ⊂ ℜ+ is a known smooth one-to-one differentiable link function, w·j =

(wj1, . . . , wjm)T denotes the jth row vector ofw, and γh is the hth column vector of the coeffi-
cient matrix Γ controlling the impact of the meta-covariates on shrinkage of the factor loadings in
the hth column ofΛ.

Defense length

Defense width

Defense team pace

Defense pressure

Attack length

Attack width

Attack team pace

Attack ball pace

Λ

1.00

-1.00

0.00

Scale
Defensive KPIs

Attacking KPIs

1 2

Figure 3.1: Illustrative loadings matrix of a football application, where the rows refer to eight action key
performance indicators referring to the attacking or defending team. White cells represent the
elements of Λ equal to zero, while blue and red cells represent negative and positive values,
respectively.

To illustrate the usefulness of (3.2), consider the previously introduced study on action danger-
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ousness and supposewj = {1(κj = ”a”),1(κj = ”d”)}T , where κj ∈ {”a”, ”d”} denotes if
the indicator j is referring to the attacking ("a") or defending ("d") team. Performance indices refer-
ring to the attacking team (or defending team) may tend to have similarities that can be expressed
in terms of a shared pattern of high or low loadings on the same latent factors. To illustrate this
situation, we simulate a loadings matrix, displayed in Fig. 3.1, sampling from the prior introduced
in Section iii.i where pr(λjh = 0) > pr(φjh = 0) > 0. The loadings within each column are
penalized based on the group structure identified by them = 2 team roles, namely attacking and
defending, of the p = 10 key performance indicators considered. Our proposed prior allows for
the possibility of such structure while not imposing it. In the football application on tracking
data indicators,w can be defined to include also other features of the indices, such as the type of
measure the index considers: spatial measurements, physical performances, or possession choices.
Related meta-covariates are widely available in several application fields as genomics (Thomas et al.,
2009) or ecology. For instance, in species distribution modelling, it is common to consider in the
model species traits as phylogenetic placement, size or diet (Miller et al., 2019; Tikhonov et al.,
2020).

ii.ii Properties

In this section we present some properties motivating the shrinkage process defined in (2.1) and
(3.2) and provide some insights into prior elicitation. Below we study key properties of our prior,
including an increasing shrinkage property, the ability of the induced marginal prior to accom-
modate both sparse and large signals, and control of the multiplicity problem in sparse settings.
This theory illuminates the role of hyperparameters; specific recommendations of hyperparameter
choice in practice are illustrated under the model settings of Section iii.i.

To formalize the increasing shrinkage property, we introduce the following definition.

Definition 3.1: LettingΠΛ denote a shrinkage prior onΛ,ΠΛ is a weakly increasing shrinkage
prior if var(λj(h−1)) > var(λjh) for j in 1, . . . , p and h = 2, . . . ,∞. ΠΛ is a strongly increasing
shrinkage prior if var(λs(h−1)) > var(λjh), for j, s in {1, . . . , p} and h = 2, . . . ,∞.

Weakly increasing shrinkage corresponds to the prior variance increasing across columns within
each row ofΛ, while strongly increasing shrinkage implies that the prior variance of any loading
element is larger than all elements with a higher column index. In the following theorem, we show
that the process in (2.1) and (3.2) induces weakly increasing shrinkage under a simple sufficient
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condition.

Theorem 3.1: Expression (2.1) is a weakly increasing shrinkage prior according to Definition 3.1
if E(θh) > E(θh+1) for any h.

Proof of Theorem 3.1. The variance of λjh is

var(λjh) = E{E(λ2jh | φjh, θh)} = E{E(θhφjh | φjh, θh)} = E(θhφjh).

Then,

var(λjh) = E(φjhθh) = E(φj1)E(θh) > E(φj1)E(θh+1) = var(λjh+1),

since the scale parameters are independent and the local scale φjh is equally distributed over the
column index h.

Increasing shrinkage priors favour a decreasing contribution of higher-indexed columns ofΛ
to the covariance Ω. In addition to inducing a flexible shrinkage structure that allows different
factors to have a different sparsity structure in their loadings, this enables accurate approximation
of the model by truncating the number of factors to k∗. Conditions on prior to control the
induced truncation error ofΩk∗ = Λk∗Ψk∗Λ

⊤
k∗ +Σ has already been provided in Proposition

2.1 in Chapter 2. The above increasing shrinkage properties can be satisfied by naive priors that
overshrink the elements ofΛ. It is important to avoid such overshrinkage and allow not only many
elements that are≈ 0 but also a small proportion of large coefficients. A similar motivation applies
in the literature on shrinkage priors in regression (Carvalho et al., 2010). Borrowing from that
literature, the marginal prior for λjh should be concentrated at zero to reduce mean square error
by shrinking small coefficients to zero, albeit with heavy tails to avoid overshrinking the signal.

To quantify the prior concentration of (2.1) in a ζ neighbourhood of zero, we can obtain

pr(|λjh| > ζ) ≤
E(θh)E(φjh)

ζ2
(3.3)

as a consequence of Markov's inequality. It is common practice in working with local-global
shrinkage priors to choose local or column scale small while assigning a heavy-tailed density to the
other scale. In our case, (3.2) allows the bound in (3.3) to be regulated by meta-covariatesw, while,
under the condition in Theorem 3.1, decreasingE(θh) with column index causes an increasing
concentration near zero, since E(φjh) = E(φjl) for every h, l ∈ {1, . . . ,∞}. The means of
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the factor and the local scales control prior concentration near zero, while overshrinkage can be
ameliorated by choosing prior prφj

or prθh (h = 1, . . . ,∞) heavy-tailed.
To show sufficient conditions to guarantee a heavy-tailed marginal distribution for λjh, we

need to introduce the following Lemma. A random variable has power law tails if its cumulative
distribution function F has 1− F (t) ≥ ct−α for constants c > 0, α > 0, and for any t > L for
L sufficiently large.

Lemma 3.1: Let u, v denote two real positive random variables. If at least one among (u | v)
and (v | u) is power law tail distributed, then the product uv is power law tail distributed.

Proof of Lemma 3.1. For a positive value x, we can write

pr(uv > x) =

∫ ∞

0
pr(u > x/v | v) pr(v)dv = E{FC

u|v(x/v)},

where FC
u|v(x) = pr(u > wx | v) and pr(v) is the probability density function of v. If

FC
u|v(x) ≥ c x−α with c, α positive constants and x greater than a sufficiently large number L,

then

pr(uv > x) ≥ E{c (x/v)−α} = c x−αE(vα) x > L≫ 0.

If E(vα) = ∞, then pr(uv > x) > cx−α = O(x−α), otherwise pr(uv > x) ≥ ν(x) for
x > L, with ν(x) a function of orderO(x−α) as x goes to infinity. This shows that the right tail
of the distribution of the random variable uv follows a power law behaviour.

The following Proposition provides a condition on the prior to guarantee a heavy-tailedmarginal
distribution for λjh.

Proposition 3.2: If at least one scale parameter among θh or φjh is characterized by a power
law tail prior distribution, then the prior marginal distribution of λjh has power law tails.

Proof of Proposition 3.2. Consider the strictly positive random variables θ∗h = (θh | θh > 0),
and φ∗jh = (φjh | φjh > 0). Since the positive part of the variance of the λjh is equal to the
product of independent positive random variables θ∗hφ

∗
jh, Lemma 3.1 ensures that if at least one

of those scale parameters follows a power law tail distribution, then the product is power law tail
distributed, so that pr(θ∗hφ

∗
jh > x) ≥ c x−α for c, α positive constants and x > L. Without loss
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of generality, we focus on the right tail of λjh. Let

pr(λjh > λ) = pr(λjh > λ | θhφjh > 0) pr(θhφjh > 0) (3.4)

+ pr(λjh > λ | θhφjh = 0) pr(θhφjh = 0).

It is straightforward to observe that λjh marginally has a power law tail if and only if (λjh |
θhφjh > 0) is power law tail distributed and pr(θhφjh > 0) is strictly positive. Since pr(θh >
0) > 0, and pr(φjh > 0) > 0, then pr(θhφjh > 0) > 0, given independence between the scale
parameters. Focusing on θhφjh > 0 > 0 in the first term of the right hand side of (3.4), we have

pr(λjh > λ | θ∗hφ∗jh) = 1− FN (λ (θ∗hφ
∗
jh)

−0.5),

withFN (x) indicating the cumulative distribution function of the standard Gaussian distribution.
We want to prove that the marginal F c

λjh
(λ) = pr(λjh > λ) is sub-exponential as λ → ∞.

Using the lower bound for the right tail of the standard Gaussian of Abramowitz & Stegun (1948),

1− FN (λ (θ∗hφ
∗
jh)

−0.5) ≥
(
2

π

)0.5 (θ∗hφ
∗
jh)

−0.5

λ+ (λ2 + 4θ∗jh)
0.5
e−λ2/(2θ∗jh).

Marginalizing over the product θ∗hφ
∗
jh, we obtain

pr(λjh > λ | θ∗hφ∗jh) ≥ E

{(
2

π

)0.5 θ∗ 0.5jh

λ+ (λ2 + 4θ∗jh)
0.5
e−λ2/(2θ∗jh)

}
= E

{
tλ(θ

∗
hφ

∗
jh)
}
,

where tλ(θ∗hφ
∗
jh) is a monotonically increasing nonnegative function defined on the positive real

line. Applying Markov’s inequality, we haveE{tλ(θ∗hφ∗jh)} > pr(θ∗hφ
∗
jh > ζ)tλ(ζ), and letting

ζ = λ2,

E
{
tλ(θ

∗
hφ

∗
jh)
}
> pr(θ∗hφ

∗
jh > λ2)

e−0.5

1 + 50.5

(
2

π

)0.5

.

If pr(θ∗hφ
∗
jh > λ) ≥ c λ−α for certain α, c positive constants and λ sufficiently large, then

pr(λjh > λ | θ∗hφ∗jh) ≥
e−0.5

1 + 50.5

(
2

π

)0.5

c λ−2α = c̃λ−α̃,
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where c̃ = e−0.5(1 + 50.5)−1(2/π)0.5c > 0 and α̃ = α/2 > 0. By symmetry, pr(λjh < −λ |
θjh > 0) ≥ c̃λ−α̃ for λ > L sufficiently large. It is sufficient that the marginal distribution of θ∗h
or φ∗jh has power law right tail to guarantee that (λjh | θhφjh > 0) has power law tail and then
that marginally λjh has power law tail.

An important consequence of the heavy-tailed property is avoidance of overshrinkage of large
signals. This is often formalized via a tail robustness property (Carvalho et al., 2010). As an initial
result, key to showing sufficient conditions for a type of local tail robustness, we provide the
following lemma on the derivative of the log prior in the limit as λjh → ∞.

Lemma 3.2: If at least one scale parameter among θh or φjh has a prior with power law tails
for any possible prior distribution of γh, then for any finite truncation level k∗,

lim
λ→∞

∂ log{prλjh|Λ−jh
(λ)}

∂λ
= 0

where prλjh|Λ−jh
(λ) is the conditional distribution of λjh given the other elements of Λk∗ .

Proof of Lemma 3.2. Consistent with Proposition 3.2, (λjh | Λ−jh) has power law tail if (θhφjh |
Λ−jh) has power law tail. Furthermore, pr(|λjh| > λ | Λ−jh) has power law tail for large λ if and
only if pr(|λjh| > λ | Λ−jh, θhφjh > 0) has power law tail and pr(θhφjh > 0 | Λ−jh) > 0.
The latter inequality is always true when the marginal pr(θhφjh > 0) is positive. To prove
(θhφjh | Λ−jh) has power law tail, we apply Lemma 3.1. We first focus on proving the lemmawhen
φjh satisfies the power law tail condition. As the local scale φjh is independent from (Λ−jh, θh)

given γh, its conditional density is

prφjh|θh,Λ−(jh)
(φ) =

∫
ℜ
prφjh|γh(φ) prγh|θh,Λ−jh

(γ) dγ.

As the tail conditions hold for any possible prior on γ, we have

prφjh
(φ) =

∫
ℜ
prφjh|γh(x) pr(γ) dγ, prφjh

(φ̃) ∝ φ̃−α, φ̃ = {φ : φ > L}, L≫ 0,

for any prior density function pr defined on ℜ. Hence, (φjh | θh,Λ−jh) is power law tail
distributed. We now focus on proving the lemma when θh is power law tail distributed. Let
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θ∗h = (θh | θh > 0) and φ∗jh = (φjh | φjh > 0). By Bayes’ Theorem

prθ∗h|φ
∗
jh,Λ−jh

(θ) =
prΛ−jh|φ∗

jh,θ
∗
h
(Λ−jh; r) prθ∗h|φ

∗
jh
(θ)

prΛ−jh|φ∗
jh
(Λ−jh)

.

Since θ∗h is independent fromφ∗jh, it is sufficient to prove that the functionprΛ−jh|φ∗
jh,θ

∗
h
(Λ−jh; θ)

decreases slower than c θ−α, for c, α > positive constants, when r → ∞.

DenotingFφ11...φpk,θ1,...,θh−1,θh+1,...,θk∗ |φ∗
jh,θ

∗
h
the probability measure for conditional density

prφ11...φpk,θ1,...,θh−1,θh+1,...,θk∗ |φ∗
jh,θ

∗
h
, we can write

prΛ−jh|φ∗
jh,θ

∗
h
(Λ−jh; θ) =

∫
prΛ−jh|φ11...φpk,θ1,...,θk∗

(Λ−jh; θ) dFφ11...φpk,θ1,...,θh−1,θh+1,...,θk∗ |φ∗
jh,θ

∗
h

=

∫ ∏
(s,l)̸=(j,h)

prλsl|φsl,θl
(λsl; θ) dFφ11,...,θk∗ |φ∗

jh,θ
∗
h

= E

{ ∏
(s,l)̸=(j,h)

prλsl|φsl,θl
(λsl; θ)

⏐⏐⏐⏐ φ∗jh, θ∗hΛ−jh

}

The product inside the expectation is zero when there is a pair of indices (s, l) such that λsl ̸= 0

and θsl = 0. However, since the probability pr(θsl = 0 | λsl ̸= 0) = 0, we know that the
expected value of the product between the functions prλsl|φsl,θl

(λsl; θ), given φ∗jh, θ
∗
h,Λ−jh,

is strictly positive. We now prove that prΛ−jh|φ∗
jh,θ

∗
h
(Λ−jh; θ) decreases slower than cθ−α for

c, α > 0. We can write the above expectation as

E

{ p∏
s=1,l ̸=h

prk(λsl)
∏
s ̸=j

prλsh|θsh(λsh; θ
∗
h)

⏐⏐⏐⏐ φ∗jh, θ∗h,Λ−jh

}
,

where
∏p

s=1,l ̸=h prk(λsl) is a product between (k− 1)× p strictly positive random variables that
does not depend on φ∗jh and θ∗h, while

∏
s̸=j prλsh|φshθh

(λsh; θ
∗
h) is a product between p strictly

positive random variables. In particular, if φsh = 0, then fλsl|φshθh(λsh; θ
∗
h) = 1(λsh = 0). If

φsh > 0, then

prλsh|φsh,θh
(λsh; θ

∗
h) = (2πφ∗shθ

∗
h)

−0.5 exp

(
−

λ2sh
2φ∗shθ

∗
h

)
> (2πφ∗shθ

∗
h)

−0.5 exp

(
−
λ2sh
2φ∗sh

)
.
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Therefore, the upper bound

prλsh|φsh,θh
(λsh; θ

∗
h) ≥

⎧⎨⎩min{1, (2πφ∗shθ∗h)−0.5}, if λsh=0

(2πφ∗shθ
∗
h)

−0.5 exp{−λ2sh/(2φ∗sh)} if λsh ̸=0,

holds with probability equal to 1. For θ > 1, we note that fλsh|φsh,θh(λsh; θ) ≥ θ−0.5uλsh
with

uλsh
=

⎧⎨⎩min{1, (2πφ∗sh)−0.5}, if λsh = 0,

(2πφ∗sh)
−0.5 exp{−λ2sh/(2φ∗sh)} if λsh ̸= 0.

Then,

E

{ ∏
(s,l) ̸=(j,h)

prλsl|φsl,θl
(λsl; θ

∗
h)

⏐⏐⏐⏐ φ∗jh, θ∗h,Λ−jh

}
≥

E

{ p∏
s=1,l ̸=h

prk(λsl)
∏
s ̸=j

θ∗−0.5
h uλsh

⏐⏐⏐⏐ φ∗jh, θ∗h,Λ−jh

}
=

θ
∗−0.5 (p−1)
h E

{ p∏
s=1,l ̸=h

prk(λsl)
∏
s ̸=j

uλsh

⏐⏐⏐⏐ φ∗jh,Λ−jh

}
,

where the expectation is strictly positive and not depending on θh. Therefore, for θ sufficiently
large, prΛ−jh|φ∗

jh,θ
∗
h
(Λ−jh; θ) ≥ cθ−α holds with c, α > 0, so that (θh | φjh,Λ−jh) is power

law tail distributed.

Hence, if any of the scale parameters is power law tail distributed for any prior on γ, then its
distribution, conditionally on Λ−jh and on the product of the other scale parameter, is power
law tail distributed and, as a consequence, (λjh | Λ−jh) is power law tail distributed. Since
prλjh|Λ−jh

(λ) ≥ c|λ|−α for certain c, α positive constants and |λ| > L sufficiently large, in the
same settings, we can write

prλjh|Λ−(jh)
(λ) = c|λ|−α{1 + f(|λ|)},
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where f(|λ|) is a positive function. Then,

∂[log{prλjh|Λ−(jh)
(λ)}]

∂λ
= −α

λ
+
∂f(λ)

∂λ
for λ > L and L≫ 0,

∂[log{prλjh|Λ−(jh)
(λ)}]

∂λ
=
α

λ
+
∂{−f(λ)}

∂λ
for λ < −L and L≫ 0,

We now consider the sign of the derivative of f(|λ|). If f(|λ|) is not decreasing,

∂[log{prλjh|Λ−(jh)
(λ)}]

∂λ
≥ −α

λ
, for λ > L and L≫ 0,

∂[log{prλjh|Λ−(jh)
(λ)}]

∂λ
≤ α

λ
, for λ < −L and L≫ 0,

whereas if f(|λ|) is decreasing, its derivative goes to zero when |λ| goes to infinity. Therefore,

∂[log{prλjh|Λ−(jh)
(λ)}]

∂λ
≥ f ′lb(λ) for λ > L and L≫ 0,

∂[log{prλjh|Λ−(jh)
(λ)}]

∂λ
≤ −f ′lb(|λ|) for λ < −L and L≫ 0,

where f ′lb(λ) < 0 ∀λ > 0 and limλ→∞ f ′lb(|λ|) = 0. The proof is concluded by using this
result along with the fact that fλjh|Λ−(jh)

(|λ|) is decreasing when λ→ ∞,

∂[log{prλjh|Λ−(jh)
(λ)}]

∂λ
≤ 0 for λ > L and L≫ 0

∂[log{prλjh|Λ−(jh)
(λ)}]

∂λ
≥ 0 for λ > −L and L≫ 0,

showing that the limit of the derivative for |λ| → ∞ is equal to zero.

