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ABSTRACT 
 
 
In this Ph.D. thesis, centred around the study of lanthanide-based luminescent mo-

lecular systems with applications in thermometry, several high-level quantistic cal-

culation techniques have been explored; these have been applied to determine pa-

rameters and molecular characteristics, which are useful for the comprehension of 

the underlying mechanisms defining the temperature dependence of the optical 

properties. After a brief introduction in which the general nature of the systems is 

discussed, theoretical bases of numerical simulations are illustrated; scientific arti-

cles published on international journals with peer review and describing the theo-

retical modeling results are also included. Theoretical tools obtained from these 

studies allow not only to rationalise the optical characteristics of the investigated 

systems, but also to predict the behaviour of systems which have not yet been char-

acterised. 

 

In questa tesi di dottorato, dedicata allo studio di sistemi molecolari luminescenti 

a base di ioni lantanoidei con applicazioni in termometria, sono state esplorate ed 

applicate tecniche di calcolo quantistico non routinarie al fine di determinare 

parametri e caratteristiche molecolari indispensabili per la comprensione dei 

meccanismi alla base della dipendenza dalla temperatura delle proprietà ottiche di 

luminescenza. Dopo una breve introduzione dedicata alla descrizione di questi 

sistemi, sono state descritte le basi teoriche necessarie per la comprensione delle 

simulazioni numeriche; successivamente, sono stati allegati alla tesi gli articoli 

scientifici pubblicati su riviste internazionali in cui sono stati riportati e discussi i 

risultati degli esperimenti numerici. Il tipo di modellizzazione adottato ha reso 

possibile non solo la razionalizzazione delle caratteristiche ottiche dei composti presi 

in considerazione, ma ha permesso la previsione del comportamento di sistemi 

molecolari non ancora caratterizzati. 

 
 

  



 
 

  



TABLE OF CONTENTS 
 

1. INTRODUCTION  ......................................................................................................... 1 

1.1 A brief history of lanthanides .............................................................................. 1 

1.2 Common commercial applications  ..................................................................... 3 

1.3 Modern high-end applications of Eu3+ ................................................................ 6 

1.4 Characterisation of systems containing Eu3+ ....................................................... 8 

1.5 Eu-based molecular thermometers ..................................................................... 9 

References ........................................................................................................................ 11 

2. THEORETICAL FRAMEWORK  ................................................................................. 15 

2.1 The Schrödinger Equation  ................................................................................ 16 

2.2 Polyelectronic molecular systems  ..................................................................... 17 

2.3 Pauli exclusion principle  ................................................................................... 18 

2.4 Variational principle  ......................................................................................... 19 

2.5 Hartree-Fock method  ....................................................................................... 20 

2.6 Electron correlation  .......................................................................................... 21 

2.7 Post-HF Methods  .............................................................................................. 23 

2.8 Density Functional Theory ................................................................................ 29 

2.9 Hohenberg-Kohn Theorems  ............................................................................. 30 

2.10 Kohn-Sham Self-Consistent Field Equations  ................................................... 32 

2.11 Exchange-correlation functionals  ..................................................................... 34 

2.12 Relativistic Effects in Chemistry  ....................................................................... 38 

2.13 Dirac Hamiltonian  ............................................................................................ 39 

2.14 Douglas-Kroll-Hess Hamiltonian  ..................................................................... 40 

2.15 Zeroth-order Regular Approximation  .............................................................. 43 

2.16 Time-Dependent QM  ........................................................................................ 46 

2.17 Electronic Excitations in TD-DFT  .................................................................... 49 

References ....................................................................................................................... 51 

3. ENERGY LEVEL STRUCTURE OF THE [XE]4F6 CONFIGURATION  ......................... 55 

3.1 Antenna effect  ................................................................................................... 58 

3.2 Non-radiative decay processes in Eu3+ complexes  ........................................... 60 

References  ...................................................................................................................... 62 



4. LUMINESCENT THERMOMETERS: FROM A LIBRARY OF EUROPIUM(III) Β-

DIKETONATES TO A GENERAL MODEL FOR PREDICTING THE THERMOMETRIC BEHAV-

IOUR OF EUROPIUM-BASED COORDINATION SYSTEMS  .................................................. 63 

 

5. ANTENNA TRIPLET DFT CALCULATIONS TO DRIVE THE DESIGN OF LUMINES-

CENT LN3+ COMPLEXES  .................................................................................................... 103 

 

6. MULTIREFERENCE AB INITIO INVESTIGATION ON GROUND AND LOW-LYING EX-

CITED STATES: SYSTEMATIC EVALUATION OF J−J MIXING IN A EU3+ LUMINESCENT 

COMPLEX  .......................................................................................................................... 123 

 

7. NATURE OF THE LIGAND-CENTERED TRIPLET STATE IN GD3+ Β-DIKETONATE 

COMPLEXES AS REVEALED BY TIME RESOLVED-EPR SPECTROSCOPY AND DFT CALCU-

LATIONS  ............................................................................................................................ 137 

 

8. THERMOCHEMISTRY OF SUPRAMOLECULAR ASSEMBLY IN HETERODINUCLEAR 

LN-AL COMPLEXES  .......................................................................................................... 163 

8.1 Formation thermodynamics  ............................................................................ 165 

8.2 Effects of different lanthanides on the coordination topology ........................ 171 

8.3 Fukui function and bridging atom selectivity  ................................................. 173 

8.4 Materials and instrumentation (experimental characterisation)  ................... 178 

8.5 Computational details  ..................................................................................... 179 

References  ................................................................................................................... 180 

 
 

 

 
 

  



ACRONYMS 
ALDA: Adiabatic Local Density Approximation 

B3LYP: Stephens-Devlin-Chablowsky-Frisch Hybrid XC functional 

BLYP: Exchange: Becke; correlation; Lee, Yang, and Parr GGA functional 

BP86: Exchange: Becke; correlation; Perdew GGA functional 

CASPT2: Complete Active Space 2nd-order Perturbation Theory 

CI: Configuration Interaction 

DFT: Density Functional Theory 

DKH: Douglas-Kroll-Hess two-component relativistic Hamiltonian 

ET: Energy Transfer 

GGA: Generalised Gradient Approximation (functional) 

HF: Hartree-Fock 

HK: Hohenberg and Kohn 

HSAB: Hard/Soft Acid/Base 

ISC: Intersystem Crossing 

KS: Kohn and Sham 

LDA: Local Density Approximation (functional) 

LMCT: Ligand-to-Metal Charge Transfer 

MOFs: Metal-Organic Frameworks 

M06-L: Yan-Truhlar meta-GGA functional 

MCSCF: Multiconfiguration Self-Consistent Field 

MP2: 2nd-order Møller-Plesset perturbation theory 

O3LYP: Cohen-Handy Hybrid XC functional 

OLYP: Exchange: Handy; correlation: Lee, Yang, and Parr GGA functional 

PBE: Perdew, Burke, and Ernzerhof GGA functional 

PBE0: Adamo-Barone hybrid form of the Ernzerhof-Scuseria XC functional 

PW92: Perdew and Wang LDA functional 

QM: Quantum Mechanics 

SCF: Self-Consistent Field 

TD-DFT: Time-Dependent Density Functional Theory 

TPSS: Tao-Perdew-Staroverov-Scuseria meta-GGA functional 

VWN: Vosko, Wilk, and Nusair LDA functional 

XC: Exchange and Correlation (functional) 

ZORA: Zeroth-order Regular Approximation relativistic Hamiltonian 



 
 

 
 



1 
 

1. INTRODUCTION 
 
 

Observation, pattern recognition, and deduction are the founding pillars of human intelli-
gence. The expansion of this paradigm by the formulation of hypotheses and the design of 
experiments to test such hypotheses has brought forth what is arguably the most powerful 
tool ever obtained in our existence as a species: the scientific method.1 More than simply 
forming a causal link between an event and its effects, it allows us to truly understand the 
first principles by which nature works and to gain a more profound knowledge of the uni-
verse around us.2  

It is with this spirit that we, as scientists, approach scientific research: it is not enough to 
identify cause and consequence, we need to comprehend the underlying mechanisms by 
which things happen, so that we are able to predict the behaviour of systems just from prior 
knowledge, and eventually devise new technology based on the understood science. 

The aim of this doctoral thesis is to attempt and apply this approach – utilising the tools 
offered by computational quantum chemistry – to gain a better understanding of the optical 
properties of lanthanide-based luminescent molecular systems, with a particular emphasis 
on luminescent thermometers. Not only are these systems interesting for the possible tech-
nical applications, but they also pose a unique challenge from the theoretical standpoint, as 
the lanthanide centre – which from the computational point of view is already very difficult 
to treat on its own – only very weakly interacts with the surrounding ligand environment, 
and it is this weak interaction that ultimately defines the characteristics and performance of 
the whole system. 

We will try to describe – as accurately as our resources allow – every aspect of the molec-
ular system, from its geometrical structure to the individual electronic and magnetic prop-
erties of the moieties which build the complex, to a simple yet comprehensive model, which 
pieces together the interactions between the fragments and is able to predict the optical be-
haviour of the system. 

The computational techniques which will be employed range from well-established routine 
calculation to complex, very powerful high-level methods. It should be born in mind that, in 
the same way a skilled carpenter knows which tool is the best for the job, a computational 
chemist ought to know which methods are best suited for the particular property they are 
investigating and should exert caution not to overstep the boundaries identified by the “in-
tended” use of the method, each of which has points of strength, but also limitations. 

 

1.1 A brief history of lanthanides 

 
Lanthanides – or preferably, lanthanoids3 – identify the 6th period elements in the periodic 
table going from Ce to Lu. As the name lanthanoid means “like lanthanum” the nomencla-
ture does not technically include La, but it has become common usage to consider it a lan-
thanide, nevertheless. 
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The first encounter with this group of elements has been in 1789, when Swedish lieutenant 
and amateur chemist/geologist Karl Axel Arrhenius – not to be confused with the probably 
more familiar Svante August Arrhenius, eponym of the famous reaction rate equation – 
stumbled upon an unusually heavy, dark mineral while visiting the feldspar mine near the 
village of Ytterby.4 The first chemical analysis of this new mineral – named ytterbite after 
the nearby town – was carried out by Finnish chemist Johann Gadolin and he determined 
the mineral was composed of a number of known oxides such as beryllium, iron, and silicon, 
as well as a new unknown earth which was given the name of ytterbia.5 It was then discov-
ered that ytterbia was actually a mixture of at least three metal oxides, named yttria, erbia, 
and terbia.6 Lanthanides all feature very similar chemical properties, and for this reason ores 
often contain a mixture of many metal oxides which are difficult to separate and purify. Ce-
rium was the first lanthanide to be isolated in 1803, independently by Jöns Jakob Berzelius 
and Wilhelm Hisinger in Sweden, and Martin Heinrich Klaproth in Germany, and it was 
named after the dwarf planet Ceres discovered two years earlier.7 Yttrium was next, isolated 
in pure form in 1828 by Friedrich Wöhler.8 In 1839 Carl Gustav Mosander – one of Berzelius’ 
students – identified lanthanum as well as a new metal closely resembling it, which for this 
reason he called didymium, meaning twin.9 Much later, in 1885, Carl Auer von Welsbach 
demonstrated that this new metal was actually a mixture of two lanthanides, praseodymium 
(green twin) and neodymium (new twin).10 The same Mosander also identified terbium and 
erbium as impurities in yttrium oxide Y2O3, although at first the names of the two elements 
were switched.11 The identification of the remaining lanthanides – not free of a number of 
false positives – was greatly aided by the advancement in spectroscopic techniques in the 
late 1800s. Europium, gadolinium, ytterbium, holmium, thulium, lutetium, and samarium 
were all identified between 1878 and 1908.11 Only one space, at atomic number 61, remained 
to be filled in this row of the periodic table. It was ultimately produced in laboratory by Pool 
and Quill in 1937 by bombarding neodymium with deuterons, and was isolated and charac-
terized 10 years later by Marinsky et al.12 This element was named promethium, after the 
Greek god who stole fire from heaven to bestow it upon man. Quoting the discoverers, “the 
name not only symbolizes the dramatic way in which the new element was obtained in 
appreciable quantities, thanks to the harnessing of nuclear energy, but also warns men of 
the threatening danger of punishment by the vulture of war”.11 

The term earth was at the time used to include “all substances which possessed the prop-
erties of alkalis, did not float and did not change on heating, were almost insoluble in water 
and evolved gas bubbles during reaction with alkalis”.13 The term rare earths which is com-
monly used to identify lanthanides is therefore a double misnomer, as they are neither 
earths – the term more appropriately describes the metal oxide, not the metal itself – nor 
are they particularly rare: lanthanum, cerium, and neodymium are all more abundant than 
lithium and lead in the Earth’s crust; europium has a similar occurrence as germanium and 
arsenic, and is much more common than selenium; thulium is the rarest of the rare earths 
but is orders of magnitude more common than silver, gold, or mercury.14 

One of the first technical applications of lanthanides was introduced by von Welsbach in 
1891 when he invented an incandescent mantle composed of 99% thorium oxide ThO2 and 
1% cerium oxide CeO2. The Auer mantle actually stood comparison with electric light for 
over 40 years.15 Later on, it was discovered that doping yttrium-based glasses with lantha-
nide ions produced some interesting optically active materials.16 For example, Y2O3:Eu3+ has 
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been widely employed as the red phosphor in the now old-fashioned tube monitors and TV 
screens, while in 1964 Bell Laboratories developed the commonly used neodymium-doped 
yttrium-aluminium garnet laser YAG:Nd3+.17 

 

1.2 Common commercial applications 

 
Modern widespread applications of lanthanides range widely, here are a few of the most 
important for each element:  

• Cerium is mainly used, in its oxide form “ceria” CeO2, as a polishing compound in 
chemical-mechanical planarization processes of high-quality optical devices,18 
where the surface is carefully smoothed by a combination of chemical and mechan-
ical forces. Ceria is also used in the manufacture of gas tungsten arc welding elec-
trodes,19 where it helps improving the arc stability and decreasing burn-off. “Misch-
metal”, a pyrophoric (it sparks when struck) alloy composed of 50% Ce, 25% La, 
and the remaining 25% a mixture of all other lanthanides, can be used as a catalyst 
in petroleum cracking.20 It is this property that notoriously allowed writer Primo 
Levi to escape the Auschwitz concentration camp with his life, after he bartered a 
supply of this alloy he had found for food.21 Ce2O3 is used in the automotive industry 
for the catalytic oxidation of CO and NOx from engine exhaust gases,22,23 and in the 
walls of self-cleaning ovens where it acts as a catalyst for the oxidation of hydrocar-
bons, thus preventing the build-up of cooking residue. Metallic cerium can also be 
used to enhance the photostability of certain pigments and polymers,24 as well as 
to create castable eutectic alloys with improved mechanical and chemical perfor-
mance.25 Cerium nitrate Ce(NO3)3 is a broad-spectrum antibacterial agent that cre-
ates a leather-like, impermeable eschar when applied and is therefore used in the 
treatment of 3rd degree burns.26 

• Praseodymium was introduced a long time ago as a stain for ceramics and this 
application still endures to this day; “Praseodymium Yellow” in particular is a dis-
persed form of Pr3+ in a crystalline zircon matrix to form a solid solution.27,28 Like 
many other lanthanides, Pr3+ finds use as dopant in optics and photonics applica-
tions. More specifically, it is particularly effective in enhancing single-mode optical 
fibre amplifiers29 and lasers,30 upconverting nanoparticles,31,32 and various phos-
phors.27 Besides these standalone applications, praseodymium is often used in 
combination with other metals to either tune or enhance their properties: with ne-
odymium it creates the powerful magnets with whom we are all very familiar, as 
well as providing the base component for didymium glass in welding goggles;28 with 
nickel it provides a very strong magnetocaloric effect – a phenomenon in which a 
temperature change is induced by exposing the material to a varying magnetic field 
– and this has allowed to reach temperatures down to 1/1000th of a degree K;33 with 
magnesium it creates high-strength material viable for aeronautic applications;34,35 
with the fluorides of other lanthanides it forms the core of carbon arc lights, which 
are used in the film industry for lighting purposes;33 
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• Neodymium magnets are the strongest permanent magnets currently known.36 
This allows the construction of very lightweight, yet powerful magnetic systems 
with obvious applications in the audiophile industry. High quality microphones, 
speakers, headphones, and guitar pickups are all based on neodymium magnets for 
the sound recording or generation. It is also used in lasers, for example in the al-
ready mentioned YAG:Nd3+ laser, and in stained glasses to give a distinct lavender 
colour when illuminated by daylight, and blue when exposed to fluorescent light, 
due to the narrow absorption bands of the ion. 

• Promethium is primarily used in luminous paint for signal lights, as prome-
thium-147 is a beta particle (high-speed electrons/positrons) emitter and the radi-
ation can be caught by a phosphor which in turn emits light.28,33 The same beta 
decay can also be exploited in the creation of atomic batteries, this time converting 
the beta particles into electric current, for an average lifetime of about five 
years.28,33 

• Samarium is another lanthanide which found wide application in magnet tech-
nology: Sm-Co magnets are second only to Nd-based magnets but are more stable 
at higher temperatures and are more resistant to demagnetisation.33 It is also used 
as a catalyst for the decomposition of plastics and dehydrogenation of ethanol,28 as 
well as a reducing and coupling agent in a number of syntheses.37 Samarium-153 is 
another beta emitter   and it is used in oncologic treatments for various types of 
cancer, such as lung, prostate, and breast cancers, as well as osteosarcoma.33 Sa-
marium-149 has a very high neutron capture cross-section and is used in control 
rods for nuclear reactors. Moreover, its decay products are other Sm isotopes which 
also have good neutron absorption capabilities.28 

• Europium, the main focus of this thesis, is used primarily for its luminescent 
properties, in white-light LEDs,38,39 persistent phosphors,40 and as a label for im-
munoassay studies.41 Moreover, it is also commonly used, in the form of europium-
doped strontium aluminate, in fluorescent lamps to improve the efficiency and af-
ter-glow intensity of the glass.42 The luminescence properties of europium are also, 
quite fittingly, used as an anti-counterfeiting method for Euro banknotes.  

 
Figure 1. 50€ banknote illuminated at 366 nm. The red is given by Eu3+ while the green and blue are given by 
Eu2+. 
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• Gadolinium has a plethora of different uses. Even in very small percentages 
(down to 1%) it improves the mechanical properties and malleability of iron and 
chromium alloys.28 Gadolinium also has the highest neutron capture characteristics 
of any known material and therefore finds application in medical neutron therapy 
as well as a control rod in reactors.28 Due to its strongly ferromagnetic character 
and high Curie temperature (the temperature above which ferromagnetism van-
ishes), it is also frequently used as a contrast agent in magnetic resonance imag-
ing,43 as well as in audio devices such as compact disks. 

• Terbium is used as a dopant in solid-state devices and in combination with ZrO2 
can be used to stabilise fuel cells at high temperatures.28 An interesting Tb-based 
alloy, named Terfenol-D (TbxDy1-xFe2, x≈0.3), possesses magnetostrictive proper-
ties, i.e. it is able to contract or expand in the presence of a magnetic field.44 

• Dysprosium, like many other lanthanides, possesses a high neutron absorption 
cross-section and for this reason finds use in control rods for nuclear reactors.45 In 
combination with vanadium and other lanthanides it also finds application in laser 
technology,28 as well as in the already mentioned Terfenol-D alloy. Dysprosium is 
also used in dosimeters for the measurement of ionising radiation: CaSO4 or CaF2 
crystals are doped with Dy3+ and when exposed to radiation, the Dy3+ ions provide 
luminescence.33 

• Holmium possesses the highest magnetic strength of any element. When coupled 
with strong magnets as poles, it can generate incredibly intense artificial magnetic 
fields via what is known as flux concentration, for fields up to about a dozen Tesla 
units.46 Besides this, it is also commonly used in laser devices for use in medical 
applications,47 as well as for calibration of optical spectrophotometers due to the 
very sharp absorption peaks of solution containing holmium.48 

• Erbium is primarily used, once again, in laser technology due to its optical prop-
erties, and control rod thanks to its neutron absorption cross-section, similarly to 
other lanthanides.28 Given its particular pinkish colour it is also frequently used as 
a photographic filter49 and in jewelry.33 It improves workability of vanadium-based 
alloys and when combined with nickel it provides an alloy with an unusually high 
specific heat capacity at liquid helium temperatures, which makes it effective in 
cryocooling devices.28 

• Thulium is a relatively expensive material compared to the other lanthanides. For 
this reason, it has not found many commercial applications, besides the odd la-
ser/radioactive applications similarly to other lanthanides.28 

• Ytterbium can be used to create portable X-ray machines for situations in which 
electricity might not be readily available.28 It is also used as a dopant to improve 
various mechanical properties of stainless steel,28 as well as to tune solid state lasers 
and optical fibre communications.50 An interesting application exploits the fact that 
the electrical resistivity of ytterbium increases when subjected to high stress to 
monitor ground deformation during earthquakes.51  

• Lutetium is another expensive lanthanide with not many commercial applica-
tions. It mainly finds use as a catalyst in a number of reactions such as petroleum 
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cracking, alkylation, hydrogenation, and polimerization.28 Lutetium is also em-
ployed in positron emission tomography scan detectors.16,52 

This thesis will be primarily focused on systems featuring the Eu3+ ion, but the principles 
and protocols employed have general validity and can easily be expanded to other lantha-
nides. The reason behind this choice was two-fold: i) we were lucky enough to be able to 
work closely with the experimental research group led by Prof. Lidia Armelao, and at the 
time they were focusing on Eu-based molecular systems; ii) it is generally simpler and more 
efficient to focus time and energy into refining procedures on a single “test subject” until a 
satisfactory accuracy is reached, and then translate it to similar systems via minor adjust-
ments. 

 

1.3 Modern high-end applications of Eu3+ 

 
As already mentioned, the most common use of Eu3+ is as a red phosphor in fluorescent 
materials; this is due to its incredible versatility, as its characteristic red emission can be 
achieved not only via direct excitation with UV-Vis light, but also by many other means such 
as: cathodoluminescence (irradiation with electron beams),53,54 radioluminescence (excita-
tion with X-rays, γ-rays, α- and β-particles),55–58 electroluminescence (excitation with strong 
electric fields),59,60 triboluminescence (excitation by mechanical agitation),61–63 and chemi-
luminescence (excitation by chemical reaction).64 Its particular optical characteristics are 
due to its electronic structure, which will be described in more detail in a later chapter. Here 
we will run through some of the more cutting-edge applications of the Eu3+ ion in modern 
technologies. 
 

Solar cells. One of the first natural applications exploiting characteristics of Eu3+ is in 
solar cell technologies. Photovoltaic panels absorb sunlight (photo-) to create an electric po-
tential (-voltaic) which is then used to generate electric current. There two ways of achieving 
this: i) semiconductor-based solar panels, which possess high conversion efficiencies65 – the 
amount of light energy which is converted into electrical energy – but are expensive to build, 
are high-maintenance, and only relatively small wafers can be obtained; ii) dye-sensitised 
solar panels, built on organic chromophores, which are much cheaper and easier to make, 
and can be scaled up almost arbitrarily.66 The drawback is that at the present time it has not 
been possible to attain efficiencies larger than 12%.67 The primary reason behind this is the 
mismatch between the solar emission spectrum – the energy “faucet”, which has the highest 
power output in the visible region – and the dye absorption spectrum – the energy “sink”, 
which generally peaks in the UV region for the most effective dyes. In fact, dyes whose ab-
sorption spectra do peak in the visible region are much more sensitive to photodegradation 
due to the inherently more delicate structure of organic systems compared to inorganic 
ones.68 Lanthanides are the ideal candidates to be used as wavelength converting layers 
given their optical characteristics: they can absorb radiation in spectral regions where the 
photosensitive dye does not absorb particularly well and then emit in the range where the 
photosensitive material operates at higher efficiency.69–71 Eu3+-doping of polymeric dyes can 
improve the surface morphology of the polymer as well as its electric conductivity, while also 
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down-shifting high-energy UV light into usable radiation, significantly enhancing the char-
acteristics of some dyes without risking direct exposure of the dye and its subsequent pho-
todegradation;72 when combining different dyes it is possible to play with multiple excitation 
and conversion pathways to provide synergic co-sensitised dyes and devices73. Eu3+ can also 
be used to improve the efficiency of inorganic solar cells, in particular for perovskite-based 
technologies. Doping of CsPbI2Br with Eu3+ has proven to stabilise the active α phase as well 
as improving the open-circuit voltage of the cell,74 while addition of Eu-doped TiO2 helps 
protecting the perovskite from damaging UV radiation, thanks to the conversion abilities of 
the Eu3+ ion.75 Doping with Eu3+ can also further enhance the efficiency of traditional silicon-
based cells, once again thanks to the light converting properties of the ion.76 

 
Molecular imaging. Organic chromophores can be used as biomarkers for tracking par-

ticular targets/pathways in vivo.77,78 Unlike traditional imaging techniques, the probe itself 
is part of the chemical environment it is tracking and this opens up the possibility of tailoring 
its chemistry so it will interact with the biological system in very specific ways, enabling un-
precedented possibilities for biomedical applications, especially for studies on drug delivery 
and metabolism.79 Unfortunately organic chromophores are sensitive to photobleaching and 
possess short-lived excited states. This latter behaviour especially renders difficult – if not 
straight impossible in some cases – the separation of the probe signal from the autofluores-
cence background. In this regard, lanthanide complexes provide a major improvement: they 
possess easily recognisable spectral line shapes, are almost immune to photobleaching, fea-
ture excited states with a sufficiently long lifetime to be used in time-resolved spectroscopy 
and the ligands can be easily modified to bind with drugs and markers.80–82 Responsive con-
trast agents based on lanthanide complexes have successfully been employed in magnetic 
resonance imaging, where the complex was tailored to modify its luminescence based on the 
proton exchange rate between bulk and coordination water;83 similar strategies have been 
employed to study atherosclerosis84 and to study extracellular pH in vivo;85 lanthanide che-
lates have also been used to detect lesions due to oral cancer in hamsters,86 and to track 
delivery of radiopharmaceuticals.87 Recently, research is being devoted towards finding 
lower energy excitation pathways which do not rely on potentially harmful (even if narrowly 
localized) UV light, but rather on harmless visible radiation.88 

 
Ion sensors. A fair number of ions are of great importance in environmental and ecolog-

ical systems. Some first-row transition metal cations such as Cu2+, Fe2+/3+, and Zn2+ are in-
volved in many essential steps within biological metabolisms and an excess or deficiency of 
these elements can lead to diseases such as Alzheimer’s, while heavier elements such as Hg2+, 
Pb2+, and Cd2+ are known for their toxicity even in very low concentrations. Anions are just 
as important: I- regulates thyroidal function, PO43- deficiency can cause bone pain and frac-
tures, and exposure to CN- may lead to deadly poisoning. Many Lanthanide Metal-Organic 
Frameworks (Ln-MOFs) have been developed with the ability of selectively detect specific 
ions and their characteristic optical fingerprint renders measurements of luminescence in-
tensity simple.80,89–91 

 
Molecular thermometers. Temperature is one of the fundamentally important physi-

cal variables. It influences dynamics and kinetics of basically any system, natural and 
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artificial alike. Temperature readings are usually carried out by thermal conduction, where 
an external probe is put in direct contact with the system and heat is exchanged. The ex-
changed heat is then correlated with the temperature of the system and the temperature 
reading is obtained. This way of gauging temperature is not applicable to very small systems 
– such as in microelectronics, micro-optics, photonics, nanomedicine, etc. – as the meas-
urement procedure itself would alter the temperature of the system.92 If, instead of direct 
contact and heat exchange with a probe, a molecular-sized thermometric probe could be 
embedded directly in the system, the temperature reading could be carried out in a non-
invasive way, circumventing this issue. That is where molecular thermometers find employ-
ment. Lanthanide-based molecular thermometers are especially suited for this task given 
the high photostability and extreme flexibility in terms of spectroscopic properties these sys-
tems possess.15,93 In the recent years it has been possible to achieve submicrometric spatial 
resolutions and temperature resolutions in the order of milli-Kelvins.94–97 These represent 
one of the most interesting classes of compounds due to the interplay between many com-
peting phenomena involving the excited electronic states of the molecule; as we will see later 
in the thesis even differences as small as a few hundred cm-1 – which is in the instrumental 
uncertainty range for some spectrophotometers – can lead to very significant differences in 
the thermal response of the system. It is for this reason that an accurate theoretical descrip-
tion of each single element of the complex represents a holy grail not only for the theoreti-
cians, but for the experimentalists as well, whose work would be aided enormously by the 
availability of tools able to guide the design of newer systems with specific applications in 
mind. 

