
DIPARTIMENTO

DI INGEGNERIA

DELL'INFORMAZIONE

Gaussian Processes for Data-Driven

Modeling and Control in Robotic

Applications

Ph.D. candidate

Fabio Amadio

Advisor

Prof. Ruggero Carli

Co-Advisor

Dr. Alberto Dalla Libera

Director & Coordinator

Prof. Andrea Neviani

Ph.D. School in

Information Engineering

.

Department of

Information Engineering

University of Padova

2021

ii

ii

Abstract

Over the last years, the domain of robotics is no longer restricted to the mere industrial

world and is expanding at great speed into more and more aspects of human life. In

order to successfully operate in a huge variety of contexts, the next generation of robots

must become more and more autonomous and adaptable. In this context, the application

of Machine Learning and Reinforcement Learning techniques turns out to be a promising

way to deal with challenges that involve a large-scale and pervasive deployment of robotic

systems. Data-driven methods have the potential to equip the robots with the instruments

to cope with the uncertainty that characterizes the unstructured environments where

they will be increasingly employed. With this regard, Gaussian Processes established

themselves as a very powerful and flexible Machine Learning tool. They can be used to

solve complex regression problems and directly estimate predictions’ uncertainty.

In this thesis, we present Gaussian process-based solutions to different modeling

and control problems. In particular, we developed a novel Model-Based Reinforcement

Learning algorithm, called Monte Carlo Probabilistic Inference for Learning COntrol

(MC-PILCO), that can autonomously learn how to perform a certain task, focusing on

applications to mechanical systems. In addition, we proposed an alternative version of

MC-PILCO that can handle the presence of partial state measures, a typical condition in

real-world applications. Furthermore, we proposed a data-driven torque control strategy

for robotic systems that exploits Gaussian Process Regression for estimating the robot

inverse dynamics. This model is used to close a feedback linearization control loop. Finally,

we explored Gaussian Processes’ modeling potential by working on high-dimensional

dynamics. We used Gaussian Processes to learn a map that projects high-dimensional

observations to a latent space of inferior dimension. Then, Gaussian Processes were also

employed to estimate a proper transition function inside the latent space that can take

into account the effects of control actions. We called the overall structure Controlled

Gaussian Process Latent Variable Model (CGPDM), and we used it to model the dynamics

of a piece of cloth handled by a robotic system. In each of the studied problems, our

solutions have been evaluated empirically using real and simulated data.

iv

Sommario

Negli ultimi anni, il campo d’azione della robotica non si limita più alla sola industria,

ma si sta espandendo in sempre più aspetti della vita umana. Per operare con successo in

questa grande varietà di contesti, la prossima generazione di robot dovrà diventare sempre

più autonoma e pronta ad adattarsi a diversi scenari. In tale contesto, le tecniche di

Machine Learning e Reinforcement Learning possono fornire degli strumenti importanti

per affrontare le sfide che coinvolgono una diffusione su larga scala dei sistemi robotici.

Questi metodi data-driven potranno, potenzialmente, dotare i robot dei mezzi per gestire

l’incertezza che caratterizza gli ambienti non strutturati nei quali verranno impiegati. A

tale riguardo, i Gaussian Process si sono affermati come una tecnica di Machine Learning

molto potente e flessibile. Essi possono essere utilizzati per risolvere complessi problemi

di regressione, fornendo direttamente una stima dell’incertezza associata alle previsioni.

In questa tesi, presentiamo soluzioni basate su Gaussian Process per diversi problemi

di modellazione e controllo. In particolare, abbiamo sviluppato un nuovo algoritmo

Model-Based Reinforcement Learning, chiamato Monte Carlo Probabilistic Inference for

Learning COntrol (MC-PILCO), che può imparare autonomamente come controllare un

sistema. L’algoritmo è stato poi modificato in modo tale da essere capace di gestire la

presenza di misure parziali dello stato, condizione comune quando si lavora su sistemi

meccanici. La tesi prosegue presentando una strategia data-driven per il controllo di

robot, che utilizza dei Gaussian Process per stimare la dinamica inversa, utilizzandola poi

all’interno di uno schema di controllo basato su feedback linearization. Infine, concludiamo

esplorando le possibilità offerte dai Gaussian Process per la modellizzazione di dinamiche

ad alta dimensionalità. Dei Gaussian Process sono stati impiegati sia per imparare una

mappa che proietta le osservazioni ad alta dimensione in uno spazio latente di dimensione

ridotta, che per stimare una funzione di transizione appropriata all’interno di questo

spazio latente. Abbiamo chiamato il modello complessivo Controlled Gaussian Process

Latent Variable Model (CGPDM), e lo abbiamo utilizzato per modellare la dinamica di

un pezzo di tessuto manipolato da un robot. In ciascuno dei problemi studiati, le nostre

soluzioni sono state valutate empiricamente usando dati reali e simulati.

vi

Acknowledgments

First, I thank my advisor, Prof. Ruggero Carli, for his supervision and for letting me

pursue my research interests in autonomy, always providing precious comments and advice.

I would like to deeply thank Dr. Alberto Dalla Libera for his guidance and patience.

His competence and initiative have been inspirational and without his help, I am not

sure I would have completed this path. I wish him the best for his life and career.

A thank goes to Dr. Diego Romeres, for the fruitful research collaboration established.

My thanks also to Dr. Adrià Colomé, with which I started working together back during

my master thesis, and that allowed me to have an experience abroad during the Ph.D.,

despite the strange and difficult times we are all living right now.

I need to thanks all my teammates and the staff of Ruggers Tarvisium, my rugby team.

All the emotions lived on the pitch and the fun times spent together are unforgettable.

I thank my friends. You have always been there for me, in the many happy moments,

but also in the, luckily few, sad occasions. You truly bring fun and joy to my life.

A special mention goes to my parents, Andreina e Roberto, and my brother, Stefano,

which always supported me, no matter what. I am aware of how difficult it could be,

sometimes. They thought me that through hard work and passion one could achieve

anything. I owe you everything and I will always look up to you.

The last, most special thank goes to my girlfriend Giulia. Your presence and constant

support have been fundamental during the last years. I still cannot realize how lucky I

was to find you.

viii

Contents

1 Introduction 1

1.1 Manuscript Overview . 3

1.2 Gaussian Process Regression . 5

1.2.1 Gaussian Process Models . 5

1.2.2 Making Predictions . 6

1.2.3 Learning the Model from Data . 7

I Gaussian Processes for Model-Based Reinforcement Learning 9

2 Model-Based Policy Search Using Monte Carlo Sampling 11

2.1 Background . 15

2.1.1 Model-based policy gradient . 15

2.1.2 GPR and one-step-ahead predictions 16

2.1.3 Long-term predictions with GPs 17

2.2 MC-PILCO . 19

2.3 Model Learning . 20

2.3.1 Speed-integration model . 20

2.3.2 Kernel functions . 21

2.3.3 Model optimization and reduction techniques 23

2.4 Policy Optimization . 23

2.4.1 Policy structure . 23

2.4.2 Policy gradient . 24

2.4.3 Dropout of policy weights . 25

2.5 Ablation Studies . 28

2.5.1 Cost shaping . 30

2.5.2 Dropout . 31

2.5.3 Kernel function . 33

x Contents

2.5.4 Speed-integration model . 34

2.6 Experiments in Simulation . 35

2.6.1 Cart-pole: comparison with other algorithms 35

2.6.2 Cart-pole: handling multimodal distributions 36

2.6.3 UR5 joint-space controller: high DoF application 39

2.7 Conclusion . 41

3 Policy Search for Partially Measurable Systems 43

3.1 State Estimation in Mechanical Systems 45

3.2 MC-PILCO for Partially Measurable Systems 48

3.2.1 Offline estimation of the GP training data 49

3.2.2 Simulation of the online estimator during policy optimization . . . 49

3.3 Proof of Concept . 52

3.4 Experiments with Real Systems . 54

3.4.1 Furuta pendulum . 54

3.4.2 Ball-and-plate . 56

3.5 Conclusion . 61

4 Derivative-Free Model-Based Policy Search 63

4.1 Derivative-Free MC-PILCO . 64

4.1.1 DF model learning . 65

4.1.2 DF particle-based policy gradient 65

4.2 Experimental Validation: Simulated Cart-pole 67

4.2.1 Modeling results . 68

4.2.2 Policy learning results . 69

4.2.3 Analysis of input vector structure 70

4.3 High DoF Experiment: Simulated UR5 Robot 71

4.4 Experiments with Real Systems . 73

4.4.1 Furuta pendulum . 73

4.4.2 Ball-and-plate . 74

4.5 Conclusion . 77

II Gaussian Processes for Data-Driven Robot Control 79

5 Feedback Linearization Torque Control using Gaussian Processes 81

5.1 Background . 84

5.1.1 Robot dynamics and control . 84

Contents xi

5.1.2 GPR for inverse dynamics identification 85

5.2 Dynamics Components Estimation from Inverse Dynamics Model 86

5.2.1 Gravitational contribution . 87

5.2.2 Inertial contributions . 87

5.2.3 Estimation of n(q) . 87

5.3 Feedback Linearization Control Based on Gaussian Process Model 88

5.3.1 GP-FL . 88

5.3.2 GP-FL-DCE . 88

5.4 Experiments in Simulation . 89

5.4.1 Model learning performance . 89

5.4.2 Trajectory tracking without initial tracking error 90

5.4.3 Trajectory tracking with initial tracking error 93

5.5 Conclusion . 94

III Gaussian Processes for Modeling Cloth Dynamics 95

6 Modeling Robotic Cloth Manipulation using Gaussian Processes 97

6.1 Preliminaries: GPLVM and GPDM . 99

6.2 Controlled GPDM . 100

6.2.1 Latent variable mapping . 101

6.2.2 Dynamics mapping . 102

6.2.3 Multiple sequences . 104

6.3 CGPDM Training and Predictions . 104

6.3.1 Latent prediction . 105

6.3.2 Dynamics prediction . 105

6.3.3 Trajectory prediction . 105

6.4 Experiments with Simulated Cloth . 105

6.4.1 Data collection . 107

6.4.2 Model training . 108

6.4.3 Results . 108

6.5 Experiments with Real Cloth . 111

6.5.1 Data Collection . 112

6.5.2 Model training & Results . 113

6.6 Conclusion . 113

7 Conclusions 115

xii Contents

A Appendix 119

A.1 Semi-Parametrical Kernel for the Cart-pole System 119

References 123

1
Introduction

Nowadays, robots are increasingly being used in many different scenarios, from manufac-

turing to healthcare, transportation, agriculture, and construction. While in the past

robotic applications were mainly focused on the industrial world, today, the domain of

robotics is expanding at great speed into more and more aspects of human life. In the

future, it is likely to see robotics becoming a pervasive technology in our society. In

order to successfully operate in such a huge variety of contexts and inside unstructured

environments, the next generation of robots must become more and more autonomous,

adaptable and re-configurable.

The development, and large-scale deployment, of robotic systems able to fulfill those

requirements, pose numerous challenges. In the first place, robot operation is no longer

restricted to a precisely defined environment, as it happens in industrial contexts, where

robots are programmed by human experts that precisely know all the task specifications

and the geometry of the surroundings. Now, robots must be ready to cope with the

inevitable uncertainty that appears in unstructured environments, where items and

obstacles are often only partially known, and they could change their positions at any

time, as a result of unpredictable external interventions. Also, tasks might involve the

manipulation of non-rigid objects, that are particularly hard to model, or even the

interaction with human beings, or other autonomous systems.

Furthermore, another crucial aspect to be considered is that only a consistent reduction

2 Introduction

of manufacturing and setup costs could make viable a widespread use of robots. Indeed,

traditional industrial robots, in order to satisfy precision and repeatability standards, are

the results of a high-quality and expensive manufacturing process. Moreover, additional

expenses associated with setup activities need to be considered. Production costs may

be reduced by the employment of low-quality components, but this is likely to increase

measurement noise, uncertainty on the robot’s parameters, and the overall wear of the

system.

It is evident that building models for such domains purely based on a theoretical

understanding of underlying physical principles is infeasible. In fact, standard approaches

based on the knowledge of the parameters of both robot and environment might be

not enough robust in such an uncertain context, leading to relevant differences between

the expected and real behaviour of the system. Machine Learning can offer alternative

data-driven solutions for modeling complex robotic tasks and robustly deal with a high

level of uncertainties.

Modeling is only one of the possible aspects of robotics where Machine Learning can

have a huge impact. Recently, there has been a strong interest in applying data-driven

techniques to control learning. In fact, robots, to be truly autonomous, must possess the

ability to independently acquire new capabilities. It is not possible to define precisely

in advance the correct behaviour for a robot that must operate in an unstructured

environment. Hence, the machine must be able to autonomously collect the needed

information from available data to adapt its skills to different contexts or even learn how

to perform completely new tasks. Reinforcement Learning could point the way towards

this level of autonomy. More precisely, Reinforcement Learning is a computational

approach that aims at learning how to correctly perform a given task from repeated

interactions with the surrounding world. Usually, no knowledge about the environment

is available and all the information needed to carry out the task must be obtained by

trial and error.

Reinforcement Learning algorithms have already proved able to autonomously solve

different control benchmarks. Nevertheless, in order to obtain such results, they required

a large amount of experience. This issue is commonly known as data inefficiency and it

constitutes a critical problem that hinders the application of Reinforcement Learning

to robotic systems. Indeed, collecting a huge amount of data is very problematic when

dealing with a real robot: there is a significant cost in performing numerous trials, not to

mention the risks of damaging the surrounding environment or the robot itself because of

some hazardous movement performed during training. The data inefficiency problem can

be mitigated by the so-called Model-Based Reinforcement Learning approach, which aims

1.1 Manuscript Overview 3

at extracting more valuable information from the available data by estimating a model

of the environment’s dynamics. It has been proved experimentally that the experience

required to obtain good solutions can be considerably reduced by exploiting the model

during control learning.

The goal of this thesis is to contribute to the development of data-driven methods

able to tackle a part of the previously described problems. We focused our efforts on

analyzing how probabilistic approaches based on Gaussian Processes can effectively deal

with noise and uncertainties in robotic applications. Indeed, Gaussian Processes are a

popular class of Machine Learning models, and they constitute a powerful and flexible

framework. They are especially advantageous in this context since they can estimate, in

a principled way, the uncertainty associated with predictions. In particular, we evaluate

different applications of Gaussian Processes in the fields of model-based Reinforcement

Learning, dynamical systems modeling, and data-driven control design.

1.1 Manuscript Overview

The thesis is divided into three main parts, each one covering a different problem for

which we developed novel algorithms and solutions, all based on Gaussian Processes.

Part I (that comprises Chapters 2, 3, and 4) describes our approach to Model-Based

Reinforcement Learning, with a particular focus on applications to mechanical systems.

In particular, it illustrates a novel algorithm called Monte Carlo Probabilistic Inference

for Learning COntrol (MC-PILCO), developed by us. Essentially, the proposed strategy

derives a data-driven dynamical model of the environment through Gaussian Process

Regression. Then, the algorithm exploits the trained model to update the control policy,

based on a Monte Carlo estimation of its gradient. MC-PILCO proved able to robustly

solve different control benchmarks, achieving unprecedented levels of data efficiency,

and outperforming some of the previous state-of-the-art algorithms. Additionally, we

updated MC-PILCO to deal with some of the problems that commonly arise in real-world

applications. In particular, when dealing with real systems, it is often impossible to

directly measure the whole state of the system. For instance, consider mechanical systems,

where velocities are not directly measured but must be reconstructed from the history

of position measurements. Thus, we developed MC-PILCO for Partially Measurable

Systems (MC-PILCO4PMS), a variation of the original algorithm, specifically designed

to take into account the presence of state estimators during its operation. This particular

strategy was successfully tested on two different real setups. We would like to underline

how these kinds of issues are often not properly dealt with in Model-Based Reinforcement

4 Introduction

Learning literature, where the majority of the approaches always assume to have direct

access to the full state of the system. Finally, we conclude this part by showing another

version of the original algorithm that is called Derivative-Free MC-PILCO (DF-MC-

PILCO). The objective of this last strategy is to solve Reinforcement Learning problems

without using velocity estimates. In fact, the tuning of proper velocity estimators might

be a tedious task to perform, in particular for systems affected by high measurement

noise. DF-MC-PILCO circumvents this problem by working with models and control

policies that depend exclusively on position measurements. Experimental results proved

that DF-MC-PILCO can achieve performance similar to the one obtained previously by

MC-PILCO4PMS.

Part II (that comprises Chapter 5) presents a novel data-driven method for designing

robot torque control. We adapted the well-known feedback linearization control scheme

to work with Gaussian Process models of the robot dynamics. In particular, we analyzed

how to effectively introduce such structures inside the feedback loop to minimize the

undesired effects due to the poor generalization properties of the model. The latter can be

mitigated by a careful design of the kernel functions. Alternatively, it is possible to exploit

the Gaussian Processes to derive estimates of all the different dynamical components

used within feedback linearization. We tested this method on a simulated robotic arm,

obtaining promising data-driven trajectory tracking controller.

Finally, in Part III (that includes Chapter 6), we present a probabilistic model, always

based on Gaussian Processes, designed for dealing with high-dimensional dynamical

systems, proving its validity in the context of robotic cloth manipulation. In literature,

Gaussian Processes were already being employed for deriving mapping capable of project-

ing high-dimensional observations to spaces of smaller dimensions (often referred to as

latent spaces). In particular, the so-called Gaussian Process Dynamical Models (GPDMs)

can handle high-dimensional time series, using Gaussian Processes for learning both the

latent mapping and a dynamical relationship inside the latent space. Such a method

can derive data-driven models for complex dynamics in high-dimensional state spaces,

for instance, the behavior of a piece of cloth manipulated by a robot. We extended the

GPDM framework by considering the presence of control inputs inside such models and

defining the Controlled Gaussian Process Dynamical Models (CGPDMs). The proposed

method can be applied to learn tractable models for high-dimensional dynamics. The

presence of control variables is decisive as it allows to make actual predictions and

generalize outside of the training data set. We tested CGPDMs on both a simulated and

real cloth manipulation scenario to model the oscillatory dynamics of a piece of fabric.

1.2 Gaussian Process Regression 5

1.2 Gaussian Process Regression

We conclude the introduction describing the concepts behind Gaussian Process Regression

(GPR), as this method lays the foundation of all the model learning strategies that will

be illustrated in the next chapters.

One of the most relevant problem that arises in Machine Learning is the, so-called,

regression problem. It can be broadly defined as inferring the unknown function that

maps input vectors x into real-valued targets y, from a series of observed variables. More

precisely, we are given a training set D = {xi, yi}
N
i=1 containing N input-target pairs,

where xi ∈ R
d and yi ∈ R are, respectively, the i-th input vector and the relative target

value. Formally, the aim of regression analysis is to learn a model of the noisy relationship

y = f(x) + ε, (1.1)

where f(·) is an unknown function and ε is a noise term. Then, given a new input vector

x∗, the objective of regression is to predict the value assumed by f(x∗).

In the following, we introduce GPs can be used to solve such problem. In Section

1.2.1 we define precisely the GP model in the context of regression, detailing in Section

1.2.2 how to use it to make predictions. Finally, the model training procedure is discussed

in Section 1.2.3. For more details about GPR, we refer the reader to Chapter 2 of [97].