The following definition introduces a type of local tail robustness property.

Definition 3.2: Consider model (1.1) with factors H known. Let prλjh|y,H,Λ−jh
(λ) denote

the posterior density of λjh, given the data, conditional on any possible value of the other elements
of Λk∗ for any finite k∗, and let λ̂jh denote the conditional maximum likelihood estimate of λjh
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for any possible value of the other elements of Λk∗ . We say that the prior on λjh is tail robust if

lim
λ̂jh→∞

⏐⏐⏐⏐λ̂jh − argmax
λ

prλjh|y,H,Λ−jh
(λ)

⏐⏐⏐⏐ = 0.

For a given sample, λ̂jh is a fixed quantity; the above limit should be interpreted as what happens
as the data support a larger and larger maximum likelihood estimate. In order for tail robustness to
hold, we need the data to be sufficiently informative about the parameter λjh and the likelihood
to be sufficiently regular; this is formalized as follows.

Assumption 3.1: Let L(y; Λ,H,Σ) denote the likelihood for data y conditionally on latent
variablesH , let ls(λ) denote the derivative function of the loglikelihood with respect to λjh, and
let J (λ̂jh) denote the negative of the second derivative of the loglikelihood with respect to λjh,
evaluated at the conditional maximum likelihood estimate λ̂jh. Then ls(λ) is a continuous function
for every λ ∈ ℜ and J (λ̂jh) ≥ ν(λ̂jh), where ν(λ̂jh) is of order O(1) as λ̂jh → ∞.

This assumption can be verified for most of the cases mentioned in Chapter 1; for example, for
Gaussian linear factor modelsJ (λ̂jh) is of orderO(1)with respect to λ̂jh.

Theorem 3.2: Under Assumption 3.1, if at least one scale parameter among θh or φjh is power
law tail distributed for any possible prior distribution of γh, then the prior on λjh is tail robust
according to Definition 3.2.

Proof of Theorem 3.2. The mode of the conditional posterior density of λjh is λ̃jh such that

ls(λ̃jh; y,H) +
∂

∂λ
log{prλjh|Λ−jh

(λ)}
⏐⏐
λ=λ̃jh

= 0, (3.5)

where ls(λ̃jh; y,H) is the jhth element of the score function of the likelihood for the data y
conditionally on the latent variablesH , and prλjh|Λ−jh

is the conditional prior density function
of (λjh | Λ−jh). Given prior symmetry, without loss of generality, we focus on λ̂jh > 0. In a
neighbourhood (λ̂jh−ε, λ̂jh+ε) of the conditionalmaximum likelihood estimate λ̂jh ofλjh, we
can approximate the score functionusing aTaylor expansion: ls(λ; y) = −J (λ̂jh) (λ−λ̂jh)+ζε,
where J (λ̂jh) > 0 is the negative of the derivative of ls(λ; y) evaluated at λ = λ̂jh, and ζε is
an approximation error term such that limε→0 ζε/ε = 0. For λ̂jh large enough, such that
λ̂jh − ε > L with L ≫ 0, Lemma 3.2 holds for every λ in (λ̂jh − ε, λ̂jh + ε), leading to the
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lower bound

−J (λ̂jh) (λ− λ̂jh) + f ′lb(λ) + ζε ≤ ls(λ; y) +
∂

∂λ
log{fλjh|Λ−jh

(λ)},

where f ′lb(λ) is a non positive continuous function for every λ > 0, limλ→+∞ f ′lb(λ) = 0. Let ε
be a function of λ̂jh such that limλ̂jh→∞ ε = 0 and limλ̂jh→∞ f ′lb(λ̂jh)/ε = 0. The limit for

λ̂jh → ∞ of the lower bound evaluated in λ̂jh − ε is

lim
λ̂jh→∞

J (λ̂jh) ε+f
′
lb(λ̂jh−ε)+ζε = lim

λ̂jh→∞
|ε| {J (λ̂jh)+f

′
lb(λ̂jh−ε)/|ε|+ζε/|ε|}.

Under Assumption 3.1, limλ̂jh→∞ J (λ̂jh) + f ′lb(λ̂jh − ε)/|ε|+ ζε/|ε| ≥ 0,which guarantees

λ̂jh − ε ≤ λ̃jh ≤ λ̂jh, and, hence limλ̂jh→∞ |λ̃jh − λ̂jh| = 0,which proves the theorem.

As an additional desirable property, wewould like to control for themultiplicity problemwithin
each column λh of the loadings matrix, corresponding to increasing numbers of false signals as
the dimension p increases. This can be accomplished by imposing an asymptotically increasingly
sparse property on the prior, which is defined as follows.

Definition 3.3: Let |suppζ(λh)| denote the cardinality of suppζ(λh) = (j : |λjh| > ζ).
Let sp = o(p) such that sp ≥ cs log(p)/p for some constant cs > 0. We say that the prior on Λ

defined in (2.1) is an asymptotically increasingly sparse prior if

lim
p→∞

pr{|suppζ(λh)| > asp | θh} = 0, for some constant a > 0.

The quantity |suppζ(λh)| represents an approximate measure of model size for continuous
shrinkage priors and, conditionally on γh and θh, it is a priori distributed as a sum of independent
Bernoulli random variables Ber(ϖζjh), where

ϖζjh = pr(|λjh| > ζ | γh, θh) ≤
θh g(w

⊤
j γh)

ζ2
.

We now provide sufficient conditions for an asymptotically increasingly sparse prior, allowing
regulation of the sparsity behaviour of the prior of the columns ofΛ for increasing dimension p.

Theorem 3.3: Consider the prior defined in (2.1) and (3.2), with φjh (j = 1, . . . , p) a
priori independent given γh. If pr{g(w⊤

j γh) ≤ νj(p)} = 1, with νj(p) = O{log(p)/p},
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(j = 1, . . . , p), then the prior on Λ is asymptotically increasingly sparse according to Definition 3.3.

Proof of Theorem 3.3. Since the local scales are independent, conditionally on γ, we can apply the
Chernoff’s method and obtain the following upper bound

pr{|suppζ(λh)| > asp | γh, θh} ≤ exp(−spa t) exp
{
(et − 1)

p∑
j=1

ϖζjh

}
,

for every t > 0 andϖζjh = {θh g(w⊤
j γh)}/ζ2 a function of γh. Since g(w⊤

j γh) is of order
≤ O(log(p)/p)by assumption and is limited abovewith respect toγh, we can deduce g(w⊤

j γh) ≤
cj log(p)/p for p sufficiently large and for some constant cj > 0 that does not depend on γh and
is asymptotically of orderO(1)with respect to p. Then, for p≫ 0,

p∑
j=1

g(w⊤
j γh) ≤

p∑
j=1

cj log(p)/p ≤ p log(p)/p max
1≤j≤p

cj =M log(p),

whereM = max1≤j≤p cj does not depend on γh. Then, the upper bound is

pr{|suppζ(λh)| > asp | γh, θh} ≤ exp

{
− spa t+ (et − 1)

θh
ζ2
M log(p)

}
.

Let us choose t = log{ζ2/(θhM) + 1}. Since sp ≥ log(p) cs for a certain cs > 0, then, for any
a > (cst)

−1, we can write

pr{|suppζ(λh)| > asp | γh, θh} ≤ exp

{
− log(p) ã

}
,

where ã is a positive constant such that a = (1 + ã)(cst)
−1. The upper bound does not depend

on γh, so

pr{|suppζ(λh)| > asp | θh} ≤ ν(p)

with ν(p) of orderO(p−1) that goes to zero.

The condition of the theorem is easily satisfied, for example when g is the multiplication of a
bounded function and a suitable offset depending on p as assumed in Section iii.i. The multi-
plicative gamma process (Bhattacharya & Dunson, 2011) and the cumulative shrinkage process
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(Legramanti et al., 2020) do not satisfy the sufficient conditions of Theorem 3.3, and, furthermore,
the following lemma holds.

Lemma 3.3: The multiplicative gamma process prior (Bhattacharya & Dunson, 2011) and the
cumulative shrinkage process prior (Legramanti et al., 2020) are not asymptotically increasing sparse
according to Definition 3.3.

Proof of Lemma 3.3. In both the multiplicative gamma process and cumulative shrinkage process,
priors onΛ are exchangeable within columns, that is pr(|λjh| > ζ | θh) = ϖζh does not depend
on j. Then, the prior density of |suppζ(λh)|, conditionally on θh is a priori distributed as a sum
of independent and identically distributed Bernoulli random variables Ber(ϖζh). Furthermore,
ϖζh does not depend on p. By applying the Chernoff’s method, we obtain

pr{|suppζ(λh)| < asp | θh} ≤ exp
{
atsp + pϖζh(e

−t − 1)
}
,

for any t > 0 and with 1− e−t > 0. Hence,

pr{|suppζ(λh)| > asp | θh} ≥ 1− exp[−p{(1− e−t)ϖζh − atsp/p}],

where the limit of the lower bound is limp→∞ 1 − exp[−p{(1 − e−t)ϖζh − atsp/p}] = 1,
which concludes the proof.

Although this section has focused on properties of the prior, we find empirically that these
properties tend to carry over to the posterior, as will be illustrated in the subsequent sections. For
example, the posterior exhibits asymptotic increasing sparsity; see Table 3.2 of Section iv, which
shows results for a novel process in our proposed class that is much more effective than current
approaches at identifying the true sparsity structure, particularly when p is large.

iii Structured increasing shrinkage prior

iii.i Model specification

In this section we propose a structured increasing shrinkage process prior for generalized infinite
factor models satisfying all the sufficient conditions in Propositions 2.1, 3.2 and Theorems 3.2--3.3.
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Following the notation previously introduced, we specify

θh = ϑhρh, φjh | γh ∼ Ber{logit−1(w⊤
j γh) cp}, (3.6)

ϑ−1
h ∼ Ga(aθ, bθ), aθ > 1, ρh = Ber (1− πh) , γh ∼ Nm(0, σ2γIm),

where we assume the link g(x) = logit−1(x)cp, with logit−1(x) = ex/(1 + ex) and cp ∈ (0, 1)

a possible offset. Inspired by the cumulative shrinkage process (Legramanti et al., 2020), the
process {πh}, with πh = pr(θh = 0), is defined as in (2.2). The prior expected number of non
degenerateΛ columns isE(

∑∞
h=1 ρh) = α, suggesting settingα equal to the expected number of

active factors. The prior specification is completed assumingΣ = diag(σ21, . . . , σ2p)with σ−2
j ∼

Ga(aσ, bσ) for j = 1, . . . , p. The hyperparameters can be chosen based on one's prior expectation
of the signal-to-noise ratio, as σ2j is the contribution of the noise component to the total variance
of the jth variable. Figure 3.2 displays the prior distribution, obtained simulating 10 000 samples
from the prior, of the proportion of variance tr(ΛΛT)/tr(Ω) explained by the structured increasing
shrinkage factor model for varying α, {E(σ−2), var(σ−2)}, and {E(ϑ−1

h ), var(ϑ−1
h )}. The role

of {E(σ−2), var(σ−2)} is not obvious, but suggests that sufficiently large mean and variance can
guarantee higher flexibility. A sensitivity study, however, shows that posterior distributions of
the same variance proportion tend to be robust to the specification of aσ, bσ as can be seen in
Fig. 3.3, where posterior distributions are estimated on synthetic data sets with n = 100 and
p = 50 generated from the Gaussian linear factor model yi ∼ Np(0,Λ0Λ

T
0 + Ip), assuming

tr(Λ0Λ
T
0 )/tr(Ω0) = 0.966, withΩ0 = Λ0Λ

T
0 + I50. If we have incorrect expectations on the

number of factors, i.e., α set small, a sufficiently concentrated prior on a large value ofE(σ−2)

seems more suitable to model such data. Regarding prior elicitation, we recommend setting
bθ ≥ aθ to induce a high enough proportion of variance explained by the factor model. Figure 3.2
reports empirical evidence of the influence of the hyperparameters regulating the distribution of
ϑh on this quantity, showing that concentrated prior on a large value ofE(ϑ−1) induces a smaller
proportion of variance explained by the factor model.

The above specification respects the general class of priors defined in the previous section and,
consequently, the following corollary holds.

Corollary 3.1: The structured increasing shrinkage process defined in (3.6)

i. is a strongly increasing shrinkage prior according to Definition 3.1;
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Figure 3.2: Boxplots of the prior distribution of the proportion of variance explained by the factor model
tr(ΛΛT)/tr(Ω). The quantity is obtained simulating 10,000 samples from the prior distri-
bution with varying values of the parameters. The horizontal axis characterize the effect of
{E(σ−2), var(σ−2)}; differences forα ∈ (5, 10, 20) are reported in each column; differences
for {E(ϑ−1), var(ϑ−1)} ∈ {(2, 2), (1, 0.5), (0.5, 0.125)} are reported in each row.
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Figure 3.3: Boxplots representing the simulated posterior distribution of the proportion of variance ex-
plained by the factor model tr(ΛΛT)/tr(Ω) for varying α and {E(σ−2), var(σ−2)}. The
dashed lines represent the proportion computed on the true value ofΛ andΩ.

ii. for any τ ∈ (0, 1),

pr
{

tr(Ωk∗)

tr(Ω)
≤ τ

}
≤
(

1

1− τ

)
bH

1− b
θ0
aσ
bσ

p∑
j=1

E(φj1),

with b = {α(1 + α)}−1 and θ0 = E(ϑh).

Proof of Corollary 3.1. i. It is sufficient to prove the conditions required by Theorem 3.1. We
haveE(θh) = E(ϑh)E(ρh) = E(ρh) bθ/(aθ − 1),where

E(ρh) = 1−
h∑

l=1

E(ul) = 1−
h−1∑
l=1

E(ul)− E(uh) = E(ρh−1)− E(uh).

Since the random variableul is obtained as a product of positive random variables,E(ul) >

0 for every l = 1, . . . , h. ThereforeE(θh) < E(θh−1) for each h = 2, . . . ,∞.

ii. It is sufficient to prove the conditions required by Proposition 2.1. It is straightforward
to verify E(φjh) ≤ 1 for j = 1, . . . , p and h = 1, . . . ,∞. The factor-specific scale
expectation is

E(θh) = E(ϑh)

(
α

1 + α

)(
α

1 + α

)h−1

,
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which can be written in a form abh−1. The elements σ−2
j are gamma distributed guarantee-

ing finite expectation for all j = 1, . . . , p.
τ

τ
τ

k* k* k*

Figure 3.4: Monte Carlo approximation of the posterior probability of truncation error pr(r < τ |
y), with r = tr(Ωk∗)/tr(Ω), at varying of k∗. The quantity is computed for τ equal to
0.75 (—), 0.9 (- - -), and 0.95 (– – –) and varying α ∈ (5, 10, 20) over the columns and
{E(σ−2), var(σ−2)} ∈ {(3.33, 11.11), (1, 1), (0.33, 0.11)} over the rows of the figure.

We conducted a simulation study on the posterior distribution of {tr(Ωk∗)/tr(Ω) ≤ τ} for
varying hyperparameters, and found that the results, summarised in Fig. 3.4, were quite consistent
with our prior truncation error bounds. Considering the same synthetic data presented before, we
found that ifΛ0 is sparse, a small value ofα induces good approximations evenwithk∗ smaller than
the true number of factors. The inferred sparsity pattern inΛ is robust to the prior distribution
for σ−2.

The prior concentration of the structured increasing shrinkage process in (3.6) follows from
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(3.3):

pr(|λjh| > ζ) ≤
E(ϑh){1− E(πh)}E(φjh)

ζ2
=
θ0 {α/(1 + α)}h

ζ2
cp
2
.

In addition, the inverse gamma prior on ϑh implies a power law tail distribution on θh inducing
robustness properties onλjh as formalized by the next corollary of Proposition 3.2 andTheorem 3.2.

Corollary 3.2: Under the structured increasing shrinkage process defined in (3.6)

i. the marginal prior distribution on λjh (j = 1, . . . , p; h = 1, 2, . . .) has power law tails;

ii. under Assumption 3.1, the prior on λjh (j = 1, . . . , p; h = 1, 2, . . .) is tail robust according
to Definition 3.2.

Proof of Corollary 3.2. It is sufficient to prove the conditions required by Theorem 3.2. The proba-
bility density function of the column scale θh (h = 1, . . . ,∞) of model (3.6) evaluated at a certain
θ > 0 is

prθh(θ) = pr(ρh = 1) prϑh
(θ) ∝ θ−aθ−1 exp(−bθ/θ),

where prϑh
(θ) is the inverse gamma probability density function evaluated at θ. The function

θ−aθ−1 exp(−bθ/θ) is of orderO(θ−aθ−1) as θ goes to infinity. Since aθ > 0, we conclude that
the factor-specific scale θh is power law tail distributed. The independence between θh and γh
(h = 1, . . . ,∞) guarantees that the latter result holds for any possible prior distribution prγ on
γ.

Finally, it is important to assess the joint sparsity properties of the prior on each column ofΛ.
This is formalized in the following corollary of Theorem 3.3.

Corollary 3.3: If cp = O{log(p)/p} the structured increasing shrinkage process defined in
(3.6) is asymptotically increasingly sparse according to Definition 3.3.

Proof of Corollary 3.3. It is sufficient to prove the conditions required by Theorem 3.3. The struc-
tured increasing shrinkage prior is such that, for every j = 1, . . . , p and h ≥ 1, we have
g(w⊤

j γh) ≤ cp < 1. The proof is obtained under the assumption cp = O{log(p)/p}.
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iii.ii Posterior computations

Posterior inference is conducted via Markov chain Monte Carlo sampling. Following common
practice in infinite factor models (Bhattacharya &Dunson, 2011; Legramanti et al., 2020) we use an
adaptive Gibbs algorithm, which truncate the model to k∗ factors, adapting the value of k∗ only at
some Gibbs iterations (see i in Chapter 2 for further details).