 

1.4 Characterisation of systems containing Eu3+  

 
Lanthanides can be introduced in a number of systems, from crystalline structures to mo-
lecular complexes, and their photophysical properties have been characterised in an exten-
sive way in the scientific literature. The luminescence spectra of various Ln3+ ions are gov-
erned by their characteristic narrow emission bands and particular attention is given to all 
the possible processes which can inhibit emission, such as vibronic coupling with high-en-
ergy oscillators from either ligand or solvent molecules.98 As with many other classes of com-
pounds, the synergic combination of organic and inorganic components to create a hybrid 
material usually results in very advantageous properties. These Metal-Organic Frameworks 
(MOFs) can be obtained through relatively simple syntheses including solvothermal tech-
niques99–101 which can often be carried out in a single step minimising wastes of reactants. 
Due to their peculiar electronic structures (more information will be discussed in detail in 
the following chapters) the optical behaviour of a lanthanide complex in solution is mostly 
solvent-independent and this allows the embedding of these systems in basically any kind 
of rigid matrices such as resins102, gels,103 or glasses104,105 without altering the characteristics 
studied in solution. 

From the point of view of experimental characterisation, structural and optical properties 
are usually investigated. X-ray crystallography is the technique of choice to determine the 
geometry of the complex/MOF in case,106–108 but in many instances, it is not possible to 
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obtain crystals of sufficient quality for X-ray analysis. Should this be the case, IR and 1H-
NMR spectra become the only indirect experimental sources of information for determining 
the geometrical structure of the system. Optical characterisations mostly involve the deter-
mination of UV-Vis absorption spectra and luminescence properties, such as photolumines-
cence spectra and excited state lifetime determination.106–109 If the complex in question is to 
be used as a molecular thermometer, the latter are usually recorded at various temperatures 
in order to assess the performance of the system.110 

Where experimental techniques fail, or are simply not applicable, theoretical modelling 
tools can help fill in the gaps and help the experimentalists in the rationalisation of other 
measured data or in the design of new systems. For example, geometry optimisations can 
provide reliable structures if crystals for X-ray analysis are not available. Given the fact that 
the optical properties of the lanthanide and of the ligands are mostly independent from each 
other,111–113 these are often treated separately from a computational point of view, in order to 
simplify the calculations. A detailed rundown of all the state-of-the-art techniques used in 
these theoretical studies can be found in the next chapters. 

 

1.5 Eu-based molecular thermometers 

 
One of the technical applications of Eu-based luminescent systems, as mentioned briefly in 
Section 1.3, is in the field of thermometry. The advantage of a molecular thermometer, which 
gauges the temperature based on intrinsic properties of the material itself, is that it allows 
for a non-invasive measurement of the temperature, crucial in systems where a traditional 
contact-based procedure would alter the temperature of the system.  

There are different properties which may be monitored to gauge the temperature, and the 
ones exploited in luminescent molecular thermometers are obviously related to the spectro-
scopic characteristics of the system. In particular, emission intensities or excited state life-
times can be taken as the thermometric parameter. We will show114 that the latter are regu-
lated solely by metal-centred decay processes and therefore are less susceptible to eventual 
non-radiative decay processes which are completely ligand-centred. This can be an ad-
vantage in terms of stability of the measurements, but it limits the possibilities for new de-
signs and the overall sensitivity of the system. Furthermore, the experimental setup required 
to measure excited state lifetimes is significantly more complicated than the one needed to 
measure emission spectra, severely limiting the commercial/technical material exploitabil-
ity.115 We will therefore focus on measurements based on emission intensities. 

If the emission intensity I(T) of a luminescent system is temperature-dependent, it can be 
used as the thermometric parameter to determine the temperature of the system. The prob-
lem is, however, that the absolute value of I(T) is not univocally relatable to the temperature, 
as many other factors, such as the concentration of the luminescent molecule in the material, 
instrumental sensitivity, power fluctuations of the excitation source, and interference of the 
material itself can influence its value.116 In order to accurately determine the temperature 
response of the system, a calibration curve of the temperature response needs to be built and 
used for subsequent measurements. This results in a low overall sensitivity because the tem-
perature dependence is not extrapolated from comparison with a temperature-independent 
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quantity (such as when comparing the measurement against a temperature-independent 
blank), but it is easy to implement as it does not need an external reference. For instance, in 
Eu-based luminescent systems, the spectroscopic quantity often taken as the thermometric 
parameter is the integrated intensity of the D0 

5 → F2 
7  transition (Figure 2). 

 

 
 

Figure 2. Emission spectrum of a Eu3+ complex.114 The 𝐷𝐷0 
5 → 𝐹𝐹2 

7  emission transition can be correlated with 
the temperature of the system via a calibration curve. 

 
The theoretical modelling of the thermometric response, as well as an in-depth description 

of the various non-radiative deactivation channels which contribute to the temperature de-
pendence of the Eu-based emission will be tackled in the following chapters. 
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2. THEORETICAL FRAMEWORK 
 
 

Quantum mechanics (QM) describes the behaviour (mechanics) of systems at the atomic 
(quantum) level. Many weird things start to happen at this scale; particles start behaving 
like waves, waves start behaving like particles, and neither can be completely thought of as 
one or the other. This chapter is not strictly fundamental for the comprehension of the “prac-
tical” work carried out, but it will highlight strengths and shortcomings of the various com-
putational methods employed, for a better understanding of the reason behind the choice of 
a particular method. This chapter also should not be taken as a comprehensive formal de-
scription of the various techniques within but rather as a general dusting and refreshing of 
the most important key concepts useful for getting a rough idea of how the various methods 
perform. 

It is only assumed the reader is familiar with basic concepts of calculus such as integrals, 
derivatives, and elementary linear algebra. We will use a particular kind of notation through-
out the text, which is known as Dirac notation,1 or bra-ket notation. This will allow us to 
manipulate the quantum mechanical wave-functions as vectors in the Hilbert space, lever-
aging as such the formal structure of linear algebra, which renders equations written in this 
notation simpler to read and understand. 

First of all, cursive letters denote scalar variables, such as coordinates or indices (e.g. 𝑥𝑥, 𝑖𝑖); 
bold cursive letters indicate tensors, i.e. mathematical entities with more than one compo-
nent such as vectors and matrices (e.g. 𝒗𝒗,𝑺𝑺); a hat above a letter indicates that we are dealing 
with an operator, i.e. an object which acts upon a function (e.g. 𝐻𝐻�, 𝑝̂𝑝). The adjoint of an op-
erator is identified by a dagger symbol (e.g. 𝑈𝑈�†) and is defined by the relation �𝑓𝑓�𝑈𝑈��𝑔𝑔� =
�𝑈𝑈�†𝑓𝑓�𝑔𝑔�. Similarly, for a complex function its conjugate is expressed with an asterisk (e.g. 
𝜙𝜙∗). The writing 𝐴̂𝐴𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑧𝑧), for example, means that the operator 𝐴̂𝐴 acts on the function 𝑓𝑓 
with coordinates 𝑥𝑥,𝑦𝑦, 𝑧𝑧. 

The bra notation for a state vector 𝒗𝒗 is given as ⟨𝑣𝑣|, while the ket notation for the same 
state vector is given as |𝑣𝑣⟩. If 𝒗𝒗 is complex, the bra ⟨𝑣𝑣| refers to its complex conjugate trans-
posed (adjoint) (𝒗𝒗∗)𝑇𝑇 = 𝒗𝒗†. The scalar product between two state vectors is then defined as: 

  

⟨𝑣𝑣|𝑢𝑢⟩ ≡ 𝒗𝒗† ⋅ 𝒖𝒖 = �(𝒗𝒗∗ ⋅ 𝒆𝒆𝑖𝑖)𝑇𝑇(𝒆𝒆𝑗𝑗 ⋅ 𝒖𝒖) = �𝑣𝑣𝑖𝑖∗𝑢𝑢𝑗𝑗 𝛿𝛿𝑖𝑖𝑖𝑖  (1) 

 
where 𝛿𝛿𝑖𝑖𝑖𝑖 is the Kronecker delta,2 a function that is 1 if 𝑖𝑖 = 𝑗𝑗 and 0 otherwise; 𝒆𝒆𝑖𝑖 and 𝒆𝒆𝑗𝑗 are 

the unit vectors defining the vector space in which the 𝒗𝒗 and 𝒖𝒖 vectors belong; 𝑣𝑣𝑖𝑖 and 𝑢𝑢𝑖𝑖 are 
the projection of vectors 𝒗𝒗 and 𝒖𝒖 on the directions 𝑖𝑖 and 𝑗𝑗, respectively. This notation is es-
pecially useful because the wave-functions we will use can be represented by vectors in a 
particular vector space (the complex Hilbert space) and therefore operations of multiplica-
tion and integration over the three-dimensional space can be reduced to simple vector op-
erations on the components. For example, given two functions 𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑧𝑧) and 𝑔𝑔(𝑥𝑥,𝑦𝑦, 𝑧𝑧) the 
projection of 𝑓𝑓 onto 𝑔𝑔 can be written in cartesian coordinates very compactly as: 
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�𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑧𝑧) ⋅ 𝑔𝑔(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = ⟨𝑓𝑓|𝑔𝑔⟩
+∞

−∞

 (2) 

 
If this integral is zero, it means that the function 𝑓𝑓 has no projection onto 𝑔𝑔, which is the 

equivalent of saying that in the vector space 𝑓𝑓 and 𝑔𝑔 are orthogonal. 
 

2.1 The Schrödinger Equation 

 
At the QM level the physical state of a particle is fully described by a mathematical – in 
general complex – function of its space coordinates 𝒓𝒓 = (𝑥𝑥,𝑦𝑦, 𝑧𝑧) and of the time coordinate 
𝑡𝑡. This takes the name of wavefunction of the system and is represented by the Greek letter 
Ψ.  

According to the Copenhagen interpretation of quantum mechanics,3 the wavefunction of 
a particle in itself has no precise physical meaning, but its square modulus is associated with 
the probability 𝑝𝑝 of finding the particle described by the wavefunction at a given point and 
time: 

 
|Ψ(𝒓𝒓, 𝑡𝑡)|2𝑑𝑑𝒓𝒓 = ⟨Ψ(𝒓𝒓, 𝑡𝑡)|Ψ(𝒓𝒓, 𝑡𝑡)⟩ = 𝑝𝑝(𝒓𝒓, 𝑡𝑡) (3) 

 
The time evolution of this function is governed by its Hamiltonian 𝐻𝐻�, i.e. the operator cor-

responding to the total energy of the system, and is described by the fundamental equation 
of QM, the time-dependent Schrödinger equation:4 

 

𝑖𝑖ℏ
𝜕𝜕Ψ(𝒓𝒓, 𝑡𝑡)

𝜕𝜕𝜕𝜕
= 𝐻𝐻�Ψ(𝒓𝒓, 𝑡𝑡) (4) 

 
The form of the Hamiltonian defines energy spectrum of the quantum system and there-

fore the wavefunction can be written as a linear combination of solutions of the following 
eigenvalue problem:  

 
𝐻𝐻�Ψ𝑖𝑖(𝒓𝒓, 𝑡𝑡) = 𝜀𝜀𝑖𝑖Ψ𝑖𝑖(𝒓𝒓, 𝑡𝑡) (5) 

 
where the eigenvalue 𝜀𝜀𝑖𝑖 is the energy associated with the i-th eigenstate Ψ𝑖𝑖 of the quantum 

system. This is also known as the time-independent Schrödinger equation. The definition of 
the Hamiltonian operator is therefore a problem of primary importance. 

Operators are directly associated with the physical observables they represent. The link 
between the quantum and “macroscopic” realms is made in terms of expectation values of 
these operators. An expectation value represents the average value for a given physical ob-
servable on a given system.5 For a generic operator 𝐴̂𝐴 it is defined as: 

  

�𝐴̂𝐴� ≡
∫𝑑𝑑𝑑𝑑Ψ∗𝐴̂𝐴Ψ 
∫ 𝑑𝑑𝑑𝑑Ψ∗Ψ 

=
�Ψ�𝐴̂𝐴�Ψ�
⟨Ψ|Ψ⟩

 (6) 
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In general, it is useful to represent the wavefunction of a system in terms of a linear com-
bination of states, which are chosen as the complete set (eigenbasis) of orthonormal eigen-
functions |𝑛𝑛⟩ of the Hamiltonian 𝐻𝐻� for the specific problem of interest: 

 

|Ψ(𝑡𝑡)⟩ = �𝑐𝑐𝑛𝑛|𝑛𝑛⟩
𝑛𝑛

�𝑒𝑒−
𝑖𝑖𝐸𝐸𝑛𝑛𝑡𝑡
ℏ � (7) 

 
where the expansion coefficients 𝑐𝑐𝑛𝑛 are the projections of each state |𝑛𝑛⟩ on the wavefunc-

tion |Ψ⟩: 
 

𝑐𝑐𝑛𝑛 = ⟨𝑛𝑛|Ψ(0)⟩ (8) 
 
and the time-dependent part in parentheses represents how these coefficients evolve (os-

cillate) over time. 
 

2.2 Polyelectronic molecular systems 

 
If the wavefunction describes a molecular system with 𝑁𝑁 electrons, the probability density 
of finding any single electron in a point of space and time – the electron density – is: 

 

𝜌𝜌(𝒓𝒓1, 𝑡𝑡) = 𝑁𝑁� 𝑑𝑑𝒓𝒓2𝑑𝑑𝒓𝒓3 …𝑑𝑑𝒓𝒓𝑁𝑁
+∞

−∞
|Ψ(𝒓𝒓1, 𝒓𝒓2,𝒓𝒓3, …𝒓𝒓𝑁𝑁 , 𝑡𝑡)|2

= � 𝑑𝑑𝒓𝒓2𝑑𝑑𝒓𝒓3 …𝑑𝑑𝒓𝒓𝑁𝑁
+∞

−∞
Ψ∗(𝒓𝒓1,𝒓𝒓2, 𝒓𝒓3, … 𝒓𝒓𝑁𝑁 , 𝑡𝑡) ⋅ Ψ(𝒓𝒓1,𝒓𝒓2, 𝒓𝒓3, … 𝒓𝒓𝑁𝑁 , 𝑡𝑡) 

(9) 

 
where Ψ∗ is the complex conjugate of Ψ. If integrated again, it yields the total number of 

electrons 𝑁𝑁: 
 

� 𝑑𝑑𝒓𝒓1 𝜌𝜌(𝒓𝒓1, 𝑡𝑡)
+∞

−∞
= 𝑁𝑁 (10) 

 
We can also calculate the probability of finding one electron in 𝒓𝒓1 and another electron in 

𝒓𝒓2 simultaneously. This is known as the electron pair density: 
 

Π(𝒓𝒓1,𝒓𝒓2, 𝑡𝑡) =
𝑁𝑁(𝑁𝑁 − 1)

2
� 𝑑𝑑𝒓𝒓3 …𝑑𝑑𝒓𝒓𝑁𝑁
+∞

−∞
|Ψ(𝒓𝒓1,𝒓𝒓2, 𝒓𝒓3, …𝒓𝒓𝑁𝑁 , 𝑡𝑡)|2 (11) 

 
In a non-relativistic approach, the Hamiltonian operator for a chemical system with 𝑁𝑁 elec-

trons (𝑖𝑖, 𝑗𝑗, … ) and 𝑀𝑀 nuclei (𝑝𝑝, 𝑞𝑞, … ) with charges 𝑍𝑍𝑝𝑝 ,𝑍𝑍𝑞𝑞 , … can be written – in atomic units, 
where the fundamental electron charge, its mass, and the Planck constant ℏ are set equal to 
1 – as: 
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𝐻𝐻� = −
1
2
�

1
𝑚𝑚𝑝𝑝

∇�𝑝𝑝2 −
𝑀𝑀

𝑝𝑝=1

1
2
�∇�𝑖𝑖2 −��

𝑍𝑍𝑝𝑝
𝑟̂𝑟𝑖𝑖𝑖𝑖

+
𝑀𝑀

𝑝𝑝=1

𝑁𝑁

𝑖𝑖=1

��
𝑍𝑍𝑝𝑝𝑍𝑍𝑞𝑞
𝑅𝑅�𝑝𝑝𝑝𝑝

+
𝑀𝑀

𝑞𝑞>𝑝𝑝

𝑀𝑀

𝑝𝑝=1

��
1
𝑟̂𝑟𝑖𝑖𝑖𝑖

𝑁𝑁

𝑗𝑗>𝑖𝑖

𝑁𝑁

𝑖𝑖=1

𝑁𝑁

𝑖𝑖=1

 (12) 

 
where the first and second terms are the kinetic energies of the nuclei and electrons, re-

spectively; the third term is the Coulomb electron-nucleus attractive interaction; the fourth 
and fifth terms are the Coulomb nucleus-nucleus and electron-electron repulsions, respec-
tively. The operator 𝑟̂𝑟𝑎𝑎𝑎𝑎 = |𝒓𝒓�𝑏𝑏 − 𝒓𝒓�𝑎𝑎| identifies the distance between particles 𝑎𝑎 and 𝑏𝑏 as the 
difference between the position operators 𝒓𝒓�𝑎𝑎  and 𝒓𝒓�𝑏𝑏, which return the coordinates for each 
particle. 

Since the difference in the masses of electron and nuclei is very large – even in the hydro-
gen atom the nucleus, a single proton, is 1837 times more massive than the electron – their 
respective motions can be treated separately and the total Hamiltonian becomes a sum of 
nuclear and electronic contributions. This is known as the Born-Oppenheimer approxima-
tion.6 The Hamiltonian of the quantum system can therefore be rewritten in terms of the 
electronic one: 

 

𝐻𝐻�𝑒𝑒𝑒𝑒 = −
1
2
�∇�𝑖𝑖2 −��

𝑍𝑍𝑝𝑝
𝑟̂𝑟𝑖𝑖𝑖𝑖

+
𝑀𝑀

𝑝𝑝=1

𝑁𝑁

𝑖𝑖=1

��
1
𝑟̂𝑟𝑖𝑖𝑖𝑖

𝑁𝑁

𝑗𝑗>𝑖𝑖

𝑁𝑁

𝑖𝑖=1

𝑁𝑁

𝑖𝑖=1

 (13) 

 
where the nuclear coordinates (𝑝𝑝, 𝑞𝑞, … ) are treated parametrically and the nuclear repul-

sion – the fourth term in the right-hand side (r.h.s.) of Eq. 12 – can be considered as a con-
stant value for each nuclear configuration 𝑅𝑅𝑝𝑝𝑝𝑝. Incidentally, Eq. 13 shows that the system of 
interest defines the Hamiltonian through the position (𝑝𝑝, 𝑞𝑞, … ) and nature �𝑍𝑍𝑝𝑝,𝑍𝑍𝑞𝑞 , … � of the 
nuclei, the total number of electrons 𝑁𝑁, and nothing more. 

 

2.3 Pauli exclusion principle 

 
There is one requirement the wavefunction of electrons – and in general of fermions, i.e. 
particles with half-integer spin – must satisfy. This was first formulated by Pauli before the 
whole contemporary QM framework was even introduced: 

 
In an atom there cannot be two or more equivalent electrons for which the val-
ues of all quantum numbers coincide. If an electron exists in an atom for which 
all of these numbers have definite values, then this state is “occupied”.1 

 
Without going too much into detail, this is equivalent to requiring that wavefunctions of 

fermions be antisymmetric with respect to the exchange of any two particles: 
 

|Ψ(𝒓𝒓1,𝒓𝒓2, … , 𝒓𝒓𝑁𝑁)⟩ = −|Ψ(𝒓𝒓2,𝒓𝒓1, … , 𝒓𝒓𝑁𝑁)⟩ (14) 
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This is strictly a postulate with a phenomenological nature, even though it can be rational-
ized to some extent by the use of relativistic arguments, which are beyond the scope of this 
discussion.7 A general way of ensuring this happens is to write the wavefunction of an 𝑁𝑁-
electronic system as a Slater determinant: 
 

|Ψ(𝟏𝟏,𝟐𝟐, … ,𝑵𝑵)⟩ =
1
√𝑁𝑁!

�

𝜙𝜙1(𝟏𝟏) 𝜙𝜙2(𝟏𝟏) ⋯ 𝜙𝜙𝑁𝑁(𝟏𝟏)
𝜙𝜙1(𝟐𝟐) 𝜙𝜙2(𝟐𝟐) ⋯ 𝜙𝜙𝑁𝑁(𝟐𝟐)
⋮

𝜙𝜙1(𝑵𝑵)
⋮

𝜙𝜙2(𝑵𝑵)
⋱
⋯

⋮
𝜙𝜙𝑁𝑁(𝑵𝑵)

� ≡ |𝜙𝜙1(𝟏𝟏),𝜙𝜙2(𝟐𝟐), … ,𝜙𝜙𝑁𝑁(𝑵𝑵)⟩ (15) 

 
where 𝟏𝟏,𝟐𝟐, … ,𝑵𝑵 represent the coordinates – both spatial and spin – of electrons 1,2, … ,𝑁𝑁 

and 𝜙𝜙𝑖𝑖 are the spin-orbitals forming the eigenbasis on which the wavefunction can be con-
structed (see Eq. 7). The r.h.s. of Eq. 15 is a commonly used shorthand notation for writing 

down a Slater determinant. The prefactor 1
√𝑁𝑁!

 simply ensures the normalisation of the wave-

function and is not strictly required. 
 

2.4 Variational principle 

 
The exact solution for the Schrödinger equation can only be found for a system with only 
one electron, such as hydrogen, singly ionized helium, doubly ionized lithium, etc.8 There is 
no closed-form solution to the differential Schrödinger equations describing polyelectronic 
atoms or molecules.9 One way to obtain an approximate solution to this equation is to use 
the variational theorem. 

Consider a system with Hamiltonian 𝐻𝐻�. The various eigenstates 𝜙𝜙𝑛𝑛 each with energy 𝜀𝜀𝑛𝑛 
form a complete eigenbasis and a generic wavefunction Ψ can be expanded in terms of these 
eigenstates according to Eq. 7. The expectation value of the Hamiltonian for the wavefunc-
tion Ψ is: 
 

�Ψ�𝐻𝐻��Ψ�
⟨Ψ|Ψ⟩

=
∑ 𝑐𝑐𝑛𝑛∗𝑐𝑐𝑛𝑛�𝜙𝜙𝑛𝑛�𝐻𝐻��𝜙𝜙𝑛𝑛�𝑛𝑛

∑ 𝑐𝑐𝑛𝑛∗𝑐𝑐𝑛𝑛𝑛𝑛 = 1
= �|𝑐𝑐𝑛𝑛|2𝜀𝜀𝑛𝑛

𝑛𝑛

≥ 𝜀𝜀0 (16) 

 
where the expectation value is equal to the ground state energy 𝜀𝜀0 if and only if all coeffi-

cients besides 𝑐𝑐0 are zero and 𝑐𝑐0 = 1, i.e. Ψ = 𝜙𝜙0. This allows us to search for the best ap-
proximation of the true ground state wavefunction even if we do not know the functional 
form of the eigenstates 𝜙𝜙𝑛𝑛. As long as it is complete and the functions are orthonormal – i.e. 
�𝜑𝜑𝑖𝑖�𝜑𝜑𝑗𝑗� = 𝛿𝛿𝑖𝑖𝑖𝑖 – any generic basis set can be used to expand the wavefunction. The generic 
functions 𝜑𝜑𝑛𝑛 just need to be thought themselves as an expansion on the true eigenstates 𝜙𝜙𝑛𝑛 
with unknown coefficients 𝑐𝑐𝑛𝑛.  
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2.5 Hartree-Fock method  

 
We can apply the variational principle to obtain the optimal coefficients for a generic wave-
function Ψ written in the form of a Slater determinant (Eq. 15). This idea was first introduced 
by D. R. Hartree in 1927,10 but the wavefunction was simply defined as a direct product of 
monoelectronic functions therefore violating the Pauli principle. V. A. Fock as well as Slater 
himself independently pointed out this issue11,12 and eventually the algorithm was reformu-
lated to use Slater determinants as wavefunctions.13 

The method is based on a Self-Consistent Field (SCF) approach, in which one-electron 
Schrödinger equations are solved iteratively, starting from a trial wavefunction, until con-
vergence is reached and the best coefficients 𝑐𝑐𝑛𝑛 are obtained. The one-electron equations are 
also known as Fock equations: 

 
𝑓𝑓𝑖𝑖𝜙𝜙𝑖𝑖 = 𝜀𝜀𝑖𝑖𝜙𝜙𝑖𝑖 (17) 

 
where 𝑓𝑓𝑖𝑖 is the Fock operator: 
 

𝑓𝑓𝑖𝑖 ≡ −
1
2
∇�𝑖𝑖2 −�

𝑍𝑍𝑝𝑝
𝑟̂𝑟𝑖𝑖𝑖𝑖

+
𝑀𝑀

𝑝𝑝=1

1
2
�[2𝐽𝐽𝑗𝑗(𝒊𝒊) − 𝐾𝐾�𝑗𝑗(𝒊𝒊)]
𝑁𝑁

𝑗𝑗=1

 (18) 

 
The first two terms in Eq. 18 are the exact kinetic energy and the electron-nuclear attrac-

tion Coulomb term already found in Eq. 13. The last sum includes an approximate version 
of the last electron-electron repulsion term in Eq. 13, in the form of single electron Coulomb 
(𝐽𝐽𝑗𝑗) and exchange (𝐾𝐾�𝑗𝑗) operators: 

 

𝐽𝐽𝑗𝑗(𝒊𝒊)𝜙𝜙𝑖𝑖(𝒊𝒊) = �𝜙𝜙𝑗𝑗(𝒋𝒋) �
1
𝑟̂𝑟𝑖𝑖𝑖𝑖
� 𝜙𝜙𝑗𝑗(𝒊𝒊)� 𝜙𝜙𝑖𝑖(𝒊𝒊) = �𝑑𝑑𝒓𝒓𝑗𝑗 𝜙𝜙𝑗𝑗∗(𝒋𝒋)

1
𝑟̂𝑟𝑖𝑖𝑖𝑖
𝜙𝜙𝑗𝑗(𝒋𝒋) ⋅ 𝜙𝜙𝑖𝑖(𝒊𝒊)  

𝐾𝐾�𝑗𝑗(𝒊𝒊)𝜙𝜙𝑖𝑖(𝒊𝒊) = �𝜙𝜙𝑗𝑗(𝒋𝒋) �
1
𝑟̂𝑟𝑖𝑖𝑖𝑖
� 𝜙𝜙𝑖𝑖(𝒊𝒊)�𝜙𝜙𝑗𝑗(𝒊𝒊) = �𝑑𝑑𝒓𝒓𝑗𝑗  𝜙𝜙𝑗𝑗∗(𝒋𝒋)

1
𝑟̂𝑟𝑖𝑖𝑖𝑖
𝜙𝜙𝑖𝑖(𝒋𝒋) ⋅ 𝜙𝜙𝑗𝑗(𝒊𝒊)  

(19) 

 
 Note that for the operators 𝐽𝐽𝑗𝑗(𝒊𝒊) and 𝐾𝐾�𝑗𝑗(𝒊𝒊) the integration coordinate 𝒓𝒓𝑗𝑗 when acting on 

orbital 𝜙𝜙𝑖𝑖 is the one associated with electron 𝑗𝑗. 
The total electronic energy 𝐸𝐸𝑒𝑒𝑒𝑒 is obtained by summing the single-electron contribution for 

all 𝑁𝑁 electrons given by the Slater determinant built on orbitals that satisfy Eq. 17: 
 

𝐸𝐸𝑒𝑒𝑒𝑒 = �𝜀𝜀𝑖𝑖 +
1
2
���2𝐽𝐽𝑖𝑖𝑖𝑖 − 𝐾𝐾𝑖𝑖𝑖𝑖�

𝑁𝑁

𝑗𝑗=1

𝑁𝑁

𝑖𝑖=1

𝑁𝑁

𝑖𝑖=1

 (20) 

 
where 𝐽𝐽𝑖𝑖𝑖𝑖 and 𝐾𝐾𝑖𝑖𝑖𝑖 are the Coulomb and exchange integrals, respectively: 
 



21 
 

𝐽𝐽𝑖𝑖𝑖𝑖 = �𝜙𝜙𝑖𝑖(𝒊𝒊)𝜙𝜙𝑗𝑗(𝒋𝒋) �
1
𝑟̂𝑟𝑖𝑖𝑖𝑖
� 𝜙𝜙𝑖𝑖(𝒊𝒊)𝜙𝜙𝑗𝑗(𝒋𝒋)� ≡ ⟨𝑖𝑖𝑖𝑖|𝑖𝑖𝑖𝑖⟩ 

𝐾𝐾𝑖𝑖𝑖𝑖 = �𝜙𝜙𝑖𝑖(𝒊𝒊)𝜙𝜙𝑗𝑗(𝒋𝒋) �
1
𝑟̂𝑟𝑖𝑖𝑖𝑖
� 𝜙𝜙𝑖𝑖(𝒋𝒋)𝜙𝜙𝑗𝑗(𝒊𝒊)� ≡ ⟨𝑖𝑖𝑖𝑖|𝑗𝑗𝑗𝑗⟩ 

(21) 

 
The physical meaning of 𝐽𝐽𝑖𝑖𝑖𝑖 is straightforward and represents the repulsive interaction be-

tween electron 𝑖𝑖 in orbital 𝜙𝜙𝑖𝑖 and electron 𝑗𝑗 in the orbital 𝜙𝜙𝑗𝑗. The second term 𝐾𝐾𝑖𝑖𝑖𝑖 has a 
slightly more intricate interpretation and can be thought of as a correction term taking into 
account the fact that electrons do not interact with themselves.14 Also note that in this for-
malism the electron-electron interaction – represented by the Coulomb and exchange terms 
– is treated in a mean field approach, with each electron interacting with the average static 
field created by all other electrons. 

