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Summary 

This thesis aimed to reach a thorough understanding of the complex mechanism of urban waterlogging and 

the mitigation effect provided by urban green infrastructure in metropolitan coastal cities. Through four 

articles, this thesis respectively reveals the scale effects of urban waterlogging influencing factors, identifies 

the spatial heterogeneous driving forces of waterlogging, assesses urban waterlogging susceptibility under 

different future scenarios, and clarifies the mitigation effect of urban green infrastructure on urban 

waterlogging. 

It is well known that urban waterlogging is affected by environmental conditions and human activities. Few, 

however, have comprehensively revealed the relative contributions of the influencing factors to urban 

waterlogging concerning different scales of analysis. This thesis first offers the identification of dominant 

factors of urban waterlogging at different scales of analysis and the interpretation of scale effect. The result 

provides additional insights that the relative contributions of the influencing factors vary with the scales, 

underlining a strong scale effect. Since the dominant factors vary across different scales of analysis, it is 

unrealistic to determine a universal “optimal” analysis scale. Hence, the appropriate analysis scale should be 

chosen according to the specific influencing factors and the characteristics of study areas. 

In highly urbanized areas, the distribution of urban landscape elements and their attributes are characterized 

by spatial heterogeneous. However, less effort focus on the spatial heterogeneity driving forces at the local 

scale, which hinders the implementation of target-specific urban waterlogging mitigation strategies. To shed 

some light on this topic, this research proposes an innovative method that integrated the cubist regression 

tree and geographical detector model to spatially clarify the local driving forces and dominant factors with 

different local conditions. The results denote that the waterlogging’s dominant driving factors and their 

contribution vary with the local site conditions, which can help to promote more targeted and effective 

mitigation strategies, rather than a “one-size-fits-all” policy. 

Moreover, due to the spatial heterogeneity in urban areas and the non-stationary complex mechanism of 

urban waterlogging, a novel approach is proposed that combined the stepwise cluster analysis model (SCAM) 

and hierarchical partitioning analysis (HPA) to characterize the waterlogging variation and assess waterlogging 

susceptibility. The result indicates that the SCAM-HPA provides an effective and feasible solution for 

waterlogging variation simulation. Under different urbanization and rainfall change scenarios, the urban 
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waterlogging susceptibility has a considerable variation. The watershed spatial location and watershed 

characteristics are relevant aspects to be considered in identifying and assessing waterlogging susceptibility. 

Urban green infrastructures (UGI) can effectively reduce surface runoff, thereby alleviating the pressure of 

urban waterlogging. Given the shortage of urban land resources, it is unrealistic to reduce urban waterlogging 

by considerably increasing the UGI area. Less attention has been paid to investigating the threshold level of 

waterlogging mitigation capacity. The results indicate that the mitigation capacity of green infrastructure on 

waterlogging presents a threshold phenomenon. The excessive area proportions of UGI within the watershed 

or an oversized UGI area may lead to a waste of its mitigation effect. Therefore, the area proportion of UGI 

and its mitigation effect should be considered comprehensively when planning UGI. 

Given the growing concerns of global warming and rapid urbanization, this thesis helps to expand our 

understanding of the complex mechanism of waterlogging in metropolitan coastal cities and provides a 

theoretical and practical reference for waterlogging prevention and management. 
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Sommario 

Scopo di questa tesi è fornire una comprensione approfondita del complesso meccanismo del ristagno idrico 

e dell'effetto di mitigazione dovuto alle infrastrutture verdi nelle città costiere metropolitane. Attraverso 

quattro articoli, vengono mostrati rispettivamente gli effetti di scala dei fattori che influenzano il ristagno 

urbano, identificate le forze motrici eterogenee spaziali, valutate le aree suscettibili per diversi scenari di 

sviluppo e chiarito l'effetto della mitigazione dovuto alle infrastrutture verdi. 

È ben noto che il ristagno idrico urbano è influenzato dalle condizioni ambientali e dalle attività umane. Pochi, 

tuttavia, hanno rivelato in modo esaustivo i contributi relativi dei fattori ambientali e antropici al ristagno 

urbano riguardanti diverse scale di analisi. I risultati indicano che tali fattori possono variare con il 

cambiamento della scala, evidenziando un significativo effetto di scala nelle analisi di questi processi. La scala 

più appropriata per gli studi di ristagno urbano può funzionare solo per specifici fattori, e quindi la migliore 

scala di analisi dovrebbe essere determinata dalle caratteristiche delle aree di studio. 

Nelle aree fortemente urbanizzate, la distribuzione spaziale degli elementi del paesaggio urbano e i loro 

attributi sono caratterizzati da eterogeneità. Tuttavia, in letteratura poca attenzione è stata data 

sull’eterogeneità spaziale delle forzanti a scala locale. I risultati ottenuti in questa tesi dimostrano che i fattori 

dominanti del ristagno idrico e il loro contributo variano con le condizioni locali, informazione che dovrebbe 

facilitare l'attuazione di strategie di mitigazione più mirate ed efficaci. 

A causa dell'elevata eterogeneità spaziale e del complesso meccanismo non stazionario del ristagno urbano, 

viene proposto un nuovo approccio che combina il modello di analisi cluster “SCAM ” e l'analisi di partizione 

gerarchica (HPA) al fine di comprendere al meglio i processi di ristagno e analizzarne la suscettibilità. I risultati 

mostrano come il modello SCAM-HPA proposto possa fornire una soluzione efficace per la simulazione delle 

variazioni di ristagno urbano. È interessante notare che sotto diversi scenari di urbanizzazione e di 

precipitazioni, la suscettibilità al ristagno ha una notevole variazione. Le caratteristiche spaziali del bacino 

idrografico sono pertanto aspetti rilevanti da considerare nell'identificazione e nella valutazione della 

suscettibilità dei processi di ristagno. 

Le infrastrutture verdi urbane (Urban Green Infrastructures - UGI) possono ridurre efficacemente il deflusso 

superficiale, alleviando i processi di ristagno idrico. A causa del consumo di suolo nelle aree metropolitane, 

è necessario capire come utilizzare la limitata area delle UGI per massimizzare la mitigazione del waterlogging. 
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Meno attenzione, tuttavia, è stata dedicata allo studio del livello di soglia della capacità di mitigazione del 

waterlogging. I risultati indicano che l'effetto dell'infrastruttura verde sul ristagno presenta un fenomeno di 

soglia. Un’eccessiva proporzione delle UGI all'interno di un bacino idrografico o un'area UGI 

sovradimensionata possono portare anche ad una riduzione del suo effetto di mitigazione. Pertanto, quando 

si pianifica la progettazione del verde urbano bisognerebbe considerare al meglio la sua distribuzione spaziale. 

Alla luce delle problematiche legate al riscaldamento globale e la continua e rapida urbanizzazione, questa 

tesi contribuisce ad estendere la nostra comprensione del complesso meccanismo del ristagno idrico nelle 

città costiere fortemente urbanizzate e fornisce un riferimento teorico e pratico per la prevenzione e il 

controllo di questo processo e la progettazione di infrastrutture verdi urbane. 
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CHAPTER 1 
 

 

 

 

1. Introduction 

1.1 Background and justification 

Urbanization is the inevitable outcome along with the rapid socio-economic development of human society. 

The proportion of the world's urban population is expected to continue to increase to more than 60% by 

2030 (United Nations, 2017). For the world's second-largest economy, China has observed rapid urbanization 

in the past decades (Fang and Wang, 2011; Wang et al., 2011). According to the UN World Urbanization 

Prospects (2018), China’s urbanization rate has reached 56.74%, with a population of 782.20 million in 2016 

(Figure 1-1). Furthermore, the "China Urban Development Report No. 12" (2019) also pointed out that China's 

urbanization rate will reach 70% by 2030 and around 80% by 2050. Urbanization, to some extent, increases 

the interaction between human society and ecosystem. However, such dramatic urbanization has inevitably 

altered the urban land cover features, urban hydrological process, land surface energy balance, urban 

microclimate, and air circulation, resulting in a series of social, environmental, and ecological problems, such 

as urban waterlogging, water quality deterioration, urban heat island effect, air pollutants, etc. These social, 

environmental, and ecological problems not only have a direct impact on the quality of urban habitat and 

public health, but also have a profound impact on the sustainable development of cities. 
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Figure 1-1 The global urbanization rate from 1900 to 2016. (Source: UN World Urbanization Prospects 2018; United 

Nations, Department of Economic and Social Affairs, Population Division 2018) 

Urban waterlogging refers to the phenomenon of stagnant water disasters in low-lying areas where surface 

runoff exceeds the drainage capacity when encounters heavy or continuous precipitation (Zhang 2020; Chen 

et al., 2015; Yu et al., 2018). The frequent occurrence of urban waterlogging leads to serious social and 

environmental problems such as enormous economic losses, traffic paralysis, and water pollution. For 

example, when the depth of the stagnant water reaches 30 cm, it is difficult for pedestrians to walk; when 

the stagnant water exceeds 80 cm, the traffic is completely paralyzed. In addition, urban waterlogging also 

cause damage to houses and goods, affect people's daily lives and even threaten their safety. Last but not 

least, urban sanitation and human health are also affected. After the occurrence of urban waterlogging, a 

large amount of domestic waste and refuse is washed into the water, causing the surrounding water bodies 

to stink and pollution. At the same time, industrial waste that is not disposed of in time may also cause 

chemical pollution. Overall, urban waterlogging, one of the most common and serious "urban diseases", has 

become a huge challenge to the healthy and sustainable development of cities. 

Although both urban waterlogging and floods have certain similarities, there are certain differences between 

them. Firstly, the causes are different. The main cause of urban waterlogging is the convergence of surface 
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runoff from local heavy rainstorms or long-duration rainfall in certain low-lying areas, resulting in water 

accumulation to a certain extent and affecting people's production and life. However, floods are generally 

caused by heavy rainfall or long-duration rainfall in the upper reaches of the river basin, resulting in large 

flows or high water levels in rivers or lakes, which pose a threat to urban or rural areas. In short, urban 

waterlogging is generally caused by local rainfall, while floods are generally caused by upstream rainfall. 

Secondly, the scope of impact is different. Urban waterlogging mainly affects local areas, with a relatively 

small scope of impact and short duration, whereas floods have a greater impact and long duration. Thirdly, 

the governance measures are different. The main measures to manage urban waterlogging are to reasonably 

reserve blue and green space for rainwater storage and stagnation and to build drainage networks, drainage 

pumping stations, cisterns, and other engineering facilities. Conversely, the measurements for flood control 

include the construction of river and lake embankments, upstream reservoirs, and flood storage and 

detention area. 

In the context of global climate change, it has triggered the variation in spatial precipitation patterns. 

Simultaneously, the intensity and frequency of extreme precipitation events have increased significantly. 

Therefore, the regions affected by extreme precipitation increased significantly globally, creating background 

conditions for urban waterlogging (Tan et al., 2021; Berghuijs et al., 2017; Du et al., 2019; Blöschl et al., 2019). 

Numerous observed data indicate that the middle-high latitudes and tropical regions generally show an 

increasing trend of precipitation (Min et al., 2011). As shown in Figure 1-2, the frequency of extreme 

precipitation events showed an increasing trend in about 66.4% of global grid cells, and 56.7% of grid cells 

(Papalexiou et al., 2019). In detail, most parts of the Mediterranean, North America, and South Asia all 

experience an increase in the intensity of extreme precipitation events. On a regional scale, urbanization has 

further led to changes in the local atmospheric circulation. Urban microclimates such as urban rain islands or 

urban heat islands further increase the probability and intensity of precipitation in urban areas (Xu et al., 

2019; Kim et al., 2017; Liu et al., 2020a; Miller and Hutchins, 2017). Therefore, changes in the global climate 

and urban microclimates together lead to an increase in the risk of urban waterlogging. 
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Figure 1-2 Mean trend values of the frequency (a) and magnitude (b) of extreme daily precipitation over the period 1964–

2013. (Source: Papalexiou et al., 2019) 

If the increase in extreme precipitation (global climate change) is the “environmental factor” leading to urban 

waterlogging, whereas a series of consequences arising from the process of urbanization (land cover change, 

modifying surface elevation) can be considered as the “anthropogenic factor” that causes urban waterlogging. 

Firstly, with the acceleration of urbanization, the area of impervious surfaces has increased sharply, leading 

to the decrease of vegetation coverage. Numerous studies have shown that vegetation coverage, as a 
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permeable surface, can effectively absorb rainwater and intercept surface runoff (Du et al., 2019; Kim and 

Park, 2016; Yao et al., 2015; Yang et al., 2015). Thus, the replacement of urban permeable surfaces has 

resulted in the increase of surface runoff volume and the confluence velocity of surface runoff. As shown in 

Figure 1-3, on the one hand, urbanization has reduced the amount of rainwater infiltration, leading to an 

increase in the total amount of surface runoff. On the other hand, surface interception has become poorer, 

which leads to an increase in flood peak discharge and an earlier flood peak. Secondly, the land reclamation 

of rivers, lakes, or reservoirs has greatly restricted the urban regulation and storage capacity. The continued 

degradation of the urban river network drainage function means that the majority of surface runoff can only 

be conveyed through the urban drainage system. This will undoubtedly increase the pressure on the 

underground drainage system. Thirdly, human activities and urbanization have greatly altered the urban 

topography. For example, tunnels, underground car parks, and overpasses have been built as a result of 

urban development. However, the surface elevation of tunnels, culverts, and underground parking is much 

lower than the surroundings. This means that these urban lowlands are easy to obtain runoff from the 

surrounding area, which may further exacerbate the risk of urban waterlogging. 
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Figure 1-3 Relationship between impervious surfaces and surface runoff. (Source: Stream Corridor Restoration: 

Principles, Processes, and Practices, 2001.) 

Under the dual effect of global climate change and urbanization, the frequency, intensity, and losses caused 

by urban flood disasters around the world are on the rise, which has attracted the attention of many 

international organizations, governments, and academia (Hirabayashi et al., 2013; Gallien et al., 2014; Li et 

al., 2016; Huang et al., 2018; Tang et al., 2018; Yu et al., 2018). The Global Emergency Database (EM-DAT) 

shows that urban flooding became the most widespread disaster from 2000 to 2019, and the number of 

disasters increased by 57% compared with 1980-1999 (Global Emergency Database, 2020). According to 

estimates by the World Bank, the average annual flood loss in 136 mega-large coastal cities in the world in 

2005 was approximately US$6 billion, and this value is expected to increase to US$52 billion by 2050 

(Hallegatte et al., 2013). As shown in Figures 1-4 and 1-5, the number of reported flood events has increased 

significantly and is mainly concentrated in southern Asia, North America, and South America. Consequently, 

the number of people affected by floods, financial, economic, and insurance losses are also increasing. For 

example, in 2010 alone, 178 million people were affected by floods and the total losses in some years such 

as 1998 and 2010 exceeded US$40 billion (Jha et al., 2012). The frequent occurrence of global flooding 

confirms, to some extent, the increasing intensity of climate change and human disturbance. In view of this, 

it can be inferred that the risk of urban waterlogging may also gradually increase. 
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Figure 1-4 Number of reported flood events. (Source: based on EM-DAT/CRED) 

 

Figure 1-5 The spatial distribution of flood events from 1970 to 2011. (Source: Jha et al., 2012) 

In addition, some scholars have used different models to predict future flood hazards under different climate 

change patterns (Zhang et al., 2017; Few, 2013; Gilroy and McCuen, 2012; Avand et al., 2021). Güneralp et 

al. (2015) pointed out that from 2000 to 2030, the flood risk of the Danube and Seine river basins in Europe 

has not increased significantly, but in South Asia and Southeast Asia, nearly three-quarters of the cities are 

expected to be at risk of high-frequency flooding. Specifically, the cities prone to high-frequency flooding are 

concentrated in the Chao Phraya River Basin, the Indus River Basin in Thailand, and the Yangtze River and 

Pearl River Delta basins in China (Figure 1-6). These results all indicate the trend of increasing risk of future 

flood hazards. 
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Figure 1-6 Urban land within the high-frequency flood zones in 2000 (a) and 2030 (b). (Source: Güneralp et al., 2015) 

Although there are some differences between urban waterlogging and floods (intensity and scope of the 

disaster), urban waterlogging and floods can transform and influence each other. For example, if the river 

overflows the embankment (river poured into cities) or the river is silted (rainwater cannot be discharged), 

these conditions may also lead to urban waterlogging. Moreover, the factors that lead to urban waterlogging 

and floods have certain similarities (i.e. altered frequency and intensity of rainfall, human activities disrupt 

urban hydrological cycle). Against the backdrop of a gradual increase in global flood events, it can be 

predicted that the situation of urban waterlogging is not optimistic either. Therefore, given the increased 

impact of flooding around the world, we can infer that the number of cities facing the risk of urban 

waterlogging has also increased significantly. 

1.1.1 The situation of urban waterlogging in China 



9  

At present, China is the largest developing country in the world and also one of the country’s most seriously 

affected by waterlogging in the world. The situation of waterlogging disasters in Chinese cities can be 

summarized into the following three aspects: 

(1) The frequency of urban waterlogging is on the rise. According to data from the Ministry of Housing and 

Urban-Rural Development, from 2007 to 2015, more than 360 cities across China were waterlogged. Among 

them, one-sixth of the cities had a single inundation time of more than 12 hours, with a depth of over 0.5 m. 

As shown in Figure 1-7, from 2010 to 2018, on average, more than 160 cities in China suffered from 

waterlogging disasters each year, and the direct economic losses were over $15 billion per year (China Flood 

and Drought Disaster Bulletin). For example, on July 21, 2012, Beijing was hit by a heavy rainstorm, with an 

average precipitation of 170 mm and a maximum cumulative precipitation of 318 mm. This torrential rain 

caused 79 deaths, 63 waterlogging events within the city center, and over 1.9 million people affected. From 

the evening of March 30 to the morning of March 31, 2014, Shenzhen suffered a rainstorm, with an average 

rainfall of 125 mm and a maximum cumulative rainfall of 318 mm. This incident caused over 200 waterlogging 

events and killed 4 people. On May 7, 2017, a torrential rainstorm occurred in Guangzhou, with a maximum 

precipitation of 184.4 mm/h and the maximum 3-hour precipitation exceeded the historical extreme value 

of Guangdong Province (382.6 mm). This incident caused 109 houses to collapse, 118 waterlogging events 

within the city center, about 38.91 km2 of farmland were flooded, and the economic loss was about $89 

million. Similarly, on May 22, 2020, a heavy rainstorm in Guangzhou (80 mm average hourly precipitation, 

167.8 mm maximum hourly precipitation), which killed 4 people and flooded multiple underground parking 

lots and metro stations. Recently, on July 20, 2021, Zhengzhou city suffered from a severe urban waterlogging 

disaster (cumulative average precipitation was 449 mm, maximum one-hour precipitation reached 201.9 

mm), resulting in 292 deaths and 47 missing persons. 
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Figure 1-7 Number of cities and economic loss of urban waterlogging in China from 2010 to 2018. (Source: China Flood 

and Drought Disaster Bulletin, Ministry of Water Resources) 

(2) Urban waterlogging is prone to occur. It is worth noting that although the precipitation is within the 

drainage system design standards (for example 50 mm/h), it has also led to urban waterlogging events in 

some areas. For example, the rainfall in Beijing on 23 June 2011, the average one-hour rainfall was 50 mm, 

which was far below the drainage capacity (design standard) of the drainage system. However, with such 

rainfall conditions, a serious urban waterlogging disaster occurred in Beijing. The city's traffic was paralyzed, 

causing major economic losses and even resulting in the loss of two lives. 

(3) The recurrence rate of urban waterlogging is high. In general, the occurrence of urban waterlogging is 

mostly distributed in low-lying areas. The risk of urban waterlogging in such regions can be reduced by 

increasing the implementation of drainage facilities (drainage pipe network, pumping stations, underground 

storage tanks). However, the construction of these structures is extremely difficult and the workload is 

enormous. Moreover, the relatively low design standards and inadequate maintenance of drainage networks 

in developing countries further contribute to the high recurrence rate of waterlogging in such regions. In 

summary, urban waterlogging in China is becoming more and more serious, causing huge economic losses, 

and even threatening lives.  

1.1.2 Urban waterlogging risk in coastal cities 

Notably, we find that the frequency of urban waterlogging events, the damage range, the affected population, 
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and the direct economic losses are all increasing, especially in the densely populated and economically 

developed coastal regions (Sun et al., 2020; He et al., 2020). Given the unique geographical location and 

environmental characteristics of coastal regions, urban waterlogging has the characteristics of susceptibility, 

complexity, and great harm. Firstly, coastal cities are extremely vulnerable to storm surges and rising sea 

levels. In the context of climate change (notable polar warming), sea levels are gradually rising. Since the 

20th century, global sea levels have risen by 10-20 cm (IPCC, 2014). The rise in sea level can inundate some 

low-lying coastal areas and increase the intensity of storm surges (Shen et al., 2019; Wang et al., 2018; Fang 

et al., 2021; Fang et al., 2017). This phenomenon highlights the risk of waterlogging in low-lying coastal cities. 

In addition, in most coastal cities, rainwater is usually collected through drainage systems and then pumped 

into the sea. However, at extreme high tide, the backflow situation is more serious, resulting in greatly 

reduced drainage capacity, and surface runoff is difficult to discharge (Wang et al., 2012; Yin et al., 2012). If 

heavy rainfall and extreme high tide occur simultaneously, the severity of the waterlogging will be greatly 

aggravated. Secondly, coastal cities have generally experienced rapid development, but it also prompted a 

series of problems such as unreasonable urban planning, low-capacity (low construction standards) drainage 

systems, land subsidence, and imperfect urban disaster management systems. Human disturbance, sea-level 

rise, and storm surges have formed an important disaster chain. Continued human activities have 

exacerbated sea level rise and storm surge intensity, which in turn magnified the damage of urban 

waterlogging. At the same time, unreasonable planning will further amplify the hazards of urban 

waterlogging. As a result, the combined effect of various influencing factors has led to the complexity of 

urban waterlogging in these regions. Lastly, as coastal cities are the centers of populations, economic 

activities, these urban waterlogging events may be devastating. The State Oceanic Administration of China 

estimated that the average annual direct economic loss caused by typhoons/storm surges was US$1.6 billion 

from 2012 to 2016 (China Marine Disaster Bulletin, 2016).  

As shown in Figure 1-8, the risk of urban waterlogging in the Guangdong-Hong Kong-Macao Greater Bay Area 

(111°59′42″-115°25′18″E, 21°17′36″-23°55′54″N) is more prominent. The eastern coastal cities, as the most 

concentrated and economically active regional, are usually highly developed areas with dense population 

concentration. These regions are a vital part of the national or global economy. Coupled with the impact of 

rising sea levels, the waterlogging status and its hazards in these coastal cities may be extremely severe 

(Gallien et al., 2014; Li et al., 2016). Therefore, it is of great practical importance to carry out research on how 

to effectively alleviate the occurrence of urban waterlogging in metropolitan coastal cities. 
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Figure 1-8 The risk of urban waterlogging in Eastern China prefecture-level cities. (Source: Sun et al., 2020) 

Facing the increasing risk of urban waterlogging, a proliferation of studies has shown that simple drainage 

engineering measures are not sufficient to effectively prevent waterlogging disasters (Lin et al., 2021; Lin et 

al., 2018; Wu et al., 2020; Zhang et al., 2020; Quan, 2014a). Therefore, in the pre-disaster stage, it is necessary 

to further deepen the understanding of the spatial patterns of urban waterlogging, urban waterlogging 

driving forces, waterlogging susceptibility assessment and forecasting, and urban waterlogging mitigation 

strategies to reduce or even prevent related losses. In the context of global climate change, sea-level rise, 

and urbanization process, two major coastal cities in the Guangdong-Hong Kong-Macao Greater Bay 

Metropolitan Region, Guangzhou (112°57′ to 114°30′E, 22°26′ to 23°56′N) and Shenzhen cities (113°45′ to 

114°37′E, 22°26 to 22°51′N), are selected to test this proposition. This thesis first systematically reveals the 

spatial distribution pattern of waterlogging events, clarifies the complex mechanism of waterlogging in 

metropolitan coastal cities by analyzing the effects of natural factors and human activities on urban 

waterlogging. On this basis, an urban waterlogging simulation model is developed to assess urban 
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waterlogging susceptibility under different future scenarios (climate change and urbanization). For urban 

waterlogging mitigation strategies, the role of urban green infrastructure (UGI) on waterlogging and the 

threshold level of green infrastructure mitigation capacity are also investigated. This thesis is expected to 

promote urban sustainable development and provides a theoretical and practical reference for the 

government and urban planners for urban waterlogging prevention and management. 

 

1.2 Research significance 

1.2.1 Sustainable Development Goals 

In 2015, all member states of the United Nations adopted the 2030 Agenda for Sustainable Development, 

which provided a common blueprint for the peace and prosperity of mankind and the planet. It has 

established 17 Sustainable Development Goals (SDGs) and 169 sub-goals, covering the society, economy, and 

environment, which point out the direction for the sustainable development and international cooperation 

of countries in the next 15 years (United Nations: Sustainable Development Goals). This thesis analyzes the 

complex mechanism of waterlogging and the mitigation effect provided by urban green infrastructure in 

metropolitan coastal cities. The proposed work connects the SDGs with the Chinese government's strategic 

development plan, which is in line with the UN 2030 Sustainable Development Goals reported in Table 1-1. 

Table 1-1 The Sustainable Development Goals achieved in this thesis. 

Target 11 Sustainable cities and 

communities 

 

11.3 By 2030, enhance inclusive and sustainable urbanization and capacity for 

participatory, integrated, and sustainable human settlement planning and 

management in all countries. 

11.5 By 2030, significantly reduce the number of deaths and the number of people 

affected and substantially decrease the direct economic losses relative to global 

gross domestic product caused by disasters, including water-related disasters, 

with a focus on protecting the poor and people in vulnerable situations. 

11.6 By 2030, reduce the adverse per capita environmental impact of cities, 

including by paying special attention to air quality and municipal and other waste 

management. 
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Target 13 Climate action 

 

13.1 Strengthen resilience and adaptive capacity to climate-related hazards and 

natural disasters in all countries. 

13.2 Integrate climate change measures into national policies, strategies, and 

planning. 

1.2.2 National level 

Increasingly severe urban waterlogging has gradually attracted the attention of the Chinese government. On 

25 April 2021, the General Office of the State Council of China issued the "Implementation Opinions on 

Strengthening Urban Waterlogging Management", proposing to promote urban waterlogging management, 

striving to significantly improve the waterlogging prevention capacity of cities by 2025 (The State Council of 

the People's Republic of China). Urban waterlogging is a new type of disaster with urban development. The 

investigation of the complex mechanism of waterlogging and its mitigation strategies contribute to the 

implementation of national policies and the realization of sustainable urban development in China. 

1.2.3 City level 

Given the extreme risk of urban waterlogging in coastal cities in China, this thesis selects Guangzhou and 

Shenzhen in the Guangdong–Hong Kong–Macao Greater Bay Metropolitan Region of Southern China as the 

study area. These two cities both belong to subtropical maritime monsoon climates, with an annual average 

rainfall of around 1720 mm and 1935 mm respectively. However, the temporal and spatial distribution of 

precipitation in the two cities is extremely unbalanced. Temporally, the precipitation is mainly concentrated 

in April to September, accounting for over 80% of the annual precipitation. Spatially, affected by the 

prevailing wind direction, the precipitation is decreasing from northeast to southwest (Guangzhou), and 

southeast to northwest (Shenzhen). Additionally, Guangzhou and Shenzhen are often affected by typhoons 

and tropical cyclones in summer. From the perspective of topographic conditions, Guangzhou and Shenzhen 

are both located in delta alluvial plains, with an average elevation of 9.9 m and 46 m, respectively, which is 

typical of coastal lowlands and extremely vulnerable to sea-level rise or seawater intrusion. The GDP of 

Guangzhou and Shenzhen in 2020 reached $384 billion and $415 billion respectively, which are national 

economic centers and international cities in China. If urban waterlogging occurs in such regions, it will 
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undoubtedly have a serious impact on people's production and life and social and economic development. 

Therefore, this thesis can provide suggestions and guidance for urban waterlogging management in 

metropolitan coastal cities. 

1.2.4 Academic research level 

Given the characteristics of highly urbanized coastal areas, there are various urban landscape elements with 

different attributes in cities. The distribution of urban landscape elements and their attributes are 

characterized by spatial heterogeneous. In other words, urban landscape elements (such as DEM, land cover 

characteristics) vary in different spatial locations. It hints that the driving factors or even the mechanism of 

urban waterlogging may vary with the change of spatial location, resulting in the high spatial heterogeneity 

and the non-stationary complex mechanism of urban waterlogging. Additionally, urban waterlogging in 

coastal areas is affected by various influencing factors such as human activities, sea-level rise, storm surges, 

rainfall patterns, etc. On the basis of this, the analysis framework of the complex mechanism of urban 

waterlogging and its mitigation strategies proposed in this thesis establishes a research paradigm of urban 

waterlogging management and prevention in coastal cities, opens up the research horizon of urban 

waterlogging, and enriches the theoretical and methodological for urban waterlogging susceptibility 

assessment. 

 

1.3 Literature review 

Based on the research content of this thesis, a literature review is conducted on the current research status 

of several aspects of urban waterlogging driving factors, urban waterlogging simulation and susceptibility 

assessment methods, and urban waterlogging mitigation measures. 

1.3.1 Causes of urban waterlogging 

Urban waterlogging is a systemic problem, every link of the urban hydrological process may be a factor that 

affects the formation of urban waterlogging (Zhang et al., 2020; Zhang et al., 2021b). The urban waterlogging 

influencing factors can be divided into natural factors and anthropogenic factors. In which, natural factors 

include urban microclimate and geographical conditions (such as meteorological conditions, urban 

topography, hydrogeology, and soil); while the anthropogenic factors contain land cover features, urban 
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drainage system, relevant administrative regulations and policy, and other factors related to human activities. 

In this thesis, we summarize the causes of urban waterlogging into four aspects. 

(1) Meteorological conditions: due to global climate change, extreme precipitation events occur frequently. 

The concentration and intensity of precipitation have led to excessive surface runoff in cities, exceeding the 

urban drainage capacity. 

(2) Topographic conditions: the low-lying and relatively flat areas within cities are conducive to the 

accumulation of surface runoff. 

(3) Land cover features: the rapidly increased impervious surface area blocks the infiltration path of 

rainwater and alters the original hydrological conditions, thereby disrupting the water balance. 

(4) Drainage facilities: due to the low design standards and poor management of drainage systems in 

developing countries, surface runoff is difficult to discharge in a short period. 

1.3.1.1 Meteorological conditions 

The effect of meteorological conditions on the risk of waterlogging has been extensively documented (Alfieri 

et al., 2017; Myhre et al., 2019). As the global climate changes, precipitation patterns in various regions are 

redistributed. The Fifth Assessment Report of the Intergovernmental Panel on Climate Change pointed out 

that in the context of climate change, the intensity and frequency of extreme precipitation events have 

increased significantly (IPCC AR5). It can be inferred that the increase and concentration of heavy rainfall 

events are one of the direct causes of urban waterlogging. Berghuijs et al. (2017) reviewed the variation of 

floods across multiple continents in recent years and found that climate change may lead to changes in flood 

magnitude and occurrence rates. Hirabayashi et al. (2013) predict the global flood risk at the end of this 

century through 11 climate models and used a global river path model with inundation schemes to predict 

inundation areas under different climate change scenarios. Zhang et al. (2017) assessed the impact of climate 

change on the probability of inundation in coastal cities based on eight climate models and four CO2 emission 

scenarios. Bryndal et al. (2017) analyzed the impact of meteorological conditions on flood risk management, 

and their findings suggest that extreme precipitation can easily trigger local flooding. Alfieri et al. (2017) 

proposed a framework to assess the economic loss and population impact caused by river flooding on a global 

scale in response to global warming. Their results show a significant positive correlation between global 

warming and future flood risk on a global scale. Additionally, the "urban heat island " effect caused by 
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urbanization further leads to heat convection over the city. This phenomenon increases the probability and 

intensity of rainfall in the urban area, forming the "urban rain island" effect (Figure 1-9) (Shepherd, 2002; 

Han et al., 2014; Shepherd, 2005; Liu et al., 2020a; Mitra and Shepherd, 2015). Simultaneously, as urban air 

pollutants rise, pollutant particles promote water vapor condensation, which may further increase the 

frequency of rainfall in urban areas. The Metropolitan Meteorological Experiment (METROMEX) confirms 

that urbanization has increased the total urban precipitation by 10%-30% in summer, while increasing 

precipitation by 17% in the autumn and 4% in the spring (Changnon Jr et al., 1971; Changnon S, 2016). Zhao 

et al. (2021) took Jinan city, China as a case study to analyze the impact of urban expansion on the rain island 

effect. The results showed that during 1978-2017, the urban expansion in Jinan city significantly increased 

the frequency and intensity of short-duration precipitation events, and the magnitude and frequency of 

extreme precipitation events in built-up areas were significantly higher than those in suburbs areas. 

Therefore, in the context of global climate change and urban microclimate, the changes in the temporal and 

spatial distribution of precipitation will ultimately affect the entire urban hydrological cycle process, leading 

to an increased risk of urban waterlogging. 

 

Figure 1-9 Schematic diagram of urban rain island effect. (Source: Yang et al., 2017) 

1.3.1.2 Topographic conditions 
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High-intensity human activity has profoundly altered the topographical features of urban areas, forming 

complex micro-topography. In most cases, urban waterlogging events occur in the region with low elevation 

and relatively flat terrain, since these areas are easy to obtain runoff from the surrounding area (Figure 1-

10). For example: (1) low-lying landforms such as tunnels, culverts, or underground parking lots often become 

the hot spots of urban waterlogging. (2) Newly built residential communities increase their land surface 

elevation, which increases the risk of waterlogging in neighboring communities (with lower land surface 

elevation). (3) The elevation difference of urban arterial roads leads to the formation of local lowlands that 

become potential locations for waterlogging. Therefore, these urban lowlands often suffer from urban 

waterlogging problems. The results of Tehrany et al. (2015) indicate that compared with relatively flat areas, 

high-altitude areas are less likely to experience waterlogging events. In the work of Liu et al. (2021), the 

impact of surface elevation and slope on urban waterlogging was fully confirmed by using the geographical 

detect model. Yin et al. (2016) used a hydraulic model (FloodMap-HydroInundation 2D) to assess the impact 

of land subsidence on the risk of urban flooding in Shanghai. The results show that land subsidence can lead 

to a non-linear response of flood characteristics. Similarly, the results of Wang et al. (2015) and Wu et al. 

(2020) both demonstrated that flat and low-lying land surfaces increase the risk of urban waterlogging. In 

addition, urban built-up areas with low elevations will also be affected by the backflow of rivers and tides, 

which further threaten water security in low-altitude areas. 
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Figure 1-10 The waterlogging in urban lowlands (tunnels and culverts). (Source: China Daily) 

1.3.1.3 Land cover features 

The rapid development of urbanization has led to drastic changes in the land cover features, which directly 

affects the surface runoff generation and confluence. Among various land cover types in cities, forests, 

grasslands, wetlands, and other urban green spaces that can effectively reduce surface runoff are replaced 

by impervious surfaces (Figure 1-11). These impervious surfaces decrease the infiltration of rainwater, which 

increases the urban runoff coefficient (Nigussie and Altunkaynak, 2016; Chu et al., 2010; Amaguchi, 2012; 

Bonneau et al., 2017; Burns et al., 2015). Li et al. (2018) used Boosted Regression Tree (BRT) to assess the 

relative impact and marginal effects of factors affecting direct runoff. The results indicate that direct runoff 

is significantly related to urbanization, and high-density residential, commercial and industrial areas have 

large surface runoff and high runoff coefficients. Hu et al. (2020) investigated the impact of land-use change 

on surface runoff in the downtown area of Beijing from 1984 to 2019, which indicated that the variation 

trend of surface runoff is strongly consistent with the proportion of impervious surface. Zeinali et al. (2019) 

explored the effects of residential areas and rainfall on runoff coefficients using one-way and two-way 

analysis of variance. On the other hand, urbanization leads to a decrease in surface roughness. Therefore, 

the speed of surface runoff confluence significantly increases (Zhang et al., 2018a). Nigussie and Altunkaynak 
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(2016) conducted an analysis on the hydrological effects of urbanization in the river basin, and they believed 

that the peak discharge is the largest under the scenario of unrestricted urbanization. 

Furthermore, urban development also occupies a large amount of urban flood storage space. The continuous 

degradation of regulation and storage functions increases the risk of urban waterlogging. Lee and Brody 

(2018) pointed out that urban landscapes with a higher percentage of impervious surfaces may cause more 

severe flooding than other land-use types. The study of Zhang et al. (2020) confirmed that the impervious 

surfaces represented by residential areas are the dominant factors for waterlogging at different analysis 

scales. Yu et al. (2018) analyzed the mechanism of the spatial and temporal pattern of impervious surfaces 

on urban waterlogging in Guangzhou, which confirmed that with the expansion of cities, the increase of 

impervious surface leads to the intensification of urban waterlogging. Zhang et al. (2018) took Guangzhou 

city as a case study to investigate the relative importance of the spatial pattern of impervious surfaces to 

urban waterlogging and confirm that the percent coverage of building has the most significant impact on the 

magnitude of urban waterlogging. Sofia et al. (2017) analyzed flood dynamics in northeastern Italy from 1900 

- 2010 and found that land-use change was an important factor in increasing the frequency of flood hazards. 

The research of Huang et al. (2017) shows that the land cover change is the key factor that causes urban 

waterlogging, which largely affects the degree of inundation at the regional scale.  

In contrast to impervious surfaces, urban green infrastructure (UGI) plays a positive role in urban 

waterlogging. A proliferation of studies have shown that urban green infrastructure, as a permeable surface, 

can effectively absorb and store rainwater (Zhang et al., 2021a; Kim and Park, 2016; Yao et al., 2015; Yang et 

al., 2015), and the canopy and rhizome of vegetation can intercept surface runoff (Yang et al., 2013; Liu et 

al., 2014). As for UGI composition, Armson et al. (2013) found that in a sample plot of 9 m2 (the land cover 

includes grassland, trees, and asphalt), the grassland controlled almost all the surface runoff, and the trees 

reduced 62% of runoff from asphalt. Richards et al. (2015) pointed out that a vegetated area of 7.5% to the 

catchment area would reduce surface runoff by more than 90%. For the spatial pattern of UGI, a study 

indicated that the less fragmented urban green spaces are more effective in reducing peak annual average 

river runoff (Kim and Park, 2016). 
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Figure 1-11 The hydrological characteristics of permeable surface and impervious surface. (Source: Tanouchi et al., 

2019) 

1.3.1.4 Drainage facilities 

In the process of rapid urbanization, rivers within cities have been artificially landfilled, which disrupts the 

urban drainage pattern. Moreover, the area of urban rivers network and lakes continues to shrink, weakening 

their capacity to regulate and store rainwater runoff. This has led to an increased risk of urban waterlogging. 

For example, Wang (2017) found that the river network was negatively correlated with Shanghai's rainstorm 

and waterlogging. Additionally, most of the rainwater drainage networks in developing countries are 

characterized by low design standards and inadequate maintenance, which makes it difficult to play an active 

role in the face of heavy rainstorms. In China, the 2019 "Outdoor Drainage System Design Standard" requires 

that the design standard for drainage facilities in general areas (non-central urban area) is 1-3 years for the 

recurrence period of precipitation and that in important areas (central urban area) is 3-5 years (Ministry of 

Housing and Urban-Rural Development, 2019). Compared with design standards of other countries/regions 

(Table 1-2), it indicates that the design standards of China's urban drainage pipelines are relatively low. 

Table 1-2 Comparison of domestic and foreign design standards of drainage facilities. (Source: Zhang et al., 2013) 

Country/region Design standard (rainstorm return period) 

China Mainland 
1-3 years for general areas (non-central urban area), 3-5 years for important 

areas (central urban area), 10 years for particularly important areas (medical 
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facilities, schools, tunnels, transportation hubs, metro system). 

China Hong Kong SAR 10 years for rural drainage systems and 50 years for urban drainage systems. 

United States 
2-15 years for residential areas, 10-100 years for commercial and high-value 

areas. 

European Union 
5 years for rural areas, urban centers/industrial areas/commercial areas, 10 

years for underground railways/underpasses. 

Japan 3-10 years. 

 

As a result, the lagging urban drainage system is no longer able to cope with the negative effects of rapid 

urban development, especially in developing countries where the design standard is relatively low. Thereby, 

it is easy to accumulate rainwater to form urban waterlogging events when heavy rainfall occurs. Wu and 

Zhang. (2017) found that the density of the drainage network is positively correlated with the density of 

urban waterlogging, suggesting that drainage networks are no longer effective in the face of extreme 

precipitation events. In addition, low-impact development measures such as green roofs, rain gardens, and 

permeable paving have not been widely used. This means that it is difficult to store and regulate rainwater, 

which results in rainwater runoff being formed in the shortest time and directly discharged to the pipeline, 

easily exceeding the maximum load of the drainage pipeline. 

1.3.2 Urban waterlogging simulation and susceptibility assessment methods 

Simulating and predicting the waterlogging variation could provide useful theoretical and practical references 

for urban waterlogging prevention, sustainable urban development, and urban planning (Zhang, 2015; Zope 

et al., 2016; Zhao et al., 2018). As many researchers have pointed out, urban waterlogging is influenced by 

many factors (both natural conditions and human activities). The spatial heterogeneity of the landscape 

elements leads to the spatial non-stationary and nonlinear characteristics of urban waterlogging. Moreover, 

buildings, streets, curbstones, and other landscape elements in the urban underlying surface will affect the 

movement of surface runoff. Therefore, it is a challenging task to construct an accurate and efficient model 

to simulate and predict the spatial variation of urban waterlogging. In general, methods of characterizing 

urban waterlogging variation can be summarized into four categories: (1) the multivariate statistical methods, 

(2) the hydrological and hydrodynamic models, (3) the qualitative model based on expert knowledge, and (4) 

the machine learning models. 
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1.3.2.1 Multivariate statistical methods 

The multivariate statistical methods (such as the stepwise regression model, geographic regression weighted 

model) are widely used to analyze the impact of various variables on waterlogging (Gaitan and Ten, 2015; 

Zhang et al., 2020; Wang et al., 2017; Felder et al., 2017; Hong et al., 2017). These methods calculate the 

impact of each type of condition factor on waterlogging, and thus project the susceptibility of urban 

waterlogging in the region. Liu et al. (2021) used the geographic regression weighted model (GWR) based on 

principal component analysis (PCA) to evaluate the risk of urban waterlogging. Tran et al. (2020) based on 

population density, road density, distance to water bodies, impervious surface percentage, normalized 

difference vegetation index, and the digital elevation model (30-m resolution), using the GWR method to 

predict the probability of urban waterlogging risk in Hanoi, Vietnam from 2012 to 2018. Littidej et al. (2019) 

used GWR to analyze the stability of flood areas in Thailand. Fahy et al. (2019) used spatial models, including 

spatial error models, spatial lag models, and geographically weighted regression models, to further identify 

areas that may be severely affected by flooding. However, due to the tremendous landscape heterogeneity, 

it is difficult to utilize them to simulate the spatial variation of urban waterlogging accurately. Consequently, 

this method is gradually being replaced by more robust and precise methods. 