The decomposition of θh into two parameters ρh and ϑh allows one to identify the inactive
columns ofΛ, corresponding to the redundant and neglectable factors, as those with ρh = 0, while
ka indicates the number of active columns of Λ. Consequently, at the adaptive iteration t + 1,
the truncation level k(t+1) is set to k(t+1) = k

(t)
a + 1 if k(t)a < k(t) − 1, and k(t+1) = k(t) + 1

otherwise. Givenk(t+1), the number of factors of the truncatedmodel at iteration t+1, the sampler
draws the model parameters from the corresponding posterior full conditional distributions. The
detailed steps of the adaptive Gibbs sampler for the structured increasing shrinkage prior in case of
Gaussian data yi = zi ∼ Np(0,ΛΛ

⊤ +Σ) are reported below.
The notation (x | −) denotes the full conditional distribution of x conditionally on everything

else. Given k∗ the number of factors of the truncated model, the sampler cycles through the
following steps.

Step 1 Update in parallel the p elements ofΣ, by sampling

(σ−2
j | −) ∼ Ga

{
aσ +

n

2
, bσ +

1

2

n∑
i=1

(zij − λT
j ηi)

2

}
.

Step 2 Update, for i = 1, . . . , n, the factor ηi according to the posterior full conditional

(ηi | −) ∼ Nk∗
{
(Ik∗ + ΛT

k∗Σ
−1Λk∗)

−1ΛT
k∗Σ

−1zi, (Ik∗ + ΛT
k∗Σ

−1Λk∗)
−1
}
.

The distribution is conditional toΛ and ϵ, so we can update in parallel the n vectors ηi.

Step 3 Let λ̃jh denote the continuous underlying loadings element such that λjh = φjhρhλ̃jh

(h = 1, . . . , k∗). Then, update the elements λ̃jh by sampling from the independent full
conditional posterior distributions of the row vector λ̃j (j = 1, . . . , p),

(λ̃j | −) ∼ Nnf

{
(D−1

j + FjH
⊤HFj)

−1FjH
⊤zj , (D

−1
j + FjH

⊤HFj)
−1
}
,

whereD−1
j = diag(ϑ−1

1 , . . . , ϑ−1
k∗ ),Fj = diag(ρ1φ1j , . . . , ρk∗φk∗), and zj is the column
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data vector. The distribution is conditional toH and the scale matrix and vector Φ and
θ, thus we can update in parallel the p vectors λ̃j . Finally, set λjh = φjhρhλ̃jh for any
j = 1, . . . , p and h = 1, . . . , k∗.

Step 4 Update the local scale parameters proceeding as follows.

Step 4.i Update the local scale by sampling from the full conditional distributions of φjh. If
h ∈ {1, . . . , k∗ : ρh = 0}, then sample from the Bernoulli defined as

pr(φjh = ξ) =

⎧⎨⎩{1− logit−1(w⊤
j γh) cp} for ξ = 0

logit−1(w⊤
j γh) cp for ξ = 1.

Given the linear predictor matrixwΓ, we can update in parallel φjh for j = 1, . . . , p

and h ∈ {1, . . . , k∗ : ρh = 0}. If h /∈ {1, . . . , k∗ : ρh = 0}, sample from

pr(φjh = ξ) ∝

⎧⎨⎩{1− logit−1(w⊤
j γh) cp} prN

(
zj ;Hλj − φ

(t−1)
jh λ̃jhηh, In

)
for ξ = 0

logit−1(w⊤
j γh) cp prN

{
zj ;Hλj +

(
1− φ

(t−1)
jh

)
λ̃jhηh, In

}
for ξ = 1.

where prN (x;µ, In) is the multivariate density function of the n-variate Gaussian
distribution with mean µ, variance equal to the identiy matrix, and evaluated at x. We
use φ(t−1)

jh to denote the parameter φjh sampled at the previous iteration of the Gibbs
and ηh indicating the hth column ofH . The distribution of each φjh depends onwΓ
and on the elements φlj (l = 1, . . . , h) via λj . Therefore, the update is sequential
with respect to the index h and requires to set λjh = φjhλ̃jh after having sampled
φjh for any h /∈ {1, . . . , k∗ : ρh = 0}. On the other hand, we can update in parallel
with respect to the index j = 1, . . . , p.

Step 4.ii Let φjh = ϕjhφ̃jh, with ϕjh and φ̃jh independent a priori and distributed as
Ber{logit−1(wT

j γh)} and Ber(cp), respectively. Update ϕjh, for j = 1, . . . , p and
h = 1, . . . , k∗, setting ϕjh = 1 if φjh = 1 and sampling from the full conditional
distribution

pr(ϕjh = l) ∝

⎧⎨⎩1− logit−1(w⊤
j γh) for l = 0,

logit−1(w⊤
j γh)(1− cp) for l = 1,

if φjh = 0. GivenwΓ, the elementsϕjh (j = 1, . . . , p, h = 1, . . . , k∗) are indepen-
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dently distributed and can be updated in parallel.

Step 4.iii Update each γh exploiting the Pólya-Gamma data-augmentation strategy (Polson
et al., 2013). Let pr(x) ∝

∑∞
n=0(−1)nAn(2πx

3)−0.5 exp{−(2n+ b)2(8x)−1 −
0.5c2x} indicate the probability density function of a Pólya-Gamma distributed
random variable x ∼ PG(b, c). For each h = 1, . . . , k∗, generate p independent
random variables dj(h) sampling from the full conditional distribution (dj(h) | −) ∼
PG(1, w⊤

j γ
(t−1)
h ). LetD(h) denote the p×p diagonal matrix with entries dj(h) (j =

1, . . . , p) and define them×m diagonal matrixS = σ2γIm. For eachh = 1, . . . , k∗,
update γh sampling from

(γh | −) ∼ Nm{(w⊤D(h)w + S−1)−1(w⊤κh), (w
⊤D(h)w + S−1)−1},

where κh is a p-dimensional vector with the j-th entry equal to ϕjh − 0.5. Given
ϕjh (j = 1, . . . , p; h = 1, . . . , k∗), we can update in parallel all the vectorsγh (h =

1, . . . , k∗).

Step 5 Update the factor-specific scale parameters proceeding as follows.

Step 5.i Update the parameter ϑh (h = 1, . . . , k∗) by sampling ϑ−1
h from the full conditional

distribution Ga(aθ + 0.5p, bθ + 0.5
∑p

j=1 λ̃
2
jh).

Step 5.ii Following Legramanti et al. (2020), define the independent indicators ξh (h =

1, . . . , p) with prior pr(ξh = l) = ul. Update the augmented data ξh by sampling
from the full conditional distribution

pr(ξh = l) ∝

⎧⎨⎩ul prN{vec(z); vec(HΛ)− vec(ηhλ⊤h ), Inp} for l = 1, . . . , h

ul prN{vec(z); vec(HΛ) + (1− ρ
(t−1)
h )vec(ηhλ∗⊤h ), Inp} for l = h+ 1, . . . , k∗,

where we define the row vector λ∗⊤h such that λ⊤ = ρhλ
∗⊤
h . Then, ρh = 1 if

ξh > h, else ρh = 0. The full conditional distribution of ξh depends on the value
of ρl (l = 1, . . . , k∗), implying to immediately set λ⊤ = ρhλ

∗⊤
h and to update ρh

sequentially with respect to the index h = 1, . . . , k∗.

Step 5.iii For l = 1, . . . , k∗ − 1, sample vl from

(vl | −) ∼ Be
{
1 +

k∗∑
h=1

1(ξh = l), α+ 1(ξh > l)
}
,
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while set vk∗ = 1. Since, given u, the distribution are conditionally independents,
we can update the k∗ elements of the vector v in parallel. Finally, update ul =

vl
∏l−1

m=1(1− vm), for l = 1, . . . , k∗.

The computational complexity of the algorithm is of order nk3 + np3 + nkp2 + pk3 + npk2 +

pkm + km3 per iteration, assuming a standard implementation for the inversion of a n × n

matrix with complexity n3. Generally p > k and p > m, such that the leading term is np3, which
is the computational complexity of updating n rows of a factor matrixH in a Gibbs sampler of
any Gaussian linear factor model. When multiple processors are available, the computational
complexity is divided by the number of processors, since in each step it is possible to compute in
parallel at least k elements.

iii.iii Identifiability and posterior summaries

As already mentioned in the previous chapter, the matricesH andΛ are only identifiable up
to an arbitrary rotation P with PP⊤ = Ik. This is a well known problem in Bayesian factor
models since makes difficult to extract meaningful posterior summaries fromMarkov chainMonte
Carlo samples. In Section 2.iv.ii we overcome this issue following the literature and applying
a post-processing algorithms that aligns the posterior samples of Λ andH through orthogonal
rotations and label and sign column switching.

Unfortunately, such post hoc alignment algorithms destroy the structure we have carefully
imposed on the loadings in terms of sparsity and dependence on meta-covariates. Therefore, we
propose in this chapter a different solution to obtain a point estimate of Λ based on finding a
representative Monte Carlo drawΛ(t) consistently with the proposals of Dahl (2006) and Wade
et al. (2018) in the context of Bayesian model-based clustering. Specifically, we summarize Λ
and γ = (γ1, γ2, . . . ) through Λ(t∗) and γ(t∗) sampled at iteration t∗, characterized by the
highest marginal posterior density function pr(Λ, γ,Σ | y) obtained by integrating out the scale
parameters θh, φjh (j = 1, . . . , p, h = 1, . . .) and the latent factorsH from the posterior density
function. Formally, we select the iteration t∗ ∈ {1, . . . , T} such that

pr(Λ(t∗), γ(t
∗),Σ(t∗) | y) > pr(Λ(t), γ(t),Σ(t) | y) (t = 1, . . . , T ),

where t = 1, . . . , T indexes the posterior samples. Under the structured increasing shrinkage prior
described in Section iii.i, these computations are straightforward. The matricesΛ(t∗), γ(t

∗),Σ(t∗)
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are Monte Carlo approximations of the maximum a posteriori estimator, which corresponds to
the Bayes estimator underL∞ loss. Although one can argue thatL∞ is not an ideal choice of loss
philosophically in continuous parameter problems, it nonetheless is an appealing pragmatic choice
in our context and is broadly used in other sparse estimation contexts, as in the algorithm proposed
by Ročková & George (2016) that similarly aims to recover a strongly sparse posterior mode of
an overparameterized factor model. In addition, while the likelihood is symmetric over all the
infinite orthogonal rotations ofΛ andH , the posterior is symmetric only with respect to the sign
switching of each factor, as a consequence of the asymmetry caused by the increasings and local
shrinkage induced by the prior. In other terms, given fixed the sign of an element in each column
ofΛ, there exists a unique global maximum a posteriori, which partially justifies our approach.

iv Simulation experiments

We assess the performance of our structured increasing shrinkage prior compared with existing
approaches (Bhattacharya & Dunson, 2011; Legramanti et al., 2020) through a simulation study.
We have a particular interest in inferring sparse and interpretable loadings matrices Λ, but also
assessing performance in estimating the induced covariance matrixΩ and number of factors. We
generate synthetic data from four scenarios based on different loadings structures. For each scenario
we simulateR = 25 data sets with n = 250 observations from yi ∼ Np(0,Λ0Λ

⊤
0 + Ip) (i =

1, . . . , n). In Scenario a, we assume non sparseΛ0, sampling the loadings λjh from a Gaussian
distribution with mean zero, variance equal to σ2λ = 1 and ordering them to obtain decreasing
variance over the columns. To ensure that each element λjh represents a signal, we shifted them
away from zero by σ2λ/3. In Scenario b we remove the decreasing behaviour and introduce a
random sparsity pattern characterized by an increasing number of zero entries over the column
index. The loadings matrix for Scenario c is characterized by both the decreasing behaviour over
the columns of Scenario a and the random sparsity structure of Scenario b. Finally, in Scenario d,
while the decreasing behaviour is kept, we induce a sparsity pattern dependent on a meta-covariate
matrixw0 including variable with four balanced categories, a continuous variable sampled from a
multivariate Gaussian distribution, and a continuous variable where the p elements are sampled
from p gamma distributions.

For each scenario we consider four combinations of dimension and sparsity level ofΛ0. We let
(p, k, s) ∈ {(16, 4, 0.6), (32, 8, 0.4), (64, 12, 0.3), (128, 16, 0.2)}, where s is the proportion
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of nonzero entries ofΛ, with the exception of Scenario a where s = 1. To estimate the structured
increasing shrinkage model, we set w equal to the p-variate column vector of 1s, σγ = 1 and,
consistent with Corollary 3.3, cp = 2e log(p)/p, which belongs to (0, 1) for every p ≥ 15. In
Scenario d we also estimate and compare a correctly specified structured increasing model with
w = w0. In these settings, the algorithm reported in Section iii.ii takes 0.07−−0.73 seconds
of computational time per iteration, depending on the dimension p, using an R implementation
on a laptop with Intel Core i5-6200U CPU and 15.8GB of RAM. The computational cost of
each iteration is notable when p is large and motivates further researches on possible alternative
algorithms, as that we will largely discuss in Chapter 4.

For the method proposed by Ročková & George (2016), we set the hyperparameters they sug-
gested; for the remaining approaches, we set aσ = 1 and bσ = 0.3 and follow the hyperparameter
specification and factor selection guidelines in Section iii of Chapter 2. Results are obtained by
running the algorithms for 25000 iterations discarding the first 10000 iterations. Then, we thin
the Markov chain, saving every 5-th sample. We adapt the number of active factors at iteration t
with probability p(t) = exp(−1− 5 10−4t).

Table 3.1: Median and interquartile range of LPML and E(ka | y) in 25 replications of Scenario a for
different combinations of (p, k); Scenario a is a worst case for the proposed SIS method.

(p, k) MGP CUSP SIS
Q0.5 IQR Q0.5 IQR Q0.5 IQR

LPML (16, 4) −28.68 0.42 −28.68 0.43 −28.65 0.41
(32, 8) −60.08 0.45 −60.09 0.45 −60.07 0.49
(64, 12) −117.68 0.56 −117.75 0.53 −117.88 0.56

(128, 16) −225.04 1.04 −225.13 1.04 −228.76 1.47

E(ka | y) (16, 4) 8.17 1.44 4.00 0.00 4.00 0.00
(32, 8) 10.68 0.33 8.00 0.00 8.00 0.00
(64, 12) 14.16 1.09 12.00 0.00 12.00 0.00

(128, 16) 17.03 0.47 16.00 0.00 18.00 0.02

LPML, logarithm of the pseudo-marginal likelihood; CUSP, cumulative shrinkage process; MGP, multi-
plicative gamma process; SIS, structured increasing shrinkage process; Q0.5, median; IQR, interquartile
range.

Scenario a is a worst case for the proposed method since there is no sparsity, no structure, and
the elements of the loadings matrix are similar inmagnitude. However, even in this case, structured
increasing shrinkage performs essentially identically to the best competitor, as illustrated by the
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results in Table 3.1. We report the median and interquartile range over the R replicates of the
logarithm of the pseudo-marginal likelihood (Gelfand & Dey, 1994) and of the estimated posterior
mean of the number of factorsE(ka | y).
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Figure 3.5: Boxplots of mean squared error of the covariance matrix of each model for different combina-
tions of (p, k, s) in Scenario b. Cov. MSE, covariance mean squared error; CUSP, cumulative
shrinkage process; MGP, multiplicative gamma process; SIS, structured increasing shrinkage
process.

Scenario b judges performance in detecting sparsity. The proposed approach shows better
performance in terms of the logarithm of the pseudo-marginal likelihood and mean squared error
of the covariance matrix, particularly as sparsity increases, as displayed in Fig. 3.5. Consistent
with Legramanti et al. (2020), the covariance mean squared error is estimated in each simulation
by
∑p

j,l

∑S
t=1(ω

(t)
jl − ωjl0)

2/{p(p + 1)/2}, where ωjl0 and ω(t)
jl are the elements jl ofΩ0 =

Λ0Λ
T
0 + Ip andΩ(t) = Λ(t)Λ(t)T + Ip, respectively. The proposed approach allows exact zeros in

the loadings, while the competitors require thresholding to infer sparsity. In particular, we set λjh
to zero when |λjh| (j = 1, . . . , p) is under a certain threshold. We choose the threshold equal to
0.05, which is consistentwith the value of the hyperparameter θ∞ used in the cumulative shrinkage
process. We evaluate performance in inferring the sparsity pattern via the mean classification error:

MCE =
1

S

S∑
t=1

∑p
j=1

∑k∗(t)

h=1 |1(λjh0 = 0)− 1(λ
(t)
jh = 0)|

pk
,

where k∗(t) is the maximum between the true number of factors k and k(t)a , and λjh0 and λ(t)jh

are the elements jh ofΛ0 andΛ(t), respectively. If k(t)a or k are smaller than k∗, we fix the higher
indexed columns at zero, possibly leading to a mean classification error bigger than one. To
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Table 3.2: Median and interquartile range of the mean classification error computed in 25 replications
assuming Scenario b and several combinations of (p, k, s)

MCE (p, k, s) MGP CUSP SIS
Q0.5 IQR Q0.5 IQR Q0.5 IQR

(16, 4, 0.6) 1.06 0.16 0.38 0.01 0.24 0.09
(32, 8, 0.4) 0.70 0.07 0.48 0.08 0.16 0.09
(64, 12, 0.3) 0.61 0.07 0.58 0.01 0.09 0.06

(128, 16, 0.2) 0.49 0.03 0.52 0.08 0.04 0.01

MCE, mean classification error; MGP, multiplicative gamma process; CUSP, cumula-
tive shrinkage process; SIS, structured increasing shrinkage process; Q0.5, median; IQR,
interquartile range.

address column order ambiguity and label switching, we compute the mean classification error
only after having ordered the columns of Λ(t) (for t = 1, . . . , T ), for each model, increasingly
with respect to the number of zero entries identified. The results reported in Table 3.2 show that
the proposed structured increasing shrinkage prior is much more effective at identifying sparsity in
Λ, maintaining good performance even with large p and in strongly sparse contexts. Also, more
accurate estimation of the number of factors is obtained, as reported in Table 3.3.