 
Performance of HF calculations. The single-determinant nature of the method ren-

ders it unable to describe bond formation and dissociation, as the separate fragments after 
the bond cleavage are each appropriately described by at least one Slater determinant each. 
This can be somewhat mitigated by applying an unrestricted calculation, in which spin up 
and spin down orbitals can have different occupation numbers, but this is still a rough ap-
proximation and the calculated dissociation energies are very inaccurate.15 For closed-shell 
molecular systems that can be appropriately described by a single determinant, some prop-
erties are actually computed accurately by HF theory if such properties are not strongly re-
lated to electron correlation effects (vide infra). Protonation/deprotonation energies are re-
produced well due to the fact that the lost proton does not carry any electrons.16 Ionisation 
potentials are also very well reproduced due to a cancellation of errors and this is probably 
one of the very few applications for which HF is still used today.17 Ground state geometries 
are reproduced qualitatively if a sufficiently large basis set is used, but the tendency of over-
emphasise occupation of bonding orbitals leads to a general underestimation of bond 
lengths. Ironically, this means that in some cases using a basis set that is too large leads to 
worse results than using a smaller size one.15 HF completely fails to correctly determine ex-
cited state geometries and transition states due to the lack of electron correlation, even if in 
some lucky cases error compensation can accidentally lead to acceptable results.18 

 

2.6 Electron correlation 

 
The Hartree-Fock method is a fundamental milestone in the development of modern com-
putational quantum chemistry. However, the approximations within render it not accurate 
enough for the quantitative study of complex chemical problems. This method accounts for 
about 99% of the exact energy for the ground state wavefunction, but that remaining 1% of 
neglected energy is precisely in the range typically characteristic of chemical reactions. This 
discrepancy was named electron correlation19,20 and is defined as the difference between the 
true ground state energy and the calculated HF energy in the limit of an infinitely large basis 
set: 



22 
 

𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 − 𝐸𝐸𝐻𝐻𝐻𝐻 (22) 
 
In fact, this small discrepancy is so important that the vast majority of research in the field 

of computational quantum chemistry has been devoted to developing methods for recover-
ing this correlation energy.  

What is the origin of the correlation energy? Consider the Hamiltonian in Eq. 13, that is 
the true Hamiltonian for the real wavefunction. The rightmost contribution contains the 
term 1/𝑟𝑟𝑖𝑖𝑖𝑖, which gives infinity for 𝑟𝑟𝑖𝑖𝑖𝑖 = 0. This is not compatible with the system having a 
finite energy, therefore the wavefunction and the pair electron density Π(𝒓𝒓𝟏𝟏, 𝒓𝒓2) must both 
annihilate at 𝑟𝑟𝑖𝑖𝑖𝑖 = 0,. For electrons with the same spin this is already covered by the Pauli 
exclusion principle. Incidentally, this is also called a Fermi or exchange hole,14 as it arises 
from the requirement that the wavefunction be antisymmetric with respect to the exchange 
of two electrons. This does however not apply to electrons with paired spins, therefore this 
physical condition that Ψ𝑟𝑟𝑖𝑖𝑖𝑖→0 = 0 for any pair of electrons is an additional requirement the 
wavefunction must satisfy and this takes the name of a Coulomb hole, as it can be associated 
with electrons repelling each other at close distance. This obviously results in an overall en-
ergy gain compared to the uncorrelated wavefunction, as the electrons of the correlated 
wavefunction stay further away from each other than in the uncorrelated wavefunction 
therefore reducing the repulsive interaction. 

It can be easily shown that the HF wavefunction does not intrinsically possess this last 
property and is therefore considered an uncorrelated method. Consider a simple system of 
two electrons 𝟏𝟏 and 𝟐𝟐 in orbitals 𝜙𝜙1 and 𝜙𝜙2 with spin 𝜎𝜎1 and 𝜎𝜎2. The HF Slater determinant 
for this wavefunction is: 

 

Ψ𝐻𝐻𝐻𝐻(𝒓𝒓1,𝒓𝒓2) =
1
√2

[𝜙𝜙1(𝒓𝒓1)𝜎𝜎1(𝟏𝟏)𝜙𝜙2(𝒓𝒓2)𝜎𝜎2(𝟐𝟐)− 𝜙𝜙1(𝒓𝒓2)𝜎𝜎1(𝟐𝟐)𝜙𝜙2(𝒓𝒓1)𝜎𝜎2(𝟏𝟏)] (23) 

 
If the electrons have the same spin (𝜎𝜎1 = 𝜎𝜎2) the wavefunction and consequently the elec-

tron pair density both annihilate for 𝒓𝒓1 = 𝒓𝒓2. Unpaired electrons therefore interact and repel 
each other, even in different spatial orbitals. The Hartree-Fock method is therefore not com-
pletely uncorrelated but does include the exchange correlation arising from the Pauli prin-
ciple. 

If, however, the electrons have anti-parallel spin (𝜎𝜎1 ≠ 𝜎𝜎2) the wavefunction does not an-
nihilate for 𝒓𝒓1 = 𝒓𝒓2 even if the electrons reside in the same orbital 𝜙𝜙 = 𝜙𝜙1 = 𝜙𝜙2, and the 
electron pair density takes the following form:  

 

Π𝐻𝐻𝐻𝐻
𝜎𝜎1≠𝜎𝜎2(𝒓𝒓1,𝒓𝒓′1) =

1
2
�𝑑𝑑𝒓𝒓1𝑑𝑑𝒓𝒓′1�Ψ𝐻𝐻𝐻𝐻

𝜎𝜎1≠𝜎𝜎2(𝒓𝒓1,𝒓𝒓′1)�
2

=
1
2

[|𝜙𝜙𝜎𝜎1(𝒓𝒓1)|2|𝜙𝜙𝜎𝜎2(𝒓𝒓′1)|2 + |𝜙𝜙𝜎𝜎1(𝒓𝒓′1)|2|𝜙𝜙𝜎𝜎2(𝒓𝒓1)|2]

=
1
2

[𝜌𝜌𝜎𝜎1(𝒓𝒓1)𝜌𝜌𝜎𝜎2(𝒓𝒓′1) + 𝜌𝜌𝜎𝜎1(𝒓𝒓′1)𝜌𝜌𝜎𝜎2(𝒓𝒓1)] = 𝜌𝜌𝜎𝜎1(𝒓𝒓1)𝜌𝜌𝜎𝜎2(𝒓𝒓′1) 

(24) 
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in which the coordinate 𝒓𝒓′1 = 𝒓𝒓2 is numerically equal to 𝒓𝒓1 but is the one associated with 
electron 𝟐𝟐. Given that the electrons must be indistinguishable, 𝜌𝜌(𝒓𝒓1) = 𝜌𝜌(𝒓𝒓2). The electron 
pair density is therefore simply the product of the individual electron densities, which means 
the motion of the two electrons with unpaired spins is completely uncorrelated.  

It is a common practice to separate electron correlation in two types, the so-called static 
and dynamic correlations. It must be stressed that there is no marked physical difference in 
the definition of the two and it is mostly a conceptual distinction originating from the differ-
ent way in which computational techniques attempt to recover this missing electron corre-
lation. Dynamic correlation is mostly associated with the description we have just made and 
is assigned to the correlated motion of the electrons. It is mainly recovered by higher order 
perturbative approaches, which try and account for more than the mean field interaction 
between electrons representing the 1st order perturbation in this framework. Static correla-
tion arises from the intrinsic single-determinant nature of the HF method and the fact that 
many systems – open-shell ions, highly correlated delocalized wavefunctions, etc. – are not 
appropriately described by a single Slater determinant but require a linear combination of 
several.  

The reason why this distinction might be misleading is that both “methods” of recovering 
correlation eventually converge to the exact wavefunction, either by considering infinitely 
many orders of perturbation or by including an infinitely large number of determinants. 

 

2.7 Post-HF Methods 

 
As the HF method is still able to recover most of the exact energy of the system, the HF 
wavefunction is surely a good starting point on which to build. Methods for recovering elec-
tron correlation by processing the HF wavefunction are called post-HF methods.  

 
Configuration Interaction. One of the main limitations of HF theory is that the wave-

function is described by a single Slater determinant, so the first logical step is to write the 
wavefunction as a linear combination of several (in the exact limit, infinitely many) deter-
minants. This is known as Configuration Interaction (CI): 

 

Ψ𝐶𝐶𝐶𝐶 ≡ � 𝑐𝑐𝑛𝑛Ψ𝑛𝑛

∞

𝑛𝑛=0

= 𝑐𝑐0Ψ0𝐻𝐻𝐻𝐻 + 𝑐𝑐1Ψ1 + ⋯ (25) 

 
Ψ0𝐻𝐻𝐻𝐻 is the HF ground state wavefunction and since it is not a terrible approximation for 

the ground state, in general 𝑐𝑐0 will be the largest expansion coefficient of the series. Ψ𝑛𝑛>0 are 
n-tuply excited Slater determinants obtained by changing n spin-orbitals in the reference 
wavefunction from a previously occupied orbital to a virtual one. It is convenient to group 
together wavefunctions by the total number of excitations: 

 

Ψ𝐶𝐶𝐶𝐶 = 𝑐𝑐0Ψ0𝐻𝐻𝐻𝐻 +�𝑐𝑐𝑎𝑎𝑟𝑟Ψ𝑎𝑎𝑟𝑟
𝑎𝑎𝑎𝑎

+ �𝑐𝑐𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟Ψ𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟
𝑎𝑎<𝑏𝑏
𝑟𝑟<𝑠𝑠

+⋯ (26) 
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where Ψ𝑎𝑎𝑟𝑟 means that the occupied spin-orbital 𝜙𝜙𝑎𝑎 in the reference Ψ0𝐻𝐻𝐻𝐻 wavefunction was 
replaced by the previously unoccupied spin-orbital 𝜙𝜙𝑟𝑟, and so on. The restrictions 𝑎𝑎 < 𝑏𝑏, 𝑟𝑟 <
𝑠𝑠, etc. ensure each excited determinant is included in the total wavefunction only once. If the 
basis set is complete, this procedure will give the exact ground state wavefunction; this 
would however require an infinite number of spin-orbitals in the basis set and subsequently 
an infinite number of possible excitations. A truncation must necessarily occur at some point 

and the 𝑁𝑁-electron basis set must be limited to 𝐾𝐾 functions, and therefore �𝐾𝐾𝑁𝑁� possible ex-

citations. Despite this constraint, CI still gives the best possible wavefunction for a given 
basis set, therefore representing an upper limit to the exact ground state energy. The main 
issue is that even for very small molecules the number of determinants can become intrac-
tably large even for moderately sized basis sets, therefore rendering this method inapplicable 
for actual QM calculations. Some simplifications could be made, for instance Brillouin’s the-
orem21 states that single excitations do not directly mix with the ground state, i.e. 
�Ψ0𝐻𝐻𝐻𝐻�𝐻𝐻��Ψ𝑎𝑎𝑟𝑟� = 0. Similarly, matrix elements of the Hamiltonian between Slater determi-
nants differing by 3 or more spin-orbitals are zero, which for example means that single 
excitations do not mix with quadruples. However, this does not mean that their effect on the 
ground state is zero, because they can interact with other higher-order excitations, which in 
turn do mix with the ground state, therefore contributing indirectly to its wavefunction.  

 
Multiconfiguration Self-Consistent Field. It is now clear that CI is not an applicable 

methods for relevant chemical problems due to the extremely large number of determinants 
involved. We have also noticed that many of these excited determinants actually contribute 
very little to the overall wavefunction via indirect effects. We should therefore try and in-
clude only the most relevant number of configurations and reduce our “active calculation” 
only to those. This approach takes the name of Multiconfiguration Self-Consistent Field 
(MCSCF) and can be considered as a truncated version of the CI method: 

 

Ψ𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ≡ � 𝑐𝑐𝑛𝑛Ψ𝑛𝑛
𝑛𝑛=𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

 (27) 

 
The main difference compared to the traditional CI method is that both the coefficients 𝑐𝑐𝑛𝑛 

and the wavefunctions Ψ𝑛𝑛 are optimised during the procedure. The equations involved are 
considerably more complicated than Roothaan’s equations22 for HF theory and the discus-
sion is very much beyond the scope of this text. The principal takeaway is that the calculation 
is separated into an active space calculation – i.e. a selection of orbitals to include in a CI 
calculation – and inactive orbitals, either occupied or unoccupied, which are either consid-
ered always fully occupied or always completely empty (Figure 3).  

 



25 
 

 
Figure 3. Schematic representation of a MCSCF calculation. The inactive space is composed of HF orbitals, 
which remain either occupied or empty throughout the calculation. In the active space, a CI calculation is car-
ried out, which considers all the possible excitations of all electrons within the orbitals of the active space. 

The active space needs to be chosen by the user and should include all the orbitals giving 
rise to the multideterminant character of the wavefunction. For example, in calculations on 
a transition metal ion the active space is represented by the 5 d orbitals while all the inner 
orbitals can remain fully occupied and the higher energy s, p, etc. orbitals can remain unoc-
cupied. It is obvious here that this method presents a further source of difficulty as the users 
need to already possess a deep enough knowledge of the electronic structure of their chem-
ical system to know which orbitals should be included in the active space. 

If the CI in the active space is a full-CI calculation, meaning that all possible excitations 
within the active space are taken into account, the calculation is called Complete Active 
Space Self-Consistent Field (CASSCF) and is generally described by the number of electrons 
and orbitals in the active space. For example, a CASSCF calculation with 3 electrons in 5 
orbitals is referred to as CAS(3,5). If an appropriate active space is chosen a CASSCF calcu-
lation can give results very close to a full-CI calculation, while requiring only a fraction of 
the computational power. 

 
Many-Body Perturbation Theory. The fact that the HF wavefunction already is a fairly 

decent approximation of the exact ground state suggests that it is possible to get closer to 
the true wavefunction with a perturbative approach, but this time focusing on the 
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Hamiltonian instead of adding corrections to the wavefunction itself. The Hamiltonian in 
this framework takes the following form:  

 
𝐻𝐻� = 𝐻𝐻�0 + 𝜆𝜆𝐻𝐻�′ 
𝐻𝐻�|Ψ⟩ = 𝑊𝑊|Ψ⟩ 
𝐻𝐻�0|𝜓𝜓𝑖𝑖⟩ = 𝐸𝐸𝑖𝑖|𝜓𝜓𝑖𝑖⟩ 

(28) 

 
where 𝐻𝐻�0 is the unperturbed Hamiltonian, 𝐻𝐻�′ is the perturbation – small compared to 𝐻𝐻�0 

– and 𝜆𝜆 is a variable parameter identifying the strength of the perturbation. |𝜓𝜓𝑖𝑖⟩ are the ei-
genfunctions of the unperturbed Hamiltonian 𝐻𝐻�0. For simplicity we will only consider time-
independent perturbations at the moment. If 𝜆𝜆 = 0, then 𝐻𝐻� = 𝐻𝐻�0 and the ground state wave-
function is |Ψ0⟩ = |𝜓𝜓0⟩ with energy 𝑊𝑊0 = 𝐸𝐸0. If 𝜆𝜆 is increased continuously from 0 to a finite 
value, the corresponding energy 𝑊𝑊 and the wavefunction |Ψ⟩ must also change continuously, 
and can be written as a Taylor expansion of 𝜆𝜆: 

 
|Ψ⟩ = 𝜆𝜆0|Ψ0⟩+ 𝜆𝜆1|Ψ1⟩ + 𝜆𝜆2|Ψ2⟩+ ⋯ 
𝑊𝑊 = 𝜆𝜆0𝑊𝑊0 + 𝜆𝜆1𝑊𝑊1 + 𝜆𝜆2𝑊𝑊2 + ⋯ 

(29) 

 
where |Ψ1⟩, |Ψ2⟩, … are the first-order, second-order corrections and so on. The correspond-

ing Schrödinger equation when using the wavefunction from Eq. 29 in the Hamiltonian of 
Eq. 28 is: 

 
�𝐻𝐻�0 + 𝜆𝜆𝐻𝐻�′�(𝜆𝜆0|Ψ0⟩+ 𝜆𝜆1|Ψ1⟩ + 𝜆𝜆2|Ψ2⟩+ ⋯ ) 

= (𝜆𝜆0𝑊𝑊0 + 𝜆𝜆1𝑊𝑊1 + 𝜆𝜆2𝑊𝑊2 + ⋯ )(𝜆𝜆0|Ψ0⟩ + 𝜆𝜆1|Ψ1⟩+ 𝜆𝜆2|Ψ2⟩+ ⋯ ) 
(30) 

 
We can collect the terms with the same power of 𝜆𝜆 to obtain: 
 

𝜆𝜆0:𝐻𝐻�0|Ψ0⟩ = 𝑊𝑊0|Ψ0⟩ 
𝜆𝜆1:𝐻𝐻�0|Ψ1⟩+ 𝐻𝐻�′|Ψ0⟩ = 𝑊𝑊0|Ψ1⟩+ 𝑊𝑊1|Ψ0⟩ 

𝜆𝜆2:𝐻𝐻�0|Ψ2⟩+ 𝐻𝐻�′|Ψ1⟩ = 𝑊𝑊0|Ψ2⟩ +𝑊𝑊1|Ψ1⟩ +𝑊𝑊2|Ψ0⟩ 

𝜆𝜆𝑛𝑛:𝐻𝐻�0|Ψn⟩+ 𝐻𝐻�′|Ψ𝑛𝑛−1⟩ = �𝑊𝑊𝑖𝑖

𝑛𝑛

𝑖𝑖=0

|Ψ𝑛𝑛−𝑖𝑖⟩ 

(31) 

 
where each power n represents the n-th order perturbation to the equation. The zero-order 

perturbation is the Schrödinger equation for the unperturbed problem, and the solutions Φ𝑖𝑖 
generate a complete basis set. We can therefore expand the first order functions onto this 
basis set: 

 

|Ψ1⟩ = �𝑐𝑐𝑖𝑖|Φ𝑖𝑖
𝑖𝑖

⟩ 

�𝐻𝐻�0 −𝑊𝑊0��𝑐𝑐𝑖𝑖|Φ𝑖𝑖⟩
𝑖𝑖

+ �𝐻𝐻�′ −𝑊𝑊1�|Φ0⟩ = 0 
(32) 
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Left-multiplying by ⟨Φ0| and integrating yields: 
 

�𝑐𝑐𝑖𝑖⟨Φ0�𝐻𝐻�0�Φ𝑖𝑖⟩ −
𝑖𝑖

𝑊𝑊0�𝑐𝑐𝑖𝑖⟨Φ0|Φ𝑖𝑖⟩
𝑖𝑖

+ ⟨Φ0�𝐻𝐻�′�Φ0⟩ −𝑊𝑊1⟨Φ0|Φ0⟩ = 0 

�𝑐𝑐𝑖𝑖𝐸𝐸𝑖𝑖⟨Φ0|Φ𝑖𝑖⟩ −
𝑖𝑖

𝑐𝑐0𝐸𝐸0 + ⟨Φ0�𝐻𝐻�′�Φ0⟩ −𝑊𝑊1 = 0 

𝑐𝑐0𝐸𝐸0 − 𝑐𝑐0𝐸𝐸0 + ⟨Φ0�𝐻𝐻�′�Φ0⟩ −𝑊𝑊1 = 0 
𝑊𝑊1 = ⟨Φ0�𝐻𝐻�′�Φ0⟩ 

(33) 

 
The last equation shows that the 1st-order correction to the energy is an average of the per-

turbation operator over the unperturbed wavefunction. The 1st-order correction to the wave-
function are represented by the 1st-order coefficients 𝑐𝑐𝑗𝑗 and can be obtained by left-multiply-
ing by a different function �Φ𝑗𝑗≠0� and integrating: 

 

�𝑐𝑐𝑖𝑖⟨Φ𝑗𝑗�𝐻𝐻�0�Φ𝑖𝑖⟩ −
𝑖𝑖

𝑊𝑊0�𝑐𝑐𝑖𝑖⟨Φ𝑗𝑗|Φ𝑖𝑖⟩
𝑖𝑖

+ ⟨Φ𝑗𝑗�𝐻𝐻�′�Φ0⟩ −𝑊𝑊1⟨Φ𝑗𝑗|Φ0⟩ = 0 

�𝑐𝑐𝑖𝑖𝐸𝐸𝑖𝑖⟨Φ𝑗𝑗|Φ𝑖𝑖⟩ −
𝑖𝑖

𝑐𝑐𝑗𝑗𝐸𝐸0 + ⟨Φ𝑗𝑗�𝐻𝐻�′�Φ0⟩ = 0 

𝑐𝑐𝑗𝑗𝐸𝐸𝑗𝑗 − 𝑐𝑐𝑗𝑗𝐸𝐸0 + ⟨Φ𝑗𝑗�𝐻𝐻�′�Φ0⟩ = 0 

𝑐𝑐𝑗𝑗 =
⟨Φ𝑗𝑗�𝐻𝐻�′�Φ0⟩
𝐸𝐸0 − 𝐸𝐸𝑗𝑗

  

(34) 

 
Analogous formulae can be obtained for the 2nd-order perturbations on the energy and the 

2nd-order wavefunction coefficients 𝑑𝑑𝑗𝑗: 
 

𝑊𝑊2 = �𝑐𝑐𝑖𝑖�Φ0�𝐻𝐻�′�Φ𝑖𝑖�
𝑖𝑖

= �
�Φ0�𝐻𝐻�′�Φ𝑖𝑖��Φ𝑖𝑖�𝐻𝐻�′�Φ0�

𝐸𝐸0 − 𝐸𝐸𝑖𝑖𝑖𝑖≠0

 

 

𝑑𝑑𝑗𝑗 = �
�Φ𝑗𝑗�𝐻𝐻�′�Φ𝑖𝑖��Φ𝑖𝑖�𝐻𝐻�′�Φ0�
�𝐸𝐸0 − 𝐸𝐸𝑗𝑗�(𝐸𝐸0 − 𝐸𝐸𝑖𝑖)

−
�Φ𝑗𝑗�𝐻𝐻�′�Φ0��Φ0�𝐻𝐻�′�Φ0�

�𝐸𝐸0 − 𝐸𝐸𝑗𝑗�
2

𝑖𝑖≠0

  

(35) 

 
So far, this theory has been described in a completely general way, without specifying the 

form of either the unperturbed Hamiltonian or the perturbation. The most common choice 
is represented by the so-called Møller-Plesset perturbation theory,23 which takes the unper-
turbed Hamiltonian as a sum over the Fock operators for the first n occupied orbitals: 

 

𝐻𝐻�0 = �𝑓𝑓𝑖𝑖

𝑛𝑛

𝑖𝑖

 

𝐻𝐻�0�Ψ0𝐻𝐻𝐻𝐻� = �𝜀𝜀𝑖𝑖�Ψ0𝐻𝐻𝐻𝐻�
𝑛𝑛

𝑖𝑖

 

(36) 
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and the reference wavefunction is the HF one. Note that this is not how the electronic en-

ergy is usually calculated in HF theory, but rather it is the expectation value for the correct 
Hamiltonian and the HF wavefunction that defines that energy. The error is represented by 
the fact that each orbital energy 𝜀𝜀𝑖𝑖 includes the repulsion of the occupying i-th electron with 
every other electrons, thus counting the electron-electron repulsion twice. This allows us to 
take the perturbation term as the difference between the correct Hamiltonian 𝐻𝐻� and 𝐻𝐻�0: 

 

𝐻𝐻�′ = ��
1
𝑟̂𝑟𝑖𝑖𝑖𝑖

−
𝑛𝑛

𝑗𝑗>𝑖𝑖

𝑛𝑛

𝑖𝑖

1
2
���2𝐽𝐽𝑖𝑖𝑖𝑖 − 𝐾𝐾�𝑖𝑖𝑖𝑖�

𝑛𝑛

𝑗𝑗

𝑛𝑛

𝑖𝑖

 (37) 

 
Complete Active Space Perturbation Theory. CASSCF recovers electron correlation 

by describing the wavefunction as a combination of Slater determinants, which accounts for 
the static correlation we have mentioned. Perturbation theory recovers the dynamic corre-
lation originating from the correlated motion of the electrons, which feel each other’s pres-
ence in their motion. It is possible to combine these approaches to simultaneously recover 
both static and dynamic correlation, in particular by applying perturbation theory (usually 
at 2nd order) on a CASSCF wavefunction rather than the standard HF one. This is called 
Complete Active Space 2nd-order Perturbation Theory (CASPT2) and currently represents 
one of the most accurate methods for computing the energy of both ground and excited 
states, especially for inherently multireference systems such as those containing transition 
metals or lanthanides. 

 
Performance of post-HF methods. Full Configuration Interaction gives the best pos-

sible wavefunction for a given basis set, therefore it is the most accurate QM method cur-
rently available. However, due to the prohibitive computational cost it is only applicable to 
very small systems and is primarily used as a benchmark for other types of calculations in 
the absence of experimental data.24 2nd-order Møller-Plesset perturbation theory (MP2) cal-
culations give excellent ground state geometries for a relatively modest increase in compu-
tational cost compared to the base HF calculation and currently represents one of the most 
advantageous methods for price/performance as well as numerical robustness.25 CASSCF is 
a necessary tool for the ab initio treatment of any system with a multideterminant nature. 
This includes transition metal ions26 and lanthanides,27 as well as delocalised aromatic or-
ganic systems and radicals,28 reaction path studies29,30 and multiplets.31 The perturbed 
CASPT2 variation is especially effective in calculations of excited state energies and excita-
tion energies,32,33 while the unperturbed CASSCF is mostly relegated to ground state calcu-
lations. 
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2.8 Density Functional Theory 

 
One of the main problems with using the wavefunction Ψ as the fundamental object in QM 
calculations is that it is essentially uninterpretable per se, especially for systems with multi-
ple electrons. Only its square modulus |Ψ|2 is associated with a physical observable, i.e. the 
electronic probability density. Density Functional Theory (DFT) builds upon this conun-
drum and takes a different approach. 