1.3.2.2 Hydrological and hydrodynamic models 

Concerning the second group, the hydrological and hydrodynamic models (such as SWMM, MIKE, HEC-RAS, 

LISFLOOD-FP) are extensively utilized to simulate the urban waterlogging process (Mignot and Dewals, 2019; 

Zoppou, 2001; Elliott and Trowsdale, 2007; Youssef et al., 2011; Quan 2014b; Bisht et al., 2016; Cheng et al., 

2017; Li et al., 2016). Depending on the simulation algorithm, hydrological and hydrodynamic models can be 

divided into three types: hydrological models, hydrodynamic models, and simplified models. Table 1-3 

compares the advantages and disadvantages of these types of models. 

Table 1-3 Comparison of representative urban waterlogging simulation models. 

Model/type Algorithm 

The difficulty of 

model 

construction 

Computational 

efficiency 

Simulate the 

process of 

stagnant water 

SWMM/ hydrological 

model 

Nonlinear reservoir 

method 
General Quick No 
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FloodMap-

HydroInundation2D/ 

hydrodynamic models 

St Venant equations General General Yes 

HEC-RAS/ hydrodynamic 

models 
St Venant equations Difficult Slow Yes 

LISFLOOD-FP/ 

hydrodynamic models 

Shallow-water 

equations 
General General Yes 

FCDC/Simplified models 

Areas below the 

elevation of the water 

surface are 

submerged 

General Quick No 

CA model/Simplified 

models 

The amount of water 

exchanged between 

cells is calculated 

based on topographic 

and hydraulic 

equations 

Easy General Yes 

 

1) Hydrological models 

In general, the hydrological model divides the urban area into multiple catchments according to the water 

outlet and regarding each catchment as an independent unit to calculate the processes of surface runoff 

generation and confluence (Bisht et al., 2016; Kai et al., 2017; Burger et al., 2014; Babaei et al., 2018). At 

present, representative urban hydrological models mainly include SWMM (Storm Water Management Model) 

(Rossman, 2010; Gironás et al., 2010), UCURM (University of Cincinnati Urban Runoff Model) (Papadakis and 

Preul, 1972), ILLUDAS (Illinois Urban Drainage Area Simulator) (Terstriep et al, 1974). Such models are widely 

used in urban flood modeling due to their low data requirements and high computational efficiency. However, 

these models typically estimate runoff based on empirical estimation or the curve proposed by the Soil 

Conservation Service (SCS-CN), which may not be sufficient to describe specific differences in complex urban 

landscapes (Zhang et al., 2018b; Zope et al., 2016; Seenu et al., 2020). Moreover, due to the complexity of 
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the underlying surface, the artificial structures (buildings, roads) or trees will change the direction of the 

surface runoff, resulting in the complicated water flow movement. Therefore, it is difficult to obtain the 

runoff generation and confluence of various catchments (such as the variation of water depth and flow 

velocity). This undoubtedly limits the application of hydrological models in urban areas to some extent. 

2) Hydrodynamic models 

Compared with hydrological models, hydrodynamic models with a high spatial resolution are able to simulate 

surface runoff process under complex urban underlying surfaces, with better accuracy and credibility (Li et 

al., 2019a; Pradhan et al., 2011; Lin et al., 2006; Pinho et al., 2015). This type of model is based on the partial 

differential equations of water movement and boundary conditions to calculate surface runoff processes 

under different topographic conditions. According to the different dimensions of surface runoff processes 

expressed by the models, the hydrodynamic models can be divided into 1D and 2D hydrodynamic models. 

Since the 1D hydrodynamic models cannot simulate the lateral diffusion of water waves, the 2D 

hydrodynamic models based on Saint-Venant’s equation are well overcome the deficiencies of the 1D 

hydrodynamic models (Tsanis and Boyle 2001; Paiva et al., 2011; Felder et al., 2017). In practice, the modeling 

of these 2D hydrodynamic models based on physical mechanisms relies heavily on a large amount of high-

precision local data, such as high-resolution DTM/DEM data and drainage networks. Often, such detailed 

data is difficult to obtain. Therefore, establishing a hydrodynamic model is a difficult task for many cities. 

Additionally, these hydrodynamic models require large computational resources, so they can only be applied 

to a small range of research areas. Although these models can accurately simulate the physical process of 

waterlogging in relatively small watersheds, the difficulty of modeling and low computational efficiency limit 

the application and promotion of such models. 

3) Simplified models 

The simplified model is mainly based on high-precision topographic data, which simulates the inundation 

range of urban waterlogging based on gravity and topography-driven hydraulic balance and hydraulic 

exchange. This type of model does not consider the complex hydrological or hydrodynamic process and the 

required data is not as restrictive as the hydrological and hydrodynamic model. Zhang and Pan (2014) 

proposed a GIS-based urban waterlogging simulation method based on the simplification of the distributed 

hydrological model. Taking Haining City, China as the study area, a study proposes an improved Simplified 

Urban Storm Inundation Model (SUSIM) that integrates urban topography, precipitation, surface runoff, and 
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inundation models, allowing for fast and accurately simulate different inundation conditions (Li et al., 2019b). 

The cellular automata model was used to simulate the temporal and spatial evolution of floods in Keighley 

Stockbridge, England (Ghimire et al., 2013). The results were compared with the hydrodynamic model, which 

showed a good agreement between the two models. Zhang et al. (2014) introduced the flood connected 

domain calculation (FCDC) method to simulate river inundation. The method considers flow continuity and 

allows for rapid simulation of the inundation of source floods, such as river floods or levee floods. The 

simplified model has been widely used because of its advantages such as saving time and simple theory. 

1.3.2.3 Qualitative models based on expert knowledge 

The qualitative models such as the analytic hierarchy process (AHP) and multi-criteria decision analysis 

(MCDA) strongly depend on expert knowledge (Nigusse and Adhanom, 2019; Tang et al., 2018b; Samanta et 

al., 2016; Brito et al., 2019). These qualitative models use the AHP to determine factor weights or integrate 

explanatory factors into a multicriteria sensitivity map to simulate urban waterlogging events (Zhao et al., 

2018; Chowdary et al., 2013). For example, Hong et al. (2018) used the hierarchy process and fuzzy weight 

evidence to construct a flood susceptibility map. The results point out that this method provides a simple 

and intuitive explanation of the weights of flood-related variables, which is more appropriate to deal with 

the fuzziness of expert judgment. Samanta et al. (2016) evaluated the use of MCDA in inland flood risk 

analysis. Lim and Dong. (2009) presents a combined GIS with spatial MCDA to evaluate flood damage in 

Suyoung River Basin, Busan, Korea. Paquette et al. (2012) used the MCDA approach combining elevation, 

catchment, land use, slope, distance to channel, and soil type data to model the spatial extent of flood 

hazards and assess flood risk in the Nadi River Basin in western Fiji. Roy et al. (2021) used integrated AHP and 

GIS technology to model and identify urban waterlogging disasters, vulnerabilities, and risk areas in Siliguri, 

the gateway to northeast India. To some extent, these studies confirm the role of such methods in 

waterlogging simulation and risk assessment. However, some studies have pointed out that the methods rely 

on expert knowledge and judgment, which introduces uncertainty (Chowdary et al., 2013). 

1.3.2.4 Machine learning models 

In the past ten years, machine learning models have been widely used in urban waterlogging simulation, 

susceptibility modeling, and risk assessment, including Artificial Neural Networks (ANN) (Kia et al. 2012), 

Support Vector Machines (SVM) (Tehrany et al., 2015), Decision Tree (DT) (Tehrany et al. 2013) and Random 

Forest (RF) (Zhao et al. 2018). These methods are regarded as a black box to map the relation between input 
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and output of training samples, which shows advantages in complex data modeling. Most recently, Gupta et 

al. (2017) identified the urban waterlogging sensitive areas and predicted the severity using an ANN, which 

indicated that this method could effectively and accurately predict the severity of waterlogging. Zhao et al. 

(2018) applied a Random Forest model to map the flood susceptibility in mountainous areas of China based 

on historical flooding records from 1949 to 2000. For the SVM, Tang et al. (2019) applied a particle swarm 

optimization and an SVM in an integrated approach to evaluate the urban waterlogging susceptibility. 

Tehrany et al. (2019) evaluate the performance difference between decision tree (DT) and support vector 

machine (SVM) in assessing the sensitivity of urban flood disasters. Furthermore, Tehrany et al. (2013) also 

applied a rule-based decision tree to predict the flood susceptible areas in the Kelantan River basin. Ke et al. 

(2020) considered machine learning (ML) and rainfall thresholds to classify floods and non-flood events, 

providing a reference for cities to respond to frequent floods. Chen et al., (2021) used six machine learning 

models (Support Vector Machines, Random Forest, Multilayer Perceptron, Gradient Boosting Decision Tree, 

eXtreme Gradient Boosting, and Convolutional Neural Network) to assess the flood risk in the Pearl River 

Delta. This research expands the application of machine learning methods in urban flood risk assessment and 

deepens our understanding of the underlying mechanisms of flood risk. The results of these studies have 

confirmed to some extent that the machine learning models are effective in urban waterlogging simulation 

and risk assessment. 

However, these models are sensitive to the quality of the sample data. It is important to select the same 

number of positive and negative samples to train machine learning. Due to the short duration and spatial 

dispersion of urban waterlogging, researchers can only obtain relatively few historical waterlogging locations 

(positive samples), which leads to a limited number of negative samples selected, further affecting the 

performance of the models. Therefore, some scholars propose to use semi-supervised learning models to 

make full use of unlabeled data sets to improve model accuracy (Zhao et al., 2019). Similarly, Tang et al. (2019) 

adopted a random repetition method to select negative samples, which not only theoretically avoids the 

influence of subjectivity, but also avoids the selection of inaccurate negative samples as much as possible. 

Furthermore, Tang et al. (2021) proposed an optimized seed propagation algorithm (OSSA), which estimates 

the potential inundation area based on the altitude and the spatial distribution of natural waters, thereby 

increasing the number of positive samples. The results point out that this method can significantly improve 

the accuracy of flooding susceptibility assessment. 
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1.3.3 Mitigation measures for urban waterlogging 

1.3.3.1 Traditional drainage facilities 

China's current stormwater management concept for flood control and drainage planning is still "drainage 

oriented", specifically the construction of urban drainage networks and other series of engineering facilities. 

Local authorities increased underground drainage pipes and pumping stations to speed up rainwater 

drainage and reduce surface runoff. However, this approach only accelerates the discharge rate of surface 

runoff but cannot reduce the total surface runoff (Lee et al., 2016). The surface runoff transfer to other places 

in a short period may bring more pressure on the local drainage systems. Furthermore, drainage facilities 

block the recharge channel for groundwater, leading to a constant decline of groundwater level, threatening 

urban geological safety (land subsidence) (Zhang et al., 2012; Zhang et al., 2015). Traditional drainage 

facilities have the following limitations in alleviating urban waterlogging problems: 

1) Difficult to reconstruct drainage facilities 

Due to the low standards of China's drainage system, many urban drainage pipelines are seriously blocked, 

especially in the historical urban district, which directly affects the drainage function. It is a complicated 

process to upgrade and reform the drainage network. For example, the large-scale reconstruction of the 

underground drainage system is difficult, expensive, and affects traffic and daily activities. Additionally, 

intensive urban development leaves insufficient space for underground drainage systems to reconstruct. For 

most cities, it is almost unrealistic to raise pipeline standards to prevent urban waterlogging in a short period. 

2) Poor connection between management departments 

In the process of managing urban stormwater problems, there is a lack of coordination and cooperation 

between relevant departments. For example, as the "Implementation Opinions on Strengthening Urban 

Waterlogging Management" (General Office of the State Council of China) pointed out that the elevation 

conflict between urban rivers and drainage systems is prominent. This phenomenon may result in the 

drainage outlet being submerged by river level or blocked by silt, resulting in poor drainage. 

1.3.3.2 Urban river networks and water bodies 

It is well known that urban river networks or water bodies can effectively regulate surface runoff. However, 

along with the process of rapid urbanization, rivers within cities have been artificially landfilled, ditched, and 
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reduce river discharge sections to obtain more land resources for urban construction (Table 1-4). This has led 

to serious disruptions to the urban river network, such as a reduction in the complexity of the river network, 

a reduction in the number of tributaries, and a narrowing of the river channels. In addition, many water 

bodies, ponds, wetlands and have been encroached by urban construction, reducing the function of 

stormwater storage and diversion. The superposition of these reasons has caused the urban waterlogging 

phenomenon to become more and more serious. 

Table 1-4 The impact of urbanization on rivers and water bodies. 

Category Influence 

River 

Increase runoff and river flow 

River temperature increases 

Increase soil erosion 

Raise the riverbed 

Increase the pollutant content 

Modify river channel 

Water body 

Unable to regulate surface runoff 

Reduce groundwater recharge 

Pollution accumulation 

Eutrophication 

 

The urban river networks and water bodies play a key role in stormwater and flood management (Lee et al., 

2016). However, due to urban expansion, the natural attributes of rivers and water bodies are often 

neglected. Taking Guangzhou’s downtown area as an example, it is possible to observe that the water area 

was 131.74 km2 in 1990, but only 108.48 km2 in 2010, a decrease of 23.26 km2 compared to 1990, a reduction 

of about 17.66%. The river's shoreline decreased from 3833.16 km in 1990 to 2798.48 km in 2010, a reduction 

of approximately 30% (Chen et al., 2013). With the loss of these water areas, the capacity of rainwater storage 

in the city is reduced, resulting in an unbalanced urban water cycle, threatening the city's water security. At 

present, local authorities have realized that urban drainage networks alone cannot adequately resist urban 

waterlogging disasters. Protecting the natural attributes of river networks is a key measure to address the 

growing problem of waterlogging in cities. 
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1.3.3.3 Sponge city 

Facing the increasingly serious problem of urban waterlogging, scholars have proposed measures such as 

“sponge city” or “low impact development approach” to mitigate urban waterlogging (Ahammed, 2017; Mai 

et al., 2018; Dong et al., 2018; Huang et al., 2017; Miao et al., 2019; Shao et al., 2016; Wu et al., 2018; Zimmer 

et al., 2007). With the concept of "sponge city" and "low impact development" put forward, more and more 

cities adopt the concept of green development in urban construction, gradually considering the infiltration, 

accumulation, and retention of rainwater (Figure 1-12). The task of Sponge City is to realize urban rainwater 

management. It focuses on rainwater storage, retains, and infiltration by using reservoirs, soakaways, storage 

tanks, artificial wetlands, so as to reduce the pressure of the urban drainage system. Additionally, it is also 

mindful of the need to maintain public health, prevent water pollution, protect biodiversity and future 

natural resources. These methods are primarily aimed at increasing the permeable surface of the city (e.g. 

urban green infrastructure) and thus offsetting the increase in surface runoff. 

 

Figure 1-12 Schematic diagram of the sponge city concept. (Source: Chen and Chen, 2020) 

1) Green roof 

A green roof is planting a layer of vegetation on the building roof, which has a significant effect on reducing 
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the total amount of runoff (Figure 1-13) (Peng and Jim, 2015; Berndtsson, 2010; Demuzere et al., 2014; Krebs 

et al., 2016). The study indicated that the green roof can reduce the runoff by 50% compared with the 

ungreened roofs (Hall, 2010). Stovin et al. (2012) analyzed the rainwater regulation capability of the 

experimental green roof by using the rainfall data of 29 months in Sheffield, UK. The results showed that the 

average interception rate of green roofs was 50.2%. Xu (2007) conducted an experiment, which showed that 

the drainage rate of the green roof was 5 L/m2, while that of the ungreened roof was 16 L/m2, within 15min, 

when the rainfall intensity was 20 L/m. Mentens et al. (2006) indicated that if 10% of the buildings in the area 

adopt green roof measurement, the total regional surface runoff can be reduced by 2.7%. Although the ability 

of green roofs to retain and intercept rainwater has been widely recognized by scholars, its retain and 

intercept capabilities vary greatly in different regions and different environmental conditions. For example, 

Tang et al. (2011) pointed out that as the thickness of the soil layer increases, the capacity of green roofs to 

retain and intercept rainwater increases. Teemusk et al. (2007) found that when the rainfall intensity is 

moderate to light rain, the average interception rate of the green roof is 87%, but in heavy rain, the 

interception capacity of the green roof will be greatly weakened. Through monitoring in Brussels (Belgium), 

it is found that green roofs can reduce the surface runoff of individual buildings by 54%, with this reduction 

being more significant in summer than in winter (Mentens et al., 2006). 
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Figure 1-13 Schematic diagram of green roof (a) and the selected Green Roof Awards of Excellence design projects (b). 

(Source: Zhang et al., 2019; Green Roofs for Healthy Cities' Awards of Excellence) 

2) Concave green land 

Concave green land similar to rain gardens is a key measure in 'sponge cities'. It refers to vegetation land with 

a lower elevation than the surrounding environment, which can temporarily retain surface runoff (Figure 1-

14) (Ministry of Housing and Urban-Rural Development, 2014). Winston et al. (2016) showed that concave 

green land can reduce the peak flow by 24-96% for one-year rainfall events. Du et al. (2019) utilized the SCS 

model to compare the effect of conventional green space, 10 cm concave green land, and 20 cm concave 
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green land in reducing surface runoff in Shanghai city (China). The results show that the concave green land 

with a depth of 0.10–0.20 cm can reduce the direct runoff by 23.63-98.35% and the inundation area by 26.09-

82.41%, decreasing waterlogging exposed population by 0.40-1.04 million. Liu et al. (2015a) assessed the 

effectiveness of four types of green infrastructure, including green space enlargement, concave green space, 

retention ponds, and porous brick pavement, in reducing rainwater runoff. The results noted that when the 

depth of the concave green space increases from 0 cm (flat) to 10 cm, the ratio of runoff to rainfall decreases 

from 77.00% to 65.51%, while up to 95% of runoff was reduced when the green space was converted to a 4 

cm deep. Wen et al. (2016) showed that under 5-year recurrence rainfall conditions, modifying the green 

space to a concave pattern with a depth of 0.05 m could reduce runoff and peak flow by 23.20% and 29.11%, 

respectively. Zhu et al. (2015) used artificial simulation to analyze the flow reduction effect of the concave 

green space under different rainstorm intensities in Beijing, which indicated that the concave green areas 

have a significant effect on the reduction of stormwater runoff. Similarly, Wen et al. (2016) and Cai et al. 

(2011) also demonstrated that a concave-shaped UGI would significantly reduce the surface runoff and peak 

flood flows. 

 

Figure 1-14 Schematic diagram of concave green land. (Source: Du et al., 2019) 

3) Permeable pavement 
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The combination of porous brick and permeable pavement can increase the permeable area of the city and 

effectively alleviate surface runoff (Figure 1-15). Liu et al. (2020c) simulated two rainfall intensities (low 

intensity is 0.3 mm/min with a depth of 25.4 mm, high intensity is 0.6 mm/min with a depth of 42.0 mm), 

confirming that permeable surfaces can significantly reduce surface runoff and peak flow. Zhu et al. (2019) 

used the storm-water management model (SWMM) to quantify the permeable pavement on surface runoff 

mitigation effect in a two-way six-lane road in Nanjing. The results point out that the permeable pavement 

has a good effect on reducing the runoff coefficient and flood peaks, which can effectively reduce the 

pressure of rainwater drainage. Liu et al. (2020b) showed that the average runoff time for permeable 

pavements was approximately 78.5 minutes for low-intensity rainfall and reduced to only 51.5 minutes for 

high-intensity rainfall, with an average runoff interception of 52.5% and 42.5% for low intensity and high-

intensity rainfall respectively. Liu et al. (2015b) took Beijing as an example, and the SCS model analysis 

showed that porous pavement could significantly reduce the runoff coefficient by 28.1%. Theoretically, the 

larger the permeable paving area, the greater the ability to reduce surface runoff. However, some studies 

point out that the ability of permeable surfaces to reduce surface runoff is influenced by many factors, such 

as the dryness or wetness of the original surface, the permeable paving material, the amount of rainfall, and 

the intensity of rainfall (Rodriguez-Hernandez et al., 2015). It has been shown that when surface runoff is 

excessive (40% of precipitation), even if the percentage of permeable area is increased to 90%, the mitigation 

effect of permeable pavement on surface runoff is not significant (Liu et al., 2014). 
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Figure 1-15 Schematic diagram of permeable pavement. (Source: Freeborn et al., 2012) 
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1.4 Research questions and objectives 

With the intensification of human activities and climate change, it is foreseeable that in the future, urban 

waterlogging events in urban centers will undoubtedly increase. Therefore, in order to gain a general 

knowledge of urban waterlogging patterns at a larger scale (such as in metropolitan areas), it is necessary to 

identify the spatial-temporal characteristics of urban waterlogging events. However, most of the previous 

studies have only focused on the waterlogging pattern in relatively small catchments. While studies at a small 

area may be site-specific, it is difficult to macroscopically investigate the spatial distribution pattern of urban 

waterlogging. Urban waterlogging is a complex phenomenon, which is the result of the joint action of natural 

conditions and human activities. However, what is less known, is the relative contribution of each 

environmental and anthropogenic factor. Most studies just focus on one land cover type - the impervious 

surface alone, without comprehensively considering topographical factors, overall land cover characteristics 

(composition and spatial configuration), drainage facilities, precipitation intensity, and other influencing 

factors. This will undoubtedly bring some uncertainty to the results of the study. Simultaneously, most 

studies have not carried out a multi-scale analysis, and thus ignoring the scale effects of various influencing 

factors (Yu et al., 2018; Wang et al., 2015). Due to the great heterogeneity in highly urbanized areas, the 

analysis of one single scale may not be sufficient. From this perspective, some interesting questions arise: 

does the impact of environmental and anthropogenic factors on urban waterlogging vary with the scale of 

analysis? Does the explanatory power of the same influence factor change with the change of scale of analysis? 

Does the dominant factor determining waterlogging vary across analysis scales? Answering these questions 

is vital for expanding our scientific understanding of the linkage between urban waterlogging and its 

environmental and anthropogenic influencing factors. 

In highly urbanization areas, the spatial distribution of urban landscape elements and their attributes are 

characterized by heterogeneous and dynamic. This phenomenon is widely regarded as spatial heterogeneity, 

describing the complexity of the landscape pattern and its process (Pickett and Cadenasso, 1995; Song et al., 

2020; Jiang, 2015). Due to the spatial heterogeneity effect, urban landscape elements (such as topographic 

features, land cover characteristics, drainage facilities) are different in different spatial locations. Hence, the 

relationship between landscape elements and urban waterlogging varies with different spatial locations, 

which is known as spatial non-stationarity. Therefore, this suggests that the waterlogging driving forces in 

different regions are complex and different. Although there have been considerable studies exploring the 
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mechanism of urban waterlogging, most of the previous efforts regard the whole study area as spatial 

homogeneous, without taking spatial heterogeneity into account (Ke et al., 2020; Yu et al., 2018; Sun, 2014; 

Su et al., 2018; Zhang et al., 2021b; Jian et al., 2021). Analyzing the waterlogging mechanisms at the entire 

city scale, undoubtedly only the universal mechanisms can be obtained. Thereby ignoring the local driving 

forces of urban waterlogging. As a result, it is impossible to know how landscape elements in different spatial 

locations affect urban waterlogging. This shortcoming limited local authorities from developing more target-

specific urban waterlogging mitigation strategies for different local conditions. 

In general, characterizing the urban waterlogging variation is conducive to revealing the urban waterlogging 

prone areas, thereby minimizing waterlogging negative effects (Wang et al., 2012; Miao et al., 2019; Tang et 

al., 2018a). However, as many researchers have pointed out, urban waterlogging is influenced by the natural 

environment (precipitation and urban topography) and human activities (land-use change and drainage 

network) (Wu and Zhang 2017; Zhang et al., 2018b; Su et al., 2018). Additionally, the spatial heterogeneity 

of highly urbanized areas further leads to the non-stationary and non-linear characteristics of urban 

waterlogging. Thereby, it is difficult to adequately capture the spatial variation of urban waterlogging and 

identify waterlogging susceptibility areas by traditional statistical methods (i.e. global regression model, 

stepwise regression). Moreover, we cannot predict the spatial variation of urban waterlogging under 

different future scenarios (climate change and urban development). Therefore, there is an urgent need for a 

more robust and computational efficiency model for urban waterlogging simulation and to identify the urban 

waterlogging susceptibility areas under different future scenarios. 

It is widely accepted that urban green infrastructure (UGI), as a permeable surface, can effectively absorb 

and store rainwater (Kim and Park, 2016; Yao et al., 2015; Yang et al., 2015; Zhang et al., 2021a). In addition, 

the canopy and rhizome of vegetation can intercept surface runoff, thereby reducing the speed of runoff 

collection (Yang et al., 2013; Liu et al., 2014). Compared with drainage facilities and pumping stations, urban 

green infrastructure can be more "environmentally friendly" to discharge surface runoff. However, due to 

the shortage of land resources in metropolitan areas, it is unrealistic to reduce urban waterlogging by 

considerably increasing the UGI area. Therefore, it is necessary to understand how to utilize the limited UGI 

area to maximize the waterlogging mitigation function. However, will the risk of urban waterlogging continue 

to decrease as the area of UGI increases? Less attention has been paid to investigating the threshold level 

for the impact of UGI on urban waterlogging. If the mitigation effect of UGI has a threshold level, planning a 
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larger area of UGI may not provide a more significant mitigation effect. In this context, another research 

question arises: Is there a threshold level for the effect of UGI on urban waterlogging? Answering these 

questions can help us improve our understanding of the potential mitigation effect of UGI on urban 

waterlogging and furnish concrete references for UGI design. Additionally, considerable studies have 

examined the relationship between UGI’s factors and waterlogging. However, previous studies mainly 

focused on the individual effects of UGI factors on urban waterlogging; instead, the interactive effects of 

these factors remain unclear. This phenomenon gives rise to some questions: how do the interactions of 

these UGI factors affect urban waterlogging? Can the interaction between different UGI factors further 

enhance their mitigation effects on waterlogging? 

Given the research gaps mentioned above, this thesis proposes the following research questions: 

1) What is the spatial-temporal distribution pattern of urban waterlogging events? 

2) Does the influencing factor of urban waterlogging have different explanatory power under different 

scales of analysis? 

3) How can we investigate the spatial heterogeneous driving forces of urban waterlogging? 

4) How can we obtain the site-specific waterlogging mitigation strategies for different spatial locations? 

5) How can we capture the urban waterlogging spatial variation and assess urban waterlogging 

susceptibility under different urbanization and climate change scenarios? 

6) Is there a threshold level for the mitigation capacity of urban green infrastructure on urban waterlogging? 

7) How can we enhance the mitigation effect of urban green infrastructure? 

Hence, to address these questions, the specific objectives of this study are as follows: 

1) identify the urban waterlogging hotspots and assess the agglomeration effect of urban waterlogging 

events. 

2) clarify the relative contributions of influencing factors and examine whether the dominant factors vary 

across different analysis scales, thus identifying the scale effect. 

3) develop an innovative method to investigate the spatial non-stationarity effects of landscape elements 

on urban waterlogging. 
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4) identify the individual and interaction effect of local driving forces according to different spatial locations. 

5) propose a new and more robust method - the stepwise cluster analysis model to simulate waterlogging 

variation and assess urban waterlogging susceptibility under different scenarios. 

6) explore the quantitative relationship between urban green infrastructure and urban waterlogging to 

quantify the threshold level of urban green infrastructure mitigation effect. 

7) assess the effectiveness and stability of urban green infrastructure in mitigating urban waterlogging and 

reveal the factors that can effectively mitigate waterlogging magnitude. 

In light of the research objectives presented, four papers have been written following the logical construction 

of research questions, objectives, and outcomes: 

i. The first article addresses the first and second research questions and objectives. 

Zhang, Q., Wu, Z., Zhang, H., Dalla Fontana, G., & Tarolli, P. (2020). Identifying dominant factors of 

waterlogging events in metropolitan coastal cities: The case study of Guangzhou, China. Journal of 

Environmental Management, 271, 110951. https://doi.org/10.1016/j.jenvman.2020.110951 

ii. The second article addresses the third and fourth research questions and objectives. 

Zhang, Q., Wu, Z., Guo, G., & Tarolli, P. (2021). A new approach to investigating the spatially 

heterogeneous driving forces of urban waterlogging. Under review 

iii. The third article addresses the fifth research question and objectives. 

Zhang, Q., Wu, Z., Guo, G., Zhang, H., & Tarolli, P. (2021). Explicit the urban waterlogging spatial 

variation and its driving factors: The stepwise cluster analysis model and hierarchical partitioning 

analysis approach. Science of The Total Environment, 763, 143041. 

https://doi.org/10.1016/j.scitotenv.2020.143041 

iv. The fourth article addresses the sixth and seventh research questions and objectives. 

Zhang, Q., Wu, Z., & Tarolli, P. (2021). Investigating the Role of Green Infrastructure on Urban 

WaterLogging: Evidence from Metropolitan Coastal Cities. Remote Sensing, 13(12), 2341. 

https://doi.org/10.3390/rs13122341 
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1.5 General organization 

This thesis consists of four papers (chapters from 2 to 5) and the purpose of this research is to reach a 

thorough understanding of the complex mechanism of waterlogging and the mitigation effect provided by 

urban green infrastructure (UGI) in metropolitan coastal cities. Figure 1-16 illustrates the research framework 

for this thesis. It started with the reveal of the scale effect of environmental and anthropogenic factors on 

urban waterlogging, which is presented in chapter 2. Secondly, the mechanism of urban waterlogging and 

the valuable local driving forces are spatially clarified in chapter 3. Further, the characteristics of waterlogging 

variation and the identification of waterlogging susceptibility areas under different climate and urbanization 

scenarios are described in chapter 4. Lastly, in chapter 5, the mitigation effect of urban green infrastructure 

on urban waterlogging is examined by investigating the threshold level of waterlogging mitigation capacity 

as well as the UGI factors that can effectively mitigate waterlogging magnitude. 
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Figure 1-16 The research framework for this thesis. 

The detailed information of each chapter is introduced below: 

The first paper (Chapter 2) entitled “Identifying dominant factors of waterlogging events in metropolitan 

coastal cities: The case study of Guangzhou, China” has been published in the Journal of Environmental 

Management in 2020. This paper identifies the relative contribution of each environmental and 

anthropogenic factor and investigates the stability linking waterlogging to influencing factors at multiple 

scales of analysis. It confirmed that urban waterlogging events are mainly affected by both land cover 

characteristics and urban topography. Additionally, this paper stresses the fact that the dominant drivers 

vary across different analysis scales, presenting a significant scale effect. Due to the appropriate statistical 

scale may only work for specific influencing factors, a universal “optimal” analysis scale for urban 

waterlogging studies can not be confirmed. This paper provides additional insights that the best analysis scale 

for urban waterlogging study should be determined by the characteristics of study areas. 

The second paper (Chapter 3) titled “A new approach to investigating the spatially heterogeneous driving 

forces of urban waterlogging” is under review. It provides a general framework integrating the best subsect 

regression model, cubist regression tree, and geographical detector model to spatially explicit the 

heterogeneous forces driving waterlogging variation and identify the waterlogging dominant factors with 

different local conditions. This paper offers the opportunity to objectively select the most representative and 

meaningful driving factors that effectively describe urban waterlogging variation according to local 

characteristics. The results indicate that the driving force of urban waterlogging varies with the local site 

conditions. Understanding the complex site-specific mechanism of urban waterlogging in different watershed 

units will help us implement more targeted and effective mitigation strategies, rather than a “one-size-fits-

all” policy. 

The third paper (Chapter 4) entitled “Identifying dominant factors of waterlogging events in metropolitan 

coastal cities: The case study of Guangzhou, China” has been published in the Science of The Total 

Environment in 2020. This study proposes a novel approach that combined a stepwise cluster analysis model 

(SCAM) and hierarchical partitioning analysis (HPA) within a general framework to fully capture the urban 

waterlogging spatial variation and identify the waterlogging susceptibility areas under different urbanization 

and climate change scenarios. This research underlines that the SCAM can provide accurate and detailed 

simulated results both in urban centers where waterlogging frequently occurs and urban fringe with few 
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waterlogging events, compared with logistic regression, artificial neural network, and support vector 

machine. The watershed spatial location and watershed characteristics are relevant aspects to be considered 

in identifying and assessing waterlogging susceptibility, which provides original insights that urban 

waterlogging mitigation strategies should be developed according to different local conditions and future 

scenarios. 

The fourth paper (Chapter 5) entitled “Investigating the role of green infrastructure on urban waterlogging: 

evidence from metropolitan coastal cities” has been published in the Remote Sensing in 2021. The purpose 

of this research is to examine the effectiveness and stability of urban green infrastructure (UGI) in alleviating 

urban waterlogging and the threshold level of waterlogging mitigation capacity. This paper considered two 

waterlogging high-risk coastal cities—Guangzhou and Shenzhen, to investigate the individual and interaction 

effect of UGI’s factors on waterlogging magnitude. It showed that the interaction of UGI factors greatly 

enhances their individual effects on waterlogging, indicating that the interactive effect of multiple factors 

can further alleviate the degree of urban waterlogging. Further, it underlined that the impact of UGI on 

waterlogging presents a threshold phenomenon. The excessive area proportions of UGI within the watershed 

unit or an oversized UGI patch may lead to a waste of its mitigation effect. This paper provides additional 

insights that the area proportion of UGI and its mitigation effect should be considered comprehensively when 

planning UGI. 
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2.1 Abstract 

Urban waterlogging disasters are affected by both environmental conditions and human activities. Previous 

studies had explored the effect of land-use type on waterlogging in relatively small watersheds. Few, 

however, have comprehensively revealed the relative contributions of the environmental and anthropogenic 

factors to urban waterlogging concerning different scales of analysis. Indeed what is less known, are the 

dominant factors and the appropriate scale of analysis. To overcome this limitation, a novel method that 

integrates the stepwise regression model with hierarchical partitioning analysis is presented. The purpose is 

to investigate the complex mechanism of urban waterlogging by identifying the relative contribution of each 

environmental and anthropogenic factor and the stability linking waterlogging to influencing factors at 

multiple scales of analysis (i.e. 1 km, 2 km, 3 km, 4 km, and 5 km). We consider waterlogging events in the 

central urban districts of Guangzhou (PR China) from 2009 to 2015 as a case study. The results show that the 

spatial distribution of waterlogging events in the central urban area presents a strong agglomeration pattern. 

The waterlogging hot spots are mainly concentrated in the historical area of Guangzhou. Under all analysis 

scales, we find that the percent cover of urban green spaces (44.74%), percent cover of residential area 

(41.03%), and slope.std (36.85%) both have a dominant contribution to urban waterlogging, which suggests 

the importance of land cover composition in determining urban waterlogging. However, the relative 

contribution and dominant factors of waterlogging varied across different analysis scales, presenting a strong 

scale effect. Under a small analysis scale (1 km), the topography factors (slope.std and relative elevation) are 

confirmed as the dominant variables; however, with the increase of analysis scale, the influence of land cover 

composition (greenspace, residence area, grassland) and land cover spatial configuration (LPI, AI, Cohesion 

index) on waterlogging magnitude is greater than other factors. This finding provides additional insights that 

urban waterlogging can be alleviated by balancing the relative composition of land cover features as well as 

by optimizing their spatial configuration. Since the optimal statistical scale for urban waterlogging studies 

only worked for specific influencing factors, the appropriate analysis scale for urban waterlogging study 

should be determined by the characteristics of study areas. This study has the capability to extend our 

scientific understanding of the complex mechanisms of waterlogging in highly urbanized coastal cities and 

provide useful support for the prevention and management of urban waterlogging. 

 

Keywords: urban waterlogging; environmental and anthropogenic factors; scale effect; landscape pattern; 
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land cover features 

2.2 Introduction 

Urban waterlogging is a stagnant water disaster occurring in the urban area, which mainly refers to the 

phenomenon that short-term heavy rainstorms or continuous precipitation exceed the drainage capacity of 

a city (Yin et al., 2011; Hammond et al., 2015; Xue et al., 2016). During the rapid urban sprawl and population 

growth, the proportion of the world's urban population is expected to continue to increase to more than 60% 

(Nations, 2014). With this rapid urbanization process, the impervious surfaces within the city increased 

dramatically, which changed the original land cover composition and hydrological conditions, so as 

consequence increased the risk of urban waterlogging events (Sofia et al., 2014; Du et al., 2015; Sofia et al., 

2017; Su et al., 2018; Sofia et al. 2019). Furthermore, with the global climate changes, the frequent 

occurrence of extreme precipitation events has led to an increment of the severity of waterlogging events 

worldwide, especially the low-lying coastal cities (IPCC, 2011; Barros et al., 2012; Hallegatte et al., 2013; 

Woodruff et al., 2013). 

China has suffered extensively from the environmental impacts of rapid urbanization and climate change. 

The record from the Ministry of Housing and Urban-Rural Development of China (MOHURD), shows that 

around 62% of cities suffer from waterlogging problems, especially in mega coastal cities such as Shanghai, 

Guangzhou, and Shenzhen (ADB, 2011). For example, as the youngest city in China, on May 11, 2014, 

Shenzhen suffered the strongest rainstorm since 2008 (226 mm), resulting in 150 roads were seriously 

waterlogged and the economic loss was more than 11 million dollars. Urban waterlogging events caused 

huge economic and urban basic functions losses and even pose a serious threat to people's lives (Fahy et al., 

2019; Grahn and Nyberg, 2017; Sene, 2013; Yin et al., 2011). Furthermore, coastal cities are usually highly 

developed areas with dense population concentrations that are a vital part of the national or global economy. 

The damage of waterlogging events in these cities may be severe (Gallien et al., 2014; Li et al., 2016). 

Therefore, how to effectively mitigate the occurrence of urban waterlogging is a major problem in the 

process of sustainable urbanization in China. 

In recent years, the frequent occurrence of urban waterlogging events has attracted wide attention from the 

academic community (Huang et al., 2018; Tang et al., 2018; Yu et al., 2018). Considerable research has shown 

that besides environmental factors (precipitation and topography), most of the urban waterlogging events 
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are caused by anthropogenic factors from human activities (Tehrany et al., 2019; Wang et al., 2017; Li et al., 

2015; Zhang et al., 2017). It can be summarized in the following three aspects: (1) the urban micro-

topography; (2) the disorderly expansion of impervious surfaces; (3) the urban drainage facilities. (1) Urban 

lowlands and such as underground parking lots and tunnels are conducive to the accumulation of rainwater. 

Thus, these areas are often suffering from urban waterlogging issues. (2) Land use/land cover change caused 

by urbanization greatly promotes the formation of urban waterlogging events (Huong and Pathirana, 2013; 

Shuster et al., 2005; Wu and Zhang, 2017). Among various land cover types within the city, the urban green 

spaces such as forest, grassland, and wetland that can effectively reduce the surface runoff are replaced by 

artificial impervious surfaces (cement, asphalt), which greatly changed the hydrological conditions. (3) During 

the rapid urbanization, most of the river channels or ditches were artificially landfilled, resulting in 

degradation of the drainage function of the river network and increased vulnerability of the drainage system. 

In addition, most of the rainwater drainage networks in developing countries are low design standards and 

have insufficient maintenance, which makes it difficult to play an active role in the face of heavy rainstorms. 

Therefore, facing the increasingly serious problem of urban waterlogging, scholars have proposed measures 

such as “sponge city” or “low impact development approach” to mitigate urban waterlogging inundation 

(Ahammed, 2017; Dong et al., 2018; Huang et al., 2017; Miao et al., 2019; Shao et al., 2016; Wu et al., 2018; 

Zimmer et al., 2007). The main purpose of these measures is to increase the proportion of permeable surfaces 

(urban green spaces) within the city so that the surface runoff can be reduced effectively. 

Previous studies found that topographic factors, such as elevation and slope, had a strong impact on urban 

waterlogging (Tehrany et al., 2019; Wang et al., 2012; Zhao et al., 2018). In some cases, however, the results 

are contradictory. For example, the flat and low-lying surface will increase the risk of urban waterlogging in 

studies conducted in Huizhou, China (Wang et al., 2015) and Shenzhen, China (Wu and Zhang, 2017), but is 

associated with reducing the risk of urban waterlogging in Amsterdam, Netherlands (Gaitan et al., 2015). This 

inconsistency prevents the development of urban waterlogging research. Except for urban topographic 

factors, considerable studies revealed the impact of land-use change on urban waterlogging (Boudou et al., 

2016; Pijl et al., 2018; Schuch et al., 2017; Yao et al., 2017; Zope and Eldho, 2016). Zhang (2018) simulated 

the impact of urbanization on the urban storm runoff coefficient in Beijing. Chen (2015) took Dongguan city 

as a case study and analyzed the impact of rapid urbanization on urban waterlogging by the DPSIR 

hydrological model. These results all confirmed that the impervious surface has a certain impact on urban 

waterlogging. These studies, however, just only focused on one land cover type - the impervious surface 
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alone, rather than the overall land cover characteristics (composition and spatial configuration). The 

quantitative relationship between overall land cover characteristics (i.e. land cover composition and spatial 

pattern) and urban waterlogging may not be fully understood. 