Similar comments apply in Scenarios c and d reported in Fig. 3.6. The superior performance of
the structured increasing shrinkage model is only partially diminished in Scenario c for large p for
the logarithm of the pseudo-marginal likelihood. In Scenario d, the use of meta-covariates has a
mild benefit in identifying the sparsity pattern. In lower signal-to-noise settings, meta-covariates
have a bigger impact, and they also aid interpretation, as illustrated in the next section.
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Table 3.3: Median and interquartile range of the LPML, Cov. MSE and of E(ka | y) computed in 25
replications assuming Scenario b and several combinations of (p, k, s)

(p, k, s) MGP CUSP SIS
Q0.5 IQR Q0.5 IQR Q0.5 IQR

LPML (16, 4, 0.6) −28.20 0.33 −28.20 0.33 −28.17 0.32
(32, 8, 0.4) −56.95 0.53 −57.00 0.51 −56.80 0.49
(64, 12, 0.3) −111.35 0.70 −111.71 0.74 −110.76 0.89

(128, 16, 0.2) −211.65 0.74 −215.94 1.57 −210.19 0.86
Cov. MSE (16, 4, 0.6) 0.25 0.12 0.25 0.12 0.23 0.10

(32, 8, 0.4) 0.32 0.08 0.33 0.10 0.30 0.12
(64, 12, 0.3) 0.37 0.10 0.43 0.11 0.22 0.09

(128, 16, 0.2) 0.23 0.03 0.32 0.04 0.09 0.01
E(ka | y) (16, 4, 0.6) 8.91 1.52 4.00 0.00 4.00 0.00

(32, 8, 0.4) 11.27 1.48 7.00 1.00 8.00 0.00
(64, 12, 0.3) 14.72 1.49 11.00 0.00 12.00 0.00

(128, 16, 0.2) 17.16 0.81 12.00 1.75 16.00 0.00

LPML, logarithm of the pseudo-marginal likelihood; Cov. MSE, covariance mean squared error; CUSP, cumu-
lative increasing shrinkage process; MGP, multiplicative gamma process; SIS, structured increasing shrinkage
process; Q0.5, median; IQR, interquartile range.
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Figure 3.6: Boxplots of the LPML and MCE of each model for all combinations of (p, k, s) in Scenario c
(left panel) and Scenario d (right panel). LPML, logarithm of the pseudo-marginal likelihood;
MCE, mean classification error; CUSP, cumulative shrinkage process; MGP, multiplicative
gamma process; SIS, structured increasing shrinkage process; SIS mc, structured increasing
shrinkage process with meta-covariates.
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v Applications to real data

v.i Regularized regression for tracking data of football actions

We illustrate our approach by implementing a factor based regularization of a linear regression
model for football tracking data. We are interested in modelling the dangerousness yRi of the
action i through a regression on a p-variate vector yCi including p key performance indicators
of the action obtained by aggregating the tracking data of all the players. We consider a dataset
composed by n = 125 independent actions of three matches of a professional European league.
Due to data confidentiality agreements, the team names are not reported. The covariate matrix,
opportunely standardized, include p = 21 indicators such as the length and width of the teams
during the action, the distance run, the number of players involved and other spatial, temporal
and tactical metrics. The response variable is the dangerous index computed by MathAndSport as
a weighted estimate of the maximum probability to score during the action, assuming continuous
values in (0, 1). We expect redundant information in yC , then we reduce covariates dimensionality
by considering the Gaussian linear factor model for the n× p covariate matrix yC

yCi = Ληi + ϵi, ϵCi ∼ N(0,ΣC), i = 1, . . . , n,

whereΛ is characterized by k∗ ≪ p nonneglectable columns. The linear regression model for the
n-variate response vector yR on the latent covariates is

yRi = β0 + η⊤i β̃ + ϵRi , ϵRi ∼ N(0, σ2R), i = 1, . . . , n, (3.7)

where β0 is the intercept coefficient and β is the k∗-variate coefficient vector. Let β denote a
p-variate coefficient vector such that β = Λβ̃, the model above can be re-written as

yRi = β0 + yC⊤
i β + νi, νi ∼ N(0, σ2R + βTΣCβ) i = 1, . . . , n. (3.8)

Model (3.7) is equivalent to model (3.8) where regularization on β is applied through k∗ linear
constraints determined by the columns of Λ. A sparsity pattern on Λ implies that the linear
constraints act only on subsets, possibly overlapped, of elements of β and can be seen as a group
penalty. Therefore, we induce the group penalty by factorizing the covariate matrix and applying
the structured increasing shrinkage prior on the loadings Λ. Assuming Gaussian independent
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latent factors ηi ∼ N(0, Ik) i = 1, . . . , p, we can write

yi = (0⊤p , β0)
⊤ + zi zi ∼ N(0, [Λ⊤, β]⊤[Λ⊤, β] + Σ)

where yi = (yC⊤
i , yRi )

⊤,Σ = Ip+1(σ
2
1, . . . .σ

2
p, σ

2
R)

⊤, and 0⊤p is the p-variate null row vector.
This specification presents several benefits. Firstly, the k∗ latent factors can be interpreted as latent
covariates that summarize the information of the observed covariates. In our case, this means the
construction of a new set of k∗ more informative performance indicators of the action. Secondly,
the constraints definition is flexible, allowing to adaptively choose the number of linear constraints
as well as the weights of such constraints without imposing any fixed structure. Furthermore,
we can include the meta-covariate p×mmatrixw informing on two indicator characteristics to
help with the identification of sparsity pattern on Λ, implying a coherent group penalty on β.
The first meta-covariate indicates if each key performance indicator is referred to the attacking,
to the defending team or to both, while the second one classifies the indicators according to
the type of measure they consider: spatial measurements, physical performances, or possession
choices. This leads tom = 5. The prior specification is then completed assuming usual conjugate
priors in regression models, namely σ−2

R ∼ Ga(aσ, bRσ ), σ2j ∼ Ga(aσ, bσ) (j = 1, . . . , p), and
βh ∼ N(0, σ2β) (h = 0, 1, . . . ,∞).

Consistent with simulation studies of Section iv, we fix the hyperparameters aσ = 1, bσ = 0.3,
σ2γ = 1, and aθ = bθ = 2. We set bRσ = 2, σ2β = 1 and α = 4. Then, we run the algorithm for
15000 iterations after a burnin of 10000 iterations and we thin the Markov Chain, discarding all
but every third sampled parameters. We verified satisfying convergence and low autocorrelation in
the sampled parameters. To evaluate the model in terms of predictions, we consider yR as missing
values in a subset of nv = 25 randomly sampled actions. Their root mean squared error (RMSE)
with respect to the predictive posterior mean is 0.1637.

In addition to the possible advantages in terms of prediction provided by regularized regression,
the proposed structured prior helps with interpretation of the relations among the large set of key
performance indicators and the response variable. The estimate of k∗ strongly suggests six main
factors, whose impact can be illustrated by the estimates of [Λ⊤, β]⊤ andmeta-covariate coefficients
Γ reported in Fig. 3.7. The loadings matrix is quite sparse, indicating that each latent factor impacts
a small group of key performance indicators. Lower elements of Γ(t∗), represented with light
cells on the right panel, induce higher shrinkage on the group of indicators described by the
corresponding meta-covariate. The indicators influenced by the first factor are fairly homogeneous,
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Γ

β

Figure 3.7: Posterior summaries (Λ⊤, β)(t
∗) and Γ(t∗) of the structured regression model for football

actions, where the rows of the left matrix refer to the 21 action indicators considered, while the
rows of the right matrix refer to the five meta-covariates. Light coloured cells of Γ(t∗) induce
shrinkage on corresponding cells ofΛ(t∗).

all related to the amount of spaces between defenders. The more spaces there are during the
action, the more is likely that the action has not entailed dangerous situations, which are usually
characterized by the collapsing toward the box of the defence. The high level of γ(t

∗)
jh with j = 5

and h = 2 suggests that indicators measuring physical performance tend to have loadings different
from zero for the second factor and an overall very low influence on the dangerousness of the
action. This fact suggests that increasing physical capacity of the players can impact the probability
to score only when they produce differences and advantages in strategic and technical aspects.
Focusing on the most important factors in terms of explaining dangerousness, we note that high
levels of both the fourth and the sixth factors decrease the probability of scoring, although they
represent distinct aspects of the action as we notice looking at the fourth and sixth columns of Γ.
The indicators influenced by the fourth factor are mostly related to the defenders attitude during
the action: as expected, we observe low, narrow, and high defensive pressure when the ball is in
dangerous areas and close to the goal. The last factor describes the attacking strategy providing
the most interesting insights. Long actions that involves a lot of players well distributed along the
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width of the attacking pitch are generally more dangerous than other actions. Surprisingly, the
loadings λ(t

∗)
jh with j = 14 and j = 15 and h = 6 indicate that risky and fast passes are generally

not worth, since they are not rewarded in terms of scoring probability.

v.ii Effectiveness beyond football: bird species co-occurence

As already mentioned, the generality and the effectiveness of the methodology are expected to
have a dramatic impact also in other scenarios in terms of both application field and specification
of the model. In particular, we illustrate our proposed method by modelling co-occurrence of the
fifty most common bird species in Finland (Lindström et al., 2015), focusing on data in 2014. In
ecology applications, it is quite common to have data on species traits, which are routinely used as
meta-covariates informing on the different species effects of some environmental covariates. In
our case, an n× c environmental covariate matrix x is available, including a five-level habitat type,
`spring temperature' (mean temperature in April andMay), and the square of `spring temperature',
leading to c = 7. We also have a meta-covariate p × m matrix w of species traits: logarithm
of typical body mass, migratory strategy, which is classified into short-distance migrant, resident
species or long-distance migrant, and a seven-level superfamily index. Response y is an n × p

binarymatrix denoting occurrence of p = 50 species inn = 137 sampling areas. Wemodel species
presence or absence using a multivariate probit regression model:

yij = 1(z̃ij > 0), z̃ij = x⊤i βj+zij , zi = (zi1, . . . , zip)
T ∼ Np(0,ΛΛ

⊤+Ip), (3.9)

where βj is the jth column of the coefficient matrixB characterizing impact of environmental
covariates on species occurrence probabilities. Covariance of the latent z̃i vector is characterized
through a linear Gaussian factor model. To borrow information across species while incorporating
species traits, we let

βj ∼ Nc(bwj , σ
2
βIc), b = (b1, . . . , bm), bl ∼ Nc(0, σ

2
b Ic), (3.10)

where b is a c×m coefficient matrix with column vectors bl given Gaussian priors.

Model (3.9)--(3.10) is consistent with popular joint species distribution models (Ovaskainen
et al., 2016; Tikhonov et al., 2017; Ovaskainen & Abrego, 2020), with current standard practice
using a multiplicative gamma process forΛ. We compare this approach to an analysis that instead
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uses our proposed structured increasing shrinkage prior to allow the species traitsw to impactΛ
and hence the covariance structure across species. After standardizing x andw, we setα = 4, aθ =
bθ = 2 and σβ = σb = 1. Posterior sampling is straightforward via the Gibbs sampler reported
below, where the notation (x | −) denote the full conditional distribution of x conditionally on
everything else.

Step 1 Update in parallel the p vectors βj (j = 1, . . . , p) by sampling from the independent full
conditional posterior distributions

(βj | −) ∼ Nc

[
(σ−2

β Ic + xTx)−1{xT(z̃T
j −Hλj) + bwj}, (σ−2

β Ic + xTx)−1
]
,

where z̃j is the jth row vector of z̃.

Step 2 Update bl (l = 1, . . . , c) sampling from conditionally independent posteriors

(bl | −) ∼ Nm

{
(σ−2

b Im + σ−2
β wTw)−1σ−2

β (wTβT
l ), (σ

−2
b Im + σ−2

β wTw)−1
}
,

where βl is the lth row vector of the coefficient matrixB.

Step 3 Update the elements z̃ij (i = 1, . . . , n; j = 1 . . . , p) sampling independently and in
parallel from the truncated normal

(z̃ij | −) ∼ TN(λT
j ηi + xTi βj , 1, lij , uij),

where the lower bound lij is equal to 0 if yij = 1 and−∞ otherwise and the upper bound
is uij = 0 if yij = 0 and∞ otherwise. Then, we set z = z̃ − xB.

Step 4 Given the sampled value of z, we follow steps 2--6 of the algorithm in Section iii.ii to sample
H ,Λ,Φ, and θ whereΣ is replaced by Ip.

We run the algorithm for 40000 iterations discarding the first 20000 iterations. Then, we thin the
Markov Chain, saving every 5-th sample. We adapt the number of active factors at iteration twith
probability p(t) = exp(−1− 2.5 10(−4)t) and, given the high value of p considered, we choose
the offset constant cp = 2e log(p)/p.
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Figure 3.8: Chain plots of the marginal posterior samples of 12 mean coefficients of the matrixB obtained
by the Gibbs sampler, discarding the first 20000 iterations and saving every 5-th sample.
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Figure 3.9: Chain plots of the marginal posterior samples of six elements of the covariance matrix obtained
by the Gibbs sampler, discarding the first 20000 iterations and saving every 5-th sample.
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Figures 3.8--3.9 report the trace plots of the posterior samples for some parameters of the model,
which show a discrete mixing.

B

Figure 3.10: Posterior mean ofB and b for the structured increasing shrinkage model, where the rows of
the left matrix refer to the 50 birds species considered, while the rows of the right matrix refer
to the ten species traits considered. Broadle: broadleaved forests; Conifer: coniferous forests;
Temp: temperature.

Figure 3.10 displays the posterior means ofB and b. A first investigation of the left panel shows
large heterogeneity of the habitat-type effects across different species. For instance, superfamilies
Corvoidea and Sylvoidea are rarely observed in forest habitats. This is also reflected in the negative
posterior mean of the corresponding coefficients b41, b51, b42, b52 in the right panel of Fig. 3.10.
This panel also shows that covariate effects tend to not depend on migratory strategy or body mass,
with the exception of urban habitats tending to have more migratory birds.

The estimatedΛ and meta-covariate coefficients Γ, following the guidelines of Section iii.iii, are
displayed in Fig. 3.11. The loadings matrix is quite sparse, indicating that each latent factor impacts
a small group of species. Positive sign of the loadings means that high levels of the corresponding
factors increase the probability of observing birds from those species. Lower elements of Γ(t∗),
represented with light cells on the right panel, induce higher shrinkage on the corresponding group
of birds. To facilitate interpretation, we rearrange the rows ofΛ(t∗) according to the most relevant
species traits in terms of shrinkage, which are migration strategy and body mass. The species
influenced by the first factor are fairly homogeneous, characterized by short distance or resident
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Γ

Figure 3.11: Posterior summariesΛ(t∗) and Γ(t∗) of the structured increasing shrinkage model; rows of left
matrix refer to 50 birds species, and rows of right matrix to ten species traits. Light coloured
cells of Γ(t∗) induce shrinkage on corresponding cells ofΛ(t∗).

migratory strategies and larger body mass. The strongly negative value of the Γ(t∗) element (4, 2)
suggests heavier species of birds tend to have loadings close to zero for the second factor. This is
also true for the third factor, which likewise does not impact short-distance migrants.

Figure 3.12 shows a spatial map of the sampling units coloured accordingly to the values of the
first and the third latent factors. We can interpret these latent factors as unobserved environmental
covariates. We find that the species traits included in our analysis only partially explain the loadings
structure; this is as expected and provides motivation for the proposed approach. Sparsity in the
loadings matrix helps with interpretation. Species may load on the same factor not just because
they have similar traits but also because they tend to favour similar habitats for reasons not captured
by the measured traits.

The induced covariance matrix Ω = ΛΛT + Ip across species is of particular interest. We
compare estimates ofΩ under the multiplicative gamma process, estimated using the R package
hmsc (Tikhonov et al., 2020), and our proposed structured increasing shrinkage model. Figure
3.13 plots the posterior mean of the correlation matrices under the two competing models. The
network graph based on the posterior mean of the partial correlation matrices, reported in Fig.
3.14, reveals several communities of species under the proposed structured increasing shrinkage
prior that are not evident under the multiplicative gamma.
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Figure 3.12: Maps of the sampling units in Finland coloured accordingly to the values of the first and the
third latent factors sampled at iteration t∗. Red and blue spots represent the environments
with positive and negative values of the factors, respectively.