It can be noticed that the Hamiltonian in Eq. 13 depends only on the position and atomic 
number of the nuclei, and on the total number of electrons. It is then reasonable to attempt 
and use the electron density 𝜌𝜌(𝒓𝒓1, 𝑡𝑡) from Eq. 9 as the fundamental item in the calculation, 
since: i) integrated over all of the space it gives the total number of electrons 𝑁𝑁; ii) the posi-
tions of the nuclei, which are effectively point charges, naturally correspond to cusps in the 
electron density; and iii) the height of these cusps define the corresponding nuclear charges, 
and therefore the type of nuclei. Another point to bear in mind is that, since the wavefunction 
is defined by the Hamiltonian (Eq. 5), and the wavefunction defines every physically observ-
able property of the quantum system (Eq. 6), defining the Hamiltonian via the electron den-
sity is equivalent to finding the wavefunction for the system and solving the quantum prob-
lem. 

DFT has its roots in the free electron gas model developed by Thomas and Fermi,34–38 ac-
cording to which the quantum state of a uniform gas composed of free electrons can be fully 
described by its electronic density 𝜌𝜌0 instead of its wavefunction. The electron density can 
be expressed as a function of the Fermi momentum 𝑝𝑝𝑓𝑓, which is defined for the highest en-
ergy one-electron occupied level as: 

 
𝑝𝑝𝑓𝑓 = ℏ𝑘𝑘𝑓𝑓 

𝑘𝑘𝑓𝑓 = �
3𝜋𝜋2𝑁𝑁
𝑉𝑉𝑓𝑓

�

1
3
 

(38) 

 
where 𝑁𝑁 is the number of electrons, 𝑉𝑉𝑓𝑓 is the volume of the Fermi sphere, defined in the 

reciprocal momentum space as the boundary between occupied and unoccupied electron 
states at 0 K, and 𝑘𝑘𝑓𝑓 is the Fermi wavevector, which identifies the radius of the Fermi sphere. 
The corresponding energy 

 

𝜀𝜀𝑓𝑓 =
ℏ2𝑘𝑘𝑓𝑓2

2𝑚𝑚
 (39) 

 
is called the Fermi energy.39 The electron density 𝜌𝜌0 for a uniform electron gas therefore 

is: 
 

𝜌𝜌0 =
𝑝𝑝𝑓𝑓3

3𝜋𝜋2ℏ3
 (40) 
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This formulation – which is exact for a uniform electron gas – has then been extended to 
inhomogeneous electron densities such as those characterising atoms, molecules, and solids 
in the presence of an external potential 𝑣𝑣(𝒓𝒓). If the inhomogeneous electron density at the 
point 𝒓𝒓 is denoted by 𝜌𝜌(𝒓𝒓), when the equation defining 𝜌𝜌0 is applied locally at 𝒓𝒓, the expres-
sion for the total electronic energy becomes: 

 

𝐸𝐸𝑇𝑇𝑇𝑇[𝜌𝜌(𝒓𝒓)] =
3

10
(3𝜋𝜋2)

2
3 �𝑑𝑑𝒓𝒓 𝜌𝜌

5
3(𝒓𝒓) + �𝑑𝑑𝒓𝒓 𝑣𝑣(𝒓𝒓)𝜌𝜌(𝒓𝒓) +

1
2
�𝑑𝑑𝒓𝒓1𝑑𝑑𝒓𝒓2

𝜌𝜌(𝒓𝒓1)𝜌𝜌(𝒓𝒓2)
|𝒓𝒓2 − 𝒓𝒓1|  

= 𝑇𝑇[𝜌𝜌(𝒓𝒓)] + 𝑉𝑉𝑛𝑛𝑛𝑛[𝜌𝜌(𝒓𝒓)] + 𝑉𝑉𝑒𝑒𝑒𝑒[𝜌𝜌(𝒓𝒓)] 
(41) 

 
The first term of the r.h.s. of Eq. 41 𝑇𝑇[𝜌𝜌] represents the kinetic energy of the electrons, the 

second 𝑉𝑉𝑛𝑛𝑛𝑛[𝜌𝜌] the attraction between electrons and nuclei, and the third term 𝑉𝑉𝑒𝑒𝑒𝑒[𝜌𝜌] accounts 
for inter-electronic repulsion. Note the conceptual resemblance with the standard electronic 
Hamiltonian in Eq. 13. The important result reached is that the electronic energy for a sys-
tem with 𝑁𝑁 electrons – and therefore the Hamiltonian 𝐻𝐻� – could be expressed as a functional 
of the charge density 𝜌𝜌(𝒓𝒓). Mathematically a functional is a linear mapping from a vector 
space into a scalar field, or in simpler terms it is something that takes a function as input 
(the density) and returns a number as output (the energy). The innovative aspect of this 
approach is that, for the first time, the ground-state energy of a quantum system was calcu-
lated on the basis of a physical observable such as the electron density. 

The Thomas-Fermi theory gives a reasonable description of the charge density for heavy 
atoms. In fact, it can be demonstrated39 that this theory is exactly valid in the limit of an 
atomic number 𝑍𝑍 → ∞. Nevertheless, it fails if applied to molecular systems, because it is 
unable to predict the existence of any chemical bond: in the scope of this theory, the mini-
mum energy for an aggregate of atoms is always given by nuclei at infinite distance.40 

 

2.9 Hohenberg-Kohn Theorems  

 
Hohenberg and Kohn (HK)41 revolutionised the world of theoretical chemistry by demon-
strating that the Thomas-Fermi model had to be considered as an approximate form of an 
exact theory, which is now known as DFT. This is the direct consequence of the first two HK 
theorems. 

First HK theorem. Electrons interact with one another, and with the external potential 
generated by the presence of the nuclei. As stated before, the integration of the electron den-
sity gives the total number of electrons, therefore this external potential is all that is left to 
define to find the functional form of the Hamiltonian. We then need to prove that the elec-
tron density  determines entirely and univocally this external potential. Let us assume that 
instead there are two different external potentials 𝑣𝑣𝑎𝑎 and 𝑣𝑣𝑏𝑏, which can both be consistent 
with the same ground-state electron density 𝜌𝜌0. These two potentials naturally define two 
different Hamiltonians 𝐻𝐻�𝑎𝑎 and 𝐻𝐻�𝑏𝑏. With each different Hamiltonian, a particular ground 
state wavefunction Ψ0

𝑎𝑎,𝑏𝑏 and an associate ground state energy 𝐸𝐸0
𝑎𝑎,𝑏𝑏 are identified. By 
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definition of the variational theorem (Eq. 16), the Hamiltonian 𝐻𝐻�𝑎𝑎 applied to the wavefunc-
tion Ψ0𝑏𝑏 must return a higher energy than when applied to its ground-state wavefunction Ψ0𝑎𝑎: 

 
�Ψ0𝑏𝑏�𝐻𝐻�𝑎𝑎�Ψ0𝑏𝑏�
�Ψ0𝑏𝑏�Ψ0𝑏𝑏�

> 𝐸𝐸0𝑎𝑎 (42) 

 
If the wavefunctions are normalised, we can consider �Ψ0𝑏𝑏�Ψ0𝑏𝑏� = 1. We can rewrite this 

expression as: 
 

𝐸𝐸0𝑎𝑎 < �Ψ0𝑏𝑏�𝐻𝐻�𝑎𝑎 − 𝐻𝐻�𝑏𝑏 + 𝐻𝐻�𝑏𝑏�Ψ0𝑏𝑏� 
< �Ψ0𝑏𝑏�𝐻𝐻�𝑎𝑎 − 𝐻𝐻�𝑏𝑏�Ψ0𝑏𝑏�+ �Ψ0𝑏𝑏�𝐻𝐻�𝑏𝑏�Ψ0𝑏𝑏� 
< �Ψ0𝑏𝑏|𝑣𝑣𝑎𝑎 − 𝑣𝑣𝑏𝑏|Ψ0𝑏𝑏� + 𝐸𝐸0𝑏𝑏 

(43) 

 
Since the potentials 𝑣𝑣𝑎𝑎 and 𝑣𝑣𝑏𝑏 are one-electron operators, the last line in Eq. 43 can be 

rewritten in terms of the ground-state density: 
 

𝐸𝐸0𝑎𝑎 < �𝑑𝑑𝒓𝒓 [𝑣𝑣𝑎𝑎(𝒓𝒓) − 𝑣𝑣𝑏𝑏(𝒓𝒓)]𝜌𝜌0(𝒓𝒓) + 𝐸𝐸0𝑏𝑏 (44) 

 
A similar procedure can be carried out swapping 𝑎𝑎 and 𝑏𝑏 to obtain the equivalent for 𝐸𝐸0𝑏𝑏: 
 

𝐸𝐸0𝑏𝑏 < �𝑑𝑑𝒓𝒓 [𝑣𝑣𝑏𝑏(𝒓𝒓) − 𝑣𝑣𝑎𝑎(𝒓𝒓)]𝜌𝜌0(𝒓𝒓) + 𝐸𝐸0𝑎𝑎 (45) 

 
Now, we sum the inequalities in Eq. 44 and 45 together: 
 

𝐸𝐸0𝑎𝑎 + 𝐸𝐸0𝑏𝑏 < �𝑑𝑑𝒓𝒓 [𝑣𝑣𝑎𝑎(𝒓𝒓)− 𝑣𝑣𝑏𝑏(𝒓𝒓)]𝜌𝜌0(𝒓𝒓) + �𝑑𝑑𝒓𝒓 [𝑣𝑣𝑏𝑏(𝒓𝒓) − 𝑣𝑣𝑎𝑎(𝒓𝒓)]𝜌𝜌0(𝒓𝒓) + 𝐸𝐸0𝑏𝑏 + 𝐸𝐸0𝑎𝑎 

<  �𝑑𝑑𝒓𝒓 [𝑣𝑣𝑎𝑎(𝒓𝒓) − 𝑣𝑣𝑏𝑏(𝒓𝒓) + 𝑣𝑣𝑏𝑏(𝒓𝒓) − 𝑣𝑣𝑎𝑎(𝒓𝒓)]𝜌𝜌0(𝒓𝒓) + 𝐸𝐸0𝑏𝑏 + 𝐸𝐸0𝑎𝑎 

< 𝐸𝐸0𝑏𝑏 + 𝐸𝐸0𝑎𝑎 

(46) 

 
The assumption that the same ground-state density 𝜌𝜌0 could be associated with two differ-

ent potentials 𝑣𝑣𝑎𝑎 and 𝑣𝑣𝑏𝑏 led to an impossible result, therefore this assumption must be in-
correct per reductio ad absurdum. In other words, the ground-state electron density 𝜌𝜌0(𝒓𝒓) 
univocally defines the external potential 𝑣𝑣(𝒓𝒓) and subsequently the Hamiltonian 𝐻𝐻�, and thus 
the wavefunction Ψ. Note that even though the Hamiltonian is defined by the ground-state 
density, it in turn defines not just the ground-state wavefunction but also all the excited state 
ones. 

Unfortunately, this first theorem is merely an existence theorem, in the sense that it states 
that there is an electron density able to define the quantum system as a whole, but it says 
nothing on how to actually find it. Hohenberg and Kohn however demonstrated in their sec-
ond theorem that the density, just as the wavefunction, obeys a variational principle. 
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Second HK theorem. Consider a “trial” electron density that integrates to the appropriate 
number of electrons 𝑁𝑁 and is mathematically well-behaved. The first theorem indicates that 
there is a unique potential associated with this density, which defines the Hamiltonian and 
thus the wavefunction. It is possible to evaluate the expectation value for the energy in the 
usual way, and according to the variational principle its energy must be equal or greater than 
the true ground state energy:  

 
�Ψ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡�𝐻𝐻�𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡�Ψ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡� = 𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ≥ 𝐸𝐸0 (47) 

 
It would be possible, in principle, to keep trying different electron densities 𝜌𝜌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 and the 

lower the calculated energy expectation value, the better the wavefunction. This is obviously 
a rather wasteful approach as there is still no guidance on what to change in the trial density 
to approach the best result. Moreover, we are still relying on solving the Schrödinger equa-
tion to calculate the energy, which defies the whole point of the DFT approach.  

 

2.10 Kohn-Sham Self-Consistent Field Equations 

 
In 1956 Kohn and Sham (KS)42 proposed what is currently the most successful approach for 
applying the HK variational principle to obtain the best ground state electron density. They 
started by considering that the Hamiltonian of a fictious system of non-interacting electrons 
would be extremely simple to solve, as all the terms would be easily computable one-electron 
operator terms. They also were aware that once the electron density is defined, the Hamil-
tonian and therefore the wavefunction could be computed. The crucial turning point was 
realising that it would be possible to take a fictious system of non-interacting electrons that 
just happens to possess the same overall electron density as the real system of interacting 
electrons under consideration. Since the two systems have the same electron density, all 
other properties necessarily must also be identical. 

In order to simplify the forthcoming discussion, let us briefly redefine the energy functional 
from Eq. 41 as: 

 
𝐸𝐸[𝜌𝜌(𝒓𝒓)] = 𝑇𝑇𝑛𝑛𝑛𝑛[𝜌𝜌(𝒓𝒓)] + 𝑉𝑉𝑛𝑛𝑛𝑛[𝜌𝜌(𝒓𝒓)] + 𝑉𝑉𝑒𝑒𝑒𝑒[𝜌𝜌(𝒓𝒓)] + Δ𝑇𝑇[𝜌𝜌(𝒓𝒓)] + Δ𝑉𝑉𝑒𝑒𝑒𝑒[𝜌𝜌(𝒓𝒓)] (48) 

 
where 𝑇𝑇𝑛𝑛𝑛𝑛[𝜌𝜌(𝒓𝒓)] is the kinetic energy term for the non-interacting electrons; 𝑉𝑉𝑛𝑛𝑛𝑛[𝜌𝜌(𝒓𝒓)] and 

𝑉𝑉𝑒𝑒𝑒𝑒[𝜌𝜌(𝒓𝒓)] are the classical nuclear-electron and electron-electron interactions, respectively; 
Δ𝑇𝑇[𝜌𝜌(𝒓𝒓)] is the correction term applied to 𝑇𝑇𝑛𝑛𝑛𝑛[𝜌𝜌(𝒓𝒓)], which derives from the previously ne-
glected interacting nature of the electrons; and Δ𝑉𝑉𝑒𝑒𝑒𝑒[𝜌𝜌(𝒓𝒓)] is the correction term applied to 
the electron-electron interaction accounting for all non-classical factors, including the in-
teracting nature of the electrons. Rewriting the energy functional in terms of a more tradi-
tional orbital expression yields: 
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𝐸𝐸[𝜌𝜌(𝒓𝒓)] = ��−
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|𝒓𝒓𝑖𝑖 − 𝒓𝒓′|

� 𝜙𝜙𝑖𝑖��
𝑁𝑁

𝑖𝑖

+ 𝐸𝐸𝑥𝑥𝑥𝑥[𝜌𝜌(𝒓𝒓)] 

(49) 

 
where 𝑁𝑁 and 𝑀𝑀 are the total number of electrons and nuclei, respectively; 𝐸𝐸𝑥𝑥𝑥𝑥[𝜌𝜌(𝒓𝒓)] =

Δ𝑇𝑇[𝜌𝜌(𝒓𝒓)] + Δ𝑉𝑉𝑒𝑒𝑒𝑒[𝜌𝜌(𝒓𝒓)] is a single exchange and correlation term that includes all the neces-
sary corrections with respect to the system of non-interacting electrons; and we have used 
for 𝜌𝜌(𝒓𝒓) the electron density for a Slater determinant – which incidentally is the exact eigen-
state for the system of non-interacting electrons: 

 

𝜌𝜌(𝒓𝒓) = �⟨𝜙𝜙𝑖𝑖|𝜙𝜙𝑖𝑖⟩
𝑁𝑁

𝑖𝑖

 (50) 

 
We can now take the same approach as with the HF-SCF method and find the orbitals 𝜙𝜙𝑖𝑖 

that minimise the energy and satisfy the one-electron eigenvalue equations: 
 

ℎ�𝑖𝑖𝐾𝐾𝐾𝐾𝜙𝜙𝑖𝑖 = 𝜀𝜀𝑖𝑖𝜙𝜙𝑖𝑖 (51) 
 
where ℎ𝑖𝑖𝐾𝐾𝐾𝐾 is the Kohn-Sham one-electron operator: 
 

ℎ�𝑖𝑖𝐾𝐾𝐾𝐾 ≡ −
1
2
∇�𝑖𝑖2 −�

𝑍𝑍𝑝𝑝
𝑟̂𝑟𝑖𝑖𝑖𝑖

𝑀𝑀

𝑝𝑝=1

+ �𝑑𝑑𝒓𝒓′
𝜌𝜌(𝒓𝒓)

|𝒓𝒓𝑖𝑖 − 𝒓𝒓′|
+ 𝑉𝑉𝑥𝑥𝑥𝑥[𝜌𝜌(𝒓𝒓)] (52) 

 
Note the conceptual resemblance with the Fock operator from Eq. 18, in particular between 

the Coulomb term 𝐽𝐽𝑗𝑗(𝒊𝒊) and the Coulomb interaction in the third term of the r.h.s. of Eq. 52 
and between the exchange term 𝐾𝐾�𝑗𝑗(𝒊𝒊) and the exchange-correlation potential 𝑉𝑉𝑥𝑥𝑥𝑥, which is 
defined as: 

 

𝑉𝑉𝑥𝑥𝑥𝑥[𝜌𝜌(𝒓𝒓)] =
𝛿𝛿𝐸𝐸𝑥𝑥𝑥𝑥[𝜌𝜌(𝒓𝒓)]
𝛿𝛿𝛿𝛿(𝒓𝒓)  (53) 

 
and represents the functional derivative of the exchange-correlation energy 𝐸𝐸𝑥𝑥𝑥𝑥 with re-

spect to the electron density 𝜌𝜌(𝒓𝒓). Note that since we are minimising the exact energy 
𝐸𝐸[𝜌𝜌(𝒓𝒓)] the obtained electron density 𝜌𝜌(𝒓𝒓) must also be the exact one and the minimum of 
the energy must be the real ground state energy. The issue is that we do not have any ana-
lytical form for the 𝐸𝐸𝑥𝑥𝑥𝑥 term and therefore some approximations will necessarily be required.  
DFT can therefore be considered an exact theory with an approximate solution, in contrast 
with HF which is an approximate method that can be solved exactly. 
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2.11 Exchange-correlation functionals 

 
Since there is no direct expression for the exchange-correlation (XC) functional, some ap-
proximate functional form must be used. The vast majority of the theoretical research re-
garding the development of DFT has been directed towards the definition of increasingly 
accurate and elaborate functionals. The choice of the functional is what ultimately differen-
tiates between DFT calculations so one needs to know the strengths and weaknesses of the 
various implementations not only from an applicative standpoint as a user, but also as a 
reader who wants to better understand the computational work carried out by computa-
tional chemists. 

Even though we do not have any analytical form for the true XC functional, there are a 
number of properties that we know it must possess:43,44  

1. The XC functional needs to be self-interaction-free: for a one-electron system, such as 
a neutral hydrogen atom, the exchange energy should exactly cancel out the Coulomb 
energy and the resulting correlation should be zero.  

2. If the density becomes constant in a certain spatial region, the XC functional must yield 
the same result as for a Thomas-Fermi uniform electron gas. 

3. The coordinate scaling of the exchange energy should be linear, i.e. multiplying the co-
ordinates of the electrons by a constant factor should result in an analogous linear scal-
ing for the exchange energy. 

4. Unlike the exchange energy, there is no rigid scaling law for the correlation energy. 
However, multiplying the electron coordinates by a factor larger than 1 should at least 
increase the magnitude of the correlation energy, and vice versa. In the limit of low 
density, the scaling should become linear as for the exchange energy. 

5. As the scaling parameter approaches infinity, the correlation energy for a finite system 
must asymptotically reach a negative constant value. 

6. There is an upper bound to the XC energy relative to Local Density Approximation (vide 
infra) functionals, as dictated by the Lieb-Oxford condition:45 

𝐸𝐸𝑥𝑥[𝜌𝜌(𝒓𝒓)] ≥ 𝐸𝐸𝑥𝑥𝑥𝑥[𝜌𝜌(𝒓𝒓)] ≥ 2.273𝐸𝐸𝑥𝑥𝐿𝐿𝐿𝐿𝐴𝐴[𝜌𝜌(𝒓𝒓)] (54) 

 
7. The exchange potential should show an asymptotic −1/𝑟𝑟  behaviour for 𝑟𝑟 → ∞.46 The 

XC potential should also be discontinuous as a function of the number of electrons 𝑁𝑁, 
by an amount corresponding to the difference between the ionization potential and the 
electron affinity.46 

8. The correlation potential should show an asymptotic −𝛼𝛼/2𝑟𝑟4 behaviour for 𝑟𝑟 → ∞, with 
𝛼𝛼 being the polarizability of the singly ionized system. 

As there is a plethora of possible choices – only to name one piece of software, the Amster-
dam Density Functional47 code currently counts 111 XC functionals, which is also possible to 
combine in various ways – we will not look into every single one, but rather explore the 
features of the most important “families” of functionals. 
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Local Density Approximation (LDA) functionals. This term refers to XC functionals 
for which the value of the exchange and correlation energy at a point 𝒓𝒓 can be computed 
exclusively from the value of the electron density 𝜌𝜌(𝒓𝒓) in that point, i.e. the local density: 

 

𝐸𝐸𝑥𝑥𝑥𝑥𝐿𝐿𝐿𝐿𝐿𝐿[𝜌𝜌(𝒓𝒓)] = �𝑑𝑑𝒓𝒓 𝜌𝜌(𝒓𝒓)𝜀𝜀𝑥𝑥𝑥𝑥𝑇𝑇𝑇𝑇[𝜌𝜌(𝒓𝒓)] (55) 

 
where 𝜀𝜀𝑥𝑥𝑥𝑥𝑇𝑇𝑇𝑇 is the exchange-correlation energy density given by the Thomas-Fermi theory. 

These are incredibly simple and crude functionals and their only effective use is in calcula-
tions where the electron density resembles that of a homogeneous electron gas, like in cal-
culations for solid metals. Note that, in the case of a molecular system, these functionals do 
not assume that the density is constant and homogeneous throughout all of space, but rather 
that the XC energy at every position in space is only dependent on the local electron density 
and is equal to that of a uniform electron gas with the same density as found for the molecule 
in that position. Only two parametrisations are worth mentioning for this family, as they are 
basically the only two still used for any type of modelling: 

• VWN: Vosko, Wilk and Nusair48 LDA functional 
• PW92: Perdew and Wang49 LDA functional 

Note that the name of a XC functional often is composed by the initial letters of the devel-
opers who parametrized it. 

 
Generalised Gradient Approximation (GGA) functionals. As the electron density 

for a molecular system is usually far from uniform, the first reasonable improvement over 
LDA is to take into account how the density changes over space, i.e. including the gradient 
of the electron density in the expression for the XC energy. If LDA can be considered the 
“zeroth order” of the Taylor expansion for the exact XC energy, GGAs would then include 
the first order term. Functionals of this family take the general form 

 

𝐸𝐸𝑥𝑥𝑐𝑐𝐺𝐺𝐺𝐺𝐺𝐺[𝜌𝜌(𝒓𝒓)] = 𝐸𝐸𝑥𝑥𝑥𝑥𝐿𝐿𝐿𝐿𝐿𝐿[𝜌𝜌(𝒓𝒓)] −�𝑑𝑑𝒓𝒓 𝑔𝑔(𝜒𝜒)𝜌𝜌(𝑟𝑟)
4
3 (56) 

 
where the specific form of 𝑔𝑔(𝜒𝜒) depends on the particular functional used but is in general 

a function of the parameter 𝜒𝜒, which incorporates the density gradient as a dimensionless 
reduced quantity: 

 

𝜒𝜒 =
|∇𝜌𝜌(𝒓𝒓)|

𝜌𝜌(𝒓𝒓)
4
3

 (57) 

 
Here we also start to see some differentiation in the development of XC functionals, with a 

separate treatment for the exchange and correlation parts. Most commonly used GGA func-
tionals therefore include separate functional forms for each: 

• BP86: Exchange: Becke;43 correlation: Perdew50 
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• PBE: Perdew, Burke, and Ernzerhof51,52 XC functional 
• BLYP: Exchange: Becke;43 correlation: Lee, Yang, and Parr53,54 
• OLYP: Exchange: Handy’s OPTX modification to Becke’s functional;53,54 correla-

tion: Lee, Yang, and Parr53,54 

These functionals are generally rather accurate for calculations on molecular systems con-
sidering their relative simplicity and low computational power cost. For larger systems they 
are sometimes the only viable option since more accurate functionals would require more 
resources – either in terms of memory or storage – than may be available in the computing 
centre. Since they only include parameters directly related to the electron density they are 
also sometimes referred to as “pure” functionals. 

 
Meta-GGA functionals. The next logical step for reaching an increasingly more accurate 

XC functional is obviously to include the next 2nd order term in the expansion. This would 
be represented by the second derivative of the electron density, i.e. the Laplacian. These 
functionals are known as meta-GGA as they go beyond the simple gradient correction of 
traditional GGA. The increased accuracy for these functionals is not actually set back by a 
significant increase in computational power requirements, as the calculation of the Lapla-
cian is not extremely tasking. However, in some situations these functionals do suffer from 
numerical stability issues due to the characteristic of the Laplacian and therefore require a 
high integration accuracy.16 The two most commonly used examples of meta-GGA function-
als are: 

• TPSS: Tao-Perdew-Staroverov-Scuseria55,56 XC functional 
• M06-L: Yan-Truhlar57,58 XC functional 

Hybrid functionals. It can be demonstrated59 that an exact connection can be made be-
tween the XC energy and the corresponding hole potential connecting the non-interacting 
fictious reference system and the real system. The resulting equation takes the name of Ad-
iabatic Connection Formula and includes a parameter 𝜆𝜆, which acts like a “switch” that turns 
on or off the electron-electron interaction: 

 

𝐸𝐸𝑥𝑥𝑥𝑥 = � 𝑑𝑑𝑑𝑑 �Ψ𝜆𝜆�𝑽𝑽𝑥𝑥𝑥𝑥ℎ𝑜𝑜𝑜𝑜𝑜𝑜(𝜆𝜆)�Ψ𝜆𝜆�
1

0
 (58) 

 
For 𝜆𝜆 → 0 the electrons are not interacting and there is no correlation energy, only the ex-

change term survives. Moreover, as the exact wavefunction for a system of non-interacting 
electrons is a single Slater determinant the exact exchange energy is given by Hartree-Fock 
theory. This allows the HF exchange to be included as a component of the overall XC func-
tional definition, hence the denomination hybrid functional. These currently include some 
of the functionals with the highest accuracy and most widespread adoption: 

• B3LYP: Stephens-Devlin-Chablowsky-Frisch60 XC functional, with 20% HF ex-
change 

• O3LYP: Cohen-Handy61 XC functional, with 12% HF exchange 
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• PBE0: Adamo-Barone62 hybrid form (25% HF exchange) of the Ernzerhof-
Scuseria63 XC functional 

Other functionals. As previously stated, the definition of new and improved forms for 
XC functionals is a bustling branch of active research. Some of the newest approaches in-
volve for example the definition of meta-hybrid functionals, which include higher-order ex-
pansions of the density dependence as well as exact the exchange contribution from HF the-
ory; range-separated hybrids, which split the percentage of HF exchange in the Coulomb 
operator between short and long range interactions; and double hybrids, which not only 
include the HF exchange contribution but also 2nd order perturbative effects at the MP2 
level. 

 
Performance of DFT calculations. DFT has substantially established itself as the de 

facto standard base method for a large variety of QM calculations due to its striking balance 
between accuracy, computational efficiency, and ease of use. Calculation of atomisation en-
ergies on a large set of molecules including substituted hydrocarbons, radicals, inorganic 
hydrides, unsaturated ring hydrocarbons, and polyhalogenated organic and inorganic mol-
ecules (Table 1) show that the performance of DFT is substantially superior to HF for ener-
getics. 