1.2.1 Gaussian Process Models

The objective of GPR is to derive a probabilistic model of the function f(·) in Eq. (1.1)

from data. A flexible way to place a probability distributions over functions is provided

by GPs, that are defined as follows.

Definition. A Gaussian Process is a collection of random variables, any finite

number of which have a joint Gaussian distribution.

A GP is completely characterized by its mean function m(x) = E[f(x)] (usually

assumed to be zero, m(x) = 0) and covariance function k(x, x′) = E[(f(x) −m(x)) ·

(f(x′) − m(x′))] (also called kernel function), and it is usually denoted through the

following notation,

f(x) ∼ GP(m(x), k(x, x′)).

In the context of regression the random variables represent the values assumed by the

unknown function f(x) at input location x. Given a set of N input vectors xi (with

i = 1, . . . , N), define X = [x1, . . . , xN] and f = [f(x1), . . . , f(xN)]T . Then, assuming a

mean function equal to zero, the GP defines a normal multivariate probability distribution

6 Introduction

over the vector of function values,

f ∼ N (0, K(X, X)).

The matrix K(X, X) ∈ R
N×N is usually called kernel matrix and it is defined element-

wise through the kernel function k(·, ·). In details, the entry of K(X, X) at row i and

column j is equal to k(xi, xj). A function k(·, ·) : Rd ×R
d 7→ R is a valid kernel function

if it generates valid covariance matrices. In order to respect this constraint, k(·, ·) must

be a symmetric and positive semi-definite function. Intuitively, the kernel indicates the

degree of similarity between two function values, f(xi) and f(xj), depending only on

their corresponding inputs. One of the most popular kernel function used in practice is

the so-called Squared Exponential (SE) kernel, defined by

kSE(xi, xj) = λ2e
− 1

2
||xi−xj ||2

Λ−1 .

The actual shape of the SE kernel depends on the scaling factor λ and the matrix Λ > 0,

together they are known as the hyperparameters of the kernel function. A standard

choice consists in assuming Λ to be diagonal, with diagonal elements called length-scales.

The presence of noise in the relationship of Eq. (1.1) prevent us to directly observe

target values f . Let yi be the noisy measurement of target value f(xi), for i = 1, . . . , N ,

and define y = [y1, . . . , yN]T . If we assume ε to be i.i.d. Gaussian noise, i.e., ε ∼ N (0, σ2
n),

the measurement vector y is distributed according to

y ∼ N (0, K(X, X) + σ2
nI), (1.2)

where I is the identity matrix of dimension N . The noise variance σ2
n and the kernel’s

hyperparameters constitute, together, the hyperparameters of the GP model.

1.2.2 Making Predictions

Usually, our primary interest is to incorporate the knowledge that the training data

provides about the function and use the GP to make predictions. Let D = {xi, yi}
N
i=1

be the training set composed of observed input vectors and the noisy measurements of

the corresponding target values. We are given a test input location x∗, our objective is

to derive the predictive distribution p(f(x∗)|x∗,D). Since any set of random variables

drawn from the GP is jointly Gaussian distributed, from Eq. (1.2), it is possible to write

1.2 Gaussian Process Regression 7

the following joint prior distribution over noisy observations and test function values,

[

y

f(x∗)

]

∼ N

(

0,

[

K(X, X) + σ2
nI k(X, x∗)

k(x∗, X) k(x∗, x∗)

])

,

with k(X, x∗) = k(x∗, X)T = [k(x1, x∗), . . . , k(xN , x∗)]T .

The posterior distribution over f(x∗) can be derived by conditioning the joint Gaussian

prior on the observations y, obtaining the following predictive distribution,

f(x∗)|x∗,D ∼ N (µ∗, σ2
∗), (1.3)

with

µ∗ = k(x∗, X)(K(X, X) + σ2
nI)−1y,

σ2
∗ = k(x∗, x∗)− k(x∗, X)(K(X, X) + σ2

nI)−1k(X, x∗).

For more details on the derivation of (1.3), we refer the reader to Appendix 2 of [97].

1.2.3 Learning the Model from Data

Learning a GP model entails finding the most appropriate kernel for the problem, i.e., the

form and the parameterization of the covariance function that best explain the training

data (formed by a series of observations y and the corresponding input locations X).

Concretely, given a parametric covariance function, the objective is to find the set of

hyper-parameters that maximizes the marginal likelihood p(y|X). From Eq. (1.2), we

can derive its logarithmic expression as,

log(y|X) = −
1

2
yT (K(X, X) + σ2

nI)−1y −
1

2
log|K(X, X) + σ2

nI| −
N

2
log(2π). (1.4)

Then, to train the GP, we maximize expression (1.4) w.r.t. the kernel’s hyper-parameters

and the measurement noise standard deviation σn.

We conclude this discussion by showing in Figure 1.1, as an example, the results of

model learning on a GP equipped with SE kernel. The unknown function f(·) we aim to

estimate is a sum of sines with random frequencies and amplitudes. Training data are

taken on randomly selected input locations applying some Gaussian i.i.d. measurement

noise. Note how, on the left part of the plot, the trained GP is able to correctly predict

the real function values, with a level of uncertainty that varies depending on the proximity

to training points. On the other hand, on the left part of the plot, the mean prediction

Part I

Gaussian Processes for

Model-Based Reinforcement

Learning

2
Model-Based Policy Search Using Monte Carlo

Sampling

In recent years, Reinforcement Learning (RL), [90], has achieved outstanding results

in many different environments, and has shown the potential to provide an automated

framework for learning different control applications from scratch [1, 48, 58]. However,

Model-Free RL (MFRL) algorithms might require a massive amount of interactions with

the environment in order to solve the assigned task. This data inefficiency puts a limit

to RL’s potential in real-world applications, due to the time and cost of interacting with

them. In particular, when dealing with mechanical systems, it is critical to learn the task

after the least possible amount of trials, to reduce wear and tear and avoid any damage

to the system. A promising way to overcome this limit is Model-Based RL (MBRL),

which is based on the use of data from interactions to build a predictive model of the

environment and exploit it to plan control actions. MBRL increases data efficiency by

using the model to extract more valuable information from the available data, [3].

On the other hand, MBRL methods are effective only inasmuch as their models

resemble accurately the real systems. Hence, deterministic models might suffer dramat-

ically from model inaccuracy, and the use of stochastic models becomes necessary in

order to capture uncertainty. Gaussian Processes (GPs) [97] are a class of Bayesian

models commonly used in RL precisely for their intrinsic capability to handle uncertainty

12 Model-Based Policy Search Using Monte Carlo Sampling

and provide principled stochastic predictions [53][9]. PILCO [33] is a successful MBRL

algorithm that uses GP models and gradient-based policy search to achieve substan-

tial data efficiency in solving different control problems, both in simulation as well as

with real systems [36][34]. In PILCO, long-term predictions are computed analytically,

approximating the distribution of the next state at each time instant with a Gaussian

distribution by means of moment matching. In this way, the policy gradient is computed

in closed form. However, the use of moment matching introduces also two relevant

limitations. (i) Moment matching allows modeling of only unimodal distributions. This

fact, besides being a potentially incorrect assumption on the system dynamics, introduces

relevant limitations related to initial conditions. In particular, the restriction on the

use of unimodal distributions complicates dealing with multimodal initial conditions,

as well as being a potential limitation even when the system initial state is unimodal.

For instance, in case that the initial variance is high, the optimal solution might be

multimodal, due to dependencies on initial conditions. (ii) The computation of the

moments is shown to be tractable only when considering Squared Exponential (SE)

kernels and differentiable cost functions. In particular, the limitation on the kernel choice

might be very stringent, as GPs with SE kernel impose smooth properties on the posterior

estimator and might show poor generalization properties in data that have not be seen

during training [60, 78, 79, 68].

PILCO has inspired several other MBRL algorithms, which try to improve it in

different ways. Limitations due to the use of SE kernels have been addressed in Deep-

PILCO [40], where the system evolution is modeled using Bayesian Neural Networks [62]

and long-term predictions are computed combining particle-based methods and moment

matching. Results show that, compared to PILCO, Deep-PILCO requires a larger number

of interactions with the system in order to learn the task. This fact suggests that using

neural networks (NNs) might not be advantageous in terms of data-efficiency, due to

the considerably high amount of parameters needed to characterize the model. A more

articulated approach has been proposed in PETS [20] where the uncertainty of the

system dynamics was modeled by means of an ensemble of probabilistic NNs. Despite the

positive results in the simulated high-dimension systems, also the numerical results in

PETS show that GPs are more data-efficient than NNs when considering low-dimensional

systems, such as the cart-pole benchmark. An alternative route has been proposed in

[26], where the authors use a simulator to learn a prior for the GP model before starting

the RL procedure on the actual system to control. This simulated prior improves the

performance of PILCO in areas of the state space with no available data points. However,

the method requires an accurate simulator that may not always be available at the user.

13

Limitations due to the gradient-based optimization were addressed in Black-DROPS

[19] which adopts a gradient-free policy optimization. In this way, also non-differentiable

cost functions can be used, and the computational time can be improved with the

parallelization of the black-box optimizer. With this strategy, Black-DROPS achieves

similar data efficiency to PILCO’s, but significantly increases asymptotic performance.

Other approaches focused on improving the accuracy of long-term predictions, over-

coming approximations due to moment matching. A first attempt has been proposed

in [63], where long-term distributions are computed relying on particle-based methods.

Based on the current policy and the one-step-ahead GP models, the authors simulate the

evolution of a batch of particles sampled from the initial state distribution. Then, the

particle trajectories are used to approximate the expected cumulative cost. The policy

gradient is computed using the strategy proposed in PEGASUS [67], where by fixing the

initial random seed, a probabilistic Markov decision process (MDP) is transformed into an

equivalent partially observable MDP with deterministic transitions. Compared to PILCO,

results obtained where not satisfactory. The poor performance was attributed to the

policy optimization method, in particular, to the inability to escape from the numerous

local minima generated by the multimodal distribution. Another particle-based approach

is PIPPS [70], where the policy gradient is computed with the so-called reparameterization

trick [47] instead of the PEGASUS strategy. Given a distribution pθ(·), parameterized

by θ, the reparameterization trick provides an alternative method for generating samples

from pθ(·) such that those samples are differentiable w.r.t. θ. The reparameterization

trick has been introduced with successful results in stochastic variational inference (SVI)

[47, 76]. In contrast with the results obtained in SVI, where just a few samples are

needed to estimate the gradient, the authors of[70] highlighted several issues related to

the gradient computed with the reparameterization trick, due to its exploding magnitude

and random direction. To overcome these issues, they proposed the total propagation al-

gorithm, where the reparameterization trick is combined with the likelihood ratio gradient.

The algorithm performs similarly to PILCO with some improvements in the gradient

computation, and in the performance in presence of additional noise.

In this chapter, the MBRL algorithm named Monte Carlo Probabilistic Inference for

Learning COntrol (MC-PILCO) is presented. MC-PILCO is a policy gradient algorithm,

which uses GPs to describe the one-step-ahead system dynamics and relies on a particle-

based method to approximate the long-term state distribution instead than using moment

matching. The gradient of the expected cumulative cost w.r.t. the policy parameters

is obtained by backpropagation [81] on the associated stochastic computational graph,

exploiting the reparameterization trick. Differently than in PIPPS, where they focused on

14 Model-Based Policy Search Using Monte Carlo Sampling

obtaining accurate estimates of the gradient, the optimization problem was interpreted as

a stochastic gradient descent (SGD) problem [14]. SGD has been studied in depth in the

context of neural networks, where overparameterized models are optimized using noisy

estimates of the gradient [57]. Analytical and experimental studies show that the shape

of the cost function and the nonlinear activation function adopted can affect dramatically

the performance of SGD algorithms [5, 4, 42]. Motivated by the results obtained in

this field, w.r.t. the previous particles-based approaches, we considered the use of more

complex policies and less peaked cost functions, i.e., less penalizing costs. During policy

optimization we also considered the application of dropout [89] to the policy parameters,

in order to improve the ability to escape from local minima, obtaining more performing

policies.

The effectiveness of the proposed choice has been ablated and analyzed in simulation.

First, a simulated cart-pole, a common benchmark system, was considered to compare

MC-PILCO with PILCO and Black-DROPS. Results show that MC-PILCO outperforms

both PILCO and Black-DROPS, which can be considered state-of-the-art GP-based

MBRL algorithms. Second, with the purpose to evaluate the behavior of MC-PILCO in a

higher-dimensional system, we applied it to a simulated UR5 robotic arm. The considered

task consists of learning a joint-space controller able to follow a desired trajectory and it

was successfully accomplished. These results confirm that the reparameterization trick

can be used effectively in MBRL, and Monte Carlo methods do not suffer of gradient

estimation problems, as commonly asserted in literature, if properly considering the cost

function, the use of dropout and richly parameterized policies.

Moroever, differently from previous works which combined GPs with particle-based

methods, we show a relevant advantage of this strategy, namely, the possibility of

adopting different kernel functions. We considered the use of a kernel function given by

the combination of an SE kernel and a polynomial kernel [61], as well as a semiparametrical

model [78, 79, 68]. Results show that data efficiency benefits from the use of such kernels,

limiting the interaction time required to learn the tasks.

The chapter is structured as follows. In Section 2.1, some background notions are

provided: we state the general problem tackled by model-based policy gradient methods,

and present modeling approaches of dynamical systems with GPs. In Section 2.2, we

present the general characteristics of MC-PILCO, our proposed algorithm, detailing

the policy optimization and model learning techniques adopted in Sections 2.3 and 2.4,

respectively. In Section 2.5, we analyze several aspects affecting the performance of

MC-PILCO, such as the cost shape, dropout, and the kernel choice. In Section 2.6,

we compare MC-PILCO with PILCO and Black-DROPS using a simulated cart-pole

2.1 Background 15

benchmark system, validate MC-PILCO on a simulated UR5 robot, and also prove the

advantages of the particle-based approach when dealing with different distributions of

the initial conditions. Finally, conclusions are drawn in Section 2.7.

2.1 Background

In this section, we first introduce the standard framework considered in model-based

policy gradient RL methods, and then discuss how to use Gaussian Process Regression

(GPR) for model learning. In the latter topic, we focus on three aspects: some background

notions about GPR, the description of the model for one-step-ahead predictions, and

finally, we discuss long term predictions, focusing on two possible strategies, namely,

moment matching and particle-based method.

2.1.1 Model-based policy gradient

Consider the discrete-time system described by the unknown transition function f(·, ·),

xt+1 = f(xt, ut) + wt,

where, at each time step t, xt ∈ R
dx and ut ∈ R

du are, respectively, the state and the

inputs of the system, while wt ∈ R
dx is a random variable modeling additive noise.

The cost function c(xt) is defined to characterize the immediate penalty for being

in state xt. Inputs are chosen according to a policy function πθ : x 7→ u that depends

on the parameter vector θ ∈ R
dθ . The objective is to find the policy that minimizes the

expected cumulative cost over a finite number of time steps T , i.e.,

J(θ) =
T
∑

t=0

Ext [c(xt)] , (2.1)

with an initial state distributed according to a given p(x0). We assume that there is the

possibility to always measure the full state of the system, in all its components. The

measurements are affected by an unknown additive noise.

A model-based approach for learning a policy consists, generally, of the succession of

several trials; i.e. attempts to solve the desired task. Each trial involves the following

three main phases:

• Model Learning: the data collected from all the previous interactions are used

to train a model of the system dynamics (at the first iteration data are collected

applying a sequence of exploratory actions, e.g. random controls);

16 Model-Based Policy Search Using Monte Carlo Sampling

• Policy Update: the policy is optimized in order to minimize an estimate of the cost

J(θ) obtained by exploiting the trained model;

• Policy Execution: the current optimized policy is applied to the system and the

data are stored for model improvement.

Model-based policy gradient methods use the learned model to predict how the system

state evolves under the control of the current policy πθ. These predictions are used to

estimate J(θ) and its gradient ∇θJ , in order to update the policy parameters θ following

a gradient-descent approach.

2.1.2 GPR and one-step-ahead predictions

A common strategy with GPR-based approaches consists of modeling the evolution of

each state dimension with a distinct GP that predicts the differences between values at

consecutive time steps. As opposed to learning the transition function directly, learning

the differences can be advantageous since they are subject to minor variations. Let

the state vector be structured as xt =
[

x
(1)
t , . . . , x

(dx)
t

]T
. Then, for i ∈ {1, . . . , dx},

∆
(i)
t = x

(i)
t+1 − x

(i)
t denotes the difference between the value of the i-th state component

at time t + 1 and t, and y
(i)
t indicates the noisy measurement of ∆

(i)
t . Moreover, let

x̃t = [xT
t , uT

t]T be the vector that includes the state and the input at time t, also called

the GP input. Then, given a data set D =
{

y(i), X̃
}

, where y(i) =
[

y
(i)
t1

, . . . , y
(i)
tn

]T
is a

vector of n noisy output measurements, and X̃ = {x̃t1 , . . . , x̃tn} is the corresponding set

of n GP inputs, GPR assumes the following probabilistic model, for each state dimension

i ∈ {1, . . . , dx},

y(i) =

h(i)(x̃t1)
...

h(i)(x̃tn)

+

e
(i)
t1

...

e
(i)
tn

= h(i)(X̃) + e(i),

where e(i) is a zero-mean Gaussian i.i.d. noise with standard deviation σi, and h(i)(·)

is an unknown function modeled a priori as a zero-mean GP. In particular, we have

h(i) ∼ N (0, Ki(X̃, X̃)), with the a priori covariance matrix Ki(X̃, X̃) ∈ R
n×n defined

element-wise through a kernel function ki(·, ·), namely, the element in j-th row and k-th

column is given by ki(x̃tj
, x̃tk

). A crucial aspect in GPR is the kernel choice. The kernel

function encodes prior assumptions about the process. One of the most common choices

for continuous functions is the Squared Exponential (SE) kernel, defined as

kSE(x̃tj
, x̃tk

) = λ2e
− 1

2
||x̃tj

−x̃tk
||2

Λ−1 , (2.2)

2.1 Background 17

where the scaling factor λ and the matrix Λ are kernel hyper-parameters which can be

estimated by marginal likelihood maximization. Typically, Λ is assumed to be diagonal,

with the diagonal elements named length-scales. Generally, also the noise standard

deviation σi is counted among the hyper-parameters of the model.

Remarkably, the posterior distribution of h(i)(·) can be computed in closed form. Let

x̃t be a general GP input at time t. Then, the distribution of ∆
(i)
t , is Gaussian with

mean and variance given by

E[∆
(i)
t] = ki(x̃t, X̃)Γ−1

i y(i), (2.3)

var[∆
(i)
t] = ki(x̃t, x̃t)− ki(x̃t, X̃)Γ−1

i kT
i (x̃t, X̃), (2.4)

with Γi and ki(x̃t, X̃) defined as

Γi = (Ki(X̃, X̃) + σ2
i I),

ki(x̃t, X̃) = [ki(x̃t, x̃t1), . . . , ki(x̃t, x̃tn)].