Urban waterlogging is a complex phenomenon, which is the result of the joint action of natural conditions 

and human activities. However, what is less known, is the relative contribution of each environmental and 

anthropogenic factor. The influencing factors such as topographic factors, land cover composition, land cover 

spatial configuration, drainage facilities, and urban morphology are not comprehensively considered, which 

leads to some biases. Furthermore, the single-factor regression model widely used in previous studies cannot 

fully reveal the complex mechanisms of urban waterlogging. Simultaneously, most studies have not carried 

out a multi-scale analysis, and thus ignoring the scale effects of various influencing factors (Yu et al., 2018; 

Wang et al., 2015). Due to the great heterogeneity in highly urbanized areas, the analysis of one single scale 

may not be sufficient. Does the influencing factor of urban waterlogging have different effects under different 

analysis scales? Does the explanatory power of the same influence factor change with the change of analysis 

scale? Does the dominant factor determining waterlogging vary across analysis scales? Answering these 

questions is vital for expanding our scientific understanding of the linkage between urban waterlogging and 

its environmental and anthropogenic influencing factors. 

In this work, we overcome this lack of investigation, presenting a case study of the highly urbanized coastal 

city – the central urban districts of Guangzhou (P.R. China), where the waterlogging events frequently occur. 

The goal is to explore complex mechanisms of urban waterlogging through multi-scale analysis to clarify the 

relative contributions of environmental and anthropogenic factors. In which, a novel method that integrates 

the stepwise regression model with hierarchical partitioning analysis is presented to quantify the complex 

relationship between urban waterlogging and influencing factors under various analysis scales. We 

considered urban waterlogging records from 2009 to 2015, and performed the following steps: (1) explore 

the urban waterlogging spatial pattern and assess the agglomeration effect of urban waterlogging events; (2) 

reveal the complex relationship between urban waterlogging and environmental and anthropogenic factors 

in a highly urbanized low-lying coastal city to clarify the relative contributions of influencing factors, and thus 

identifying the dominant factors; (3) examine whether the dominant factors vary across analysis scales and 

identify the scale effect. This study provides a theoretical and practical reference for the government and 

urban planners for urban waterlogging prevention and management. 
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2.3 Study area 

Guangzhou City, the selected study area with a total terrestrial area of about 7434.40 km2, is located in the 

south-east part of Guangdong Province, P. R. China, at 112°57′~114°3′E and 22°26′~23°56′N, where is the 

intersection of the three major tributaries of Pearl River (Fig.2-1). Guangzhou is the political, economic, 

cultural, and scientific center in southern China, which is known as the “south gate” of China. Guangzhou is 

located in the subtropical coastal area, which belongs to a marine subtropical monsoon climate with an 

average annual precipitation of 1623~1899 mm and an average annual rainfall of 189 days (Guangzhou 

Meteorological Service). The low-lying mountain and hills are located in the northeastern part of Guangzhou, 

while the southern part is the relatively flat alluvial plain, with an average elevation of 6.6 m asl.  

Since the reform and “opening up” policy in the 20th century, Guangzhou has experienced rapid urbanization 

and urban expansion. The high-density building area blocks the surface water seepage and interrupts the 

hydrological cycle, thus resulting in the frequency of urban waterlogging events. According to the World 

Bank's assessment report, Guangzhou ranks first in flood risk among 138 major coastal cities around the 

world (Hallegatte et al., 2013). In addition, the official statistics provided by Guangzhou Water Authority 

show that the urban waterlogging event has become a growing problem in the central urban districts of 

Guangzhou. Therefore, we select the region of the central urban districts of Guangzhou (Liwan, Yuexiu, 

Tianhe, Haizhu, Baiyun, and Huangpu District) as a study site. In view of the serious risk of urban waterlogging 

events in this area, it is of certain representativeness and practical significance to investigate the essential 

conditioning factors of urban waterlogging. 
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Figure 2-1 The geographic location of Guangzhou Central Urban Districts. 

2.4 Data and methods 

2.4.1 Data sources 

In this study, we obtained the urban waterlogging records in the Central Urban Districts of Guangzhou from 

the flood and drought disaster prevention center of Guangzhou Water Authority (Table 2-1). However, the 

data from the local water authorities only record the address of the waterlogging events, and there is no 

accurate coordinate. Therefore, we use Google Earth to map the spatial location of these waterlogging events, 

such as roads intersection, entrance or exit of tunnels, tollgate of highways, and so on. If the location of the 

waterlogging event is in some part of the road (it is difficult to determine the specific spatial location), we 

refer to the method recommended by Yu et al. (2018) and Zhang et al. (2018) to regard the geometric center 

of the road as the spatial location where the urban waterlogging events occur. The Georeferencing tool in 

ArcGIS Pro is utilized to calibrate the spatial location of waterlogging events with an error of less than 50 

meters. Therefore data collection has enough accuracy for assessing a suitable analysis of this work. Finally, 

we collected for the Central Urban Districts of Guangzhou of 423 urban waterlogging points with a depth of 

more than 15 cm (Fig.2-2a). 

In addition, the digital elevation model (DEM), high-resolution UAV image, urban drainage network, and 
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building geospatial datasets were utilized as a basis data for exploring the impact of topography, land cover 

features, drainage facilities, and urban morphology factors on urban waterlogging (Table 2-1). 

Table 2-1 Overview of data used in this study. 

Data Format Time Source 

Guangzhou administrative divisions Esri shapefile 2015 

Land Resource Technology 

Center of Guangdong 

Province 

Digital Elevation Model Image 2012 

Guangzhou Planning and 

Natural Resources Bureau 

1:2000 UAV image TIFF 2012 

Urban drainage network Esri shapefile 2012 

Building geospatial datasets Esri shapefile 2012 

Urban waterlogging records Text 2009~2015 Guangzhou Water Authority 

 

2.4.2 Determination of analysis scale 

Understanding the landscape structure in spatial heterogeneity context requires multi-scale information (Wu, 

2004). The concept of scale effect comes from landscape ecology, that is, landscape element has different 

performances on different spatial and temporal scales. The scale effect is one of the important factors leading 

to the complication of landscape phenomena (Li et al., 2004; Guo et al., 2012). Single-scale analysis may only 

provide partial information on the landscape characteristics. Therefore, considering the scale effect can help 

us gain a comprehensive understanding of how environmental and anthropogenic conditioning factors affect 

urban waterlogging, which reveals the complex relationship between waterlogging and conditioning factors 

through appropriate spatial scales. 

In this study, we first calculated the average nearest Euclidean distance (626 m) of each waterlogging point 

in the study area. The minimum analysis scales should be larger than the mean nearest distance of urban 

waterlogging points (626 m). Thus, in this study, we selected the 1 km grid as the minimum analysis scale. 

When the analysis scale increased to 5 km, only 37 grid units had waterlogging points, which meant that only 

37 data sets could be used to explore the mechanisms of urban waterlogging. If the analysis scale is further 
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increased, the available data set might be insufficient. Based on these criteria, we set up a series of grid units 

of different sizes as the analysis scales (i.e. 1km, 2km, 3km, 4km, 5km), respectively (Fig.2-2 b-f ). These grid 

units were used to represent different analysis scales and overlay waterlogging points with different grid 

sizes. The frequency of waterlogging events is expressed by calculating the number of urban waterlogging 

points in different grid units. 

 

Figure 2-2 The spatial distribution of urban waterlogging events (a) and five different grid scales of 1 km, 2 km, 3 km, 4 

km, and 5 km (b~f) 
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2.4.3 The spatial distribution pattern of waterlogging events 

In this study, the kernel density and spatial auto-correlation analysis tools were utilized to explore the spatial 

pattern of urban waterlogging events. The spatial autocorrelation analysis tool measures spatial 

autocorrelation whether the elements are clustered, discrete, or random according to the element locations 

and values. Spatial autocorrelation analysis includes two subordinate tools: global spatial correlation and 

local spatial correlation (Anselin et al., 2006). In this study, the spatial agglomeration patterns of urban 

waterlogging events in different scales are identified by local spatial correlation (local Moran's I index), which 

is presented as follows: 

 I = 𝑛 ×
(𝑥𝑖 − �̅�)

∑ (𝑥𝑖 − �̅�)2𝑖
×∑𝑤𝑖𝑗(𝑥𝑖 − �̅�) (2.1) 

where wij is the spatial weight matrix; xi is the observation x; x ̅ is the average of all variables and sets the 

significance level as 0.01. In this study, the spatial agglomeration patterns of urban waterlogging events in 

different spatial scales were calculated from GeoDa software and shown in Figure 2-6. There were four main 

cluster types, the specific meanings were as follows: 

High-high agglomeration (hot spot): The number of urban waterlogging events in the grid unit and its 

adjacent grids are significantly higher than the average level, indicating that urban waterlogging events are 

concentrated in a place. 

High-low agglomeration (island): The number of waterlogging events in the cell grid is much higher than the 

average level, while the waterlogging events in its surrounding grids are lower than the average. 

Low-high agglomeration (atoll): The number of waterlogging events in the cell grid is significantly lower than 

the average level whereas waterlogging events in its adjacent grids are relatively high. 

Low-low agglomeration (clod spots): The number of urban waterlogging events and its surrounding grids are 

relatively lower than the average. 

Besides, "non-significance" means that the grid has no significant local spatial correlation association with 

surrounding surroundings grids. 

2.4.4 Environmental and anthropogenic factors 

In this section, we mainly introduce 27 influencing factors that were used as the independent variables. The 

influencing factors were categorized as four dimensions: urban topography, land cover characteristics 
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(composition and spatial configuration), urban drainage facilities, and urban morphology. 

2.4.4.1 Topographic variables 

The topographic variables of elevation, slope, relative elevation (RE), slope standard deviation (slope.std), 

curvature were calculated from ArcGIS Pro, while the SAGA GIS software was used to calculate the 

topographic roughness index (TRI), topographic surface texture index (TSI), and topographic wetness index 

(TWI) (Fig.2-3). 

In most cases, urban waterlogging events occur in the region with low elevation and relatively flat terrain. 

Since these areas are easy to obtain runoff from the surrounding area and the surface runoff is difficult to 

discharge in a short time. Therefore, in this study, we selected the elevation and slope indicators to represent 

the altitude and the flatness of each grid unit. The relative elevation (RE) represents the degree of elevation 

variation in each grid unit and is calculated as follows: 

 RE = 𝐸𝑚𝑎𝑥 − 𝐸𝑚𝑖𝑛 (2.2) 

where Emax represents the maximum elevation in the grid unit i and Emin represent the minimum elevation in 

the grid unit i. When the RE value is large, it means that the elevation in the grid fluctuates greatly. On the 

contrary, the elevation in the grid remains relatively flat. The standard deviation of slope was calculated to 

further measure the variation of slope in each grid. If the slope.std value is large, indicating that the terrain 

in the grid unit fluctuates greatly. Instead, it means that the slope in the grid is relatively gentle. Curvature is 

another important variable that represents the surface concavity and convexity, which is calculated by the 

second derivative of the eight adjacent grids (3*3 pixels). 

Topographic indexes such as TRI, TSI, and TWI also have a considerable impact on revealing the formation of 

urban waterlogging. Topographic Roughness Index (TRI) is one of the morphological factors closely related 

to flooding, which was developed by Riley, et al. (1999). It is used to quantify the elevation difference 

between adjacent grids (Werner et al., 2005). The calculation formula is as follows: 

 TRI = Y [∑(𝑥𝑖𝑗 − 𝑥00)
2
]
1/2

 (2.3) 

Terrain Surface Texture Index (TSI) is another topographic morphological measurement index, which uses 

the spatial frequencies of peaks and deep pits to represent the topographic surface texture (Iwahashi and 

Pike, 2007). The TSI value of each grid represents the frequency of pits and peaks within 10 adjacent grids. 
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 TSI = 𝑓𝑖𝑗/∑𝑁𝑖𝑗 (2.4) 

Topographic Wetness Index (TWI) is commonly used to quantify the effect of topography on hydrological 

processes and it is one of the most important factors for surface runoff generation. The TWI index is widely 

used to simulate hydrological flow paths and identify flood-prone areas (Lee et al., 2017; Tien Bui et al., 2016). 

The high value of TWI means the high potential of runoff generation, while the low value means the low 

potential of runoff generation. 

 TWI = ln(𝐴𝑠/ tan 𝛽) (2.5) 
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Figure 2-3 The topographic factors of elevation (a), slope (b), relative elevation (c), slope standard deviation (d), 

curvature (e), TRI (f), TSI (g), TWI (h) 

2.4.4.2 The land cover characteristics 

The land cover data is classified from 1:2000 aerial remote sensing images, which divided the land cover 

types into nine categories: (1) woodland (including forest, plantations, and street trees); (2) grassland 

(including natural grassland and artificial grassland); (3) garden (including orchard, tea plantation, and other 

plantation); (4) cultivated land (including vegetable field and paddy field); (5) residential area (including 

house and building); (6) road network (including street and pavement); (7) construction land (including 

square, parking lot, and factory); (8) bare land (including soil surface, rock surface, and unused land); and (9) 

water body (including lake, river, and reservoir) (Fig.2-4). In addition, in order to analyze the impact of 

different land cover types on urban waterlogging at a macro level, this study establishes another two land 

cover types: impervious surfaces and urban green spaces. The impervious surfaces are composed of the 

residential area, road network, and construction land; whereas the woodland, grassland, garden, and 

cultivated land are classified as urban green spaces. 

Landscape pattern metrics can highly condense the information of various landscape features (McGarigal 

and Marks, 1995). Numerous researchers had developed many landscape pattern metrics to measure the 

land cover spatial configuration (Gardner et al., 2001; Cushman et al., 2008). Considering the meaning of 

each landscape pattern metrics and referring to the existing research, six landscape pattern metrics were 

selected in this study, including: patch density (PD), largest patch index (LPI), landscape shape index (LSI), 

connectivity index (Cohesion), aggregation index (AI), and landscape richness index (PR). All metrics are 

specified in Table 2-2, and the calculation process is performed in Fragstats 4.2. 
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Figure 2-4 The Land-use / land cover map for the study area. 

Table 2-2 The selected landscape pattern metrics. 

Categories Landscape pattern metrics Meaning 

Degree of landscape 

fragmentation 

Patch Density  

(PD) 

The ratio of the number of patches to the total 

landscape area. A larger value means higher 

fragmentation. 

Largest Patch Index  

(LPI) 

The largest land cover patch within an analysis 

unit. A simple measure of the dominance of 

land cover features. 

Landscape Shape Index (LSI) 
The shape index is a measure of shape 

complexity. 

Connectivity Index 

(Cohesion) 
A measure of connectedness. 

Aggregation Index 

 (AI) 

Describe the degree of agglomeration or 

extension trend of different landscape types. 



59  

Landscape diversity Landscape Richness Index (PR) 

It reflects the uniformity and complexity of the 

distribution of different landscape types in an 

area. 

 

2.4.4.3 Urban drainage facilities and urban morphology 

We calculated the density of the rainwater drainage network to measure the impact of drainage facilities on 

urban waterlogging (Fig.2-5). Based on the drainage network distribution, the drainage density (DD) was 

defined as the length of the drainage network in per analysis unit, which can be calculated as follow: 

 DD =
𝐿𝑖
𝑆

 (2.6) 

where S is the total area of each unit (km2) and Li represents the total length of the drainage network (km) in 

each unit. 

Urban morphology refers to the spatial structure and physical characteristics of cities over time, which is the 

result of various activities of human beings (Chen, 2014). In this study, the urban morphology factor was 

introduced to verify whether it had a certain impact on urban waterlogging. We used building density (BD) 

to quantify the urban morphology. The high-resolution building geospatial datasets contain building 

footprints described by ground-level boundaries. Based on this, we could calculate the building area in each 

grid unit, and thus, the building density can be calculated as the total area of buildings per unit area (Eq.2.7). 

 BD =
𝑆𝐵
𝑆

 (2.7) 

where S represents the total area of each grid unit (km2) and SB represents the building's area in each grid 

unit (km2) 
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Figure 2-5 The drainage density (a) and building density(b). 

2.4.5 Statistical analyses 

In this study, we took the number of urban waterlogging points in each grid unit as dependent variables, 

while considering the topographic variables, the land cover characteristics (composition and spatial 

configuration), drainage density, and building density as independent variables (Table 2-3). The effects of 

various influencing factors on urban waterlogging events were quantitatively measured by establishing 

multiple analysis scales. The Pearson correlation was firstly used to reveal the binary correlation of each 

factor across all analysis scales. Through this method, the significant explanatory variables related to the 

waterlogging events (confidence interval ≥ 95%) were found out. Furthermore, the robustness of the 

relationship between the influencing factors and urban waterlogging was further verified through multiscale 

analysis. Secondly, under the combined effect of multiple factors, the stepwise regression model was used 

to avoid the multicollinearity problem and confirmed the significant explanatory variables (Chen et al., 2014). 

The bidirectional elimination stepwise regression can gain a comprehensive explanation rate of the variables 

entering the model, and thus exclude the insignificant variables. Finally, the significant variables that 

remained from the stepwise regression model will eventually be used in hierarchical partitioning analysis. 

The hierarchical partitioning method was utilized to clarify which factor had the dominant effect on 

waterlogging, which investigated the relative contributions of each factor for the entire hierarchy of models 

using all combinations of variables that were retained from the stepwise regression model. If n variables 

remained from the stepwise regression model, the established all possible combinations 2n regression 

models were employed in the hierarchical partitioning method (Table S2-1). The combination of the stepwise 

regression model and the hierarchical partitioning method is more suitable for multivariate data analysis 
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than traditional regression analysis methods, considering the heterogeneity of the urban environment. The 

hierarchical partitioning method was implemented in the “hier.part” package and “gtools” package of R 

statistical software (R Core Development Team, 2008; Nally, 2000). 

Table 2-3 The classification and description of the independent variables 

Categories of variables Independent variables 

Urban topography 
Topography indices 

Elevation, relative elevation, slope, slope.std, 

and curvature 

Hydrology indices TRI, TSI, and TWI 

The land covers composition 

Macro perspective Impervious surface, urban green spaces 

Micro perspective 

Woodland, grassland, garden, cultivated land, 

residential area, road network, construction 

land, bare land, and water body 

The land covers spatial 

configuration 

Degree of landscape 

fragmentation 

Patch density (PD), largest patch index (LPI), 

landscape shape index (LSI), connectivity index 

(Cohesion), and aggregation index (AI) 

Landscape diversity Landscape richness index (PR) 

Urban drainage facilities  Drainage density (DD) 

Urban morphology  Building density (BD) 

2.5 Result 

2.5.1 Spatial pattern of the urban waterlogging events 

The kernel density showed that the urban waterlogging events in Guangzhou had a significant spatial 

agglomeration effect (Figure 2-2). During the period from 2009 to 2015, the high-density area of urban 

waterlogging events (highlighted as yellow and red) mainly concentrated in the historic urban districts of 

Guangzhou, such as Liwan, Yuexiu, and Haizhu. In contrast, the low-density areas of urban waterlogging 

events were mainly concentrated in the northern and eastern mountainous areas, such as Baiyun District and 

Huangpu District.  

Due to the spatial pattern and landscape effect are also affected by the scale effect, so different results may 

appear at different analysis scales. The local Moran's I index was calculated for determining the multiscale 

spatial agglomeration pattern of urban waterlogging events (Table 2-4, Fig.2-6). Under all analysis scales, the 
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Z-score or P-value indicated a significant clustering effect, which meant the waterlogging hot spots were 

obvious. The hot spots (high-high concentration) of urban waterlogging events were mainly distributed in 

the historic urban districts of Guangzhou (Liwan, Yuexiu, and Haizhu district), while the low-high 

agglomeration grids concentrated around the waterlogging hot spots. The high-low agglomeration grids are 

sparsely distributed in the low concentration area of urban waterlogging events (Baiyun district and Huangpu 

district). Although the spatial agglomeration pattern of waterlogging events was similar, the local Moran's I 

results were slightly different at all analysis scales. The Moran’s I index obtained the highest value when the 

analysis scale is 3 km, which indicated the strongest clustering trend. 

Table 2-4 Moran’s I index of waterlogging events under different analysis scales. 

Analysis scales Moran’s I index Z-test value P-value 

1 km 0.5203 34.3346 0.0000 

2 km 0.5952 14.5526 0.0000 

3 km 0.7204 10.0144 0.0000 

4 km 0.6977 22.9492 0.0000 

5 km 0.6058 11.0215 0.0000 
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Figure 2-6 The kernel density of urban waterlogging events (a) and the spatial agglomeration map across different 

analysis scales (b~f). 

For all analysis scales, we noticed that the hot spots of waterlogging events were concentrated in the historic 

urban area of Guangzhou, presenting a robust spatial pattern (Fig.2-6 b~f). The waterlogging hot-spot mainly 

covers Xiguan (Zhongshan 7th Road, Hualin Street), Yuexiu, Tianhe Shipai Bridge, South China Normal 

University, and Jinan University (Fig.2-7). These areas are frequent occurrences of urban waterlogging events, 

affecting people's normal production and life. 

 

Figure 2-7 The typical urban waterlogging events in Guangzhou (from Guangzhou Daily). 

2.5.2 Correlations between influencing factors and urban waterlogging at multiple scales 

2.5.2.1 Effects of the topographic factors on urban waterlogging 

The correlation coefficient indicated that the elevation, RE, slope, slope.std, curvature, TRI, and TSI index 

were all negatively correlated with urban waterlogging events (p < 0.05). This indicated that the risk of urban 

waterlogging was more likely to be reduced where the elevation and slope within the grid unit fluctuate 

greatly. However, the TWI index had a significant positive correlation with urban waterlogging (p < 0.05). The 

high value of the TWI index meant the greater the potential for accumulated surface runoff, in which the 

urban waterlogging events were more likely to occur. 
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When the analysis scale increased from 1 km to 5 km, we found that the elevation factors and TWI presented 

a contradictory trend. The correlation directions (positive/negative) change with the analysis scale (1 km - 

5 km), which fully reflects the scale effect between topographic factors and urban waterlogging. 

Furthermore, we noticed that in a small analysis scale, the topography variables had a better explanatory 

power on urban waterlogging, while the research scale increased to 5 km, the correlation coefficient of 

topographic factors decreased gradually. This may be due to the expansion of the analysis scales, the grid 

unit covered other influence factors (such as land cover types and landscape pattern) and redundant 

information, which concealed the interpretability of topographic factors. 

Table 2-5 Pearson correlation coefficients between waterlogging and topographic factors across five analysis scales. 

(blue color represents a negative correlation, red color represents a positive correlation, and the deeper the color, the 

greater the correlation coefficient. “*” and “**” represent correlation coefficient significance at the 0.05 level and 0.01 

level, respectively.) 

Topography 

factors 

Analysis scales 

1 km 2 km 3 km 4 km 5 km 

Elevation -0.309* -0.182* -0.166 -0.097 0.035 

RE -0.587** -0.503** -0.213* -0.193* -0.184* 

Slope -0.466** -0.382** -0.199* -0.297** -0.173 

Slope.std -0.628** -0.321** -0.356** -0.209* -0.153 

Curvature -0.453** -0.450** -0.202* -0.225* -0.206* 

TRI -0.676** -0.574** -0.216* -0.363** -0.184* 

TSI -0.429** -0.349** -0.308** -0.248* -0.267* 

TWI 0.435** 0.402** 0.253* 0.273** -0.187* 

 

2.5.2.2 Effects of the land cover composition on urban waterlogging 

As can be seen from Table 2-6, the percent cover of urban green spaces (garden, grassland, and woodland) 

experienced a significant negative correlation with urban waterlogging (p<0.01), while the impervious 

surfaces (residential area and construction land) presented a significant positive correlation (p<0.01). Results 

indicated that the larger proportion of impervious surfaces within the grid unit, the more serious is the urban 

waterlogging. On the contrary, with the increase in the proportion of green spaces, it can effectively reduce 

the occurrence of urban waterlogging. Moreover, compared with the correlation coefficients of each land 

cover type, the absolute values of the correlation coefficients of the residential area, garden, grassland, and 

construction land were larger than other variables under all analysis scales. This means that it was more 
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effective to reduce the risk of urban waterlogging by properly regulating residential areas or increasing the 

area of woodland and grassland. 

We noted that the correlation directions of construction land and bare land change with the analysis scale. 

The construction land in a 1 km analysis scale showed a slightly negative correlation with urban waterlogging, 

while a significant positive correlation was found when the analysis scale was over 1 km. Similarly, the bare 

land was negatively correlated with urban waterlogging, while presenting a positive correlation at 2 km 

analysis scale. One of the possible reasons might be the impact of urban topography on urban waterlogging 

was more obvious in a smaller analysis scale. Furthermore, it was worth noting the absolute values of the 

correlation coefficients of land cover composition variables in small grid units (1 km up to 2 km) were 

generally smaller than the large analysis scale (3 km to 5 km). This indicated that there was also a significant 

scale effect on the relationship between land cover composition and urban waterlogging. The slightly 

declining trend of correlation coefficients in the 5 km analysis scale may be due to the large analysis scale 

covering too much redundant information. 

Table 2-6 Pearson correlation coefficients between waterlogging and land cover composition across five analysis scales. 

(blue color represents a negative correlation, red color represents a positive correlation, and the deeper the color, the 

greater the correlation coefficient. “*” and “**” represent correlation coefficient significance at the 0.05 level and 0.01 

level, respectively.) 

Percent cover 
Analysis scales 

1 km 2 km 3 km 4 km 5 km 

Impervious surfaces 0.286* 0.322* 0.647** 0.422** 0.366** 

Green spaces -0.282* -0.452** -0.544** -0.385** -0.424** 

Woodland -0.180* -0.377** -0.521** -0.467** -0.488** 

Grassland -0.381** -0.520** -0.566** -0.498** -0.463** 

Garden -0.133* -0.463** -0.463** -0.499** -0.378** 

Cultivate land -0.057 -0.023 -0.236* -0.248* -0.202* 

Residential area 0.257* 0.563** 0.663** 0.624** 0.617** 

Road network 0.118 0.448** 0.439** 0.498** 0.524** 

Construction land -0.085 0.506** 0.562** 0.511** 0.589** 

Bare land -0.341* 0.123* -0.093 -0.216* -0.166* 

Water body -0.093 -0.11 -0.025 -0.11 -0.108 

 

2.5.2.3 Effects of the land cover spatial configuration on urban waterlogging 

In most instances, the correlation coefficient of spatial configuration variables was smaller than the land 
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cover composition variables (Table S2-2). However, the correlation coefficients of the LPI of residential area, 

Cohesion of urban green spaces, PD of woodland, and AI of impervious surface were much higher than other 

configuration variables. This indicated that these configuration variables also had a certain impact on urban 

waterlogging. The LPI, Cohesion, and AI indices of green areas such as grassland, garden, and woodland, were 

negatively correlated with urban waterlogging (p<0.05), while the PD of green spaces presented a positive 

correlation relationship (p<0.05). As a comparison with urban green spaces, the LPI, Cohesion, AI and PD 

indices of impervious surface (residential area and construction land) showed an opposite trend. This 

indicated that the higher the dominance and aggregation of urban green spaces, the lower the probability of 

urban waterlogging; whereas the concentrated and aggregated impervious surface will increase the 

probability of urban waterlogging events. Furthermore, the shape of the urban green spaces and impervious 

surfaces also had a certain impact on urban waterlogging. The landscape richness index (PR) was significantly 

negatively correlated with the density of the waterlogging (p<0.05). This meant that the increase of landscape 

abundance or land cover types can effectively reduce the risk of urban waterlogging. 

Under different analysis scales, we noticed that the correlation coefficients of configuration variables also 

have the best performance at the large analysis unit (over 2 km). This suggested that the land cover spatial 

configuration also experienced an obvious scale effect. However, the relationship between land cover 

configuration variables and urban waterlogging fluctuated greatly than land cover composition. Compared 

with topography and land cover composition, the land cover spatial configuration indices affected by the 

analysis scale were more obvious, which indicated that the land cover spatial pattern was more sensitive to 

scale effects. 

2.5.2.4 Effects of the drainage facilities and urban morphology on urban waterlogging 

The impact of drainage density (DD) on waterlogging events was much lower than other conditioning factors 

(Table 2-7). This means that in the face of a heavy rainstorm, the density of drainage networks may not 

effectively mitigate the occurrence of urban waterlogging events. Additionally, in some analysis scales (2 km 

and 5 km), the DD was positively correlated with waterlogging events. Theoretically, increasing the drainage 

density will undoubtedly accelerate the rainwater drainage, thus reducing the risk of urban waterlogging. 

However, the positive correlation of drainage density indicated that the existing urban drainage network may 

no longer function in the face of heavy rainfall events. The building density (BD) also had a certain impact on 

waterlogging. We found that higher BD significantly leads to higher levels of waterlogging risk. This may be 
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related to the frequent urban waterlogging events in historical urban areas (Liwan and Haizhu District) where 

the building density is relatively high. In addition, the higher BD means a higher proportion of impervious 

surfaces, and thus the risk of urban waterlogging also increases. 

Table 2-7 Pearson correlation coefficients between waterlogging and socioeconomic factors across five analysis scales. 

(blue color represents a negative correlation, red color represents a positive correlation, and the deeper the color, the 

greater the correlation coefficient. “*” and “**” represent correlation coefficient significance at the 0.05 level and 0.01 

level, respectively.) 

Analysis scales Drainage density Building density 

1 km -0.234* 0.168 

2 km 0.062 0.264* 

3 km -0.190* 0.302** 

4 km -0.231* 0.411** 

5 km 0.217 0.388** 

 

2.5.3 Significant factors affecting urban waterlogging events 

The influencing factors that were retained from the stepwise regression model were considered as the 

significant factors, which would be entered into the hierarchical partitioning analysis (Table 2-8). It was noted 

that the model yielded the highest explanatory power (77.2%) when the analysis scale is 3 km, indicating that 

the mechanism of urban waterlogging events could be well investigated. However, when the analysis scale 

is 1 km, the determination coefficient is relatively low. This may suggest that, under a small analysis scale, 

more factors should be considered to improve the model explanatory power. 

Notably, we also found that the significant variables were different in each analysis scale. Generally, from 1 

km to 5 km, the number of variables that remain from the stepwise regression model continues to increase, 

indicating the mechanisms became more complex. In 1 km unit, there were two topographic factors 

(slope.std and relative elevation) that remained from the stepwise regression model, while only one land 

cover characteristics (percent cover of impervious surface) was retained. This meant that the impact of 

topography factors on urban waterlogging events was greater than other influencing factors at a small 

analysis scale. When the analysis scale expanded to 2 km, the topography factors (RE, TRI) and the 

composition of land cover (percent cover of residential area and PD of woodland) survive as significant 

predictors simultaneously. In 3 km analysis scale, the percent cover of green spaces, the largest patch index 

of the residential area, the aggregation index of impervious surface, and slope.std finally remained from the 
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model. When the analysis scale expanded to 4 km, the land surface characteristics (composition and spatial 

configuration) were confirmed as the significant metrics, while none of the topographic factors were included. 

In 5 km scale, the retention variables were the cohesion of grassland, aggregation index of impervious surface, 

percent cover of grassland, and building density. In general, the topographic factors (Slope.std, RE) were the 

significant factors affecting urban waterlogging when the analysis scales were small. However, when the 

analysis scale expanded to 3 km, the land cover composition (green space, residential area) exceeded the 

topographic factors and became important factors in influencing urban waterlogging. 

Table 2-8 Stepwise regression results for influencing factors affecting waterlogging magnitude. 

Analysis 

Scales 
Enter variables Adj R2 F Sig 

1 km 
Slope.std, relative elevation (RE) and percent cover of 

impervious surface 
0.319 21.273 0.000 

2 km 
Relative elevation, TRI, the percent cover of residential 

area, and PD of woodland 
0.560 19.423 0.000 

3 km 
Slope.std, percent cover of green spaces, LPI of the 

residential area, and AI of impervious surface 
0.772 14.481 0.000 

4 km 
Percent of residential area, LPI of woodland, PD of 

construction land, and cohesion of urban green spaces 
0.680 16.853 0.000 

5 km 
Percent cover of grassland, AI of impervious surface, 

cohesion of grassland, and building density 
0.609 24.139 0.000 

 

2.5.4 Relative contributions of significant factors affecting urban waterlogging 

The relative contributions of significant factors on urban waterlogging were revealed through hierarchical 

partitioning analysis (Fig.2-8). The results of hierarchical partitioning analysis indicated that the slope.std had 

the largest independent contribution rate (36.85%) to waterlogging in 1 km analysis scale, whereas the 

percent of impervious surface and relative elevation contributed independently contributed 32.13% and 

31.02%, respectively. When the analysis scale expanded to 2 km, the percent of the residential area became 

the most important driving factor for urban waterlogging, independently contributing 41.03% of 

waterlogging magnitude variations, whereas the relative elevation, patch density of woodland, and TRI index 
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contributed 27.72%, 19.65%, and 11.60%, respectively. In 3 km analysis scale, the percent cover of urban 

green spaces and the largest patch index of the residential area both had the dominant independent 

contributions to waterlogging variations (44.74% and 35.63%, respectively), while the aggregation index of 

impervious surface contributed 11.22% with 8.41% for slope.std contribution. When the analysis scale was 4 

km, the percent cover of the residential area and largest patch index of woodland had the largest 

independent contribution rate (40.85% and 31.67%) to waterlogging magnitude, whereas the cohesion of 

urban green spaces and patch density of construction land contribute 20.30% and 7.18%, respectively. In 5 

km scale, the percent cover of grassland was the most important driving factor, independently contributing 

34.24% of waterlogging variations, while the aggregation index of impervious surface, cohesion of grassland, 

and building density contributed 29.28%, 19.36%, and 17.12%, respectively. In general, under all analysis 

scale, the percent cover of urban green spaces (44.74% in 3 km scale), percent cover of residential area (41.03% 

in 2 km and 40.85% in 4 km), and slope.std (36.85% in 1 km scale), had the largest contributions. Therefore, 

we could infer that urban waterlogging events were mainly affected by these three factors. 

Under different analysis scales, the dominant factors varied across different analysis scales. In 1 km analysis 

scale, the slope.std was the dominant driving factor for waterlogging magnitude. However, when the analysis 

units were up to 2 km, the relative contributions of land surface characteristics (composition and spatial 

configuration) were much greater than others and became the dominant influencing factor of urban 

waterlogging. We could conclude that the topography factor driving urban waterlogging events was greater 

than other significant factors at a small analysis scale; whereas the land cover composition accounted for the 

dominant contribution rate at the macro-scales (2-5 km). 
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Figure 2-8 The relative contributions of significant factors affecting urban waterlogging across five analysis scales. 

2.6 Discussion 

2.6.1 Urban waterlogging agglomeration effect 

According to the spatial pattern of urban waterlogging, the waterlogging events are mainly clustered in the 

historic urban districts of Guangzhou, indicating a significant spatial aggregation effect (Fig.2-6). 

Consequently, this means that these areas are prone to urban waterlogging events (Fig.2-7). This result is 

particularly important for urban waterlogging mitigation and risk management. The government and urban 

planners can gain a comprehensive understanding of the spatial distribution pattern of urban waterlogging 

events. Thereby, the local authorities can plan or build more drainage facilities for the waterlogging hot spot 

areas, as well as rational management of existing urban green spaces and impervious surfaces. Furthermore, 
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the urban waterlogging risk warning can give more priority to the waterlogging hot spot areas when facing 

heavy rainstorms. With the application of big data and open data (population distribution, urban education, 

and medical facilities), it is helpful to identify the areas with a high potential risk of urban waterlogging events 

(Lin et al., 2018). Simultaneously, the population density and urban facilities around urban waterlogging 

points can reveal the potential impact of urban waterlogging events, which is conducive to early warning and 

emergency response. 

2.6.2 Implications for urban waterlogging mitigation 

A record of the relative contributions of each influencing factor is firstly presented and how they affect the 

urban waterlogging at multiple scales is described. Our results demonstrated that land cover composition 

plays a more important role in determining urban waterlogging than other influencing factors (Tang et al., 

2018; Tehrany et al., 2019; Yu et al., 2018). Increasing impervious surfaces would significantly increase the 

risk of urban waterlogging, and thus aggravate the urban waterlogging magnitude; whereas the increase of 

urban green spaces could alleviate urban waterlogging dramatically. The percent cover of residential area 

(41.03%) and impervious surfaces (32.13%) have a large relative contribution to urban waterlogging under 

all analysis scales. This finding is also consistent with Zhang et al. (2018) and Quan et al. (2011). As a 

representative of the impervious surface, the residential area has a great adverse effect on the urban 

hydrological process, which exacerbates the occurrence of urban waterlogging events. In addition, the 

increase in impervious surface coverage is also associated with cutting off the hydrological relationship 

between surface water and groundwater, causing the groundwater level to drop continuously, and thus, 

threatening urban geological security. In contrast, the percent cover of urban green spaces (44.74%) and 

grassland (34.24%) also have a large relative contribution, which indicates that these two land cover types 

can effectively mitigate the urban waterlogging phenomena. This may be due to the fact that urban green 

spaces are permeable surfaces, which can play a positive role in decreasing surface runoff and regulating 

rainwater storage, so reducing the risk of waterlogging. These results suggest that in order to alleviate the 

occurrence of urban waterlogging events to the greatest extent, we should focus on controlling the expansion 

of the residential areas, and increase the urban green spaces as much as possible, among which the grassland 

and woodland are the main land cover types. 

In the past, urban planning and construction often pursued flat terrain, which is convenient for urban 

development and building construction. However, the relatively flat terrain (difficult to drainage surface 
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runoff) will bring greater pressure on drainage systems and eventually increase the risk of urban waterlogging. 

The result of this study suggests that we should avoid pursuing the flatness of urban surface elevation, which 

provides important insights into urban planning and waterlogging management. Our results highlighted the 

necessity of roadbed subsidence or subsided green space. Specifically, the elevation of roadbed subsidence 

and subsided green space are 5-30 cm lower than the surrounding surface, thereby increasing the slope.std 

and RE. Combined with the drainage network or permeable surfaces, the elevation difference of roadbed 

and green areas can effectively discharge the cumulate surface runoff, which is beneficial to reduce the 

occurrence of urban waterlogging. These results provide a theoretical and practical reference for the 

government and urban planners for urban waterlogging prevention and management. 

It is interesting to find that the land cover configuration also has a certain impact on the severity of urban 

waterlogging. Our study explores the relative contributions of these configuration factors, which expand 

previous studies (Yu et al., 2018; Zhang et al., 2018; Wang et al., 2017). For a fixed relative amount of land 

cover composition, the occurrence of urban waterlogging events can be significantly increased or decreased 

by different spatial arrangements. For example, the aggregated distribution pattern of the impervious surface 

or the fragmentation of urban green spaces would further increase the occurrence of urban waterlogging 

events, which suggested that we need to give more priority to controlling the dominance and aggregation of 

each land-use type. While enlarging the area of urban green spaces, the shape complexity of urban green 

spaces should also be considered. The urban green spaces can be designed as a rectangle, strip with complex 

boundaries, forming green corridors within the city center, so that the mitigation effect of the green spaces 

can cover the whole city, thereby reducing the risk of waterlogging events. Furthermore, an increase in 

cohesion and AI index of green areas can also decrease the magnitude of waterlogging, which suggests that 

the cluster distributed pattern with high connectivity further reduce the risk of urban waterlogging. This 

result also reveals the high spatial heterogeneity characteristic of urban landscapes. Forming the green 

corridors within the city can reduce the occurrence of waterlogging. However, on the other hand, the 

aggregated distribution of green areas can effectively alleviate the degree of urban waterlogging.  

2.6.3 Scale effect 

In this study, we notice that the correlation directions of Pearson correlation, the determination coefficients 

of stepwise regression models, and the relative contributions of the significant factors are different across all 

analysis scales, thus presenting a strong scale effect. This scale effect phenomenon has led to some 
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contradictory results. Previous studies based on one single analysis scale may just only provide partial 

information about the overall landscape features. Furthermore, the analysis scale used by different scholars 

is different, which will interfere with the explanatory power of various factors and even change the 

correlation directions. Our study implies that this inconsistency is probably due to the differences in analysis 

scales. For example, we note that the elevation, TWI, the land cover composition (bare land and construction 

land), and drainage density are experienced contrary correlation directions. This inconsistency undoubtedly 

hinders the progress of urban waterlogging research. The result of hierarchical partitioning analysis also 

indicates that in a small analysis scale (grid unit 1 km) the topographic factors are confirmed as the significant 

variables and the relative contributions are larger than others. This result highlight that, under a small 

analysis scale, the influence of topography factors on waterlogging magnitude is greater than other factors. 

The reason for this may be that at small analysis scales, urban topography has a greater influence on the 

extent of urban waterlogging. However, with the increasing of the analysis scales, the explanatory power of 

topography factors gradually declines and even the elevation factors present a contrary relationship, which 

further confirms why previous studies have produced contradictory results. The dominant drivers vary across 

different analysis scales, presenting the scale effect of the influencing factors. We finally demonstrate one of 

the conclusions that the land cover composition contributes the most to urban waterlogging through multi-

scale analysis. This result strongly illustrates the importance of the proper analysis scale. Lastly, we also 

demonstrate that the appropriate statistical scale for urban waterlogging studies only worked for specific 

influencing factors. Therefore, when we select the appropriate analysis scales, we should according to the 

characteristics of different study areas. For example, for the low-lying coastal cities with gentle terrain (the 

differences between the slope and relative elevation are relatively small), the influence of the topography 

factors can be ignored properly. Therefore, the large grid unit (3 km) can be selected for the appropriate 

analysis scale to explore the mechanism of urban waterlogging. However, for the mountain area with large 

terrain fluctuations (the differences between the slope and relative elevation are relatively large), we should 

select a small analysis scale (1 km). 

2.6.4 Limitations 

This study has its limitations. Firstly, only the central urban district of Guangzhou was selected as a case study 

to explore the relative contribution of environmental and anthropogenic factors on urban waterlogging 

events. To reveal the influencing factors in one single city may be insufficient. Furthermore, due to the 
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limitations and accessibility of urban waterlogging records, we collected urban waterlogging events from 

2009 to 2015 and the data did not present the specific year of each waterlogging event (just recorded in the 

period 2009-2015). We could not evaluate the temporal change of the waterlogging events. Also, due to this 

reason, it is difficult to distinguish the rainfall events corresponding to each waterlogging point. Thus, we 

assume the rainfall intensity within the central urban districts of Guangzhou is constant. However, this may 

bring some uncertainty to the results. Consequently, in future research, it is necessary to consider the effect 

of precipitation in order to reveal the mechanism of urban waterlogging more comprehensively.  