Table 1. Comparison of the performance of various DFT methods. Root Mean Square (RMS) and Mean Abso-
lute Deviation (MAD) errors for atomization energies over the G3/99 test set64 are reported. 

Functional RMS (kJ/mol) MAD (kJ/mol) 

HF 649 885 

LDA 439 510 

PW91 80 99 
PBE 87 93 

PBE0 50 28 

BLYP 41 40 

B3LYP 40 21 

OLYP 40 25 

VSXC 39 14 

TPSS n/a 24 

 
Not all functionals behave equally, however. LDA functionals are clearly inadequate for 

accurate calculations despite still providing an improvement over HF theory. Hybrid meth-
ods tend to perform better than their pure counterpart (PBE/PBE0, BLYP/B3LYP) but more 
modern GGA functionals such as OLYP and VSXC have comparable performance with hy-
brids. This represents a significant advantage since hybrid functionals are much more ex-
pensive than GGA due to the need to calculate the HF exchange integrals required in these 
calculations. 

For geometries and vibrational frequencies, DFT generally performs as well as MP2 but 
with a cost comparable with that of HF.65 In systems with a marked multireference charac-
ter, DFT methods with a high quality functional often provide results comparable with those 
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of actual multireference calculations66 and therefore represent a tantalising alternative to 
the more complicated ab initio alternatives at least for structural properties. 

Another significant advantage of DFT methods is that they are much less prone to “spin 
contamination” for open-shell systems compared to traditional wavefunction methods. That 
is, ⟨𝑺𝑺2⟩ ~ 𝑆𝑆𝑧𝑧(𝑆𝑆𝑧𝑧 + 1). This is due to the fact that the electron correlation is somewhat included 
even in the single-reference function in DFT by means of the 𝐸𝐸𝑋𝑋𝑋𝑋  functional, and renders 
DFT a very effective method to study multiplet systems as long as the number of unpaired 
electrons is not exceedingly large. 

DFT is not immune to failures, though. Weak interactions due to dispersion forces are in-
cluded explicitly in correlated wavefunction methods and this is something that is still 
treated poorly by DFT.67,68 In particular, gas atoms correctly display a slight attraction, but 
in most cases a purely repulsive energy curve is displayed and the few functionals that do 
predict an attraction severely underestimate the intensity of the interaction. Anions are an-
other class of systems which are extremely difficult for DFT methods, especially with func-
tionals that do not include self-interaction corrections or possess a correct long-range be-
haviour. Since loosely bound electrons have by definition a large part of their associated 
density far away from the nuclei, the self-interaction error might actually be larger than the 
binding energy, therefore leading to an erroneously calculated unbound electron. Special 
care must therefore be exerted in the treatment of anionic systems and loosely-bound elec-
trons in general. Despite these difficulties, reasonably accurate results can still be achieved 
in the right conditions.69 

 

2.12 Relativistic Effects in Chemistry 

 
One of the fundamental remarks of special relativity70 is that it is impossible to accelerate 
particles to speeds higher than that of light. This is caused by the fact that the mass of the 
particle increases (to infinity) as it approaches the speed of light 𝑐𝑐, therefore requiring an 
increasingly large force to produce further acceleration: 

 

𝑚𝑚𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑚𝑚0𝛾𝛾 =
𝑚𝑚0

�1 − �𝑣𝑣𝑐𝑐�
2
 

(59) 

 
where 𝑚𝑚0 is the particle rest mass at null velocity, 𝑣𝑣 is its speed and 𝛾𝛾 is the so-called Lo-

rentz factor, which is the term that expresses how much the measurement of the physical 
property in question – in this case the rest mass, but an equivalent form is also valid for 
time, length, etc. – changes due to effects of special relativity. In chemistry, relativistic ef-
fects entail three primary effects:71 

1. The concomitant spatial contraction and energetic stabilisation of the 𝑠𝑠 and 𝑝𝑝 or-
bitals. The expression for the Bohr radius 𝑎𝑎0, representing the most probable dis-
tance at which an electron is found relative to the nucleus, contains the electron 
mass 𝑚𝑚𝑒𝑒𝑒𝑒 at the denominator:  
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𝑎𝑎0 =
4𝜋𝜋𝜀𝜀0ℏ2

𝑍𝑍𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒2
 (60) 

 

Where 𝑍𝑍 is the atomic number for the element and 𝜀𝜀0 is the vacuum dielectric con-
stant. The contraction of the relativistic average radius – up to 20% for the heavier 
elements – is a consequence of the reduction of the effective Bohr radius for the 
inner electrons, which have higher speed near the nucleus. 

2. Spin-orbit splitting. In a relativistic approach neither 𝑙𝑙, the quantum number asso-
ciated with the orbital angular momentum 𝒍𝒍, nor 𝑠𝑠, the one associated with the 
spin angular momentum 𝒔𝒔, are “good” quantum numbers. Within the 𝑗𝑗𝑗𝑗 coupling 
scheme the total quantum number 𝒋𝒋 = 𝒍𝒍 + 𝒔𝒔 and its projection on the 𝑧𝑧 axis 𝑚𝑚𝑗𝑗 are 
considered good quantum numbers.71 Thus, for a 𝑝𝑝 electron (𝑙𝑙 = 1, 𝑠𝑠 = ±1/2), we 
have a splitting in two spin-orbit states with 𝑗𝑗 = 1/2 and 𝑗𝑗 = 3/2. The energy split-
ting between these states is more pronounced with increasing 𝑍𝑍, therefore this is 
another effect that is more noticeable for heavier atoms – such as lanthanides. 

3. The radial expansion and consequent energetic destabilisation of the 𝑑𝑑 and 𝑓𝑓 orbit-
als. The effective potential experienced by 𝑑𝑑 and 𝑓𝑓 electrons is weaker than the the-
oretical one due to an indirect effect: the 𝑠𝑠 and 𝑝𝑝 orbitals, which are more con-
tracted due to the 1st effect we have described, screen the nuclear attraction poten-
tial more efficiently. This leads to a radial expansion for the 𝑑𝑑 and 𝑓𝑓 orbitals and 
their resultant energetic destabilisation. 

 These relativistic phenomena affect many aspects of the chemistry and optical properties 
for systems containing heavy elements. Bond lengths are different from the ones calculated 
in a non-relativistic method due to orbital contraction/expansion, absorption and emission 
spectra are sometimes entirely dictated by transition within spin-orbit states which would 
not be normally observed, and some entirely otherwise inexplicable phenomena such as in-
tersystem crossing between different spin states take place. It is therefore necessary to ac-
count for relativistic effects in accurate calculations. Two primary approaches exist, one 
more suited for DFT calculations and one developed more towards wavefunction methods. 
They both feature a two-component approximate form of the four-component Dirac equa-
tion, the former utilizes an elimination technique while the latter uses a transformation ap-
proach. For a comprehensive description of the two methods, the interested reader may refer 
to the original papers in Refs. 72–75. In this text we will only provide a brief summary for 
the primary concepts. 

 

2.13 Dirac Hamiltonian 

 
The starting point for any relativistic QM calculation is the Dirac Hamiltonian, which repre-
sents the relativistic analogue of the Schrödinger equation: 
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𝐻𝐻�𝐷𝐷 = 𝑐𝑐𝜶𝜶 ⋅ 𝑝̂𝑝 + (𝜷𝜷 − 1)𝑐𝑐2 + 𝑉𝑉𝑛𝑛𝑛𝑛𝑛𝑛 (61) 
 
where 𝜶𝜶 = �𝜶𝜶𝑥𝑥𝜶𝜶𝑦𝑦𝜶𝜶𝑧𝑧� is a 3-vector, in which each component is a traceless 4 × 4 diagonal 

matrix: 
 

𝜶𝜶𝜉𝜉 = �
𝟎𝟎 𝝈𝝈𝜉𝜉
𝝈𝝈𝜉𝜉 𝟎𝟎 � ;      𝜉𝜉 = 𝑥𝑥,𝑦𝑦, 𝑧𝑧 (62) 

 
and 𝝈𝝈𝜉𝜉  are the Pauli spin matrices: 
 

𝝈𝝈𝑥𝑥 = �0 1
1 0� ;      𝝈𝝈𝑦𝑦 = �0 −𝑖𝑖

𝑖𝑖 0 � ;      𝝈𝝈𝑧𝑧 = �1 0
0 −1� ; (63) 

 
𝑝̂𝑝 is the usual momentum operator 
 

𝑝̂𝑝 = −𝑖𝑖ℏ∇ (64) 
 
𝜷𝜷 is a diagonal 4 × 4 matrix with entries (1,1,−1,−1), 𝑐𝑐 is the speed of light and 𝑉𝑉𝑛𝑛𝑛𝑛𝑛𝑛 is the 

external potential exerted by the nuclei. The corresponding eigenvectors 𝜓𝜓 are therefore nec-
essarily 4-component vectors. These 4 components can be divided into two different two-
component functions 𝜙𝜙 and 𝜒𝜒, which are called the large and small component, respectively: 

 

𝜓𝜓(𝒓𝒓, 𝑡𝑡) =

⎝

⎛

𝜙𝜙1(𝒓𝒓, 𝑡𝑡)
𝜙𝜙2(𝒓𝒓, 𝑡𝑡)
𝜒𝜒1(𝒓𝒓, 𝑡𝑡)
𝜒𝜒2(𝒓𝒓, 𝑡𝑡)⎠

⎞ = �𝜙𝜙
(𝒓𝒓, 𝑡𝑡)

𝜒𝜒(𝒓𝒓, 𝑡𝑡)� (65) 

 
𝜙𝜙1,𝜒𝜒1 and 𝜙𝜙2,𝜒𝜒2 represent the spin-up and spin-down of the free electron, respectively. 

The small component is usually negligible compared to the large one for atoms with 𝑍𝑍 <
100, which is the vast majority of the periodic table, therefore enabling the attempt to reduce 
the calculation to a two-component Hamiltonian. 

As for the Schrödinger equation, an exact solution for the Dirac equation can only be ob-
tained for a hydrogen-like system.76 

 

2.14 Douglas-Kroll-Hess Hamiltonian 

 
The Douglas-Kroll-Hess formalism is based on a transformation technique. This unitary 
transformation aims at block-diagonalising the Dirac Hamiltonian in two blocks: 

 

𝐻𝐻�𝐵𝐵𝐵𝐵 = 𝑼𝑼𝐻𝐻�𝐷𝐷𝑼𝑼† = �𝐻𝐻
�+ 0
0 𝐻𝐻�−

� (66) 
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Of these two block Hamiltonians, the upper 𝐻𝐻�+ is the one responsible for the positive en-
ergy states (electrons) while the lower 𝐻𝐻�− is responsible for negative energy positron states 
and can therefore be neglected. The resulting four-component wavefunction takes the form 

 

𝜓𝜓′ = 𝑼𝑼𝜓𝜓 = 𝑼𝑼�𝜙𝜙𝜒𝜒� = � 𝜙𝜙′
𝜒𝜒′ = 0� = 𝜙𝜙′ (67) 

 
where 𝜒𝜒′ = 0 for electron states. This reduces the effective Hamiltonian problem to a two-

component equation significantly simplifying the calculation. The unitary transformation 
matrix 𝑼𝑼 can be given in closed form77 but the describing equation is rather complicated and 
needs to be solved iteratively. The Douglas-Kroll-Hess (DKH) Hamiltonian is constructed 
by decoupling the various elements of 𝑼𝑼 in a sequence of unitary transformations, which 
block-diagonalize the Dirac Hamiltonian stepwise: 

 
𝑼𝑼 = ⋯𝑼𝑼2𝑼𝑼1𝑼𝑼0 

𝐻𝐻�𝐵𝐵𝐵𝐵 = ⋯𝑼𝑼2𝑼𝑼1𝑼𝑼0𝐻𝐻�𝐷𝐷𝑼𝑼0
†𝑼𝑼1

†𝑼𝑼2
† … 

(68) 

 
with each step 𝑼𝑼𝑖𝑖 chosen such as to diminish the off-diagonal terms order by order. This 

assumes the existence of an expansion of the block-diagonal Hamiltonian 𝐻𝐻�𝐵𝐵𝐵𝐵 in terms of 
an expansion parameter, which identifies block-diagonal operators ℰ̂𝑘𝑘 of order 𝑘𝑘: 

 

𝐻𝐻�𝐵𝐵𝐵𝐵 = �ℰ̂𝑘𝑘

∞

𝑘𝑘=0

 (69) 

 
In the DKH decoupling procedure this expansion parameter is the external potential 𝑉𝑉𝑛𝑛𝑛𝑛𝑛𝑛. 

If one wants to obtain a partially transformed Hamiltonian 𝐻𝐻�𝑃𝑃𝑃𝑃 it is simply possible to stop 
after the n-th unitary transformation: 

 

𝐻𝐻�𝑃𝑃𝑃𝑃 = � ℰ̂𝑘𝑘

2𝑛𝑛+1

𝑘𝑘=0

+ � ℰ̂𝑘𝑘
(𝑛𝑛+1)

∞

𝑘𝑘=2𝑛𝑛+2

+ � 𝒪𝒪�𝑘𝑘
(𝑛𝑛+1)

∞

𝑘𝑘=𝑛𝑛+1

 (70) 

 
Note that the (2𝑛𝑛 + 1) boundary in the first term is due to the fact each unitary transfor-

mation gives two orders 𝑘𝑘 of the expansion parameter 𝑉𝑉𝑛𝑛𝑛𝑛𝑛𝑛 still containing off-diagonal op-
erators 𝒪𝒪𝑘𝑘 of the third term, which need to be removed by the subsequent unitary transfor-
mations. The second term indicates that the operators with 𝑘𝑘 ≥ 2𝑛𝑛 + 2 are not reached at 
iteration n. Another stipulation must be made, ensuring that successive unitary transfor-
mations do not touch lower order terms that have already been transformed. Both require-
ments can be fulfilled by expanding each unitary matrix 𝑼𝑼𝑛𝑛 into a power series: 

 
 
 



42 
 

𝑼𝑼𝑛𝑛 = �𝑎𝑎𝑛𝑛,𝑗𝑗𝑾𝑾𝑛𝑛
𝑗𝑗

∞

𝑗𝑗=0

= 𝟏𝟏 + �𝑎𝑎𝑛𝑛,𝑗𝑗𝑾𝑾𝑛𝑛
𝑗𝑗

∞

𝑗𝑗=1

 

𝑼𝑼𝑛𝑛
† = �(−1)𝑗𝑗𝑎𝑎𝑛𝑛,𝑗𝑗𝑾𝑾𝑛𝑛

𝑗𝑗
∞

𝑗𝑗=0

= 𝟏𝟏 + �(−1)𝑗𝑗𝑎𝑎𝑛𝑛,𝑗𝑗𝑾𝑾𝑛𝑛
𝑗𝑗

∞

𝑗𝑗=1

 

(71) 

 
where it was chosen that 𝑎𝑎𝑛𝑛,0 = 1 and that each term of the series is defined solely by the 

order 𝑘𝑘 = 𝑚𝑚 × 𝑗𝑗 with respect to the expansion parameter 𝑉𝑉𝑛𝑛𝑛𝑛𝑛𝑛. 
The first step in the DKH transformation needs to be carried out explicitly and is referred 

to a free-particle Foldy-Wouthuysen transformation:74,78 
 

𝑼𝑼0 = � 𝐴𝐴 𝐴𝐴𝐴𝐴
−𝐴𝐴𝐴𝐴 𝑅𝑅 � (72) 

 
where 𝐴𝐴 and 𝑅𝑅 are kinematical operators defined as 
 

𝐴𝐴 = �
𝐸𝐸0 + 𝑐𝑐2

2𝐸𝐸0
;      𝑅𝑅 =

𝑐𝑐𝝈𝝈 ⋅ 𝑝̂𝑝
𝐸𝐸0 + 𝑐𝑐2

 (73) 

 
with 𝐸𝐸0 the total energy of the electron (in atomic units) in the absence of the external 

potential: 
 

𝐸𝐸0 = �𝑐𝑐4 + 𝑝𝑝2𝑐𝑐2 (74) 
 
The application of 𝑼𝑼0 to the Dirac Hamiltonian 𝐻𝐻�𝐷𝐷 gives the 1st-order block-diagonalized 

Hamiltonian 𝐻𝐻�1: 
 

𝐻𝐻�1 = 𝑼𝑼0𝐻𝐻�𝐷𝐷𝑼𝑼0
† = ℰ̂0 + ℰ̂1 + 𝒪𝒪�1 (75) 

 
where 
 

ℰ̂0 = �𝐸𝐸0 0
0 −𝐸𝐸0

� ;      ℰ̂1 = �𝐸𝐸1 0
0 𝐸𝐸1

� ;      𝒪𝒪�1 = � 0 𝑂𝑂1
−𝑂𝑂1 0 � ; (76) 

 
with  
 

𝐸𝐸1 = 𝐴𝐴𝑉𝑉𝑛𝑛𝑛𝑛𝑛𝑛𝐴𝐴 + 𝐴𝐴𝐴𝐴𝑉𝑉𝑛𝑛𝑛𝑛𝑛𝑛𝑅𝑅𝑅𝑅;      𝑂𝑂1 = 𝐴𝐴𝐴𝐴𝑉𝑉𝑛𝑛𝑛𝑛𝑛𝑛𝐴𝐴 − 𝐴𝐴𝑉𝑉𝑛𝑛𝑛𝑛𝑛𝑛𝑅𝑅𝑅𝑅 (77) 
 
It can be easily seen that this is still a four-component Hamiltonian, but now in block form. 

The two-component Hamiltonian is simply obtained by only keeping the upper diagonal 
block for all operators. The resulting two-component 1st-order DKH Hamiltonian is there-
fore 
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𝐻𝐻�𝐷𝐷𝐷𝐷𝐷𝐷1 = 𝐸𝐸0 − 𝑐𝑐2 + 𝐸𝐸1 (78) 
 
The successive transformation, i.e. the one yielding the 2nd-order DKH Hamiltonian, is the 

one currently used in most computational chemistry software and its effective two-compo-
nent form is given as 

 

𝐻𝐻�𝐷𝐷𝐷𝐷𝐷𝐷2 = 𝐻𝐻�𝐷𝐷𝐷𝐷𝐷𝐷1 −
1
2

[𝑊𝑊1, [𝑊𝑊1,𝐸𝐸0]+]+ (79) 

 
where [… ]+ is the anticommutator and 𝑊𝑊1 is determined by the relation 
 

𝑊𝑊1𝐸𝐸0 + 𝐸𝐸0𝑊𝑊1 = 𝑂𝑂1 (80) 
 

2.15 Zeroth-order Regular Approximation 

 
In contrast with the DKH Hamiltonian, the Zeroth-Order Regular Approximation is based 
on an elimination procedure starting from an expansion on the Dirac equation. Let us start 
from considering the total relativistic energy of the electron 𝐸𝐸0 as found in Eq. 74, in the 
presence of an external potential 𝑉𝑉 (could be 𝑉𝑉𝑛𝑛𝑛𝑛𝑛𝑛 but does not need to be): 

 

𝐸𝐸0 = �𝑐𝑐4 + 𝑝𝑝2𝑐𝑐2 + 𝑉𝑉 (81) 
 
If we redefine this energy as 𝐸𝐸 = 𝐸𝐸0 − 𝑐𝑐2 the previous equation can be rewritten as: 
 

𝐸𝐸 = 𝑐𝑐2 ��1 +
𝑝𝑝2

𝑐𝑐2
− 1� + 𝑉𝑉 (82) 

 
We can now develop this equation in 𝑝𝑝/𝑐𝑐 as the Taylor expansion of √1 + 𝑥𝑥2: 
 

𝐸𝐸 = 𝑉𝑉 +
𝑝𝑝2

2
−
𝑝𝑝4

8𝑐𝑐2
+⋯ (83) 

 
The use of this expression is obviously not justified if 𝑝𝑝/𝑐𝑐 > 1. Unfortunately, this is always 

the case for a Coulomb-like potential (𝑉𝑉~ − 1/𝑟𝑟), for which there is always a region of space 
where the potential is so negative that the momentum 𝑝𝑝 of the particle is larger than 𝑐𝑐. An-
other expression can however be found, for which the only restriction is that the total energy 
is not too large: 

  
|𝐸𝐸| < (2𝑐𝑐2 − 𝑉𝑉) (84) 
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which is always the case for chemical systems. To find this alternative formulation, we must 
rewrite Eq. 82 as: 

 

𝐸𝐸 = �𝑐𝑐4 + 𝑝𝑝2𝑐𝑐2 − 𝑐𝑐2 + 𝑉𝑉 

=
𝑝𝑝2𝑐𝑐2

𝑐𝑐2 + �𝑐𝑐4 + 𝑝𝑝2𝑐𝑐2
+ 𝑉𝑉 

=
𝑝𝑝2𝑐𝑐2

2𝑐𝑐2 + 𝐸𝐸 − 𝑉𝑉
+ 𝑉𝑉 

=
𝑝𝑝2

2 �1 + 𝐸𝐸 − 𝑉𝑉
2𝑐𝑐2 �

+ 𝑉𝑉 

=
𝑝𝑝2𝑐𝑐2

(2𝑐𝑐2 − 𝑉𝑉) �1 + 𝐸𝐸
2𝑐𝑐2 − 𝑉𝑉� + 𝑉𝑉

 

(85) 

 
with the last term written down to more clearly exhibit the kind of expansions that can be 

made. Expanding in (𝐸𝐸 − 𝑉𝑉)/2𝑐𝑐2 will give the same expression as found in Eq. 83. Note that 
now the equation is quadratic in energy, therefore it also possesses a solution with negative 
total energy. This spurious solution can be thrown away by expanding in 1/(2𝑐𝑐2 − 𝑉𝑉). At 
zeroth and first order the expressions for the energy are: 

 

𝐸𝐸0 = 𝑉𝑉 +
𝑝𝑝2𝑐𝑐2

2𝑐𝑐2 − 𝑉𝑉
 

𝐸𝐸1 = 𝐸𝐸0 −
𝐸𝐸0𝑝𝑝2𝑐𝑐2

(2𝑐𝑐2 − 𝑉𝑉)2 
(86) 

 
We can now use this information for the energy derived by applying the Dirac Hamiltonian 

in Eq. 61 to a four-component wavefunction 𝜓𝜓 = (𝜙𝜙,𝜒𝜒): 
 

𝑉𝑉𝑉𝑉 + 𝑐𝑐𝜶𝜶 ⋅ 𝑝̂𝑝𝜒𝜒 = 𝐸𝐸𝐸𝐸;     (𝑉𝑉 − 2𝑐𝑐)𝜒𝜒 + 𝑐𝑐𝜶𝜶 ⋅ 𝑝̂𝑝𝜙𝜙 = 𝐸𝐸𝐸𝐸;  (87) 
 
The elimination technique previously mentioned consists in the elimination of the small 

component, which can be achieved by rewriting the second equation in Eq. 87: 
 

𝜒𝜒 =
1

2𝑐𝑐2 + 𝐸𝐸 − 𝑉𝑉
𝑐𝑐𝜶𝜶 ⋅ 𝑝̂𝑝𝜙𝜙 =

1
2𝑐𝑐
�1 +

𝐸𝐸 − 𝑉𝑉
2𝑐𝑐2

�
−1
𝜶𝜶 ⋅ 𝑝̂𝑝𝜙𝜙 ≡ 𝑿𝑿�𝜙𝜙  (88) 

 
and substituting in the first one: 
 

𝐻𝐻�𝐸𝐸𝐸𝐸𝐸𝐸𝜙𝜙 ≡ 𝑉𝑉𝑉𝑉 + 𝑐𝑐𝜶𝜶 ⋅ 𝑝̂𝑝𝑿𝑿�𝜙𝜙 = 𝑉𝑉𝑉𝑉 +
1
2
𝜶𝜶 ⋅ 𝑝̂𝑝 �1 +

𝐸𝐸 − 𝑉𝑉
2𝑐𝑐2

�
−1
𝜶𝜶 ⋅ 𝑝̂𝑝𝜙𝜙 = 𝐸𝐸𝐸𝐸  (89) 
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The Hamiltonian 𝐻𝐻�𝐸𝐸𝐸𝐸𝐸𝐸 now acts only on the large component 𝜙𝜙, which unlike the total 
wavefunction 𝜓𝜓 is not normalised. A normalised two-component wavefunction Φ = 𝑂𝑂�𝜙𝜙 
therefore needs to be generated by a normalisation operator 𝑂𝑂�: 

 

�𝑑𝑑𝒓𝒓 Φ∗Φ = �𝑑𝑑𝒓𝒓 𝜙𝜙∗𝑂𝑂�†𝑂𝑂�𝜙𝜙 = �𝑑𝑑𝒓𝒓 𝜓𝜓∗𝜓𝜓 = �𝑑𝑑𝒓𝒓 (𝜙𝜙∗𝜙𝜙 + 𝜒𝜒∗𝜒𝜒) = 1 (90) 

 
Eliminating the small component gives: 
 

�𝑑𝑑𝒓𝒓 (𝜙𝜙∗𝜙𝜙 + 𝜒𝜒∗𝜒𝜒) = �𝑑𝑑𝒓𝒓 𝜙𝜙∗�1 + 𝑿𝑿�†𝑿𝑿��𝜙𝜙 (91) 

 
Therefore, a possible choice for the operator 𝑂𝑂� is simply: 
 

𝑂𝑂� = �1 + 𝑿𝑿�†𝑿𝑿� (92) 
 
and the Hamiltonian for Φ becomes: 
 

𝐻𝐻�𝐸𝐸𝐸𝐸𝐸𝐸 = �1 + 𝑿𝑿�†𝑿𝑿�(𝑉𝑉 + 𝑐𝑐𝜶𝜶 ⋅ 𝑝̂𝑝𝑿𝑿�)
1

�1 + 𝑿𝑿�†𝑿𝑿�
  (93) 

 
The standard procedure (cfr. Berestetskĭ, Lifshitz, and Pitaevskiĭ,79 McWeeny,80 and Sa-

kurai81) consists in expanding the factor [1 + (𝐸𝐸 − 𝑉𝑉)/2𝑐𝑐2] both in 𝑿𝑿� and 𝐻𝐻�𝐸𝐸𝐸𝐸𝐸𝐸 in (𝐸𝐸 −
𝑉𝑉)/2𝑐𝑐2, but as previously mentioned this is not justified for a Coulomb-like potential such 
as in the case of a molecular system. We are instead going to expand it once again in 1/(2𝑐𝑐2 −
𝑉𝑉). The procedure is not too complicated, and the interested reader may refer to the paper 
from Schwartz et al.82 for a thorough demonstration. The resulting Hamiltonian has the fol-
lowing form: 

 

𝐻𝐻�𝐸𝐸𝐸𝐸𝐸𝐸 ≈ 𝑉𝑉 + 𝜶𝜶 ⋅ 𝑝̂𝑝
𝑐𝑐2

2𝑐𝑐2 − 𝑉𝑉
𝜶𝜶 ⋅ 𝑝̂𝑝 − 𝜶𝜶 ⋅ 𝑝̂𝑝 �

𝐸𝐸
2𝑐𝑐2 − 𝑉𝑉

�
𝑐𝑐2

2𝑐𝑐2 − 𝑉𝑉
𝜶𝜶 ⋅ 𝑝̂𝑝 + ⋯  (94) 

 
and by taking the first two terms (cfr. Eq. 86) we obtain the zeroth-order Hamiltonian: 
 

𝐻𝐻�𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍 = 𝑉𝑉 + 𝜶𝜶 ⋅ 𝑝̂𝑝
𝑐𝑐2

2𝑐𝑐2 − 𝑉𝑉
𝜶𝜶 ⋅ 𝑝̂𝑝  (95) 

 
which can be further expanded into: 
 

𝐻𝐻�𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍 = 𝑉𝑉 + 𝑝̂𝑝
𝑐𝑐2

2𝑐𝑐2 − 𝑉𝑉
𝑝̂𝑝 +

𝑐𝑐2

(2𝑐𝑐2 − 𝑉𝑉)2 𝜶𝜶 ⋅
(∇𝑉𝑉 × 𝑝̂𝑝) = 𝐻𝐻�𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑆𝑆𝑆𝑆 +𝐻𝐻�𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑆𝑆𝑆𝑆   (96) 

 
This shows that the zeroth-order Hamiltonian naturally includes both scalar and spin-orbit 

effects. 
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2.16 Time-Dependent QM 

 
Until this point, we have focused on the time-independent solutions of the Hamiltonian ei-
genvalue problem. However, most of the chemical characteristics of interest – from reactiv-
ity, to optical properties, to energy transfer processes – are closely related to how these so-
lutions evolve over time and therefore require the solution of the time-dependent Schrö-
dinger equation. As is the case in the classical world, even in the quantum realm a system 
remains at equilibrium until some external perturbation affects its equilibrium condition. If 
such a perturbation is relatively weak, the response of the system can be considered linear 
with respect to it. This allows us to solve the problem with a perturbative approach. 