Recalling that the evolution of each state dimension is modeled with a distinct GP, and

assuming that the GPs are conditionally independent given the current GP input x̃t, the

posterior distribution for the state at time t + 1 can be written as

p(xt+1|x̃t,D) ∼ N (µt+1, Σt+1), (2.5)

where

µt+1 = xt +
[

E[∆
(1)
t], . . . ,E[∆

(dx)
t]

]T
,

Σt+1 = diag
([

var[∆
(1)
t], . . . , var[∆

(dx)
t]

])

.

2.1.3 Long-term predictions with GPs

In MBRL, the policy πθ is evaluated and improved based on long-term predictions of the

state evolution: p(x1), . . . , p(xT). The exact computation of these quantities entails the

application of the one-step-ahead GP models in cascade, considering the propagation of

the uncertainty. More precisely, starting from a given initial distribution p(x0), at each

time step t, the next state distribution is obtained by marginalizing (2.5) over p(xt), i.e,

p(xt+1) =

∫

p(xt+1|xt, πθ(xt),D)p(xt)dxt. (2.6)

Unfortunately, computing the exact predicted distribution in (2.6) is not tractable.

18 Model-Based Policy Search Using Monte Carlo Sampling

There are different ways to solve it approximately, here we discuss two main approaches:

moment matching, adopted by PILCO algorithm, and a particle-based method, the

strategy followed in this work.

Moment matching. Assuming that the GP models use only the SE kernel as a

prior covariance, and considering a normal initial state distribution p(x0) ∼ N (µ0, Σ0),

the first and the second moments of p(x1) can be computed in closed form [35]. Then,

the distribution p(x1) is approximated to be a Gaussian distribution, whose mean and

variance correspond to the moments computed previously. Finally, the subsequent

probability distributions are computed iterating the procedure for each time step of the

prediction horizon. For details about the computation of the first and second moments,

we refer the reader to [35]. Moment matching offers the advantage of providing a closed

form solution for handling uncertainty propagation through the GP dynamics model.

Thus, in this setting, it is possible to analytically compute the policy gradient from

long-term predictions. However, the Gaussian approximation performed in moment

matching is also the cause of two main weaknesses: (i) The computation of the two

moments has been performed assuming the use of SE kernels, which might lead to poor

generalization properties in data that have not been seen during training [60, 78, 79, 68].

(ii) Moment matching allows modeling only unimodal distributions, which might be a

too restrictive approximation of the real system behavior.

Particle-based method. The integral in (2.6) can be approximated relying on

Monte Carlo approaches, in particular on particle-based methods. Specifically, M

particles are sampled from the initial state distribution p(x0). Each one of the M

particles is propagated using the one-step-ahead GP models (2.5). Let x
(m)
t be the state

of the m-th particle at time t, with m = 1, . . . , M . At time step t, the current policy

πθ is evaluated to compute the associated control action. The GP model provides the

Gaussian distribution p(x
(m)
t+1|x

(m)
t , πθ(x

(m)
t),D) from which x

(m)
t+1, i.e., the state of the

particle at the next time step, is sampled. This process is iterated until a trajectory of

length T is generated for each particle. The process is illustrated in Figure 2.1 for the

sake of clarity. The long-term distribution at each time step is approximated with the

distribution of the particles. Notice that this approach does not impose any constraint

on the choice of the kernel function and the initial state distribution. Moreover, no

approximations on the distribution p(xt) are made. Therefore, particle-based methods

do not suffer from the problems seen in moment matching.

As regards complexity, the calculation of (2.5) entails several computations of (2.3)

and (2.4), which are, respectively, the mean and the variance of the differences between

states at consecutive time steps. It can be noted that Γ−1
i y(i) is computed a single time

20 Model-Based Policy Search Using Monte Carlo Sampling

update the GP models, update the policy parameters, and execute the policy on the

system. In its turn, the policy update is composed of three steps, iterated for a maximum

of Nopt times, namely:

• simulate the evolution of M particles, based on the current πθ and the GPs trained

on the previously observed data;

• compute Ĵ(θ), an approximation of the expected cumulative cost, based on the

evolution of the M particles;

• update the policy parameters θ based on ∇θĴ(θ), the gradient of Ĵ(θ) w.r.t. θ,

obtained by backpropagation.

In the next two sections, we will discuss in more depth the model learning and the policy

optimization phases.

2.3 Model Learning

Here, we describe the model learning framework considered in MC-PILCO. We begin

by showing the proposed one-step-ahead prediction model and analyzing the advantages

w.r.t. the standard model described in Section 2.1.2. Then, we discuss the choice of the

kernel functions. Finally, we briefly discuss the model’s hyper-parameters optimization

and the strategy adopted to reduce the computational burden.

2.3.1 Speed-integration model

Let the state be defined as xt = [qT
t , q̇T

t]T , where qt ∈ R
dq , with dq = dx/2, is the vector

of the generalized coordinates of the system at time step t, and, q̇t ∈ R
dq represents

the derivative of qt w.r.t. time. MC-PILCO adopts a one-step-ahead model, hereafter

denoted as speed-integration dynamical model, which exploits the intrinsic correlation

between the state components q and q̇. Indeed, when considering a sufficiently small

sampling time Ts (small w.r.t. the application), it is reasonable to assume constant

accelerations between two consecutive time-steps, obtaining the following evolution of qt,

qt+1 = qt + Tsq̇t +
Ts

2
(q̇t+1 − q̇t). (2.7)

Let Iq (respectively Iq̇) be the ordered set of the dimension indices of the state x

associated with q (respectively q̇). The proposed speed-integration model uses the GPR

approach described in Section 2.1.2 to train dx/2 GPs, each one modeling the evolution

2.3 Model Learning 21

of a distinct velocity component ∆
(ik)
t , with ik ∈ Iq̇. More specifically, let us rewrite the

GP input vector as x̃t = [qT
t , q̇T

t , uT
t]T , and indicate with q̇t+1 the velocity at the next

time step. Then, the speed-integration dynamical model samples the predicted velocities

from posterior distributions of the form

p(q̇t+1|x̃t,D) ∼ N (µt+1, Σt+1), (2.8)

where, for ik ∈ Iq̇,

µt+1 = q̇t +
[

. . . ,E[∆
(ik)
t], . . .]

]T
,

Σt+1 = diag
([

. . . , var[∆
(ik)
t], . . .]

])

.

Finally, the evolution of the remaining state components, namely the positions at time

step t + 1, are computed by integrating the sampled velocities, according to (2.7).

Many previous MBRL algorithms, see for instance [33, 19], adopted the standard

model described in Section 2.1.2, and hereafter denoted as full-state dynamical model.

The full-state model predicts the change of each state component with a distinct and

independent GP. Doing so, the evolution of each state dimension is assumed to be

conditionally independent given the current GP input, and it is necessary to learn a

number of GPs equal to the state dimension dx. Then, compared to the full-state

model, the proposed speed-integration model halves the number of GPs to be trained,

decreasing the cost of a state prediction to O(dx

2 MTn2), and associates the evolution of

positions and velocities, exploiting their natural relationship. Nevertheless, this approach

is based on a constant acceleration assumption, and works properly only when considering

small enough sampling times. However, MC-PILCO can use also the standard full-state

approach, which might be more effective when sampling time is too high.

2.3.2 Kernel functions

Regardless of the GP dynamical model structure adopted, one of the advantages of

the particle-based policy optimization method is the possibility of choosing the kernel

functions without restrictions. Hence, we considered different kernel functions as examples

to model the evolution of physical systems. However, the reader can consider a custom

kernel function appropriate for his application.

Squared exponential (SE). The SE kernel described in (2.2) represents the stan-

dard choice adopted in many different works. We recall its expression in the following,

kSE(x̃tj
, x̃tk

) = λ2e
−||x̃tj

−x̃tk
||2

Λ−1 .

22 Model-Based Policy Search Using Monte Carlo Sampling

SE + Polynomial (SE+P(d)). Recalling that the sum of kernels is still a kernel

[97], we considered also a kernel given by the sum of a SE and a polynomial kernel. In

particular, we used the Multiplicative Polynomial (MP) kernel, which is a refinement of

the standard polynomial kernel, introduced in [61]. The MP kernel of degree d is defined

as the product of d linear kernels, namely,

k
(d)
P (x̃tj

, x̃tk
) :=

d
∏

r=1

(

σ2
Pr

+ x̃T
tj

ΣPr x̃tk

)

.

where the ΣPr > 0 matrices are distinct diagonal matrices. The diagonal elements of

the ΣPr , together with the σ2
Pr

elements are the kernel hyper-parameters. The resulting

kernel is

kSE+P (d)(x̃tj
, x̃tk

) = kSE(x̃tj
, x̃tk

) + k
(d)
P (x̃tj

, x̃tk
). (2.9)

The idea motivating this choice is the following: the MP kernel allows capturing possible

modes of the system that are polynomial functions in x̃, which are typical in mechanical

systems [60], while the SE kernel models more complex behaviors not captured by the

polynomial structure.

Semi-Parametrical (SP). When prior knowledge about the system dynamics is

available, for example given by physics first principles, a Physically Inspired (PI) kernel

can be derived. The PI kernel is a linear kernel defined on suitable basis functions φ(x̃),

see for instance [78]. More precisely, φ(x̃) ∈ R
dφ is a, possibly nonlinear, transformation

of the GP input x̃ determined by the physical model. Then we have

kP I(x̃tj
, x̃tk

) = φT (x̃tj
)ΣP Iφ(x̃tk

),

where ΣP I is a dφ × dφ positive-definite matrix, whose elements are the kP I hyper-

parameters; to limit the number of hyper-parameters, a standard choice consists in

considering ΣP I to be diagonal. To compensate possible inaccuracies of the physical

model, it is common to combine kP I with an SE kernel, obtaining so called semi-parametric

kernels [68, 78], expressed as

kSP (x̃tj
, x̃tk

) = kP I(x̃tj
, x̃tk

) + kSE(x̃tj
, x̃tk

).

The rationale behind this kernel is the following: kP I encodes the prior information given

by the physics, and kSE compensates for the dynamical components unmodeled in kP I .

2.4 Policy Optimization 23

2.3.3 Model optimization and reduction techniques

In MC-PILCO, the GP hyper-parameters are optimized by maximizing the marginal

likelihood (ML) of the training samples, see [97]. In Section 2.1.3, we saw that the

computational cost of a particle prediction scales with the square of the number of samples

n, leading to a considerable computational cost for large n. In this context, it is essential

to implement a strategy for limiting the computational burden of a prediction. Several

solutions have been proposed in the literature, see [73] for an overview. We implemented

a procedure inspired by [25], where the authors proposed an online importance sampling

strategy. After optimizing the GP hyper-parameters by ML maximization, the samples

in D are downsampled to a subset Dr =
(

X̃r, y
(i)
r

)

, which is then used to compute

the predictions. This procedure first initializes Dr with the first sample in D, then, it

computes iteratively the GP estimates of all the remaining samples in D, using Dr as

training samples. Each sample in D is either added to Dr if the uncertainty of the estimate

is higher than a threshold β(i) or it is discarded. The GP estimator is updated every

time a sample is added to Dr. The trade-off between the reduction of the computational

complexity and the severity of the approximation introduced is regulated by tuning β(i).

The higher the β(i), the smaller the number of samples in Dr. On the other hand, using

values of β(i) too high might compromise the accuracy of GP predictions.

2.4 Policy Optimization

Here, we present the policy optimization strategy adopted in MC-PILCO. We start by

describing the general-purpose policy structure considered. Later, we show how to exploit

backpropagation and the reparameterization trick to estimate the policy gradient from

particle-based long-term predictions in order to update policy parameters. Finally, we

explain how we implemented dropout in this framework.

2.4.1 Policy structure

In all the experiments presented in this work, we considered an RBF network policy with

outputs limited by an hyperbolic tangent function, properly scaled. We call this function

squashed-RBF-network, and it is defined as

πθ(x) = umax tanh

(

1

umax

nb
∑

i=1

wie
||ai−x||2Σπ

)

. (2.10)

24 Model-Based Policy Search Using Monte Carlo Sampling

The policy parameters are θ = {w, A, Σπ}, where w = [w1 . . . wnb
] and A = {a1 . . . anb

}

are, respectively, the weights and the centers of the Gaussian basis functions, while Σπ

determines the shape of the Gaussian basis functions; in all experiments we assumed Σπ

to be diagonal. The maximum control action umax is constant and chosen depending on

the considered system. It is worth mentioning that we are not restricted to this particular

choice, and MC-PILCO can easily deal with any kind of differentiable policy.

2.4.2 Policy gradient

MC-PILCO exploits the predictive model illustrated in Section 2.3 to derive an estimate

of the expected cumulative cost (2.1), obtained relying on Monte Carlo sampling [17].

Given a control policy πθ and an initial state distribution p(x0), the evolution of a

sufficiently high number of particles is predicted as described in Section 2.1.3. Thus,

Ext [c(xt)] is approximated by the sample mean of the costs incurred by the particles

at time step t. Specifically, let x
(m)
t be the state of the m-th particle at time t, with

m = 1, . . . , M and t = 0, . . . , T . The Monte Carlo estimate of the expected cumulative

cost is computed with the following expression,

Ĵ(θ) =
T
∑

t=0

(

1

M

M
∑

m=1

c
(

x
(m)
t

)

)

. (2.11)

To compute the gradient of (2.11) w.r.t. the policy parameters, we use the reparame-

terization trick [47] to differentiate through the stochastic operations. The evolution of

every particle x
(m)
t at the next time step is sampled from a normal distribution like (2.5),

when dealing with full-state models, or like (2.8), in case of speed-integration models.

Hence, the computation of Ĵ(θ) entails the sampling from probability distributions that

depends on policy parameters θ. The presence of such stochastic operations makes the

straightforward computation of ∇θĴ impossible. The reparameterization trick allows to

still propagate the gradient in such context. In fact, instead of sampling directly from

N (µt+1, Σt+1), it is possible to sample a point ε from a zero-mean and unit-variance

normal distribution of proper dimensions. Then, ε can be mapped into the desired

distribution as x
(m)
t+1 = µt+1 + Lt+1ε, where Lt+1 is the Cholesky decomposition of Σt+1,

namely, Lt+1LT
t+1 = Σt+1. In this way, the reparameterization trick makes the dependency

of x
(m)
t+1 from θ purely deterministic, allowing to compute ∇θĴ simply by backpropagation.

Figure 2.2 illustrates how the reparameterization trick works in the context of MC-PILCO.

Then, the optimization of the policy parameters θ can be interpreted as an SGD problem

[14], and we adopted the Adam algorithm [46] to solve it (we will denote Adam learning

rate with αlr).

26 Model-Based Policy Search Using Monte Carlo Sampling

solution due to the additional entropy. We also need to take in consideration that the

final objective is to obtain a deterministic policy. For these reasons, we designed an

heuristic scaling procedure to gradually decrease the dropout rate, pd, until it equals 0.

The scaling action is triggered by a monitoring signal s, defined from the statistics of

the past history of Ĵ . Define the cost change, ∆Ĵj = Ĵ(θj)− Ĵ(θj−1), where θj denotes

the policy parameters at the j-th optimization step. Then, s is computed as a filtered

version of the ratio between E [∆Ĵj] and
√

V[∆Ĵj], that are, respectively, the mean and

the standard deviation of ∆Ĵj computed with an Exponential Moving Average (EMA)

filter. The expression of s at the j-th optimization step is the following:

sj = αssj−1 + (1− αs)
E [∆Ĵj]
√

V[∆Ĵj]
, (2.12)

where

E [∆Ĵj] = αsE [∆Ĵj−1] + (1− αs)∆Ĵj ,

V[∆Ĵj] = αs(V[∆Ĵj−1] + (1− αs)(∆Ĵj − E [∆Ĵj−1])2),

with αs a coefficient of the exponential moving average filter, which determines the

memory of the filter. At each iteration of the optimization procedure, the algorithm

checks if the absolute value of the monitoring signal s in the last ns iterations is below

the threshold σs, namely,

[|sj−ns | . . . |sj |] < σs, (2.13)

where < is an element-wise operator, and the condition in (2.13) is true if it is verified

for all the elements. If the condition is verified, pd is decreased by the quantity ∆pd, and

both the learning rate of the optimizer, αlr, and σs, are scaled by an arbitrary factor λs.

Then, we have:

pd = pd −∆pd (2.14a)

αlr = λsαlr (2.14b)

σs = λsσs (2.14c)

The procedure is iterated as long as

pd ≥ 0 and αlr ≥ αlrmin
, (2.15)

where αlrmin
is the minimum value of the learning rate. When the condition (2.15) is

2.4 Policy Optimization 27

Parameter Description Value
pd dropout probability 0.25

∆pd pd reduction coeff. 0.125

αlr Adam learning rate 0.01

αlrmin
minimum learning rate 0.0025

αs EMA filter coeff. 0.99

σs monitoring signal threshold 0.08

ns num. monitored iterations 200

λs σs reduction coeff. 0.5

Table 2.1: Standard values for the policy optimization parameters.

no longer valid, the policy optimization stops and the updated policy can be tested.

Table 2.1 reports the optimization parameters used in the majority of the experiments.

However, it is worth mentioning that some modifications could be needed in other setups.

The rationale behind this heuristic scaling procedure is the following. The sj signal is

small, if E [∆Ĵj] is close to zero, or if V[∆Ĵj] is particularly high. The first case happens

when the optimization reaches a minimum, while the high variance denotes that the

particles’ trajectories cross regions of the workspace where the uncertainty of the GPs

predictions is high. In both cases, we are interested in testing the policy on the real

system, in the first case to verify if the configuration reached solves the task, and in the

second case to collect data where predictions are uncertain, and so to improve model

accuracy. MC-PILCO with dropout is summarized in pseudo-code in Algorithm 1.

28 Model-Based Policy Search Using Monte Carlo Sampling

Algorithm 1: MC-PILCO

init policy πθ(·), cost c(·), kernel k(·, ·), optimization steps Nopt, number of
particles M , learning rate αlr, min. learning rate αlrmin

, dropout probability pd,
dropout reduction ∆pd

and other monitoring signal parameters: σs, λs, ns.
Apply exploratory control actions to system and collect data;
while task not learned do

1) Model Learning:
Train GP models based on collected data;
2) Policy Update:
Initialize monitoring signal s0 = 0;
for j = 1...Nopt do

Simulate M particles rollouts with GP models and current policy πθj
(·);

Compute Ĵ(θj) from particles (2.11);

Compute ∇θĴ(θj) through backpropagation;
πθj+1

(·)← Gradient-based policy update (e.g., Adam step);

Update monitoring signal sj with (2.12);
if (2.13) is True then

Update pd, αlr and σs with (2.14);
end
if (2.15) is False then

break;
end

end
3) Policy Execution:
Apply updated policy to system and collect data;

end
return trained policy, learned GP model;

2.5 Ablation Studies

In this section, we analyze several aspects affecting the performance of MC-PILCO,

such as the shape of the cost function, the use of dropout, the kernel choice, and

the predictive structure adopted, namely, full-state or speed-integration dynamical

models. The purpose of the analysis is to validate the choices made in the pro-

posed algorithm, and show the effect that they have on the resulting control per-

formance. MC-PILCO has been implemented in Python, exploiting the PyTorch li-

brary [71] automatic differentiation functionalities; the code is publicly available 1.