Grus Grus
Numenius Arquata

Columba Palumbus
Larus Canus

Turdus Viscivorus
Gallinago Gallinago

Turdus Pilaris
Turdus Merula

Turdus Philomelos
Turdus Iliacus

Alauda Arvensis
Fringilla Coelebs

Motacilla Alba
Prunella Modularis

Erithacus Rubecula
Carduelis Spinus

Corvus Corax
Tetrao Tetrix

Corvus Corone
Dryocopus Martius

Pica Pica
Corvus Monedula

Garrulus Glandarius
Dendrocopos Major

Loxia curvirostra
Emberiza Citrinella

Carduelis Chloris
Pyrrhula_pyrrhula

Parus Major
Parus Cristatus

Parus Caeruleus
Parus Montanus

Certhia Familiaris
Regulus Regulus
Cuculus Canorus
Tringa Ochropus

Anthus Trivialis
Carpodacus Erythrinus

Sylvia Borin
Sylvia Atricapilla
Hirundo Rustica

Saxicola Rubetra
Muscicapa Striata

Phoenicurus Phoenicurus
Sylvia Communis

Ficedula Hypoleuca
Sylvia Curruca

Phylloscopus Sibilatrix
Phylloscopus Trochilus
Phylloscopus Collybita

Short distance
migrants

Residents

Long distance
migrants

Mass

Mass

Mass

G
ru

s
G

ru
s

N
um

en
iu

s
A

rq
ua

ta
C

ol
um

ba
 P

al
um

bu
s

La
ru

s
C

an
us

Tu
rd

us
V

is
ci

vo
ru

s
G

al
lin

ag
o

G
al

lin
ag

o
Tu

rd
us

P
ila

ris
Tu

rd
us

M
er

ul
a

Tu
rd

us
P

hi
lo

m
el

os
Tu

rd
us

Ili
ac

us
A

la
ud

a 
A

rv
en

si
s

Fr
in

gi
lla

C
oe

le
bs

M
ot

ac
ill

a 
A

lb
a

P
ru

ne
lla

 M
od

ul
ar

is
E

rit
ha

cu
s

R
ub

ec
ul

a
C

ar
du

el
is

S
pi

nu
s

C
or

vu
s

C
or

ax
Te

tra
o

Te
tri

x
C

or
vu

s
C

or
on

e
D

ry
oc

op
us

M
ar

tiu
s

P
ic

a 
P

ic
a

C
or

vu
s

M
on

ed
ul

a
G

ar
ru

lu
s

G
la

nd
ar

iu
s

D
en

dr
oc

op
os

M
aj

or
Lo

xi
a

cu
rv

iro
st

ra
E

m
be

riz
a

C
itr

in
el

la
C

ar
du

el
is

C
hl

or
is

P
yr

rh
ul

a_
py

rr
hu

la
P

ar
us

M
aj

or
P

ar
us

C
ris

ta
tu

s
P

ar
us

C
ae

ru
le

us
P

ar
us

M
on

ta
nu

s
C

er
th

ia
Fa

m
ili

ar
is

R
eg

ul
us

 R
eg

ul
us

C
uc

ul
us

C
an

or
us

Tr
in

ga
 O

ch
ro

pu
s

A
nt

hu
s

Tr
iv

ia
lis

C
ar

po
da

cu
s

E
ry

th
rin

us
S

yl
vi

a 
B

or
in

S
yl

vi
a 

A
tri

ca
pi

lla
H

iru
nd

o
R

us
tic

a
S

ax
ic

ol
a

R
ub

et
ra

M
us

ci
ca

pa
 S

tri
at

a
P

ho
en

ic
ur

us
P

ho
en

ic
ur

us
S

yl
vi

a 
C

om
m

un
is

Fi
ce

du
la

H
yp

ol
eu

ca
S

yl
vi

a 
C

ur
ru

ca
P

hy
llo

sc
op

us
S

ib
ila

tri
x

P
hy

llo
sc

op
us

Tr
oc

hi
lu

s
P

hy
llo

sc
op

us
C

ol
ly

bi
ta

G
ru

s
G

ru
s

N
um

en
iu

s
A

rq
ua

ta
C

ol
um

ba
 P

al
um

bu
s

La
ru

s
C

an
us

Tu
rd

us
V

is
ci

vo
ru

s
G

al
lin

ag
o

G
al

lin
ag

o
Tu

rd
us

P
ila

ris
Tu

rd
us

M
er

ul
a

Tu
rd

us
P

hi
lo

m
el

os
Tu

rd
us

Ili
ac

us
A

la
ud

a 
A

rv
en

si
s

Fr
in

gi
lla

C
oe

le
bs

M
ot

ac
ill

a 
A

lb
a

P
ru

ne
lla

 M
od

ul
ar

is
E

rit
ha

cu
s

R
ub

ec
ul

a
C

ar
du

el
is

S
pi

nu
s

C
or

vu
s

C
or

ax
Te

tra
o

Te
tri

x
C

or
vu

s
C

or
on

e
D

ry
oc

op
us

M
ar

tiu
s

P
ic

a 
P

ic
a

C
or

vu
s

M
on

ed
ul

a
G

ar
ru

lu
s

G
la

nd
ar

iu
s

D
en

dr
oc

op
os

M
aj

or
Lo

xi
a

cu
rv

iro
st

ra
E

m
be

riz
a

C
itr

in
el

la
C

ar
du

el
is

C
hl

or
is

P
yr

rh
ul

a_
py

rr
hu

la
P

ar
us

M
aj

or
P

ar
us

C
ris

ta
tu

s
P

ar
us

C
ae

ru
le

us
P

ar
us

M
on

ta
nu

s
C

er
th

ia
Fa

m
ili

ar
is

R
eg

ul
us

 R
eg

ul
us

C
uc

ul
us

C
an

or
us

Tr
in

ga
 O

ch
ro

pu
s

A
nt

hu
s

Tr
iv

ia
lis

C
ar

po
da

cu
s

E
ry

th
rin

us
S

yl
vi

a 
B

or
in

S
yl

vi
a 

A
tri

ca
pi

lla
H

iru
nd

o
R

us
tic

a
S

ax
ic

ol
a

R
ub

et
ra

M
us

ci
ca

pa
 S

tri
at

a
P

ho
en

ic
ur

us
P

ho
en

ic
ur

us
S

yl
vi

a 
C

om
m

un
is

Fi
ce

du
la

H
yp

ol
eu

ca
S

yl
vi

a 
C

ur
ru

ca
P

hy
llo

sc
op

us
S

ib
ila

tri
x

P
hy

llo
sc

op
us

Tr
oc

hi
lu

s
P

hy
llo

sc
op

us
C

ol
ly

bi
ta

Figure 3.13: Posterior mean of the correlation matrices estimated by the structured increasing shrinkage
model (on the left) and the multiplicative gamma process model (on the right).
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Figure 3.14: Graphical representation based on the inverse of the posterior mean of the correlationmatrices
estimated by the structured increasing shrinkage model (on the left) and the multiplicative
gamma process model (on the right). Edge thicknesses are proportional to the latent partial
correlations between species. Values below 0.025 are not reported. Nodes are positioned using
a Fruchterman–Reingold force-direct algorithm.

We also find that the multiplicative gamma process provides a slightly worse fit to the data. The
logarithm of the pseudo-marginal likelihood computed on the posterior samples of the structured
increasing shrinkage model is equal to−21.06, higher than that achieved by the competing model,
which is−21.36. Using four-fold cross-validation, we compared the loglikelihood evaluated in
the held-out data, with µ andΩ estimated by the posterior mean in the training set. The mean of
the loglikelihood was−22.62 under the structured increasing shrinkage and−23.22 under the
multiplicative gamma process prior.





4 Structured matrix factorization

i Motivation and matrix factorization notation

Despite their unquestionable charm, football player tracking data raise a noticeable number of
statistical challenges that have not been considered in the football analysis framework until now.
Most of them are related to the fact that those data are multivariate in several directions, needing
careful and sufficiently general approaches to deal with their dependence structure. Consider, for
instance, one of the most natural representations of football player tracking data: player heatmaps.
A player heatmap is a graphical representation whereby the pitch areas involved in the player's
action in a certain period of time are coloured depending on the intensity of the action. Figure 4.1
reports the heatmap of the metres run by a professional football player during a match when his
team is in possession of the ball. Mathematically, we can describe a heatmap as a p-variate vector,
where p is the number of cells in which the pitch is divided such that the jth vector component
reports the intensity of the player action in the jth cell. In a football match, we have 22 player
heatmaps available at the same time, generating a further dimension of the problem, and raising
exponentially the complexity of analysis. More generally, we might be interested in analysing a
collection of heatmaps that could be represented by a two dimensions array y, where the presence
of a dependence structure cannot be excluded in any of the two dimensions.

Motivated by such a challenge, in this chapter we propose extending the Bayesian factor models
to model the hidden dependence structure in a multidimensional array, imposing only weak and
dimension-symmetric assumptions on the dependence. In the heatmaps example, we expect that
the relation between two elements of the data matrix yij and yls depends on the similarity between
the two players involved i and l, and it also depends on the spatial relation between the pitch cells
j and s. Therefore, inspired by the general class of infinite factor models with structured shrinkage

67



68 structured matrix factorization

Figure 4.1: Illustrative heatmap representing the metres run by a professional football player during the
possession time of his team in different areas of the pitch. Dark red areas are those where the
player has run larger distances, white areas are those not touched by the player.

presented in the previous chapter, we introduce a new model that allows us to naturally embed
exogenous information about both the subjects and the variables through local scales of latent
elements depending on covariate and meta-covariate matrices x andw, when available. Beyond
the Bayesian literature, successful approaches in matrix factorization (Agarwal & Chen, 2009;
Rendle et al., 2011; Chen et al., 2013) included such auxiliary information along with the latent
terms produced by the factorization.

We extend the notation presented in the previous chapters. Consider some transformations f
and the general class of underlying Gaussian factor models with k latent factors for the n× p data
matrix y. We assume that bothH and Λ depend on an n × q covariates matrix x and a p ×m

meta-covariate matrixw, respectively, such that

yij = fij(zij),

zij =

k∑
h=1

ηih(xi)λjh(wj) + ϵij (i = 1, . . . , n; j = 1, . . . , p)

where xi andwj are a q-variate and anm-variate vectors, respectively, and ϵij is an independent
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Gaussian error ϵij ∼ N(0, σ2ij). We can re-write the model as

z =

k∑
h=1

Fh + ϵ, Fh = η·h(x)λ
⊤
·h(w).

Recalling the specification ofΛ elements in infinite factor models reported in (2.1), we define
the followig Gaussian hierarchical priors

ηih | ψih ∼ N{0, ψih(xi)}, λjh | θh, φjh ∼ N{0, θhφjh(wj)},

where the local scalematricesΨ andΦdependon covariates andmeta-covariates such thatE{ψih(xi) |
B} ∝ gx(xiβh) andE{φjh(wj) | Γ} ∝ gw(wjγh), with βh and γh columns of the coefficient
matricesB and Γ, and gx and gw known smooth one-to-one differentiable link functions. We can
re-write the model as

zij =
k∑

h=1

ψ
1/2
ih (xi) η̃ih φ

1/2
jh (wj) λ̃jh θ

1/2
h + ϵij ,

where ηih = ψ
1/2
ih (xi)η̃ih and λjh = θ

1/2
h φ

1/2
jh (wj)λ̃jh.

Considering a proper increasing shrinkage prior on θh (h = 1, . . . , k); we can extend the
model to infinite factors k = ∞, similar to what is done in infinite factor models discussed in
previous chapters.

The generality of such a model is expected to have impact on other several application fields. For
instance, in economics and finance, the data of interest are routinely stored in a matrix of n-variate
time series with p data points observed over a certain period (Arellano, 2003; Tsay, 2013). Relations
among the different time series and time points can be extracted via matrix factorization algorithms
(Alquier & Marie, 2019; Kastner, 2019). In particular, we could model the dependence among
the n different time series (consider e.g the market returns of n financial assets, as in the work
of Cappiello et al., 2006) by inducing shrinkage patterns on the latent elements through a set of
covariates x; on the other hand, we could induce flexible dependence patterns over the time points
by exploiting meta-covariatesw that include functions of the time as trends, cycles, and seasonality.

To overcome the computational limits of the current approaches, in Section iii.i, we also design
a novel algorithm to allow fast factorization of huge data sets based on a forward stagewise additive
procedure, which is the common ground of the boosting algorithms (Friedman et al., 2000; Chen
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& Guestrin, 2016).

ii Model specification

We specify multiplicative idiosyncratic randomness on ψih and φjh (i = 1, . . . , n; j =

1, . . . , p; h = 1, . . . ,∞) with respect to their mean givenB and Γmatrices, such that we can
write

ψih = ψ̃ihgx(xiβh), φjh = φ̃jhgw(wjγh),

different from the structured increasing shrinkage prior presented in the previous chapter, where
local scales given γ coefficients cannot be factorized in random and deterministic factors. Recalling
the previous notation, the model for the ij element of the matrix z is

zij =
∞∑
h=1

gx(x
⊤
i βh)ψ̃

1/2
ih η̃ih gw(w

⊤
j γh)φ̃

1/2
jh λ̃jh θ

1/2
h + ϵij ,

for i = 1, . . . , n and j = 1, . . . , p.

The square root of the factor scale θh multiplies all the parameters referring to the factor h, such
that the prior on θh plays a key role in regulating the importance of the contribution of the factor h
to themodel. The specification of an increasing shrinkage prior alsomakes θh crucial in determining
the truncation level of the model. Indeed, if θh decreases over the factors h = 1, . . . ,∞, then we
would observe decreasing factor contributions up to a neglectable level. Nevertheless, although a
steep decrease of factor contributions would certainly keep the number of relevant factors low, it
would lead to difficult model interpretation, due to the large difference between the importance of
first and last factors. More generally, it is preferable to separate the parameters that control the
rate of shrinkage of redundant factors from those regulating the contribution magnitude of the
nonneglectable factors. Consistent with such consideration, we define the factor scale again by
exploiting Legramanti et al. (2020) and the structured increasing shrinkage prior introduced in
Chapter 3 to manage the increase of the truncation probability while maintaining similar scale
among factors. In particular, we assume θh = ρhϑh, where ϑh (h = 1, . . . ,∞) are identical and
independent distributed random variables, while ρh is a Bernoulli random variable Ber(1− πh)
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with increasing probability πh of being zero over h according to the stick breaking construction

πh =
h∑

l=1

ul, ul = vl

l−1∏
m=1

(1− vm), vm ∼ Be(1, α), α > 0.

The parameters ρh provide an implicit manner to select the truncation level as the number of
nonneglectable factors, i.e., every factor h such that ρh = 1. This formulation guarantees that the
prior variance of any loadings element is larger than all elements with a higher column index, being
a strongly increasing shrinkage prior under 3.1 in Section 3.ii.ii.

We consider the following set of priors on the other parameters:

η̃ih ∼ N(0, 1), λ̃jh ∼ N(0, 1),

ψ̃ih ∼ Ber(cn), φ̃jh ∼ Ber(cp), ϑ−1
h ∼ Ga(aθ, bθ),

where cn and cp are fixed constants in (0, 1). The inverse gamma prior on ϑh implies a power
law tail distribution on θh inducing robustness properties on λjh (j = 1, . . . , p). Indeed, as
discussed in the literature on shrinkage priors in regression (Carvalho et al., 2010), it is crucial that
the prior is concentrated at zero to reduce mean square error by shrinking small coefficients to
zero, albeit with heavy tails, as power law tails, to avoid overshrinking the obvious and large signals.
Recalling Proposition 3.2 and Theorem 3.2 in Section 3.ii.ii, given the known matrixH , we can
show that the impact of the prior on λjh posterior mode goes to zero when the data are sufficiently
informative and support an increasingly larger maximum likelihood estimate.

Notably, this model is a generalization of Bayesian neural networks (Burden & Winkler, 2008;
Gal et al., 2016), which are spreading through the literature due to their flexibility and implicit
regularization induced by the prior. Indeed, in the simple case with p = 1, k fixed, and no
meta-covariatesw available, we have

yi = fi(zi) = fi

{ k∑
h=1

gx(x
⊤
i βh)λ̃1hφ̃1hθh

1/2 + ϵij

}
.

if η̃ih and ψ̃ih are Dirac δ distributions on 1 for i = 1, . . . , n and h = 1, . . . , k. In this scenario,
the coefficients inB and Λ are the weights of the two layers of the neural network, with gx the
activation function of the neurons in the hidden layer. In the literature (Leshno et al., 1993),
activation functions are generally chosen in the rectified linear unit class of functions, or ReLu.
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Consistent with these considerations, we define gx and gw as FReLu activation functions (Qiu
et al., 2018), i.e.,

FReLu(x) = max(x, 0) + ε,

with ε ≥ 0 fixed. These functions are nondecreasing, nonnegative, and piecewise linear, helping
the update and interpretation of the coefficientsB and Γ.

Finally, the elements of βh and γh (h = 1, . . . ,∞) are distributed a priori as

β1h ∼ N(1− ε, 1), βdh ∼ N(0, 1) (d = 2, . . . , q),

γ1h ∼ N(1− ε, 1), γlh ∼ N(0, 1) (l = 2, . . . ,m).

Consistent with the literature on Bayesian factor models (e.g Arminger & Muthén, 1998), the
prior elicitation is concluded considering then×p errormatrix ϵdistributed as vec(ϵ) ∼ Nnp(0,Σ),
with Σ a np × np diagonal matrix with inverse gamma distributed diagonal elements σ−2

ij ∼
Ga(aσ, bσ). If we integrate out the terms σij (i = 1, . . . , n; j = 1, . . . , p) according to the mea-
sure defined by their prior distribution, each error ϵij is independently distributed as a Student-t
distribution t2aσ(0, bσ/aσ), with 2aσ degrees of freedom, location equal to zero, and scale equal
to bσ/aσ . However, the algorithm we present below is suitable to any log-posterior that can be
effectively minorized by a quadratic function with respect to the single factor parameters η̃h, and
λ̃h.

iii Accelerated factorization via infinite latent elements

iii.i Estimation via forward stagewise additive maximization

To estimate the model presented above, we propose XFILE, a novel algorithm to perform an
Accelerated Factorization via Infinite Latent Elements. It aims to compute fast pointwise estimates
of the model parameters, preventing the possibility of obtaining full Bayesian inference. Although
sampling from the posterior distribution by extending the Gibbs sampler discussed in Section
3.iii.ii is straightforward, the overparametrization of the model would lead to a very slow algorithm
and so highly parametrized that a careful inference analysis would be actually performed only on a
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small part of the set of parametersP = {H̃, Ψ̃, Λ̃, Φ̃, B,Γ, ϑ}. Specifically, XFILE provides an
approximation of the posterior mode, as is common in the machine learning literature (Marcel &
Millán, 2007) and, in particular in the case of factorization models (Gao et al., 2013; Ročková &
George, 2016). This estimation method is also partially justified from a theoretical perspective by
the aforementioned robustness property formalized in Theorem 3.2 in Section 3.ii.ii and focused
on the posterior mode behaviour.

Our approach belongs to the wide class of machine learning methods that exploit the Bayesian
model construction to obtain regularized estimates of the parameters byminimizing a loss function
penalized by the parameter priors (see e.g. Fraley & Raftery, 2007; Kayri, 2016), with the proba-
bilistic matrix factorization (Salakhutdinov & Mnih, 2008) providing a notable example for our
purposes. In most cases, the loss function corresponds to the opposite of a loglikelihood. In other
terms, these methods aim to find the set of pointwise estimates P̂ that minimizes

− log{L(y;P,Σ, x, w)} − log{f(P)},

where log{L(y;P,Σ, x, w)} is the data loglikelihood, and log(f(P,Σ)) is the logarithm of the
prior density.

Focusing on the underlying Gaussian factor model for z, the loglikelihood is

log{L(z;P,Σ, x, w)} =

n,p∑
i=1,j=1

(
zij −

k∑
h=1

ηjhλih
)2
/σ2ij .

We can interpret the σ2ij parameters as weights of the loss function contributions with respect to
the prior penalisation. In particular, when we assume common variance σ2 for every contribution
i and j, σ2 plays the same role of the usual regularization parameter that regulates the importance
of the penalty function in machine learning methods, which is often estimated through grid search
and out-of-sample cross validation. As we already mentioned, we propose integrating out the
parameters σij (i = 1, . . . , n; j = 1, . . . , p) to avoid estimation troubles, while high flexibility
of the model is maintained. Then, the integrated loglikelihood for z is the Student-t loglikelihood

log{L(z;P, x, w)} =

n,p∑
i=1,j=1

{
1 +

1

2aσ

(zij −
∑k

h=1 ηjhλih)
2

bσ/aσ

}−aσ−0.5

. (4.1)

In this framework, the hyperparameters (aσ, bσ) become the tuning parameters to regulate the



74 structured matrix factorization

importance of the penalisation. High values of bσ would increase the mode of σ2ij , entailing a
higher importance of the regularization, which is reflected on higher expected variance of ϵij on the
marginal datamodel. On the contrary, a high value ofaσ would induce a lowermode, increasing the
importance of the loss function to estimate the other parameters inP . In the marginal likelihood,
this translates to thinning the tails of the error distribution. Nevertheless, variations in the value of
aσ and bσ have smaller consequences on the predictive ability of the model with respect to directly
amending the value ofΣ.