Maintaining the same formalism used in Chapter 2.1, we consider a time-dependent Schrö-
dinger equation in which the Hamiltonian can be divided into a time-independent part 𝐻𝐻�0(𝒓𝒓) 
and a time-dependent interaction potential 𝑉𝑉�(𝒓𝒓, 𝑡𝑡) that determines the evolution of a wave-
function |Ψ(𝒓𝒓, 𝑡𝑡)⟩, which can be expanded onto the basis set |𝜙𝜙𝑛𝑛(𝒓𝒓)⟩ of the eigenfunctions of 
the time-independent Hamiltonian 𝐻𝐻�0(𝒓𝒓): 

 

𝑖𝑖ℏ
𝜕𝜕Ψ(𝒓𝒓, 𝑡𝑡)

𝜕𝜕𝜕𝜕
= 𝐻𝐻�(𝒓𝒓, 𝑡𝑡)|Ψ(𝒓𝒓, 𝑡𝑡)⟩ = �𝐻𝐻�0(𝒓𝒓) + 𝑉𝑉�(𝒓𝒓, 𝑡𝑡)�|Ψ(𝒓𝒓, 𝑡𝑡)⟩ 

|Ψ(𝒓𝒓, 𝑡𝑡)⟩ = �𝑐𝑐𝑛𝑛(𝑡𝑡)|𝜙𝜙𝑛𝑛(𝒓𝒓)⟩𝑒𝑒−
𝑖𝑖𝐸𝐸𝑛𝑛𝑡𝑡
ℏ

𝑛𝑛

 

𝐻𝐻�0(𝑟𝑟)|𝜙𝜙𝑛𝑛(𝒓𝒓)⟩ = 𝐸𝐸𝑛𝑛|𝜙𝜙𝑛𝑛(𝒓𝒓)⟩ 

(97) 

 
To determine the time-dependent coefficients 𝑐𝑐𝑛𝑛(𝑡𝑡) at 𝑡𝑡 > 0 we substitute the second line 

of Eq. 97 into the first line. For the left-hand side we get: 
 

𝑖𝑖ℏ
𝜕𝜕|Ψ(𝒓𝒓, 𝑡𝑡)⟩

𝜕𝜕𝜕𝜕
= 𝑖𝑖ℏ

𝜕𝜕
𝜕𝜕𝜕𝜕
� �𝑐𝑐𝑛𝑛(𝑡𝑡)|𝜙𝜙𝑛𝑛(𝒓𝒓)⟩𝑒𝑒−

𝑖𝑖𝐸𝐸𝑛𝑛𝑡𝑡
ℏ

𝑛𝑛

�

= 𝑖𝑖ℏ��𝑐̇𝑐𝑛𝑛(𝑡𝑡) −
𝑖𝑖
ℏ
𝐸𝐸𝑛𝑛𝑐𝑐𝑛𝑛(𝑡𝑡)� |𝜙𝜙𝑛𝑛(𝒓𝒓)⟩𝑒𝑒−

𝑖𝑖𝐸𝐸𝑛𝑛𝑡𝑡
ℏ

𝑛𝑛

 
(98) 

 
where 𝑐̇𝑐𝑛𝑛(𝑡𝑡) ≡ 𝑑𝑑𝑐𝑐𝑛𝑛(𝑡𝑡)/𝑑𝑑𝑑𝑑; for the r.h.s. we get: 
 

�𝐻𝐻�0(𝒓𝒓) + 𝑉𝑉�(𝒓𝒓, 𝑡𝑡)�|Ψ(𝒓𝒓, 𝑡𝑡)⟩ = �𝑐𝑐𝑛𝑛(𝑡𝑡)
𝑛𝑛

�𝐻𝐻�0(𝒓𝒓) + 𝑉𝑉�(𝒓𝒓, 𝑡𝑡)�|𝜙𝜙𝑛𝑛(𝒓𝒓)⟩𝑒𝑒−
𝑖𝑖𝐸𝐸𝑛𝑛𝑡𝑡
ℏ

= �𝑐𝑐𝑛𝑛(𝑡𝑡)
𝑛𝑛

�𝐸𝐸𝑛𝑛 + 𝑉𝑉�(𝒓𝒓, 𝑡𝑡)�|𝜙𝜙𝑛𝑛(𝒓𝒓)⟩𝑒𝑒−
𝑖𝑖𝐸𝐸𝑛𝑛𝑡𝑡
ℏ  

(99) 

 
The terms containing 𝐸𝐸𝑛𝑛 cancel out and the resulting overall equation is: 
 

𝑖𝑖ℏ�𝑐̇𝑐𝑛𝑛(𝑡𝑡)|𝜙𝜙𝑛𝑛(𝒓𝒓)⟩𝑒𝑒−
𝑖𝑖𝐸𝐸𝑛𝑛𝑡𝑡
ℏ

𝑛𝑛

= �𝑐𝑐𝑛𝑛(𝑡𝑡)
𝑛𝑛

𝑉𝑉�(𝒓𝒓, 𝑡𝑡)|𝜙𝜙𝑛𝑛(𝒓𝒓)⟩𝑒𝑒−
𝑖𝑖𝐸𝐸𝑛𝑛𝑡𝑡
ℏ  (100) 
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Multiplying by ⟨𝜙𝜙𝑘𝑘(𝒓𝒓)| and integrating gives: 
 

𝑖𝑖ℏ�𝑐̇𝑐𝑛𝑛(𝑡𝑡)⟨𝜙𝜙𝑘𝑘(𝒓𝒓)|𝜙𝜙𝑛𝑛(𝒓𝒓)⟩𝑒𝑒−
𝑖𝑖𝐸𝐸𝑛𝑛𝑡𝑡
ℏ

𝑛𝑛

= �𝑐𝑐𝑛𝑛(𝑡𝑡)
𝑛𝑛

⟨𝜙𝜙𝑘𝑘(𝒓𝒓)|𝑉𝑉�(𝒓𝒓, 𝑡𝑡)|𝜙𝜙𝑛𝑛(𝒓𝒓)⟩𝑒𝑒−
𝑖𝑖𝐸𝐸𝑛𝑛𝑡𝑡
ℏ  

𝑐̇𝑐𝑘𝑘(𝑡𝑡) = −
𝑖𝑖
ℏ
�𝑐𝑐𝑛𝑛(𝑡𝑡)
𝑛𝑛

𝑉𝑉𝑘𝑘𝑘𝑘(𝑡𝑡)𝑒𝑒𝑖𝑖𝜔𝜔𝑘𝑘𝑘𝑘𝑡𝑡 
(101) 

 
where we have defined 𝑉𝑉𝑘𝑘𝑘𝑘(𝑡𝑡) ≡ ⟨𝜙𝜙𝑘𝑘(𝒓𝒓)|𝑉𝑉�(𝒓𝒓, 𝑡𝑡)|𝜙𝜙𝑛𝑛(𝒓𝒓)⟩ and 𝜔𝜔𝑘𝑘𝑘𝑘 ≡ (𝐸𝐸𝑘𝑘 − 𝐸𝐸𝑛𝑛)/ℏ. If we as-

sume that the system was initially in one precise eigenstate 𝜙𝜙𝑚𝑚(𝒓𝒓), i.e. 𝑐𝑐𝑘𝑘(0) = 𝛿𝛿𝑘𝑘𝑘𝑘, we have 
all the boundary conditions to solve the differential equations in Eq. 101. 

If the interaction 𝑉𝑉𝑘𝑘𝑘𝑘(𝑡𝑡) is small enough that the change in 𝑐𝑐𝑛𝑛(𝑡𝑡) is small, we can in first 
approximation assume that the 𝑐𝑐𝑛𝑛(𝑡𝑡) in the r.h.s. of the second line in Eq. 101 are unchanged 
from their initial value 𝛿𝛿𝑛𝑛𝑛𝑛. The solution of 𝑐̇𝑐𝑘𝑘(𝑡𝑡) is then given by: 

 

𝑐̇𝑐𝑘𝑘
(1)(𝑡𝑡) = −

𝑖𝑖
ℏ
𝑉𝑉𝑘𝑘𝑘𝑘(𝑡𝑡)𝑒𝑒𝑖𝑖𝜔𝜔𝑘𝑘𝑘𝑘𝑡𝑡 (102) 

 
which upon integration yields: 
 

𝑐𝑐𝑘𝑘
(1)(𝑡𝑡) = 𝛿𝛿𝑘𝑘𝑘𝑘 −

𝑖𝑖
ℏ
� 𝑑𝑑𝑑𝑑′
𝑡𝑡

0
𝑉𝑉𝑘𝑘𝑘𝑘(𝑡𝑡′)𝑒𝑒𝑖𝑖𝜔𝜔𝑘𝑘𝑘𝑘𝑡𝑡′ (103) 

 
From Eq. 97 we also observe that the projection of |Ψ(𝒓𝒓, 𝑡𝑡)⟩ onto |𝜙𝜙𝑘𝑘(𝒓𝒓)⟩ is: 
 

⟨𝜙𝜙𝑘𝑘(𝒓𝒓)|Ψ(𝒓𝒓, 𝑡𝑡)⟩ = 𝑐𝑐𝑘𝑘𝑒𝑒
−𝑖𝑖𝐸𝐸𝑘𝑘𝑡𝑡ℏ  (104) 

 
and the absolute square of this value gives the probability 𝑃𝑃𝑘𝑘(𝑡𝑡) (at first order) of finding 

the system in state 𝑘𝑘 at time 𝑡𝑡: 
 

𝑃𝑃𝑘𝑘(𝑡𝑡) = �𝑐𝑐𝑘𝑘
(1)(𝑡𝑡)�

2
=

1
ℏ2
�� 𝑑𝑑𝑡𝑡′

𝑡𝑡

0
𝑉𝑉𝑘𝑘𝑘𝑘(𝑡𝑡′)𝑒𝑒𝑖𝑖𝜔𝜔𝑘𝑘𝑘𝑘𝑡𝑡′�

2

 (105) 

 
A similar procedure can be expanded to Time-Dependent Density Functional Theory (TD-

DFT). In 1984 Runge and Gross demonstrated the analogous of the HK theorems for time-
dependent systems.83 By solving Eq. 97 with different potentials 𝑉𝑉�(𝒓𝒓, 𝑡𝑡) and a fixed initial 
state |Ψ0(𝒓𝒓, 𝑡𝑡)⟩ a one-to-one mapping between the time-dependent potential and the time-
dependent state can be obtained. It is then possible to calculate the densities from all the 
time-dependent wavefunctions resulting from this mapping, therefore obtaining a direct 
one-to-one mapping between the potential and the density. Runge and Gross provided proof 
of this correspondence for two particular cases: 

• The potential 𝑉𝑉�(𝒓𝒓, 𝑡𝑡) is a function with a periodic dependence on time. 
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• The potential 𝑉𝑉�(𝒓𝒓, 𝑡𝑡) = 𝑉𝑉�0(𝒓𝒓) + 𝑉𝑉� ′(𝒓𝒓, 𝑡𝑡) consists of a static part 𝑉𝑉�0(𝒓𝒓) and a small 
time-dependent perturbation 𝑉𝑉� ′(𝒓𝒓, 𝑡𝑡). 

The latter is the case of interest for this discussion. Analogously to ground-state DFT, 
where the density of the system is provided by the KS equations, Runge and Gross started 
from non-interaction electrons moving in a local potential 𝑉𝑉�(𝒓𝒓, 𝑡𝑡) to find the time-dependent 
density of the chemical system. A set of time-dependent KS (TD-KS) equations are intro-
duced to define the density of a time-dependent system and are then solved iteratively in a 
SCF scheme:84 

 

𝜌𝜌(𝒓𝒓, 𝑡𝑡) = �𝑛𝑛𝑖𝑖|𝜙𝜙𝑖𝑖(𝒓𝒓, 𝑡𝑡)|2
𝑜𝑜𝑜𝑜𝑜𝑜

𝑖𝑖=1

 

𝑖𝑖ℏ
𝜕𝜕|𝜙𝜙𝑖𝑖(𝑟𝑟, 𝑡𝑡)⟩

𝜕𝜕𝜕𝜕
= �−

1
2
∇2 + 𝑉𝑉�𝐾𝐾𝐾𝐾(𝒓𝒓, 𝑡𝑡)� |𝜙𝜙𝑖𝑖(𝑟𝑟, 𝑡𝑡)⟩ 

(106) 

 
In the same fashion as the static case, the time-dependent KS potential 𝑉𝑉�𝐾𝐾𝐾𝐾(𝒓𝒓, 𝑡𝑡) is defined 

as: 
 

𝑉𝑉�𝐾𝐾𝐾𝐾(𝒓𝒓, 𝑡𝑡) = 𝑉𝑉�𝑒𝑒𝑒𝑒𝑒𝑒(𝒓𝒓, 𝑡𝑡) + 𝑉𝑉�𝐻𝐻(𝒓𝒓, 𝑡𝑡) + 𝑉𝑉�𝑋𝑋𝑋𝑋(𝒓𝒓, 𝑡𝑡) (107) 
 
where the Hartree potential 𝑉𝑉�𝐻𝐻(𝒓𝒓, 𝑡𝑡) is calculated from the density 𝜌𝜌(𝒓𝒓, 𝑡𝑡) as: 
 

𝑉𝑉�𝐻𝐻(𝒓𝒓, 𝑡𝑡) = �𝑑𝑑𝒓𝒓′
𝜌𝜌(𝒓𝒓′, 𝑡𝑡)
|𝒓𝒓 − 𝒓𝒓′|

  (108) 

 
and the time-dependent exchange-correlation potential 𝑉𝑉�𝑋𝑋𝑋𝑋(𝒓𝒓, 𝑡𝑡) is again an unknown 

functional of the time-dependent density. 
If the external potential 𝑉𝑉� ′(𝒓𝒓, 𝑡𝑡) is switched on adiabatically at time 𝑡𝑡 = 𝑡𝑡0 it can be ex-

pressed by the following structure: 
 

𝑉𝑉� ′(𝒓𝒓, 𝑡𝑡) = �𝑉𝑉
�0(𝒓𝒓)                              if 𝑡𝑡 < 𝑡𝑡0
𝑉𝑉�0(𝒓𝒓) + 𝑉𝑉� ′(𝒓𝒓, 𝑡𝑡)          if 𝑡𝑡 ≥ 𝑡𝑡0

 (109) 

 
The linear density response function 𝜌𝜌1(𝒓𝒓, 𝑡𝑡) in this case can be evaluated in terms of the 

full response function 𝜒𝜒(𝒓𝒓, 𝑡𝑡;𝒓𝒓′, 𝑡𝑡′) of the interacting system: 
 

𝜌𝜌1(𝒓𝒓, 𝑡𝑡) = �𝑑𝑑𝒓𝒓′� 𝑑𝑑𝑡𝑡′𝜒𝜒(𝒓𝒓, 𝑡𝑡;𝒓𝒓′, 𝑡𝑡′)𝑉𝑉′(𝒓𝒓′, 𝑡𝑡′)
∞

0
 (110) 

 
Or alternatively, since the TD-KS equations provide an exact way to compute the time-

dependent electron density in a similar way to the standard KS equation (Eq. 106), the linear 
density response of the interacting system can be calculated as the density response of the 
non-interacting KS system described by its response function 𝜒𝜒𝐾𝐾𝐾𝐾(𝒓𝒓, 𝑡𝑡;𝒓𝒓′, 𝑡𝑡′): 
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𝜌𝜌1(𝒓𝒓, 𝑡𝑡) = �𝑑𝑑𝒓𝒓′� 𝑑𝑑𝑡𝑡′𝜒𝜒𝐾𝐾𝐾𝐾(𝒓𝒓, 𝑡𝑡;𝒓𝒓′, 𝑡𝑡′)𝑉𝑉𝐾𝐾𝐾𝐾′ (𝒓𝒓′, 𝑡𝑡′)
∞

0
 (111) 

 
𝑉𝑉′𝐾𝐾𝐾𝐾(𝒓𝒓′, 𝑡𝑡′) is the KS potential calculated to the first-order of the perturbing potential 

𝑉𝑉′(𝒓𝒓, 𝑡𝑡): 
 

𝑉𝑉′𝐾𝐾𝐾𝐾(𝒓𝒓′, 𝑡𝑡′) = 𝑉𝑉′(𝒓𝒓′, 𝑡𝑡′) +�𝑑𝑑𝒓𝒓′
𝜌𝜌(𝒓𝒓′, 𝑡𝑡)
|𝒓𝒓 − 𝒓𝒓′|

 + �𝑑𝑑𝒓𝒓′ �𝑑𝑑𝑡𝑡′𝑓𝑓𝑋𝑋𝑋𝑋(𝒓𝒓, 𝑡𝑡;𝒓𝒓′, 𝑡𝑡′)𝜌𝜌1(𝒓𝒓′, 𝑡𝑡′) (112) 

 
where 𝑓𝑓𝑋𝑋𝑋𝑋(𝒓𝒓, 𝑡𝑡;𝒓𝒓′, 𝑡𝑡′) is the exchange-correlation response kernel, defined as the functional 

derivative of the time-dependent exchange-correlation potential 𝑉𝑉𝑋𝑋𝑋𝑋(𝒓𝒓, 𝑡𝑡) with respect to the 
electron density 𝜌𝜌(𝒓𝒓′, 𝑡𝑡′) evaluated at the initial ground-state density 𝜌𝜌0(𝒓𝒓): 

 

𝑓𝑓𝑋𝑋𝑋𝑋(𝒓𝒓, 𝑡𝑡; 𝒓𝒓′, 𝑡𝑡′) =
𝑑𝑑𝑉𝑉𝑋𝑋𝑋𝑋[𝜌𝜌](𝒓𝒓, 𝑡𝑡)
𝑑𝑑𝜌𝜌(𝒓𝒓′, 𝑡𝑡′)

�
𝜌𝜌=𝜌𝜌0

 (113) 

 
The 𝑓𝑓𝑋𝑋𝑋𝑋 kernel represents the first-order variation of the time-dependent exchange-corre-

lation potential 𝑉𝑉𝑋𝑋𝑋𝑋 due to the applied perturbation. Adopting some appropriate approxima-
tions for it, the TD-KS equations provide a SCF scheme to evaluate the linear density re-
sponse 𝜌𝜌1(𝒓𝒓, 𝑡𝑡) as a consequence of the activation of the external perturbation. The so-called 
Adiabatic Local Density Approximation (ALDA)85 is the simplest TD-DFT approximation for 
the treatment of the 𝑓𝑓𝑋𝑋𝑋𝑋 kernel, which is reduced to a real function local in space, frequency-
independent, and evaluated on the LDA XC potential in correspondence of the local SCF 
electron density 𝜌𝜌0(𝒓𝒓): 

 

𝑓𝑓𝑋𝑋𝑋𝑋𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝒓𝒓,𝒓𝒓′) = 𝛿𝛿(𝒓𝒓 − 𝒓𝒓′)
𝑑𝑑𝑉𝑉𝑋𝑋𝑋𝑋𝐿𝐿𝐿𝐿𝐿𝐿(𝒓𝒓, 𝑡𝑡)
𝑑𝑑𝜌𝜌(𝒓𝒓′, 𝑡𝑡′)

�
𝜌𝜌=𝜌𝜌0

 (114) 

 

2.17 Electronic Excitations in TD-DFT 

 
In this brief section we will quickly illustrate how the excitation energies for the simulation 
of absorption spectroscopy experiments in TD-DFT are evaluated. A more comprehensive 
description is reported in Refs. 84,86. The corresponding eigenvalue equation for such a 
problem is: 

 
Ω𝑭𝑭𝐼𝐼 = 𝜔𝜔𝐼𝐼

2𝑭𝑭𝐼𝐼 (115) 
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The components of the matrix Ω are: 
 

Ω𝑖𝑖𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑗𝑗 = 𝛿𝛿𝑖𝑖𝑖𝑖𝛿𝛿𝑎𝑎𝑎𝑎𝛿𝛿𝜎𝜎𝜎𝜎(𝜀𝜀𝑎𝑎𝑎𝑎 − 𝜀𝜀𝑖𝑖𝑖𝑖)2 + 2�𝜀𝜀𝑎𝑎𝑎𝑎 − 𝜀𝜀𝑖𝑖𝑖𝑖𝐾𝐾𝑖𝑖𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑗𝑗�𝜀𝜀𝑏𝑏𝑏𝑏 − 𝜀𝜀𝑗𝑗𝑗𝑗 
𝐾𝐾𝑖𝑖𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑗𝑗 = 𝐾𝐾𝑖𝑖𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑗𝑗

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 + 𝐾𝐾𝑖𝑖𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑗𝑗
𝑋𝑋𝑋𝑋  

𝐾𝐾𝑖𝑖𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑗𝑗
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = �𝑑𝑑𝒓𝒓�𝑑𝑑𝒓𝒓′𝜙𝜙𝑎𝑎𝑎𝑎∗ (𝒓𝒓)𝜙𝜙𝑏𝑏𝑏𝑏∗ (𝒓𝒓)

1
|𝒓𝒓 − 𝒓𝒓′|

𝜙𝜙𝑖𝑖𝑖𝑖(𝒓𝒓)𝜙𝜙𝑗𝑗𝑗𝑗(𝒓𝒓) 

𝐾𝐾𝑖𝑖𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗𝑗𝑗
𝑋𝑋𝑋𝑋 = �𝑑𝑑𝒓𝒓�𝑑𝑑𝒓𝒓′𝜙𝜙𝑎𝑎𝑎𝑎∗ (𝒓𝒓)𝜙𝜙𝑏𝑏𝑏𝑏∗ (𝒓𝒓)𝑓𝑓𝑋𝑋𝑋𝑋𝜎𝜎𝜎𝜎 × 𝛿𝛿(𝒓𝒓 − 𝒓𝒓′)𝜙𝜙𝑖𝑖𝑖𝑖(𝒓𝒓)𝜙𝜙𝑗𝑗𝑗𝑗(𝒓𝒓) 

(116) 

 
where 𝑎𝑎, 𝑏𝑏 are the indices for the virtual orbitals, 𝑖𝑖, 𝑗𝑗 are those for the occupied orbitals, 𝜎𝜎, 𝜏𝜏 

are the indices for spin, 𝜀𝜀 is the orbital energy, 𝜙𝜙 are the KS orbitals and 𝑓𝑓𝑋𝑋𝑋𝑋𝜎𝜎𝜎𝜎 is the XC kernel 
within the adiabatic approximation. 𝜔𝜔𝐼𝐼 are the excitation energies while the corresponding 
intensities are given by the oscillator strengths obtained from the 𝑭𝑭𝐼𝐼 eigenvectors. The direct 
solution of this eigenvalue problem is possible in principle, but it is generally infeasible due 
to computational and storage requirements. For this reason, it is preferable to solve the ei-
genvalue problem iteratively by employing the Davidson algorithm,87 which requires low 
computational costs even for large matrices. In this algorithm it is possible to restrict the 
calculation to a few selected eigenvalues, generally the lowest-energy excitations. In the ini-
tial hypothesis for the first iteration of 𝑭𝑭𝐼𝐼 it is generally considered that the excitation ener-
gies are simply the difference between the energies of occupied and virtual KS orbitals. 
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3. ENERGY LEVEL STRUCTURE OF THE [XE]4F6 CON-

FIGURATION 
 
 

In this chapter we will collect all the relevant information useful to understand the various 
phenomena involved in lanthanide-based luminescence. While the previous chapter was de-
voted to illustrating the methods used to calculate such properties, this section will be used 
to describe the actual physics at play and how the various pieces in a molecular complex can 
interact. 

Europium, element number 63 of the periodic table, is typically used in its trivalent ion 
form Eu3+. Trivially, this ion has 60 electrons, of which 54 belong to the internal closed shell 
of the Xe electron configuration, where all the shells up to 5𝑝𝑝 are completely filled. The re-
maining 6 valence electrons are located in the 4𝑓𝑓 shell. Despite being at a lower energy, the 
filled 5𝑠𝑠 and 5𝑝𝑝 shells are actually found at a greater average distance from the nucleus (Fig-
ure 4) and this shields the valence 4𝑓𝑓 electrons from the perturbing effects of the external 
environment. This is the reason why all lanthanides possess similar chemistries and why the 
optical properties of lanthanide-based compounds featuring the same ion are comparable 
even for wildly different systems. 

 

 
Figure 4. Radial probability distribution for the 4𝑓𝑓, 5𝑠𝑠, 5𝑝𝑝, 5𝑑𝑑, 6𝑠𝑠, and 6𝑝𝑝 orbitals. The innermost 4f orbitals 
are shielded by the outer filled 5s and 5p shells. (Z.B. Goldschmitd, “Atomic properties (free atom),” in K.A. 
Gschneidner and L. Eyring (eds.), Handbook on the Physics and Chemistry of Rare Earths, volume I, 2nd edi-
tion, North Holland Publishing Company, Amsterdam. © 1978) 
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The 6 valence electrons can be arranged in various ways within the 14 spin-orbitals of the 
4𝑓𝑓 shell. Each of these is called a microstate. The total number of possible arrangements is 
given by the binomial coefficient:1 

 

�14
6 � =

14!
6! (14 − 6)!

= 3003 (117) 

 
All of these configurations, disregarding any kind of perturbation acting on the electrons, 

should possess the same energy. The 4𝑓𝑓6 configuration, therefore, is 3003 times degenerate 
in the absence of any interaction. As should be obvious by now, each electron is not in a 
vacuum by itself and there are numerous perturbations affecting it. In decreasing order of 
intensity, these interactions are: electron-electron repulsion, spin-orbit coupling, and crys-
tal-field effects. 

Electrostatic repulsion between the different electrons in the same shell represents the 
term with the largest impact. After its inclusion, the 4𝑓𝑓6 configuration is characterised by 
119 𝐿𝐿 2𝑀𝑀+1 (𝑑𝑑) terms, where each term is (2𝑆𝑆 + 1)(2𝐿𝐿 + 1) times degenerate. 𝑆𝑆 is the total spin 
quantum number, 𝐿𝐿 is the total orbital angular momentum quantum number and 𝑑𝑑 is an 
additional quantum number used to differentiate between terms with the same values for 𝑆𝑆 
and 𝐿𝐿. According to the first Hund rule,2,3 the ground state for a given electron configuration 
is given by the term with the highest spin multiplicity. For the 4𝑓𝑓6 configuration we can 
arrange each of the 6 electrons in its own orbital, all with parallel spins, as to give a septet 
term. The second Hund rule states that, amongst the terms with the same spin multiplicity, 
the lowest energy one is the one with the highest orbital angular momentum. In our case, 
there is actually only one septet term and it is an 𝐹𝐹 term (𝐿𝐿 = 3). The ground state for the 
4𝑓𝑓6 configuration after including electron repulsion is therefore the F 7  term. The separation 
in energy between the lowest terms is of the order of 104 cm-1. 