1Code available at https://www.merl.com/research/license/MC-PILCO

30 Model-Based Policy Search Using Monte Carlo Sampling

well as different realizations of the measurement noise. The performance of the learned

policies is evaluated using the cost proposed in [33],

cpilco(xt) = 1− exp

(

−
1

2

(

dt

0.25

)2
)

, (2.17)

where d2
t = p2

t + 2ptLsin(θt) + 2L2(1 + cos(θt)) is the squared distance between the tip of

the pole and its position at the unstable equilibrium point with pt = 0 [m]. We introduce

this cost in order to have a common metric to compare both different setups of MC-PILCO

and other MBRL algorithms, see Section 2.6.1. For each trial, we report the median

values and confidence intervals defined by the 5-th and 95-th percentiles of the cumulative

cost obtained with cpilco(·), as well as the success rates observed. We mark two values of

the cumulative cost indicatively associated with an optimal and a sub-optimal swing-up,

respectively. A solution is optimal if the pole oscillates only once before reaching the

upwards equilibrium. A sub-optimal solution is when the pole oscillates twice. Finally,

we label a trial as "success" if |pt| < 0.1 [m] and 170 [deg] < |θt| < 190 [deg] ∀t in the last

second of the trial.

2.5.1 Cost shaping

The first test regards the performance obtained varying the length-scales of the cost

function in (2.16). Reward shaping is a known important aspect of RL and here we will

analyze it for MCPILCO. In Figure 2.4, we compare the evolution of the cumulative

costs obtained with (lθ = 3, lp = 1) and (lθ = 0.75, lp = 0.25) and we report the observed

success rates. The latter set of length-scales defines a more selective cost as the function

shape becomes more skewed. In both cases, we adopted the speed-integration model with

SE kernel and no dropout was used during policy optimization.

The results show that with (lθ = 3, lp = 1) MC-PILCO performs better. Indeed,

with (lθ = 0.75, lp = 0.25) MC-PILCO manages to find a solution only in the 74% of the

experiments, while with (lθ = 3, lp = 1) success rate is 82%. Observing the cumulative

costs, it is possible to appreciate also a difference in the quality of the policies learned in

the two cases. The optimal swing-up can be found in the majority of the experiments only

when using (lθ = 3, lp = 1), while it has never been obtained with (lθ = 0.75, lp = 0.25).

This fact suggests that the use of too selective cost functions might decrease signifi-

cantly the probability of converging to a solution. The reason might be that with small

valued length-scales, c(xt) is very peaked, resulting in almost null gradient, when the

policy parameters are far from a good configuration, and increasing the probability of

getting stuck in a local minimum. Instead, higher values of the length-scales promote the

2.6 Experiments in Simulation 35

was used. Figure 2.7 shows that the speed-integration model obtains better performance

at trials 2 and 3, with narrower confidence intervals and better success rates. On the

contrary, during the last two trials, the success rate of the full-state model slightly

improves.

Recall that in the full-state model, positions and velocities are learned independently,

while, in the speed-integration model, the position is computed as the integral of the

velocity under a constant acceleration assumption. Then, the speed-integration model

may reduce uncertainty in long-term predictions and facilitate the learning w.r.t. the

counterpart when few data points have been collected. In fact, the full-state model

could face some difficulties in learning the relationship between positions and respective

velocities from a limited amount of data. This reduction of the uncertainty may explain

the narrower confidence intervals observed during the first trials of the experiment. On the

other hand, when enough data points have been collected (trials 4 and 5), the improvement

in precision obtained by full-state model is not very significant. Even with comparable

performance, the choice of the speed-integration model is justified since it halves the

number of GPs to learn, hence this structure is also improving the computational time.

2.6 Experiments in Simulation

In this section, two simulated systems are considered. First, MC-PILCO is tested on

a cart-pole system and compared to other policy gradient algorithms, namely PILCO

and Black-DROPS. In the same environment, we tested the capability of MC-PILCO to

handle multimodal probability distributions. Second, MC-PILCO learns a controller in

joint space of a UR5 robot arm, considered as an example of a higher degrees of freedom

(DoF) system.

2.6.1 Cart-pole: comparison with other algorithms

We tested PILCO 3, Black-DROPS 4, and MC-PILCO on the cart-pole system with the

same setup described in Section 2.5. In MC-PILCO, we considered the cost function

(2.16) with lengthscales (lθ = 3, lp = 1), and adopted the SE kernel, as it is the one

employed by the other algorithms. As done before, we used the common metric given by

cost (2.17) to compare the obtained results. The observed cumulative costs are reported

in Figure 2.8.

MC-PILCO achieved the best performance both in transitory and at convergence.

3PILCO code available at http://mlg.eng.cam.ac.uk/pilco/
4Black-DROPS code available at https://github.com/resibots/blackdrops

2.6 Experiments in Simulation 37

ep [m] eθ [rad]

1 S.I. SE+P(2) (3,1) drop. on 0.008± 0.003 0.011± 0.004

2 S.I. SP (3,1) drop. on 0.008± 0.003 0.011± 0.005

3 S.I. SE (3,1) drop. on 0.010± 0.005 0.011± 0.005

4 S.I. SE (0.75,0.25) drop. off 0.016± 0.009 0.012± 0.008

5 S.I. SE (3,1) drop. off 0.019± 0.014 0.015± 0.009

6 F.S. SE (3,1) drop. on 0.011± 0.005 0.011± 0.005

7 Black-DROPS 0.025± 0.011 0.033± 0.019

8 PILCO 0.027± 0.012 0.045± 0.019

Table 2.2: Average distances from the target states (pt = 0 and θt = ±π) obtained during
the last second of interaction with the cart-pole by the successful policies learned by PILCO,
Black-DROPS and the various MC-PILCO configurations analyzed in Section 2.5. Different
configurations are labeled reporting the adopted dynamical model structure (speed-integration,
S.I., or full-state, F.S.), kernel function, cost length-scales, and if dropout was used or not.
Values are reported as mean ± standard deviation, calculated over the total number of

successful runs at trial 5.

PILCO and MC-PILCO to the simulated cart-pole system, when considering a very

high variance on the initial cart position, σ2
p = 0.5, which corresponds to have unknown

cart’s initial position (but limited within a reasonable range). The aim is to be in a

situation in which the policy has to solve the task regardless of the initial conditions

and needs to have a bimodal behaviour in order to be optimal. Note that the situation

described could be relevant in several real applications. We kept the same setup used in

previous cart-pole experiments, changing the initial state distribution to a zero mean

Gaussian with covariance matrix diag([0.5, 10−4, 10−4, 10−4])). MC-PILCO optimizes

the cost in (2.16) with length-scales (lθ = 3, lp = 1). We tested the policies learned by

the two algorithms starting from nine different cart initial positions (-2, -1.5, -1, -0.5, 0,

0.5, 1, 1.5, 2 [m]). In Section 2.6.1, we observed that PILCO struggles to consistently

converge to a solution and the high variance in the initial conditions accentuates this

issue. Nevertheless, in order to make the comparison possible, we cherry-picked a random

seed for which PILCO converged to a solution in this particular scenario. In Figure 2.9,

we show the results of the experiment. MC-PILCO is able to handle the initial high

variance. It learned a bimodal policy that pushes the cart in two opposite directions,

depending on the cart’s initial position, and stabilizes the system in all the experiments.

On the contrary, PILCO’s policy is not able to control the cart-pole for all the tested

starting conditions. Its strategy is always to push the cart in the same direction, and it

cannot stabilize the system when the cart starts far away from the zero position. The

state evolution under MC-PILCO’s policy is bimodal, while PILCO cannot find this type

of solutions because of the unimodal approximation enforced by moment matching.

2.7 Conclusion 41

2.7 Conclusion

In this chapter, we have presented the MBRL algorithm MC-PILCO. The proposed

framework uses GPs to derive a probabilistic model of the system dynamics, and updates

the policy parameters through a gradient-based optimization; the optimization exploits

the reparameterization trick and approximates the expected cumulative cost relying on

a Monte Carlo approach. Compared to similar algorithms proposed in the past, the

Monte Carlo approach worked by focusing on two aspects, that are (i) proper selection

of the cost function, and (ii) introduction of exploration during the policy optimization

through the use of dropout. We compared MC-PILCO with PILCO and Black-DROPS,

that are two state-of-the-art GP-based MBRL algorithms. MC-PILCO outperforms

both the algorithms, exhibiting better data-efficiency and asymptotic performance. The

results obtained in simulation confirm the effectiveness of the proposed solution, and show

the relevance of the two aforementioned aspects when optimizing the policy combining

the reparameterization trick with particles-based approaches. Moreover, we explored

two advantages due to the particles-based approximation w.r.t. the moment-matching

adopted in PILCO, that are, the possibility of using structured kernels, such as polynomial

and semi-parametrical kernels, and the ability of handling multimodal distributions. In

particular, experimental results show that the use of structured kernels can increase

data-efficiency, reducing the interaction-time required to learn the task.

Nevertheless MC-PILCO, as it is, can properly work only when full state observability

is guaranteed. This is a common assumption when working in simulated environment,

but in the real world, the majority of systems can only be observed through noisy partial

measurements, from which the actual real state must be estimated. This issue has often

been overlooked by previous MBRL methods, but it remains of critical importance for

achieving a successful deployment of such techniques in the real world. In the next

chapter, we will show how MC-PILCO strategy can be adapted to effectively work when

only partial measurements of the state are available.

42 Model-Based Policy Search Using Monte Carlo Sampling

3
Policy Search for Partially Measurable Systems

One of the main obstacles that MBRL techniques must deal with in order to successfully

work in real-world environments is the lack of full state measures characterizing the

vast majority of real systems. For instance, in mechanical systems, the joint positions

can be measured by means of proper sensors, e.g. encoders, whereas velocities often

can only be estimated from the history of measured positions, unless more expensive

velocity sensors (tachometers) are installed. We indicate such systems with the name of

Partially Measurable Systems (PMS), characterized by a state that is observable, but

with only some of its components that can be directly measured, while the rest must be

estimated from measurements. Then, when dealing with PMS, it is necessary to design

and implement state observers able to correctly estimate the full state from a series of

partial measures. Additionally, in presence of a significant noise, it may be also necessary

to filter the measurement signals.

In this regard it is worth mentioning the different characteristics of the estimation

procedures that take place in the two different contexts of our interest: modeling and

control. In the first case, it is possible to rely on offline techniques, intrinsically acausal,

that exploits the complete history (past and future) of measurements to obtain an

accurate estimation the true state of the system, i.e. the estimate of the state at time t

depends both on past measurements, collected before t, and future measures, obtained

after t. On the other hand, when trying to estimate the true state for control purposes,

44 Policy Search for Partially Measurable Systems

we are restricted by a real-time constraint. The estimation procedure must be performed

online. It is intrinsically casual and its computational time must be compatible with the

control frequency, since the state estimator must be integrated inside the control loop.

Typically, online estimates are affected by delays and they are generally less accurate than

their offline counterparts, for causality reasons and real-time computation constraints.

Such concerns, in our opinion, have not been duly taken into account in most of

previous works on MBRL, despite their critical importance in any possible real-world

application. Usually algorithms are tested in simulated environments, where the state is

assumed to be completely accessible. A correct understanding of the state estimation

problem, for both modeling and control purposes, becomes of capital importance, in

particular for MBRL approaches, which fully rely on the model predictions for updating

the policy. For instance, the previous applications of MBRL algorithms on real systems,

available in literature, did not carefully take into account the problems related to velocity

estimation. In [35], PILCO was tested on a real cart-pole, but it was not mentioned

specifically how velocities were derived. One could imagine that the same velocity

estimates obtained inside the control loop were used for training the model. But, in this

way, the policy would be optimized based on "wrong" velocity estimates (for reasons of

causality, they would be inevitably affected by delays, if not other major discrepancies

due to noise). Nevertheless, the task was completed successfully, but we can suppose that

this result is mainly due to the fact that the optimized policy can rely on correct position

predictions. On the other hand, in [36] and [19], PILCO and Black-DROPS, respectively,

were used to learn from scratch how to control low-cost robot manipulators. In both

cases, the state comprised only positions. Such choice can be effective only when the

target behaviour does not involve fast dynamics, as in the case of the two aforementioned

applications.

In this chapter, we present a modified version of the MC-PILCO algorithm of Chapter

2, specifically tailored to deal with the issues related with the application to real PMS.

We label this different version MC-PILCO4PMS: Monte Carlo Probabilistic Inference

for Learning COntrol for Partially Measurable Systems. In particular, MC-PILCO4PMS

takes into account the differences between online and offline state estimators. The

controller, i.e., the policy, works with the output of online state estimators which, due

to noise and real-time computation constraints, might introduce significant delays and

discrepancies w.r.t. to the offline estimates used for model learning. In this context,

we verified that during policy optimization it is important to distinguish between the

states generated by the models, which aim at describing the evolution of the real system

state, and the states provided to the policy. Indeed, providing to the control policy the

3.1 State Estimation in Mechanical Systems 45

model predictions corresponds to assuming to measure the system state directly, which,

as mentioned before, is not possible in the real system. This incorrect assumption might

compromise the effectiveness of the trained policy into the real system, due to the presence

of distortions caused by the online state estimators. Hence, during policy optimization,

from the evolution of the system state predicted by the GP models, we compute the

estimates of the states observed by modeling both the measurement system and the

online estimators used in the real system. Then we feed to the policy the estimates

of the observed states. In this way, we aim at obtaining robustness w.r.t. the delays

and distortions caused by online filtering. Thanks to the flexibility of our particle-based

approach, it is possible to easily reproduce a wide variety of filters and state estimators,

e.g., numerical differentiation, low-pass filters, Kalman filters, etc. The effectiveness

of the proposed strategy has been tested in the case of mechanical systems both in

simulation and also with two real systems, a Furuta pendulum and a ball-and-plate. The

obtained performance confirms the importance of considering the presence of filters in

the real system during policy optimization.

The rest of the chapter is structured as follows. In Section 3.1 we discuss more in

details the problems related to state estimation for mechanical systems. In Section 3.2,

we discuss the application of the proposed algorithm in such context. A proof of concept

is proposed in Section 3.3. Experiments on a real Furuta pendulum and a ball-and-plate

system are shown in Section 3.4.

3.1 State Estimation in Mechanical Systems

Consider a mechanical system with dq DoF. Let qt ∈ R
dq indicate the vector of joint

positions, while we denote the associated velocities with the symbol q̇t ∈ R
dq . We refer

to the state of the mechanical system at time t with xt ∈ R
dx , where dx = 2dq. Typically,

the state is defined as xt = [qT
t , q̇T

t]T . We assume, as it is often true in reality, to have

access only to noisy measurements of positions qt, while velocities q̇t must be estimated

from position measures. Hence, mechanical systems perfectly fall into the PMS category,

previously defined. Consequently, the q̇t elements are estimated starting from the history

of qt measurements through proper estimation procedures, possibly performing also

denoising operations of qt in case that the measurement noise is high. In particular, it is

worth distinguishing between estimates computed online and estimates computed offline.

The former are provided to the control policy to determine the system’s control input,

and they need to respect real-time constraints, namely, velocity estimates are causal and

computations must be performed within a given interval. The latter, do not have to deal

46 Policy Search for Partially Measurable Systems

with such constraints. As a consequence, offline estimates can be more accurate, taking

into account acausal information and limiting delays and distortions.

As an example, here we analyze the velocity estimation problem in the simulated

cart-pole environment considered in the previous chapter and described in details in

Section 2.5. Remember that we indicate with pt and θt, respectively, the cart position

and pole angle at time step t. Differently from before, we assume to be able to directly

measure only pt and θt, and not also their respective velocities. We modeled a possible

measurement system as an additive Gaussian i.i.d. noise with standard deviation 3 · 10−3.

In order to obtain reliable estimates of the velocities, samples were collected at 30 [Hz].

The online and offline state estimators implemented are the following:

• Online Estimator : Position measures are not filtered to avoid delays. Velocities

are estimated by means of causal numerical differentiation, i.e. q̇t = (qt − qt−1)/Ts

(where Ts indicates the sampling time) followed by a first order low-pass filter with

cutoff frequency 7.5 [Hz].

• Offline Estimator : Positions measures are filtered by applying, forward and back-

ward, a second order low-pass filter with cutoff frequency 7.5 [Hz]. Velocities are

then estimated by means of central difference, i.e. q̇t = (qt+1 − qt−1)/(2 Ts).

Note that the combined filtering procedure performed offline has zero phase, resulting

in no delays in the filtered signal. Obviously, this is an acausal data processing that

can be performed only offline. It is worth mentioning that the estimators proposed

are only one possible choice and several different filters could be adopted. Anyway the

considerations that follow are still valid also for other filters and estimators.

In Figure 3.1, we compare the different velocities obtained online and offline with their

true values, that are available from the simulation. It is clear how the online estimates

are affected by a delay caused by the causal filtering process. This effect is inevitable

and, in case the delay is significantly high, it must be carefully taken into account to

avoid problems in the control loop. On the other hand, the offline estimate are far more

accurate and present no delays with respect to the true velocities. Hence, these signals

can be considered valid estimates and used for modeling purposes. Clearly, the predictive

model cannot be build based upon the online estimates, being the latter afflicted by

delays and distortions.

In the next section, we will carefully take into account these considerations in order

to modify the MC-PILCO algorithm of Chapter 2 so that it may be applied to real PMS,

correctly facing all the issues related to the state estimation.

48 Policy Search for Partially Measurable Systems

3.2 MC-PILCO for Partially Measurable Systems

In this section, we discuss the application of MC-PILCO to PMS, that, we remember,

are systems whose state is observable, but only some of its components can be directly

measured, while the rest must be estimated from measurements. For simplicity, we

introduce the problem discussing the case of mechanical systems, previously presented

in Section 3.1, but similar considerations can be done for any PMS. So, we present

MC-PILCO for Partially Measurable Systems (MC-PILCO4PMS), a modified version of

MC-PILCO, proposed to deal with such setups.

In this context, we verified that, during policy optimization, it is relevant to distinguish

between the particle state predictions computed by the models and the data provided

to the policy. Indeed, GPs should simulate the real system dynamics, independently

of additional noise given by the sensing instrumentation, so they need to work with

the most accurate estimates available; delays and distortions might compromise the

accuracy of long-term predictions. On the other hand, providing to the policy directly the

particles’ states computed with the GPs during policy optimization, correspond to train

the policy assuming available access to the system state, which, as mentioned before, is

not possible for PMS. Indeed, considerable discrepancies between the particles’ states

and the state estimates computed online during the policy application to the real system

might compromise the effectiveness of the policy. Thus, the policy optimization process

must be "aware" of the online estimator implemented in the control loop, in order to

train the policy to cope with the presence of delays and differences w.r.t. the true state

of the system. This approach differs from standard MBRL approaches where, typically,

the effects of the online state estimators are not considered during training and full-state

measurability is assumed.

To deal with the above issues, we introduce MC-PILCO4PMS a modified version of

MC-PILCO. With respect to the algorithm described in Chapter 2, we propose the two

following additions:

• Offline estimation of GP training data: the GPs of the predictive model (be it

the full-state or the speed-integration model described in Sections 2.1.2 and 2.3.1,

respectively) are now trained based on state estimates computed offline from the

series of noisy measurements collected during previous interactions with the system.

• Simulation of the online estimator during policy optimization: the policy parameters

are updated based on particles simulations that replicates the presence of noisy

sensors and online state estimator inside the control loop. In this way, the policy is

trained to work properly in the real scenario.