2.7 Conclusion 

Revealing the dominant drivers of urban waterlogging is of great significance to the optimization of urban 

waterlogging prevention and management. Taking the waterlogging events in the central urban district of 

Guangzhou (P.R. China) from 2009 to 2015 as an example, we conducted a novel method that combines the 

stepwise regression model and hierarchical partitioning analysis to investigate the relative contributions of 

influencing factors to urban waterlogging through multi-scale study. This study gains three conclusions: (1) 

the urban waterlogging hot spots in Guangzhou are mainly concentrated in the historical urban areas of 

Guangzhou (Liwan, Yuexiu, Haizhu district), presenting a single-core aggregation pattern. This finding 

provides important insights to local authorities to identify the high-risk areas of urban waterlogging. (2) 

Urban waterlogging events are mainly affected by both land cover characteristics and urban topography. 

Among all conditioning factors, the percent cover of urban green spaces (44.74%), percent cover of 

residential area (41.03%), and slope.std (36.85%), have a dominant influence on the urban waterlogging 

magnitude. Furthermore, this result also suggests that holding the proportion of land cover features constant, 

the urban micro-topography also affects waterlogging magnitude effectively. Furthermore, the effect of land 

cover spatial configuration on waterlogging cannot be ignored. This result provides additional insights that 

urban waterlogging can be mitigated by balancing the relative composition of land cover features as well as 

optimizing their spatial configuration. An even distribution of impervious surfaces or forming green corridors 

can improve the state of urban waterlogging events. (3) Across different scales of analysis, the correlation 

directions of Pearson correlation, the determination coefficients (R2) of stepwise regression models, the 

relative contributions of the significant factors vary with the change of analysis scale, underlining a strong 

scale effect. Since the dominant drivers vary across different analysis scales, the appropriate statistical scale 

for urban waterlogging studies only worked for specific influencing factors, and thus the best analysis scale 
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for urban waterlogging study should be determined by the characteristics of study areas. The results of this 

study reveal the dominant influencing factors as well as examine the scale effect, which provides important 

enlightenment for urban waterlogging prevention and management. 
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Supplementary materials include the following: 

Table S2-1 All possible models for hierarchical partitioning at 1 km scale. 

Table S2-2 Pearson correlation coefficients between waterlogging magnitude and land cover configuration 

across five analysis scales. 

Table S2-1 All possible models for hierarchical partitioning at 1 km scale. 

Categories Models Enter variables R2 

(i) (1) Intercept 0.000 

(ii) 

(2) Slope.std 0.410 

(3) RE 0.502 

(4) percent cover of impervious surface 0.353 

(5) Slope.std, RE 0.653 

(6) 
Slope.std, percent cover of impervious 

surface 
0.507 

(7) RE, percent cover of impervious surface 0.565 

(iii) (8) 
Slope.std, RE, percent cover of impervious 

surface 
0.685 
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Table S2-2 Pearson correlation coefficients between waterlogging magnitude and land cover configuration across five analysis scales (blue color represents a negative correlation, 

red color represents a positive correlation, and the deeper the color, the greater the correlation coefficient. “*” and “**” represent correlation coefficient significance at the 0.05 level 

and 0.01 level, respectively). 

Analysis Configuration Impervious 

Surface 

Urban 
Woodland Grassland Garden Cultivate 

Residence 

area 

Road 

network 

Construction 

land 
Bare land 

Water 

body Scales indicators Greenspace 

1km 

PD -0.276* 0.145* 0.190* 0.262* 0.115 0.038 -0.109 -0.098 -0.138 0.023 0.185* 

LPI 0.225* -0.272* -0.102 -0.258* -0.145* -0.068 0.153* 0.104 0.185* -0.007 -0.057 

LSI 0.171* -0.196* -0.087 -0.063 -0.027 -0.016 0.177* 0.019 0.190* -0.201* -0.110 

Cohesion 0.210* -0.259* -0.162* -0.271* -0.139* -0.141* 0.134* 0.101 0.170 -0.127 -0.052 

AI 0.354** -0.375** -0.345** -0.215* -0.134* -0.174* 0.347* 0.361** 0.271* -0.124 -0.134 

2km 

PD -0.235* 0.306* 0.457** 0.294* 0.208* 0.208* -0.214* -0.272* -0.392** 0.132 0.243* 

LPI 0.403** -0.394** -0.167* -0.393** -0.263* -0.259* 0.253* 0.210* 0.291* -0.259* -0.043 

LSI 0.08 -0.278* -0.390** -0.304* -0.092 -0.105 0.129 0.281* 0.303* -0.184 -0.267 

Cohesion 0.349** -0.309* -0.143* -0.253* -0.227* -0.182* 0.134* 0.277* 0.206* -0.157 -0.142 

AI 0.313* -0.351** -0.382** -0.303* -0.394** -0.357** 0.276* 0.225* 0.364** -0.231* -0.205* 

3km 

PD -0.282** 0.522** 0.558** 0.318* 0.352** 0.241* -0.395** -0.339* -0.510** 0.251* 0.262* 

LPI 0.435** -0.473** -0.417** -0.437** -0.382** -0.288* 0.591** 0.395** 0.529** -0.281* -0.156* 

LSI 0.122* -0.293** -0.264* -0.247* -0.217* -0.243* 0.283* 0.307** 0.237* -0.132 -0.166* 

Cohesion 0.485** -0.521** -0.356** -0.455** -0.221* -0.267* 0.303* 0.304* 0.287* -0.209* -0.226* 

AI 0.551** -0.412** -0.349** -0.357** -0.459** -0.363** 0.351** 0.359** 0.478** -0.135 -0.215* 

4km 

PD -0.207* 0.485** 0.541** 0.272* 0.334* 0.223* -0.231* -0.258* -0.479** 0.214* 0.219* 

LPI 0.546** -0.456** -0.415** -0.299* -0.427** -0.255* 0.214* 0.385** 0.393** -0.195 -0.122 

LSI 0.222* -0.201* -0.149* -0.138* -0.284* -0.138* 0.246* 0.241* 0.241* -0.044 -0.281* 

Cohesion 0.531** -0.486** -0.302* -0.368** -0.244* -0.217* 0.230* 0.336* 0.268* -0.108 -0.282* 

AI 0.336** -0.326* -0.267* -0.387** -0.432** -0.328* 0.315* 0.247* 0.457** -0.142 -0.271* 

5km 

PD -0.213* 0.317* 0.423** 0.262* 0.139* 0.217* -0.287* -0.354** -0.305* 0.170* 0.130 

LPI 0.480** -0.374** -0.347** -0.258* -0.287* -0.261* 0.225* 0.350** 0.255* -0.015 -0.196* 

LSI 0.139* -0.192* -0.179* -0.099 -0.223* -0.152* 0.316* 0.316* 0.108 -0.125 -0.279* 

Cohesion 0.413** -0.355** -0.277* -0.496** -0.233* -0.275* 0.217* 0.218* 0.253* -0.152* -0.258* 

AI 0.479** -0.148 -0.296* -0.310* -0.153* -0.136* 0.272* 0.255* 0.426** -0.114 -0.256* 
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3.1 Abstract 

Under the combined effects of climate change and urbanization, urban waterlogging seriously threatens 

urban sustainable development and human life. It is widely accepted that various landscape elements 

contribute to the magnitude of urban waterlogging. However, less attention, is the spatial heterogeneity 

effects of urban landscape elements on urban waterlogging. Considerable efforts investigate the universal 

mechanism of urban waterlogging on a global statistical scale by regarding the whole study area as spatial 

homogeneous while neglecting the spatial heterogeneity issue and the local specific mechanism. Less effort 

focus on the spatial heterogeneity driving forces at the local scale, which hinders the implementation of 

target-specific urban waterlogging mitigation strategies. To shed some light on this topic, an innovative 

method that integrated the best subsect regression model, cubist regression tree, and geographical detector 

model is presented to spatially explicit the heterogeneous forces driving waterlogging variation and identify 

the waterlogging dominant factors with different local conditions. The results show that the best subset 

regression proposed in this study can more objectively select the most representative and meaningful driving 

factors according to local characteristics since urban waterlogging is largely disturbed by local conditions. By 

comparing with two other commonly used regression methods (global regression model, spatial lag model), 

the combination of cubist regression tree and geographical detector model can fully quantify the spatial non-

stationarity effect of representative driving factors on waterlogging and spatially explicit the local driving 

forces. The waterlogging’s dominant driving factors and their contribution vary with the local site conditions. 

The development of site-specific waterlogging mitigation strategies is facilitated by dividing the watershed 

units as strong dominance and weak dominance watershed units. This denotes that urban waterlogging 

variation is mainly determined by dominant factors in a strong dominance watershed (the independent 

contribution of dominant factors has an overwhelming advantage), while waterlogging in a weak dominance 

watershed is jointly affected by multiple factors (the independent contribution of each factor is similar). The 

spatial heterogeneous driving forces facilitate the implementation of more targeted and effective mitigation 

strategies, rather than a “one-size-fits-all” policy. This study extends our scientific understanding of the site-

specific mechanism of waterlogging, providing useful information for formulating urban waterlogging 

mitigation strategies with different local conditions. 

 

Keywords: Urban waterlogging; spatially heterogeneous driving forces; spatial non-stationarity relationship; 

cubist regression tree; geographical detector model 
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3.2 Introduction 

With the acceleration of urbanization, the negative effects of population and industrial agglomeration have 

damaged the urban ecosystem (Wang et al., 2011; Frank et al., 2017; Cepeliauskaite et al., 2020). Urban 

waterlogging describes the phenomenon that heavy or continuous precipitation far exceeds the retention 

and drainage capacity of a region, resulting in stagnant water disasters in underground space or low-lying 

areas (Jiang et al., 2018; Chen et al., 2015; Yu et al., 2018). At present, many cities in China have frequently 

suffered from waterlogging problems (Ning et al., 2017; Zhang et al., 2020; Huang et al., 2018; Li et al., 2017). 

Specifically, the increased impervious surface caused by urbanization cuts off the infiltration path of rainwater, 

thereby disrupting the water balance and increasing the peak flow. This extreme event has brought a series 

of negative consequences, causing serious casualties and huge socio-economic losses. For example, on July 

20, 2021, Zhengzhou city, China suffered from a severe urban waterlogging disaster (cumulative average 

precipitation was 449 mm, maximum one-hour precipitation reached 201.9 mm), resulting in 292 deaths and 

47 missing persons. Aware of these impacts, many local authorities propose waterlogging mitigation 

strategies to design more sustainable living environments in urban areas. 

In fact, the implementation of these waterlogging mitigation strategies depends to a large extent on the 

understanding of the mechanism of urban waterlogging events. Considerable research has shown that the 

causes of urban waterlogging can be summarized into four aspects. (1) Meteorological conditions: 

macroscopically, global climate change has led to an increase in extreme precipitation events, creating 

background conditions for waterlogging (Tan et al., 2021; Berghuijs et al., 2017; Du et al., 2019; Blöschl et al., 

2019). On a regional scale, the change of urban microclimates, such as the urban rain islands effect, further 

increases the probability and intensity of precipitation in urban areas (Xu et al., 2019; Kim et al., 2017; Liu et 

al., 2020; Miller and Hutchins, 2017). The effect of meteorological conditions on the risk of waterlogging has 

been extensively documented. For example, Zhang et al. (2017) assessed the impact of climate change on the 

probability of inundation in coastal cities based on eight climate models and four CO2 emission scenarios. 

Giulia et al. (2017) analyzed flood dynamics in northeastern Italy between 1900 and 2010, which revealed 

that climate change is a significant factor that increases the frequency of flood hazards. Therefore, the 

changes in the spatial and temporal distribution of precipitation will ultimately affect the entire urban water 

cycle process, leading to an increased risk of urban waterlogging. (2) Topographic conditions: first of all, the 

topographic pattern of high in the west and low in the east determines the flow direction of major rivers in 
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China. Continuous precipitation in the upper and middle reaches is likely to bring extreme flood control 

pressure to the downstream cities (usually highly urbanized national cities). Secondly, the effect of urban 

micro-topography (urban lowland, surface roughness) on urban waterlogging cannot be underestimated. A 

well-documented consequence of urban lowlands (tunnels, culverts, underground parking lots) within cities 

are conducive to the accumulation of surface runoff and are often the most severe sites of urban waterlogging 

(Zhang et al., 2020; Zhang et al., 2021b; Tang et al., 2018; Yalcin et al., 2020). The results of Tehrany et al. 

(2019) indicate that compared with relatively flat areas, high-altitude areas are less likely to experience 

waterlogging events. Similarly, Liu et al. (2021) fully confirmed the impact of surface elevation and slope on 

urban waterlogging by using the geographical detect model. This finding embodies the plains with a gentle 

slope condition are vulnerable to urban waterlogging. However, the study conduct in Amsterdam, 

Netherlands (Gaitan et al., 2015), shows a contradictory result, which may be caused by the spatial 

heterogeneity within the city. (3) Drainage facilities: in the process of rapid urbanization, a large number of 

rivers within cities have been artificially landfilled, altering the urban drainage pattern. This leads to 

continuous degradation of the river network and its drainage function, thereby increasing the risk of urban 

waterlogging. Therefore, local authorities built underground drainage pipes or pumping stations to accelerate 

the discharge rate of surface runoff. Nevertheless, some studies have pointed out that the drainage facilities 

in developing countries are characterized by low design standards and poor maintenance, which is difficult 

to drain surface runoff effectively (Lin et al., 2021; Lin et al., 2018; Wu et al., 2020; Zhang et al., 2020; Quan 

et al., 2014). (4) Land cover characteristics: urbanization and human activities have led to the continuous 

encroachment of ecological lands such as woodland, wetland, and farmland. This not only weakens the 

capacity to regulate surface runoff, but also occupies the spaces for flood storage, which undoubtedly 

increases the frequency and intensity of urban waterlogging. A proliferation of studies have shown that 

among various causes of waterlogging, the impact of land cover characteristics is particularly significant, 

which has gradually become the major reason for the increasing severity of urban waterlogging (Quan et al., 

2010; Su et al., 2018; Wu et al., 2012; Yu et al., 2021). Zhang et al. (2020) confirmed that the land cover 

characteristics are the dominant factors for waterlogging at different analysis scales. Yu et al. (2018) analyzed 

the mechanism of the spatial and temporal pattern of impervious surfaces on urban waterlogging in 

Guangzhou. Tran et al. (2020) utilized the OLS regression model to find that the impervious surface and NDVI 

played a decisive role in the risk of urban waterlogging. In summary, these findings embody the mentioned 

factors usually coexist and together contribute to the occurrence of waterlogging events. 
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It is widely accepted that urban waterlogging is the result of both natural conditions and human activities. 

However, there are various urban landscape elements with different attributes in cities, especially in highly 

urbanized areas. Moreover, the spatial distribution of urban landscape elements and their attributes are 

characterized by heterogeneous and dynamic. This phenomenon is widely regarded as spatial heterogeneity, 

describing the complexity and heterogeneity of the landscape pattern and its process (Pickett and Cadenasso, 

1995; Song et al., 2020; Jiang, 2015). Due to spatial heterogeneity, urban landscape elements (such as DEM, 

land cover characteristics) vary in different spatial locations. As a result, the relationship between landscape 

elements and urban waterlogging may vary with different spatial locations, which is known as spatial non-

stationarity. It hints that the driving factors or even the mechanism of urban waterlogging may vary with the 

change of spatial location. This indicates that in the urban environment with high spatial heterogeneity, the 

mechanism of urban waterlogging in different regions is complex and different. Although there have been 

considerable studies exploring the mechanism of urban waterlogging (Ke et al., 2020; Yu et al., 2018; Sun, 

2014; Su et al., 2018; Zhang et al., 2021b; Jian et al., 2021). However, most of the previous efforts regard the 

whole study area as spatial homogeneous, without taking spatial heterogeneity into account. How landscape 

elements in different spatial locations affect urban waterlogging in highly heterogeneous urban areas needs 

further understanding. Therefore, an interesting question arises: how to spatially explicit the mechanism of 

urban waterlogging? 

Most recent studies utilized global statistical methods to explore the relationship between urban 

waterlogging and landscape elements (Zhang et al., 2020; Lin et al., 2018; Zhang et al., 2018; Wu and Zhang, 

2017; Sun, 2014). However, the global statistical methods mainly focus on revealing the general mechanism 

from a global perspective. These approaches assume that the relationship between urban waterlogging and 

its drivers is constant across the entire study area, that is, only exploring the universal mechanism of urban 

waterlogging while ignoring its local specific mechanism. This means that the global statistical methods may 

not accurately reveal the spatial non-stationarity relationship of urban waterlogging. In view of this, some 

scholars have proposed to use the geographically weighted regression model (GWR) or spatial lag model (SLM) 

to analyze this spatial non-stationary relationship (Wang et al., 2017; Liu et al., 2021). However, most efforts 

neglect the relative contribution of various landscape elements, in which impediments provide valuable site-

specific waterlogging driving forces. Additionally, it is still unclear how the interactive effects of landscape 

elements affect urban waterlogging. In reality, urban waterlogging is affected by multiple factors, rather than 

by a single factor alone. If only analyze the individual effects of a single landscape element on urban 
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waterlogging (ignoring the interaction effects), it may lead to certain deviations, especially in highly spatial 

heterogeneous urban areas (with enormous landscape elements). These shortcomings lead to a lack of 

understanding of the spatial heterogeneous driving forces of urban waterlogging. Consequently, it cannot 

provide a theoretical basis for formulating site-specific waterlogging mitigation strategies for different local 

conditions. From this perspective, some interesting questions emerge: how to assess the spatially 

heterogeneous effects of landscape elements on urban waterlogging? How to obtain the dominant driving 

factor of urban waterlogging in different spatial locations? How does the interaction between different 

landscape elements affect urban waterlogging? 

Due to the abovementioned shortcomings, we developed an innovative approach to investigate the spatial 

non-stationarity mechanism of urban waterlogging by integrating the best subset regression model, cubist 

regression tree, and geographical detector model. Two highly urbanized coastal cities, Guangzhou and 

Shenzhen were considered to test this proposition. As urban waterlogging is largely disturbed by local 

conditions, there is a need in selecting the most representative and meaningful driving factors based on the 

characteristics of the different study areas. Therefore, the specific objectives of this study were to: (1) 

determine the representative driving factors of urban waterlogging by different local conditions; (2) 

investigate the spatial non-stationarity effects of representative driving factors on urban waterlogging; (3) 

identify the individual and interaction effect of local driving forces, consequently, spatially explicit the driving 

forces. This method improves our understanding of the spatial non-stationarity mechanism of urban 

waterlogging and provides additional insights into the spatial variation of urban waterlogging driving forces. 

These results are helpful for local authorities to develop more target-specific urban waterlogging mitigation 

strategies for different local conditions. 

3.3 Study area 

Guangzhou city is located between 112°57’ to 114°3’E and 22°26’ to 23°56’N, with an area of 7434.40 km2 

(Figure 3-1a). The topography of Guangzhou is high in the northeast and low in the southwest, with a coastal 

alluvial plain in the south (average elevation 6.6 m). Shenzhen city is located between 113°46’ – 114°37’E and 

22°27’ – 23°52’N, which adjacent to Hong Kong, with an area of 1997.47 km2 (Figure 3-1b). The GDP of 

Guangzhou and Shenzhen in 2020 reached $384 billion and $415 billion respectively, becoming one of the 

world's first-tier cities. These two cities both belong to subtropical maritime monsoon climates, with an 
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annual average rainfall of around 1720 mm and 1935 mm respectively. However, the temporal and spatial 

distribution of precipitation in the two cities is extremely unbalanced. Temporally, the precipitation is mainly 

concentrated in April to September, accounting for over 80% of the annual precipitation. Spatially, affected 

by the prevailing wind direction, the precipitation is decreasing from northeast to southwest (Guangzhou), 

and southeast to northwest (Shenzhen). Additionally, Guangzhou and Shenzhen are often affected by 

typhoons and tropical cyclones in summer.  

However, due to the topographic features of Guangzhou and Shenzhen (coastal lowlands), under the 

background of rapid urbanization, coupled with the temporal and spatial differences in precipitation, these 

two cities have frequently suffered from waterlogging events. On May 7, 2017, Guangzhou was hit by a 

torrential rainstorm, with a maximum precipitation of 184.4 mm/h and the maximum 3-hour precipitation 

exceeded the historical extreme value of Guangdong Province (382.6 mm). This incident caused 109 houses 

to collapse, 118 waterlogging events within the city center, about 38.91 km2 of farmland were flooded, and 

the economic loss was about $89 million. Similarly, on May 22, 2020, a heavy rainstorm in Guangzhou (80 

mm average hourly precipitation, 167.8 mm maximum hourly precipitation), which killed 4 people and 

flooded multiple underground parking lots and metro stations. On May 11, 2014, Shenzhen encountered a 

heavy rainstorm, resulting in over 170 waterlogging events, more than 2,000 vehicles were flooded, which 

seriously affected the production and life of citizens. According to the recorded areas of urban waterlogging 

events, we selected the central urban districts of Guangzhou (1559.82 km2) and Shenzhen as the study area. 

In view of the high spatial heterogeneous and the severe urban waterlogging problems in these two regions, 

it is appropriate to select these two cities as the study areas. 
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Figure 3-1 The selected study area. 

3.4 Data and methodology 

3.4.1 Spatial data 

In this study, we focused on the period from 2009 to 2015. The urban waterlogging data are mainly derived 

from the address information of urban waterlogging records provided by the Guangzhou and Shenzhen Water 

Authority. Referring to the study of Yu et al., 2018 and Zhang et al., 2021a, b, we utilized ArcGIS Pro to locate 

the waterlogging events and established the urban waterlogging inventories data sets in these two cities. 

Finally, we collected 423 and 353 urban waterlogging events in Guangzhou and Shenzhen, respectively. Then, 

the waterlogging inventories data sets were superimposed on the watershed division map to calculate the 

density of waterlogging events in each watershed unit, which was used to characterize the waterlogging 

magnitude of each watershed (Figure 3-2). 
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Figure 3-2 The waterlogging events in Guangzhou (a) and Shenzhen (b). 

As mentioned previously, waterlogging is influenced by various landscape elements. Therefore, this study also 

collected the aerial remote sensing images of Guangzhou and Shenzhen acquired in 2013 and the cloud-free 

Landsat-8 images (path/row: 122-44, 121-44), DEM (spatial resolution 5 m), drainage facilities data, and 

average precipitation data. As the local water authority only recorded urban waterlogging events for this 

period (no specific time), we only select one scene remote sensing image during this period. All raw data 

sources are shown in Table 3-1. 

Table 3-1 Metadata information of the spatial data. 

Data Resolution Time Source 

Waterlogging location Point 2009 – 2015 
Water Resources Authority of 

Guangzhou and Shenzhen 

Landsat-8 OLI imagery 30 m 2013 
The United States Geological 

Survey 

Aerial remote sensing images 0.5 m 2013 
Land Resources Technology 

Center of Guangdong Province DEM 5 m 2013 

Drainage network Line 2012 

Precipitation 1000 m 2009 – 2015 
Meteorological Bureau of 

Guangzhou and Shenzhen 

 

3.4.2 Explanatory factors 
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Selecting appropriate explanatory factors based on local conditions is crucial to exploring the spatial non-

stationarity mechanism of urban waterlogging. Therefore, this study selects as many landscape elements as 

possible as waterlogging potential explanatory factors, which can be categorized into environmental factors 

(urban topography, precipitation) and anthropogenic factors (land cover characteristics, urban drainage 

facilities). 

3.4.2.1 Environmental factors 

In this study, the elevation (DEM), the standard deviation of elevation (DEM.std), slope, the standard 

deviation of slope (Slope.std), and the proportion of depression (Dep) were selected to represent terrain 

surface features (Figure 3-3). In general, the areas with low elevation and gentle slopes have a high likelihood 

of waterlogging. Therefore, we utilized the zonal statistical tool to calculate the average elevation and average 

slope of each watershed to represent the topography condition of each watershed unit. The DEM.std and the 

Slope.std were indicated the fluctuation of elevation and slope over the surface. A large value of the DEM.std 

and the Slope.std imply the terrain surface is undulating and has higher water flow velocity, so waterlogging 

is less prone to occur. The depression is the urban lowland surrounded by higher elevation where surface 

runoff is easy to accumulate (Huang et al., 2019). The proportion of depression (Dep) describes the area 

proportion of depression in the watershed that is defined as: 

 𝐷𝑒𝑝 =
𝐷𝑖
𝐴

 (3.1) 

where D represents the area of depression in watershed unit i and A denotes the area of watershed unit i. 

The identification of depression can refer to the supplementary data. Since the urban waterlogging record 

does not include a specific year, the average accumulated precipitation was used to illustrate the spatial 

distribution pattern of precipitation during the period. 
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Figure 3-3 The potential environmental factors of waterlogging in Guangzhou (a–f) and Shenzhen (g–l). 

3.4.2.2 Anthropogenic factors 

According to the existing research, it is clear that impervious surfaces cut off the infiltration process of surface 

rainwater and increase surface runoff, so waterlogging is prone to occur. Urban green spaces have a great 

impact on the infiltration of surface rainwater and retard runoff velocity, which plays a positive role in 

regulating rainwater. Therefore, two variables, the area proportion of impervious surface (ISA) and urban 

green space (UGI) in each watershed unit were extracted as potential driving factors. In this study, we 

extracted the impervious surfaces and urban green spaces using the aerial remote sensing images, through 

an object-oriented classification method. The overall accuracy of the classification was 82.5% and 85.8% 

through the field measurement approach. However, we notice the proportion of green area cannot reflect 

the biophysical parameters of vegetation. For example, under the same coverage of urban green space, 

different vegetation growth states or densities have different effects on urban waterlogging. Based on this, 

this study introduced the normalized differential vegetation index (NDVI) to describe the biophysical 

parameters of green areas. 

The landscape spatial composition and structure can be quantitatively described using landscape pattern 

metrics (McGarigal, 1995; Cushman et al., 2008). Based on the principle that the landscape pattern metrics 

are mutually independent, we select three metrics to reflect the spatial configuration characteristics of land 

cover features, including: (1) landscape fragmentation: mean patch size (MPS) and patch density (PD); (2) 

landscape aggregation: aggregation index (AI). The equation and description of these UGI metrics were shown 

in Table 3-2 and were calculated through Fragstats 4.2. 

Table 3-2 Selected landscape pattern metrics. 

Metric Calculation Implication 

MPS ∑
𝐴𝑖
𝑛

𝑛

𝑖=1

 MPS measures the average size of each land cover. 

PD 
𝐴𝑖
𝑆

 

PD represents the fragmentation degree of each land 

cover type. 

AI [
𝑔𝑖

𝑚𝑎𝑥 → 𝑔𝑖
] 

AI reflects the degree of aggregation of each land 

cover type. 



98  

*Ai: patch i area, S: total area, n: number of patches, gi: number of adjacent patches 

Apart from the effect of land cover characteristics, drainage facilities also have a certain effect on 

waterlogging. Therefore, based on the distribution data of the rainwater pipe network and rainwater outlet, 

the linear density of the rainwater pipe network (DD) of each watershed unit was extracted as the 

anthropogenic factors. 

 

Figure 3-4 The potential anthropogenic factors of waterlogging in Guangzhou (a–d) and Shenzhen (e–h). 

3.4.3 Methodology 
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We proposed a novel approach to fully investigate the spatially heterogeneous effects of driving factors on 

urban waterlogging and to effectively detect the dominant drivers of urban waterlogging in different spatial 

locations. This approach can be divided into three main steps (Figure 3-5). First, we propose an objective 

method that utilized ordinary least squares regression and best subset regression to determine the 

representative driving factors of each study area from potential explanatory factors (Step 1 in Figure 3-5). 

Secondly, according to the selected representative driving factors, the urban waterlogging spaces were 

divided into multiple subgroups to reveal the spatial non-stationarity relationship and explicitly identifies the 

spatial heterogeneity driving forces of urban waterlogging by cubist regression tree (Step 2 in Figure 3-5). 

Thirdly, we used the geographical detector model to further estimate the individual effect and interaction 

effect of the driving forces in different regional subgroups (Step 3 in Figure 3-5). 
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Figure 3-5 The framework of the proposed approach. 

3.4.3.1 Identify representative driving factors 

Since urban waterlogging is a systemic problem, we have introduced various landscape elements as 

waterlogging potential explanatory factors. However, if all landscape elements are considered as driving 

factors to enter the regression tree model, it will inevitably lead to multicollinearity problems, increase the 

load of the model, and reduce the accuracy of the model. Furthermore, it is necessary to select representative 

driving factors based on the condition of the different study areas. 

In this study, the method of selecting representative driving factors for each study area can be decomposed 

into two steps: the removal of multivariate collinearity and best subsets regression. Firstly, all potential 

variables were entered into an OLS regression model for collinearity detection. According to the tolerance 

(Tol) and variance inflation factor (VIF), the potential environmental and anthropogenic variables with strong 

collinearity (Tol < 0.1 or VIF > 10) are removed, and the significance test is performed at the level of 0.01. 

Secondly, we input the factors that have been tested for collinearity into the best subset regression model. It 

considers all the possible combinations of collinearity-tested factors on urban waterlogging. The best subset 

regression model is a method to select the best subset of independent variables and determine the global 

optimal regression model (Peng et al., 2018; Wang, 2009; Guo et al., 2021). The core principle of this method 

is the exhaustive method, which performs regression analysis for all possible combinations of all independent 

variables to assess the best-fitting models. If there are n input variables, there are 2n-1 combined models. 

Subsequently, we select the best model among all the combined models according to the adjusted R2. 

However, if the adjusted R2 is similar, the Akaike Information Criteria (AIC) and Mallows's Cp were also applied 

to select the best model with the smallest AIC and Mallows's Cp value. Based on this, we regard the 

environmental and anthropogenic variables in this best regression model as representative driving factors. 

Then we plot the relationship between waterlogging density and representative driving factors to further 

analyze this complex linking. 

3.4.3.2 Modeling spatial non-stationarity relationship 

In the first step, we respectively determined the representative urban waterlogging driving factors of the two 

cities. In this step, we develop the cubist regression tree based on these representative driving factors to 

investigate the complex spatial non-stationarity relationships between urban waterlogging and 
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representative driving factors. The cubist regression tree is a non-parametric statistical process of data 

analysis, which can effectively deal with the modeling of discrete and nonlinear relationships (Walton, 2008; 

Xiao et al., 2007; Guo et al., 2020). The characteristic of the cubist regression tree is the binary tree structure 

that makes full use of the data in the analysis process. By continuously subdividing the data samples, the 

binary tree node makes the maximum variation of the variables in the upper node, while with similar 

homogeneity in the data variables within the same branch nodes. Finally, the variables in the same branch 

tend to be homogeneous (Guo et al., 2015). Therefore, this study divides the urban waterlogging space into 

different subgroups through the rules established by the cubist regression tree. The spatial heterogeneity 

within the subgroups is minimized, while the spatial heterogeneity between groups is maximized. The cubist 

tree then investigates the spatial non-stationarity relationships between urban waterlogging and 

representative driving factors in each subgroup. Additionally, this study further compares the cubist 

regression tree with two commonly used regression methods, the global regression model (GRM) and the 

spatial lag model (SLM). The accuracy of these models is assessed by correlation coefficients, root mean 

square error (RMSE), mean absolute error (MAE) to verify the validity and superiority of cubist regression 

tree in modeling urban waterlogging. 

3.4.3.3 Detecting dominant driving forces spatially 

The causes of urban waterlogging events are often complex. Spatially detecting the dominant driving factors 

of waterlogging events and their interactive effect is helpful to provide site-specific suggestions for urban 

waterlogging prevention. The geographical detector model (GDM) is utilized to calculate the relative 

contribution of representative driving factors in each subgroup. In this study, the representative factors with 

the largest contribution in each subgroup were regarded as the dominant factors of urban waterlogging. 

Thereby revealing which representative factors play a leading role in urban waterlogging at different spatial 

locations, that is, to determine the dominant driving forces spatially. 

The geographical detector model is the new spatial statistical analysis model that can effectively diagnose the 

spatial heterogeneity of landscape elements and reveal its driving forces (Wang et al. 2010; Zhang et al., 2019; 

Song et al., 2020). This method has no linear hypothesis, which effectively overcomes the limitations of 

traditional statistical methods. It has been widely used to study the spatial heterogeneity and driving forces 

of geographical phenomena (Luo et al., 2016; Wang et al., 2016). The GDM contains four detectors, including 

factor detector, interaction detector, risk zone detector, and ecological detector (Wang et al., 2016). As the 
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main purpose of revealing the dominant driving forces spatially, we employ the factor detector and the 

interaction detector in this study. 

The factor detector is used to detect the degree of explanation of each representative driving factor to the 

spatial differentiation of urban waterlogging, and its formula is as follows: 

 𝑞 = 1 −
∑ 𝑁ℎ𝜎ℎ

2𝐿
ℎ=1

𝑁𝜎2
= 1 −

𝑆𝑆𝑊

𝑆𝑆𝑇
 (3.2) 

where SSW is the sum of variance within the stratum, and SST is the total variance of the whole area. The 

value of q is between 0 and 1, with larger q-values indicating the stronger the explanatory power of 

representative factors for urban waterlogging, and vice versa. In addition, in order to judge whether the 

interaction between representative factors will enhance the interpretation of urban waterlogging, this study 

further uses the interaction detector to quantify the interaction effect of two separate representative factors 

on the waterlogging. The interactions were classified into five categories: non-linearly weaken, unitary 

weaken, binary enhancement, independent, and nonlinear enhancement, as shown in Table 3-3. 

Table 3-3 Interaction effect between representative factors. 

Interaction Equation Description 

Nonlinear weaken q (A∩B) < Min[q (A), q (B)] 

It means that the effect of the interaction of 

the two factors A and B on the dependent 

variable Y is less than the independent effects. 

Unitary weaken 
Min[q (A), q (B)] < q (A∩B) < Max[q 

(A), q (B)] 

It shows that the result of interaction weakens 

the effect of one of the factors. 

Binary enhancement q (A∩B) > Max[q (A), q (B)] 

It indicates that the interaction between 

factors A and B has a greater impact on Y than 

a single factor. 

Independent q (A∩B) = q (A) + q (B) 

The interaction is independent, indicating that 

the two factors do not interfere with each 

other. 
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Nonlinear 

enhancement 
q (A∩B) > q (A) + q (B) 

It means that the interaction effect has a 

greater impact on Y than the sum of the 

independent effects of factors A and B. 

 

3.5 Results 

3.5.1 Representative driving factors selection 

As shown in Table 3-4, after comparing the adjusted R2, AIC, and Mallows's Cp of all possible combinations, 

the model with 6 variables including ISA, DEM, Slope.std, Dep, UGI.MPS, and Per was selected as the best 

model for Guangzhou, while the model contained 5 variables with ISA, DEM.std, UGI.MPS, ISA.PD, and ISA.AI 

was selected as the optimal model for Shenzhen. Therefore, the variables in these two models are considered 

as the representative driving factors of urban waterlogging in Guangzhou and Shenzhen, respectively. It is 

found that Guangzhou and Shenzhen have similarities and differences in the selection of representative 

driving factors. For example, ISA and UGI.MPS jointly serve as representative factors for Guangzhou and 

Shenzhen, while DEM, slope.std, Dep and Per are the representative factors specific to Guangzhou. In contrast, 

DEM.std, ISA.PD, ISA.AI are the representative factors unique to Shenzhen. 

Table 3-4 The best subset regression and representative driving factors selection. 

City Representative driving factors selection AIC 
Mallows's 

Cp 

Adjusted 

R2 

Guangzhou ISA, DEM, Slope.std, Dep, UGI.MPS, Per 104.93 33.26 0.548 

Shenzhen ISA, DEM.std, UGI.MPS, ISA.PD, ISA.AI 88.77 14.37 0.662 

As can be seen in Figure 3-6, the Pearson correlation coefficients for these 11 representative driving factors 

are all relatively high, indicating a significant correlation between urban waterlogging and the selected 

representative factors. The DEM, DEM.std, and Slope.std both have a negative correlation with waterlogging; 

while the Dep experience a strong positive correlation with waterlogging. This means that the fluctuation of 

the ground surface contributes to the dispersion of surface runoff, thus less prone to waterlogging. In contrast, 

if the Dep in the watershed unit is too high, the probability of waterlogging will eventually aggravate. In 

addition, as the frequency and intensity of extreme rainstorms are increasing, this will undoubtedly increase 
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the impact of precipitation factors on urban waterlogging. Compared with environmental variables, the land 

cover characteristics have a more significant correlation with waterlogging. The ISA experiences a significant 

negative impact on the hydrological environment, which will deteriorate the regional waterlogging state. 

Conversely, the UGI within watershed units has a positive effect on regulating surface runoff and mitigating 

urban waterlogging. For spatial configuration, there is a positive relationship between ISA.AI and 

waterlogging, while ISA.PD shows a negative correlation. This suggests that the more aggregated or less 

fragmented distribution pattern of impervious surfaces, the more prone to waterlogging disasters in this area. 

More importantly, from the fitting curve, we found that these correlations are not a simple linear relationship 

(Figure 3-6). In detail, ISA is exponentially related to the waterlogging density (Figure 3-6a, g). As the increase 

of ISA, the increasing trend of urban waterlogging is gradually intensified. In Guangzhou city, when the ISA is 

less than 50%, an increase in the impervious surface area does not significantly increase urban waterlogging 

density. However, when the area proportion exceeds a threshold (50%), urban waterlogging density increases 

significantly with the increase of the proportion of impervious surface. We also found that when the UGI.MPS 

reached 2.0 ha (Guangzhou) or 5.0 ha (Shenzhen), the decreasing trend of urban waterlogging density was 

no longer obvious (Figure 3-6e, i). This implies that there may be a threshold value for the mitigating effect 

of urban green spaces on waterlogging. When the MPS of green spaces in a watershed unit is too large, its 

mitigation effect may be wasted. Therefore, in the process of urban greening, it is recommended to 

comprehensively consider the MPS of green spaces and their mitigation effect. Furthermore, a similar 

phenomenon also exists in the spatial configuration of impervious surfaces (PD, AI). As the parameters to 

measure the terrain variation (DEM, DEM.std, Slope.std), when the terrain variation in the watershed unit is 

within the threshold, increasing the DEM, DEM.std, or Slope.std can significantly reduce the density of urban 

waterlogging. However, when the terrain variation of the watershed unit is significant (exceeding the 

threshold), the downward trend of urban waterlogging density is not obvious. 
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Figure 3-6 The relationship between waterlogging density and representative driving factors of Guangzhou (a–f) and 

Shenzhen (g–k). 

3.5.2 The performances of cubist regression tree 

As shown in the above section, the fitting curves indicate that the relationship between representative driving 

factors and urban waterlogging density is not a simple linear relationship. Therefore, this study introduced 

the cubist regression tree to further reveal this complex mechanism and to compare the accuracy with the 

GRM and the SLM. The results show that among the three models, the GRM has the lowest accuracy both in 

Guangzhou and Shenzhen, indicating its poor ability in handling the spatial non-stationarity relationship 

between urban waterlogging and the representative factors. Compared with the GRM, the SLM has better 

performance, with higher R2 and lower error (RMSE, MAE), but not as good as the cubist regression tree. The 
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adjusted R2 of the cubist tree model in Guangzhou is 0.79, and the RMSE and MAE are only 1.06 and 0.31, 

while in Shenzhen the adjusted R2, RMSE, and MAE are 0.88, 0.17, and 0.11. These results show that the 

cubist regression trees have the highest accuracy, both in Guangzhou and Shenzhen, which provides 

important insight that the cubist regression tree is more effective in detecting the spatial non-stationarity 

effect. 

Table 3-5 The performances of cubist regression tree, spatial lag model, and global regression model. 

City Model 
Index 

Adjusted R2 RMSE MAE 

Guangzhou 

Cubist tree 0.7964 1.0671 0.3114 

SLM 0.7376 1.2395 0.4327 

GRM 0.5231 1.5532 0.6892 

Shenzhen 

Cubist tree 0.8824 0.1763 0.1119 

SLM 0.8112 0.2344 0.2207 

GRM 0.6330 0.5975 0.5131 

 

3.5.3 The spatial non-stationarity mechanism of urban waterlogging 

The cubist regression tree divides the urban waterlogging space into different heterogeneity subgroups by 

rules to investigate the spatial non-stationarity mechanism of urban waterlogging. As shown in Figure 3-7, 

the number of rules in Guangzhou and Shenzhen are 9 and 6, respectively. Based on these rules, the 

waterlogging spaces of Guangzhou and Shenzhen are divided into 9 and 6 subgroups with the minimum 

internal spatial heterogeneity and the maximum external spatial heterogeneity. As results revealed, the urban 

waterlogging space in Guangzhou was divided into more subgroups, implying the variation of waterlogging 

in Guangzhou is complicated and highly spatially heterogeneous. 

The cubist regression tree obtains the equations between urban waterlogging and representative driving 

factors in different subgroups, which highlights the role of representative factors on urban waterlogging 

within different subgroups in a heterogeneous environment (Table S3-1). For example, when the ISA in the 

watershed units (Guangzhou) is less than or equal to 23.14%, the urban waterlogging density variation in 

these watershed units can be explained by Expression 1. On the contrary, when the ISA in the watershed units 
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(Guangzhou) is greater than 23.14%, the impact of representative factors on urban waterlogging can be 

explained by the remaining eight rules. Moreover, we found that some subgroups were influenced by 

representative factors such as ISA, DEM, and UGI.MPS (Guangzhou Rule 1), while others were influenced by 

ISA, Dep, and DEM (Guangzhou Rule 7). This finding extends our scientific understanding that although there 

are consistent representative factors in the same city, different subgroups are affected by different 

representative factors. It is also important to note that several rules are only available for a very small number 

of watershed units. For example, rule 3 in Guangzhou and Shenzhen contains only 8 and 10 watershed units. 

These results show that the driving forces of urban waterlogging are spatially different, which is mainly due 

to the large spatial heterogeneity of landscape elements in urban areas. In other words, although 

environmental conditions are common on a regional scale, the driving force of urban waterlogging will vary 

depending on the local conditions. 

 

Figure 3-7 The divided rules for Guangzhou (a) and Shenzhen (b). 