In heavy atoms such as Eu, even the outermost electrons possess such high velocities that 
relativistic effects cannot be neglected. Two major aspects require consideration when it 
comes to relativistic corrections, as we described in section 2.12: the scalar correction to the 
kinetic energy – which is relevant when the electron travels at a speed close to that of light 
– and spin-orbit coupling. The motion of a charged particle through space, such as an elec-
tron moving in an orbital with non-nil angular momentum, generates a magnetic field.4 The 
intrinsic magnetic spin moment of the particle then interacts with this magnetic field, and 
the total energy needs to be corrected taking this into account. Incidentally, this also implies 
that 𝐿𝐿 and 𝑆𝑆 are not good quantum numbers anymore, and the total angular quantum num-
ber 𝐽𝐽 = 𝐿𝐿 + 𝑆𝑆 needs to be considered. The inclusion of spin-orbit coupling generates 295 

𝐿𝐿 2𝑀𝑀+1 (𝑑𝑑)𝐽𝐽 states. For each 𝐿𝐿 2𝑀𝑀+1  term, the possible values of 𝐽𝐽 are given by the Clebsch-Gor-
dan series5 𝐿𝐿 + 𝑆𝑆, 𝐿𝐿 + 𝑆𝑆 − 1, … , |𝐿𝐿 − 𝑆𝑆|. Each free-ion level is described by a 𝐿𝐿 2𝑀𝑀+1 (𝑑𝑑)𝐽𝐽 label 
and is 2𝐽𝐽 + 1 times degenerate. According to the third Hund rule, for a shell which is less 
than half-filled as is the case of the 4𝑓𝑓6 configuration, the lowest energy state will be the one 
with the smallest 𝐽𝐽. The spin-orbit ground state for the Eu3+ ion will therefore be F0 

7 . 



57 
 

 
Figure 5. Energy levels of the 4f6 configuration. The degeneracy is lifted when taking into account, in order, 
electron repulsion, spin-orbit coupling, and crystal-field effects. 

The splitting of spin-orbit states is of the order of 103 cm-1, about an order of magnitude 
smaller than the splitting induced by electron repulsion (Figure 5). 

Traditionally, spin-orbit states are described in the terms of the Russel-Saunders coupling 
scheme.6 This assumes that spin-orbit coupling is a weak perturbation compared to the elec-
tronic repulsion interaction, which is verified for the vast majority of elements, but not for 
lanthanides. This scheme cannot therefore be rigorously applied. The so-called jj coupling 
scheme needs to be invoked.7 In this framework, the wavefunction is rewritten as a linear 
combination of Russel-Saunders states. The most relevant consequence is that states with 
the same 𝐽𝐽 can mix, regardless of their 𝑆𝑆 and 𝐿𝐿 originating values, and this results in a relax-
ation of the selection rules on electronic transitions. 

The degeneracy of the free ion spin-orbit states is then further lifted by the presence of 
crystal field effects, as exerted by the ligands. The energy levels are now described by the 
irreducible representation of the Eu3+ site point group.8 Unlike in complexes of transition 
metal ions, crystal field effects in lanthanide ion complexes are severely mitigated by the 
shielding effects of the outer 5𝑠𝑠 and 5𝑝𝑝 shells on the 4𝑓𝑓 electrons, and the resulting splitting 
is of the order of a few hundred cm-1 at most. 
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3.1 Antenna effect 

 
In systems which exploit the luminescence properties of the lanthanide ion, it is obviously 
necessary to populate the emitter excited state ( D0 

5  for Eu3+) in the first place. This can be 
achieved via direct excitation of the lanthanide centre through light absorption, but it is an 
extremely inefficient process for a number of reasons.  

The intensity of an electric dipole transition between two electronic states is directly related 
to the transition dipole moment 𝝁𝝁𝑖𝑖𝑓𝑓 between the two states of interest: 

 

𝝁𝝁𝑖𝑖𝑓𝑓 = �Ψ𝑖𝑖|𝝁𝝁�|Ψ𝑓𝑓� = −𝑒𝑒�𝑑𝑑𝒓𝒓Ψ𝑖𝑖∗𝒓𝒓�Ψ𝑓𝑓 (118) 

 
where Ψ𝑖𝑖 and Ψ𝑓𝑓 are the initial (ground) and final (excited) wavefunctions, respectively; 𝑒𝑒 

is the electron charge and 𝒓𝒓� is the position operator. Group theory – for a more detailed 
discussion on group theory, the interested reader may refer to Cotton, F. A. Chemical 
Applications of Group Theory, 3rd ed.; Wiley, 1989 – tells us that in order for the integral 
in Eq. 118 to be non-vanishing, the product within must contain the totally symmetric 
representation for the point group of the system. In layman’s terms, this means that this 
product must have gerade (g) parity, i.e. it must maintain the same sign under inversion. 
The operator 𝒓𝒓� (and by consequence 𝝁𝝁�) transforms simply as the coordinates 𝑥𝑥,𝑦𝑦, 𝑧𝑧 and is 
thefefore antisymmetric (ungerade, u) with respect to the inversion operation (𝑟𝑟 → −𝑟𝑟). The 
parity of an electronic state is directly related to its orbital quantum number 𝑙𝑙, more 
specifically it has parity (−1)𝑒𝑒, so 𝑠𝑠 and 𝑑𝑑 orbitals are gerade, while 𝑝𝑝 and 𝑓𝑓 orbitals are 
ungerade. Let us be reminded that the product of two terms with gerade/ungerade 
symmetries follows these rules: 

 
𝑔𝑔 × 𝑔𝑔 = 𝑔𝑔 

𝑔𝑔 × 𝑢𝑢 = 𝑢𝑢 × 𝑔𝑔 = 𝑢𝑢 
𝑢𝑢 × 𝑢𝑢 = 𝑔𝑔 

(119) 

 
It emerges naturally, that in order for the product Ψ𝑖𝑖∗ × 𝒓𝒓� ×Ψ𝑓𝑓 to have gerade symmetry, 

Ψ𝑖𝑖∗ and Ψ𝑓𝑓 cannot have the same parity, as one of them must have u symmetry to “neutralise” 
the dipole operator and the other must have g symmetry to maintain the even parity. This is 
also known as the Laporte rule,9 which forbids transitions between electronic states with the 
same parity. The 𝑓𝑓-𝑓𝑓 transition involved in the direct excitation of Ln3+ ions are therefore 
formally forbidden. 

As the electric field of the incident radiation does not act on the spin of the electrons, an 
allowed electric dipole transition must also maintain the same spin state in the initial and 
final wavefunctions. The F0 

7 → D0 
5  transition is a septet-quintet transition and is therefore 

also spin-forbidden. 
Furthermore, the F0 

7 → D0 
5  is also forbidden by the standard Judd-Ofelt theory, in partic-

ular it violates the selection rules on Δ𝐽𝐽.10 
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All of these factors reflect on the very low molar absorption coefficients for these kind of 
electronic transitions, which are in the order of 𝜀𝜀 ≈ 1 − 10 M-1 cm-1. 

In order to effectively exploit the luminescence properties of Eu3+ (and of Ln3+ ions in gen-
eral), it is necessary to find an alternative, more efficient way to populate the D0 

5  state. It is 
possible to greatly enhance the population of the emitter level through the so-called antenna 
effect, in which an organic chromophore – 𝜀𝜀 ≈ 104 − 105 M-1 cm-1 in the UV region – is used 
as a ligand in the complex.11 

The chromophore ligand absorbs light and undergoes excitation from its ground state S0 
to a higher energy excited state. Regardless of the final electronic level, relaxation to the first 
singlet excited state S1 (Kasha’s rule).12 From here, intersystem crossing (ISC), which inci-
dentally is induced by spin-orbit coupling and is enhanced by the presence of the heavy 
metal centre, promotes the population of the lowest-lying triplet state T1. From this triplet 
state, energy transfer (ET) to the emitter level D0 

5  occurs and the characteristic emission of 
Eu3+ takes place. The process is schematically illustrated in Figure 6. 

 

 
Figure 6. Energy levels diagram for the antenna effect. The chromophore (ligand) in the ground state 𝑆𝑆0 ab-
sorbs the UV radiation and reaches the excited state 𝑆𝑆1. After intersystem crossing (ISC) to the triplet state 𝑇𝑇1 
energy transfer (ET) to the 𝐷𝐷0 

5  state of Eu3+ can occur. This sensitization process greatly enhances the emission 
intensity of the lanthanide centre. 

There are some optimal values for the energy gaps between S1 and T1 in ISC (ΔEISC), and 
between T1 and D0 

5  in ET (ΔEET). If the energy gap is too wide, the mismatch inhibits an 
efficient conversion, whereas too small of a gap could result in the electron “jumping back” 
to the initial state, via back-energy transfer processes. The optimal energy caps for efficient 
ISC and ET are ΔEISC ≈ 5000 cm-1 and ΔEET ≈ 3500 cm-1, respectively.13 

For all the reasons we illustrated previously, the 4𝑓𝑓 electrons of Eu3+ are barely affected by 
the surrounding environment, and the D0 

5  state is always found at around the same energy, 
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about 17200 cm-1  above the ground state F 7 0.14 This behaviour is reported extensively in the 
literature, where it can be seen that even for massively different complexes the difference in 
energy for the emitter state is at most of a few hundred cm-1.11,14–21 The only way to modify 
ΔEISC and ΔEET is therefore to act on the S1 and T1 states of the ligand, and therefore a deep 
theoretical knowledge of its electronic states is crucial to the design of new systems with 
improved performance. 

Once the emitter level is populated, radiative decay (i.e. emission) is not the only pathway 
the excitation can follow. Non-radiative decay can occur either in the form of back-energy 
transfer to the triplet state, if T1 is sufficiently close in energy to the emitter state, or by lu-
minescence quenching due to the coupling between electronic and vibrational levels. The 
former is characteristic of systems in which the triplet state is less than 1850 cm-1 higher in 
energy than the  D0 

5  state,22 while the latter is found in concurrence with the presence of 
high energy oscillator in the ligand molecules (e.g. O-H, N-H groups). Incidentally, it is these 
non-radiative deactivation pathways which can be exploited for the construction of molecu-
lar thermometers, as these processes are usually temperature-dependent. 

 

3.2 Non-radiative decay processes in Eu3+ complexes 

 
Eu3+-based molecular thermometers use the luminescence of the central lanthanide ion as 
the thermometric parameter for gauging the temperature. As we just mentioned, the non-
radiative decay processes quenching the luminescence are what gives the ability to correlate 
the luminescence intensity (or the excited state lifetimes) with the temperature, as these are 
temperature-dependent phenomena. In fact, if these did not exist, luminescence would be 
constant at every temperature thus making impossible this kind of correlation. Understand-
ing the mechanisms behind these processes is fundamental for the development of new sys-
tems with improved performance, and the modelling of the thermometric response of Eu3+-
based molecular thermometers is the main focus of the next chapter. 

Two primary pathways for the non-radiative quenching of the Eu3+ excited state exist: 
back-energy transfer to another excited state, and vibronic coupling with a high-energy os-
cillator. As far as the former is concerned, this back-energy transfer can take place towards 
either the same triplet which populated the emitter state in the first place, or to eventual 
ligand-to-metal charge transfer (LMCT) states. In general, an energy transfer rate 𝑊𝑊𝐸𝐸𝑇𝑇 is 
given by some appropriately manipulated form of the Fermi golden rule equation:23 

 

𝑊𝑊𝐸𝐸𝑇𝑇 =
2𝜋𝜋
ℏ
�Ψ𝑓𝑓�𝐻𝐻��Ψ𝑖𝑖�

2𝛿𝛿�𝐸𝐸𝑓𝑓 − 𝐸𝐸𝑖𝑖� (120) 

 
where Ψ𝑖𝑖 and Ψ𝑓𝑓 are the initial and final electronic states, respectively, while 𝐸𝐸𝑖𝑖 and 𝐸𝐸𝑓𝑓 are 

the energies of the two electronic states, and 𝛿𝛿 is a Kronecker delta which is 1 when the two 
energies are the same and 0 otherwise. Obviously, this is a “pure” limit case and in the real 
world this perfect resonance condition needs not be satisfied so tightly. This equation tells 
us that the closer the two electronic states (e.g. T1 and D0 

5 ) are in energy, the more efficient 
the energy transfer, and therefore the population of the emitter state is. However, this is not 
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a one-way road, and the excitation can also back-transfer to the triplet state. In particular, 
the back-energy transfer rate 𝑊𝑊𝐵𝐵𝐵𝐵 is obtained by multiplying the corresponding direct trans-
fer rate 𝑊𝑊𝐸𝐸𝑇𝑇 by the Boltzmann factor:24 

 

𝑊𝑊𝐵𝐵𝐵𝐵 = 𝑊𝑊𝐸𝐸𝑇𝑇 ⋅ 𝑒𝑒
−
𝐸𝐸𝑓𝑓−𝐸𝐸𝑖𝑖
𝑖𝑖𝐵𝐵𝑇𝑇  (121) 

 
where 𝑘𝑘𝐵𝐵 is the Boltzmann constant and 𝑇𝑇 is the temperature. A perfect resonance would 

therefore result in an equal population of the triplet and emitter state, as is intuitive. In-
creasing the energy of the triplet state reduces the effectiveness of back-energy transfer, 
boosting luminescence intensity, but also reduces the temperature sensitivity, so a delicate 
balance needs to be achieved for building an efficient molecular thermometer. 

The second non-radiative decay path, i.e. vibronic coupling with a high-energy oscillator 
such as a OH or NH group, is not as straightforward to treat. A rigorous theoretical explana-
tion for this phenomenon has not yet been devised, and the current agreement is to treat 
this as a “back-energy transfer” to a fictious electronic state placed considering a harmonic 
of the oscillator frequency.25–28 For example, with a OH oscillating at 3450 cm-1, the “active” 
state would be the 4th harmonic at 13800 cm-1. This is not resonant with the D0 

5 → F0 
7 , but 

rather with the D0 
5 → F6 

7  transition, which is found at about 12200 cm-1.11 In theory, it would 
be possible to take any harmonic of even a low-energy oscillator to “fill the gap” necessary 
to quench the D0 

5 → F6 
7  transition, but experimental data suggests that the efficacy of vi-

bronic quenching is reduced exponentially with higher harmonics, therefore limiting this 
phenomenon only to high energy oscillators.25 

It must be stressed that this is a highly approximate picture and a lot of work still needs to 
be done to rigorously explain this occurrence. For example, it is assumed these high-energy 
oscillators are purely harmonic, therefore the higher overtones are taken simply as a multi-
ple of the fundamental oscillation frequency. This is however far from true, as OH oscilla-
tors, especially those who participate in hydrogen bonding such as the case of water, one of 
the most widely used vibronic quencher, are strongly anharmonic.29,30 
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8. THERMOCHEMISTRY OF SUPRAMOLECULAR AS-

SEMBLY IN HETERODINUCLEAR LN-AL COM-

PLEXES 
 
 
The interest for the synthesis and the properties of heterometallic lanthanide -d or -p metal 
(Ln-M) complexes is continuously growing as a consequence of their potential use in many 
fields, such as diagnostic medicine1,2 and biology;3,4 molecular switches;5 magnetic6–8 and 
luminescent materials.9–11 Heterometallic Ln-M compounds can be obtained through differ-
ent synthetic procedures by exploiting the marked preference of lanthanide ions towards 
oxygen donor ligands,12–14 their considerably larger ionic radius,15,16 or both.17 A simpler and 
more attractive route involves the reaction between a mononuclear -d or -p metal complex 
featuring Lewis basic sites and either a formally coordinatively unsaturated lanthanide frag-
ment,18 or a lanthanide complex having labile donors in the coordination sphere.19 In these 
systems, some of the Lewis basic sites coordinate both the aluminium and the lanthanide 
ions, bridging the two fragments (Figure 7).  
 

 

Figure 7. Example of a heterodinuclear Ln-Al complex [Eu(acac)3][Al(acac)3], in which the bridging Lewis 
basic sites have been highlighted in magenta. Atom colour code is as follows: grey = C; red = O; green = F; 
blue = Eu; pink = Al. Hydrogen atoms have been omitted to improve clarity. 
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Fluorinated groups such as hexafluoroacetylacetone (hfac) make the lanthanide centre sus-
ceptible to attack even by relatively weak bases. This route has been used for dipositive 
(M2+= Cu2+)20,21 and tripositive (M3+= Cr3+, Fe3+ and Ga3+)18,22,23 metal complexes, mainly for 
magnetic studies. Different bridging arrangements are possible, depending on the ligand 
and the M ion considered. In square planar or a square pyramidal20,21 copper(II) mononu-
clear complexes with acetylacetonato (acac) and salen ligands, two oxygen atoms on the 
same side of the square base coordinate the lanthanide centre (Figure 8a). Conversely, in 
octahedral tripositive M mononuclear complexes,18 all with acetylacetonato ligands, three 
donor atoms from three different acac ligands lying on the same triangular face are bridging 
the two metal ions (Figure 8b). 
 

 

Figure 8. Schematic representation of the donor atoms bridging the [Ln(hfac)3] moiety (in black) in a) a M 
square planar or square based pyramidal geometry and b) a M octahedral geometry (in blue). 
 

Al3+ forms easily accessible octahedral mononuclear complexes with chelate oxygen donors 
ligands24–26 potentially useful for the synthesis of heterometallic complexes, and is not a very 
labile centre (𝑘𝑘𝐻𝐻2𝑍𝑍 ≈ 1 s-1),27 a relevant issue when the ligand scrambling has to be minimized. 
Moreover, only a few europium-aluminium complexes have already been studied for their 
photo-luminescence properties.28–30 

The (at least partial) supramolecular nature of the bond between the two moieties is inher-
ently weaker than the “strong” types of bonds which hold the isolated fragments together; 
this entails that the stability of such systems is not a given and an a priori methodology able 
to predict whether a certain complex will form is of fundamental importance in this field. 
When studying an ionic/covalent complexation process from a theoretical standpoint, it is 
usual to consider only the contribution from the change in electronic energy due to the for-
mation of the bonds between ligand and metal, which represents the main source of stabili-
sation for the system.31–35 On the other hand, when researching supramolecular systems, 
entropy can often become the primary driving factor for the formation of the supramolecular 
entity.36–38 In the case of Ln-M complexes, we are presented with a situation halfway in be-
tween, as these heterodinuclear complexes can be thought of as a supramolecular system 
formed by the two complexes, but in which there are also significant ionic/covalent interac-
tions involving the bridging atoms. Both enthalpic and entropic contributions must there-
fore be considered, and the formation of the complex given by its formation Gibbs free en-
ergy needs to take both into account. 
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8.1 Formation thermodynamics 

 
The Gibbs free energy is given by the standard thermodynamic definition: 

 
𝐺𝐺 = 𝐻𝐻 − 𝑇𝑇 ⋅ 𝑆𝑆 (122) 

  
where 𝐻𝐻 is the enthalpy, 𝑆𝑆 is the entropy, and 𝑇𝑇 is the temperature. These thermodynamic 

quantities can be further broken down into specific contributions. For the enthalpy: 
 

𝐻𝐻 = 𝑈𝑈 + 𝑘𝑘𝐵𝐵𝑇𝑇 = 𝐸𝐸𝑒𝑒𝑒𝑒 + 𝑍𝑍𝑃𝑃𝑍𝑍 + 𝐸𝐸𝑎𝑎𝑖𝑖𝑎𝑎 + 𝐸𝐸𝑐𝑐𝑐𝑐𝑡𝑡 + 𝐸𝐸𝑡𝑡𝑡𝑡𝑎𝑎𝑛𝑛𝑟𝑟 + 𝑘𝑘𝐵𝐵𝑇𝑇 (123) 
  

where 𝑘𝑘𝐵𝐵 is the Boltzmann constant and 𝑈𝑈 is the inner energy. The latter can be decom-
posed into: 𝐸𝐸𝑒𝑒𝑒𝑒, the total electronic energy term taken from the SCF procedure; 𝑍𝑍𝑃𝑃𝑍𝑍, the zero 
temperature vibrational energy (i.e., the Zero Point Energy); 𝐸𝐸𝑎𝑎𝑖𝑖𝑎𝑎, the finite temperature cor-
rection due to population of excited vibrational states; 𝐸𝐸𝑐𝑐𝑐𝑐𝑡𝑡 and 𝐸𝐸𝑡𝑡𝑡𝑡𝑎𝑎𝑛𝑛𝑟𝑟, the thermal rotational 
and translational energies. For the entropy: 

 
𝑆𝑆 = 𝑆𝑆𝑒𝑒𝑒𝑒 + 𝑆𝑆𝑎𝑎𝑖𝑖𝑎𝑎 + 𝑆𝑆𝑐𝑐𝑐𝑐𝑡𝑡 + 𝑆𝑆𝑡𝑡𝑡𝑡𝑎𝑎𝑛𝑛𝑟𝑟 (124) 

 
where 𝑆𝑆𝑒𝑒𝑒𝑒 is the electronic entropy due to the eventual degeneracy of the electronic ground 

state, 𝑆𝑆𝑎𝑎𝑖𝑖𝑎𝑎, 𝑆𝑆𝑐𝑐𝑐𝑐𝑡𝑡, and 𝑆𝑆𝑡𝑡𝑡𝑡𝑎𝑎𝑛𝑛𝑟𝑟 are the vibrational, rotational, and translational entropies, respec-
tively.  

When considering the formation of a supramolecular complex of size and type such as 
those under investigation, the electronic energy 𝐸𝐸𝑒𝑒𝑒𝑒 is expected to be the primary term de-
fining the stability of the complex, with values for formation energies typically in the range 
of tens of kcal/mol. The vibronic contributions (𝑍𝑍𝑃𝑃𝑍𝑍 and 𝐸𝐸𝑎𝑎𝑖𝑖𝑎𝑎) are usually in the order of 1-
3 kcal/mol and favour the formation of the complex, while 𝐸𝐸𝑐𝑐𝑐𝑐𝑡𝑡 and 𝐸𝐸𝑡𝑡𝑡𝑡𝑎𝑎𝑛𝑛𝑟𝑟 are each equal to 
3/2 𝑘𝑘𝐵𝐵𝑇𝑇 for any given molecule, therefore contributing to an overall destabilization of 1.78 
kcal/mol for the formation of a heterodinuclear system starting from two mononuclear com-
plexes. The electronic entropy 𝑆𝑆𝑒𝑒𝑒𝑒 does not contribute to the free energy of formation unless 
a change in spin multiplicity occurs. 𝑆𝑆𝑐𝑐𝑐𝑐𝑡𝑡 and 𝑆𝑆𝑡𝑡𝑡𝑡𝑎𝑎𝑛𝑛𝑟𝑟 each contribute to a destabilization of 
approx. 10 kcal/mol at room temperature for systems of this size due to the loss of rotational 
and translational entropy after the formation of a single unit from two separate moieties. 
𝑆𝑆𝑎𝑎𝑖𝑖𝑎𝑎 is also expected to account for a few kcal/mol at room temperature but its sign cannot 
be identified a priori. 

The stability of various heterodinuclear [Eu(LEu)3][Al(LAl)3] complexes, in which the sys-
tem is held together via three bridging oxygen atoms provided by the LAl ligand, was evalu-
ated via DFT numerical simulations at the PBE/TZVP level, through a geometry optimisa-
tion and a subsequent frequency analysis. LEu and LAl indicate the ligands of the rare earth 
and aluminium mononuclear complexes, respectively. The thermodynamic quantities rela-
tive to the formation of the dinuclear complex – i.e., enthalpies, entropies, and Gibbs free 
energies – were taken as the difference between those of the heterodinuclear 
[Eu(LEu)3][Al(LAl)3] complex and the sum of those of the mononuclear (anhydrous) 
Eu(LEu)3 and Al(LAl)3 complexes: 
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𝛥𝛥𝐻𝐻[𝐸𝐸𝑛𝑛(𝑳𝑳𝑬𝑬𝒖𝒖)3][𝐴𝐴𝐴𝐴(𝑳𝑳𝑨𝑨𝒍𝒍)3]

𝑓𝑓 = 𝐻𝐻[𝐸𝐸𝑛𝑛(𝑳𝑳𝑬𝑬𝒖𝒖)3][𝐴𝐴𝐴𝐴(𝑳𝑳𝑨𝑨𝒍𝒍)3] − �𝐻𝐻𝐸𝐸𝑛𝑛(𝑳𝑳𝑬𝑬𝒖𝒖)3 + 𝐻𝐻𝐴𝐴𝐴𝐴(𝑳𝑳𝑨𝑨𝒍𝒍)3�  

𝛥𝛥𝑆𝑆[𝐸𝐸𝑛𝑛(𝑳𝑳𝑬𝑬𝒖𝒖)3][𝐴𝐴𝐴𝐴(𝑳𝑳𝑨𝑨𝒍𝒍)3]
𝑓𝑓 = 𝑆𝑆[𝐸𝐸𝑛𝑛(𝑳𝑳𝑬𝑬𝒖𝒖)3][𝐴𝐴𝐴𝐴(𝑳𝑳𝑨𝑨𝒍𝒍)3] − �𝑆𝑆𝐸𝐸𝑛𝑛(𝑳𝑳𝑬𝑬𝒖𝒖)3 + 𝑆𝑆𝐴𝐴𝐴𝐴(𝑳𝑳𝑨𝑨𝒍𝒍)3� (125) 

𝛥𝛥𝐺𝐺[𝐸𝐸𝑛𝑛(𝑳𝑳𝑬𝑬𝒖𝒖)3][𝐴𝐴𝐴𝐴(𝑳𝑳𝑨𝑨𝒍𝒍)3]
𝑓𝑓 = 𝐺𝐺[𝐸𝐸𝑛𝑛(𝑳𝑳𝑬𝑬𝒖𝒖)3][𝐴𝐴𝐴𝐴(𝑳𝑳𝑨𝑨𝒍𝒍)3] − �𝐺𝐺𝐸𝐸𝑛𝑛(𝑳𝑳𝑬𝑬𝒖𝒖)3 + 𝐺𝐺𝐴𝐴𝐴𝐴(𝑳𝑳𝑨𝑨𝒍𝒍)3�  

 
To simplify the calculations, especially the SCF procedure, La was chosen instead of Eu as 

the rare earth due to its closed-shell electronic structure. This introduces a constant shift in 
the values of the calculated thermodynamic quantities, but the observed trends hold for 
other lanthanides as well (vide infra).  

 

Table 2. Calculated formation enthalpies and free energies for a series of heterodinuclear complexes with 
general formula [Eu(LEu)3][Al(LAl)3]. The last column indicates whether the dinuclear complex is experimen-
tally observed. Eu was replaced by La in the DFT calculations to simplify the SCF convergence. 

LAl LEu 
ΔHf 

(kcal/mol) 
ΔGf 

(kcal/mol) 
Exp. 

acetylacetone (acac) hexafluoroacetylacetone (hfac) -43.36 -24.61 Y 

methyl acetoacetate (meac) hexafluoroacetylacetone (hfac) -43.46 -23.95 Y 

dibenzoylmethane (dbm) hexafluoroacetylacetone (hfac) -48.48 -23.45 Y 

salicylaldehyde (sal) hexafluoroacetylacetone (hfac) -45.73 -22.95 Y 

2-hydroxynaphthaldehyde 
(naf) 

hexafluoroacetylacetone (hfac) -48.44 -22.00 Y 

1,1,1-trichloroacetylacetone 
(acacCl3) 

hexafluoroacetylacetone (hfac) -36.32 -20.73  

acetylacetone (acac) 
4,4,4-trifluoro-1-phenyl-1,3-butane-

dione (bta) 
-39.32 -20.54 Y 

methyl acetoacetate (meac) 
4,4,4-trifluoro-1-phenyl-1,3-butane-

dione (bta) 
-37.03 -19.36  

2-hydroxynaphthaldehyde 
(naf) 

4,4,4-trifluoro-1-phenyl-1,3-butane-
dione (bta) 

-43.55 -18.54 Y 

1,1,1-trifluoroacetylacetone 
(tfac) 

hexafluoroacetylacetone (hfac) -36.62 -15.04 N 

1,1,1-triiodoacetylacetone  
(acacI3) 

hexafluoroacetylacetone (hfac) -41.63 -14.43  

1,1,1-tribromoacetylacetone  
(acacBr3) 

hexafluoroacetylacetone (hfac) -40.68 -14.15  

acetylacetone (acac) 1,1,1-trifluoroacetylacetone (tfac) -32.87 -13.01  

dipivaloylmethane (dpa) hexafluoroacetylacetone (hfac) -34.39 -11.87 N 

acetylacetone (acac) acetylacetone (acac) -24.74 -7.24 N 

hexafluoroacetylacetone 
(hfac) 

hexafluoroacetylacetone (hfac) -23.30 -4.93 N 

 

 



167 
 

Table 3. Calculated formation entropy correction terms at T = 298.15 K for the series of heterodinuclear com-
plexes with general formula [Eu(LEu)3][Al(LAl)3]. Eu was substituted by La in the calculations to simplify SCF 
convergence. 