3.2 MC-PILCO for Partially Measurable Systems 49

In the remainder of this section, we present the offline estimation techniques adopted in

the final experiments and describe in details the new simulation of the online estimator

during the particle-based policy optimization phase.

3.2.1 Offline estimation of the GP training data

The collected measurements are processed by offline estimation techniques to obtain the

training data for the GP models. In particular, in our experiments with real systems, we

considered two options:

• Computation of the velocities by central difference, i.e., q̇t = (qt+1 − qt−1)/(2Ts),

where Ts is the sampling time. This technique can be used only when the measure-

ment noise is limited, otherwise the q̇ estimates might be too noisy. In such cases

it is appropriate to pre-filter the measures as previously seen in Section 3.1.

• Estimation of the state by means of Kalman smoother [38], with state-space model

given by the general equations relating positions, velocities, and accelerations. The

advantage of this technique is that it exploits the correlation between positions and

velocities, increasing regularization.

3.2.2 Simulation of the online estimator during policy optimization

Standard MC-PILCO algorithm updates the policy parameters following a gradient

estimated from some particle trajectories, that are simulated by the trained predictive

model. The simulated particles aim to approximate the true state evolution. In the

context of PMS, it would not be correct to use the state particles as input of the control

policy, since we already specified that the policy works on state estimates computed

online. Hence, in MC-PILCO4PMS, during the policy optimization phase, we simulate

also the presence of the measurement system and the online estimator. The state fed to

the policy, denoted x̄t, is computed to resemble the state that will be estimated online.

Recalling the notation of Section 2.4.2, let us denote with x
(m)
t = [q

(m) T
t , q̇

(m) T
t]T the

m-th particle at time step t, where we explicitly indicated the position and velocity compo-

nents. Thus, we simulate the presence of the measurement system by corrupting only the

particle’s position with a fictitious Gaussian i.i.d. noise e
(m)
t ∼ N (0, diag([σ

(1)
z . . . σ

(dq)
z])),

obtaining a simulated measure of the m-th particle q̄
(m)
t as

q̄
(m)
t = q

(m)
t + e

(m)
t , (3.1)

The σ
(i)
z s values must be tuned in accordance with the properties of the measurement

3.2 MC-PILCO for Partially Measurable Systems 51

Algorithm 2: MC-PILCO4PMS

init policy πθ(·), cost c(·), kernel k(·, ·), maximum optimization steps Nopt,
number of particles M , learning rate αlr, min. learning rate αlrmin

, dropout
probability pd, dropout probability reduction ∆pd

and other monitoring signal
parameters: σs, λs, ns, offline state estimator, online state estimator.

Apply exploratory control actions to system and collect data;
Compute offline state estimates and initialize GP training data-set;
while task not learned do

1) Model Learning:
Train GP models based on the offline estimated data-set;
2) Policy Update:
Initialize monitoring signal s0 = 0;
for j = 1...Nopt do

Simulate M particles rollouts with GP models and current policy πθj
(·)

considering the presence of the online state estimator as in Section 3.2.2;

Compute Ĵ(θj) from particles (2.11);

Compute ∇θĴ(θj) through backpropagation;
πθj+1

(·)← Gradient-based policy update (e.g., Adam step);

Update monitoring signal sj with (2.12);
if (2.13) is True then

Update pd, αlr and σs with (2.14);
end
if (2.15) is False then

break;
end

end
3) Policy Execution:
Apply updated policy to system and collect data;
Compute offline state estimates and update GP training data-set;

end
return trained policy, learned GP model;

52 Policy Search for Partially Measurable Systems

3.3 Proof of Concept

Here, we test the relevance of modeling the presence of online estimators using the PMS

setup described in Section 3.1 for the simulated cart-pole system.

To verify the effectiveness of the MC-PILCO4PMS strategy, two policy functions were

trained. The first policy is obtained with MC-PILCO by neglecting the presence of online

filtering during policy optimization and assuming direct access to the state predicted by

the model. On the contrary, the second policy is trained with MC-PILCO4PMS, which

models the presence of the online estimators as previously described in Section 3.2.2.

In both cases we equipped the GPs with SE kernel functions. Exploration data were

collected applying a sequence of control inputs derived from a sum of ten sine functions

with random amplitudes and frequencies. To avoid dependencies on initial conditions,

such as policy initialization and exploration data, we fixed the same random seed in

both experiments. In Figure 3.3, we report the results obtained in 400 runs by the

policies learned after 5 trials, on both the trained model (MODEL plot column) and the

actual cart-pole (SYSTEM plot column). Even though the two policies perform similarly

when applied to the learned models, which is all that can be tested offline, the results

obtained by testing the policies in the cart-pole system are significantly different. The

MC-PILCO4PMS policy optimized with modeling the presence of online filtering solves

the task in all 400 attempts. In contrast, the MC-PILCO policy is not able to solve the

task in the system, due to delays and discrepancies introduced by the online filter and

not considered during policy optimization.

We believe that these considerations on how to manipulate the data during model

learning and policy optimization might be beneficial for other MBRL algorithms different

from MC-PILCO.

3.4 Experiments with Real Systems 55

objective is to learn a controller able to swing-up the pendulum and stabilize it in the

upwards equilibrium (θv
t = ±π [rad]) with θh

t = 0 [rad]. The trial length is 3 seconds

with a sampling frequency of 30 [Hz]. The cost function is defined as

c(xt) = 1− exp

−

(

θh
t

2

)2

−

(

|θv
t | − π

2

)2

+ cb(xt), (3.2)

with

cb(xt) =
1

1 + exp
(

−10
(

−3
4π − θh

t

)) +
1

1 + exp
(

−10
(

θh
t −

3
4π
)) .

The first part of the function in (3.2) aims at driving the two angles towards θh
t = 0

and θv
t = ±π, while cb(xt) penalizes solutions where θh

t ≤ −
3
4π or θh

t ≥
3
4π. We set

those boundaries to avoid the risk of damaging the system if the horizontal joint rotates

too much. Offline estimates of velocities for the GP model have been computed by

means of central difference. With regards to the online estimation, we used causal

numerical differentiation, without filtering the position measurements, being that the

noise affecting the system was not too much relevant. Instead of xt, we considered

the extended state x∗
t = [θ̇h

t , θ̇v
t , sin(θh

t), cos(θh
t), sin(θv

t), cos(θv
t)]T inside GP inputs.

The policy is a squashed-RBF-network with nb = 200 basis functions that receives as

input [(θh
t − θh

t−1)/Ts, (θv
t − θv

t−1)/Ts, sin(θh
t), cos(θh

t), sin(θv
t), cos(θv

t)]T , where Ts is the

sampling time.

We used M = 400 particles to estimate the policy gradient from model predictions.

The exploration trajectory has been obtained using as input a sum of ten cosine waves

of random frequencies and same amplitudes. The initial state distribution is assumed

to be N ([0, 0, 0, 0]T , diag([5 · 10−3, 5 · 10−3, 5 · 10−3, 5 · 10−3]). The policy optimization

parameters used were the same described in Table 2.1 and GP reduction technique

presented in Section 2.3.3 was employed, with thresholds set to 10−3.

We solved the task using the three different kernel functions described in Section 2.3.2:

squared exponential (SE), squared exponential + polynomial of degree 2 (SE+P(2)) and

semi-parametrical (SP)2. In Figure 3.5, we show the resulting trajectories for each trial.

MC-PILCO4PMS managed to learn how to swing up the Furuta pendulum in all cases. It

succeeded at trial 6 with kernel SE, at trial 4 with kernel SE+P(2), and at trial 3 with SP

kernel. These experimental results confirm the higher data efficiency of more structured

kernels and the advantage that MC-PILCO4PMS offers by allowing any kind of kernel

2SP basis functions can be obtained by isolating, in each ODE defining Furuta pendu-
lum laws of motion, all the linearly related state-dependent components. In particular, we
have φθ̇h (x, u) = [(θ̇v)2sin(θv), θ̇hθ̇vsin(2θv), θ̇h, u] for the arm velocity GP, and φθ̇v (x, u) =
[(θ̇h)2sin(2θv), θ̇v, sin(θv), u cos(θv)] for the pendulum velocity GP.

56 Policy Search for Partially Measurable Systems

function. Moreover, we can observe the effectiveness of the cost function (3.2) in keeping

θh
t inside the desired boundaries most of the times, only during the first trial, the policy

obtained with SE+P(2) slightly exceeded the lower limit. Hence, considering penalties

similar to cb(xt) could be enough to handle soft constraints also in other scenarios.

3.4.2 Ball-and-plate

The ball-and-plate system is composed of a square plate that can be tilted in two

orthogonal directions by means of two motors. On top of it, there is a camera to

track the ball and measure its position on the plate. Let (bx
t , by

t) be the position of

the center of the ball along X-axis and Y-axis, while θ
(1)
t and θ

(2)
t are the angles of

the two motors tilting the plate, at time t. So, the state of the system is defined as

xt = [bx
t , by

t , ḃx
t , ḃy

t , θ
(1)
t , θ

(2)
t , θ̇

(1)
t , θ̇

(2)
t]T . The drivers of the motors allow only position

control, and do not provide feedback about the motors angles. To keep track of the motor

angles, we defined the control actions as the difference between two consecutive reference

values sent to the motor controllers, and we limited the maximum input to a sufficiently

small value, such that the motor controllers are able to reach the target angle within

the sampling time. Then, in first approximation, the reference angles and the motor

angles coincide, and we have u
(1)
t = θ

(1)
t+1 − θ

(1)
t and u

(2)
t = θ

(2)
t+1 − θ

(2)
t . The objective of

the experiment is to learn how to control the motor angles in order to stabilize the ball

around the center of the plate. Notice that the control task, with the given definition of

inputs, is particularly difficult because the policy must learn to act in advance, and not

only react to changes in the ball position. The cost function is defined as

c(xt) = 1− exp

−

(

bx
t

0.15

)2

−

(

by
t

0.15

)2

−
(

θ
(1)
t

)2
−
(

θ
(2)
t

)2

 . (3.3)

The trial length is 3 seconds, with a sampling frequency of 30 [Hz]. Measurements

provided by the camera are very noisy, and cannot be used directly to estimate velocities

from positions. We used a Kalman smoother for the offline filtering of ball positions bx
t , by

t

and associated velocities ḃx
t , ḃy

t . In the control loop, instead, we used a Kalman filter [45]

to estimate online the ball state from noisy measures of positions. When simulating the

online estimator during policy optimization, we tried both to perturb and to not perturb

the positions of the predicted particles with some additive noise. We obtained similar

performance in the two cases, this result may be due to the fact that the Kalman filter is

able to effectively filter out the white noise added to particles. Concerning the model,

we need to learn only two GPs predicting the evolution of the ball velocity because we

directly control motor angles, hence, their evolution is assumed deterministic. GP inputs,

3.4 Experiments with Real Systems 57

x̃t, include an extended version of the state, where angles have been replaced by their

sines and cosines, and motor angular velocities have been estimated with causal numeri-

cal differentiation, hence x̃t = [bx
t , by

t , ḃx
t , ḃy

t , sin(θ
(1)
t), cos(θ

(1)
t), sin(θ

(2)
t), cos(θ

(2)
t), (θ

(1)
t −

θ
(1)
t−1)/Ts, (θ

(2)
t − θ

(2)
t−1)/Ts, u

(1)
t , u

(2)
t]T (Ts is the sampling time). We used the SE+P(1)

kernel (2.9), where the linear part is acting only on a subset of the inputs, x̃lin
t =

[sin(θ
(1)
t), sin(θ

(2)
t), cos(θ

(1)
t), cos(θ

(2)
t), u

(1)
t , u

(2)
t]. The GP reduction threshold was de-

creased to 10−4 because of the small distances that the ball can cover in a time step.

We considered M = 400 particles for policy gradient estimation. The policy is a

multi-output squashed-RBF-network, with nb = 400 basis functions, that receives in

input (bx
t , by

t , ḃx
t , ḃy

t , θ
(1)
t , θ

(1)
t−1, θ

(2)
t , θ

(2)
t−1), where the state of the ball is obtained through

the Kalman filter; maximum angle displacement is umax = 4 [deg] for both motors. The

policy optimization parameters used were the same described in Table 2.1, with the

difference that we used αlr = 0.006 as initial learning rate. The reduction of the learning

rate is related to the use of small length-scales in the cost function, that are necessary

to cope with the small range of movement of the ball. For the same reason, we set also

αlrmin
= 0.0015 and σs = 0.05. Initial exploration is given by two different trials, in which

the control signals are two triangular waves perturbed by white noise. Mostly during

exploration and initial trials, the ball might touch the borders of the plate. In those cases,

we kept data up to the collision instant. A peculiarity of this experiment in comparison

to the others seen before is a wide range of initial conditions. In fact, the ball could be

positioned anywhere on the plate’s surface, and the policy must control it to the center.

The initial distribution of bx
0 and by

0 is a uniform U(−0.15, 0.15), which covers almost the

entire surface (the plate is a square with sides of about 0.20 [m]). For the other state

components, θ
(1)
t and θ

(2)
t , we assumed tighter initial distributions U(−10−6, 10−6).

MC-PILCO4PMS managed to learn a policy able to control the ball around the center

starting from any initial position after the third trial, 11.33 seconds of interaction with

the system. Figure 3.6 shows the ball trajectories observed during the initial explorations

and the attempted policy trials. Note how the initial position of the ball varies in each

trial, in this way we were able to provide MC-PILCO4PMS with data from different

areas of the plate. We tested the final policy starting from ten different points in order to

verify the ability of the learned controller to stabilize the ball in the center of the plate

from different positions, the resulting trajectories are reported in Figure 3.7. The mean

steady-state error, i.e. the average distance of the final ball position from the center

observed in the ten trials, was 0.0099 [m], while the maximum measured error was 0.0149

[m], which is lower than the radius of the ball, that is 0.016 [m].

3.5 Conclusion 61

3.5 Conclusion

In this chapter, we analyzed common problems arising when trying to apply MBRL to

real systems. In particular, we focused on systems with partially measurable states, which

are particularly relevant in real applications. In this context, we proposed a modified

version of the algorithm of Chapter 2 called MC-PILCO4PMS, where we verified the

importance of taking into account the presence of the state estimators during policy

optimization in the case of mechanical systems. Results have been validated in a simulated

cart-pole swing-up scenario, and also on real systems, such as a Furuta pendulum and

a ball-and-plate setup. Such considerations could be extended also to other partially

measurable systems, and are not limited only to the case of velocity estimation.

The issues regarding the impossibility of measuring directly the velocity states tackled

in MC-PILCO4PMS could be further analyzed by considering a Derivative-Free framework

[27], that entails the presence of a predictive model based only on the history of positions.

In the next chapter we will modify the MC-PILCO setting to work in such framework,

circumventing totally, in this way, the necessity of performing velocity estimation.

62 Policy Search for Partially Measurable Systems

4
Derivative-Free Model-Based Policy Search

In the previous chapter, we have seen that the application of MBRL methods to real-world

environments is affected by a major problem: the full state of a real system is often only

partially measurable. In particular, in the case of mechanical systems, the joint positions

can be measured by means of proper sensors, e.g. encoders, whereas velocities often

can only be estimated from the history of measured positions. The MC-PILCO4PMS

algorithm was specifically designed to deal with partially measurable systems and to take

into account the presence of online and offline state estimators. The algorithm was shown

to robustly learn from scratch how to control mechanical systems, in both simulated

and real environments, facing correctly the velocity estimation problem. However, the

tuning of accurate filters is a tedious task that could be particularly challenging and

time-consuming for systems affected by significant noise.

In this chapter, instead, we present an alternative approach for learning to control

mechanical systems, called Derivative Free Monte Carlo Probabilistic Inference for

Learning COntrol (DF-MC-PILCO). This new approach circumvents the necessity of

estimating velocities, by working only with the history of measured positions and control

actions. We adopted a Derivative-Free (DF) predictive model, inspired by [77, 28],

together with a control policy that depends only on past positions. DF-MC-PILCO

entails the same three main phases of a model-based policy gradient approach depicted

in Section 2.1.1, here reformulated in a DF sense.

64 Derivative-Free Model-Based Policy Search

We compare the proposed method with MC-PILCO4PMS on the same benchmarks

studied in Chapter 3, namely, the simulated cart-pole, and the two real systems: the

Furuta pendulum and the ball-and-plate. DF-MC-PILCO efficiently solved all the tasks

with performance similar to MC-PILCO4PMS. Remarkably, DF-MC-PILCO managed to

work directly with raw measurements, despite the presence of high noise. The observed

results confirmed that the application of DF-MC-PILCO could be advantageous when

working with particularly noisy mechanical systems.

The remainder of the chapter is structured as follows. In Section 4.1, we present

the details of the proposed algorithm, DF-MC-PILCO, describing the characteristics

of the DF model learning and policy update phases. Section 4.2 illustrates the studies

conducted in the simulated cart-pole scenario to validate the algorithm. Section 4.3

reports the experiment performed on a simulated UR5 robot to test DF-MC-PILCO

capacity of handling high DoF systems. Section 4.4 shows the results of the experiments

with the two real mechanical systems. Finally, we draw conclusions in Section 4.5.

4.1 Derivative-Free MC-PILCO

Here we present the proposed DF-MC-PILCO algorithm, whose objective is to learn

from scratch how to control mechanical systems without the need of performing any

kind of velocity estimation. In fact, tuning effective estimators may be a tedious and

problematic operation, especially in the presence of high measurement noise. DF-MC-

PILCO circumvents these issues by adopting a DF formulation of the problem.

Recalling the notation introduced in the previous chapter, consider a mechanical

system with dq DoF, and denote with qt ∈ R
dq and q̇t ∈ R

dq , respectively, the joint

positions and velocities. Let indicate with ut ∈ R
du the vector of control actions.

We consider a DF model of the system dynamics, given in the following general form

qt+1 = fdf(qt, qt−1, . . . , qt−mq
, ut, . . . , ut−mu). (4.1)

The joint positions at the next time step are predicted based on the history of the past

positions, from t up to t−mq, and the history of applied control actions, from t up to

t −mu. Let mq and mu be called, respectively, the position memory and the control

memory of the DF model. In this new DF framework, it is convenient to redefine the

state of the system as xt = [qT
t , . . . , qT

t−mq
, uT

t−1, . . . , uT
t−mu

]T .

In the following, we present the details of the model learning and policy update phases

of the DF-MC-PILCO algorithm, detailing how they have been adapted to the new DF

formulation of the problem.

4.1 Derivative-Free MC-PILCO 65

4.1.1 DF model learning

We employed the GPR framework of Section 2.1.2, but instead of considering a full

state representation with velocities, we train a DF GP model of form (4.1). Let us

denote with q
(i)
t the position of the i-th joint at time t, and define ∆

(i)
qt = q

(i)
t+1 − q

(i)
t , for

i ∈ {1, . . . , dq}. The evolution of ∆
(i)
qt for all i is modeled using a distinct GP, whose input

depends upon [qT
t , . . . , qT

t−mq
, uT

t , uT
t−1, . . . , uT

t−mu
]T . Trivially, the transition functions

of the components qt−1, . . . , qt−mq
, ut−1, . . . , ut−mu are deterministic and known.