This study further projected the rules to the remote sensing imagery to identify the landscape features 

corresponding to the different rules (Figure 3-8). It is interesting to note that the corresponding watershed 

units of each rule have different landscape characteristics with a strong spatial heterogeneity effect. For 

example, the spatial pattern of rule 1 and rule 2 of Guangzhou are mainly concentrated in the urban fringe, 

especially the northeast part of Guangzhou (Huangpu and Baiyun district). The watershed units in these areas 

have a large topographic relief and the dominant land cover feature is woodland (Figure 3-8A). Additionally, 

rule 6 tends to correspond to newly built-up areas of the city (Tianhe), where the proportion of impervious 

surfaces and green areas is more reasonable and the building density is relatively low (Figure 3-8B). On the 

contrary, the distribution of rules 3 and 4 are mainly distributed in the historic urban district (Liwan and Yuexiu 

district), where the land cover features are dominated by impervious surfaces with high building density and 

relatively flat terrain (Figure 3-8C). Similar to Guangzhou, Shenzhen's rule 1 is mainly distributed in the 
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Dapeng District, which is the location of the National Forest Park. Therefore, the vegetation abundance of 

watershed units in this region is relatively high (Figure 3-8D). In addition, Shenzhen's rules 3, 4, and 5 are 

mainly distributed in the city center, and the watershed units corresponding to these rules are occupied by 

dense built-up areas (Figure 3-8E). In rule 6, the landscape features are characterized by low-rise factories or 

warehouses (Figure 3-8F). 

 

Figure 3-8 The spatial distribution pattern of rules and their corresponding landscape features in Guangzhou (a) and 

Shenzhen (b). 

3.5.4 Dominant driving forces spatial assessment 

3.5.4.1 Waterlogging dominant factors and their independent contribution 

We found that the dominant factors of urban waterlogging have certain differences in watershed units at 

different spatial locations. In general, the urban waterlogging in Guangzhou is spatially controlled by UGI.MPS, 

ISA, Dep, DEM, and Slope.std, while in Shenzhen is spatially affected by ISA, DEM.std, ISA.AI, and ISA.PD 

(Figure 3-9a, b). This implies that the extent of the influence of representative driving factors on urban 

waterlogging depends on its spatial location. In Guangzhou, the UGI.MPS is the dominant factor for subgroups 



110  

1 and 5; the ISA is the dominant driving factor for subgroups 2, 4, 7, and 9. This indicates that in these 6 

subgroups, land cover characteristics have a decisive effect on urban waterlogging. However, the watershed 

units of subgroups 3, 6, and 8 are greatly affected by topographical factors, whose dominant factors are the 

Dep, DEM, and Slope.std, respectively. In Shenzhen, the ISA is the dominant driving factor of urban 

waterlogging in subgroups 1 and 4, while ISA.AI and ISA.PD are the dominant factors in subgroups 3 and 5, 

respectively. The watershed units in subgroups 2 and 6 are mainly influenced by topographic factors, all of 

which are dominated by Slope.std. Overall, the watershed units in Guangzhou and Shenzhen with ISA as the 

dominant factor occupied 36.93% and 64.04% of the city's area, respectively. This result indicates that ISA is 

basically the dominant driver of urban waterlogging in all watershed units in Guangzhou and Shenzhen. The 

UGI.MPS has become the second dominant factor in Guangzhou, while the second dominant factor in 

Shenzhen is DEM.std. These two factors occupy 31.27% and 12.36% of the area of Guangzhou and Shenzhen 

respectively. In contrast, there are relatively few watershed units with Dep and ISA.AI as the dominant factor, 

which only occupy 4.2% and 6.8% of the area of Guangzhou and Shenzhen. 

Furthermore, the relative contribution rates of the dominant factors also have significant spatial 

heterogeneity (Figure 3-9c, d). The independent contribution of the dominant factor in all watershed units in 

Guangzhou was 23.28% to 57.82%, with a standard deviation of 0.11, while the independent contribution of 

Shenzhen ranged from 25.95% to 53.59%, with a standard deviation of 0.09. Generally, the contribution of 

the dominant factors in Guangzhou fluctuates greatly, which may be due to the large spatial non-stationarity 

of Guangzhou. It is worth noting that even for the same dominant factor, its contribution varies considerably 

in different subgroups. For example, in Guangzhou City, the dominant factors in the watershed units 

corresponding to rules 2, 3, 7, and 9 are all ISA. However, the independent contribution rate of ISA in rule 7 

is as high as 57.82%, while the independent contribution of ISA in rule 4 is only 31.07%. Similarly, the 

dominant factor of watershed units corresponding to rules 2 and 6 of Shenzhen City is DEM.std, but the 

independent contribution in rule 6 is 40.51%, while it is only 25.95% in rule 2. These results hint that the 

dominant factors have different explanatory degrees for urban waterlogging in different watershed units. 
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Figure 3-9 The spatial distribution of dominant factors (a, b) and their independent contributions (c, d). 

Through further analysis of the independent contributions of representative driving factors to urban 

waterlogging in each subgroup (Figure 3-10). We found that the independent contributions of the dominant 

factors in some watershed units have an overwhelming advantage. For example, in Guangzhou subgroup 1, 

the independent contribution of the UGI.MPS is 51.29%, while the independent contribution of the ISA and 

DEM (remaining representative factors) are only 11.53% and 8.47%. The contribution of the dominant factors 

(UGI.MPS) in subgroup 1 exceeds the contribution of the remaining representative factors (ISA, DEM) by over 

40%. Similarly, in Shenzhen subgroup 1, the independent contribution of ISA is approximately 37% higher 

than that of UGI.MPS. On the contrary, the independent contribution of each factor in some watershed units 

is not much different, without an overwhelming dominant factor. For example, in Guangzhou subgroup 3, the 

dominant factor Dep (30.41%) has a similar independent contribution to the representative factors such as 

ISA (27.24%) and DEM (26.51%). This implies that the urban waterlogging magnitude of these watershed 

units is jointly influenced by multiple factors.  
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Figure 3-10 The independent contribution of each representative factor in Guangzhou (a–i) and Shenzhen (j–o). 

Based on this, if the independent contribution of the dominant factor exceeds the remaining representative 

factors by more than 20%, we consider that the urban waterlogging in the watershed unit is mainly influenced 

by its dominant factor and classify it as a strong dominance watershed unit. In contrast, when the 

independent contribution of the dominant factor is not significantly different from the reminding factors (less 
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than 20%), we believe that the urban waterlogging of this watershed unit is jointly affected by multiple 

representative factors, which divide the watershed unit into a weak dominance watershed unit (Figure 3-11). 

Interestingly, we found that the weak dominance watershed units are predominantly located in the urban 

core area, which may be due to the complexity of the landscape elements within the urban center. 

 

Figure 3-11 The classification of strong dominance and weak dominance watershed unit. 

3.5.4.2 Interactive effect of representative factors in weak dominance watersheds 

After identifying the dominant factors of urban waterlogging in each subgroup, the interaction detector was 

adopted to further measure the interaction effect of representative factors on urban waterlogging in the weak 

dominance watershed units (Figure 3-12). It is found that the explanatory power is enhanced by the 

interaction of the representative driving factors in the weak dominance watershed units, which can be divided 

into binary enhancement and nonlinear enhancement. This result indicates that the variation of waterlogging 

in weak dominance watershed units is mainly the result of the interaction of representative factors. 

It is worth noting that the intensity of interaction between the representative factors varied significantly 

among the subgroups. For subgroups 3, 4, 6, and 8 in Guangzhou (weak dominance watershed units), there 

is a strong interaction between the land cover characteristics (ISA, UGI.MPS) and topographic factors (Dep, 

DEM, Slope.std), which greatly enhances their independent effects on urban waterlogging. For example, in 

subgroup 3, the interaction between Dep and UGI.MPS reached 69.98%, which exceeded the independent 

contribution rate of Dep, the dominant factor of this subgroup, by 39.57%. The interaction between ISA and 

Slope.std is the strongest in subgroups 4 (72.28%) and 8 (67.21%), which is significantly higher than the 

independent contribution of the dominant factors in each subgroup. The interactive effect of DEM and ISA in 

subgroup 6 get 145.46% enhancement compared with the independent effect. These results all indicate the 
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importance of the interaction between land cover characteristics and topographic factors, which further 

confirm that waterlogging in these subgroups is mainly affected by the interaction between these two types 

of factors. Therefore, for these watershed units, on the basis of controlling the ISA, increasing the topographic 

relief, or reducing the depression will contribute to improving waterlogging states. 

For Shenzhen, there is a strong interaction between the land cover composition (ISA) and the landscape 

configuration (PD, AI). In subgroup 5, the interaction between PD and ISA was as high as 83.72%, which was 

180.02% and 258.76% enhancement compared with their independent contributions. Moreover, in subgroup 

3, the interaction between AI and PD was 73.02%, which was 35.05% higher than the independent 

contribution of AI (dominant factors in subgroup 3). This interaction effect emphasizes the importance of the 

combination of land cover composition and spatial pattern, which is of great significance to metropolises. In 

addition to the interaction between land cover composition and landscape pattern, the interaction between 

DEM.std and ISA in Shenzhen subgroup 2 can not be ignored. Compared with the independent contribution 

of its dominant factor (DEM.std), its interaction effect increased by 82.12%.  

It is important to note that the interaction effect of each representative factor in the weak dominance 

watershed units is significantly stronger than its independent contribution. Therefore, for strong dominance 

watershed units, the local authorities can develop urban waterlogging mitigation strategies based on its 

dominant factors. However, for the weak dominance watershed units, it is inappropriate to develop mitigation 

strategies based on dominant factors as simple as for strong dominance watersheds. We need to 

comprehensively consider the interaction effect between representative factors, which develop urban 

waterlogging mitigation strategies that integrate multiple factors according to local conditions. 
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Figure 3-12 The interactive effect of representative factors on urban waterlogging in weak dominance watersheds. 

3.6 Discussion 
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3.6.1 Select the appropriate driving factors 

As urban waterlogging is largely disturbed by local conditions, which indicates that the driving factors and the 

mechanisms of waterlogging may vary from place to place. Therefore, the selection of the most 

representative and meaningful driving factors based on the characteristics of the different study areas 

becomes the cornerstone of exploring the mechanism of urban waterlogging. Considerable studies select 

driving factors from both the natural environment and socio-economic aspects respectively (Wu et al., 2012; 

Liu et al., 2021; Huang et al., 2017; Wu and Zhang, 2017; Tran et al., 2020). For example, an empirical study 

was conducted on the influence of 27 factors on urban waterlogging in Guangzhou at different spatial scales 

(Zhang et al., 2020). Wu et al. (2020) selected five landscape pattern metrics to investigate the complex 

mechanism of urban waterlogging. However, part of the studies relies on subjectively selecting waterlogging 

driving factors. If these numerous factors are applied directly to the analysis, the multicollinearity problem or 

overfitting problem will inevitably occur. Moreover, it is difficult to know which driving factor has the most 

meaningful effect on waterlogging. To overcome this limitation, some scholars have introduced stepwise 

regression model or correlation analysis to select representative driving factors by eliminating factors with 

less correlation and multicollinearity. Although the stepwise regression method can "perfectly" meet the 

requirements of the significance test and multicollinearity, it eliminates most of the driving factors, usually 

only two or three factors remain. To some extent, the potential explanatory power of various factors is lost 

or wasted. This suggests that the stepwise regression method only selects the representative driving factors 

at the statistical aspect. Hence, the selected representative waterlogging driving factors may not be in line 

with reality. 

Therefore, this study proposes an objective method to select representative urban waterlogging driving 

factors based on local conditions. The combination of the OLS regression and the best subset regression is 

utilized to explore the impact of all possible combinations of landscape elements on urban waterlogging, 

which fully considers all the combined models to identify the representative factors. Instead of subjective 

selection or simply using the stepwise regression model to select representative driving factors for urban 

waterlogging, the method proposed in this study can more objectively and effectively select representative 

driving factors. In view of the importance of objectively and quantitatively identifying the representative 

driving independent variables, the method proposed in this study can be widely applied to other 

environmental and ecological mechanisms investigation. 
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3.6.2 Spatial non-stationarity effect of driving forces on urban waterlogging 

In reality, urban waterlogging events are characterized by a high degree of spatial heterogeneity, which is 

usually influenced by many factors. In the past 20 years, a proliferation of studies focused on the driving forces 

of urban waterlogging (Wu et al., 2020; Zhang et al., 2020; Zhang et al., 2018). However, so far, most studies 

in exploring this complex mechanism are limited to the use of global single-level analysis methods (Wu and 

Zhang, 2017; Tran et al., 2021; Sun, 2014). This approach can only analyze the mechanism of urban 

waterlogging within the entire study area, while inevitably ignoring the influence at a local scale. 

Consider the spatial heterogeneity and complexity of the spatial distribution of urban landscape elements. 

This spatial non-stationarity leads to different effects of landscape elements on urban waterlogging. Based 

on this, this study successfully revealed the spatial heterogeneity driving forces of urban waterlogging by 

integrating the cubist regression tree and the geographical detector model. By comparing this method with 

two other commonly used regression methods, namely GLR and SLM, we found that the proposed method 

has the highest accuracy that can effectively capture the spatial heterogeneity characteristics of urban 

waterlogging. 

It is worth noting that we find that the driving force of urban waterlogging varies with local conditions. The 

dominant factors and their independent contribution vary greatly in different subgroups. Although a large 

number of studies have concluded that the ISA is the dominant factor for urban waterlogging through global 

statistical methods (Zhang et al., 2018; Wu et al., 2020). This study further spatially reveals the dominant 

factors of urban waterlogging at the local scale with different background conditions, which highlights the 

spatial heterogeneity of driving forces. To some extent, these findings indicate that global statistical analysis 

may not be applicable to highly heterogeneous urban areas, which further prompted us to re-examine the 

results obtained based on global statistical methods to avoid its shortcomings. The studies based on global 

statistical methods may only provide a universal and superficial mechanism of waterlogging that can not 

provide local waterlogging mechanisms. Moreover, the impact of various factors on urban waterlogging is 

disturbed by local conditions, and even produces contradictory results in different regions. Our study suggests 

that this inconsistency may be caused by the spatial non-stationarity of landscape elements, which is mainly 

due to the different ability of landscape elements in different spatial locations to affect urban waterlogging. 

This finding underscores the importance of revealing the spatial heterogeneity driving forces of urban 

waterlogging. 
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3.6.3 Site-specific mechanism for urban waterlogging management implication 

A spatial understanding of the mechanism of urban waterlogging will help us to provide theoretical and 

practical references for waterlogging emergency management, mitigation, and sustainable development. Due 

to the complexity of urban ecosystems with huge spatial heterogeneous, urban waterlogging is characterized 

by strong spatial non-stationarity. Indisputably, it indicates that the waterlogging driving forces may vary with 

local conditions. Therefore, urban waterlogging mitigation strategies developed from the result of global 

statistical methods may not be applicable in some areas. Strictly speaking, it is unrealistic to develop locally 

targeted mitigation strategies based on the conclusions drawn from the global statistical method. 

In this study, our proposed method successfully characterizes the dominant factors of urban waterlogging in 

each subgroup at different spatial locations. By understanding the spatially non-stationary effects of 

landscape elements on urban waterlogging in different watershed units, it will help us to implement more 

targeted and effective mitigation strategies. Consistent with previous studies, we found that the dominant 

factor of urban waterlogging in most watershed units is the area proportion of impervious surface (ISA). This 

is why the previous urban waterlogging mitigation policies mainly focused on reducing the proportion of 

impervious surfaces. However, our study further found that the ISA was not always the dominant factor in 

different locations. In some watershed units, topographic factors (DEM, Slope.std, Dep) and land cover 

characteristics (UGI.MPS, PD, AI) have a much stronger impact on urban waterlogging than ISA (Figure 3-9). 

Based on these results, we can develop corresponding urban waterlogging mitigation policies according to 

the local condition of different subgroups in a more targeted way.  

(1) In the subgroups where DEM, DEM.std, or Slope.std are regarded as dominant factors (rule 6 and 8 in 

Guangzhou, rule 2 and 6 in Shenzhen). In these watershed units, we need to pay more attention to the impact 

of topographical features on urban waterlogging, which highlights the importance of increasing terrain 

variation. Therefore, local authorities can plan or build more subsidence roadbeds, subsided rain gardens, 

sunken squares, and ditches in these watershed units, increasing the DEM.std and Slope.std to enhance the 

function of hydrological regulation and storage. 

(2) In the subgroups where Dep are regarded as dominant factors (rule 3 in Guangzhou), this area is the 

historical urban district of Guangzhou. The elevation of this area is relatively low and gentle. While it is very 

difficult to alter the topographical conditions, it is recommended that local authorities improve the urban 

drainage systems design standards in this area by increasing the drainage pipe networks density, pumping 
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stations, and sluices, so as to improve the efficiency of rainwater drainage. At the same time, the water 

authorities also need to dredge the rivers to improve their discharge and drainage capacity. Additionally, since 

surface runoff tends to flow rapidly into the tunnel and cause casualties, transportation in low-lying areas 

should adopt the viaduct scheme instead of the tunnel scheme.  

(3) In the subgroups where ISA are regarded as dominant factors (rule 2, 7, 9 in Guangzhou and rule 1, 4 in 

Shenzhen). In these watershed units, the ISA is the major cause of urban waterlogging. Therefore, for these 

watersheds, local authorities need to strictly control the increased rate of impervious surfaces and maintain 

a reasonable proportion of UGI and ISA. 

(4) For the subgroups with ISA.AI and ISA.PD as the dominant factor (rule 3, 5 in Shenzhen). This means that 

the spatial pattern of ISA also plays a decisive role in urban waterlogging, which embodies the importance of 

controlling the spatial configuration of ISA. Given a fixed amount of ISA, the aggregated or less fragmented 

distribution pattern of impervious surfaces will aggravate the occurrence of waterlogging. 

(5) For the subgroups with UGI.MPS as the dominant factor (rule 1, 5 in Guangzhou), compared with other 

measurements, increasing green areas can more effectively alleviate urban waterlogging. Local authorities 

can introduce green roofs, rain gardens, and ground permeable paving to reduce the peak flow and the 

pressure of flood drainage for these subgroups. As we all know, UGI has significant effects in intercepting 

rainfall and reducing runoff, which has a positive effect on alleviating urban waterlogging (Shi, 2020 Li et al., 

2020; Kim et al., 2016). Although the benefit of increasing the proportion of UGI is obvious, the land resources 

for urban greening are often limited. Therefore, it is unrealistic to simply seek a large enough area for urban 

greening to mitigate urban waterlogging. It is worth noting that Zhang et al. (2021a) found that excessive 

proportions of UGI within the watershed unit or an oversized UGI patch may lead to a waste of its 

waterlogging mitigation effect. Therefore, for the watersheds with UGI.MPS is the dominant factor, the local 

authorities should further weigh the green area and its mitigation effect when formulating policies to increase 

the area of UGI. 

It is worth noting that this study further divided the watersheds into the strong dominant watersheds and 

the weak dominant watersheds based on the independent contribution of dominant factors (Figure 3-11). In 

the weak dominant watersheds, the waterlogging magnitude is mainly affected by several representative 

factors together. For the subgroups 3, 4, 6, and 8 of Guangzhou weak dominant watersheds, the interaction 

effect between the land cover characteristics (ISA, UGI.MPS) and topographic factors (Dep, DEM, Slope.std) 
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significantly increases the individual effects of each factor on urban waterlogging. Similarly, for subgroups 2, 

3, and 5 as Shenzhen's weak dominant watersheds, the interaction between the composition (ISA) and the 

landscape configuration (PD, AI) has the dominant effect on waterlogging. It may provide important insights 

for the mitigation of urban waterlogging. In the strong dominant watersheds, we can develop related 

mitigation strategies based on the dominant factors in these watershed units. On the other hand, in the weak 

dominant watersheds, the interaction effects of representative factors must be considered comprehensively 

when formulating the urban waterlogging mitigation strategy for that watershed unit. This means that urban 

planners and local authorities should formulate more targeted and effective mitigation strategies based on 

the driving forces of urban waterlogging in different regions, rather than the “one-size-fits-all” policy. 

3.6.4 Limitations 

This research proposes a valuable research framework to explore the spatial heterogeneity driving forces of 

urban waterlogging. However, this study also has its limitations and should be considered in future work. First, 

as the obtained data do not record the severity of the hazard (inundation depth, inundation area), the 

duration, or the specific time of waterlogging events. This inevitably brought some uncertainty to the results. 

Second, the method proposed in this research has been successfully applied in two highly spatial 

heterogeneous cities, Guangzhou and Shenzhen. In future studies, we can extend it to more regional 

comparative studies under different environmental conditions and urbanization backgrounds to further verify 

the universality and credibility. With the use of sufficient data, introduce the water depth or duration of 

waterlogging events to more comprehensively investigate the relationship between urban waterlogging and 

driving forces, so as to provide support for the development of targeted urban waterlogging mitigation 

policies. 

3.7 Conclusion 

Quantitative assessment of the spatial non-stationarity mechanism of waterlogging expands our scientific 

understanding of the spatial heterogeneity driving forces, which can provide theoretical and practical 

references for site-specific waterlogging mitigation strategies. In this study, we first utilized the best subset 

regression model, an objective method to determine the meaningful and representative driving factors of 

urban waterlogging that are based on the characteristics of local conditions. Then, an innovative approach is 

proposed to investigate the spatial non-stationarity effects of driving factors on urban waterlogging and map 
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the dominant drivers in each watershed unit by combining a cubist regression tree model and a geographical 

detector model. The spatial non-stationarity relationships between urban waterlogging and representative 

driving factors in each subgroup were spatially explicit as well as the detected dominant driving forces 

spatially. 

It was found that: (1) compared with subjective selection or simply using the stepwise regression method to 

select representative driving factors for urban waterlogging, the best subset regression proposed in this study 

can more objectively select the most representative and meaningful driving factors that effectively describe 

urban waterlogging variation according to local characteristics. (2) By comparing with two other commonly 

used regression methods (GLR, SLM), the combination of cubist regression tree and geographical detector 

model can fully quantify the spatial non-stationarity effect of representative driving factors on urban 

waterlogging and spatially explicit the driving forces with different local conditions. (3) The driving force of 

urban waterlogging varies with the local site conditions. Understanding the complex site-specific mechanism 

of urban waterlogging in different watershed units will help us implement more targeted and effective 

mitigation strategies, rather than a “one-size-fits-all” policy. (4) In the strong dominant watersheds, we can 

develop related mitigation strategies based on the dominant factors in these watershed units, in contrast to 

the weak dominant watersheds, the interaction effects of representative factors must be considered 

comprehensively when formulating the urban waterlogging mitigation strategy for that watershed unit. This 

research provides an objective and effective tool for urban planners and local authorities to identify the 

waterlogging spatial heterogeneity driving forces. These new findings facilitate the realization of urban 

waterlogging mitigation strategies based on different spatial locations. 
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Supplementary data 

 

Supplementary materials include the following: 

(1) The identification of depression 

The depression is the urban lowland surrounded by higher elevation where surface runoff is easy to 

accumulate. Therefore, urban waterlogging events frequently occur in depressions, where the stored 

rainwater easily exceeds the capacity of the urban drainage system. The identification of depression can be 

delineated using GIS analysis with a high-resolution DEM. The workflow is given in Figure S3-1. Firstly, the 

original DEM is filled with ArcGIS hydrological analysis module. Secondly, we calculate the difference 

between the two DEMs (original DEM and filled DEM). The depression can be located by searching for non-

zero cells in the derived difference raster. Then, identifying the depressions with the thresholds of depth and 

area.

 

Figure S3-1 The workflow to derive the depression. 

The threshold value of depression depth is determined according to the car wading depths. The height of the 

vulnerable positions such as the air inlet of a car is mostly less than 30 cm. Thus, only depressions with a 

maximum depth greater than 30 cm were included in the analysis. 

The threshold value of the depression area is based on the local conditions of each watershed unit. We test 

several area thresholds (such as 500 m2, 1000 m2, 3000 m2, 5000 m2) in each watershed unit and the number 
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of depressions corresponding to each area threshold is also counted. We find that as the area threshold 

increases, the number of depressions gradually decreases. Hence, the turning point on the area-number 

curve corresponds to the area threshold. 

Therefore, the proportion of depression (Dep) describes the area proportion of depression in the watershed 

that is defined as: 

 𝐷𝑒𝑝 =
𝐷𝑖
𝐴

 (S3.1) 

where D represents the area of depression in watershed unit i and A denotes the area of watershed unit i. 

 

(2) Divides the urban waterlogging space into different heterogeneity subgroups by rules 

Table S3-1 Rules for Guangzhou and Shenzhen. 

Guangzhou city 

Rule 1: [99 cases] 

If ISA <= 0.2314 

Expression: WD = -0.0974 + 0.63 ISA - 0.03 UGI.MPS + 0.0005 DEM 

Rule 2: [125 cases] 

If Dep <= 0.0282 and ISA > 0.2314 and ISA <= 0.6637 

Expression: WD = -0.7701 + 16.84 Dep + 2.32 ISA + 0.0053 DEM - 0.06 UGI.MPS 

Rule 3: [8 cases] 

If Dep > 0.0964 and ISA > 0.6637 

Expression: WD = 7.8973 + 0.46 UGI.MPS - 1.07 ISA – 0.35 DEM + 0.91 Dep 

Rule 4: [21 cases] 

If DEM > 4.5947 and DEM <= 5.5781 and Dep <= 0.0964 and ISA > 0.6637 

Expression: WD = 28.9743 - 34.37 ISA + 1.17 Slope.std + 0.76 UGI.MPS – 2.42 Dep + 0.0086 Per 

Rule 5: [34 cases] 

If DEM <= 4.5947 and ISA > 0.6637 

Expression: WD = 17.0543 - 3.9251 DEM - 0.44 UGI.MPS - 1.375 Dep + 0.0171 Per 

Rule 6: [74 cases] 

If Dep > 0.0282 and ISA > 0.2314 and ISA <= 0.6637 

Expression: WD = 70.6914 - 0.0334 Per - 3.3 Dep + 0.15 ISA - 1.25 Slope.std – 1.27 DEM 

Rule 7: [20 cases] 

If DEM > 5.5781 and Dep <= 0.0964 and ISA > 0.6637 

Expression: WD = 0.5679 + 9.68 Dep + 0.94 ISA + 0.675 DEM 

Rule 8: [24 cases] 

If ISA <= 0.6637 and Dep <= 0.0282 and UGI.MPS <=0.7661 

Expression: WD = 6.0651 + 2.14 ISA - 0.26 UGI.MPS - 3.32 Slope.std - 0.0028 Per 

Rule 9: [25 cases] 

If ISA <= 0.6637 and Dep <= 0.0282 and UGI.MPS > 0.7661 
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Expression: WD = 3.9305 - 5.01 DEM + 8.47 ISA + 0.28 UGI.MPS – 0.41 Slope.std +1.22 Dep 

Shenzhen city 

Rule 1: [110 cases] 

If ISA <= 0.5560 

Expression: WD = 0.2628 + 0.53 ISA + 0.0025 UGI.MPS - 0.0035 ISA.AI - 0.23 ISA.PD + 0.0021 DEM.std 

Rule 2: [24 cases] 

If DEM.std <= 11.7229 and ISA > 0.5560 and ISA.PD <= 0.0368 and UGI.MPS > 7.8661 

Expression: WD = -2.1749 + 0.1346 DEM.std - 27.09 ISA.PD + 4.3 ISA - 0.0169 UGI.MPS - 0.0034 ISA.AI 

Rule 3: [10 cases] 

If DEM.std <= 11.7229 and ISA > 0.6430 and UGI.MPS <= 7.8661 

Expression: WD = 0.7646 + 1.37 ISA + 0.06767 DEM.std - 0.0092 ISA.AI - 0.22 ISA.PD 

Rule 4: [48 cases] 

If DEM.std > 11.7229 and ISA > 0.5560 

Expression: WD = -6.9184 + 2.63 ISA - 0.0825 ISA.AI - 2.12 ISA.PD - 0.0086 UGI.MPS + 0.0019 DEM.std 

Rule 5: [24 cases] 

If DEM.std <= 11.7229 and ISA > 0.5560 and ISA <= 0.6431 and UGI.MPS <= 7.8661 

Expression: WD = 10.0279 - 10.42 ISA - 0.0342 ISA.AI - 0.82 ISA.PD - 0.0031 UGI.MPS + 0.1346 DEM.std 

Rule 6: [20 cases] 

If DEM.std <= 11.7229 and ISA.PD > 0.0368 and UGI.MPS > 7.8661 

Expression: WD = -0.7601 + 0.0676 DEM.std + 0.85 ISA + 0.0169 UGI.MPS – 0.0825 ISA.AI 
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4.1 Abstract 

Urban waterlogging is a hydrological cycle problem that seriously affects human activities and the economy. 

Characterizing waterlogging variation and its driving factors is conducive to preventing the damage of such 

disasters. Conventional methods, because of the high spatial heterogeneity and the non-stationary complex 

mechanism of urban waterlogging, are not able to fully capture the urban waterlogging spatial variation and 

identify the waterlogging susceptibility areas. A more robust method is recommended to quantify the 

variation trend of urban waterlogging. Previous studies have simulated the waterlogging variation in 

relatively small areas. However, the relationship between variables is often ignored, which cannot 

comprehensively reveal the dominant drivers affecting urban waterlogging. Therefore, a novel approach is 

proposed that combined the stepwise cluster analysis model (SCAM) and hierarchical partitioning analysis 

(HPA) within a general framework and verifies the applicability through logistic regression, artificial neural 

network, and support vector machine. According to the dominant driving factors, different simulation 

scenarios are established to analyze waterlogging density variation. Results found that the SCAM provides 

accurate and detailed simulated results both in urban centers where waterlogging frequently occurs and 

urban fringe with few waterlogging events, which shows an excellent performance with a high classification 

accuracy and generalization capability. HPA detected that the impervious surface abundance (28.07%), 

vegetation abundance (20.80%), and cumulate precipitation (16.25%) are the dominant drivers of 

waterlogging. This result suggests that priority should be given to controlling these three factors to mitigate 

the risk of waterlogging. It is interesting to note that under different urbanization and rainfall scenarios, the 

urban waterlogging susceptibility has a considerable variation. The watershed spatial location and watershed 

characteristics are relevant aspects to be considered in identifying and assessing waterlogging susceptibility, 

which provides original insights that urban waterlogging mitigation strategies should be developed according 

to different local conditions and future scenarios. 

Keywords: urban waterlogging; stepwise cluster analysis model; hierarchical partitioning analysis; natural 

and anthropogenic factors; scenario simulation 

4.2 Introduction 

Under the background of global climate change and rapid urbanization, waterlogging has become a frequent 

disaster in Chinese cities (Yu et al., 2018; Huang et al., 2017; Xue et al., 2016). Urbanization has increased the 
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interaction between human society and the ecological environment, which leads to a series of social-

environmental problems (Huang and Shen 2018; Wu et al., 2018). This conversion has changed urban 

hydrological conditions, thereby reducing water storage capacity and increasing surface runoff. Moreover, 

the surface roughness of the impervious surface is far lower than vegetation cover (i.e., grassland or forest). 

Thus the confluence speed of surface runoff will be significantly accelerated, which means that the 

confluence time of water flow is reduced considerably, as a consequence increasing the pressure of the 

drainage system (Shuster et al., 2005; Sofia et al., 2017; Chen et al., 2015). These changes led to a direct 

environmental consequence - increasing the risk of urban waterlogging disasters. 

According to the "Statistical Bulletin of Flood and Drought Disasters in China" of the Ministry of Water 

Resources, an average of 157 cities experienced urban waterlogging from 2006 to 2017 

(http://www.mwr.gov.cn/). On May 7, 2017, a heavy rainstorm (over 250 mm) occurred in Guangzhou, which 

affected more than 30,000 people, resulting in a large-scale traffic jam (China Global Television Network). 

Urban waterlogging prevention has become a prominent shortcoming of China’s national flood control, 

which has severely affected the safety of people’s lives and property (Zhang, 2015). Therefore, simulating 

and predicting the waterlogging variation is conducive to providing useful theoretical and practical references 

for urban waterlogging prevention, sustainable urban development, and urban planning. 

In recent years, the irreversible damage caused by urban waterlogging incidents has highlighted the necessity 

of implementing waterlogging mitigation measures and management (Ahammed 2017; Sofia et al., 2014; 

Shao et al., 2016; Zhang et al., 2020; Zhang et al., 2014). In general, characterizing the urban waterlogging 

variation is conducive to revealing the urban waterlogging prone areas, thereby minimizing waterlogging 

negative effects (Wang et al., 2012; Miao et al., 2019; Tang et al., 2018a). However, as many researchers have 

pointed out, urban waterlogging is influenced by the natural environment (precipitation and urban 

topography) and human activities (land-use change and drainage network) (Wu and Zhang 2017; Zhang et 

al., 2018b; Su et al., 2018). Furthermore, the landscape heterogeneity leads to non-stationary and non-linear 

characteristics of urban waterlogging. Thereby, it is difficult to simulate urban waterlogging variation 

accurately. Generally, methods for characterizing urban waterlogging variation can be summarized into four 

categories: (1) the multivariate statistical methods, (2) the hydrological and hydrodynamic models, (3) the 

qualitative model based on expert knowledge, and (4) the machine learning models. For the first method, 

the multivariate statistical methods (such as stepwise regression model) are widely used to analyze the 
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impact of various variables on waterlogging (Sofia et al., 2017; Huang et al., 2018; Huang and Shen 2018). 

However, due to the tremendous landscape heterogeneity, it is difficult to utilize them to simulate the spatial 

variation of urban waterlogging accurately. Consequently, this method is gradually being replaced by more 

robust and precise methods. Concerning the second group, the hydrological and hydrodynamic models (such 

as SWMM, MIKE, HEC-RAS, LISFLOOD-FP) are extensively utilized to simulate the urban waterlogging process 

(Youssef et al., 2011; Quan 2014; Bisht et al., 2016; Cheng et al., 2017; Li et al., 2016). The storm-water 

management model (SWMM), as one of the representative hydrological models, is able to analyze various 

hydrological processes generated by surface runoff (Kai et al., 2017; Burger et al., 2014; Babaei et al., 2018). 

However, the estimation of runoff from these models are usually based on the empirical estimation or the 

curve proposed by the Soil Conservation Service (SCS-CN), which may not be sufficient to describe specific 

differences in complex urban landscapes (Zhang et al., 2018b; Zope et al., 2016). Furthermore, the artificial 

structures (buildings, roads) or trees will change the direction of the surface runoff, resulting in the 

complicated water flow movement. This undoubtedly limits the application of hydrological models in urban 

areas to some extent. To overcome the shortcomings, the two-dimensional hydrodynamic models based on 

the partial differential equations can better simulate the water flow process under different terrain 

conditions, which is more suitable for great spatial heterogeneity areas (Tsanis and Boyle 2001; Paiva et al., 

2011; Felder et al., 2017). However, these models rely heavily on high-precision local data (such as high-

resolution DTM/DEM data and drainage network) and a large amount of computing resources, resulting only 

suitable for small research areas. Although these models can accurately simulate the physical process of 

waterlogging in a relatively small catchment, findings in small areas tend to be site-specific, and may not be 

useful for large-scale studies. Concerning the third category, the qualitative models such as the analytic 

hierarchy process (AHP) and multi-criteria decision analysis (MCDA) strongly depend on expert knowledge 

(Tang et al., 2018b; Samanta et al., 2016; Brito et al., 2019). These qualitative models use the AHP to 

determine factor weights or integrate explanatory factors into a multicriteria sensitivity map to simulate 

urban waterlogging events (Zhao et al., 2018; Chowdary et al., 2013). For example, Hong et al. (2018) used 

the hierarchy process and fuzzy weight evidence to construct a flood susceptibility map. However, some 

studies have pointed out that the methods rely on expert knowledge and judgment, which introduces 

uncertainty into analysis. For the fourth group, the machine learning models, such as an artificial neural 

network (ANN), support vector machine (SVM), decision tree (DT), and random forest (RF), have become a 

common method for urban waterlogging simulation, susceptibility modeling, and risk assessment (Pradhan, 



136  

2012). These methods are regarded as a black box to map the relation between input and output of training 

samples, which shows advantages in complex data modeling. For example, Gupta et al. (2017) identified the 

urban waterlogging sensitive areas and predicted the severity using an ANN, which indicated that this method 

could effectively and accurately predict the severity of waterlogging. In Johor River Basin, Malaysia, Kia et al. 

(2012) integrated the ANN and GIS for flood simulation. The study conducted in Beijing also demonstrates 

that the ANN is suitable for urban waterlogging risk assessment (Lai et al., 2017). For the SVM, Tang et al. 

(2019) applied a particle swarm optimization and an SVM in an integrated approach to evaluate the urban 

waterlogging susceptibility. In Terengganu, Malaysia, different kernel types of SVM models were used to 

assess the risk of urban floods (Tehrany et al., 2015). Furthermore, Tehrany et al. (2013) also applied a rule-

based decision tree to predict the flood susceptible areas in the Kelantan River basin. The results of these 

studies have confirmed to some extent that the ANN and SVM are effective in simulating urban waterlogging. 

However, these models are sensitive to the quality of the sample data. If the value of validation samples 

exceeds the range of training samples, the accuracy of the model will be greatly affected, resulting in poor 

performance. Furthermore, in the case of a very huge sample size, these models require considerable time 

consuming and additional modeling parameters. 

Compared with the above methods, a more transparent structure and computational efficiency model is 

needed for urban waterlogging analysis and simulations. The stepwise cluster analysis model (SCAM) is a 

non-parametric statistical method based on multivariate analysis of variance, which has no statistical 

assumptions and can process data from different measurement scales. This method is a machine learning 

paradigm based on a cluster tree, which can be used for multivariate modeling (multiple x and y, i.e., 

supervised learning) and clustering (i.e., unsupervised learning). It has important advantages in investigating 

the inherent non-linear/discrete relationship between the dependent and independent variables (Fan et al., 

2015; Wang et al., 2015; Sun et al., 2019; Wang et al., 2013). Compared to other methods such as ANN and 

SVM, it performs the more transparent structure of a cluster tree to reflect the complex relationship between 

the dependent and independent variables. Furthermore, it is also advantageous in the prediction process, 

which can predict the given independent sample sets or an individual case without given linear/non-linear 

functions. The studies of Fan et al. (2016), Sun et al. (2019), Zhuang et al. (2016), and Sun et al. (2018) are 

good examples of using the SCAM for climate prediction, streamflow forecast, and urban ecosystem variation 

simulation which indicated that SCAM is useful in this respect. However, few studies have applied SCAM for 

urban waterlogging variation assessment. Therefore, considering the spatial non-stationary and complexity 
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of urban waterlogging, we attempt to propose the SCAM in this study to capture the spatial variation 

characteristics of such events. Furthermore, although the machine learning model can obtain accurate 

analysis results, it cannot provide the relationship between urban waterlogging and various influencing 

factors. This weakness ignores the relationship between variables, which makes the structure and 

performance of the model difficult to understand. The quantitative relationship between 

natural/anthropogenic factors and urban waterlogging is not fully understood. We do not know how much 

each input factor affects the model. To what extent do these factors contribute to urban waterlogging? 

Which factors have the dominant effect on waterlogging variation? Answering these questions is essential to 

provide theoretical references for better waterlogging management and future urban planning. Therefore, 

while using the SCAM to simulate urban waterlogging spatial variation, we innovatively introduce hierarchical 

partitioning analysis (HPA) to help us understand the mechanism of urban waterlogging. As a complementary 

analysis, the HPA reveals the relative contribution of each SCAM input variable, which provides insights into 

which factor is more critical in determining waterlogging. Furthermore, according to these dominant factors, 

different simulation scenarios were established to predict the response of waterlogging under the change of 

waterlogging dominant driving factors, which could provide practical suggestions for urban waterlogging risk 

identification and control. 

The current research aims to explicit the urban waterlogging variation and identify the dominant drivers using 

the SCAM and ensemble the statistical method of HPA. Then the proposed method will be applied to the 

example of a highly urbanized coastal metropolis– Guangzhou, P.R. China, selected as a useful case study 

where waterlogging events frequently occur. In details, the specific objectives are: (1) develop the SCAM and 

HPA, verify its applicability through accuracy verification indicators (overall accuracy, mean absolute 

percentage error, modify relative error, correlation coefficient, and Nash-Sutcliffe model efficiency index) 

and three comparative analysis models: logistic regression (LG), artificial neural network (ANN), and support 

vector machine (SVM); (2) reveal the spatial variation characteristics of urban waterlogging and clarify the 

dominant drivers that are deriving waterlogging variations; (3) establish urban waterlogging simulation 

scenarios to simulate the waterlogging spatial variation under the change of dominant factors, and identify 

the urban waterlogging susceptibility areas under different development scenarios. This study is expected to 

provide useful information for further application of the SCAM and HPA in urban waterlogging simulation 

and assessment as well as bring inspiration to waterlogging risk prevention. 
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4.3 Study area 

We selected the central urban districts of Guangzhou (Liwan, Yuexiu, Tianhe, Haizhu, Baiyun, and Huangpu 

district) as the study area, with a total terrestrial area of 1166.37 km2. The Guangzhou city (112°57′~114°3′E 

and 22°26′~23°56′N) is the central city of the Guangdong-Hong Kong-Macao Greater Bay Metropolitan 

Region, which is known as one of China's three largest cities with a population of 14.90 million in 2019. This 

city is also one of the most economically dynamic cities in mainland China. In 2019, the gross domestic 

product (GDP) of Guangzhou is US$ 338.23 billion (http://www.stats.gov.cn/). It has an annual precipitation 

of 1623.6~1899.8 mm and 189 precipitation days (http://www.tqyb.com.cn/). The rainy season in Guangzhou 

is spanning from April to September, mainly accounting for about 85% of the annual precipitation, which 

leading serious urban waterlogging problems in Guangzhou. During the last 40 years, a large number of green 

areas have been converted into construction land. The rapid urbanization has greatly changed the original 

hydrological conditions, resulting in a sharp increase in the risk of urban waterlogging. Generally, Guangzhou 

city is a typical representative of rapid urbanization and industrialization since the “reform and opening up” 

policy. Therefore, selecting this area to understand the urban waterlogging variation and dominant drivers 

can not only provide suggestions and guidance to alleviate urban waterlogging, but also provide theoretical 

bases for other rapidly urbanized regions. 

 

Figure 4-1 The geographic location of Guangzhou Central Urban Districts. 
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4.4 Data and methodologies 

4.4.1 Data sources 

The data in this study included urban waterlogging records, topography (i.e., elevation, slope), precipitation, 

land cover composition, spatial configuration, gross domestic product (GDP), and drainage facilities. The 

waterlogging records were used to construct a waterlogging inventory map, while the remaining datasets 

were utilized as natural and anthropogenic factors of urban waterlogging. We first mapped the spatial 

location of waterlogging events through Google Earth according to the recorded addresses. Secondly, to have 

the same projected coordinate system and spatial extent as other spatial datasets, the Google maps with the 

waterlogging locations were calibrated through the Georeferencing tool in ArcGIS, and the calibrate error is 

less than 50 m. Finally, from the period of 2009 and 2015, the urban waterlogging events in the study area 

consisted of 423 urban waterlogging points (Fig.S4-1). 