LAl LEu 
-TΔSfvib 

(kcal/mol) 

-TΔSfrot 

(kcal/mol) 
-TΔSftrans 

(kcal/mol) 

acetylacetone (acac) hexafluoroacetylacetone (hfac) -3.66 9.84 12.57 

methyl acetoacetate (meac) hexafluoroacetylacetone (hfac) -3.12 9.97 12.66 

dibenzoylmethane (dbm) hexafluoroacetylacetone (hfac) 1.24 11.80 11.89 

salicylaldehyde (sal) hexafluoroacetylacetone (hfac) -0.14 10.23 12.68 

2-hydroxynaphthaldehyde 
(naf) 

hexafluoroacetylacetone (hfac) 2.89 10.69 12.86 

1,1,1-trichloroacetylacetone 
(acacCl3) 

hexafluoroacetylacetone (hfac) -7.73 10.37 12.94 

acetylacetone (acac) 
4,4,4-trifluoro-1-phenyl-1,3-bu-

tanedione (bta) 
7.32 9.90 12.62 

methyl acetoacetate (meac) 
4,4,4-trifluoro-1-phenyl-1,3-bu-

tanedione (bta) 
6.01 10.03 12.70 

2-hydroxynaphthaldehyde 
(naf) 

4,4,4-trifluoro-1-phenyl-1,3-bu-
tanedione (bta) 

12.41 10.76 12.92 

1,1,1-trifluoroacetylacetone 
(tfac) 

hexafluoroacetylacetone (hfac) -1.47 9.84 12.57 

1,1,1-triiodoacetylacetone 
(acacI3) 

hexafluoroacetylacetone (hfac) 3.16 10.77 13.27 

1,1,1-tribromoacetylacetone 
(acacBr3) 

hexafluoroacetylacetone (hfac) 2.77 10.60 13.15 

acetylacetone (acac) 1,1,1-trifluoroacetylacetone (tfac) -2.31 9.66 12.50 

dipivaloylmethane (dpa) hexafluoroacetylacetone (hfac) -0.87 10.49 12.90 

acetylacetone (acac) acetylacetone (acac) -4.29 9.39 12.39 

hexafluoroacetylacetone 
(hfac) 

hexafluoroacetylacetone (hfac) -5.16 10.58 12.95 

 
In Table 2 the formation enthalpies and free energies for all the heterodinuclear complexes 

investigated are reported. The first observation is that all complexes with a formation free 
energy less negative than ΔGunst = -15.04 kcal/mol ([Eu(hfac)3][Al(tfac)3]) are not experi-
mentally observed, whereas for all complexes with a formation free energy more negative 
than ΔGst = -18.54 kcal/mol ([Eu(bta)3][Al(naf)3]) there is experimental evidence. Given the 
very similar chemical nature of lanthanides, this is expected to hold true for any other rare 
earth.  

The minimum formation free energy necessary to provide a stable complex therefore lies 
somewhere between -15.0 and -18.5 kcal/mol when considering Ln = La in the DFT calcula-
tion. These numerical experiments also indicate that the free energy is indeed the most reli-
able indicator for the overall stability of the complex. In fact, despite the bridge being a bond 
with mostly ionic/covalent nature, considering only the formation enthalpy (which for the 
most part is equal to the SCF electronic energy) would not allow to discriminate between 
stable and unstable complexes: [La(bta)3][Al(meac)3] and [La(hfac)3][Al(tfac)3] have a for-
mation enthalpy of -37.03 and -36.62 kcal/mol, respectively, which is within the margin of 
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error of the numerical simulation, i.e. for all intended purposes of DFT calculations they 
represent the same value.39 

Another interesting aspect emerges, namely that formation enthalpies and free energies 
are not directly proportional: for the complexes in which LEu = hfac and LAl = acac, sal, naf, 
the formation enthalpy decreases (acac = -43.36, sal = -45.73, naf = -48.44 kcal/mol) while 
the formation Gibbs free energy increases (acac = -24.61, sal = -22.95, naf = -22.00 
kcal/mol). As 𝐺𝐺 =  𝐻𝐻 –  𝑇𝑇 ⋅ 𝑆𝑆, it follows naturally that entropic contributions must play a key 
role in determining the stability of the dinuclear complex and are not just a constant shift 
for the conversion between enthalpy and Gibbs free energy, highlighting the supramolecular 
nature of the systems.  

To better illustrate this point, complexes in which LEu = hfac and LAl = 1,1,1-trichloroacety-
lacetone (acacCl3) or 1,1,1-tribromoacetylacetone (acacBr3) were evaluated. Unfortunately, 
it was not possible to synthesise these ligands, therefore the following speculations remain 
entirely theoretical in nature. The formation enthalpy for the dinuclear complex favours the 
bromated complex: ΔHf([La(hfac)3][Al(acacCl3)3]) = -36.32 kcal/mol; 
ΔHf([La(hfac)3][Al(acacBr3)3]) = -40.68 kcal/mol, possibly due to the higher electronegativ-
ity of Cl, which withdraws electron density from the oxygen atoms in the bridge and there-
fore weakens the Ln-O-Al bond. However, the formation free energies follow an inverse 
trend: ΔGf([La(hfac)3][Al(acacCl3)3]) = -20.73 kcal/mol; ΔGf([La(hfac)3][Al(acacBr3)3]) = -
14.15 kcal/mol; accordingly, the complex in which LAl = acacCl3 should be stable (ΔGf < 
ΔGst), whereas the one in which LAl = acacBr3 should not form (ΔGf > ΔGunst), and the reason 
is entirely due to entropic factors.  

Since rotational and translational contributions are roughly the same for every system of 
this nature and size (see Table 3), the difference must lie in the vibronic contribution to the 
overall entropy. A thorough inspection of the vibronic structure of the mononuclear and di-
nuclear complexes highlights a peculiar situation. Normal modes with frequencies below ~ 
100 cm-1 are treated in the rigid-rotor-harmonic-oscillator approximation40 and contribute 
equally in the dinuclear complex and in the separate fragments, while vibrations with fre-
quencies above ~ 200 cm-1  are not thermally accessible at RT (𝑘𝑘𝐵𝐵𝑇𝑇 at 298.15 K = 207 cm-1) 
and therefore do not contribute to the vibrational entropy in a significant manner. Thus, 
vibrations with energy between 100 and 200 cm-1 seem to play a leading role in determining 
the entropic stabilisation or destabilisation of the dinuclear complexes. Specifically, if the 
dinuclear complex normal modes number in this region is larger than the sum of those of 
the mononuclear complexes, its vibronic entropy results higher than that corresponding to 
the sum of the individual fragments and this destabilises its formation. To verify such a con-
jecture, the entropic term 𝑇𝑇𝑇𝑇𝑇𝑇 at 298.15K has been estimated against the difference between 
the number of vibrational modes with energy in the 100-200 cm-1 range in the dinuclear 
complex and the sum of the vibrational modes in the isolated fragments (Figure 8). Systems 
with LAl = tfac and LAl = acacI3 were also included for completeness. 
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Figure 8. Correlation between the entropic term TΔS and the difference in the number of vibrational normal 
modes in the dinuclear complexes and the sum of the normal modes in the isolated fragments, with energy in 
the 100-200 cm-1 range. A higher number of normal modes in the dinuclear complex compared to the isolated 
fragments entails a higher vibrational entropy and therefore a less stable complex. 

 
The inspection of Figure 8 confirms that, even restricting the attention to the number of 
vibrations in the 100-200 cm-1 range, and disregarding both the energies and the intensities 
of the normal modes, the correlation is well evident. We tentatively attribute such a behav-
iour to some particular “goldilocks” condition in the [La(hfac)3][Al(acacCl3)3] complex, 
where the acacCl3 ligand has just the correct mass and inertia to resonate with some of the 
vibrational modes of hfac, thus enabling a higher degree of “cross-talk” between the two 
moieties and increasing the number of vibrations for the dinuclear complex in this energetic 
region, whereas F, Br, and I are either too light or too heavy to allow this type of resonance 
and the normal modes remain akin to those of the isolated fragments (Figure 9). 

 



170 
 

 

 

Figure 9. Comparison between the same type of normal mode in [Eu(hfac)3][Al(acacCl3)3] (top) and 
[Eu(hfac)3][Al(acacBr3)3] (bottom). Displacement vectors are highlighted as blue arrows. It can be seen that in 
the chlorinated complex the vibration involves both the LEu and LAl ligands, whereas in the bromated complex 
the vibration is entirely localized on the LEu ligand. This resonance might be the deciding factor contributing 
to the higher number of vibrations in the chlorinated complex compared to the others. Atom colour code is as 
follows: grey = C; red = O; pale green = F; blue = Eu; pink = Al; white = H; brown = Br; bright green = Cl. 
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8.2 Effects of different lanthanides on the coordination topology 

 
Even though the substitution of Eu with La simplifies the SCF convergence (no unpaired 
electrons), speeds up numerical experiments and correctly predicts the stability of heterodi-
nuclear Eu-Al complexes, it prevents the identification of subtle differences determined by 
the specific lanthanide ion considered. 

In particular, it was noticed from X-ray crystallographic structures that, if the 8-hy-
droxyquinoline-N-oxide (hqNO) ligand is taken as LAl, with hfac as LLn, the Ln-Al heterodi-
nuclear complexes with Ln = Eu, Gd, and Er all form, but the [Er(hfac)3][Al(hqNO)3] shows 
only two oxygen atoms involved in a bridge bond, instead of three (Figure 10). 

 

 

Figure 10. Comparison between the coordination topology of [Eu(hfac)3][Al(hqNO)3] (left) and 
[Er(hfac)3][Al(hqNO)3] (right). Bridging oxygen atoms in both cases have been highlighted in magenta. Atom 
colour code is as follows: grey = C; red = O; pale green = F; blue = N; pink = Al; turquoise = Eu; bright green 
= Er. Hydrogen atoms have been omitted to improve clarity. 

 
DFT calculations were able to capture this specific behaviour. The formation free Gibbs 

energy of the heterodinuclear complex featuring Eu or Gd, in which three oxygen atoms 
bridge the metals, are indeed more negative than the corresponding systems with only two 
bridge atoms. The opposite is true for the system featuring Er, for which the complex with 2 
bridging oxygens has a lower energy than the one with 3 bridges (Table 4). 
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Table 4. Calculated formation enthalpies, entropies (T = 298.15 K), and Gibbs free energies for various 
[Ln(hfac)3][Al(hqNO)3] complexes, where Ln = La, Eu, Gd, Er, Y. The suffix -μ3(-μ2) indicates that the complex 
features three(two) bridging oxygen atoms. The numbers in parentheses refer to the difference between the 
complex with two bridging oxygens and the one with three, for the thermodynamic quantity of interest.  

 ΔHf (kcal/mol) -TΔSf (kcal/mol) ΔGf (kcal/mol) 

[La(hfac)3][Al(hqNO)3]-μ3 -52.67 26.18 -26.49 

[La(hfac)3][Al(hqNO)3]-μ2 -46.30 (+6.36) 23.77 (-2.41) -22.53 (+3.96) 

[Eu(hfac)3][Al(hqNO)3]-μ3 -42.46 22.43 -20.03 

[Eu(hfac)3][Al(hqNO)3]-μ2 -38.36 (+4.10) 22.18 (-0.25) -16.18 (+3.85) 

[Gd(hfac)3][Al(hqNO)3]-μ3 -42.94 15.10 -27.83 

[Gd(hfac)3][Al(hqNO)3]-μ2 -39.82 (+3.12) 15.91 (+0.80) -23.91 (+3.92) 

[Er(hfac)3][Al(hqNO)3]-μ3 -50.04 21.01 -29.02 

[Er(hfac)3][Al(hqNO)3]-μ2 -53.02 (-2.98) 22.08 (+1.07) -30.94 (-1.92) 

[Y(hfac)3][Al(hqNO)3]-μ3 -45.01 27.22 -17.79 

[Y(hfac)3][Al(hqNO)3]-μ2 -42.78 (+2.22) 25.98 (-1.24) -16.81 (+0.98) 

 
 
The enthalpic contribution is the primary factor in deciding the stability of the complex 

with three or two bridging oxygens. In particular, the complexes featuring Er are the only 
ones for which the system with two bridges has a more negative formation enthalpy than 
that with three bridges. It was not possible to identify the specific reason for the different 
behaviour on the basis of charge distributions or geometries, as no marked difference was 
found in the systems with Er compared with the ones with Eu and Gd. We suspected the 
smaller ionic radius of Er3+ (1.00 Å)41 could be a reason, when compared to the slightly larger 
Eu3+ (1.07 Å)41 and Gd3+ (1.06 Å)41 ions. However, when substituting another trivalent ion 
with a very similar ionic radius such as Y3+ (1.015 Å),41 the system with three bridging atoms 
was again the most stable one, therefore indicating there must be other aspects at play. An-
other interesting aspect is the confirmation that La is indeed a good substitute for Eu/Gd 
despite its significantly larger ionic radius (1.18 Å).41 The enthalpic and entropic contribu-
tions are slightly overestimated, but the overall Gibbs free energy is very similar to the sys-
tems with Eu/Gd thanks to a cancellation of errors. 
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8.3 Fukui function and bridging atom selectivity 

 
Deeper insights into the nature of the bridge between the two fragments and the role played 
by the ligands in the formation of the dinuclear complex, have been obtained by carrying out  
a further series of calculations devoted to the estimation of the condensed Fukui function 
for the Eu3+ centre in the case of the Eu(LRE)3 fragment, and for the bridge oxygen atoms in 
the case of the Al(LAl)3 moiety.  

The Fukui function reflects the reactivity of a site and was defined by Parr and Yang42 as 
the functional derivative of the chemical potential 𝜇𝜇 with respect to a change in the external 
potential 𝑣𝑣(𝑟𝑟), taken at a constant number of electrons 𝑁𝑁: 

 

𝑓𝑓(𝑟𝑟) = �
𝛿𝛿𝛿𝛿

𝛿𝛿𝛿𝛿(𝑟𝑟)�𝑁𝑁
 (126) 

 
Due to a discontinuity for integer number of electrons, it is not possible to exactly evaluate 

this quantity.43 However, it is possible to evaluate the chemical potential from either side of 
this discontinuity. This is equivalent to a situation in which the molecule either loses (𝜇𝜇−) or 
gains (𝜇𝜇+) one electron; at T = 0 K, these are exactly the ionization potential 𝐼𝐼 and the elec-
tron affinity 𝐴𝐴, respectively. By considering 𝐼𝐼 = 𝐸𝐸(𝑁𝑁) − 𝐸𝐸(𝑁𝑁 − 1) and 𝐴𝐴 = 𝐸𝐸(𝑁𝑁 + 1) − 𝐸𝐸(𝑁𝑁), 
where 𝐸𝐸(𝑀𝑀) is the total energy of the system with 𝑀𝑀 electrons, we can define the Fukui func-
tion for the molecule when either losing or accepting an electron, as the difference in elec-
tron density 𝜌𝜌(𝑟𝑟) in the two states (at the same molecular geometry): 

 
𝑓𝑓−(𝑟𝑟) = 𝜌𝜌𝑁𝑁(𝑟𝑟) − 𝜌𝜌𝑁𝑁−1(𝑟𝑟) 
𝑓𝑓+(𝑟𝑟) = 𝜌𝜌𝑁𝑁+1(𝑟𝑟) − 𝜌𝜌𝑁𝑁(𝑟𝑟) 

(127) 

 
This now assumes a distinct chemical meaning, with 𝑓𝑓−(𝑟𝑟) (𝑓𝑓+(𝑟𝑟)) corresponding to the 

capability of losing (gaining) an electron, and then identifiable with the nucleophilic (elec-
trophilic) character of a molecule. One last step involves the discretization44 of the Fukui 
function in atomic contributions based on a Mulliken population analysis. The condensed 
Fukui function on the atom 𝑘𝑘 is defined as: 

 
𝑓𝑓𝑖𝑖− = 𝑞𝑞𝑖𝑖(𝑁𝑁 − 1) − 𝑞𝑞𝑖𝑖(𝑁𝑁) 
𝑓𝑓𝑖𝑖+ = 𝑞𝑞𝑖𝑖(𝑁𝑁) − 𝑞𝑞𝑖𝑖(𝑁𝑁 + 1) 

(128) 

 
where 𝑞𝑞𝑖𝑖 is the Mulliken atom charge of atom 𝑘𝑘, calculated either in the neutral state with 

𝑁𝑁 electrons, or in the positively/negatively charged molecule (𝑁𝑁 − 1 / 𝑁𝑁 + 1 electrons). Note 
that the sign is inverted with respect to the corresponding continuous Fukui functions, as 
we are considering electrons bearing a negative charge.  

We started by studying two complexes, in which LEu = hfac and LAl = meac, sal (Figure 11). 
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Figure 11. X-ray crystallographic structures of [Eu(hfac)3][Al(meac)3] (left) and [Eu(hfac)3][Al(sal)3] (right). 
Atom colour code is as follows: grey = C; red = O; green = F; blue = Eu; pink = Al. Hydrogen atoms have been 
omitted to improve clarity. 

 
The X-ray crystallographic structure of [Eu(hfac)3][Al(meac)3] shows that the methoxy 

fragment of all three LAl ligands points away from the centre of the complex, suggesting that 
the system tends to reduce steric interactions. However, the structure of 
[Eu(hfac)3][Al(sal)3] seems to contradict this, as the bulky aromatic portion of the salicylal-
dehyde ligand is pointed towards the rest of the complex. 

The 3D plot of the nucleophilic Fukui function 𝑓𝑓−(𝑟𝑟) clears this issue and allows the iden-
tification of the more nucleophilic oxygen atoms in both Al(meac)3 and Al(sal)3 as the ones 
with the larger value of 𝑓𝑓−(𝑟𝑟) (Figure 12). These stronger Lewis bases are the preferred ones 
in the formation of the Ln-O-Al bridge. 
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Figure 12. Fukui function plot for Al(meac)3 (left), and Al(sal)3 (right). Atom colour code is as follows: grey = 
C; red = O; white = H; pink = Al. 

A more quantitative evaluation of the nucleophilic character of each oxygen atom is given 
by the nucleophilic condensed Fukui function 𝑓𝑓𝑖𝑖−. In Al(meac)3 𝑓𝑓𝑖𝑖− = 0.036 for the bridging 
oxygen, while 𝑓𝑓𝑖𝑖− = 0.017 for the other. Similarly, in Al(sal)3 𝑓𝑓𝑖𝑖− = 0.029 for the bridging ox-
ygen, while 𝑓𝑓𝑖𝑖− = 0.015 for the other. This is perfectly consistent with the X-ray crystallo-
graphic structures and highlights that steric factors for these relatively small ligands are 
much less important than the Lewis base character of the bridging atom. It is worth stressing 
that these calculations can be carried out on the small mononuclear Al complex, without 
needing to optimise the geometry for the much larger Ln-Al dinuclear system, massively 
reducing the computational requirements for these types of numerical simulations. 

An edge case is presented by the [Eu(hfac)3][Al(naf)3] complex. The evaluation of the con-
densed Fukui function for Al(naf)3 reveals a minimal difference between the two oxygen at-
oms (𝑓𝑓𝑖𝑖− = 0.018 for the bridging oxygen as given by the X-ray crystallographic structure vs. 
𝑓𝑓𝑖𝑖− = 0.016 for the other). To confirm whether such a small variance is sufficient to correctly 
identify the bridging atom, both geometries were fully optimised at the DFT/PBE level of 
theory and their energies evaluated (Figure 13). The form in which the hydroxyl oxygen 
bridges the two ions (i.e., the X-ray crystallographic structure) is 5.45 kcal/mol more stable 
than the alternative form, which at room temperature would result in a 99.99% fraction of 
the most stable isomer when considering a Boltzmann distribution. 
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Figure 13. X-ray crystallographic structure of [Eu(hfac)3][Al(naf)3] (left) and alternative isomer featuring 
the other LAl oxygen atom in the bridge (right). Atom colour code is as follows: grey = C; red = O; green = F; 
blue = Eu; pink = Al. The two different orientations of the naf ligand have been highlighted. 

 
The relative Brønsted base character of the two oxygens in each ligand was also evaluated, 

to see whether it correlates with the relative strength as Lewis bases. A thorough and quan-
titative evaluation of the Brønsted base strength would involve calculating the relative en-
ergy of the neutral and deprotonated forms in water, by taking into account the contribution 
of the free proton as well, which is not straightforward. However, it is possible to evaluate 
the relative acid/base character of these two oxygens by simply optimizing the geometry of 
the two forms in which either oxygen binds the hydrogen atom. In these two limit cases one 
oxygen behaves as the base, while the other as the acid, rendering possible a direct compar-
ison. For all three ligands, when starting from the geometry in which the less nucleophilic 
oxygen atom bears the proton, the optimization inevitably converges to the geometry in 
which the proton is transferred to the more nucleophilic one, clearly indicating that the latter 
is also a much stronger Brønsted base (Figure 14). 
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Figure 14: Evaluation of the Brønsted base character of the two oxygen atoms in the meac ligand. When 
starting from the geometry in which the more nucleophilic O=C-CH3 oxygen atom is deprotonated (left), the 
final geometry has this atom protonated (right), indicating that it is a significantly stronger Brønsted base 
than the O=C-OCH3 one. 

 
To quantify the relative energies of these two forms, a constrained geometry optimization 

in which the proton is fixed at the O-H distance seen in the other form has been carried out. 
For meac, sal, and naf, the less stable form was found to be 8.67, 11.98, and 6.80 kcal/mol 
higher in energy than the more stable one, respectively. The Brønsted and Lewis character 
of different species cannot be correlated rigorously in principle; nevertheless, it might be 
worth evaluating if interested in a rapid pre-screening of a ligands set and aimed to identify 
which side the ligand is more likely to place itself as a bridge. Corresponding calculations on 
the isolated ligands are in fact very simple and quick. 

An interesting pattern emerges when comparing the condensed Fukui function with the 
dinuclear complex formation energy, taken as the purely electronic term 𝐸𝐸𝑒𝑒𝑒𝑒, which ensures 
that only electronic effects are considered disregarding the vibronic or entropic ones, and 
then isolating the ligand contributions from the strength of the bridging bond (Figure 15). 

 

 

Figure 15. Correlation between the formation electronic energy 𝐸𝐸𝑒𝑒𝑒𝑒 for the dinuclear complex and the con-
densed Fukui function 𝑓𝑓𝑖𝑖

± for the bridging oxygen atoms in the Al(LAl)3 fragment (left) or for the Eu3+ ion in the 
Eu(LEu)3 one (right). For the left and right plots, the Eu(hfac)3 and Al(acac)3 fragments are maintained 
throughout, while the other moiety is changed. 

 
Despite the fact that the more nucleophilic oxygen atom is the favourite bridging unit due 

to its higher nucleophilicity, there is an inverse proportionality between the condensed Fu-
kui function for this oxygen atom and the stability of the dinuclear complex (note that a less 
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negative formation energy means a less stable complex). This is consistent with the electro-
static nature of the bond between the Eu3+ centre and the surrounding ligands, for which the 
hard and soft acid/base (HSAB) concept predicts a stronger bond for harder pairs (i.e., 
smaller condensed Fukui functions). 

Indeed, the progressive fluorination of the acac ligand (acac → tfac → hfac) increases both 
the condensed Fukui function for the oxygen bridge atom and the electronic formation en-
ergy of the complex in an almost perfectly linear way (Figure 15, left). This linearity is some-
what maintained even for ligands with a very different chemical nature (naf, sal vs. meac, 
acac) but the slope is significantly lower. It appears there is a threshold around 0.035 electric 
charge units (acac), below which the bridge is sufficiently stabilized, and above which the 
ligand is too soft (in HSAB terms) to provide a strong bond.  

This is confirmed by an analogous evaluation, in which LEu is changed (Figure 15, right). 
This indirectly affects the Eu3+ ion and its Lewis acid character, which is represented by the 
nucleophilic condensed Fukui function 𝑓𝑓𝑖𝑖+. In this case, a higher degree of fluorination (acac 
→ tfac → hfac) progressively rediuces the lanthanide ion of electron density, rendering it a 
harder unit (in HSAB terms); this translates to a stronger bond between the ion and the 
bridge acac oxygen atom, as expected. 

 

8.4 Materials and instrumentation (experimental characterisation) 

 
The studies presented in this chapter were rendered possible by the collaboration with the 
research group of Prof. Luca Labella at the University of Pisa, who has recently started in-
vestigating heterometallic Ln-Al complexes in which Ln = Eu, Tb, Gd. All experimental syn-
theses and characterisations have been collected by the aforementioned group. Optical (ab-
sorption and luminescence studies) have been carried out by the research group of Prof. 
Lidia Armelao at the University of Padova. Please note these are preliminary results, as this 
is still an ongoing research project. 

All manipulations were performed under a dinitrogen atmosphere using anhydrous sol-
vents. [Al(LAl)3] complexes were synthetized according to the literature.25,45 Anhydrous 
[Ln(LLn)3] species (Ln3+= Eu3+, Gd3+ and Er3+) were obtained by dehydration of the corre-
sponding dihydrate complex [Ln(LLn)3(H2O)2] according to the procedure reported in the 
literature.46 FTIR spectra on solid samples were recorded with a Perkin–Elmer ‘‘Spectrum 
One’’ spectrometer, equipped with an ATR accessory. 1H and 19F NMR spectra were recorded 
with a Bruker “Avance DRX400” spectrometer. Chemical shifts were measured in ppm (δ) 
from TMS by residual solvent peaks for 1H, from CFCl3 for 19F. Elemental analysis (C, H, N) 
were performed with an Elementar “vario MICRO cube” instrument at Dipartimento di 
Chimica e Chimica Industriale, Università di Pisa. Absorption spectra were recorded using 
a Cary 5000 UV-VisSpectrometer equipped with a diffuse reflectance accessory consisting 
of an integrating sphere. The spectra were acquired and plotted as the Kubelka–Munk func-
tion F(R).47 Luminescence spectra of sample powders were recorded with a Horiba Jobin-
Yvon Fluorolog-3 spectrofluorimeter in a front-face acquisition geometry. The instrument 
was equipped with a double-grating monochromator in both the excitation and emission 
sides coupled to a R928P Hamamatsu photomultiplier and a 450 W Xe arc lamp as the 
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excitation source. Emission spectra were corrected for detection and optical spectral re-
sponse of the spectrofluorimeter supplied by the manufacturer. The excitation spectra were 
corrected for the spectral distribution of the lamp intensity using a photodiode reference 
detector. The luminescence lifetimes (τexp) were measured with an experimental uncertainty 
of ±10 %, using a pulsed Xe lamp with variable repetition rate and elaborated with standard 
software fitting procedures. Absolute photoluminescence quantum yields on samples pow-
ders were calculated from corrected emission spectra obtained by means of an integrating 
sphere.  
 

8.5 Computational details 

 
DFT calculations were carried out by using the Orca suite pf programs (version 4.2.0).48 The 
hybrid B3LYP functional49–52 coupled to an all-electron triple-ζ quality Ahlrichs basis set 
with one polarization function (def2-TZVP)53 for all atoms were employed to optimize the 
ground state molecular structures of the isolated ligands, while the complexes were opti-
mized using the GGA PBE functional;54–57 Coulomb and exchange integrals in hybrid calcu-
lations were approximated by using the Resolution of Identity approximation with the 
def2/JK auxiliary basis set.58  Dispersion corrections were included by adopting Grimme’s 
DFT-D3 method.59 As the lanthanide primarily interacts with the ligands via electrostatic 
forces and the eventual 4f electrons do not actively take part in the complexation, Eu was 
substituted with La to obtain a closed-shell system and simplify the SCF convergence in the 
geometry optimization, unless otherwise specified. The Fukui functions were evaluated by 
carrying out a single-point calculation on the ground state geometry, first considering the 
neutral system and then considering it as singly charged, in a doublet state (one unpaired 
electron). The condensed Fukui function was then calculated as the difference between the 
Mulliken atom charge in the two conditions, for the atoms of interest. 
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