Our algorithm relies on both the forward stagewise additive interpretation of a factor model and
the possibility of defining the log-prior as a sum of factor contributions when priors on factors are
independent. Thus, the model is estimated by sequentially adding a new factor Fh = ηhλ

⊤
h , with

(ηh, λh) = argmin
{η,λ}

log{L(z;
h−1∑
l=1

ηlλ
⊤
l +ηλ⊤, x, w)}+

h−1∑
l=1

log{f(ηl, λl)}+log{f(η, λ)},

while the previous h − 1 terms are fixed. In other words, at each iteration, we greedily add the
factor that most improves the fit of our model to the data, under the constraints induced by the
prior. A second order approximation with respect to Fh and evaluated at

∑h−1
l=1 F̂l might be

used to quickly optimize the objective function, strengthening the connection with the gradient
boosting algorithms (Friedman et al., 2000).

This approach presents two main advantages with respect to the Markov chain Monte Carlo
methods used previously in this thesis. First, the computations are substantially faster, even in the
case of highly overparametrizedmodels. In addition, the forward stagewise additive estimation also
enable us to easily overcome the well known nonidentifiability issue characterizing the posterior
sampling methods, largely discussed in previous chapters, avoiding the use of post-processing
algorithms (McParland et al., 2014; Aßmann et al., 2016; Roy et al., 2019). In fact, given

∑h−1
l=1 Fl,

both λh and ηh are only identifiable up to an arbitrary rotationP , such thatPP⊤ = 1. However,
such a condition is satisfied only by two possible univariatematricesP = 1 andP = −1. This fact,
jointly with unimodal and symmetric priors of ηh and λh with respect to zero, leads to only two
equally high posterior modes on (η̂h, λ̂h) and (−η̂h,−λ̂h), whose interpretation is symmetric.
Convergence of the algorithm is guaranteed when a nonnegative constraint on a single element of
either ηh or λh is fixed.

The boosting approach defined above sheds new light on the interpretation and use of some
parameters. For instance, the parameter ϑh (h = 1, . . . ,∞) could be interpreted as a dynamic
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learning rate of the algorithm that controls the impact of each step, as routinely done in boosting
algorithms (Chen & Guestrin, 2016). Reducing the impact of each step through a low learning
rate is fundamental to induce a finer search of the optimum, allowing a better fit. However,
as the learning rate gets lower, many more steps are needed, making computation slower, and
interpretation harder, since in our case each step corresponds to a further factor. The prior on
ϑh guarantees sufficient flexibility to balance these two opposite aspects, but we generally suggest
setting bθ ≤ aθ to ensure sufficient prior mass concentration in (0, 1).

The algorithm stops when it is not possible to add a factor while increasing the log-posterior of
the model. This condition can be simply verified for the factor h by looking at the value of ρh that
maximizes the log-posterior, given the estimates of the other factor parameters. In other words,
given

∑h−1
l=1 Fl known, we add the factor h to the model if

log

{(
1 + α

α

)h

− 1

}
<

n∑
i=1

p∑
j=1

(
l
(ρh=0)
ij − l

(ρh=1)
ij

)
,

where pr(ρh = 1) = {α/(1+α)}h is the prior probability of factor h being not shrunk, l(ρh=0)
ij

is the loglikelihood of zij under ρl = 0 (l = h, . . . ,∞), and l(ρh=1)
ij is the maximum of the

loglikelihood of zij under ρh = 1 and ρl = 0 (l = h+ 1, . . . ,∞).

iii.ii Coordinate ascent algorithm for the single factor estimation

To estimate (ηh, λh), given the first h− 1 factors and under ρh = 1, we rely on a coordinate
ascent algorithm (see Wright, 2015, for a complete discussion on these algorithms) and hierarchical
prior structure defined in Section ii to exploit closed form updates for blocks of parameters. The
loglikelihood of latent data z is

n,p∑
i=1,j=1

(aσ + 0.5) log

⎡⎢⎣1 +
{
z̃ij + ηihλ

⊤
jh

}2

2bσ

⎤⎥⎦ ,
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where z̃ij = zij −
∑h−1

l=1 ηilλjl is known. Hence, extending the parameter hierarchical structure,
we want to maximize the log-posterior

n,p∑
i=1,j=1

− (aσ + 0.5) log

⎡⎢⎣1 +
{
z̃ij − FReLu(x⊤i βh)ψ̃

1/2
ih η̃ih FReLu(w⊤

j γh)φ̃
1/2
jh λ̃jh θ

1/2
h

}2

2bσ

⎤⎥⎦
+

n∑
i=1

log{pr(η̃ih)}+
p∑

j=1

log{pr(λ̃)}+ log{pr(βh)}+ log{pr(γh)}

+
n∑

i=1

log{pr(ψ̃ih)}+
p∑

j=1

log{pr(φ̃jh)}+ log{pr(θh)},

where pr(·) indicates the prior probability function.
We set ρh = 1 and, after initially sampling the other parameters from the prior, we cycle over

the steps below up to a maximum number of iterations or convergence of the algorithm. In every
step of iteration t, we update a block of parameters moving towards the maximum, conditional on
the value of the other parameters.

Step 1 Parameter vector η̃h update.
Set ψ̃ih = 1 for i = 1, . . . , n. Then, exploiting the minorize-maximize paradigm, update
η̃h using the following quadratic minorant of the Student-t loglikelihood (see Wu & Lange,
2010, for a complete presentation), tangent to the current value η̃(t−1)

h :

n,p∑
i=1,j=1

−(aσ+0.5)

[
log

{
1 +

(z̃ij − η̃
(t−1)
h ξij)

2

2bσ

}
+

(ỹij − η̃hξij)
2 − (z̃ij − η̃

(t−1)
h ξij)

2

2bσ + (z̃ij − η̃
(t−1)
h ξij)2

]
,

where ξij = ϑ
1/2
h FReLu(x⊤i βh) FReLu(w

⊤
j γh) λ̃jhφ̃jh. Consider z̃J , the set of pJ

columns of z̃ with index in Jh = {j = 1, . . . , p : φjh = 1}, and let z̄η̃ = Ξ−1
η̃ vec(z̃J),

where ξij is the generic entry of the npJ × npJ diagonal matrixΞη̃ if and only if j belongs
to Jh.

Then, maximize

−(aσ + 0.5)||D−1
η̃ (z̄η̃ − 1npJ η̃h)||

2 − ||η̃h||2

2
,

with respect to η̃h, whereD2
η̃ is a npJ × npJ diagonal matrix with the ij entry equal to
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ξ−2
ij {2bσ+(z̄η̃;ij− η̃(t−1)

h )2} and1npJ = In⊗(1, . . . , 1)⊤ is anpJ ×nmatrix obtained
as the Kronecker product between the identity matrix and a pJ -variate vector of ones. Then,
update

η̃
(t)
h =

{
1
⊤
npJ

D−2
η̃ 1npJ +

1

2(aσ + 0.5)
In

}−1

1
⊤
npJ

D−2
η̃ z̄η̃.

Notice that 1⊤npJD
−2
η̃ 1npJ is a diagonal matrix with element i equal to

∑
j∈Jh D

−2
η̃;ij , such

that a low computational effort is required to perform the inversion.

Step 2 Scale ψ̃ih update.
For i = 1, . . . , n, set ψ̃(t)

ih = 1 if

log

(
cn

1− cn

)
> −(aσ + 0.5)

p∑
j=1

[
log{1 + z̃2ij/(2bσ)} − log{1 + ε2ij/(2bσ)}

]
,

with εij = z̃ij − FReLu(x⊤i βh) FReLu(w
⊤
j γh) η̃ihλ̃jhφ̃jhϑ

1/2
h

and 0 otherwise.

Step 3 Vector βh update.
The vector βh is updated by applying a Newton-Raphson step to maximize the minorant of
the Student-t loglikelihood tangent to the current value β̃(t−1)

h . At iteration t, we identify
the set of indices It = {i ∈ {1, . . . , n} : x⊤i β

(t−1)
h > 0}, where the cardinality of

the set is nI , letting xI denote the submatrix of x composed by the rows with index i
belonging to It. Then, we define the nIpJ × nIpJ diagonal matrix Ξβ , with the generic
entry ξij = FReLu(w⊤

j γh)λjhηih if i and j belong to It and Jh, respectively. Define
the nIpJ -variate vector z̄β as z̄β = Ξ−1

β vec(z̃)IJ , where vec(z̃)IJ is a vector including the
elements z̃ij for i ∈ It and j ∈ Jh, and the nIpJ × nIpJ diagonal matrixDβ , where the
ij entry ofD2

β is equal to ξ−2
ij [2bσ + {z̄β;ij − FReLu(x⊤i β

(t−1)
h )}]. Then, update β(t)h

setting

β
(t)
h =

{
x⊤I 1

⊤
nIpJ

D−2
β 1nIpJxI +

1

2(aσ + 0.5)
Iqx

}−1{
x⊤I 1

⊤
nIpJ

D−2
β z̄β +

1

2(aσ + 0.5)
µβ

}
,

where µβ = (1− ϵ, 0, . . . , 0)⊤ is the prior mean of βh and 1nIpJ = (1, . . . , 1)⊤ ⊗ InI .



78 structured matrix factorization

Because of the shape of the FReLu function around zero, the gradient with respect to
βh does not exist for some points of the domain. To overcome this issue, we assume
dFReLu(x⊤i βh)/dβh = 0 if FReLu(x⊤i βh) = 0, relying on the subgradient concept
(Lange, 2013).

Step 4 Vector λ̃h update.
Set φ̃jh = 1 for i = 1, . . . , n and defineλ∗h = λ̃hϑ

1/2
h , such that the prior onλ∗h | ϑh is the

p-variate GaussianNp(0, ϑh). Consider z̃I , the set ofnI rows of z̃ with index in Ih = {i =
1, . . . , n : ψih = 1} and z̄λ∗ = Ξ−1

λ∗ vec(z̃I), where ξij = FReLu(x⊤i βh) FReLu(w
⊤
j γh) η̃ihψ̃ih

is the generic entry of the nIp× nIp diagonal matrixΞλ∗ if and only if i belongs to Ih. At
each iteration t, update λ∗h with

λ
∗(t)
h =

{
1
⊤
nIp
D−2

λ∗ 1nIp +
1

2(aσ + 0.5)ϑh
In

}−1

1
⊤
nIp
D−2

λ∗ z̄λ∗ ,

where Dλ∗ is the nIp × nIp diagonal matrix such that the ij entry of D2
λ∗ is equal to

ξ−2
ij {2bσ + (z̄λ∗;ij − λ

∗(t−1)
h )2}. Finally, set λ̃jh

(t)
= λ

∗(t)
jh /ϑ

1/2
h .

Step 5 Scale φ̃jh update.
For j = 1, . . . , p, set φ̃(t)jh = 1 if

log

(
cp

1− cp

)
> −(aσ + 0.5)

p∑
j=1

[
log{1 + z̃2ij/(2bσ)} − log{1 + ε2ij/(2bσ)}

]
,

with εij = z̃ij − FReLu(x⊤i βh) FReLu(w
⊤
j γh) η̃ihψ̃ihλ̃jhϑ

1/2
h

and 0 otherwise.

Step 6 Vector γh update.
At iteration t, identify the set of indices Jt = {j = 1, . . . , p : w⊤

j γ
(t−1)
h > 0}, where

the cardinality of the set is pJ , letting wJ denote the submatrix of w composed by the
rows with index j belonging to Jt. Then, define the nIpJ × nIpJ diagonal matrix Ξγ ,
where the generic entry is ξij = FReLu(x⊤i βh)λjhηih if i and j belong to Ih and Jt,
respectively. Further define the nIpJ -variate vector z̄γ = Ξ−1

γ vec(z̃)IJ , where vec(z̃)IJ is
a vector including the elements z̃ij for i ∈ Ih and j ∈ Jt, and the nIpJ × nIpJ diagonal
matrixDγ , with the ij entry ofD2

γ is equal to ξ−2
ij [2bσ + {z̄γ;ij − FReLu(w⊤

j γ
(t−1)
h )}].
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Finally, update γ(t)h with

γ
(t)
h =

{
w⊤
J 1

⊤
pJnI

D−2
γ 1pJnIwJ +

1

2(aσ + 0.5)
Im

}−1{
w⊤
J 1

⊤
pJnI

D−2
γ z̄γ +

1

2(aσ + 0.5)
µγ

}
,

where µγ is the prior mean of γh and 1pJnI = (1, . . . , 1)⊤ ⊗ IpJ .

Step 7 Scale ϑh update.
The update of ϑh exploits the hierarchical specification of λ. In particular, given λ∗h =

λ̃hϑ
1/2
h with λ∗h ∼ Np(0, ϑh), the full conditional distribution of ϑ−1

h given the other
parameters is Ga(aθ + 0.5p, bθ + 0.5

∑p
j=1 λ

∗2
jh). Then, the value of ϑh maximizing the

objective function is the mode of the inverse gamma distribution, i.e.,

ϑ
(t)
h =

bθ + 0.5
∑p

j=1 λ
∗2
jh

aθ + 0.5p+ 1
.

The algorithm structure and Steps 1,2,4,5,7 are greedy, ensuring the algorithm ascends the objective
function. Then, in order to guarantee the convergence, we suggest adjusting Steps 3 and 6, relying
on the Newton approximation, as follows. Given the log-posterior l(t−1), we perform the update
as described in the algorithm if and only if the log-posterior l(t−1) evaluated after the step is equal
or greater than l(t−1); otherwise, we simply move along the gradient of a small step. We also
recommend performing several random initializations of the first step of each element of η̃h, λ̃h,
βh, and γh to mitigate the risk of starting the algorithm very far from the maximum of the log-
posterior, which would entail a huge number of steps to reach convergence, due to the nature of
the minorize-maximize approach.

To speed up the algorithm, it is possible to adaptively reduce the number of updating parameters
at each iteration. To accomplish this, Glasmachers & Dogan (2013) proposed adaptively changing
the frequency of steps occurrence to promote the update of the parameters that allow a larger
increase of the objective function. In our case, we can promote higher frequent updates of the
elements of η̃h and λ̃h corresponding to the elements of ψ̃h and φ̃h, respectively, equal to 1 in the
last iteration. This approach entails computational benefits, especially when n and p are very large
and when high sparsity is expected, i.e., when the constants cn and cp are set close to zero.
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iv Football heatmaps decomposition

iv.i Nongaussian distance run heatmaps

We are interested in modelling the n heatmaps generated by a set of players in some matches. In
particular, we consider the heatmaps obtained by measuring the distance covered during a match
in the p different areas in which the pitch is divided. By construction, we would observe several
areas with zero distance covered and positive continuous values elsewhere, leading to an n × p

heatmaps data matrix y with yij ≥ 0 (i = 1, . . . , n; j = 1, . . . , p). Recalling the notation in
Section i, we model the data as a deterministic transformation of an underlying Gaussian model
yij = fij(zij) (i = 1, . . . , n; j = 1, . . . , p), where z = H(x)Λ(w) + ϵ and independent
Gaussian error term ϵij ∼ N(0, σ2ij). In our case, we consider the transformation

yij =

⎧⎨⎩zij if zij > 0

0 if zij ≤ 0,

which is

yij =

⎧⎨⎩
∑h−1

l=1 ηilλjl + z̃ij if z̃ij > −
∑h−1

l=1 ηilλjl

0 if z̃ij ≤ −
∑h−1

l=1 ηilλjl,

when the first h − 1 factors are known. We treat the parameter matrix z̃ as a further factor-
specific parameter that has to be updated at each additive iteration h in order to maximize the joint
posterior. Following the algorithm described in Section iii.ii, we add a greedy step in the loop that
iteratively updates the matrix z̃ij maximizing the posterior density function, given the other fixed
factor-specific parameters. The distribution of z̃ij , conditional to the first h− 1 factors and to the
value of ηih and λjh, is a Student-t distribution t2aσ(ηihλjh, bσ/aσ), leading to the following
step.

Step 8 We set z̃ij = yij−
∑h−1

l=1 ηilλjl if yij > 0, for i = 1, . . . , n and j = 1, . . . , p. If yij < 0,
we independently update z̃ij , setting it equal to the value thatmaximizes the full conditional
distribution

(z̃ij | yij < 0,−) ∼ Tt2aσ(
h∑

l=1

ηilλjl, bσ/aσ,−∞,−
h−1∑
l=1

ηilλjl),
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whereTt indicates the truncated Student-t distribution in the interval (−∞,−
∑h−1

l=1 ηilλjl).
Then,we set z̃(t)ij =

∑h
l=1 ηilλjl if

∑h
l=1 ηilλjl < −

∑h−1
l=1 ηilλjl and z̃

(t)
ij = −

∑h−1
l=1 ηilλjl

otherwise.

iv.ii Application and results

We apply XFILE to a dataset y of n = 106 heatmaps of different players collected over five
professional European league football matches. Each heatmap is described by a vector of p = 150

elements corresponding to the 150 cells in which we divide the pitch. Each element yij reports the
distance covered by the player iwithin the cell j during his team's possession time in the match.
Due to data confidentiality agreements, both players and teams have been anonymized.

Different from most of the existing literature, our model allows one to naturally embed exoge-
nous information as covariates and meta-covariates, informing the sparsity structure ofH and
Λ and ultimately inducing a nonexchangeable block dependence structure. The n× q covariate
matrix x provides information to distinguish the n different players, and in our case, it includes
the expected role of each player during the match defined by three binary variables based on the
line-up provided before the match. In addition, we exploit the possibility of considering a p×m

meta-covariatesmatrixw including information on the p pitch cells to naturally promote consistent
spatial dependence, without imposing any fixed structure. In particular, we consider the distance
in polar coordinates from the centre of the pitch, two binary variables indicating which quadrant
of the pitch the cell belongs to, and a further binary variable that is equal to one when the cell
belongs to one of the two boxes and zero elsewhere.

After standardizing the data and the meta-covariates matrices, consistent with simulation ex-
periments in 3.iv, we set aσ = 1 and bσ = 0.3, and bθ = 2 lower than aθ = 4, as suggested in
Section iii.i. The parameter α corresponds to the prior expected number of factors, while the
offset constants cn and cp represent the probability of nonzero elements in ηh and λh, respectively.
In view of this, we set α = 5, cn = 0.1, and cp = 0.2. Parameter estimation is straightforward
via the algorithm reported in Section iii.ii. The algorithm stops after four iterations, indicating
that any possible additional factor does not sufficiently improve the fit. The structured shrinkage
induced by covariates and meta-covariates identifies groups of both players and pitch cells in each
factor, allowing for an easy interpretation of the model by looking at the estimatedH andΛ.