Experimentally, we found that it is beneficial in terms of data-efficiency (details follow

in Section 4.2.3) to rearrange the GP input as

x̃t =
[

qT
t , ∆T

qt−1
, . . . , ∆T

qt−mq
, uT

t , . . . , uT
t−mu

]T
, (4.2)

where ∆qt−i
= (qt−i+1− qt−i), for i = 1, . . . , mq, following the same notation used before

when defining the GP targets.

In this way, we are providing the model with additional information about the rates of

change observed inside the considered past position memory interval mq. Depending on

the considered application, it may be convenient to further modify the GP input vector

w.r.t. (4.2), in order to exploit particular characteristics of the considered quantities.

For instance, we applied a sin-cos expansion to angular quantities during some of the

experiments presented in the next sections.

4.1.2 DF particle-based policy gradient

The GP-based DF predictive model is then employed to optimize the policy parameters

θ following a particle-based policy gradient strategy, as described in Section 2.4. In fact,

DF-MC-PILCO computes Ĵ(θ), an approximation of the expected cumulative cost J(θ)

(defined as in (2.1)), exploiting the posterior distribution p(xt+1|x̃t,D) given by the GPs.

After that, it updates the parameters θ through a gradient-based procedure.

Following the same strategy adopted by MC-PILCO, the computation of Ĵ(θ) entails

the simulation of the effects of the policy πθ on M independent state particles by cascading

the one-step-ahead stochastic predictions. In particular, let q
(m)
t , for m = 1, . . . , M ,

represent the position of the M state particles simulated by the DF GP model. Starting

positions are sampled from a given distribution p(q0). We assume that the system

is not moving at t = 0, i.e., q
(m)
0 = q

(m)
−1 = · · · = q

(m)
−mq

. At each time step t, in

order to simulate the presence of measurement error, we corrupt the particle positions

q
(m)
t with a fictitious noise e

(m)
t , e.g. a zero mean Gaussian i.i.d. noise, obtaining

a set of simulated measurements q̄
(m)
t = q

(m)
t + e

(m)
t . Then, for each particle, the

4.2 Experimental Validation: Simulated Cart-pole 67

consecutive position measures used for GP input in (4.2). Nevertheless, it is worth

mentioning that we are not restricted to this particular policy structure, and DF-MC-

PILCO can easily deal with any kind of differentiable policy.

4.2 Experimental Validation: Simulated Cart-pole

As a preliminary validation, we tested DF-MC-PILCO on the simulated cart-pole swing-

up task to analyze its performance under different set-ups. We compare the proposed

approach to MC-PILCO4PMS, the algorithm described in Chapter 3. The physical

properties of the simulated system are the same that were provided in Section 2.5.

Recalling the previous notation, let pt and αt denote, respectively, the position of the

cart and the the angle of the pole, at time step t, hence qt = [pt, αt]
T . The cart-pole

starts from its downward stable equilibrium at θ0 = 0 [rad] and p0 = 0 [m]. The target

configurations corresponding to the swing-up of the pendulum is still given by pdes = 0

[m] and |αdes| = π [rad]. Hence, the cost function we aim to minimize is the same

considered in the previous chapters and defined in (2.16). The control action is the force

that pushes the cart horizontally and the system is controlled at 30 [Hz]. We considered

a Gaussian measurement noise with standard deviation of 10−3 [m] for cart positions

and 2 · 10−3 [rad] for pole angles.

The GPs of the DF model are equipped with the SE kernel described in (2.2). The

policy adopted is a squashed-RBF-network policy with nb = 200 basis functions and

umax = 10 [N]. The number of particles is set to M = 400 during policy optimization.

In order to avoid singularities due to the angles, we replaced, in both the model inputs

x̃t defined in (4.2) and policy input x∗ defined in (4.3), occurrences of αt with sin(αt)

and cos(αt). Exploration data were collected by random actions, obtained by filtering

Gaussian white noise with cut-off frequency 1.5 [Hz].

The objective is to analyze different DF-MC-PILCO setups and compare their perfor-

mance with the results obtained by MC-PILCO4PMS, as a benchmark. We analyzed

the results obtained in 50 distinct experiments, consisting of 5 trials of length 3 seconds,

varying the random seed each time. In this way, it is possible to evaluate the robustness

of the algorithm to different exploration trajectories and policy initialization, as well

as to different noise realizations. In particular, we investigate the effects that different

position and control memories, mq and mu, have on modeling and policy learning.

We studied four different DF-MC-PILCO setups, choosing the value of mq between

1 and 2, and mu between 0 and 1. In the following, we will refer to these different

alternatives with the symbol DF mu
mq

.

70 Derivative-Free Model-Based Policy Search

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5

DF mu=0

mq=1
0% 14% 34% 46% 56%

DF mu=0

mq=2
0% 10% 18% 28% 52%

DF mu=1

mq=1
0% 8% 52% 86% 96%

DF mu=1

mq=2
0% 20% 73% 93% 100%

PMS 0% 14% 82% 98% 96%

Table 4.1: Success rates obtained by the four different DF-MC-PILCO setups and by
MC-PILCO4PMS (indicated with the shorthand PMS) at each trial of the simulated

cart-pole experiments.

4.2.3 Analysis of input vector structure

Before concluding this section, we would like to analyze the reasons behind the decision

to use (4.2) and (4.3) as GP and policy input vectors, respectively. In this respect, we

compared the results obtained by DF-MC-PILCO with position memory mq = 2 and

control memory mu = 1 using two different structures for the input vectors. The first

employs directly the history of positions and actions up to time step t as GP input,

e.g., x̃t = [qT
t , . . . , qT

t−mq
, uT

t , . . . , uT
t−mu

]T , and the history of positions as policy input,

e.g., x∗
t = [qT

t , . . . , qT
t−mq

]T . The second version is the one employed previously with GP

input and policy input defined as in (4.2) and (4.3), respectively. To distinct the two

implementations, we labeled the first as DF mu=1
mq=2 naive, and the second DF mu=1

mq=2 with

position differences. We analyzed the results obtained by these two setups in 50 distinct

experiments, consisting of 7 trials of length 3 seconds, varying the random seed each

time. The obtained cumulative costs are reported in Figure 4.4 in terms of median values

and confidence intervals defined by the 5-th and 95-th percentiles.

It is clear that providing information about the rate of change of position measures,

by using (4.2) and (4.3) as input vectors, greatly improves the data efficiency of DF-

MC-PILCO algorithm. In fact, the DF mu=1
mq=2 naive implementation (that uses directly

the history of position and controls) shows a much slower convergence, reaching a 79%

success rate only at trial 7. On the other hand, we have already seen, that DF mu=1
mq=2 with

position differences is able to always find a solution by trial 5.

This result underlines the importance of the information carried out by the differences

between consecutive measured positions. Without this information, the model needs

more data to correctly capture the dynamics of the system relying only on positions.

Through input vectors (4.2) and (4.3), we are able to provide the model with knowledge

about a sort of velocity, without requiring any kind of filtering procedure.

4.4 Experiments with Real Systems 73

DF-MC-PILCO managed to learn an effective control policy by the third trial in

all the repetitions. The average end-effector tracking errors obtained are reported in

Fig. 4.6a, where results are given by means of box plots. Indicatively, we observed

average positioning errors not superior to 2 [mm]. Finally, in Fig. 4.6b we reported, as an

example, the exploratory and final trajectories obtained during one of the test. We can

consider the obtained performance satisfying, also w.r.t. the results obtained in Chapter

2, where an effective controller was learned one trial earlier, but relying on direct velocity

measurements, which is an unrealistic assumption, possible only in simulation.

4.4 Experiments with Real Systems

In this section, we report the results obtained by DF-MC-PILCO when applied to real

systems. In particular, we experimented on the same two benchmarks previously described

in Section 3.4. The objective is to compare the performance obtained by DF-MC-PILCO

in these two setups with the results of MC-PILCO4PMS reported in the previous chapter.

4.4.1 Furuta pendulum

The Furuta pendulum considered here is the same described in Section 3.4.1. We denote

the pose at time step t with qt = [αh
t , αv

t]T , where αh
t is the angle of the horizontal joint

and αv
t the angle of the vertical joint attached to the pendulum. The objective is to learn

a DF controller able to swing-up the pendulum and stabilize it in the upward equilibrium

(αv
t = ±π [rad]) with αh

t = 0 [rad], starting from q0 = [0, 0]T . The trial length is 3 [s] and

the system is controlled at a sampling frequency of 30 [Hz]. The cost function adopted is

the same considered in the MC-PILCO4PMS experiment, that was defined in (3.2).

In this scenario, we used position memory mq = 2 and control memory mu = 1. We

equipped the DF GP model with an SE kernel and adopted a squashed-RBF-network

with nb = 200 basis functions as control policy. M = 400 particles were simulated during

policy optimization. We replaced, in both GP inputs x̃t and policy input x∗, occurrences

of αh
t and αv

t with their sin-cos expansion, as previously done in the simulated cart-pole

case. The exploration trajectory has been obtained using as input a sum of ten cosine

waves of random frequencies and same amplitudes. The presence of quantization errors

was simulated during particles generation by corrupting predicted angles with a uniform

fictitious measurement noise U(−π
4096 , π

4096) [rad].

DF-MC-PILCO learned how to swing-up the Furuta pendulum at trial 6, i.e. after

18 seconds of experience. That is the same result obtained by MC-PILCO4PMS, when

using the SE kernel. Hence, the DF approach showed no particular differences in terms

4.5 Conclusion 77

seconds. In Figure 4.10, we reported the trajectories observed at each trials.

We tested the policy starting from ten different points in order to compare the two

policies obtained by DF-MC-PILCO (Figure 4.9) and MC-PILCO4PMS (see Figure

3.7, in the previous chapter). The mean steady-state error, i.e. the average distance of

the last ball position from the center observed in the ten tests, was 0.0134 [m], while

MC-PILCO4PMS final policy obtained a slightly better result, with a mean error of

0.0099 [m]. Nevertheless, this difference in terms of performance is quite negligible, given

the dimension of the ball whose radius is 0.016 [m], and the the fact that DF-MC-PILCO

worked directly on raw measurements.

4.5 Conclusion

We presented DF-MC-PILCO, an extension of the MC-PILCO algorithm of Chapter 2,

specifically designed to learn from scratch how to control mechanical systems without the

need of computing any explicit velocity estimates. In our opinion, this may be a critical

advantage when dealing with real mechanical systems affected by significant measurement

noise, since, in this kind of scenario, the design of accurate velocity estimators can be a

challenging and time-consuming procedure. The algorithm uses GPR to model the joint

position changes, based upon the history of past control actions and measurements. DF-

MC-PILCO was tested both in simulated environments (cart-pole and UR5 robot) as well

as in two different real systems (Furuta pendulum and ball-and-plate). It proved able to

solve all the tasks, with results that are in line with the performance of MC-PILCO4PMS

algorithm, that works with a complete state representation and must estimate velocities.

Part II

Gaussian Processes for

Data-Driven Robot Control

5
Feedback Linearization Torque Control using

Gaussian Processes

Dynamics models are fundamental in robotics. For instance, inverse dynamics models,

which relate joint trajectories to joint torques, are used in high-precision trajectory

tracking applications [91, 32, 86], and also in problems where robots interact with the

environment, such as force control [87, 86], impedance control [44, 16], and collision

detection [43, 29].

In the aforementioned applications, the accuracy of the inverse dynamics model

is crucial. However, deriving an accurate model of the robot inverse dynamics is a

challenging task, in particular when system specifications are limited or uncertain, or

when complex behaviors such as friction and elasticity are relevant. Indeed, in these

contexts, the identification of parametric models derived from first principles of physics

[88, 85] are often not effective, due to model bias and unmodeled behaviors. For these

reasons, in the last decades, several black-box and grey-box strategies for inverse dynamics

identification have been proposed. A relevant class of solutions is based on Gaussian

Process Regression (GPR) [74], see for instance [60, 68, 79, 84, 75]. Here, instead of

identifying the physical parameters of the model, the inverse dynamics are treated as

an unknown function, which relates position, velocity, and acceleration of the joints to

torques. This unknown function is modeled a priori as a Gaussian Process (GP), with

82 Feedback Linearization Torque Control using Gaussian Processes

covariance parametrized through a kernel function [74, 83]. The posterior distribution of

the joint torques, given the observed data, can be computed in closed form, and can be

used to predict joint torques.

Compared to physical models, GP models are less interpretable since they are not

strictly related to the dynamics equations; consequently, their use in control applications

might be less straightforward. However, several works show that such models can be used

in applications, see, for instance, [84, 69, 2, 8, 75] concerning trajectory tracking, and

[29] concerning proprioceptive collision detection. Typically, in trajectory tracking, GP

models are exploited by implementing a feedforward control scheme [24], see the diagram

in Figure 5.1a. Instead of using parametric models, in the GP implementation, the

feedforward term is the output of the GP model evaluated for the position, velocity, and

acceleration of the reference trajectory. The control loop is closed with a decentralized

PD controller to cancel errors. When the GP model is accurate and the PD gains are set

properly, the feedback loop is effective in canceling the residual tracking error. However,

there are some issues that could limit the performance of a feedforward controller.

(i) In the feedback loop, coupling between different degrees of freedom (DoF) are not

considered.

(ii) The robot inertia is configuration dependent, and, in some cases, it might be

difficult to obtain a set of PD gains that can assure the same performance for all

configurations.

(iii) Convergence is not guaranteed, even if the inverse dynamics is exactly known.

For details about (ii) and (iii), we refer the interested reader to Chapter 10.5 of [24].

An alternative control scheme is feedback linearization control [91, 32, 86], described

in the diagram in Figure 5.1b. In contrast to feedforward control, where the model is

used to compute a proper control input in advance, in feedback linearization, the inverse

dynamics model is used to obtain a tracking error with linear dynamics. The control

input is the sum of two terms. The first aims at compensating all the torques independent

of accelerations. The second is given by a feedforward term proportional to the reference

acceleration, and a PD feedback term. To account for couplings and variations of the

inertia matrix, the second term is computed using an estimate of the inertia matrix. In

contrast to feedforward control, feedback linearization assures asymptotic convergence,

if the dynamics are known exactly. Moreover, the error dynamics are described by a

second-order linear differential equation, fully characterized by the PD gains, providing a

principled way to set the PD gains [86].

84 Feedback Linearization Torque Control using Gaussian Processes

algorithms implemented. Experiments are described in Section 5.4, and conclusions are

drawn in Section 5.5.

5.1 Background

In the first part of this section, we provide background formulation of robot dynamics,

as well as introduce the trajectory tracking problem and describe feedback linearization

control. In the second part, we describe GPR for inverse dynamics identification, detailing

the black-box priors adopted in this work.

5.1.1 Robot dynamics and control

Consider a mechanical systems with n DoF, and denote with qt ∈ R
n its generalized

coordinates at time t; q̇t and q̈t are the velocity and the acceleration of the joints,

respectively. The generalized torques, i.e., the control input of the system, are denoted

with τ t ∈ R
n. For compactness, in the following, we will denote explicitly the dependencies

on t only when strictly necessary. Under rigid body assumptions, the dynamics equations

of a mechanical system are described by the following matrix equation

B(q)q̈ + c(q, q̇) + g(q) + F (q̇) = τ , (5.1)

where B(q) is the inertia matrix, while c(q, q̇), g(q), and F (q̇) account, respectively, for

the contributions of fictitious forces, gravity, and friction, see [86] for a more detailed

description. For compactness, we introduce also n(q, q̇) = c(q, q̇) + g(q) + F (q̇). In the

following, we will denote with B̂(q) and n̂(q, q̇) the estimates of B(q) and n(q, q̇).

The trajectory tracking problem consists in designing a controller able to follow a

reference trajectory rt, ṙt, r̈t, starting from initial conditions qt0
, q̇t0

, q̈t0
.

In feedback linearization control, the control input τ is

a = r̈ + Kpe + Kdė, (5.2a)

τ = B̂(q)a + n̂(q, q̇). (5.2b)

Assuming that the model is known exactly, i.e., B̂(q) = B(q) and n̂(q, q̇) = n(q, q̇),

combining (5.1) and (5.2) and recalling that B(q) is invertible, it can be proven that the

tracking error goes asymptotically to zero if Kp > 0 and Kd > 0 [86]. Indeed, under these

assumptions, the dynamics of the tracking error is described by the following second

5.1 Background 85

order linear differential equation

ë + Kdė + Kpe = 0, (5.3)

which is stable if Kp > 0 and Kd > 0. This fact represent a considerable advantage

w.r.t. feedforward control, since it provides a principled way to chose Kp and Kd. Indeed,

selecting Kp = ω2I and Kd = 2ζωI, with I being the identity matrix, we obtain n

decoupled second-order input/output relations with natural frequency ω and damping

ratio ζ.

5.1.2 GPR for inverse dynamics identification

GPR provides a solid probabilistic framework to identify the inverse dynamics from

data. Typically, in GPR, each joint torque is modeled by a distinct and independent GP.

Consider an input/output dataset D =
{

y(i), X
}

, where y(i) ∈ R
N is a vector collecting

N measurements of τ (i), the i-th joint torque, while X = {xt1 . . . xtN
}; xt is the vector

collecting the position, velocity and acceleration of the joints at time t, hereafter denoted

GP input. The probabilistic model of D is

y(i) =

f (i) (xt1)
...

f (i) (xtN
)

+

w
(i)
t1

...

w
(i)
tN

= f (i)(X) + w(i),

where w(i) is i.i.d. Gaussian noise with standard deviation σi, while f (i)(·) is an unknown

function modeled a priori as a GP, namely, f (i)(·) ∼ N(0, K(i)(X, X)). The covariance

matrix K(i)(X, X) is defined through a kernel function k(i)(·, ·). Specifically, the covari-

ance between f (i)(xtj
) and f (i)(xtk

), i.e., the element of K(i)(X, X) at row j and column

l, is equal to k(i)
(

xtj
, xtk

)

. Exploiting the properties of Gaussian distributions, it can

be proven that the posterior distribution of f (i) given D in a general input location x∗

is Gaussian [74]. Then, the maximum a posteriori estimator corresponds to the mean,

which is given by the following expression

f̂ (i)(x∗) = K(i) (x∗, X) α(i), (5.4)

where

α(i) = (K(i) (X, X) + σ2
i I)−1y(i),

K(i)(x∗, X
)

=
[

k(i)(x∗, xt1

)

. . . k(i)(x∗, xtN

)

]

.

86 Feedback Linearization Torque Control using Gaussian Processes

Different solutions proposed in the literature can be grouped roughly based on the

definition of the GP prior. In this chapter, we will consider two black-box approaches,

where the prior is defined without exploiting prior information about the physical model.

Squared Exponential (SE). The SE kernel [74, 83], defines the covariance between

samples based on the distance between GP inputs, and it is defined by the following

expression

kSE

(

xtj
, xtl

)

= λ2e
− 1

2‖xtj
−xtl‖

2

Λ−1 ; (5.5)

λ and Λ are the kernel hyper-parameters. The first is a scaling factor, and the second is

a positive definite matrix, which defines the norm used to compute the distance between

inputs. A common choice consists in considering Σ to be diagonal, with the positive

diagonal elements named length-scales.