Moreover, the high-resolution DEM (spatial resolution 5 m, vertical accuracy 0.1 m) was acquired from the 

Geographical Situation Survey Project (GSSP) in 2012. The land cover data (spatial resolution 0.5 m) and urban 

drainage network were obtained from Guangzhou Planning and Natural Resources Bureau. Subsequently, 

the spatial distributions of precipitation and gross domestic product were gained from the Resources and 

Environmental Data Cloud Platform, the Chinese Academy of Sciences. 

Table 4-1 Overview of data used in this study. 

Data Format Resolution Time Source 

Urban waterlogging 

records 

Esri shapefile Point 2009~2015 

Guangzhou Water Authority 

(http://swj.gz.gov.cn/) 

Digital Elevation Model Raster 5 m 2012 Guangzhou Planning and Natural 

Resources Bureau 

(http://ghzyj.gz.gov.cn/) 

Land cover data Raster 0.5 m 2012 

Urban drainage network Esri shapefile Line 2012 

Precipitation Raster 1 km 2009~2015 Resources and Environmental Data 

Cloud Platform (http://www.resdc.cn/) Gross domestic product Raster 1 km 2009~2015 

 

4.4.2 Watershed unit 
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The rainwater imbalance is a necessary condition for the occurrence of urban waterlogging. If the rainwater 

inflow into the watershed exceeds the rainwater discharge capacity, the urban waterlogging event will 

eventually occur. Using a raster or grid as an analysis unit has the advantages of rapid computation and easy 

operation (Tang et al., 2019; Zhang et al., 2018a; Zhao et al., 2019; Tehrany et al., 2019; Hong et al., 2018). 

However, urban waterlogging is a hydrological cycle problem, which is significantly related to the watershed 

surface characteristics (geomorphology, hydrological conditions, land cover features, surface runoff 

generation mechanism). It is not suitable to analyze it only using a specific raster unit but instead studied 

from the perspective of the watershed unit. If grid units are simply used as the analysis units, the effect of 

watershed geomorphology and hydrodynamic would inevitably be ignored, which undoubtedly brought 

some biases to the research results. Therefore, in this study, we decided to introduce the watershed as the 

analysis unit to improve the reliability of the SCAM in characterizing the urban waterlogging variation. 

In the field of urban hydro-ecology, scholars have proposed the concept of the "watershed-land" unit, which 

combines the hydrological watershed unit and urban planning unit (Yu et al., 2018; Zhang et al., 2007). In this 

study, we generated the watershed unit, which referred to the method recommended by Yu et al. (2018). 

We first extracted the main drainage channels according to the river distribution and urban drainage network. 

Then, in the hydrological analysis module of ArcGIS-Pro, the DEM data with a spatial resolution of 5 m was 

utilized to divide the watershed units. The watershed division was made using the D8 algorithm, which was 

more efficient in terms of computational analysis at larger scales after comparing it with the D-Infinity 

algorithm and MFD flow method. Finally, the study area was divided into 468 urban watershed units with an 

average area of 3.4 km2 (Fig.S4-1). Base on this, the waterlogging density of each watershed unit could be 

determined. 

4.4.3 Determination of explanatory factors 

In this section, we introduced the fifteen natural and anthropogenic variables (7 natural variables, 8 

anthropogenic variables) which were used as the explanatory variables. The natural variables included 

elevation, elevation standard deviation (elevation.std), relative elevation (RE), slope, slope standard 

deviation (slope.std), topographic roughness index (TRI), and precipitation (Pre). The anthropogenic variables 

were composed of vegetation abundance (GV), impervious surface abundance (%ISA), mean patch size (MPS), 

patch density (PD), largest patch index (LPI), aggregation index (AI), urban drainage density (DD), and gross 

domestic product (GDP). 
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4.4.3.1 Topographic and precipitation variables 

In this study, the topographic variables were generated from the 5 m DEM data (Fig.S4-2). The elevation, 

relative elevation (RE), elevation.std, slope, and slope.std were calculated from ArcGIS, while the TRI index 

was calculated in SAGA GIS software. The RE represents the difference between the maximum elevation and 

the minimum elevation of each watershed unit. 

 RE = 𝐸𝑚𝑎𝑥 − 𝐸𝑚𝑖𝑛 (4.1) 

where Emax and Emin represent the maximum and minimum elevation in watershed unit i. When RE value is 

large, it indicates that the elevation fluctuation in the watershed unit is large. In contrast, the elevation 

fluctuation is relatively gentle. Since the elevation of the terrain always had some sudden changes, the 

standard deviation of elevation was added to further reflect the fluctuation degree of elevation. Similarly, 

the slope.std was used to measure the slope fluctuation of each watershed unit. The topographic roughness 

index (TRI) is a topographic index to quantify the terrain fluctuation between eight adjacent grids (Riley et 

al., 1999; Werner et al., 2005). 

 TRI = Y [∑(𝑥𝑖𝑗 − 𝑥00)
2
]
1/2

 (4.2) 

where xij is the elevation of each neighbor cell to cell (0,0). Continuous heavy rainfall has a certain effect on 

urban waterlogging. However, the data obtained from the Guangzhou Water Authority did not list the 

specific year of each waterlogging event from 2009 to 2015. Therefore, we calculated the average 

accumulated precipitation (Pre) from 2009 to 2015 to represent precipitation intensity, thereby indicating 

which regions received more rainfall. 

4.4.3.2 Land cover characteristics 

In this study, two land cover composition indicators were established, i.e., vegetation abundance (%GV) and 

impervious surface abundance (%ISA) based on the 0.5 m UAV images, obtained from the Geographical 

Situation Survey Project (GSSP) in 2012 (Fig.S4-3). The object-oriented classification method was utilized to 

extract vegetation abundance and impervious surface abundance. The overall accuracy of vegetation 

abundance and impervious surface abundance exceeds 85%. Finally, the zonal statistics tool was utilized to 

calculate the proportion of vegetation coverage and impervious surface in each watershed unit. In this study, 

we investigated the land cover spatial configuration characteristics by calculating the landscape pattern 

metrics from the perspective of fragmentation and aggregation. Four landscape metrics were contained 
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including: mean patch size (MPS), patch density (PD), largest patch index (LPI), and aggregation index (AI). 

The MPS and PD show the average area size and patch density of land cover features respectively, which can 

indicate the fragmentation of land cover features. The smaller MPS or the greater PD indicates the higher 

landscape fragmentation. Then, the LPI and PD were utilized to quantify the landscape aggregation. The 

larger LPI and AI indicate a higher aggregation degree. These metrics can reflect the overall landscape pattern 

features comprehensively and the redundancy is relatively small. The computing equations and meaning of 

these landscape pattern metrics were specified in Table 4-2. Fragstats 4.2 was used to calculate these metrics. 

Table 4-2 The selected landscape pattern metrics. 

Landscape metrics Equation Meaning 

Mean patch size 

(MPS) 
∑

𝑠𝑖
𝑛

𝑛

𝑖=1

 The average size of land cover features within a watershed unit 

Patch density (PD) 
𝑠𝑖
𝑆

 
The number of patches is divided by the total landscape area. A 

bigger value means higher fragmentation. 

Largest patch index 

(LPI) 
max(𝑠𝑖) ×

100

𝑆
 

The largest land cover patch within an analysis unit, which can 

measure the dominance of land cover types 

Aggregation Index 

(AI) 
[

𝑔𝑖
𝑚𝑎𝑥 → 𝑔𝑖

] 
Describe the degree of agglomeration or extension trend of 

different landscape types. 

*si is the area of patch i, S is the total area of all patches, n is the number of patches, gi is the number of 

adjacent patches  

4.4.3.3 Urban drainage network and gross domestic product 

We calculated the drainage density (DD) to measure the impact of drainage facilities on urban waterlogging 

(Fig.S4-4). According to the drainage network data, the line density in the ArcGIS pro was adopted to compute 

the density of the drainage network in each search radius. 

 DD =
∑ (𝐿𝑖 × V𝑖)
𝑖
𝑖=1

𝐴
 (4.3) 

where A is the area of search radius, Li indicates the length of each drainage network within the search radius, 

and the corresponding weight is Vi. Finally, the DD is normalized from 0 to 1.  

Previous studies had shown that urban waterlogging was affected by environmental conditions and human 

activities. The GDP could reflect the economic vitality of a region, which could assess the interference of 

human activities on the natural environment to a certain extent. Therefore, in this study, we utilized the GDP 
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spatial distribution data obtained from the REDCP to reflect the intensity of human activities. The data was 

based on national GDP records, land cover features, and nighttime light data, and then a multi-factor weight 

distribution method is utilized to realize the spatialization of GDP. However, due to the accessibility of GDP 

spatial distribution data, we only obtained the data in 2010 and 2015. Then we averaged and normalized the 

GDP data from 2010 to 2015. 

4.4.4 Model descriptions and implementations 

4.4.4.1 Explanatory variables selection 

In modeling urban waterlogging variation, the variables in the selected dataset might be correlated with each 

other, and such multicollinearity would lead to the instability of the analysis results. It was preferred to select 

a predictor subset that is highly correlated with the waterlogging and low multicollinearity. Therefore, we 

used the correlation feature selection (CFS) in the R statistical package of “RWeka” to avoid the 

multicollinearity problem and to filter out a set of effective predictors for SCAM. The CFS performed a 

forward or backward search in the predictor subsets and evaluated the value of subsets by considering the 

individual predictive power and the degree of redundancy. As shown in Table 4-3, we selected these effective 

variables as the input of prediction factors (i.e., x), and the density of waterlogging event was used as the 

output factor (i.e., y).  

Table 4-3 The effective variables and correlation feature selection result. 

Categories Selected variables Correlation feature selection 

Land cover composition 
%ISA 0.6762 

%GV 0.6528 

Topographic factors 

RE 0.4728 

slope.std 0.4124 

TRI 0.3346 

Land cover spatial configuration 

GVLPI 0.3523 

GVMPS 0.2491 

ISAMPS 0.2355 

Precipitation and drainage facilities 
Pre 0.5430 

DD 0.4567 

* GVLPI means the largest patch index for vegetation abundance, the GVMPS and ISAMPS are the mean patch 

size for vegetation abundance and impervious surface abundance 
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4.4.4.2 Stepwise cluster analysis modeling approach 

The concept of the SCAM is based on the multivariate analysis of variance (Wang et al., 2013). It divides the 

dependent variables into a cluster tree through a series of cutting or merging actions (Fan et al., 2015). The 

cutting action is dividing one group into two subgroups, while the merging action is to combine two 

subgroups. The framework of the SCAM is shown in Fig.S4-5. The establishment of SCAM includes the 

following parts: (1) construct the effective variables matrix (x) and urban waterlogging density matrix (y); (2) 

cutting or merging the waterlogging density variables to generate a cluster tree according to the condition 

of input factors; (3) selecting the best cluster tree bases on the model performance; (4) verifying the 

applicability of SCAM. 

In the SCAM, the criteria for cutting or merging action for cluster trees are based on Wilks’ likelihood-ratio Λ, 

which are defined as follows: 

 Λ =
|Q|

|𝑄 +𝑊|
 (4.4) 

where Q and W represent the sums of squares and cross product (SSCP) matrix within and between groups, 

respectively. Also, we assume that there are two subclusters c and v, which contain nc and nv samples. Thus, 

it can be represented as: ci = (ci1, ci2, ci3, …, cid), i = 1, 2, 3, …, nc and vj =  (vj1, vj2, vj3, …, vjd ), j = 1, 2, 3, …, nv. Then, 

the Q and W can be calculated by Eq(4.5-4.8): 

 Q =∑(c𝑖 − c)′

𝑛𝑐

𝑖=1

(c𝑖 − c) +∑(v𝑗 − v)′

𝑛𝑣

𝑗=1

(v𝑗 − v) (4.5) 

 W =
𝑛𝑐 × 𝑛𝑣
𝑛𝑐 + 𝑛𝑣

(c − v),(c − v) (4.6) 

 c =
1

𝑛𝑐
∑c𝑖

𝑛𝑐

𝑖=1

 (4.7) 

 v =
1

𝑛𝑣
∑𝑣𝑗

𝑛𝑣

𝑗=1

 (4.8) 

Previous research results show that when the calculation result of the formula (4.4) is the minimum value, 

which means that the cutting action of the dependent variable - waterlogging density is the best (Huang, 

1992). However, if the formula (4.4) result is huge, which means that the SCAM cannot perform a cutting 

operation. Thus, the SCAM should perform a merging action to merge the subclusters c and v into the upper-

class g. According to Rao's F-statistic, we have: 
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 R =
1 − Λ1/𝑠

Λ1/𝑠
×
𝑍 × 𝑆 − 𝑃 ×

(𝐾 − 1)
2

+ 1

𝑃 × (𝐾 − 1)
 (4.9) 

 Z = nℎ − 1 − (𝑃 + 𝐾)/2 (4.10) 

 S =
𝑃2 × (𝐾 − 1)2 − 4

𝑃2 + (𝐾 − 1)2 + 5
 (4.11) 

The equation (4.9) obeys the degree of freedom, while K and P are the number of clusters and dependent 

variables, respectively. In this case, K = 2 (c and v clusters in this study), the Wilks’ lambda statistic Λ is 

performed: 

 F(𝑑, 𝑛𝑐 + 𝑛𝑣 − 𝑑 − 1) =
1 − Λ

Λ
×
𝑛𝑐 + 𝑛𝑣 − 𝑑 − 1

𝑑
 (4.12) 

Therefore, the cutting and merging criteria of the cluster tree become based on the F-test. The first step is 

the cutting of subclusters. To get the optimal cutting action, the sequence statistical indicator {Kr} is calculated 

according to the total sample dispersion matrix and inter-group sample dispersion matrix for the dependent 

variable (cluster g). 

 

𝑏𝑖𝑗(𝑘
𝑟, 𝑛𝑔

𝑟)

=
𝑛𝑔
𝑟𝑘𝑟 × {[𝐵𝑖

(𝑔)(𝑘𝑟) − 𝐵𝑖
(𝑔)
(𝑛𝑔

𝑟)] × [𝐵𝑗
(𝑔)(𝑘𝑟) − 𝐵𝑗

(𝑔)
(𝑛𝑔

𝑟)]}

𝑛𝑔
𝑟 − 𝑘𝑟

 

(4.13) 

 𝑡𝑖𝑗(𝑛𝑔
𝑟) = 𝐴𝑖𝑗

(𝑔)
(𝑛𝑔

𝑟 ) − 𝑛𝑔
𝑟𝐵𝑖

(𝑔)
(𝑛𝑔

𝑟)𝐵𝑗
(𝑔)
(𝑛𝑔

𝑟 ) (4.14) 

 𝑤𝑖𝑗(𝑘
𝑟 , 𝑛𝑔

𝑟) = 𝑡𝑖𝑗(𝑛𝑔
𝑟) − 𝑏𝑖𝑗(𝑘

𝑟 , 𝑛𝑔
𝑟) (4.15) 

For each independent variable, the independent variable index r* for cutting action judgment is obtained. 

Thus, we can obtain the optimal cutting point K*r for cluster g and the corresponding independent variable. 

If F-test is satisfied: 

 F(𝑃,, 𝑛𝑔
𝑟∗ − 𝑃, − 1) =

1 − Λ(𝑘∗𝑟
∗
, 𝑛𝑔

𝑟∗)

Λ(𝑘∗𝑟
∗
, 𝑛𝑔

𝑟∗)
×
𝑛𝑔
𝑟∗ − 𝑃, − 1

𝑃,
≥ 𝐹1 (4.16) 

the cluster g can be divided into two subclusters (c and v) according to the distribution of xr*. In contrast, if 

the equation (4.16) is not satisfied, which means that the cluster g cannot divide into two subclusters c and 

v. Then the model will test whether the other clusters meet the criteria of equation (4.16). When none of the 

subclusters can continue to be split, the next step will take the merging action. 

The second step is to merge the subclusters. To test whether the subclusters c and v can be combined, we 

first calculate the following total dispersion matrix and inter-group sample dispersion matrix. 
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𝑡𝑖𝑗(𝑛𝑐 , 𝑛𝑣) = 𝐴𝑖𝑗
(𝑐)(𝑛𝑐) + 𝐴𝑖𝑗

(𝑣)(𝑛𝑣) −
𝑛𝑐𝐵𝑖

(𝑐)(𝑛𝑐) + 𝑛𝑣𝐵𝑖
(𝑣)(𝑛𝑣)

𝑛𝑐 + 𝑛𝑣

−
𝑛𝑐𝐵𝑗

(𝑐)(𝑛𝑐) + 𝑛𝑣𝐵𝑗
(𝑣)(𝑛𝑣)

𝑛𝑐 + 𝑛𝑣
 

(4.17) 

 𝑏𝑖𝑗(𝑛𝑐 , 𝑛𝑣) =
𝑛𝑐𝑛𝑣 [𝐵𝑖

(𝑐)(𝑛𝑐) − 𝐵𝑖
(𝑣)(𝑛𝑣)] × [𝐵𝑗

(𝑐)(𝑛𝑐) − 𝑛𝑣𝐵𝑗
(𝑣)(𝑛𝑣)]

𝑛𝑐 + 𝑛𝑣
 (4.18) 

 𝑤𝑖𝑗(𝑛𝑐 , 𝑛𝑣) = 𝑡𝑖𝑗(𝑛𝑐 , 𝑛𝑣) − 𝑏𝑖𝑗(𝑛𝑐 , 𝑛𝑣) (4.19) 

Then F-test will be carried out if it satisfied the following requirements: 

 F(𝑃,, 𝑛𝑐 + 𝑛𝑣 − 𝑃, − 1) =
1 − Λ(𝑛𝑐 + 𝑛𝑣 − 2,1)

Λ(𝑛𝑐 + 𝑛𝑣 − 2,1)
×
(𝑛𝑐 + 𝑛𝑣) − 𝑃, − 1

𝑃,
< 𝐹2 (4.20) 

then the subclusters c and v can be merged into a cluster g. In contrast, if the equation (4.20) is not satisfied, 

which means that the subclusters c and v cannot merge into a new cluster. Then the model will consider 

whether other subclasses can be combined. When cutting and joining action cannot be performed, we have 

completed all calculations and tests to obtain a cluster tree for each dependent variable. In the process of 

prediction, it follows the criteria of the cluster tree just established. When predicting a new sample, it is 

necessary to compare the prediction values with sample value at each intermediate node of the cluster tree. 

At this time, the predicted value ye of the new sample e’ dependent variable can be expressed as: 

 𝑦𝑖
(𝑒′)

=
1

𝑛𝑒′
∑𝑦𝑖,𝑘

(𝑒′)

𝑛
𝑒′

𝑘=1

 (4.21) 

Thus, the urban waterlogging disasters in each watershed simulation can be developed. 

4.4.4.3 The hierarchical partitioning analysis 

The natural and anthropogenic influencing factors are interdependent and interactive due to the complex 

mechanisms of urban waterlogging. The HPA was performed to explore the importance of model input 

factors on urban waterlogging variation. This was effective for clarifying the individual effect of each 

influencing factor on waterlogging magnitudes. To consider all possible combinations of the factors, the R 

statistical package of “R-Leaps” was utilized to construct all subsets regression (https://cran.r-project.org/). 

If the input variables of SCAM are n, then n all subsets regression models will be established to employ in the 

HPA. Then the HPA calculated the relative importance of each input factor by a random transformation of 

the data matrix of input factors (x matrix) and urban waterlogging density (y matrix). Under the background 

of great heterogeneity, the HPA is a useful way to determine which variables have a dominant effect in 
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deriving urban waterlogging variations. This provided theoretical suggestions for constructing urban 

waterlogging simulation scenarios. Finally, the HPA was implemented in the R statistical package of “hier.part” 

and “gtools” (R Core Development Team, 2008; Nally, 2000). 

4.4.4.4 Model accuracy verification 

In this study, we randomly selected 70% watershed units for model calibration and 30% watershed units for 

validation. We measured the performance of the model from the perspective of accuracy and efficiency. 

Firstly, the overall accuracy (OA) was introduced to represent the percentage of the watershed units that 

were correctly identified as waterlogging units and non-waterlogging units. Secondly, the systematic 

deviation of simulated waterlogging density was calculated through the mean absolute percentage error 

(MAPE). Thirdly, the modified relative error (MRE) represented the error between simulation value and 

actual density for each watershed unit. Then, the correlation coefficient (R2) was considered to indicate the 

difference between the simulated and actual density of each watershed unit to a certain extent. If the 

simulated density of each watershed was the same as the observed value, the fitting coefficient would be 1. 

Finally, the Nash-Sutcliffe model efficiency index (NSE) selected as an evaluation index of model efficiency, 

which represented the model simulation performance, was calculated according to the following equations: 

 OA =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (4.22) 

 
MAPE =

1

𝑛
∑|

WD𝑜𝑏𝑠,𝑖 −WD𝑠𝑖𝑚,𝑖

WD𝑜𝑏𝑠,𝑖
| × 100%

𝑖

𝑖=1

 (4.23) 

 MRE =
WD𝑠𝑖𝑚,𝑖 −WD𝑜𝑏𝑠,𝑖

(|WD𝑜𝑏𝑠,𝑖 +WD𝑠𝑖𝑚,𝑖| + 1)
× 100% (4.24) 

 R2 =
(𝑖 ∑ WD𝑜𝑏𝑠,𝑖 ×

𝑖
𝑖=1 WD𝑠𝑖𝑚,𝑖 − ∑ WD𝑜𝑏𝑠,𝑖 × ∑ WD𝑠𝑖𝑚,𝑖

𝑖
𝑖=1

𝑖
𝑖=1 )

2

[𝑖 ∑ (WD𝑜𝑏𝑠,𝑖)
2 − ∑ (WD𝑜𝑏𝑠,𝑖)

2𝑖
𝑖=1

𝑖
𝑖=1 ] × [𝑖 ∑ (WD𝑠𝑖𝑚,𝑖)

2 − ∑ (WD𝑠𝑖𝑚,𝑖)
2𝑖

𝑖=1
𝑖
𝑖=1 ]

 (4.25) 

 
NSE = 1 −

∑ (WD𝑜𝑏𝑠,𝑖 −WD𝑠𝑖𝑚,𝑖)
2𝑖

𝑖=1

∑ (WD𝑜𝑏𝑠,𝑖 −WD𝑜𝑏𝑠,𝑖)
𝑖
𝑖=1

 (4.26) 

where TP (true positive) is the number of watershed units that correctly classify as experienced urban 

waterlogging disasters units; TN (true negative) is the number of watershed units that correctly classify as 

non-occurrence urban waterlogging disasters units; FP (false positive) refers to the number of watershed units 

that are incorrectly classified to experienced urban waterlogging events units; FN (false negative) is the 

number of watersheds incorrectly classified as non-occurrence urban waterlogging disasters units.WD𝑜𝑏𝑠 is 

the urban waterlogging density observed in watershed unit i, WD𝑠𝑖𝑚 is the simulated urban waterlogging 
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density in watershed i, and WD𝑜𝑏𝑠,𝑖 is the average urban waterlogging density observed in all watershed 

units. 

Furthermore, to further evaluate the model performance, we compared the SCAM with three widely used 

urban waterlogging risk assessment and simulation methods (LG, ANN, and SVM). In this study, the sigmoid 

function was employed for LG. The sigmoid function as an activation function in LG, which was easy to 

calculate, understand, and implement. It had been adopted by a large number of studies (Tehrany et al., 2014; 

Neuhold et al., 2011). We selected the radial basis function (RBF) for ANN and SVM based on previous studies, 

which documented its superior generalization and approximation ability, fast learning convergence, and could 

approximate any non-linear function to overcome the local minimum problem (Hong et al., 2016; Tehrany et 

al., 2019; Pradhan, 2012). Subsequently, these three methods were implemented in MATLAB, while the SCAM 

was performed in R software (R Core Development Team, 2008). For the RBF-ANN model, the number of 

neurons in the input layer, hidden layer, and output layer was set to 10, 13, and 1, while the maximum number 

of epochs was set to 1000. The parameters of gamma and c were set to 0.5 and 1 for RBF-SVM. 

4.4.4.5 SCAM-HPA framework 

The SCAM and HPA framework include four modules: data collection and processing, model development, 

model evaluation and mapping, waterlogging analysis and scenario simulation module (Fig.4-2). 

In the data collection and processing module, all spatial datasets were transformed into the same projected 

coordinate system, clipped by the Guangzhou Central Urban Districts boundary, and normalized into [0,1]. 

Then, the spatial datasets corresponding to each watershed unit were extracted. We found that among the 

468 watershed units, 227 watershed units had urban waterlogging, while the remaining 241 units had no 

urban waterlogging records. Base on the number of waterlogging events in each watershed unit, the 

waterlogging density of each watershed unit could be determined. Besides, the correlation feature selection 

(CFS) was conducted to avoid the multicollinearity problem and filter out a set of effective predictors. Finally, 

ten variables (%ISA, %GV, RE, slope.std, TRI, GVLPI, GVMPS, ISAMPS, Pre, DD) remained from the CFS, which 

would be entered into the model development. Finally, a database containing urban waterlogging density 

and its corresponding explanatory variables of each watershed unit was obtained. 

In the model development module, the LR, RBF-ANN, SVM, and SCAM were established to simulate the 

spatial variation of urban waterlogging. We used the randomly repeated method to select the training 
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datasets and testing datasets (Tang et al., 2019). This method could avoid the subjective influence of sample 

selection and improper training samples. Firstly, we randomly selected 70% of watershed units as a training 

dataset, while the remaining 30% was used as a testing dataset. When randomly selected samples, we 

stipulated that 40% of watershed units were positive samples, and the remaining 60% were negative samples, 

according to the proportion of watersheds that experienced urban waterlogging disasters and those not 

experienced urban waterlogging disasters. This ensured that both the training and validation datasets 

contained a certain number of positive and negative samples. Then, to guarantee the model accuracy, the 

MAPE and OA were selected as evaluation indicators of the training dataset and testing dataset and were 

assigned values of 0.5 and 0.6, respectively. If the requirements of evaluation indicators are not reached, the 

model will iterative select positive and negative samples until the evaluation requirements are met. 

Concerning the evaluation and mapping module, the urban waterlogging density of each watershed was 

simulated through these four models (LR, RBF-ANN, SVM, SCAM). To produce an urban waterlogging density 

simulation map, we transferred each watershed value to ArcGIS pro according to its serial number. Then, the 

urban waterlogging density was classified according to the natural breaks classification method. Furthermore, 

the simulation results of these four models were also compared and evaluated by MRE, NSE, and R2 indicators. 

In the waterlogging analysis and scenario simulation module, the dominant factors affecting waterlogging 

magnitudes were clarified using all the possible combination models of the factors that passed the correlation 

feature selection. Based on the HPA, we identify the dominant factors that are deriving waterlogging 

variations. Concerning the scenario simulation module, according to the two most important driving factors 

(i.e., ISA% and Precipitation), the land-use change scenarios and different rainstorm scenarios were 

constructed to predict waterlogging density variation. 
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Figure 4-2 The framework of SCAM-HPA. 

4.4.5 Scenario simulation 

According to the HPA, we found that the impervious surface abundance (%ISA) and precipitation (Pre) has a 

significant contribution to urban waterlogging variation, which were regarded as the two most important 

factors affecting urban waterlogging variation. Therefore, in this study, the land-use change scenarios and 

different rainstorm scenarios were constructed to simulate the variation of urban waterlogging. 

Concerning land-use change scenarios, we selected the land-use data of 1995, 2000, 2005, 2010, and 2015 

years, elevation, slope, aspect, soil thickness, soil organic matter content, average annual accumulated 

temperature, average annual precipitation, distance to the lake, river, railway, highway, urban center, 

economic development zone, rural residential area and town center, population density and urbanization 

level as spatial drivers. We obtained the data from the Resources and Environmental Data Cloud Platform 

(http://www.resdc.cn/) and calculated it through ArcGIS-Pro. The increasing impervious surfaces, along with 

the urbanization process, are usually restricted by policies and resources. The growth rate in the future would 

gradually decrease in the middle and later stages of the urbanization process, which is similar to the regional 

population development and presented an "s" growth trend (Jiang et al., 2015; Lin et al., 2011; Verburg et 

al., 2002). Therefore, the LG function of the CLUE-S model was utilized to simulate the change of impervious 

surface abundance. Finally, the land-use scenarios for the next 20 years from 2020 were calculated. To test 

the reliability of the CLUE-S simulation results, we compared the 2020 simulation results with the current 

land-use map and randomly selected 10,000 verification points for the accuracy test. The result indicates that 

the CLUE-S model met the accuracy requirements of the land-use change scenario simulation. 

Compared with the impervious surface abundance in 2020, the impervious surface abundance will increase 

by 10% in 2027 and nearly 20% in 2036. Therefore, these two land-use scenarios (i.e., impervious surface 

abundance increased by 10% and 20%) were used to explore the future variation of urban waterlogging. In 

terms of rainfall scenarios, based on the spatial distribution of precipitation data since 1980, the non-

parametric kernel density estimation methods were utilized to calculate the probability density and 

exceedance probability of cumulative precipitation in each grid unit. The 10-year, 25-year, 50-year, and 100-

year precipitation recurrence periods were selected as the rainstorm scenarios, and the corresponding 

probability levels were 0.1, 0.04, 0.02, and 0.01 respectively. Thus, the annual cumulative precipitation under 

the four repeating intervals was determined. On this basis, a total of 12 scenarios were constructed to predict 
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the waterlogging density variation (Table 4-4). 

Table 4-4 The land-use change and precipitation scenarios. 

Land-use change 

scenarios 

Precipitation scenarios 

10-year recurrence 

interval 

25-year recurrence 

interval 

50-year recurrence 

interval 

100-year recurrence 

interval 

Impervious surface 

abundance remains 

unchanged 

B-P10 B-P25 B-P50 B-P100 

Impervious surface 

abundance increases 

by 10% 

S-P10 S-P25 S-P50 S-P100 

Impervious surface 

abundance increases 

by 20% 

L-P10 L-P25 L-P50 L-P100 

 

4.5 Results 

4.5.1 SCAM simulation 

In this study, the SCAM trained the calibration and validation data set at eight significance levels to determine 

the most appropriate cluster tree for urban waterlogging density simulation (Table 4-5). When the 

significance level was 0.01 (α=0.01), the SCAM performed a total of 160 cutting actions and 25 merging 

actions, and the cluster tree generated a total of 346 total nodes and 136 leaf nodes; while the α=0.05, the 

number of cutting and merging actions were significantly increased, and the number of cutting and merging 

action was 369 and 56, respectively. Compare with α=0.01, the total number of nodes and leaf nodes 

increased dramatically. As the α value grew, the criteria of the cluster tree cutting action became looser. 

Correspondingly, the cutting actions were more frequent, leading to an increase of intermediate nodes and 

leaf nodes. This indicated that the significance level had a certain impact on the cluster tree structure. 

Table 4-5 The cluster trees of SCAM under eight significance levels. 

Significance levels 

(α) 
Total nodes Leaf nodes Cutting actions Merging actions 

0.01 346 136 160 25 
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0.02 687 257 314 58 

0.03 727 277 334 58 

0.04 753 272 341 70 

0.05 795 314 369 56 

0.10 732 326 352 27 

0.20 699 338 345 8 

0.50 681 341 340 3 

Figure 4-3 presented the simulated urban waterlogging density of each watershed unit under all significance 

levels. We noticed that when the α value was 0.01 (Fig.4-3b), most of the watershed units had similar 

simulated values. This might be due to too few cutting and merging actions, resulting in insufficient leaf nodes 

to reflect the spatial heterogeneity of urban waterlogging. In contrast, with the α value increased, the 

structure of cluster trees tended to be more complex, which could adequately reflect the spatial 

differentiation of waterlogging density in each watershed unit.  
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Figure 4-3 The spatial distribution of simulated urban waterlogging density under different significance levels. (a) 

Observed waterlogging density, (b)~(i) simulated waterlogging density at different significant levels. 

The comparison between the simulated and observed waterlogging density under three significance levels is 

shown in Figure 4-4. The fluctuation trends of simulated waterlogging density were very similar to that of 

observed waterlogging density, which indicated that the SCAM could effectively capture the complex 

mechanism linking urban waterlogging to influencing factors. When the α value is 0.01, the difference 

between the simulated value and the observed value is the largest in all significance levels, which further 

confirms that the insufficient leaf node could not accurately reflect the spatial heterogeneity of urban 

waterlogging density. When the significance level increased to 0.10, the simulation accuracy was significantly 
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improved. The rising and falling trends of the simulated and observed waterlogging density were well 

matched. However, when the significant level reached 0.50, the difference between the simulated and 

observed waterlogging density gradually increased. This might be due to the excessive cutting actions at high 

significance levels (α≥0.20), resulting in a large amount of redundant information. As a result, the structure 

of the cluster tree was too complex, which reduced the model performance and accuracy. 

 

Figure 4-4 The comparison transect of simulated and observed waterlogging density under three significance levels. 

4.5.2 Model evaluation and validation 

Figure 4-5 depicted the verification results of the overall accuracy (OA), Nash-Sutcliffe model efficiency index 

(NSE), and the correlation coefficient (R2) of SCAM. The fitting curves (red line) between the simulated and 

observed waterlogging density were plotted to reflect fitting ability. When the significance level α was 0.01, 

the OA, NSE, and R2 all indicated that the SCAM had poor performance. With the increased significance level, 

the model accuracy experienced an increasing trend, which showed the model performance gradually 

improved. When the significance level was 0.10, the SCAM obtained the best performance. The OA, NSE, and 
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R2 values increased to 0.93, 0.86, and 0.85 in the training dataset, and 0.81, 0.70, and 0.74 in the testing 

dataset. However, when the significant level exceeded 0.20, the effectiveness of SCAM experienced a 

downward trend. The value of OA, NSE, and R2 decreased slightly further confirming that an overly complex 

cluster tree would reduce the accuracy of the model.  

The modified relative error (MRE) and mean absolute percentage error (MAPE) between the simulated and 

observed waterlogging density were shown in Figure 4-6. Analogously, we noticed that the SCAM had the 

minimum MRE and MAPE value in the training and testing dataset when the significance level was 0.10. When 

α=0.01, the MRE indicator fluctuates significantly, the proportion of samples with MRE less than 10% was 

32.5%. The MAPE was 23.42% and 34.46% in the training and testing dataset. However, when the significance 

levels increased to 0.10, the fluctuation of MRE became more gentle, the proportion of samples with MRE 

less than 10% was increased to 85.7%. Simultaneously, the MAPE value was reduced to 4.87% and 11.26% in 

the training and testing dataset. The results of OA, NSE, R2, MRE, and MAPE both indicated that the model 

was optimal at the significance level of 0.10. Finally, according to the verification result, we selected the 

significant level α=0.10 as the most appropriate level for SCAM to simulate urban waterlogging variation. 
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Figure 4-5 The OA, NSE, and scatter plots of simulated and observed waterlogging density. (the red line indicated the 

fitting curve and the ellipse indicated the 95% confidence ellipse) 
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Figure 4-6 The MRE and MAPE between the simulated and actual waterlogging density. 

In this study, we further compared the SCAM with three analysis models (LR, RBF-ANN, SVM) to examine the 

effectiveness and reliability of the SCAM (Table 4-6). We noticed that the SCAM obtained the highest OA, NSE, 

R2, and the lowest MAPE, which indicated that the SCAM had the best performance than other models. The 

highest OA was from SCAM (0.93 and 0.82 in calibration and validation data sets), which indicated that 93% 

and 82% of watershed units in calibration and validation data sets were correctly identified, followed by SVM, 

RBF-ANN, and LR. The NSE index of SCAM in calibration and validation data sets (0.87 and 0.70) illustrated 

that the extreme values of waterlogging density in the Guangzhou central urban districts could be effectively 

simulated. The NSE index of the SVM model was 0.81 and 0.68 in training and testing data sets, while the NSE 

of the RBF-ANN was 0.67 and 0.59, respectively. These indicated that the RBF-ANN and SVM model had an 

acceptable performance in extreme value simulation. However, the LR model had the lowest NSE index, only 

0.55 and 0.42 in calibration and validation data sets, which indicated that the LR model could not effectively 
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identify the complex mechanisms of urban waterlogging. Furthermore, the MAPE value showed that the 

SCAM and SVM model had a relatively small error between simulated and recorded waterlogging density. In 

contrast, the RBF-ANN and LR had relatively large MAPE, with a maximum error of 33.41%. Therefore, we 

could infer that the LR model was not suitable for capturing the non-stationary and non-linear interaction. 

The R2 of SCAM (calibration: 0.86 and validation: 0.74) was significantly higher than other models, especially 

the LR model (calibration: 0.60 and validation: 0.52). This finding revealed that the simulated value of SCAM 

was very close to the observed waterlogging density. In the face of great spatial heterogeneity in highly 

urbanized areas, a more robust method was needed to quantify the variation of urban waterlogging events. 

Although, the nonlinear mapping ability of RBF-ANN and SVM could improve the accuracy to some extent. 

However, the SCAM based on Wilks’ lambda statistic could handle nonlinear urban waterlogging variation 

more precisely and reliably. 

Table 4-6 The performances of SCAM and compared models. 

Index 
Calibration dataset Validation dataset 

LR RBF-ANN SVM SCAM LR RBF-ANN SVM SCAM 

OA 0.71 0.82 0.89 0.93 0.62 0.71 0.74 0.82 

NSE 0.55 0.67 0.81 0.87 0.42 0.59 0.68 0.70 

MAPE 26.45% 15.13% 9.82% 4.87% 33.41% 25.05% 18.94% 11.26% 

R2 0.60 0.76 0.82 0.86 0.52 0.61 0.69 0.74 

 

4.5.3 Comparison of the simulation results of each model 

The waterlogging density of Guangzhou central urban district was classified into five levels (namely the lowest, 

low, medium, high, and highest level) by using the natural breaks classification method (Table 4-7). In general, 

the urban waterlogging density presents tremendous spatial heterogeneity. The high level and highest level 

waterlogging density watersheds accounted for 8.33% of the study area and mainly concentrated in the 

historic urban districts of Guangzhou, such as Liwan, Yuexiu, and Haizhu (Figure 4-7a). These areas have 

experienced an intense urbanization process, with a large proportion of impervious surfaces. Furthermore, 

the design standards of drainage networks in historic urban districts are relatively low and inefficient, making 

it difficult to drain rainwater in time. Therefore, the waterlogging density level in these areas is relatively high. 

On the contrary, the low-level watersheds accounted for 69.07% area, and are mainly concentrated in the 

Baiyun and Huangpu districts. The dominant land-use types in these two districts are forest and farmland, 
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with a record low frequency of urban waterlogging events. 

Table 4-7 Waterlogging density level. 

Density level Lowest Low Medium High Highest 

Waterlogging density < 0.043 0.043-0.127 0.127–0.445  0.445–0.624 > 0.624 

Proportion (%) 69.07% 14.16% 8.44% 6.25% 2.08% 

As shown in figure 4-7 (c-f), we presented the comparative result of the SCAM and LR, RBF-ANN, and SVM 

models. Region i belongs to a rural area with good ecological conditions. According to historical records, there 

are no urban waterlogging events in this area. Therefore, we could assume the waterlogging density of each 

watershed in region i was the lowest level (Fig.4-7a). The SCAM identified this region correctly as the lowest 

level of waterlogging density; while the SVM, RBF-ANN, and LR model classified a large part of watershed 

units as low level or even medium level. This implies that the LR, RBF-ANN, and SVM models may have an 

overestimation problem in low-density areas. Unlike region i, region ii is located in the city center, where the 

building density and impervious surface abundance are relatively high (Fig.4-7b). According to the 

waterlogging database, this region has a large amount of waterlogging records, indicating it as a typical 

waterlogging prone area. As shown in Fig.4-7c-f, we notice that all models accurately identify this region as 

the high level or highest level of waterlogging density, which indicates that these models have better 

performance in urban waterlogging high-density regions than low-density regions. We also find that some 

watershed units in region ii present the lowest urban waterlogging density level. However, the LR and SVM 

models almost classify all the watershed units as high or highest level, whereas the simulated result of SCAM 

is closer to the actual values. Our results demonstrate that the SCAM can provide more accurate and detailed 

results in both high-density and low-density regions. 
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Figure 4-7 Comparison of urban waterlogging density maps. (a) Observed waterlogging density, (b) location of the region 
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i and ii, (c) waterlogging density simulated by LR, (d) waterlogging density simulated by RBF-ANN, (e) waterlogging 

density simulated by SVM, (f) waterlogging density simulated by SCAM. 

4.5.4 The dominant drivers of urban waterlogging variation 

The HPA method, which integrated with the SCAM, was utilized to quantify the independent effect of each 

input variable on waterlogging and specified their relative contributions (Table 4-8). The impervious surface 

abundance (28.07%), vegetation abundance (20.80%), and precipitation (16.25%) present the dominant 

contribution rate. Compared with land cover composition, the cumulative precipitation (16.25%) is also a 

significant driver for urban waterlogging. If rainfall exceeds the rainwater discharge capacity, the risk of urban 

waterlogging is significantly increased. Therefore, it is necessary to give more priority to controlling these 

three factors. Moreover, it is interesting to find that the topography factors (RE, slope.std, TRI) and land cover 

configuration (MPS and LPI) also have an appreciable effect on waterlogging magnitude. The RE, slope.std, 

and TRI index contribute 9.40%, 6.66%, and 3.10%, respectively, while the three landscape pattern metrics 

contribute nearly 10% to waterlogging variations. 

Table 4-8 The relative contributions of model input variables affecting urban waterlogging. 