Figure 4.2 displays the estimates of the four columns of the element-wise product Φ̃ · Λ̃ in the
form of four heatmaps. According to our model, a suitable linear combination of such factors is
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Factor 1 Factor 2

Factor 3 Factor 4

2

-2

0

Figure 4.2: Heatmaps illustrating the estimates of the four columns of the element-wise product Φ̃ · Λ̃.
Players attack from left to right.

able to represent sufficiently well any player heatmap of the sample. The first factor in the top-left
corner explains the areas of the pitch that are mostly involved in the heatmaps, acting as a sort
of baseline heatmap. The top-right panel reports the second factor that helps to distinguish the
players who mainly move in the right attacking area, characterized by positive values of η2, from
those that play in the left back, characterized by negative values of η2. If ηi2 = 0, player i does not
move following one of these two patterns. Equivalent considerations can be applied to the third
factor, shown in the bottom-left corner, while the fourth factor differentiates player behaviours
according to a less obvious criterion. The blue cells highlight the areas of the pitch where players
involved in the build-up of the action move, while the red areas characterize recurrent patterns of
players who are involved forward in the action and who only provide wide pass lines during the
build-up phase.

The estimate of the element-wise productΨ · sign(H) is reported in Fig. 4.3, such that coloured
cells in column h indicate the players influenced by the h-th factor. As previously mentioned, the
first factor acts as a baseline heatmap and then affects almost all the players, with the sole exceptions
being the goalkeepers (at the bottom of the figure) and a defender. Such exceptions are guaranteed
by the flexible specification of our proposal. As expected, the second and third columns show clear
blocks corresponding to the role of the players. This visualization can help one to immediately
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Figure 4.3: Estimate of the element-wise product Ψ̃ · sign(H). The rows of the matrix refer to the 106
player heatmaps considered, and they are grouped according to the role indications provided
before the match.

identify the players who played in a different role with respect to the line-up indications provided
before the match. For instance, there are at least three left-side players with zero second factor and
negative third factor, when the others players on the same side are generally characterized by the
opposite behaviour. The influence of the last factor is heterogeneous within each role, specially
among defenders andmidfielders, meaning that our model is also able to identify clusters of players
characterized by a similar play style, regardless of the expected role of the players. In particular, the
last column of Ψ̃ · sign(H) allows three groups to be defined according to their propensity for
moving forward during attacking phases.

Each row vector of the estimated matrixH represents the play style of a single player during a
match. Hence, closeness between different players can be measured by the similarity among the
estimated row vectors ηi (i = . . . ,∞). In particular, we compute the Gaussian kernel similarity
− exp{−0.5(ηi − ηl)

TΘ−1(ηi − ηl)}, whereΘ is the diagonal matrix with the element h of the
diagonal equal to ϑh. In Fig. 4.4, we report a net graph based on this similarity metric. Players
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playing in similar roles tend to be clustered. Several groups of defenders are spread all over the
graph, and this can be explained by the different style of play of defenders in different teams. Player
A,Player B, andPlayer C lie close to centre strikers and attacking midfielders, indicating wrong
expectations or representations before the match about their actual style of play. Comparing these
facts with a qualitative football knowledge about these three professional players, we have gained
confirmation about their ability to participate in attacking situations starting from a wider or more
defensive nominal position. Instead,Player D is universally recognized among football insiders
for his overall style of play; in fact he connects different clusters.

Player C

Player D

Player B

Player A wing

centre

Expected position

Expected role

defender

midfielder

striker

Figure 4.4: Graphical representation based on the Gaussian kernel similarity of estimated row vectors of
H . Edge thicknesses are proportional to the similarities between players. Values below 0.5 are
not reported. Nodes are positioned using a Fruchterman–Reingold force-direct algorithm.



5 Discussion

This thesis has aimed to provide an overviewon infinite factorizationmodels, presenting the state
of the art, discussing the limitations of the currentmodels, and proposing a general Bayesian infinite
factorization framework including novel methods and algorithms to address such deficiencies. We
have considered in particular the role of sparsity in the latent elements, to promote better inference
by shrinking the noise and the redundant information and to facilitate an easier interpretation. We
report below a brief discussion on the main achievements of this thesis and on the future related
research topics that we think are worth exploring.

In Chapter 2, we have mainly focused on how the sparsity generated by truncating the model
affects the inference performance and the factor model representation. We have noted that this
effect is strongly influenced by using different truncation criteria. The novel truncationmethod we
have proposed in Section ii.i allows a more intuitive and general way to calibrate the algorithm's
parameters, removing the factors that provide a negligible contribution to the global data variability.
Following this idea, it is easy both to relate the threshold parameter to the interpretable model's
quantities and to note the remarkable importance of using methods that are invariant to the scale
of the data. Furthermore, by its construction, the algorithm guarantees a finite and deterministic
upper bound on the number of factors, allowing for control of the maximum computational cost.

In Chapters 3--4, we have investigated the effects of inducing local sparsity within the factors and
loadings matrices. The desired local sparsity patterns have been induced by using external auxiliary
variables or exploiting unstructured prior information. The use of exogenous information to
define the prior of the latent elements represents one of the more innovative contributions of the
thesis. The generalized class for infinite factorization models discussed in Chapter 3 is characterized
by the dependence of the loadings matrix on this additional information which is supposed to
inform on the loadings sparsity structure. Theoretical support has been provided through the
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definition of sparsity and robustness prior properties, while practical gains with respect to the
current state of art have been demonstrated in simulation studies. Themodel presented in Chapter
4 embeds the auxiliary information in both the forms of covariates and meta-covariates, enabling
us to model the dependence through structured sparse latent elements along both the matrix
dimensions.

The available football player tracking data have represented the common thread of the thesis.
They have motivated the introduction of the novel methodologies to address the challenges arising
from the need of extracting valuable knowledge from such a huge amount of data, possibly framed
in different shapes. The football heatmaps factorization in Section iv represents only one of the
possible applications in which our methodology extracts useful insights and representations from
a high dimensional dataset of a complex phenomenon. However, the generality of the framework
proposed is expected to impact many other application fields, with first evidence of this fact on
the improved performance in the cutting-edge ecological models discussed in Section v.ii, both in
terms of variance inference and model interpretation.

However, some critical aspects need to be pointed out. The over-parametrization of the model
uncovers some limitations of the current estimation methods. In generalize infinite factorization
models, the adaptive Gibbs sampler generates highly autocorrelated samples, with negative impacts
on the inference results. This is particularly true for the cumulative shrinkage process and structured
shrinkage process that rely on a spike and slab prior on the factor scale θh to model the column of
the loadings matrix. Indeed, as the dimension of the loadings column p increases, it becomes more
difficult for θh to switch between the slab and spike components (Scheipl et al., 2012), inducing
the draws of the number of latent factors k∗ to be stuck on the same value along the Markov chain.
A possible solution has recently been adopted by Kowal & Canale (2021). The authors suggested
a redundant parameter expansion that introduces a further Gaussian distributed scale centred
around 1 or −1 in the prior of the loadings element. Although this might lead to substantial
improvements in terms of reliable posterior uncertainty quantification, Markov chain Monte
Carlo methods for over-fitted factorization models are still affected by other limitations. Firstly, the
algorithms could be very slow in case of big data problems. Secondly, if we are interested to interpret
either the loadings or the factor, we need to overcome the problem of defining good posterior
summaries, which is due to the nonidentifiability of the latent matrices. The methods adopted in
this thesis to address this issue (see Section iv.ii and Section iii.iii) are ad hoc solutions that cannot
be taken as a complete answer for the generalized infinite factorization class of models. On the
other hand, the XFILE algorithm proposed in Section iii is not affected by the three mentioned
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problems typical of the Markov chain Monte Carlo methods, albeit it prevents the possibility
of obtaining full Bayesian inference. In addition, it still lacks of both theoretical support and
comparisons with alternative algorithms. A careful investigation of the theoretical properties of
the algorithm is needed, especially to explore the estimator's behaviour around the lower posterior
modes. The algorithm should be largely tested on both synthetic and real data scenarios to verify
the presence of practical gains with respect to the current state of the art.

Alternative scalable algorithms allowing full uncertainty quantification would be worth investi-
gating. In this perspective, a future research path could be focused on studying the applicability of
scalable algorithms that approximate the posterior distribution, as variational Bayes (Blei et al.,
2017), expectation propagation (Minka, 2001), or integrated nested Laplace approximation (Rue
et al., 2009). A first exploration shows that their application is not straightforward in case of
over-fitted latent models as those discussed in this thesis. For instance, although it is possible in
many cases to derive analytic full conditional posteriors that would encourage the use of simple
coordinate ascent variational inference algorithms based on mean-field approximations (Blei et al.,
2017), their application could lead to not interesting results. Indeed, the already discussed rota-
tional symmetry of the parameter, induced by the non-identifiability of the latent structure, would
be broken by the variational inference, which would approximate the symmetric modes of the
posterior distribution of the latent elements with a new mode, corresponding to a degenerate
solution, as a consequence of the independence assumption betweenH andΛ in the mean-field
variational posterior distribution. The implicit regularization induced by mean-field variational
approaches has been widely studied in case of Bayesian matrix factorization models (Nakajima
et al., 2013) and could even represent a strength of the method when the focus of the inference is
not on the low-rank latent matrices, differently from this thesis. To overcome this issue, Moore
(2016) has recently proposed to model the symmetries directly in variational inference by using a
symmetrized posterior as variational approximating distribution of the latent elements. Despite
the promising initial results, the literature on this topic seems still immature for straightforward
and immediate applications on the complex hierarchical models presented in this thesis.

Although the discussion about structured factorization is far from being completed, the en-
couraging results achieved in this thesis suggest that structured sparsity inducing prior should be
seriously taken in consideration in future implementations of infinite factor models. Furthermore,
the novel factorization algorithm inspired by gradient boosting approaches, introduced in Chapter
4, highlights the connections between the Bayesian nonparametric methods discussed in this thesis
and machine learning, opening several future themes of research in this field. Bayesian nonpara-
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metric modelling have already shown to be strongly effective in many machine learning contexts
including variable selection (Kim et al., 2006), unsupervised learning (Broderick et al., 2013), and
deep learning (Gal & Ghahramani, 2016; Polson & Sokolov, 2017). On the other hand, matrix
factorization, embedding, data compression, and low-rank projections in general, are successful
and widely used approaches for big data problems. For instance, in recommendation systems, the
user's preference is modelled as the product of an item latent vector and a user-specific vector of
latent factors. In this framework, context-aware recommendation systems (Rendle et al., 2011; Ado-
mavicius & Tuzhilin, 2011) provide notable examples of the use of auxiliary context information
in building supervised factorizations in machine learning, underline a further link between the
machine learning literature and the structured priors for factorization model investigated in this
thesis. The sparse pattern in the latent low-rank matrices induced by the prior might represent an
appealing characteristics in big data analysis for the natural consequent regularization, which is cru-
cial to avoid overfitting by reducing the variability in estimation, specifically if the data dimensions
are large.

In this framework, we think that several directions are worth exploring. Firstly, matrix factoriza-
tion in two lower-rankmatrices is only one of the possible representations ofmatrix decomposition.
It may be convenient defining a model for matrix factorization with further decomposition of the
lower-rank matrices such that they can be represented as a product simpler objects. For instance,
suppose we are interested in modelling the observed data collected for n subjects in p time points
over a certain period of time. Either the trajectory of n players on the pitch or the evolution of n
exchange rates in the forex exchange market are two possible motivating applications regarding
high frequencymultivariate time series. In these cases, classical approaches would suggest to induce
a parametric dependence structure over time (Kastner, 2019) limiting the model flexibility, while
the structured matrix decomposition proposed in Chapter 4 lacks in modelling the cycling mean
behaviour of the process. An intuitive and natural alternative might be specifying a time depen-
dence structure in terms of a function or combination of latent recurrent situations. For instance,
the loadings matrixΛmay be further factorized through a p× s and an s× k matrices, such that
one can characterize the jth loadings vector corresponding to time j as a linear combination of s
latent states. Such states, in turn, can be represented as a linear combination of k latent factors.
Application of online computational techniques, that are widely studied in machine learning,
represents an additional goal. Investigations on this topic might provide interesting results in
several application fields and possibly assuming different types of two-level matrix decompositions.

The second future research direction regards the generalization of the structured matrix decom-
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position for tensors of order greater than 2. On this theme, tensor factorization relying on parallel
factor analysis (Harshman, 1970; Bro, 1997), which expresses a rank k tensor as a sum of tensors,
could represent an obvious extension of the matrix decomposition through two low rank matrices.
To replicate the nonparametric framework discussed in this thesis, such extension should include
the definition of a suitable notion of increasing shrinkage in high dimensions and a consistent
method for the learning of the rank k∗. Both these aspects have been addressed by Dunson &
Xing (2009) to model data in form of a d-dimensional contingency table. The table is modelled
through an infinite sum of d-dimensional factors that are weighted by an infinite vector distributed
a priori according to a Dirichlet process. This representation presents several similarities with
infinite factor models. In case of location-scale family prior on the factor elements, factor weights
are equivalent to the factor specific scales largely discussed in this thesis. In parallel factor analysis,
the number of parameters increases linearly with the number of dimensions d, making crucial
to induce a well specified sparsity structure. The approach proposed by Zhou et al. (2015) for
multidimensional contingeny tables may recall the mixture structure of the local scale prior of the
generalized infinite factorization models. However, to induce a strong dimensional reduction, the
authors specified a unique mixture for all the entries within each dimension, which is in contrast
with the main idea behind the structured factorization, where the sparsity structure within each
dimension depends on the specific traits of the entries. Extension to tensor factorization should
careful consider this aspect, having the necessity of accommodating both a locally induced sparsity
and a low dimensional parameter space. In this perspective, it could be more promising to investi-
gate tensor factorization with group sparse structure expected between dimensions and not within,
following similar intuition to the group structure introduced in the collapsed Tucker model (see,
e.g. Johndrow et al., 2017). Use cases of tensor decomposition models can be found in almost
every application field. In football player tracking data, one can naturally store the data of a single
match in a matrix, as mentioned above, and then store several matches along the tube of a tensor.
Similar data characteristics are common in many other contexts such as neuroscience, finance,
and genomics. Tensor decomposition is not in contrast with the two-level matrix decomposition
research objective discussed above. In fact, a joint development could provide benefits to both
directions and possible achievements would represent a major step ahead in the virgin field of
Bayesian nonparametric prior for tensor factorization.





Bibliography

Abramowitz, M. & Stegun, I. A. (1948). Handbook of mathematical functions with formulas,
graphs, and mathematical tables, vol. 55. US Government printing office.

Adomavicius, G. & Tuzhilin, A. (2011). Context-aware recommender systems. InRecom-
mender Systems Handbook, F. Ricci, L. Rokach, B. Shapira & P. B. Kantor, eds. Springer, pp.
217--253.

Agarwal, D.&Chen, B.-C. (2009). Regression-based latent factormodels. InACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. pp. 19--28.

Alquier, P.&Marie,N. (2019). Matrix factorization formultivariate time series analysis. Electron.
J. Stat. 13, 4346--4366.

An, X., Yang, Q. & Bentler, P. M. (2013). A latent factor linear mixed model for high-
dimensional longitudinal data analysis. Stat. Med. 32, 4229--4239.

Arellano, M. (2003). Panel Data Econometrics. Oxford university press.

Arminger, G.&Muthén, B. O. (1998). A Bayesian approach to nonlinear latent variablemodels
using the Gibbs sampler and the Metropolis-Hastings algorithm. Psychometrika 63, 271--300.

Aßmann, C., Boysen-Hogrefe, J. & Pape, M. (2016). Bayesian analysis of static and dynamic
factor models: An ex-post approach towards the rotation problem. J. Econom. 192, 190--206.

Barros, R. M., Misuta, M. S., Menezes, R. P., Figueroa, P. J., Moura, F. A., Cunha, S. A.,
Anido, R. & Leite, N. J. (2007). Analysis of the distances covered by first division Brazilian
soccer players obtained with an automatic tracking method. J. Sports Sci. Med. 6, 233.

91



92 bibliography

Bhattacharya, A. &Dunson, D. B. (2011). Sparse Bayesian infinite factor models. Biometrika
98, 291--306.

Bhattacharya, A., Pati, D., Pillai, N. S. & Dunson, D. B. (2015). Dirichlet--Laplace priors
for optimal shrinkage. J. Am. Statist. Assoc. 110, 1479--1490.

Blei, D. M., Kucukelbir, A. & McAuliffe, J. D. (2017). Variational inference: A review for
statisticians. J. Am. Statist. Assoc. 112, 859--877.

Bro, R. (1997). PARAFAC. Tutorial and applications. Chemom. Intell. Lab. Syst. 38, 149--171.

Broderick, T., Jordan, M. I. & Pitman, J. (2013). Cluster and feature modeling from combina-
torial stochastic processes. Stat. Sci. 28, 289--312.

Burden, F. & Winkler, D. (2008). Bayesian regularization of neural networks. InArtificial
Neural Networks, D. J. Livingstone, ed. Springer, pp. 23--42.

Caley, M. (2015). Premier league projections and new expected goals.
http://cartilagefreecaptain.sbnation.com/2015/10/19/9295905/-
premier-league-projections-and-new-expected-goals (visited on 2021-12-30).

Cappiello, L., Engle, R. F. & Sheppard, K. (2006). Asymmetric dynamics in the correlations
of global equity and bond returns. J. Financ. Econom. 4, 537--572.

Carvalho, C. M., Chang, J., Lucas, J. E., Nevins, J. R., Wang, Q. & West, M. (2008). High-
dimensional sparse factor modeling: Applications in gene expression genomics. J. Am. Statist.
Assoc. 103, 1438--1456.

Carvalho, C. M., Polson, N. G. & Scott, J. G. (2010). The horseshoe estimator for sparse
signals. Biometrika 97, 465--480.

Chakraborty, A., Bhattacharya, A. & Mallick, B. K. (2020). Bayesian sparse multiple
regression for simultaneous rank reduction and variable selection. Biometrika 107, 205--221.

Chen, T. &Guestrin, C. (2016). Xgboost: A scalable tree boosting system. InACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. pp. 785--794.

Chen, T., Li, H., Yang, Q.&Yu, Y. (2013). General functional matrix factorization using gradient
boosting. In International Conference on Machine Learning. PMLR. pp. 436--444.



bibliography 93

Cook, R. D., Li, B. & Chiaromonte, F. (2010). Envelope models for parsimonious and efficient
multivariate linear regression. Stat. Sin. 20, 927--960.

Dahl, D. B. (2006). Model-based clustering for expression data via a Dirichlet process mixture
model. Bayesian Inference for Gene Expression and Proteomics 4, 201--218.

Dunson, D. B. & Xing, C. (2009). Nonparametric Bayes modeling of multivariate categorical
data. J. Am. Statist. Assoc. 104, 1042--1051.