Geometrically Inspired Polynomial (GIP). The GIP kernel has been recently

introduced in [60]. This kernel is based on the property that the dynamics equations

in (5.1) are a polynomial function in a proper transformation of the GP input, fully

characterized only by the type of each joint. Specifically, q is mapped in q̃, the vector

composed by the concatenation of the components associated with a prismatic joint and

the sines and cosines of the revolute coordinates. As proved in [60], the inverse dynamics

in (5.1) is a polynomial function in q̈, q̇ and q̃, where the elements of q̈ have maximum

relative degree of one, whereas the ones of q̇ and q̃ have maximum relative degree two.

To exploit this property, the GIP kernel is defined through the sum and the product of

different polynomial kernels [30], hereafter denoted as k
(p)
P (·, ·), where p is the degree of

the polynomial kernel. In particular, we have

kGIP

(

xtj
, xtl

)

=
(

k
(1)
P

(

q̈tj
, q̈tl

)

+ k
(2)
P

(

q̇tj
, q̇tl

)

)

kQ

(

q̃tj
, q̃tl

)

, (5.6)

where, in its turn, kQ is given by the product of polynomial kernels with degree two, see

[60] for all the details. In this way, the GIP kernel allows defining a regression problem

in a finite-dimensional function space where (5.1) is contained, leading to better data

efficiency in comparison with the SE kernel.

5.2 Dynamics Components Estimation from Inverse

Dynamics Model

In this section, we describe how it is possible to obtain estimates of the different contribu-

tions in the left-hand side of (5.1) when adopting GPR to identify the inverse dynamics;

in particular, we discuss the computation of gravitational contributions, inertial contri-

5.2 Dynamics Components Estimation from Inverse Dynamics Model 87

butions, and n(q, q̇). We assume that a distinct GP is used for each of the n degree

of freedom, and we denote by f̂ (i)(·), i = 1 . . . n, the estimator of the i-th joint torque

obtained applying (5.4). For convenience, from here on, we will point out explicitly

the different components of the GP input, namely, the input of the f̂ (i) will be (q, q̇, q̈)

instead of x, which comprises the concatenation of q, q̇, q̈. It is worth mentioning that

the proposed approach is inspired by the strategy adopted in Newton-Euler algorithms,

see [31].

5.2.1 Gravitational contribution

As shown in (5.1), the torques due to the gravitational contributions account for all the

terms that depend only on q. Consequently, to obtain g(i)(q), i.e., the estimate of the

i-th gravitational contribution in the configuration q, we evaluate f̂ (i) by setting q̇ = 0,

q̈ = 0. Then, the estimate of g(q) is

ĝ(q) =

ĝ(1)(q)
...

ĝ(n)(q)

=

f̂ (1)(q, 0, 0)
...

f̂ (n)(q, 0, 0)

. (5.7)

5.2.2 Inertial contributions

The inertial contributions, i.e., B(q)q̈, accounts for all the contributions that depend

simultaneously on q and q̈. Consequently, to estimates these contributions, we evaluate the

GP models in (q̈, 0, q), and subtract the gravitational contribution defined and computed

previously. In particular, to obtain B̂ij(q), i.e., the estimate of the B(q) element in

position (i, j), we set all the accelerations to zero, except for the j-th component. Denoting

with 1j the vector with all elements equal to zero except for the j-th element, which,

instead, is equal to one, we have

B̂ij(q) = f̂ (i)(q, 0, 1j)− ĝ(i)(q). (5.8)

5.2.3 Estimation of n(q)

The vector n(q) collects all the contributions that do not depend on q̈. Then, n(i)(q, q̇),

i.e., the estimate of the i-th component of n(q), is computed by evaluating the i-th GP

88 Feedback Linearization Torque Control using Gaussian Processes

model setting q̈ = 0. Then, we have

n̂(q, q̇) =

n̂(1)(q, q̇)
...

n̂(n)((q, q̇))

=

f̂ (1)(q, q̇, 0)
...

f̂ (n)(q, q̇, 0)

. (5.9)

5.3 Feedback Linearization Control Based on Gaussian

Process Model

In this section, we describe the two GP-based feedback linearization controllers im-

plemented. The first implementation aims at estimating directly an approximation of

(5.2) using the GP models, whereas the second computes the approximation of (5.2) by

estimating B(q) and n(q, q̇) using the expressions derived in Section 5.2.

5.3.1 GP-FL

In this approach, hereafter denoted as GP Feedback Linearization control (GP-FL),

the control input is selected to be directly the estimate of (5.2b). The estimate of

(5.2b) at time t is obtained by evaluating the n GP models with GP-input given by the

concatenation of qt, q̇t and at = r̈t + Kpet + Kdėt. Then, referring to the notation

previously introduced, we have

τ t = f̂(qt, q̇t, at) =
[

f̂ (1)(qt, q̇t, at) . . . f̂ (n)(qt, q̇t, at)
]T

. (5.10)

The overall GP-FL control architecture is schematized in Figure 5.2.

5.3.2 GP-FL-DCE

The second approach, named GP Feedback Linearization control with Dynamics Com-

ponents Estimation (GP-FL-DCE), computes the control input based on (5.2) and the

estimation of B(q) and n(q, q̇) obtained with the GP input. First, the elements of the

inertia matrix and the estimates of n(q, q̇) are computed by applying, respectively, (5.8)

and (5.9). Then, the input is

τ t = B̂(qt)at + n̂(qt, q̇t) =

B̂11(q) . . . B̂1n(q)
...

...
...

B̂n1(q) . . . B̂nn(q)

at +

n̂(1)(q, q̇)
...

n̂(n)((q, q̇))

, (5.11)

90 Feedback Linearization Torque Control using Gaussian Processes

Figure 5.3: Boxplots of the absolute errors obtained in Dtest with the SE and GIP kernels.
In the table below, we report the nMSE percentages.

τ1 τ2 τ3 τ4 τ5 τ6 τ7

SE 3.99 0.48 4.22 0.88 7.95 10.86 4.91
GIP 0.42 0.12 0.55 0.18 1.21 1.80 1.05

was Gaussian noise filtered with a second-order low-pass filter (with cutoff frequency 1

Hz). The length of the trajectory was 50 seconds, resulting in 50,000 samples. To limit

the computational complexity of (5.4), the collected samples were down-sampled with a

constant rate of 10, obtaining 5,000 samples for each dataset.

In Figure 5.3, we visualize the distribution of the absolute value of the errors obtained

in Dtest with the two GP estimators. Moreover, in the table below Figure 5.3, we reported

the normalized Mean Squared Error (nMSE), namely, the ratio between the mean squared

error and the variance of the correspondent joint torques, expressed as a percentage. As

already showed in [60], for all joints, the estimator based on the GIP kernel outperforms

the one based on the SE kernel, showing better data efficiency and generalization.

5.4.2 Trajectory tracking without initial tracking error

In the first control experiment, the GP-FL and GP-FL-DCE controllers based on the two

models were tested on the same trajectory tracking problem. For each dof, j = 1, . . . , 7,

94 Feedback Linearization Torque Control using Gaussian Processes

behavior described in (5.3). Significant differences between the tracking error evolution

can be appreciated only at steady state, where the controllers based on GP models are

subject to limited oscillations around zero, with absolute value lower than 1 [deg], and

growing with the amplitude of the reference trajectories. These errors are due to model

inaccuracies, which becomes more relevant when the reference trajectories cross regions

that are far from the distribution of the training samples. The errors are higher for the

controller based on the SE kernel. This is in accordance with the considerations presented

in Section 5.4.1, where we highlight that the model based on GIP is more accurate. In

particular, the tracking errors at steady state are higher in joint 3, 4, 6, and 7, which are

the ones where the GP estimator is less accurate, as confirmed by the nMSE obtained in

the experiment of Section 5.4.1.

5.5 Conclusion

In this chapter, we analyzed the implementation of feedback linearization control schemes

based on GP models of the inverse dynamics. We considered two strategies. The first

computes the control input directly with the GP model, whereas the second computes

the input after estimating the individual components of the dynamics, in particular, the

inertia matrix and the torques independent from accelerations. The two strategies were

compared on a trajectory tracking problem with a simulated 7-DoF manipulator, varying

also the kernel choice; we considered the SE and GIP kernels. Results show that the

second implementation is more robust w.r.t. the kernel choice and model inaccuracies.

Moreover, as regards the choice of kernel, the obtained performance shows that the use of

a structure kernel, such as the GIP kernel, is advantageous, resulting in good performance

for both feedback linearization control implementations.

Part III

Gaussian Processes for Modeling

Cloth Dynamics

6
Modeling Robotic Cloth Manipulation using

Gaussian Processes

Robotic cloth manipulation has a wide range of applications, from textile industry to

assistive robotics [10, 64, 54, 82, 41, 13]. However, the complexity of cloth behaviour

results in a high uncertainty in the state transition given a certain action. This uncer-

tainty is what makes cloth manipulation much harder than manipulating rigid objects.

Intuitively, using a cloth model is the solution to reduce such uncertainty by knowing an

approximation of cloth dynamics. In literature, we can find several cloth models that

simulate the internal cloth state [92, 6, 66]. However, fitting those models to real data can

be a complex task. Moreover, such models need not only to behave similarly enough to

the cloth garment, but to have a tractable dimension, for computational reasons. Imagine

a piece of cloth e.g. a square towel. If we build an 8× 8 cloth mesh, and characterize the

three Cartesian components of each point, the cloth state results in a 192-dimensional

manifold. Such dimensionality is unmanageable, not only in terms of computational costs,

but also for building a tractable state-action space policy. Such is the case of [7], where

simulated results are obtained after hours of computations. Therefore, Dimensionality

Reduction (DR) methods become necessary for this approach.

In [21], linear DR techniques were used for learning cloth manipulation by biasing

the latent space projection with each execution’s performance. Nonlinear methods, such

98 Modeling Robotic Cloth Manipulation using Gaussian Processes

as Gaussian Process Latent Variable Models (GPLVM) [55] have also been applied for

this purpose. In [51], GPLVM was employed to project task-specific motor-skills of the

robot onto a much smaller state representation, whereas in [37] GPLVM was also used

to represent a robot manipulation policy in a latent space, taking contextual features

into account. However, these approaches focus the dimensionality reduction in the robot

action characterization, rather than in the manipulated object’s dynamics. Instead, in

[52] the same DR technique was applied to learn a latent representation of the cloth state

from point cloud observations taken with a motion capture system and depth sensors.

However, such approach did not consider the dynamics of the cloth handling task, and

its applicability is limited to a quasi-static manipulation.

In this work, we assume to have recorded data from several cloth motions, as a

time-varying mesh of points. This data will often come from the processed RGB-D data

of a camera. To fit such data into a tractable dynamical model, we consider Gaussian

Process Dynamical Models (GPDM), first introduced in [96], which are an extension

of the GPLVM structure explicitly oriented to the analysis of high-dimensional time

series. GPDMs have been applied in several different fields, from human motion tracking

[95, 94] to dynamic texture modeling [99]. In the context of cloth manipulation, GPDMs

were adopted in [50] to learn a latent model of the dynamics of a cloth handling task.

However, this framework, as it stands, lacks in its structure a fundamental component to

correctly describe the dynamics of a system, namely control actions, limiting generalization

capacity.

Therefore, we propose an extension of the GPDM structure, that takes into account

the influence of external control actions on the modeled dynamics. We call it Controlled

Gaussian Process Dynamical Models (CGPDMs). In this new version of the model,

control actions directly affect the dynamics in the latent space. Thus, a CGPDM, trained

on a sufficiently diverse set of interactions, is able to predict the effects of control actions

never experienced before inside a space of reduced dimensions, and then reconstruct

high-dimensional motions by projecting the latent state trajectories into the observation

space. We tested the applicability of such solution in both a simulated and a real cloth

manipulation scenario. CGPDM has proved capable of fitting different types of cloth

movement, and predict the results of sequences of control actions never seen during

training.

Previous GPDM applications [96, 95, 94] were based on Gaussian Processes (GPs)

equipped with isotrophic squared exponential (SE) and homogeneous linear kernel func-

tions. The limited number of hyper-parameters of such GPs could limit the generalization

properties of the overall model. In this work, we study the effects that a richer pa-

6.1 Preliminaries: GPLVM and GPDM 99

rameterization in both latent and dynamical maps could possibly have on prediction

accuracy and generalization capabilities. In particular, we compare two distinct CG-

PDM implementations: (i) the lowly-parameterized CGPDM is a direct extension of

the standard GPDM’s dynamical and latent maps to the case of a controlled dynamical

system; (ii) the highly-parameterized CGPDM, instead, is characterized by the presence

of a higher number of hyper-parameters. In the last case, we employed the SE kernels

with automatic relevance determination (ARD) [65] and inhomogeneous linear kernels,

together with tunable scaling factors in the dynamical map. Despite these kernels are

a common choice in GP Regression (GPR) practice, they have not yet been applied in

the context of GPDM. In fact, to the best of our knowledge, only [99] proposed to use

kernels different from the naive ones adopted in the original implementation [96], but it

introduced a multi-kernel structure only for the GPs modeling the dynamics, without

modifying the latent map.

The remainder of the chapter is structured as follows. Preliminaries are given in

Sec. 6.1. CGPDM framework is presented in Sec. 6.2. Sec. 6.3 treats its training and

explains how to make predictions, in both latent and observation spaces. Experimental

results on a simulated robotic cloth manipulation scenario are reported in Sec. 6.4, while

the application of CGPDM on a real setup is described in Sec. 6.5. Sec. 6.6 draws the

conclusions.

6.1 Preliminaries: GPLVM and GPDM

GP regression has been widely applied as a data-driven tool for dynamical system

identification [49], usually describing each state by its own GP. Nevertheless, such

approach is unfeasible when dealing with high-dimensional systems, due to the high

computational demands. Thus, DR strategies must be included. GPLVM [55] and its

variations [59] emerged as feature extraction methods that can be used as multiple-output

GPR models. In this way, these models, under a DR perspective, associate and learn

low-dimensional representations of higher-dimensional observed data, assuming that

observed variables are determined by the latent ones. Intuitively, a GPLVM assumes

the high-dimensional observations to be the target values of an ensamble of GPs. The

associated input locations are interpreted as the latent states, considering them as

hyper-parameters of the overall model. Hence, the GPLVM provide, as a result of an

optimization, a mapping from the latent space to the observation space, together with

a set of latent variables representing the observed values. However, GPLVMs are not

explicitly thought to deal with data from time series, where observations at different time

100 Modeling Robotic Cloth Manipulation using Gaussian Processes

steps are connected by some form of dynamics.

Thus, [96] first introduced Gaussian Process Dynamical Models (GPDM) , an extension

of the GPLVM structure explicitly oriented to the analysis of high-dimensional time

series. A GPDM entails essentially two stages: (i) a latent mapping that projects high-

dimensional observations to a low-dimensional latent space (6.1); (ii) a discrete-time

Markovian dynamics that captures the evolution of the time series inside the reduced

latent space (6.2). GPs are used to model both the latent map, as in GPLVMs, and the

undergoing dynamics transition function. GPDMs are then defined by

yt = g(xt) + ny,t, (6.1)

xt+1 = h(xt) + nx,t, (6.2)

where yt is the high-dimensional observation vector and xt represents the latent state,

at time step t. Here, ny,t and nx,t are two zero-mean isotropic white Gaussian noise

processes, while g and h indicate the unknown functions characterizing the two maps.

6.2 Controlled GPDM

Let us consider a system governed by an unknown dynamics. At each time step t, it is

possible to influence it by applying control actions ut ∈ R
E and getting an observation

yt ∈ R
D. For high-dimensional observation spaces, it could be unfeasible to directly

model the evolution of a sequence of observations in response to a series of inputs. For

instance, in the case of a robot moving a piece of cloth, we can consider as control actions

ut the instantaneous movement of the end-effector, while the observations yt could be

the coordinates of a mesh of material points, representing the cloth configuration. In this

context, it could be convenient to capture the dynamics of the system in a low-dimensional

latent space R
d, with d << D. Let xt ∈ R

d be the latent state associated with yt. We

propose to use a variation of the GPDM that keeps into account the influence of control

actions, while maintaining the dimensionality reduction properties of the original model.

We call it Controlled Gaussian Process Dynamical Model (CGPDM).

A CGPDM consists of a latent map (6.3) projecting observations yt into latent states

xt, and a dynamics map (6.4) that describes the evolution of the latent state xt, subject

to control action ut.

yt = g(xt) + ny,t, (6.3)

xt+1 − xt = h(xt, ut) + nx,t. (6.4)

Differently from original GPDM (6.2), control actions have influence on the CGPDM

6.2 Controlled GPDM 101

transition function (6.4). On the other hand, latent map (6.3) is identical to (6.1) because

control actions should not affect the dimensionality reduction process. Note that we

consider xt+1 − xt to be the output of the CGPDM dynamic map, [95] suggested that

this choice can help to improve the smoothness of latent trajectories. In the following,

we report how to model (6.3) and (6.4) by means of GPs.

6.2.1 Latent variable mapping

Each component of the observation vector yt = [y
(1)
t , . . . , y

(D)
t]T can be modeled a priori

as a zero-mean GP that takes as input xt, for t = 1, . . . , N .

Let Y = [y1, . . . , yN]T ∈ R
N×D be the matrix that collects the set of N observations,

and X = [x1, . . . , xN]T ∈ R
N×d be the matrix of associated latent states. We denote with

Y:,j the vector containing the j-th components of all the N observations, for j = 1, . . . , D.

Then, we have Y:,j ∼ N (0, K
(j)
y (X)) for j = 1, . . . , D. The covariance matrix K

(j)
y (X)

is defined through a kernel function k
(j)
y (·, ·). Specifically, for any two observations

r, s = 1, . . . , N , the covariance between their j-th components y
(j)
r and y

(j)
s , i.e. the

element of K
(j)
y (X) at row r and column s, is equal to k

(j)
y (xr, xs). The probability

distribution of Y:,j is given by

p(Y:,j |X) =
exp

(

−1
2Y T

:,j

(

K
(j)
y (X)

)−1
Y:,j

)

√

(2π)N |K
(j)
y (X)|

.

If we assume that the D observation components are independent variables, the

probability over the whole set of observations can be expressed by the product of the D

GPs. In addition, if we choose identical kernel functions for each dimension, with the

only difference given by a scaling factor, i.e. k
(j)
y (·, ·) = w−2

y,j ky(·, ·) for j = 1, . . . , D, the

joint likelihood over the whole set of observations is given by

p(Y |X) =
|Wy|

N exp
(

−1
2tr

(

(Ky(X))−1 Y W 2
y Y T

))

√

(2π)ND|Ky(X)|D
, (6.5)

where Wy = diag(wy,1, . . . , wy,D), Ky(X) is the covariance matrix built employing only

ky(·, ·), i.e. the common part of kernel functions. Independence assumption may be

relaxed by applying, for instance, coregionalization models [100], at the cost of greater

computational demands, that might be unfeasible in our high-dimensional context.

In previous works on GPDMs [96, 95, 94], the GPs of the latent map are usually

102 Modeling Robotic Cloth Manipulation using Gaussian Processes

equipped with a simple isotrophic form of the SE kernel,

k′
y(xr, xs) = exp

(

−
β1

2
||xr − xs||

2
)

+ β−1
2 δ(xr, xs), (6.6)

parameterized only by β1 and β2, where δ(xr, xs) indicates the Kronecker delta.