Model input 

variables 

RE Slope.s

td 

TRI %ISA %GV Pre ISA 

MPS 

GV 

MPS 

GVLPI DD 

Contribution 9.40% 6.66% 3.10% 28.07% 20.80% 16.25% 2.10% 2.50% 4.63% 6.50% 

 

4.5.5 Waterlogging simulation under different scenario 

According to the dominant factors of urban waterlogging, 12 scenarios were forcibly inputted into the SCAM 

to simulate waterlogging density variation (Fig.4-8). Under the same precipitation scenario, when the 

proportion of impervious surface increase by 20% (L-P10 scenario), the average urban waterlogging density 

in the central urban district of Guangzhou is 0.297, while the average urban waterlogging density is 0.058 

under the B-P10 scenario (impervious surface abundance remains unchanged). Compare with urban 

expansion scenarios, when the cumulative precipitation is the B-P100 scenario, the average waterlogging 

density is 0.092. This value is higher than the current reality situation (0.051) but far less than the land-use 

change scenario (L-P100). This result highlights that urban expansion (land-use change) significantly increases 

urban waterlogging density, which is the main cause of urban waterlogging deterioration.  
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Table 4-9 The average urban waterlogging density under different scenarios. 

Scenarios 
Waterlogging 

density 
Scenarios 

Waterlogging 

density 
Scenarios 

Waterlogging 

density 

B-P10 0.058 S-P10 0.112 L-P10 0.297 

B-P25 0.062 S-P25 0.125 L-P25 0.312 

B-P50 0.077 S-P50 0.141 L-P50 0.350 

B-P100 0.092 S-P100 0.177 L-P100 0.414 

Furthermore, we also noticed that watershed units in different locations have different sensitivity to land-

use change and rainfall change scenarios. The watershed units located in the northern and eastern parts of 

the central urban district (Baiyun and Huangpu district) are more sensitive to land-use change scenarios than 

those in the southwest urban districts (Liwan, Haizhu, Yuexiu district). In the land-use change scenarios, the 

watersheds with the highest increase rates of waterlogging density are mainly located in the northern and 

eastern regions. The urban waterlogging-prone area gradually spread from the urban historic districts (Liwan, 

Haizhu, Yuexiu district) to the urban fringe (Baiyun and Huangpu district). This might be because a large 

amount of urban green spaces (i.e., forest, wetland, and grassland) in these regions were converted into 

impervious surfaces during the urbanization scenarios, resulting in a significant increase in the risk of urban 

waterlogging. 

On the contrary, under the same land-use change scenario, with the increase of cumulative precipitation, the 

waterlogging density in the urban historic districts (Liwan, Haizhu, Yuexiu district) increases more significantly 

than that in the suburban district (Baiyun and Huangpu district). This is mainly due to the inadequate drainage 

system and relatively high impervious surface abundance in the historic urban district. Hence, the 

waterlogging density in these regions increases dramatically. At the same time, the vegetation abundance in 

the urban fringe is relatively high, which could effectively absorb the increased rainfall, so the waterlogging 

density does not increase significantly. 
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Figure 4-8 The spatial distribution of waterlogging density in different scenarios. 

4.6 Discussion 
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Our results found that the high-density urban waterlogging watersheds are mainly clusters in the Liwan, 

Yuexiu, and Haizhu districts, indicating these regions are highly susceptible to urban waterlogging events 

(Fig.4-7a). Thereby, the local authorities can pay more attention to the risk warning for these regions. 

Simultaneously, with the application of spatio-temporal big data (distribution of population, public 

institutions), we can predict and assess the urban waterlogging vulnerability to minimize waterlogging 

negative effects. Through HPA, our result demonstrates that both land cover composition and precipitation 

are the dominant drivers of urban waterlogging, which is consistent with previous studies (Quan et al., 2014; 

Zhang et al., 2020). Results from this study provide additional insights that the land cover composition – 

impervious surface and vegetation, had a dominant effect in deriving waterlogging variations, which 

independently accounted for 48.87% of the contribution. Therefore, it is necessary to control the expansion 

of impervious surfaces and increase urban green space as much as possible to reduce the risk of urban 

waterlogging. The cumulative precipitation is also indicated that as rainfall increases, the state of urban 

waterlogging gradually deteriorates (IPCC, 2011; Barros et al., 2012; Hallegatte et al., 2013). 

In general, our results reflect that land-use change affects the spatial variation of urban waterlogging more 

significantly than precipitation, which further verifies the land cover feature is the critical driver of urban 

waterlogging. However, it is interesting to note that watersheds in different spatial locations have different 

sensitivity to land-use change and rainfall change scenarios. This indicates that the watershed spatial location 

and watershed characteristics (i.e., land cover characteristics, drainage network density, microtopography) 

should be considered in the waterlogging sensitivity identification. This result is of considerable significance 

to urban waterlogging prevention. Due to the rapid urbanization, a large number of urban green spaces, 

rivers, wetlands in the city center have been converted into various development areas (such as commercial, 

industrial, and residential land). However, in the current urban eco-environmental management policies, 

whenever the green spaces or wetlands in the city center are occupied by urbanization, the green areas in 

the urban fringe (less pressure for urban development) are used to fill the area loss in the city center. 

Although this approach can maintain the relative balance of urban green areas at the statistical level. 

However, the spatial replacement of green spaces has resulted in a continuous net loss of vegetation 

abundance in the central urban districts. The consequence is the lack of ecological benefits (such as 

waterlogging mitigation effect) required for such urban areas. This may lead to the further deterioration of 

urban waterlogging in the city center (urban green spaces continue to decrease), even though the urban 

green areas within the whole city remain relatively balanced. Our study indicates that a spatial understanding 
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of each mitigation measure is required before adopting urban waterlogging prevention strategies. 

The urban waterlogging prone areas with large impervious surface abundance, are more sensitive to rainfall 

change scenarios. Thereby, the government should rationally manage the existing land cover features for 

urban waterlogging mitigation, even though the pressure of land-use development is relatively high. It is 

effective to increase the vegetation abundance to form green corridors, low elevation greenbelts, or green 

roofs to increase the accumulation, evaporation, and infiltration of rainwater. Furthermore, if the land-use 

pressure in the central districts is relatively high (difficult to increase the urban green areas), it is necessary 

to increase drainage density as well as optimize the spatial pattern of land cover. In contrast, for the urban 

waterlogging low sensitive areas, where the vegetation coverage is relatively high, the watershed units are 

more sensitive to land-use change scenarios. Thus the local authorities should be strictly controlled the speed 

of urban expansion to avoid exacerbating the frequency of urban waterlogging disasters in newly developed 

areas. This result implies that urban waterlogging mitigation strategies should be formulated according to 

different local conditions and future scenarios. 

This study novel attempts to introduce the SCAM to capture urban waterlogging spatial variation 

characteristics at the watershed level. The results confirmed that the SCAM-HPA framework has many 

advantages over other methods, as it can effectively investigate the inherent non-linear/discrete relationship, 

performs fast, no statistical assumptions, and can process data from different measurement scales. Another 

advantage of this approach is that it can clarify the waterlogging dominant drivers, which can provide 

practical suggestions for urban waterlogging risk identification and control. It can be applied as a general 

framework to other cities for urban waterlogging risk identification and urban waterlogging control. However, 

its limitations can be concluded as follows. Firstly, as a drawback of SCAM, this method has high requirements 

for the predictor set (screening effective predictor set is required) and cannot capture the new extremum. 

Secondly, although we have obtained average precipitation data, precipitation intensity and rainfall duration 

are also important factors affecting urban waterlogging. Due to data limitations and accessibility, we cannot 

obtain these data for this study. Consequently, in future research, the introduction of these data will help to 

improve the accuracy of urban waterlogging risk identification. Thirdly, the urban waterlogging records may 

be insufficient, which only records from the period of 2009-2015. There is no specific time for each 

waterlogging event. In future research, the water depth and frequency of urban waterlogging should be 

further considered. 
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4.7 Conclusion 

This study proposed a novel approach to explicit the urban waterlogging spatial variation and determine its 

dominant drivers by implementing the SCAM and HPA. Specifically, the SCAM was applied to simulate the 

urban waterlogging variation and identified the urban waterlogging susceptibility areas under different 

scenarios. This study gains three conclusions: (1) the proposed SCAM can successfully capture the non-

stationary and non-linear interaction between urban waterlogging and explanatory factors. Compared with 

LG, RBF-ANN, and SVM, the SCAM provides more accurate and detailed simulated results both in highly 

urbanized urban centers where waterlogging frequently occurs and suburban areas with few waterlogging 

events. This result indicates that the SCAM has high classification accuracy and generalization capability, 

which is suitable for the simulation and prediction of urban waterlogging in highly heterogeneous urbanized 

areas. (2) The HPA reveals that the impervious surface abundance (28.07%), vegetation abundance (20.80%), 

and cumulative precipitation (16.25%) are the dominant drivers of urban waterlogging variation. This result 

indicates that urban waterlogging magnitude is mainly affected by both land cover composition and 

precipitation. Therefore, it is necessary to give more priority to controlling these three factors. Furthermore, 

the urban micro-topography and land cover configuration also have a certain influence on waterlogging 

magnitude, which indicates that changing land cover spatial arrangements will also affect the occurrence of 

waterlogging while keeping the land cover composition constant. (3) In general, with the increase of 

cumulative precipitation and impervious surface abundance, the urban waterlogging density increases 

significantly. It is interesting to note that under different urbanization and precipitation scenarios, the urban 

waterlogging susceptibility areas have a considerable variation. This result provides valuable insights that 

urban waterlogging mitigation strategies should be formulated according to different future conditions. It 

suggests that for the waterlogging prone regions (central urban district), the impervious surface and urban 

green area should be properly adjusted, even though the land-use pressure is very high. In contrast, for the 

waterlogging low sensitive areas (urban fringe), it is necessary to restrict the expansion of impervious 

surfaces to avoid deteriorating the state of urban waterlogging. The results of this study demonstrate that 

the combination of SCAM and HPA can provide an effective and feasible solution for urban waterlogging 

variation simulation. They also highlight the dominant drivers of urban waterlogging, which provide 

theoretical and practical enlightenment for urban waterlogging prevention and management. 
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Figure S4-5 The framework of SCAM. 

Figure S4-6 Different land-use scenarios. (a) Impervious surface abundance remains unchanged, (b) 

impervious surface abundance increases 10%, (c) impervious surface abundance increases 20%. 

Figure S4-7 Different rainfall scenarios. (a) 10-year recurrence interval, (b) 25-year recurrence interval, (c) 50-

year recurrence interval, (d) 100-year recurrence interval. 
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Figure S4-1 The spatial distribution of urban waterlogging events and watershed units. 
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Figure S4-2 The topographic factors of elevation (a), slope (b), relative elevation (c), standard deviation of elevation (d), 

standard deviation of slope (e), TRI (f), precipitation (g). 

 

 

 

Figure S4-3 The vegetation abundance (GV) and impervious surface abundance (ISA) for the study area. 

 

 

 

Figure S4-4 The drainage density (a) and GDP (b). 
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Figure S4-5 The framework of SCAM. 
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Figure S4-6 Different land-use scenarios. (a) Impervious surface abundance remains unchanged, (b) impervious surface 

abundance increases 10%, (c) impervious surface abundance increases 20%. 

 

Figure S4-7 Different rainfall scenarios. (a) 10-year recurrence interval, (b) 25-year recurrence interval, (c) 50-year 

recurrence interval, (d) 100-year recurrence interval. 
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5.1 Abstract 

Urban green infrastructures (UGI) can effectively reduce surface runoff, thereby alleviating the pressure of 

urban waterlogging. Due to the shortage of land resources in metropolitan areas, it is necessary to 

understand how to utilize the limited UGI area to maximize the waterlogging mitigation function. Less 

attention, however, has been paid to investigating the threshold level of waterlogging mitigation capacity. 

Additionally, various studies mainly focused on the individual effects of UGI factors on waterlogging but 

neglected the interactive effects between these factors. To overcome this limitation, two waterlogging high-

risk coastal cities—Guangzhou and Shenzhen, are selected to examine the effectiveness and stability of UGI 

in alleviating urban waterlogging. The results indicate that the impact of green infrastructure on urban 

waterlogging largely depends on its area and biophysical parameter. Healthier or denser vegetation (superior 

ecological environment) can more effectively intercept and store rainwater runoff. This suggests that while 

increasing the area of UGI, more attention should be paid to the biophysical parameter of vegetation. Hence, 

the mitigation effect of green infrastructure would be improved from the “size” and “health”. The interaction 

of composition and spatial configuration greatly enhances their individual effects on waterlogging. This result 

underscores the importance of the interactive enhancement effect between UGI composition and spatial 

configuration. Therefore, it is particularly important to optimize the UGI composition and spatial pattern 

under limited land resource conditions. Lastly, the effect of green infrastructure on waterlogging presents a 

threshold phenomenon. The excessive area proportions of UGI within the watershed unit or an oversized 

UGI patch may lead to a waste of its mitigation effect. Therefore, the area proportion of UGI and its mitigation 

effect should be considered comprehensively when planning UGI. It is recommended to control the 

proportion of green infrastructure at the watershed scale (24.4% and 72.1% for Guangzhou and Shenzhen) 

as well as the area of green infrastructure patches (1.9 ha and 2.8 ha for Guangzhou and Shenzhen) within 

the threshold level to maximize its mitigation effect. Given the growing concerns of global warming and 

continued rapid urbanization, these findings provide practical urban waterlogging prevention strategies 

toward practical implementations. 

Keywords: urban waterlogging; green infrastructure; composition and spatial configuration; geographical 

detector model; nonlinear relationship 
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5.2 Introduction 

Urban waterlogging is caused by surface runoff exceeding the local drainage capacity of a city due to short-

term heavy rainfall [1,2,3]. With the acceleration of globalization, the natural surface within the city has 

undergone drastic changes [4,5]. This phenomenon leads to numerous social-environmental-ecological 

problems [6,7,8,9]. The driving factors and spatial variability of waterlogging have been extensively studied 

[10,11]. Specifically, the man-made land covers destroy the original urban hydrological cycle, which impedes 

the natural infiltration of rainwater and reduces the storage capacity of the underlying urban surface. These 

phenomena have led to the frequent occurrence of urban waterlogging events [12,13,14]. The 

Intergovernmental Panel on Climate Change (IPCC) fifth assessment report states that the intensity and 

frequency of extreme precipitation events have increased significantly [15]. Therefore, in the context of 

climate change and intense human activities, it will undoubtedly lead to the frequent occurrence of urban 

waterlogging disasters, posing a growing threat to human well-being. For example, in 2017, 104 cities in China 

suffered from urban waterlogging disasters, affecting 2.18 million people and causing direct economic losses 

of $2.47 billion [16]. From 21 to 22 July 2012, Beijing suffered the strongest rainstorm and waterlogging 

disaster in 61 years (460 mm maximum precipitation). The torrential rain triggered flash floods, resulting in 

79 deaths, 10,660 houses collapsing, and $1875 billion in losses. Coincidentally, as the youngest city in China, 

in April 2019, a sudden, instantaneous heavy precipitation (maximum half an hour rainfall, 73.4 mm) caused 

11 deaths in Shenzhen. Consequently, strengthening the ability to prevent waterlogging disasters has become 

an important issue of sustainable urban development and the UN’s 2030 Sustainable Development Goals 

(SDGs). 

The importance of mitigating the risk of urban waterlogging has been widely recognized by society. This 

requires understanding the mechanisms of urban waterlogging first. Considerable studies have shown that 

urban waterlogging events are caused by environmental factors and human activities [17,18,19,20]. In terms 

of environmental factors, urban waterlogging is mainly affected by meteorological conditions and urban 

microtopography. In the context of global warming, the frequency and intensity of extreme rainstorms have 

increased [20,21,22]. Moreover, the phenomenon that the precipitation in many cities is significantly higher 

than that in the surrounding suburbs has become more prominent in recent years, known as the “urban rain 

island” effect. If the “rain island effect” occurs concentratedly in the rainy season, which is more likely to 

cause waterlogging disasters. In urban microtopography, the area with higher elevation is less prone to 
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waterlogging. On the contrary, low-lying areas tend to accumulate surface runoff, which is why tunnels and 

underpasses are prone to waterlogging [10,21,23]. Among anthropogenic factors, drainage facilities and land 

cover composition have a significant impact on urban waterlogging. However, some studies have pointed out 

that the drainage facilities in developing countries generally suffer low design standards and inadequate 

management, which makes it difficult to play an active role in the face of heavy rainstorms [10,21]. In terms 

of land cover composition, numerous studies have shown that the impact of land use is particularly significant 

compared to other factors [24,25,26], which has gradually become the major cause of the increasing severity 

of urban waterlogging disasters. 

At present, the Municipal Administration builds underground drainage pipelines and pumping stations to 

speed up rainwater drainage, thereby reducing the flow of surface runoff. However, this approach only 

accelerates the discharge rate of surface runoff but cannot reduce the total surface runoff. Surface runoff 

transfer to other regions in a short period may bring more pressure on the local drainage systems. 

Furthermore, drainage facilities block the recharge channel for groundwater, leading to a constant decline of 

groundwater level, threatening urban geological safety [27,28]. Compare with drainage pipelines to 

accelerate rainwater drainage, the concept of “sponge cities” or “low-impact development methods” has 

been proposed to reduce the total amount of surface runoff. These methods aim to increase the permeable 

surface (such as green infrastructure) in cities, thereby counteracting the increase of surface runoff [29,30]. 

Therefore, understanding how urban green infrastructure can alleviate urban waterlogging is of great 

significance for urban sustainable living environment planning and management. 

Urban green infrastructures (UGI) mainly refer to natural vegetation or artificial vegetation, such as urban 

parks, grassland, wetland, forest, and unmanaged green areas [31,32,33,34]. A considerable number of 

studies have pointed out the extensive ecological services of UGI, such as reducing stormwater runoff [35,36], 

regulating local microclimates [37,38], and purifying rainwater [39,40]. In particular, UGI increased the 

permeability to regulate surface runoff and peak flows. A proliferation of studies have shown that UGI, as a 

permeable surface, can effectively absorb and store rainwater [41,42,43], and the canopy and rhizome of 

vegetation can intercept surface runoff, thereby reducing the speed of runoff collection [44,45]. For example, 

Yang et al. [43] used the improved soil and water conservation service mode to evaluate the average 

accumulation of urban green space in Yixing city, and their result indicated that the average water storage of 

urban green space accounted for more than 88% of the annual rainfall. Liu et al. [45] show the effectiveness 



187  

of UGI in urban flooding reduction at a community scale. These studies all demonstrated that UGI has a 

positive influence on waterlogging. Furthermore, some studies further examined the impact of UGI 

composition and spatial pattern on waterlogging [46,47]. As for UGI composition, Armson et al. [48] found 

that in a sample plot of 9 m2 (the land cover includes grassland, trees, and asphalt), the grassland controlled 

almost all the surface runoff, and the trees reduced 62% of runoff from asphalt. Richards et al. [49] pointed 

out that a vegetated area of 7.5% to the catchment area would reduce surface runoff by more than 90%. For 

the spatial pattern of UGI, a study indicated that the less fragmented urban green spaces are more effective 

in reducing peak annual average river runoff [41]. In addition to the UGI composition and spatial configuration, 

the morphology of UGI also had a substantial influence on urban waterlogging mitigation. The study in 

Shanghai (China) confirmed that the concave green space could effectively mitigate pluvial floods [36]. 

Similarly, Wen et al. [50] demonstrated that a concave-shaped UGI would significantly reduce the surface 

runoff and peak flood flows. 

The above studies have demonstrated that the impact of UGI on urban waterlogging is associated with various 

factors, such as UGI composition, spatial configuration, and morphology. Considerable studies have examined 

the relationship between UGI’s factors and waterlogging through regression coefficients or hydrologic models 

[41,45,51,52]. However, previous studies mainly focused on the individual effects of UGI factors (composition 

or spatial configuration) on urban waterlogging; instead, the interactive effects of these factors remain 

unclear. The influence of UGI on urban waterlogging is not only affected by one factor alone. Only analyzing 

the individual effect of a UGI factor on urban waterlogging while ignoring the interactive effect may lead to 

biases, especially for the great heterogeneity urbanized area. From this perspective, some interesting 

questions emerge: How do the interactions of these UGI factors affect urban waterlogging? Can the 

interaction between different UGI factors further enhance their effects on waterlogging? 

It is widely accepted that increasing the area of UGI may further increase its impact on urban waterlogging, 

thereby reducing the risk of urban waterlogging. However, will the risk of urban waterlogging continue to 

decrease as the area of UGI increases? In this context, another research question arises: Is there a threshold 

level for the effect of UGI on urban waterlogging? Less attention has been paid to investigating the threshold 

level for the impact of UGI on urban waterlogging. Moreover, given the shortage of urban land resources, it 

is unrealistic to reduce urban waterlogging by considerably increasing the UGI area. If the effect of UGI has a 

threshold level, planning a larger area of UGI may not provide a more significant mitigation effect. Therefore, 
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it is necessary to understand the threshold level of UGI affecting urban waterlogging so that the limited UGI 

resource can be used to minimize the negative influence of urban waterlogging. Additionally, it is worth noting 

that many studies just involved a single city or region, which present inconsistent results among the studies 

[41,44]. These inconsistent results are not sufficient to fully examine the effect of UGI on waterlogging, which 

makes it difficult to apply in UGI planning and urban management. This highlights the urgency of conducting 

cross-regional comparative studies to further verify the universal effect of UGI on urban waterlogging. 

Therefore, this study aims to shed some light on the above two research gaps by taking two waterlogging 

high-risk Chinese cities for a comparative study to address the following questions: (1) How does the 

interaction effect of UGI’s factors affect urban waterlogging? Which UGI factors are the dominant factors 

affecting urban waterlogging? (2) Is there a threshold level for the impact of UGI on urban waterlogging? 

Answering these questions can help us improve our understanding of the potential mitigation effect of UGI 

on urban waterlogging and furnish concrete references for UGI design. 

5.3 Materials and methods 

5.3.1 Study area and data 

5.3.1.1 Study area 

Two major cities in the Guangdong–Hong Kong–Macao Greater Bay Metropolitan Region, Guangzhou and 

Shenzhen cities, are selected for this study (Figure 5-1). Guangzhou City (112°57′ to 114°30′E, 22°26′ to 

23°56′N) is located in the downstream of the Pearl River Basin, the central and southern part of Guangdong 

Province, with an area of 7434.40 km2. Shenzhen City (113°45′ to 114°37′E, 22°26 to 22°51′N), with an area 

of 1997.47 km2, is located on the eastern bank of the Pearl River Estuary. The average annual precipitation of 

Guangzhou and Shenzhen are 1720.6 mm and 1933.3 mm, respectively, belonging to subtropical monsoon 

climate [53,54]. The two cities are among the four national cities in mainland China, with a permanent 

resident population of 15.31 million (Guangzhou) and 13.44 million (Shenzhen), respectively, which together 

account for 47% of Guangdong’s GDP in 2019 ($756 billion; http://www.stats.gov.cn/; access on 8 January 

2021). 

With the substantial increase of extreme rainfall events, urban waterlogging events frequently occur in these 

two low-lying coastal cities [2]. For example, on 22 May 2020, four people were killed in extraordinarily heavy 

rainfall in Guangzhou, with an average hourly rain intensity exceeding 80 mm, and the maximum precipitation 
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in 3 hours at 288.5 mm. From 29–30 August 2018, a heavy rainstorm occurred in Shenzhen for two 

consecutive days (269 mm average cumulative precipitation, 97 mm maximum hourly precipitation), the first-

ever recorded in local meteorological history. This event resulted in approximately 150 waterlogging events, 

10 local riverbank collapses, and 37 landslides. Given the densely populated area and the serious risk of urban 

waterlogging disaster in this region, selecting these two cities to investigate the effect of UGI on urban 

waterlogging has a certain practical significance. Guangzhou Water Authority has only recorded the urban 

waterlogging events in the central urban districts (Liwan, Yuexiu, Tianhe, Haizhu, Baiyun, and Huangpu 

district). Hence, we select these central urban districts of Guangzhou (1559.82 km2) and Shenzhen city as our 

study sites. 

 

Figure 5-1 The location of the Guangzhou central urban districts and Shenzhen city. 

5.3.1.2 Dataset 

In this study, we concentrate on the period from 2009 to 2015. The data include urban waterlogging records, 

UAV images, Landsat-8 Operational Land Imager imagery, DEM, precipitation, and drainage facilities (Table 5-

1). As mentioned in previous studies, the waterlogging records obtained from Guangzhou and Shenzhen 

Water Authority only contain location information [10,55]. Therefore, we utilized ArcGIS Pro to locate the 
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spatial location of urban waterlogging events. Finally, we collected 423 and 353 records in Guangzhou and 

Shenzhen from 2009 and 2015. The composition and spatial configuration of UGI were obtained from UAV 

aerial images (spatial resolution 0.5 m). The cloud-free Landsat-8 OLI imageries (path/row: 122-44, 121-44) 

were utilized in this study to calculate the biophysical parameter of UGI. Subsequently, we utilized DEM 

(spatial resolution 5 m, vertical accuracy 0.1 m) to generate auxiliary variables, including elevation and slope. 

Lastly, other auxiliary variables, such as precipitation and drainage density, were also collected. Local water 

authorities only recorded urban waterlogging events in this period (without a specific year). Therefore, we 

only selected remote sensing images, DEM data, drainage network, river network, and precipitation data in 

this period. 

Table 5-1 List of the data sources. 

Data Format Time Detail Source 

Waterlogging 

locations 
Shapefile 2009~2015 Point 

Guangzhou Water Authority 

(http://swj.gz.gov.cn/) 

Shenzhen Water Authority 

(http://swj.sz.gov.cn/) 

Landsat-8 OLI 

imagery 
GeoTIFF 2013 

30 m  

path/row: 122-44, 

121-44 

The United States Geological 

Survey (http://www.usgs.gov/)  

UAV images Raster 2012 0.5 m Guangzhou Planning and Natural 

Resources Bureau 

(http://ghzyj.gz.gov.cn/) 

Shenzhen Planning and Natural 

Resources Bureau 

(http://pnr.sz.gov.cn/) 

Digital Elevation 

Model 
Raster 2012 5 m 

Drainage network Shapefile 2012 Line 

River network Shapefile 2012 Line 

Precipitation Raster 2009~2015 1 km 

Geographical Information 

Monitoring Cloud Platform 

(http://www.dsac.cn/)  

 

5.3.2 Integrated framework 

The integrated framework was developed to analyze the interactive effects of UGI factors on waterlogging 

and quantify the threshold level (Figure 5-2). Urban waterlogging is a systemic problem. The occurrence of 

waterlogging is related to the destruction of the hydrological cycle in the watershed unit [55,56,57]. When 

the rainwater is unbalanced, rainfall or rainwater inflow exceeds the drainage capacity, urban waterlogging 

http://swj.gz.gov.cn/
http://swj.sz.gov.cn/
http://www.usgs.gov/
http://ghzyj.gz.gov.cn/
http://pnr.sz.gov.cn/
http://www.dsac.cn/
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events will eventually occur. The watershed unit reflects the hydrological characteristics of an area, which has 

more natural and ecological significance. It is not appropriate to analyze urban waterlogging from the 

perspective of a point or a raster grid (buffer zone), as it ignores the hydrodynamics of the surface. Therefore, 

we investigated the effect of UGI at the watershed level. 

First, the density of waterlogging per unit area within each watershed unit was calculated based on the 

waterlogging record. Several metrics were utilized to measure green infrastructure composition and spatial 

configuration (area proportion, biophysical parameter, and spatial configuration). Second, other auxiliary 

variables, including elevation, slope, precipitation, and drainage density, were adopted as control variables. 

Then, the urban waterlogging density was regarded as a dependent variable, while the UGI composition and 

spatial configuration were considered explanatory variables. Fourth, the correlation between urban 

waterlogging density and explanatory variables was examined through partial correlation analysis. Fifth, the 

interaction effect of UGI factors on waterlogging we examined through the geographical detector model. 

Lastly, we quantified the threshold level of UGI affecting urban waterlogging using the logarithmic fitting 

method. 

 

Figure 5-2 The integrated framework of this study. 
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5.3.3 Watershed unit 

According to the method proposed by Yu et al. [55] and successfully applied in Zhang et al. [10], the DEM, 

urban river and drainage network, and the hydrological analysis module of ArcGIS pro were utilized to divide 

the watershed units through the D8 algorithm. Although the D8 algorithm is more efficient at the urban scale 

than other algorithms, including D-Infinity and MFD. Due to the flat topography of the Pearl River Basin, the 

extracted watershed boundaries need to be modified using urban rivers and drainage networks [57,58]. 

Finally, we divided the Guangzhou central urban district and Shenzhen into 351 and 276 watershed units 

(Figure 5-3). 

 

Figure 5-3 The urban waterlogging events and watershed units for (a) Guangzhou central urban district and (b) 

Shenzhen. 

5.3.4 Measuring green infrastructure composition and spatial configuration 

In this study, we mapped the green infrastructure of Guangzhou central urban district and Shenzhen using 

0.5 m aerial images. These images were obtained from the Geographical Situation Survey Project (GSSP) in 

2012. The flight missions were conducted with DB-2S and IFAUAV-3 platform, and the image forward overlap 

and image-side overlap were set as 83% and 57%. The images and POS information were then imported into 

Pix4D Mapper to create the stitching project. After performing automatic aerial triangulation, the images 

were corrected by acquiring ground control point (GCP) data and a third-order polynomial model. Finally, the 

horizontal RMSE values were 0.763 m and 0.871 m in Guangzhou and Shenzhen, sufficient for green 

infrastructure extraction. 

According to the field research, the woodland, grassland, garden, and cultivated land were defined as UGI in 

this study. We extracted the green infrastructure through an object-oriented classification method using the 
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eCognition Developer software. The classification accuracy assessment was computed from ground-truthing 

analysis by randomly selecting over 100 points for each city. Ultimately, the overall accuracy of classification 

was 85.8%, 81.2%, and the kappa coefficient was 0.78, 0.75, for Guangzhou and Shenzhen, respectively 

(Figure 5-4). Subsequently, the area proportion of UGI within different watershed units was calculated. 

 

Figure 5-4 The land cover maps (a),(b) and UGI maps (c),(d) for Guangzhou central urban district (a),(c) and Shenzhen 

(b),(d). 

The UGI area proportion refers to the area ratio of green infrastructure in a watershed unit, however, it could 

not reflect the biophysical parameter of UGI. Under the same green infrastructure coverage ratio, different 

vegetation growth statuses or densities have different effects on urban waterlogging. For example, dense 

vegetation may be more conducive to reducing surface runoff, while sparse vegetation may be less effective. 

Biophysical parameters should represent these vegetation gradients. Therefore, we used the enhanced 

vegetation index (EVI) to describe the biophysical parameter of UGI (Figure 5-5), which derived from the 

multispectral optical band (blue and red) and near-infrared (NIR) band of the Landsat-8 OLI images (Equation 

5.1). 

 𝐸𝑉𝐼 = 2.5 ×
𝜌𝑁𝐼𝑅 − 𝜌𝑅𝐸𝐷

𝜌𝑁𝐼𝑅 + 6.0 × 𝜌𝑅𝐸𝐷 − 7.5 × 𝜌𝐵𝐿𝑈𝐸 + 1
 (5.1) 
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Figure 5-5 The EVI for (a) Guangzhou central urban district and (b) Shenzhen. 

The spatial pattern of land cover features can be described by landscape pattern metrics [59]. In recent 

decades, the landscape pattern metrics have achieved unprecedented development, plenty of indicators have 

been developed to reveal the characteristics of landscape spatial patterns [60,61]. In this study, three 

landscape metrics were selected to reflect the spatial configuration characteristics of UGI, including (1) 

landscape fragmentation: mean patch size (MPS) and landscape division index (LDI); (2) landscape 

aggregation: aggregation index (AI). The equation and description of these UGI metrics were shown in Table 

5-2 and were calculated through Fragstats 4.2. 

Table 5-2 List of landscape pattern metrics. 

Landscape metrics Equation* Description 

MPS ∑
𝐴𝑖
𝑛

𝑛

𝑖=1

 Reflects the average patch size of a certain land cover type. 

LDI 1 −∑(
𝐴𝑖
𝑆
)
2𝑛

𝑖=1

 Reflects the degree of fragmentation. 

AI [
𝑔𝑖

𝑚𝑎𝑥 → 𝑔𝑖
] Measures the spatial distribution pattern. 

*Ai: patch i area, S: total area, n: number of patches, gi: number of adjacent patches. 

5.3.5 Control variables 

Urban waterlogging is the result of the combination of environmental conditions and human activities. In 

addition to the significant influence of land cover composition (UGI) on urban waterlogging, the urban 

microtopography, rainfall, and drainage facilities also have a non-negligible impact on urban waterlogging 
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[10,21]. In order to accurately quantify the effect of UGI on urban waterlogging, it is essential to exclude the 

influence of other relevant variables on waterlogging. Therefore, the topography (elevation and slope), 

average precipitation, and drainage density are adopted as control variables to avoid these distractions 

(Figure 5-6). Firstly, the topographic variables of elevation and slope were calculated from the DEM data 

through ArcGIS Pro. Then, as the urban waterlogging record does not include the specific years, this study 

used the average cumulative precipitation (Pre) reflecting the spatial distribution difference of rainfall during 

this period. Lastly, we calculated the drainage network density (DD) by line density module in ArcGIS pro to 

reflect the drainage capacity. 
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Figure 5-6 The auxiliary variables for (a)–(d) Guangzhou central urban district and (e)–(h) Shenzhen. 

5.3.6 Statistical analyses 

5.3.6.1 UGI and waterlogging clusters extraction 

In this study, the spatial autocorrelation analysis Getis-G statistic was adopted to investigate the spatial 

distribution pattern of UGI and urban waterlogging events. The Getis-G statistic allows us to detect whether 

the elements (green infrastructure and water-logging event) are clustered, discrete, or randomly distributed, 

which has been widely applied in geography and economy [38,62]. This allows the identification of spatial 

agglomeration effect with statistical significance (99%, 95%, 90% confidence level). In this study, the 

proportion of UGI and waterlogging density within each watershed unit was used as input attributes to 

distinguish the spatial agglomeration effect (hot spots or cold spots) of UGI and waterlogging. The calculation 

formula is as follows: 

 G=
∑ ∑ 𝜔𝑖,𝑗∗𝑥𝑖𝑥𝑗

𝑛
𝑗=1

𝑛
𝑖=1

∑ ∑ 𝑥𝑖𝑥𝑗
𝑛
𝑗=1

𝑛
𝑖=1

,∀𝑗 ≠ 𝑖 (5.2) 

where 𝜔𝑖,𝑗  is the spatial weight matrix; 𝑥𝑖  and 𝑥𝑗  are the attribute values of the 𝑖  and 𝑗  variables 

respectively. The Getis-G statistic will return five values: General G observed value, General G expected value, 

Z-test, and p-value. A positive Z-test indicates a high value of the attribute (UGI proportion and waterlogging 

density) spatial clustering (hot spots), which means that the density of urban waterlogging or the area 

proportion of UGI in the region is relatively large. Conversely, a negative Z-test indicates a low value (UGI 

proportion and waterlogging density) of spatial clustering (cold spots), which implies that the density of urban 

waterlogging or the area proportion of UGI in the region is relatively low. There were six main cluster types, 

and the specific meanings were as follows: 

The waterlogging or UGI hot spots at 99%, 95%, 90% confidence level: The density of urban waterlogging 

events or the area proportion of UGI in the watershed unit and its adjacent watersheds are significantly higher 

than the average level, indicating that urban waterlogging events or UGI distribution are concentrated in a 

place. 

The waterlogging or UGI cold spots at 99%, 95%, 90% confidence level: The density of urban waterlogging 

events or the area proportion of UGI in the watershed unit and its surrounding units are relatively lower than 

the average level, which implies urban waterlogging events and UGI distribution are much fewer in the region. 
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5.3.6.2 Partial correlation analysis 

The partial correlation analysis was first used to reveal the binary correlation of waterlogging and UGI. As 

urban waterlogging is a systemic problem, the relationship between UGI and urban waterlogging is affected 

by multiple variables [10,17,21]. For example, improving the condition of green infrastructure or increasing 

drainage facilities can both reduce the risk of urban waterlogging. Therefore, to accurately measure green 

infrastructure’s effect on urban waterlogging, the partial correlation analysis with control variables was 

utilized to examine the correlation and stability between UGI factors and urban waterlogging density. The 

partial correlation can effectively prevent the correlation between two variables from being contaminated by 

other correlations. In this case, any influencing factors that have potential effects on urban waterlogging were 

regarded as control variables for partial correlation analysis. Hence, the elevation, slope, precipitation, and 

drainage density were adopted as control variables to examine UGI composition and spatial configuration for 

its partial correlation with urban waterlogging. 

5.3.6.3 Geographical detector model 

Spatial heterogeneity is a major characteristic of spatial data. The geographical detector model is a spatial 

statistic tool based on stratified spatial heterogeneity, which has been widely used to investigate spatial 

heterogeneity and driving forces of geographical phenomena [63,64,65]. The geographical detector model 

can be divided into four parts according to their specific analytical functions: factor detector, risk detector, 

ecological detector, and interactive detector [66]. As the main purpose of this study, the factor detector and 

interactive detector were employed to reveal which green infrastructure factor has a more important impact 

on urban waterlogging and how these factors interact with each other. 

The explanatory power of different factors to the dependent variable can be expressed by the PD value 

(power determinant) calculated by the factor detector. It compares the total variance of the factor in different 

subregions with the total variance of the factor in the whole study area to assess the impact of the green 

infrastructure factor on waterlogging: 

 PD = 1 −
∑ 𝑁ℎ𝜎ℎ

2𝐿
ℎ=1

𝑁𝜎2
= 1 −

𝑆𝑆𝑊

𝑆𝑆𝑇
 (5.3) 

where N is the number of units across the region; Nh indicate the number of units in stratum h, h = 1, 2, …, L; 

σ2 and σℎ
2  represent the global variance in the entire study area and variance in stratum h; SSW and SST 

refer to the total variance within stratum and across the region. The value of PD ranges from 0 to 1. When PD 
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= 1, the UGI factor fully explains the spatial distribution of urban waterlogging; when PD = 0, the UGI factor 

has no relationship with the variation of waterlogging. 

The interaction detector is used to detect whether the combined effect of two individual factors on a 

dependent variable is significantly greater or less than the individual effect of a single factor [63]. It is 

determined by comparing the sum of the PD values of the two factors with the PD values of the two-factor 

interaction. The interaction detector divides the interactions between two factors into seven categories, as 

shown in Table 5-3. 

Table 5-3 Types of interaction between two factors. 

Interaction Description 

Nonlinear weaken PD (X1∩X2) < Min[PD(X1), PD(X2)] 

Unitary weaken Min[PD(X1), PD(X2)] < PD (X1∩X2) < Max[PD(X1), PD(X2)] 

Binary enhancement PD (X1∩X2) > Max[PD(X1), PD(X2)] 

Independent PD (X1∩X2) = PD (X1) + PD (X2) 

Nonlinear enhancement PD (X1∩X2) > PD (X1) + PD (X2) 

 

5.3.6.4 Thresholds level of UGI affecting waterlogging 

First, we plot the relationship between waterlogging density and UGI factors to further analyze this complex 

linking. As shown in Figure 5-7, we notice that waterlogging density varies with the UGI factors but gradually 

approaches a stable level. This indicates that urban waterlogging density no longer decreases or increases 

with the UGI factor when the UGI factor reaches a certain range. For example, the UGI area proportion 

exceeds a certain range, the decreasing trend of urban waterlogging is gradually gentle (Figure 5-7a). 

Therefore, we can consider this value range reached by the UGI factor as the threshold value. Second, we 

notice that the relationship between waterlogging density and the UGI factor is similar to a logarithmic 

function. The logarithmic fitting is adapted to reflect the nonlinearity, which can be expressed as: 

 𝑦 = 𝑎 ln(𝑥) + 𝑏 (5.4) 

where y represents the waterlogging density, x is the UGI indicator, a and b are coefficients. Third, we calculate 

the derivative of the logarithmic fitting expressions to obtain the variation rate of waterlogging density (Figure 

5-7b). According to the variation rate of waterlogging density, we find that at the beginning, the decreasing 
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rate of waterlogging density is very large, but with the increase of UGI indicators, the decline rate gradually 

tends to be flat. Therefore, we further calculated the unit decline rate of urban waterlogging density for each 

UGI indicator. When the unit decline rate is less than 0.01, we consider that the urban waterlogging density 

remains relatively stable, which no longer decreases significantly with the driver. On this basis, we regard the 

inflection point when the unit decline rate reaches 0.01. Accordingly, the value of the UGI indicators 

corresponding to the inflection point is considered the threshold value, which is defined as the limits of the 

impact of each UGI factor on urban waterlogging. For example, the area proportion of UGI corresponding to 

the inflection point is 24.4% (Figure 5-7b). This means that when the proportion of UGI exceeds 24.4%, the 

waterlogging density will not decrease significantly with the increase of the green area. Therefore, the 

threshold level of the UGI area proportion affecting urban waterlogging is 24.4%. Finally, the logarithmic 

fitting and derivation are implemented in the R package of “basicTrendline” [67]. 

 

Figure 5-7 The logarithmic fitting (a) and the derivative (b) between UGI area proportion and waterlogging. The red line 

indicates the nonlinear fitting curve and the derivative curve, and the blue dashed line represents the threshold value. 

5.4 Results 

5.4.1 Spatial patterns of UGI and urban waterlogging 

5.4.1.1 Spatial pattern of UGI between two cities 

As shown in Table 5-4, within Guangzhou central urban districts, the UGI accounts for 33.92% of the total 

area, 21.41%, 4.73%, 2.26%, and 5.52%, woodland, grassland, cultivated land, and garden, respectively. For 

Shenzhen city, the proportion of UGI is much greater than that of Guangzhou, accounting for 45.86% of the 

city. The woodland, grassland, cultivated land, and garden account for 27.78%, 7.82%, 2.75%, and 7.51%, 
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respectively. Regarding spatial configuration, the MPS and AI values are greater in Shenzhen city, indicating 

the clustered and continuous distribution of UGI. In contrast, Guangzhou’s MPS and AI values are relatively 

small, while the LDI value is large, indicating a more scattered and fragmented distribution of UGI in 

Guangzhou. 

Table 5-4 Spatial pattern of UGI in Guangzhou and Shenzhen. 

Composition 
City 

Guangzhou Shenzhen 

Woodland 21.41% 27.78% 

Grassland 4.73% 7.82% 

Cultivated 

land 
2.26% 2.75% 

Garden 5.52% 7.51% 

Spatial 

configuration 
Range Mean Median S.D. Range Mean Median S.D. 