Durante, D. (2017). A note on the multiplicative gamma process. Stat. Probab. Lett. 122,
198--204.

Fabrigar, L. R., Wegener, D. T., MacCallum, R. C. & Strahan, E. J. (1999). Evaluating the
use of exploratory factor analysis in psychological research. Psychol. Methods 4, 272.

Fernández, J., Bornn, L. & Cervone, D. (2019). Decomposing the Immeasurable Sport:
A deep learning expected possession value framework for soccer. In 13th MIT Sloan Sports
Analytics Conference.

Ferrari, F. & Dunson, D. B. (2021). Bayesian factor analysis for inference on interactions. J.
Am. Statist. Assoc. 116, 1521--1532.

Fraley, C. & Raftery, A. E. (2007). Bayesian regularization for normal mixture estimation and
model-based clustering. J. Classif. 24, 155--181.

Friedman, J., Hastie, T. & Tibshirani, R. (2000). Additive logistic regression: A statistical
view of boosting. Ann. Stat. 28, 337--407.

Frühwirth-Schnatter, S. & Lopes, H. F. (2018). Sparse Bayesian factor analysis when the
number of factors is unknown. arXiv preprint arXiv:1804.04231 .

Gal, Y. & Ghahramani, Z. (2016). Dropout as a Bayesian approximation: Representing model
uncertainty in deep learning. In International Conference on Machine Learning. PMLR. pp.
1050--1059.

Gal, Y., McAllister, R. & Rasmussen, C. E. (2016). Improving PILCO with Bayesian neural
network dynamics models. InData-Efficient Machine Learning workshop, ICML. p. 25.



94 bibliography

Gao, B.,Woo,W. L.&Ling, B.W.-K. (2013). Machine learning source separation usingmaximum
a posteriori nonnegative matrix factorization. IEEE Trans. Cybern. 44, 1169--1179.

Gelfand, A. E. & Dey, D. K. (1994). Bayesian model choice: Asymptotics and exact calculations.
J. R. Statist. Soc. B 56, 501--514.

Glasmachers, T. &Dogan, U. (2013). Accelerated coordinate descent with adaptive coordinate
frequencies. InAsian Conference on Machine Learning. PMLR. pp. 72--86.

Harshman, R. A. (1970). Foundations of the PARAFAC procedure: Models and conditions for
an "explanatory" multimodal factor analysis. UCLAWorking Papers in Phonetics 16, 1--84.

Heckman, J. J., Stixrud, J. & Urzua, S. (2006). The effects of cognitive and noncognitive
abilities on labor market outcomes and social behavior. J. Labor Econ. 24, 411--482.

Jacob, L., Obozinski, G. & Vert, J.-P. (2009). Group lasso with overlap and graph lasso. In
International Conference on Machine Learning. pp. 433--440.

Johndrow, J. E., Bhattacharya, A. & Dunson, D. B. (2017). Tensor decompositions and
sparse log-linear models. Ann. Stat. 45, 1--38.

Jun, L. & Tao, D. (2013). Exponential Family Factors for Bayesian Factor Analysis. IEEE Trans.
Neural Netw. Learn. Syst. 24, 964--976.

Kaiser, H. F. (1958). The varimax criterion for analytic rotation in factor analysis. Psychometrika
23, 187--200.

Kastner, G. (2019). Sparse Bayesian time-varying covariance estimation in many dimensions. J.
Econom. 210, 98--115.

Kayri, M. (2016). Predictive abilities of Bayesian regularization and Levenberg--Marquardt
algorithms in artificial neural networks: A comparative empirical study on social data. Math.
Comput. Appl. 21, 20.

Kim, S., Tadesse, M. G. & Vannucci, M. (2006). Variable selection in clustering via Dirichlet
process mixture models. Biometrika 93, 877--893.

Kowal, D. R. & Canale, A. (2021). Semiparametric functional factor models with Bayesian rank
selection. arXiv preprint arXiv:2108.02151 .



bibliography 95

Lange, K. (2013). Optimization. Springer.

Legramanti, S., Durante, D. & Dunson, D. B. (2020). Bayesian cumulative shrinkage for
infinite factorizations. Biometrika 107, 745--752.

Leshno, M., Lin, V. Y., Pinkus, A. & Schocken, S. (1993). Multilayer feedforward networks
with a nonpolynomial activation function can approximate any function. Neural Netw. 6,
861--867.

Lindström, Å., Green, M., Husby, M., Kålås, J. A. & Lehikoinen, A. (2015). Large-scale
monitoring of waders on their boreal and Arctic breeding grounds in northern Europe. Ardea
103, 3--15.

Liu, J., Tong, X., Li, W., Wang, T., Zhang, Y. & Wang, H. (2009). Automatic player detection,
labeling and tracking in broadcast soccer video. Pattern Recognit. Lett. 30, 103--113.

Liu, Z. & Vandenberghe, L. (2010). Interior-point method for nuclear norm approximation
with application to system identification. SIAM J. Matrix Anal. Appl. 31, 1235--1256.

Lopes, H. F. & West, M. (2004). Bayesian model assessment in factor analysis. Stat. Sin. 14,
41--67.

Mackay, N. (2017). How accurate are xG models II: The 'Big Chance' dilemma.
http://mackayanalytics.nl/2017/06/19/how-accurate-are-xg-models-
ii-the-big-chance-dilemma (visited on 2021-12-30).

Marcel, S. & Millán, J. d. R. (2007). Person authentication using brainwaves (EEG) and
maximum a posteriori model adaptation. IEEE PAMI 29, 743--752.

McParland, D., Gormley, I. C., McCormick, T. H., Clark, S. J., Kabudula, C. W. &
Collinson, M. A. (2014). Clustering south African households based on their asset status
using latent variable models. Ann. Appl. Stat. 8, 747.

Miller, J. E., Li, D., LaForgia, M. & Harrison, S. (2019). Functional diversity is a passenger
but not driver of drought-related plant diversity losses in annual grasslands. J. Ecol. 107, 2033--
2039.

Miller, J. W. & Harrison, M. T. (2018). Mixture models with a prior on the number of
components. J. Am. Statist. Assoc. 113, 340--356.



96 bibliography

Minka, T. P. (2001). A family of algorithms for approximate Bayesian inference. Ph.D. thesis,
Massachusetts Institute of Technology.

Mitchell, T. J. & Beauchamp, J. J. (1988). Bayesian variable selection in linear regression. J.
Am. Statist. Assoc. 83, 1023--1036.

Montagna, S., Tokdar, S. T., Neelon, B. & Dunson, D. B. (2012). Bayesian latent factor
regression for functional and longitudinal data. Biometrics 68, 1064--1073.

Moore, D. A. (2016). Symmetrized variational inference. InNIPS Workshop on Advances in
Approximate Bayesian Inferece, vol. 4. p. 31.

Murray, J. S., Dunson, D. B., Carin, L. & Lucas, J. E. (2013). Bayesian Gaussian copula factor
models for mixed data. J. Am. Statist. Assoc. 108, 656--665.

Nakajima, S., Sugiyama, M., Babacan, S. D. & Tomioka, R. (2013). Global analytic solution
of fully-observed variational Bayesian matrix factorization. J. Mach. Learn. Res. 14, 1--37.

Ovaskainen,O.&Abrego,N. (2020). Joint SpeciesDistributionModelling: WithApplications
in R. Cambridge University Press.

Ovaskainen, O., Abrego, N., Halme, P. & Dunson, D. (2016). Using latent variable models
to identify large networks of species-to-species associations at different spatial scales. Methods
Ecol. Evol. 7, 549--555.

Pollard, R. & Reep, C. (1997). Measuring the effectiveness of playing strategies at soccer. J. R.
Statist. Soc. D 46, 541--550.

Polson, N. G. & Scott, J. G. (2010). Shrink globally, act locally: Bayesian sparsity and regulariza-
tion. Bayesian Statistics 9, 1--16.

Polson, N. G., Scott, J. G. & Windle, J. (2013). Bayesian inference for logistic models using
pólya--gamma latent variables. J. Am. Statist. Assoc. 108, 1339--1349.

Polson, N. G. & Sokolov, V. (2017). Deep learning: A Bayesian perspective. Bayesian Anal.
12, 1275--1304.

Poworoznek, E., Ferrari, F. & Dunson, D. (2021). Efficiently resolving rotational ambiguity
in Bayesian matrix sampling with matching. arXiv preprint arXiv:2107.13783 .



bibliography 97

Qiu, S., Xu,X.&Cai, B. (2018). FReLU:Flexible rectified linear units for improving convolutional
neural networks. In 2018 24th International Conference on Pattern Recognition (ICPR). IEEE.
pp. 1223--1228.

Reich, B. J.&Bandyopadhyay,D. (2010). A latent factormodel for spatial datawith informative
missingness. Ann. Appl. Stat. 4, 439.

Rendle, S., Gantner, Z., Freudenthaler, C. & Schmidt-Thieme, L. (2011). Fast context-
aware reccomendations with factorization machines. InProceedings of the 34th ACM SIGIR
Conference on Research and Developement in Information Retrieval. pp. 635--644.

Roberts, G. O. & Rosenthal, J. S. (2007). Coupling and ergodicity of adaptive Markov chain
Monte Carlo algorithms. J. Appl. Prob. 44, 458--475.

Ročková, V. & George, E. I. (2016). Fast Bayesian factor analysis via automatic rotations to
sparsity. J. Am. Statist. Assoc. 111, 1608--1622.

Rousseau, J. & Mengersen, K. (2011). Asymptotic behaviour of the posterior distribution in
overfitted mixture models. J. R. Statist. Soc. B 73, 689--710.

Roweis, S. & Ghahramani, Z. (1999). A unifying review of linear Gaussian models. Neural
Comput. 11, 305--345.

Roy, A., Schaich-Borg, J. & Dunson, D. B. (2019). Bayesian time-aligned factor analysis of
paired multivariate time series. arXiv preprint arXiv:1904.12103 .

Rue,H.,Martino, S.&Chopin,N. (2009). Approximate Bayesian inference for latentGaussian
models by using integrated nested Laplace approximations. J. R. Statist. Soc. B 71, 319--392.

Salakhutdinov, R. R. & Mnih, A. (2008). Probabilistic matrix factorization. InProc. Adv.
Neural Inf. Process. Syst. (NIPS 07). ACM Press. pp. 1257--1264.

Scheipl, F., Fahrmeir, L. & Kneib, T. (2012). Spike-and-slab priors for function selection in
structured additive regression models. J. Am. Statist. Assoc. 107, 1518--1532.

Schiavon, L. & Canale, A. (2020). On the truncation criteria in infinite factor models. Stat 9,
e298.



98 bibliography

Schiavon, L. & Canale, A. (2021). Bayesian regularized regression of football tracking data
through structured factor models. InBook of Short Papers SIS 2021, C. Perna, N. Salvati &
F. Schirippa Spagnolo, eds.

Schiavon, L., Canale, A.&Dunson, D. B. (in press). Generalized infinite factorizationmodels.
Biometrika .

Thomas, D. C., Conti, D. V., Baurley, J., Nijhout, F., Reed, M. & Ulrich, C. M. (2009).
Use of pathway information in molecular epidemiology. Hum. Genomics 4, 21.

Tikhonov, G., Abrego, N., Dunson, D. & Ovaskainen, O. (2017). Using joint species distri-
bution models for evaluating how species-to-species associations depend on the environmental
context. Methods Ecol. Evol. 8, 443--452.

Tikhonov, G., Opedal, Ø. H., Abrego, N., Lehikoinen, A., de Jonge, M. M., Oksanen,
J. & Ovaskainen, O. (2020). Joint species distribution modelling with the R-package hmsc.
Methods Ecol. Evol. 11, 442--447.

Tsay, R. S. (2013). Multivariate Time Series Analysis: With R and Financial Applications.
John Wiley & Sons.

Wade, S., Ghahramani, Z. et al. (2018). Bayesian cluster analysis: Point estimation and credible
balls (with discussion). Bayesian Anal. 13, 559--626.

West, M. (2003). Bayesian factor regression models in the "large p, small n" paradigm. Bayesian
Statistics 7, 733--742.

Wright, S. J. (2015). Coordinate descent algorithms. Math. Program. 151, 3--34.

Wu, T. T. & Lange, K. (2010). The mm alternative to em. Stat. Sci. 25, 492--505.

Yang, L., Fang, J., Duan,H., Li,H.&Zeng, B. (2018). Fast low-rankBayesianmatrix completion
with hierarchical Gaussian prior models. IEEE Trans. Signal Process. 66, 2804--2817.

Yuan, M. & Lin, Y. (2006). Model selection and estimation in regression with grouped variables.
J. R. Statist. Soc. B 68, 49--67.

Zhou, J., Bhattacharya, A., Herring, A.H.&Dunson, D. B. (2015). Bayesian factorizations
of big sparse tensors. J. Am. Statist. Assoc. 110, 1562--1576.



Lorenzo Schiavon
Curriculum Vitae

Contact Information

Address Department of Statistical Sciences(Università degli Studi di Padova)
via Cesare Battisti, 241
35121 Padova, Italy

Mail lorenzo.schiavon@phd.unipd.it
Website lorenzo-schiavon.github.io

Current position

Apr 2022 PhD Student in Course, Università degli Studi di Padova
Oct 2018 Thesis Title: Bayesian infinite factorization methods with applications to track-

ing data in football
Supervisor: Prof. Antonio Canale

Education

Sep 2018 MSc in Statistical Sciences 110/110 with honors
Dissertation title: Bias reduction in a fixed effects model for Expected Goals
Supervisor: Prof. Nicola Sartori

Apr 2016 MSc in Statistics, Economy and Finance 110/110 with honors
Dissertation title: Human capital and economic growth: the role of heterogeneity
among groups of countries
Supervisor: Prof. Stefano Galavotti

mailto:mail
https://website


Other educational experiences

Ongoing MBA fellow at Collège des Ingénieurs Italia (Turin).
Program: Science & Management

Other work experiences

Oct 2019 External consultant at Mercurius BI srl
Statistical consultancy on research, definition and implementation of statistical models
to predict football match outcomes.

Aug 2016 Intern at Sanmarco Informatica Spa (Grisignano di Zocco)
Internship as junior programmer to complete a document management system.

Teaching Activities

Sep 2021 Co-supervisor of MSc. thesis at Department of Statistical Sciences(Università
degli Studi di Padova)
Dissertation title: Bayesian infinite factor models for count data

2017-2018 Junior Tutor at Department of Statistical Sciences(Università degli Studi di
Padova)

Computer skills

Advanced knowledge of the R statistical software and basic knowledge of MATLAB, SAS and
STATA.
Good knowledge of SQL, BigQuery and Google Analytics 360 frameworks.
Basic programming skills in Python Java and C. Advanced knowledge of the LATEXtypesetting
system for papers, reports and presentation.
Basic knowledge of markup languages as html, xml and json.



Language skills

Italian (mother language), English (C1), French (A2)

Publications

Schiavon, L., Canale, A., Dunson, D. B. (in press) Generalized infinite factorization models,
Biometrika. doi: 10.1093/biomet/asab056.

Padovani, A., Canale, A., Schiavon, L., Masciocchi, S., Imarisio, A., Risi, B., Bonzi, G., De Giuli,
V., Di Luca, M., Ashton, N.J., Blennow, K., Zetterberg, H., Pilotto, A. (in press) Is amyloid
involved in acute neuroinflammation? A CSF analysis in encephalitis, Alzheimer's &
Dementia. doi: 10.1002/alz.12554.

Schiavon, L., Canale, A. (2021). Bayesian regularized regression of football tracking data through
structured factor models. Book of Short Papers SIS 2021 (Editors: Perna, C., Salvati, N. and
Schirippa Spagnolo, F.), ISBN: 9788891927361.

Schiavon, L., Canale, A. (2020) On the truncation criteria in infinite factor models, Stat, 9 (1),
e298. doi: 10.1002/sta4.298.

Schiavon, L., Sartori, N. (2019). Bias reduced estimation of a fixed effects model for Expected
Goals in association football. Book of Short Papers SIS2019 (Editors: Arbia, G., Peluso, S.,
Pini, A., Rivellini, G.), ISBN: 9788891915108.

Petretta, M., Schiavon, L., Diquigiovanni, J. (2019). Betting on football: a model to predict match
outcomes. Book of Short Papers SIS2019 (Editors: Arbia, G., Peluso, S., Pini, A., Rivellini,
G.), ISBN: 9788891915108.

F. Bortolon, C. Castiglione, L. Parolini, L. Schiavon (2017). A Markovian approach to darts.
Proceedings of MathSport International 2017 (Editors: De Francesco, C., De Giovanni, L.,
Ferrante, M., Fonseca, G., Lisi, F., Pontarollo, S.), ISBN: 9788869380587.



Conference presentations

Dec 2021 Generalized infinite factorization models with an application to Finnish bird
co-occurence data.
Invited presentation, CMStatistics 2021, virtual.

Sep 2021 Generalized infinite factorization models with an application to Finnish bird
co-occurence data.
Contributed presentation,RSS International Conference 2021, virtual.

Jun 2021 Generalized infinite factorization models with an application to Finnish bird
co-occurence data.
Contributed presentation, 2021 World Meeting of the International Society
for Bayesian Analysis, virtual.

Jun 2021 Bayesian regularized regression of football tracking data through structured
factor models.
Invited presentation, SIS 2021 Intermediate meeting, virtual.

Nov 2019 Predictions with Expected Goals: a model for the scoring process in a football
match.
Contributed presentation,AUEB Sport Analytics Workshop 2019, Athens,
Greece

Jun 2019 Bias reduced estimation of a fixed effects model for Expected Goals in associa-
tion football.
Contributed presentation, SIS 2019 Intermediate meeting, Milan, Italy.

Awards and Grants

2021 Innovation 4 Change program (CDI Italia, Polytechnic University of Turin
and CERN Ideasquare)

2020 Student funding grant ASA Statistics in Sports
2018 Special mention at Oliviero Lessi award (Società Italiana di Statistica)
2017 Best Report Prize at Stats Under the Stars3


	Bayesian infinite factorization methods with applications to tracking data in football
	List of Figures
	List of Tables
	Introduction
	Overview
	Main contributions of the thesis

	Infinite factorization models
	Background
	A novel truncation criterion for infinite factorization models
	Simulation experiments
	Football player tracking data application

	Generalized infinite factorization models
	Structured shrinkage
	Generalized infinite factor models
	Structured increasing shrinkage prior
	Simulation experiments
	Applications to real data

	Structured matrix factorization
	Motivation and matrix factorization notation
	Model specification
	Accelerated factorization via infinite latent elements
	Football heatmaps decomposition

	Discussion
	Bibliography
	Curriculum Vitae