MPS 0.01 - 3.72 0.77 0.34 1.4 0.29 - 4.32 1.52 1.21 0.95 

LDI 0.04 - 0.87 0.51 0.59 0.23 0.006 - 0.63 0.21 0.17 0.15 

AI 67.94 – 99.53 91.47 88.52 2.81 65.17 – 97.98 95.77 94.33 4.26 

The cluster effect of UGI between the two cities is shown in Figure 5-8. The hot spots of UGI (highlighted as 

red) in Guangzhou are mainly concentrated in the northwest part where the land cover features are 

dominated by woodland. In contrast, the cold spots of UGI were concentrated in the Liwan, Yuexiu, and 

Haizhu districts (southwest part of Guangzhou’s central urban districts). These three districts are part of the 

historical urban area of Guangzhou and possess a high abundance of impervious surfaces. In Shenzhen, the 

UGI hot spots were mainly distributed in the Dapeng district, where the Dapeng Peninsula National Geopark 

is located. Compare with Guangzhou, Shenzhen’s UGI cold spots presents a multicentric distribution pattern, 

mainly distributed in each urban district (Futian, Luohu, Baoan, Longgang District). 
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Figure 5-8 The UGI spatial agglomeration map for (a) Guangzhou and (b) Shenzhen. 

5.4.1.2 Urban waterlogging spatial agglomeration effect between two cities 

The Getis-G statistic shows that the area covered by waterlogging hot spots in Guangzhou is approximately 

17.35%, while the area covered by waterlogging cold spots is about 22.19% (Table 5-5). In Shenzhen, around 

23.68% of Shenzhen was covered by urban waterlogging hot spots, and 29.52% by cold spots. Both indicate 

that urban waterlogging in Guangzhou and Shenzhen has a significant clustering effect. 

Table 5-5 Descriptive statistics of urban waterlogging hot spots and cold spots. 

City 
Area percentage (%) 

General G z-score p-value 
Hot spots Cold spots 

Guangzhou 17.35 22.19 0.00008 18.33 0.00 

Shenzhen 23.68 29.52 0.00002 12.94 0.00 

In Guangzhou, the waterlogging hot spots (highlighted as red) are concentrated in the southwestern part, 

which has a relatively high proportion of impervious surfaces (Figure 5-9). In contrast, the waterlogging cold 

spots (highlighted as blue) are mainly distributed in the northwestern part with a relatively high UGI 

abundance. As for Shenzhen, the waterlogging hot spots are sparsely distributed in the urban sub-centers 

(Futian, Luohu, Longhua, Longgang District), while the urban waterlogging cold spots are mainly clustered in 

the eastern Dapeng district with better natural conditions. Although both cities show the agglomeration 

effect of urban waterlogging, the spatial clustering effect is more prominent in Guangzhou; instead, the hot 

spots and cold spots in Shenzhen present a more dispersed distribution pattern. This phenomenon may be 

due to the differences in the spatial distribution patterns of UGI between the two cities. Furthermore, a 
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comparison between Figures 5-8 and 5-9 reveals that the aggregation effects of UGI and urban waterlogging 

exhibit a coupling trend. For example, the hot spots of the UGI correspond to the cold spots of urban 

waterlogging and vice versa. 

 

Figure 5-9 The waterlogging spatial agglomeration map for (a) Guangzhou and (b) Shenzhen. 

5.4.2 Impacts of UGI on urban waterlogging 

5.4.2.1 Partial correlations between UGI and waterlogging 

As shown in Table 5-6, we found that the UGI area proportion and EVI both presented a significant negative 

correlation with waterlogging in two cities (p < 0.01). This suggests that UGI such as woodland and grassland 

play a crucial role in regulating rainfall and reducing surface runoff or that the waterlogging density decreases 

with the increase of the UGI area proportion or EVI. From the perspective of landscape fragmentation, the 

MPS shows a negative correlation, while LDI experiences a positive correlation. This result indicates that a 

UGI with a large mean area or low fragmentation is less prone to waterlogging. As for landscape aggregation, 

the AI of green infrastructure has a negative effect on waterlogging, which implies that the clustered 

distribution of UGI is also conducive to the mitigation of urban waterlogging. The correlation results suggest 

that optimizing the spatial arrangement of green infrastructure also matters, which positively alleviates urban 

waterlogging. 

Table 5-6 Partial correlation coefficients between UGI and waterlogging. 
 

City Guangzhou Shenzhen 

Composition 
EVI -0.338** -0.445** 

UGI -0.471** -0.657** 



203  

Woodland -0.428** -0.556** 

Grassland -0.354** -0.498** 

Garden -0.272** -0.379** 

Cultivate land -0.133 -0.237* 

Spatial configuration 

MPS -0.382** -0.542** 

LDI 0.347** 0.422** 

AI -0.278 -0.394** 

 

5.4.2.2 Individual and interactive effects of UGI factors on urban waterlogging 

The factor detector examined the relative importance (individual effect) of UGI factors on urban waterlogging. 

As shown in Figure 5-10, the PD values for all influencing factors ranged from 0.05 to 0.42. First, the UGI 

compositions (area proportion and EVI) in both cities show the strongest impact on waterlogging, which both 

have an explanatory power of over 30%. The result indicates that the proportion of UGI and EVI has an almost 

equally important effect in alleviating urban waterlogging. However, the individual effect of UGI spatial 

configuration on waterlogging is relatively small. The PD values for MPS in Guangzhou and Shenzhen are 

0.142 and 0.171, respectively, while the other spatial conformation indices (LDI and AI) are even smaller. It 

hints that urban waterlogging is mainly affected by UGI area proportion and EVI, rather than the spatial 

configuration. Under the background of rapid urbanization and continuous expansion of impervious surfaces, 

the importance of properly regulating the UGI area proportion and EVI to alleviate the risk of urban 

waterlogging is highlighted. Second, we notice that the PD value of UGI factors in Shenzhen is generally higher 

than in Guangzhou. This indicates that the single effect of UGI factors on waterlogging density in Shenzhen is 

greater than that in Guangzhou. Although there are slight differences in PD values between cities, all confirm 

that UGI area proportion has the greatest impact on urban waterlogging. 
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Figure 5-10 The PD values of UGI factors in different cities. 

However, it is difficult to further reveal the mechanism of UGI on urban waterlogging through the individual 

effect. Therefore, the interaction detector was utilized to quantify the interactive effects of UGI factors on 

waterlogging. As shown in Table 5-7, the interaction detector calculated the interaction between five factors 

on urban waterlogging. The results indicate that the interaction of UGI factors greatly enhances their 

individual effects on waterlogging. In these 10 pairs of interactions, all the factors have strong binary 

enhancement, and some even show a non-linear enhancement. The largest interaction in Guangzhou and 

Shenzhen is the UGI area proportion interacting with EVI, followed by EVI interacting with MPS. This illustrates 

the importance of the interaction between the UGI area and its biophysical parameter (reflect vegetation 

healthy and density). Neither the size of the UGI nor its biophysical parameter can be ignored. Appropriate 

UGI area combined with good vegetation cover (EVI) will further improve the mitigation of urban 

waterlogging. Regarding the spatial configuration of Guangzhou, although AI has a relatively lower PD value 

than UGI area proportion from the single factor detector results, the interactive effect of UGI area proportion 

and AI factor get 261.61% enhancement compared with the single effect. Additionally, the results of the single 

factor detector results in Shenzhen show that the impact of LDI is not very important for urban waterlogging. 

However, the interactive effect of UGI area proportion and LDI accounts for around 274.58% enhancement. 

Furthermore, the interactive effect of EVI and MPS obtains over 233% and 195% enhancement for Guangzhou 

and Shenzhen, respectively. These results underscore the importance of the combination of UGI composition 
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(area proportion and EVI) and spatial configuration. Based on a certain percentage of UGI, the interaction of 

UGI composition and configuration can further enhance its impact on urban waterlogging, which has 

important implications for the metropolis with a shortage of urban land resources. Lastly, similar to individual 

effects, most PD values of the Shenzhen interactive effect are higher than those of Guangzhou. This means 

that there is some variation in the ability of UGI to influence urban waterlogging under different urban 

backgrounds. Considering the vegetation conditions in Shenzhen (high cover), it can be inferred that UGI can 

affect urban waterlogging to a greater extent in cities with better vegetation conditions. 

Table 5-7 Partial correlation coefficients between UGI and waterlogging. 

Guangzhou city Shenzhen city 

Factor Interactive PD Enhancement Factor Interactive PD Enhancement 

PD (UGI∩EVI) 0.525 Binary PD (UGI∩EVI) 0.557 Binary 

PD (UGI∩MPS) 0.446 Binary PD (UGI∩MPS) 0.483 Binary 

PD (UGI∩LDI) 0.424 Binary PD (UGI∩LDI) 0.442 Binary 

PD (UGI∩AI) 0.405 Binary PD (UGI∩AI) 0.439 Binary 

PD (EVI∩MPS) 0.474 Nonlinear PD (EVI∩MPS) 0.505 Nonlinear 

PD (EVI∩LDI) 0.362 Binary PD (EVI∩LDI) 0.407 Binary 

PD (EVI∩AI) 0.311 Binary PD (EVI∩AI) 0.374 Binary 

PD (MPS∩LDI) 0.252 Binary PD (MPS∩LDI) 0.308 Nonlinear 

PD (MPS∩AI) 0.267 Nonlinear PD (MPS∩AI) 0.289 Nonlinear 

PD (LDI∩AI) 0.238 Nonlinear PD (LDI∩AI) 0.231 Nonlinear 

 

5.4.3 Threshold level of UGI affecting waterlogging 

Next, we aimed to better demonstrate the impact of UGI on the urban waterlogging magnitude. According 

to the relative importance of UGI factors on urban waterlogging, the relationship between UGI factors (UGI 

area proportion, EVI, MPS) and waterlogging density was plotted (Figure 5-11). As for UGI area proportion 

(Figure 5-11a,g), the nonlinear fitting curve (red line) indicates that as the proportion of green infrastructure 

increases, the decreasing trend of urban waterlogging gradually becomes more gentle. In Guangzhou, the 

downward trend of urban waterlogging density is significant when the area proportion is below 15%. However, 

when the area proportion exceeds 20%, the decreasing rate gradually slows down, and the waterlogging 
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density remains relatively stable. Similarly, we also found that when the proportion of UGI in Shenzhen 

exceeds 60%, the decreasing trend of urban waterlogging density is also not obvious. This means that if the 

area of green infrastructure in the watershed exceeds the threshold, continuing to increase the proportion of 

green infrastructure may not significantly improve its mitigation effect. By deriving the function (Figure 5-

11d,j), we find that when the UGI proportion exceeds 24.4% and 72.1%, the decline rate of urban 

waterlogging gradually approaches zero. This suggests that urban waterlogging barely declines as the 

proportion of green space increases. Correspondingly, we can consider that 24.4% and 72.1% of UGI area 

proportion are the threshold values for Guangzhou and Shenzhen. It hints that the area proportion of UGI 

within a watershed unit needs to be maintained at a certain level to effectively exert its waterlogging 

mitigation effect. If the green infrastructure proportion exceeds the threshold, the mitigation effect is no 

longer enhanced, which indicates the saturation effect of urban waterlogging mitigation. Therefore, the area 

proportion of UGI within watersheds should be weighed comprehensively regarding the benefits of the urban 

waterlogging mitigation effect. 

As for the biophysical parameter, the EVI also presents a strong logarithmic correlation with waterlogging 

both in Guangzhou and Shenzhen (Figure 5-11b,h). The EVI thresholds in Guangzhou and Shenzhen are 0.36 

and 0.43 when calculating the derivatives. When the EVI is less than the threshold value, the waterlogging 

density and the derivative values in Guangzhou and Shenzhen decrease significantly. At the same time, the 

EVI exceeds the threshold, the decline rate decreases gradually and insignificantly. This result also suggests 

that vegetation also has a saturation effect in the interception and infiltration of surface runoff. 

Regarding the effect of spatial configuration, it can be found that a similar phenomenon also exists in the 

relationship between spatial configuration (MPS) and waterlogging (Figure 5-11c,i). In detail, the threshold 

value of MPS is 1.9 ha (Guangzhou) and 2.8 ha (Shenzhen). The threshold of MPS indicates that each green 

patch needs to maintain a certain area to achieve the optimal mitigation effect. This means that in addition 

to controlling the area proportion of UGI within a watershed unit, the size of green infrastructure patches 

also needs to be weighed. 
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Figure 5-11 The relationship between UGI variables and waterlogging for (a–f) Guangzhou and (g–l) Shenzhen. The red 

line indicates the nonlinear fitting curve and the derivative curve, and the blue dashed line represents the threshold 

value. 

5.5 Discussion 

5.5.1 Spatial variations of urban waterlogging 

As shown in Figure 5-9, the urban waterlogging events in Guangzhou and Shenzhen have an obvious cluster 

effect. The waterlogging hotspots are mainly located in areas with a high proportion of impervious surfaces 

and low vegetation abundance, which couples with the spatial distribution of UGI hotspots (Figure 5-8). It 

hints that urban waterlogging hot spots tend to correspond to cold spots for green infrastructure. Since 
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implementing the "open-door" policy and economic reforms in 1978, many cities in China have experienced 

rapid urbanization. The selected study areas, Guangzhou and Shenzhen, are representative of rapid 

urbanization in China. During this process, the underlying surface inside cities has changed dramatically, 

particularly the southwestern part of Guangzhou and the central and western parts of Shenzhen (with a high 

proportion of impervious surfaces). Accordingly, increase the risk of urban waterlogging in these regions. 

However, it is worth noting that the northeastern part of Guangzhou and the eastern part of Shenzhen are 

less affected by urban expansion, mainly because the urban expansion is strictly restricted in these areas as 

there are national forest parks. Therefore, the vegetation abundance is relatively high in these areas, which 

has become the hotspot for green infrastructure distribution. Despite the relatively high average annual 

rainfall and the low density of the drainage network in these areas (Figure 5-6), the occurrence of urban 

waterlogging is much lower than that of the city center, becoming the waterlogging cold spots. This 

phenomenon indirectly confirms the positive effect of green infrastructure on urban waterlogging. Moreover, 

some studies have pointed out that the influence of drainage facilities on urban waterlogging is not as great 

as commonly believed [10,23,25,68]. The more important impact is the land cover composition, as our study 

further confirms. This further explains why urban waterlogging events are less frequent in the suburbs (with 

ample green areas). 

Moreover, the spatial agglomeration effect of urban waterlogging and green infrastructure also provides 

corresponding enlightenment for waterlogging prevention and reduction. Local authorities can develop local 

mitigation strategies for waterlogging hotspot regions, such as increasing the green area or optimizing the 

spatial configuration of UGI. Simultaneously, urban development in these areas needs to pay more attention 

to the proportion of impervious surface area, which avoids further encroachment of impervious surfaces on 

scarce green areas. In the event of heavy rainfall, these measures can help reduce or even prevent urban 

waterlogging. Furthermore, with the advent of multisource big data (population mobility data, traffic travel 

data, population density), the emergency management department can provide early warning to these 

hotspot regions to minimize the negative impact of waterlogging, such as the evacuation of the elderly or 

closing the underground parking lot. This will help accurately assess the risk of urban waterlogging and 

improve early warning and emergency response. 

5.5.2 The mitigation effect of UGI on waterlogging 

UGI is often recommended for regulating surface runoff, purifying rainwater, and reducing negative 
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environmental impacts [68,69,70,71]. Our results demonstrated that UGI has a considerable effect on urban 

waterlogging, even after controlling the impact of urban topography, precipitation, and drainage facilities. 

This result is consistent with previous studies, which confirmed the role of UGI in mitigating urban 

waterlogging risk [43,45,47]. However, our results further expand our understanding of the mechanism of 

green infrastructure alleviating urban waterlogging. 

Firstly, we found that choosing the most representative and important UGI metric is crucial in this study. 

Focusing on the different behavior of various UGI metrics to influence the urban waterlogging magnitude, 

the results of cross-site evaluation suggest that the area proportion of UGI to be the most dominant factor 

influencing urban waterlogging. The larger the area of a UGI, the more considerable effect it has in regulating 

urban waterlogging magnitude. This finding is also consistent with Yao et al. [42] and Yang et al. [43]. However, 

this study further reveals the relative contribution of different UGI compositions. For the area proportion of 

UGI, woodland and grassland have the greatest impact on urban waterlogging, which provides implications 

to urban planners on the importance of preserving woodlands and grasslands in cities. 

Additionally, it is interesting to note that the impact of green infrastructure on urban waterlogging also 

depends on its vegetation status (biophysical parameter). Our result demonstrated that the influence of 

biophysical parameters (EVI) could not be ignored or simply equated with area proportion. However, most 

previous studies ignore the influence of biophysical parameters (EVI), which only analyze the effects of 

different sizes of green infrastructure on urban waterlogging [41,42,43,44,45]. For example, Armson’s study 

confirmed that when the green patch area reached 9 m2, it could effectively reduce the surface runoff [48]. 

Coincidentally, Kim et al. [41] pointed out that the larger the green space area, the greater its effect on 

average runoff. However, ignoring the biophysical parameters of UGI will inevitably lead to some deviation. 

This is mainly because densely vegetated plots and sparsely vegetated plots have completely different effects 

on urban waterlogging for the same area. Our discoveries further deepen our understanding of the 

mechanism of UGI alleviating urban waterlogging, which helps implement more effective UGI planning 

strategies to mitigate urban waterlogging. For the same UGI area, healthier or denser vegetation (superior 

ecological environment with high EVI value) can more effectively intercept and store rainwater runoff, thereby 

contributing to the mitigation of urban waterlogging. Therefore, while increasing the area of UGI, it is also 

necessary to improve the vegetation conditions (biophysical parameter) of UGI. 

Traditionally, urban planners increased the area of UGI to create a more pleasant human settlement 
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[32,45,49]. However, with the rapid urbanization, the land-use pressure within cities has increased 

significantly, showing that impervious surfaces continue to encroach on green infrastructure. Therefore, it is 

particularly important to optimize the spatial configuration of UGI under limited land resource conditions. 

Previous studies have also noted the impact of the spatial configuration of UGI on urban waterlogging 

[41,44,48]. Our study also confirmed the effect of spatial configuration on waterlogging. The mitigation effect 

of UGI on waterlogging can be increased or decreased through different spatial arrangements while keeping 

the green infrastructure area constant, which has important implications for the metropolis that lack land 

resources for UGI construction. For example, for most city centers, after experiencing rapid urbanization, 

there are not enough land resources for UGI construction. Therefore, it is necessary to carry out a spatial 

reorganization of existing green infrastructure to make it clustered distributed with less fragmentation. 

Considerable studies have mainly focused on the individual effect of UGI factors on urban waterlogging 

[41,44], while neglecting the interactive effect of UGI factors on urban waterlogging. However, our results 

show that the interaction of UGI factors greatly enhances its impact on urban waterlogging. This will 

undoubtedly further enhance our scientific knowledge in mitigating waterlogging. For example, the UGI area 

combined with EVI or spatial configuration will further improve the mitigation of urban waterlogging. These 

results underscore the importance of the combination of UGI composition and spatial configuration, as the 

individual effect is not sufficient. This suggests that our proposed method can reveal in more detail how the 

interaction of UGI composition and spatial configuration affects urban waterlogging. Additionally, this finding 

refreshes our perception of the importance of the interaction of landscape patterns. In previous studies, the 

importance of the UGI spatial configuration is often overlooked [41,44,48], mainly due to the spatial 

configuration having a relatively small individual effect. The interaction effect has led to a renewed awareness 

of the importance of the UGI landscape patterns for urban waterlogging mitigation. The interaction between 

spatial configuration and composition can more significantly improve the mitigation capacity of UGI. 

Therefore, we cannot ignore the role of the spatial configuration due to its relatively small individual effect. 

This also provides valuable and practical references for the urban planner to optimize the spatial configuration 

of UGI in urban centers. 

5.5.3 Threshold level of waterlogging mitigation effect 

It is well known that increasing the area proportion of UGI helps alleviate urban waterlogging. Most previous 

studies have only confirmed that increasing the area of green infrastructure can more effectively alleviate 
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urban waterlogging [41,42,43,44,45,50]. However, this result cannot be practically applied to guide UGI 

planning, as the land use pressure within the urban centers is too large to increase the green area greatly. 

Compared with previous studies, our results find that there is a threshold level for the waterlogging mitigation 

effect (Figure 5-11). The impact of green infrastructure on urban waterlogging is not a simple linear 

relationship. As the area proportion of UGI within the watershed exceeds the threshold, the waterlogging 

density will not continue to decline as the UGI area increases. This provides a new perspective on urban 

waterlogging mitigation strategies—blindly increasing the area of green infrastructure may not bring much 

improvement to urban waterlogging mitigation. The excessive proportions of UGI within the watershed unit 

may lead to a waste of its mitigation effect. Therefore, the area proportion of UGI and its mitigation effect 

should be considered comprehensively when planning UGI. Moreover, we can infer that under the same area 

of UGI, replacing a single large-area UGI (exceeding the threshold) with several small green infrastructure 

patches may provide a more significant mitigation effect for urban waterlogging. At present, some local 

governments have built a single enormous green area in urban new districts. However, these actions may 

lead to a great waste of their mitigation effects. It is recommended to control the area proportion of UGI 

within the threshold value to mitigate urban waterlogging more effectively. 

Furthermore, it is necessary to point out that the threshold values of MPS indicate that green infrastructure 

patches need to be maintained in a certain area. Green infrastructure patches that are too small or too large 

may not be effective in alleviating urban waterlogging. This means that when replacing a single large-area 

UGI, it is not advisable to use too small and fragmented patches. At the same time, the biophysical parameters 

also need to be weighed. In general, this provides practical implementations for urban green infrastructure 

planning: the proportion of green infrastructure at the watershed scale and the green infrastructure area at 

the patch scale are recommended not to exceed the threshold. 

These results provide considerable implications for UGI management and planning. At present, if UGI in an 

urban center is occupied by artificial land cover, the loss of UGI area is generally filled by the land resources 

at the urban fringe (with low land-use pressure). However, the UGI area remains relatively balanced at the 

city level. It is a net loss of the UGI area in the urban center, which undoubtedly negatively affects the 

management of urban waterlogging. Additionally, the vegetation abundance, biophysical parameter, and 

spatial configuration of UGI are not consistent during spatial replacement, which further leads to the relative 

loss of the urban waterlogging mitigation effect. Even if the area of UGI in the entire city remains relatively 
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balanced, this may further worsen the urban waterlogging status. Therefore, despite the great pressure on 

land use and development in the urban center, it is still necessary to retain an appropriate area of UGI. 

5.5.4 Limitations and uncertainties 

This study provides a potentially valuable idea for investigating the interaction effect and threshold level of 

UGI on urban waterlogging. However, this study has its limitations and they should be considered in future 

work. Firstly, the complex relationship between UGI and waterlogging was analyzed in two cities using only 

the historical record of urban waterlogging. Although we explicitly demonstrate the effect of UGI composition 

and spatial configuration, we may not apply this across all regions. The mitigation effect of various UGI factors 

may largely depend on the urban background. Revealing the role of UGI in urban waterlogging in other 

regions may help us confirm the universality of our findings. Secondly, the urban waterlogging data did not 

record the size (water depth, area), duration, and the specific year of each event. We only analyzed the 

waterlogging mitigation effect from the whole period, which inevitably brings some uncertainty to the results. 

Thirdly, only several commonly used UGI metrics were used in this study. Other three-dimensional metrics, 

such as green volume, were not taken into account. Consequently, in future research, the mitigation effect of 

UGI can reveal further insights from the perspective of the mitigation intensity and mitigation scale. It is 

suggested to explore the differences in the mitigation intensity of different compositions and spatial patterns 

of green infrastructure on urban waterlogging and the scale of this mitigation effect. Moreover, with sufficient 

data, we can introduce three-dimensional indicators of green infrastructure, as well as the water depth and 

duration of waterlogging events to investigate the effect of UGI on urban waterlogging more comprehensively. 

5.6 Conclusion 

In the context of the UN’s 2030 Sustainable Development Goals, two highly urbanized coastal cities were 

selected for a cross-regional study to investigate the interaction effect and threshold level of UGI on urban 

waterlogging. The results support three conclusions. 

Firstly, the area proportion and EVI of UGI both have a non-negligible effect in alleviating urban waterlogging. 

The impact of green infrastructure on urban waterlogging largely depends on its area and vegetation status. 

Healthier or denser vegetation (superior ecological environment) can more effectively intercept and store 

rainwater runoff. This finding provides practical insights into UGI planning, i.e., while increasing the area of 

UGI, more attention should also be paid to the biophysical parameter of vegetation, thereby improving the 
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mitigation effect of green infrastructure from the “size” and “health”. Secondly, the interaction of UGI factors 

greatly enhances their individual effects on waterlogging. The UGI composition (area percentage and 

biophysical parameter) and the spatial configuration can effectively alleviate urban waterlogging. This result 

offers insights into the importance of the interactive enhancement effect between UGI composition and 

spatial configuration. Under limited area for green infrastructure, it is more necessary to optimize the UGI 

composition and spatial configuration. Lastly, the impact of UGI on waterlogging presents a threshold 

phenomenon. Blindly increasing the area of green infrastructure may not greatly improve the alleviation of 

urban waterlogging. Excessive proportions of UGI within the watershed unit or an oversized UGI patch may 

lead to a waste of mitigation effects. Therefore, it is necessary to control the UGI area (both in the watershed 

unit and patch size) within a certain range to play a corresponding role in mitigating urban waterlogging. Since 

the threshold values of some UGI indicators are different among cities, the thresholds are disturbed by 

regional characteristics. Therefore, the UGI-based waterlogging prevention strategies should be adapted to 

local conditions. Given the growing concerns of global warming and continued rapid urbanization, we believe 

that our findings provide useful enlightenment for local authorities in urban waterlogging prevention, green 

infrastructure management, and sustainable development. 
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CHAPTER 6 
 

 

 

 

6. Discussion 

This thesis aims to reach a thorough understanding of the complex mechanism of waterlogging and the 

mitigation effect provided by urban green infrastructure in metropolitan coastal cities. Through four articles, 

the scale effects of urban waterlogging influencing factors, the spatial heterogeneous driving forces of 

waterlogging, the waterlogging susceptibility areas under different development scenarios, and the 

mitigation effect of urban green infrastructure on waterlogging are respectively investigated. 

Firstly, for the first research question, our results successfully identified the urban waterlogging hot spots by 

using local spatial autocorrelation analysis. The identification of the urban waterlogging hot spots can help 

the government to gain a comprehensive understanding of the spatial distribution pattern of urban 

waterlogging events, which is particularly important for urban waterlogging mitigation and risk management. 

In detail, based on this result, local authorities can plan or build more drainage facilities as well as rational 

management of existing urban green spaces and impervious surfaces for the waterlogging hot spot areas. In 

addition, more priority can be given to urban waterlogging hot spot areas during the early warning of urban 

waterlogging risks when facing extreme weather. With the rapid development of spatial big data, the spatial 

distribution of population, medical and educational facilities can help to more accurately assess the 

vulnerability of urban waterlogging hotspots. 

For the second research question, we first record the relative contributions of each influencing factor and 

describe their impact on urban waterlogging at multiple scales. Our results note that under different analysis 

scales, the dominant factors vary across different analysis scales, which present a strong scale effect. We infer 

that the inconsistent results of previous studies may be due to this scale effect. For example, the flat and low-

lying surface will increase the risk of urban waterlogging in studies conducted in Huizhou, China (Wang et al., 

2015) and Shenzhen, China (Wu and Zhang, 2017), but is associated with reducing the risk of urban 

waterlogging in Amsterdam, Netherlands (Gaitan et al., 2015). This is because different scholars use different 
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scales of analysis, which will interfere with the explanatory power of various factors and even change the 

correlation directions. These results further confirm why previous studies have produced different or even 

contradictory results. From the other side, due to the variation of waterlogging dominant factors at different 

analysis scales, we cannot simply determine a universal “optimal” analysis scale for urban waterlogging 

studies. This means that the appropriate analysis scale should be chosen according to the specific influencing 

factors and the characteristics of study areas. 

For the third research question, we successfully reveal the spatial heterogeneity driving forces of urban 

waterlogging by integrating the cubist regression tree and the geographical detector model. In the past 20 

years, a proliferation of studies focused on the driving forces of urban waterlogging (Wu et al., 2020; Zhang 

et al., 2020; Zhang et al., 2018). However, so far, most efforts in exploring this complex mechanism are limited 

to the use of global single-level analysis methods (Wu and Zhang, 2017; Tran et al., 2020; Sun, 2014). The 

global statistical methods mainly focus on revealing the general mechanism within the entire study area, 

while inevitably ignoring the local specific mechanism (Yu et al., 2018). Considering the spatial heterogeneity 

and complexity of the spatial distribution of urban landscape elements, the relationship between landscape 

elements and urban waterlogging may vary with different spatial locations. Based on our proposed method, 

this research confirms the driving force of urban waterlogging varies with local conditions. To some extent, 

these findings indicate that global statistical analysis may not be applicable to highly heterogeneous urban 

areas, which further promotes us to re-examine the results obtained based on global statistical methods to 

avoid its shortcomings. 

For the fourth research question, we further characterize the individual and interaction effect of local driving 

forces at different spatial locations to develop the site-specific waterlogging mechanism. Beyond the relative 

contribution as revealed in previous studies (Zhang et al., 2020; Yu et al., 2018), we further detect the 

interaction effect locally, and thus, improve our understanding of the site-specific waterlogging mitigation 

strategies. Some watershed units have an obvious dominant factor with an overwhelming independent 

contribution that far exceeds the remaining factors. Therefore, for these watershed units, the local authorities 

can develop urban waterlogging mitigation strategies based on their dominant factor. In contrast, some 

watershed units are jointly influenced by multiple factors, with the independent contribution of each factor 

is not much different, but a strong interaction enhancement of each factor. For these watershed units, it is 

inappropriate to develop mitigation strategies based on one single factor; instead, the interaction effect 
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between each factor needs to be comprehensively considered. This allows us to develop more targeted and 

effective waterlogging mitigation strategies, rather than the “one-size-fits-all” policy. In other words, urban 

waterlogging mitigation strategies developed from the result of global statistical methods may not be 

applicable in some areas. Strictly speaking, it is unrealistic to develop locally targeted mitigation strategies 

drawn from the general conclusions. 

For the fifth question, we successfully simulate and predict urban waterlogging in highly heterogeneous 

urbanized areas through the combination of the stepwise cluster analysis model (SCAM) and hierarchical 

partitioning analysis (HPA). Compared with logistic regression, artificial neural networks, support vector 

machines, this proposed method (SCAM-HPA) has high classification accuracy and generalization capability, 

which can be applied as a general framework to other cities for urban waterlogging risk identification and 

control. Under different urbanization and precipitation scenarios, we notice that watershed units in different 

locations have different sensitivity to land-use change and rainfall change scenarios. For example, areas with 

large impervious surface abundance are more sensitive to rainfall change scenarios. Thereby, the government 

should rationally manage the existing land cover features (vegetation abundance) or increase drainage 

capacity to cope with future urban waterlogging, even though the pressure of land-use development is 

relatively high. In contrast, urban fringe regions are more sensitive to land-use change scenarios. Thus the 

local authorities should strictly control the speed of urban expansion to avoid exacerbating the frequency of 

urban waterlogging disasters in these areas. 

For the sixth research question, we demonstrate that the mitigation effect of UGI on waterlogging presents a 

threshold phenomenon. This implies that the excessive proportions of UGI may lead to a waste of its 

mitigation effect. In contrast to previous studies, most efforts have only confirmed that increasing the area of 

green infrastructure can more effectively alleviate urban waterlogging (Yang et al., 2013; Wen et al., 2016). 

This is why most urban waterlogging mitigation strategies are based on increasing the amount of green space. 

Traditionally, urban planners increase the area of UGI to reduce surface runoff (Yu et al., 2020; Richards et al., 

2015). However, as the land use pressure within the urban centers is too large to increase the green area 

greatly, which cannot be practically applied to guide UGI planning. Therefore, our findings provide a new 

perspective on urban waterlogging mitigation strategies—blindly increasing the area of green infrastructure 

may not bring much improvement to urban waterlogging mitigation. It is recommended to consider 

comprehensively the area proportion of UGI and its mitigation effect when planning UGI. 
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Lastly, for the seventh research question, our results indicate that the area proportion and biophysical 

parameters (EVI) of UGI both have a non-negligible effect in alleviating urban waterlogging. However, most 

previous studies ignore the influence of EVI, which only analyzes the effects of different sizes of green 

infrastructure on urban waterlogging (Kim and Park, 2016; Yao et al., 2015; Yang et al., 2015). Ignoring the 

biophysical parameters of UGI will inevitably lead to some deviation. For the same UGI area, healthier or 

denser vegetation (better vegetation conditions with high EVI value) can more effectively intercept and store 

surface runoff. Therefore, while increasing the area of UGI, it is also necessary to improve the vegetation 

conditions, thereby enhancing the mitigation effect of urban waterlogging. Moreover, our study further 

confirmed the interaction effect of spatial configuration on waterlogging. This finding refreshes our 

perception of the importance of the interaction of landscape patterns. The interaction between spatial 

configuration and composition can more significantly improve the mitigation capacity of UGI. In previous 

studies, the importance of the UGI spatial configuration is often overlooked (Kim and Park, 2016; Yang et al., 

2013; Armson et al., 2013), which is mainly due to its relatively small individual effects. However, the 

interaction effect has led to a renewed awareness of the importance of the UGI landscape patterns for urban 

waterlogging mitigation. The results of this study provide a theoretical reference for urban planners to 

optimize the spatial configuration of UGI in urban centers. 

These results contribute to extending our understanding of the complex mechanism of waterlogging in highly 

urbanized coastal cities and provide a theoretical and practical reference for the prevention and control of 

urban waterlogging and the design of UGI. However, this thesis has its limitations that should be considered 

in future work. Firstly, the urban waterlogging data were obtained from local water authority historical 

records. However, due to the limitations and accessibility of urban waterlogging records, the urban 

waterlogging data did not record the size (water depth, area), duration, and the specific year of each event 

(just recorded in the period 2009-2015). We only analyze the waterlogging mechanism from the whole period, 

which inevitably brings some uncertainty to the results. Also, due to this reason, we could not evaluate the 

temporal change of the waterlogging events. Secondly, two major cities in Guangdong–Hong Kong–Macao 

Greater Bay Metropolitan Region, Guangzhou, and Shenzhen cities, were selected for this research. To reveal 

the mechanism of waterlogging and its mitigation strategy in two cities may be limited. Revealing the 

waterlogging driving forces and the role of UGI in urban waterlogging in other regions may help us confirm 

the universality of our findings. Additionally, the proposed methods that integrated the best subsect 

regression model, cubist regression tree, and geographical detector model, and the SCAM-HPA framework 
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have not been tested in multiple regions. Therefore, in future studies, we can extend it to more regional 

comparative studies under different environmental conditions and urbanization backgrounds to further verify 

the universality and credibility. 
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CHAPTER 7 
 

 

 

 

7. Conclusions 

Under the combined effects of climate change and urbanization, urban waterlogging seriously threatens 

urban sustainable development. Given the severe urban waterlogging problems in metropolitan coastal cities, 

two highly urbanized coastal cities, Guangzhou and Shenzhen are selected as the study area. To have a 

comprehensive understanding of the urban waterlogging mechanism, this thesis first offers the interpretation 

of the scale effect and identifies the dominant factors of urban waterlogging at different analysis scales. 

Secondly, considering the scale effect and the spatial heterogeneity effects of urban landscape elements on 

urban waterlogging, an innovative method that integrates the cubist regression tree, and geographical 

detector model is proposed to map the spatial heterogeneous driving forces of urban waterlogging. Further, 

the thesis highlights the fact that conventional methods have difficulty in adequately capturing the spatial 

variation of urban waterlogging as well as identifying the waterlogging susceptibility areas. A more robust 

method that combines stepwise cluster analysis model (SCAM) and hierarchical partitioning analysis (HPA) is 

proposed to simulate urban waterlogging variation and assess waterlogging susceptibility under different 

land cover change and climate change scenarios. Lastly, the effectiveness and stability of urban green 

infrastructure (UGI) in mitigating urban waterlogging are assessed from two aspects: quantifying the 

threshold level of UGI alleviating urban waterlogging and identifying UGI factors that can effectively alleviate 

urban waterlogging (independent contribution and interaction effect). The main conclusions of this thesis are 

as follows: 

1) Spatial distribution of urban waterlogging 

The local Moran's I and Getis-G statistic both indicate the spatial distribution of waterlogging events in 

Guangzhou and Shenzhen has a significant spatial agglomeration effect. The urban waterlogging hot spots in 

Guangzhou are mainly concentrated in the historical urban areas of Guangzhou (Liwan, Yuexiu, Haizhu 

district), presenting a single-core aggregation pattern. As for Shenzhen, the waterlogging hot spots are 
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sparsely distributed in the urban sub-centers (Futian, Luohu, Longhua, Longgang District). Although both 

cities show the agglomeration effect of urban waterlogging, the spatial clustering effect is more prominent in 

Guangzhou; instead, the agglomeration effect in Shenzhen presents a more dispersed distribution pattern. 

2) Scale effects of various influencing factors 

The correlation directions of Pearson, the determination coefficients of stepwise regression models, the 

relative contributions of influencing factors, and the dominant factors to waterlogging are different across all 

analysis scales. Under a small analysis scale (i.e. 1 km), the influence of topography factors on waterlogging 

magnitude is greater than other factors. However, with the increasing of the analysis scales (i.e. 3 km), the 

explanatory power of topography factors gradually declines and the land cover composition is gradually 

becoming the dominant factor of waterlogging. Since the dominant drivers vary across different analysis 

scales, the appropriate analysis scale for urban waterlogging studies only works for specific influencing factors, 

and thus the appropriate analysis scale for urban waterlogging study should be determined by the 

characteristics of study areas. 

3) Urban waterlogging spatially heterogeneous mechanism 

The combination of cubist regression tree and geographical detector model can fully quantify the spatial non-

stationarity effect of representative driving factors on urban waterlogging and spatially explicit the driving 

forces with different local conditions. To some extent, these findings indicate that global statistical methods 

that only provide a general mechanism may not be applicable to highly heterogeneous urban areas. 

Indisputably, the local waterlogging mechanisms provide a theoretical and practical reference for the 

development of site-specific waterlogging mitigation strategies. In strong dominant watersheds, we can 

develop related mitigation strategies based on the dominant factors in these watershed units. On the other 

hand, in weak dominant watersheds, the interaction effects of representative factors must be considered 

comprehensively when formulating the urban waterlogging mitigation strategy. Understanding the complex 

site-specific mechanism of urban waterlogging in different spatial locations will help us implement more 

targeted and effective mitigation strategies, rather than a “one-size-fits-all” policy. 

4) Urban waterlogging susceptibility assessment 

The proposed SCAM-HPA framework is an effective and feasible solution for urban waterlogging variation 

simulation, which provides accurate and detailed simulated results both in urban centers where waterlogging 
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frequently occurs and urban fringe with few waterlogging events. By comparing the performance with other 

models, the SCAM-HPA can be applied as a general framework to other cities for urban waterlogging 

simulation and risk assessment. Under different urbanization and precipitation scenarios, the urban 

waterlogging susceptibility areas have a considerable variation. For the areas with large impervious surface 

abundance, with the increase of cumulative precipitation, the increase in waterlogging density is significantly 

higher than that of areas with a lower abundance of impervious surface. This indicates that these regions are 

more sensitive to rainfall change scenarios. Thereby, the impervious surface and urban green area in these 

areas should be properly adjusted, even though the land-use pressure is very high. In contrast, for the areas 

with relatively high vegetation coverage, in the land-use change scenarios, a large number of green spaces 

are converted into impervious surfaces, resulting in a significant increase in the risk of urban waterlogging. 

These watershed units are more sensitive to land-use change scenarios. Therefore, the local authorities 

should be strictly controlled the speed of urban expansion to avoid exacerbating the frequency of urban 

waterlogging disasters. 

5) The threshold level of waterlogging mitigation capacity 

This thesis reveals that the impact of green infrastructure on urban waterlogging is not a simple linear 

relationship. As the area proportion of UGI within the watershed exceeds the threshold level, the 

waterlogging density will not continue to decline as the UGI area increases. The excessive proportions of UGI 

within the watershed unit may lead to a waste of its mitigation effect. Additionally, the threshold values of 

the mean patch size (MPS) indicate that green infrastructure sizes need to be maintained in a certain area. 

Green infrastructure sizes that are too small or too large may not be effective in alleviating urban waterlogging. 

Therefore, the area proportion of UGI and its mitigation effect should be considered comprehensively when 

planning UGI. Since the threshold values of some UGI indicators are different among cities, the thresholds 

values are disturbed by regional characteristics. Therefore, the UGI-based waterlogging prevention strategies 

should be adapted to local conditions. 

6) Enhance the mitigation capacity of green infrastructure on waterlogging 

The impact of green infrastructure on urban waterlogging largely depends on its area and vegetation status. 

This finding provides practical insights into UGI planning, i.e., while increasing the area of UGI, more attention 

should also be paid to the biophysical parameter of vegetation, thereby improving the mitigation effect of 

green infrastructure from the “size” and “health”. Moreover, the interaction of UGI factors greatly enhances 
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its impact on urban waterlogging. The interaction between UGI area proportion and EVI has the largest 

contribution to the mitigation of urban waterlogging, indicating that neither the size of the UGI nor its 

biophysical parameter (vegetation status) can be ignored. The combination of UGI area proportion and good 

vegetation status further improves the mitigation of urban waterlogging. Furthermore, this thesis highlights 

the importance of the combination of UGI composition and spatial configuration. Based on a certain 

percentage of UGI, the interaction of UGI composition and configuration can further enhance its impact on 

urban waterlogging, which has important implications for the metropolis with a shortage of urban land 

resources for green infrastructure. 

In the context of rapid urbanization in recent years, urban waterlogging has gradually become one of the 

most critical issues threatening human activities and the economy. Based on the conclusions drawn from this 

thesis, in future urban development, on the one hand, it is necessary to reduce the widespread of impervious 

surfaces as much as possible to protect urban green infrastructure that plays an important role in the urban 

hydrological cycle. On the other hand, there is also a need to implement site-specific urban waterlogging 

mitigation strategies according to local conditions as well as introduce effective engineering solutions, such 

as sponge cities, and low-impact development to reduce urban waterlogging. Given the growing concerns of 

global warming and continued rapid urbanization, we believe that our findings provide useful enlightenment 

for local authorities in urban waterlogging management and UN 2030 Sustainable Development Goals. 
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