Instead, we adopt the richer ARD structure for this kernel, characterized by the

presence of length-scales that can weight differently each component of the latent state:

ky(xr, xs) = exp

(

−
1

2
||xr − xs||Λ−1

y

)

+ σ2
yδ(xr, xs). (6.7)

Λ−1
y = diag(λ−2

y,1, . . . , λ−2
y,D) is a positive definite diagonal matrix, which weights the norm

used in the SE function, and σ2
y is the variance of the isotropic noise in (6.3). The trainable

hyper-parameters of the latent map are then θy = {wy,1, . . . , wy,D, λy,1, . . . , λy,D, σy}.

6.2.2 Dynamics mapping

Similarly to Section 6.2.1, we can model a priori each component of the latent state

difference xt+1 − xt = [x
(1)
t+1 − x

(1)
t , . . . , x

(d)
t+1 − x

(d)
t]T as a zero-mean GP that takes as

input the pair (xt, ut), for t = 1, . . . , N − 1.

Let X = [x1, . . . , xN]T ∈ R
N×d be the matrix collecting the set of N latent states, we

can denote by Xr:s,i the vector of the i-th components from time step r to time step s, with

r, s = 1, . . . , N . We indicate the vector of differences between consecutive latent states

along their i-th component with ∆:,i = (X2:N,i−X1:N−1,i) ∈ R
N−1. ∆ = [∆:,1, . . . , ∆:,d] ∈

R
(N−1)×d is the matrix that collects differences along all the components. Finally, we

compactly represent the GP input of the dynamic model as x̃t = [xT
t , uT

t]T ∈ R
d+E , and

refer to the the matrix collecting x̃t for t = 1, . . . , N − 1 with X̃ = [x̃1, . . . , x̃N−1]T ∈

R
(N−1)×(d+E).

Thus, we have ∆:,i ∼ N (0, K
(i)
x (X̃)) for i = 1, . . . , d. The covariance matrix K

(i)
x (X̃)

is defined through a kernel function k
(i)
x (·, ·). Specifically, for any r, s = 1, . . . , N − 1, the

covariance between x
(1)
r+1 − x

(1)
r and x

(1)
s+1 − x

(1)
s , i.e. the element of K

(i)
x (X̃) at row r and

column s, is equal to k
(i)
x (x̃r, x̃s). The probability density over ∆:,i is then given by

p(∆:,i|X̃) =
exp

(

−1
2∆T

:,i

(

K
(i)
x (X̃)

)

−1∆:,i
)

√

(2π)N |K
(i)
x (X̃)|

.

Assuming that the d latent state components evolve independently, the probability

over the whole ∆ can be expressed by the product of the d GPs. Again, if we choose

identical kernel functions for each dimension, with different scaling factors, i.e. k
(i)
x (·, ·) =

6.2 Controlled GPDM 103

w−2
x,i kx(·, ·) for i = 1, . . . , d, we obtain the following expression for the joint likelihood:

p(∆|X̃) =
|Wx|

N−1exp

(

−1
2tr

(

(

Kx(X̃)
)−1

∆W 2
x ∆T

))

√

(2π)(N−1)d|Kx(X̃)|d
, (6.8)

where Wx = diag(wx,1, . . . , wx,d), Kx(X̃) is the covariance matrix built employing only

kx(·, ·), i.e. the common part of kernel functions.

In standard GPDM [96], dynamic mapping GPs were initially proposed with constant

scaling factors wx,i = 1 for i = 1, . . . , d, and equipped with the simple kernel resulting

from the sum of an isotrophic SE and an homogeneous linear function, characterized

only by four trainable parameters:

k′
x(x̃r, x̃s) = α1exp

(

−
α2

2
||x̃r − x̃s||

2
)

+ α3x̃T
r x̃s + α−1

4 δ(x̃r, x̃s). (6.9)

Analogously to what was previously proposed for the latent mapping, we adopted a

more complex kernel function, detailed in the following,

kx(x̃r, x̃s) = exp

(

−
1

2
||x̃r − x̃s||Λ−1

x

)

+ [x̃T
r , 1]Φ[x̃T

s 1]T + σ2
xδ(x̃r, x̃s). (6.10)

Λ−1
x = diag(λ−2

x,1, . . . , λ−2
x,d+E) is a positive definite diagonal matrix, which weights the

norm used in the SE component of the kernel. Also Φ = diag(φ2
1, . . . , φ2

d+E+1) is a

positive definite diagonal matrix that characterizes the linear kernel component. σ2
x is the

variance of the isotropic noise in (6.4). In comparison to (6.9), the adopted kernel weights

differently the various components of the input in both SE and linear part, where the

GP input is also extended as [x̃T
s , 1]T . The trainable hyper-parameters of the dynamic

map model are then θx = {wx,1, . . . , wx,d, λx,1, . . . , λx,d, φ1, . . . , φd+E+1, σx}.

In the following we will refer to the proposed CGPDM structure with kernels (6.7)

and (6.10), and trainable scaling factors in the dynamical map, as highly-parameterized

CGPDM. On the contrary, lowly-parameterized CGPDM will indicate the version that

straightforwardly extends the standard GPDM structure from [96], using its same kernels,

(6.6) and (6.9), and constant scaling factors. Although the adoption of kernels such (6.7)

and (6.10) is a very common practice in GPR literature, to the best of our knowledge, it

has not been tested before in the context of GPDM. Furthermore, also the adoption of

trainable scaling factors constitutes a novelty for this kind of models.

104 Modeling Robotic Cloth Manipulation using Gaussian Processes

6.2.3 Multiple sequences

It is possible to easily extend the CGPDM formulation to P multiple sequences of

observations, Y (1), . . . , Y (P), and control inputs, U (1), . . . , U (P). Let the length of each

sequence p, for p = 1, . . . , P , be equal to Np, with
∑P

p=1 Np = N . Define the latent states

associated with each sequence as X(1), . . . , X(P). Following the notation of Section 6.2.2,

define X̃(1), . . . , X̃(P), as the sequence of the aggregated matrices of latent states and

control inputs, and ∆(1), . . . , ∆(P) as the difference matrices.

Hence, model joint likelihoods can be calculated by using the following concatenated

matrices inside (6.5) and (6.8): Y = [Y (1)T | . . . |Y (P)T]T , X = [X(1)T | . . . |X(P)T]T ,

∆ = [∆(1)| . . . |∆(P)]T and X̃ = [X̃(1)T | . . . |X̃(P)T]T . Note that, when dealing with

multiple sequences, the number of data points in the dynamic mapping becomes N − P ,

and expression (6.8) must be adapted accordingly.

6.3 CGPDM Training and Predictions

Training the CGPDM entails using numerical optimization techniques to estimate the

unknowns in the model, i.e., latent states X and the hyper-parameters θx, θy. Latent

coordinates X are initialized by means of PCA [11], selecting the first d principal

components of Y . A natural approach for training CGPDMs is to maximize the joint log-

likelihood ln p(Y |X) = ln p(Y |X) + ln p(∆|X̃) w.r.t. {X, θx, θy}. As regards numerical

optimization, we used the L-BFGS algorithm [15].

Hence, the overall loss will be given, up to an additive constant, by

L = Ly + Lx, (6.11)

where

Ly =
D

2
ln|Ky(X)|+

1

2
tr(Ky(X)−1Y W 2

y Y T)−N ln|Wy|,

Lx =
d

2
ln|Kx(X̃)|+

1

2
tr(Kx(X̃)−1∆W 2

x ∆T)− (N − 1)ln|Wx|.

In case the CGPDM is trained on multiple sequences of inputs and observations, make

sure to employ the aggregated matrices defined in Section 6.2.3 when computing loss

function 6.11. It is also necessary to use the factor N − P instead of N − 1 inside the

expression of Lx.

A trained CGPDM can be used to fulfill two different purposes: (i) map a given new

latent state x∗
t to the corresponding y∗

t in observation space, (ii) predict the evolution of

6.4 Experiments with Simulated Cloth 105

the latent state at the next time step x∗
t+1, given x∗

t and a certain control action u∗
t . The

two processes, together, can be used to predict the sequence of observations produced by

applying a series of control actions to the system.

6.3.1 Latent prediction

Given x∗
t , the probability density of its corresponding observation y∗

t is p(y∗
t |x

∗
t , X, θy) =

N (µy(x∗
t), vy(x∗

t)W −2
y), with

µy(x∗
t) = Y T Ky(X)−1ky(x∗

t , X)

vy(x∗
t) = ky(x∗

t , x∗
t)− ky(x∗

t , X)T Ky(X)−1ky(x∗
t , X),

where ky(x∗
t , X) = [ky(x∗

t , x1), . . . , ky(x∗
t , xN)]T .

6.3.2 Dynamics prediction

Given x∗
t and u∗

t , let’s define x̃∗
t = [x∗T

t , u∗T
t]T . The probability density of the latent

state at the next time step x∗
t+1 is p(x∗

t+1|x̃t, X, θx) = N (µx(x∗
t), vx(x∗

t)W −2
x), with

µx(x∗
t) = x∗

t + ∆T Kx(X̃)−1kx(x̃∗
t , X̃),

vx(x∗
t) = kx(x̃∗

t , x̃∗
t)− kx(x̃∗

t , X̃)T Kx(X̃)−1kx(x̃∗
t , X̃),

where kx(x̃∗
t , X̃) = [kx(x̃∗

t , x̃1), . . . , kx(x̃∗
t , x̃N−1)]T .

6.3.3 Trajectory prediction

Starting from an initial latent state x∗
1, one can predict the evolution of the system

over a desired horizon of length Nd, when subject to a given sequence of control actions

u∗
1, . . . , u∗

Nd−1. At each time step t = 1, . . . , Nd−1, x∗
t+1 can be sampled from the normal

distribution p(x∗
t+1|x̃t, X, θx) defined in Section 6.3.2. Hence, the generated trajectory in

the latent space x∗
1, . . . , x∗

Nd
can be mapped into the associated predicted sequences of

observations y∗
1, . . . , y∗

Nd
by mean of p(y∗

t |x
∗
t , X, θy), defined in Section 6.3.1.

6.4 Experiments with Simulated Cloth

As regards to the experimental application, we considered a simulated scenario, consisting

of a bimanual robot that moves a piece of cloth by holding its two upper corners. The

cloth is modeled as an 8×8 mesh of material points (for a total amount of P = 64 points).

6.4 Experiments with Simulated Cloth 107

6.4.1 Data collection

Data were obtained by recording mesh trajectories associated with several types of cloth

oscillation, obtained by applying different sequences of control actions. All the considered

trajectories start from the same cloth configuration and last 3 seconds. Observations

were recorded each 0.05 seconds, hence N = 60 total number of steps for each sequence.

Let ut =
[

rδX
t ,r δY

t ,r δZ
t ,l δX

t ,l δY
t ,l δZ

t

]T
, where rδX

t , rδY
t and rδZ

t (lδX
t , lδY

t and lδZ
t)

indicate the displacement of the right (left) end-effector position along the three Cartesian

axes, between step t and t + 1. Specifically, we used the same commands for both end-

effectors. Denoting with
(

δX
t , δY

t , δZ
t

)

the common displacements, the applied ut were

given by,

δX
t = 0 (6.12a)

δY
t = −A cos(γ) cos(2πfY t) (6.12b)

δZ
t = A sin(γ) cos(2πfZ t). (6.12c)

Such controls make the end-effectors oscillate on the Y-Z plane of the operational space.

The maximum displacement is regulated by A, that we set to 0.01 meters. Parameter γ

can be interpreted as the inclination of u1 w.r.t. the horizontal, and it loosely defines a

direction of the oscillation. fY and fZ define the frequencies of the oscillations along Y

and Z axes. If they are similar, the end-effectors move mostly along the direction defined

by γ, if not, they swipe in a broader space.

In order to obtain a heterogeneous set of trajectories for the composition of training

and test sets, we collected several movements obtained by choosing in a random fashion

the control parameters γ, fY and fZ . Angles γ were uniformly sampled from a variable

range [−R
2 , R

2] (deg), ; in the following, we indicate this range with the amplitude of its

angular area, R (deg). Instead, frequencies fY and fZ were uniformly sampled inside the

fixed interval [0.3, 0.6] (Hz).

We considered four movement ranges of increasing size, namely R ∈ {30, 60, 90, 120}

(see Figure 6.2), and collected a specific data-set DR associated with each range. Every

set contains 50 cloth trajectories obtained by applying control actions of the form (6.12)

with 50 different random choices for parameters γ, fY and fZ . From each collection

DR, 10 trajectories were extracted and used as test sets Dtest
R for the corresponding

movement range, while several training sets Dtrain
R were built by randomly picking from

the remaining sequences.

6.6 Conclusion 113

6.5.2 Model training & Results

We trained two CGPDMs model, one for R = 30 and the other for R = 60. We adopted

the highly-parameterized structure, as it performed better in the simulated experiment.

For each R, the CGPDM was trained using ten trajectories, while the others were set

aside for testing the trained model. As before, we set latent space dimension to d = 3.

We tested the two trained CGPDM following the same procedure that was adopted

in Sec. 6.4.3. The two models were used to predict the cloth movements obtained in

response to the control actions of each test trajectory 4. The prediction error was defined

as in (6.13), and, in range R = 30, it was 0.012 ± 0.005, while, in range R = 60, it

was 0.015± 0.006. These results are slightly inferior to those obtained in the simulated

experiment (Fig. 6.5). Nevertheless, CGPDMs seem able to cope with the high noise

that afflicts the real experimental setup and still capture the dynamics of the cloth. In

Fig. 6.6b, we provide a visual representation of the cloth movements, by representing the

true and predicted trajectories of the four corners, for one of the considered test cases.

6.6 Conclusion

We presented an extension of the GPDM framework able to incorporate control actions in

its definition, we call it Controlled Gaussian Process Dynamical Model (CGPDM). Such

framework can model complex high-dimensional dynamics governed by control actions, by

projecting observation space into a latent space of lower dimensionality, where dynamical

relations are easier to infer. Alongside, we discussed two different possible implementation

of CGPDMs. The first, called lowly-parameterized CGPDM, is a straightforward extension

of the original GPDM structure. The latter, indicated as highly-parameterized CGPDM,

employs a richer structure for both latent and dynamical maps. CGPDM was tested

in both a simulated and real scenario of robotic cloth manipulation. Specifically, we

considered a robot moving a piece of cloth by holding it from its two upper corners. The

cloth was represented as an 8×8 mesh of points, resulting in an observation vector that

comprises all their Cartesian coordinates, for a total dimension of D = 192. In both

scenarios, we projected the cloth movement into a latent space of dimension d = 3. On

the other hand, we considered as control actions the differences between end-effector

positions at consecutive time steps. The simulated environment was exploited to train

and test several realizations of CGPDM on a sufficiently varied data-set of trajectories.

The proposed model was able to learn the complex high-dimensional dynamics of the

cloth oscillations. Furthermore, the highly-parameterized CGPDM structure achieved the

4A video of the reconstructed real cloth motions is available at https://youtu.be/vUO_3nYgMeg

114 Modeling Robotic Cloth Manipulation using Gaussian Processes

best prediction accuracy. Finally, this result was validated on a real cloth manipulation

scenario, where data were collected through a motion capture system. CGPDM proved

capable of effectively handle noisy real data.

Future work involves the application of CGPDM to tasks involving contacts between

the cloth and other objects. CGPDMs may also be employed in a model-based reinforce-

ment learning framework that relies on GPs to handle the modeling of high-dimensional

dynamics, that could be unfeasible to approach without applying dimensionality-reduction

techniques. Finally, the proposed CGPDM formulation could be extended through the

introduction of back constraints [56] to preserve local distances and obtain an explicit

formulation of the mapping from the observation to latent space.

7
Conclusions

In this manuscript, we presented different algorithms based on Gaussian Processes for

applications to Model-Based Reinforcement Learning, data-driven torque control for

robots, and the modeling of high-dimensional dynamics.

Specifically, Chapter 2 introduced a novel Model-Based Reinforcement Learning

algorithm, called MC-PILCO. The proposed method exploits Gaussian Process Regression

to derive a probabilistic predictive model of the controlled system. From this model, we

can estimate the expected cumulative cost from which it is possible to derive, through

Monte Carlo sampling, the gradient needed to update the parameters of the policy. The

long-term predictions are obtained simulating numerous state particles. In this way,

differently for other algorithms, we do not need to make any approximations on long-term

evolution, neither we pose restrictions on the choice of the kernel. MC-PILCO managed

to outperform other state-of-the-art Model-Based Reinforcement Learning algorithms in

the cart-pole benchmark. Also, we applied it to learn a trajectory tracking controller for

a simulated UR5 robot. MC-PILCO achieved unprecedented levels of data efficiency in

all the conducted experiments.

Thanks to the flexibility guaranteed by Monte Carlo policy gradient estimation, we

were able to easily adapt the MC-PILCO framework to the context of partially measurable

systems, i.e., systems whose state cannot be measured directly in all its components. We

argue that this is a common situation in many real-world applications. For instance,

116 Conclusions

when dealing with mechanical systems, we must reconstruct joint velocities from position

measurements. In Chapter 3 we proposed a modified version of the original MC-PILCO

algorithm, designed precisely to deal with partial state measurability. We called this

method MC-PILCO4PMS, and it can correctly incorporate state estimators inside model

and policy learning. This approach was able to learn from scratch how to control two

different real mechanical systems, namely a Furuta pendulum and a ball-and-plate.

In Chapter 4, we modified our framework to work only with the history of position

measurements. In this way, it is possible to avoid performing velocity estimation. In

fact, the tuning of effective filters and estimators might be a tedious and time-consuming

task, especially for those systems that are affected by high measurement noise. The

last of our Model-Based Reinforcement Learning algorithms is called Derivative-Free

MC-PILCO (DF-MC-PILCO). We derived it from standard MC-PILCO by considering,

instead of the normal state representation, the history of past position measurements and

applied control actions. DF-MC-PILCO performed as well as MC-PILCO4PMS, both in

simulation and in the two real-world benchmarks, requiring similar amount of experience

for finding a solution.

In Chapter 5 we employed Gaussian Process Regression to estimate robot inverse

dynamics for control purposes. Indeed, a well-known strategy in robotics is to use inverse

dynamics to perform feedback linearization control. Our method aims at using purely

data-driven models in the same way. In general, Gaussian Processes equipped with

standard Squared Exponential kernels show poor generalization properties outside of

the training data. This is a critical issue if we want to employ such models inside the

feedback linearization control loop. Still, we managed to circumvent this problem through

two alternative strategies. The first uses a particular kernel function that was designed

specifically for inverse dynamics learning. The second extracts estimate all the different

dynamics components needed for feedback linearization from the data-driven model.

Experimental results were obtained on a simulated KUKA LBR iiwa robot.

Finally, Chapter 6 describes how to exploit Gaussian Processes to model the high-

dimensional dynamics characterizing cloth manipulation tasks. In particular, we proposed

a novel model, called CGPDM, that exploits Gaussian Process Regression in two ways:

(i) to build a latent map that can project highly-dimensional observations into a latent

space of tractable dimension; (ii) to learn a latent dynamical function able to capture

the effects that control actions have on the general behaviour of the time series. This

work is based on previous latent models based on Gaussian Processes, namely GPLVM

and GPDM, but we introduced for the first time control actions in such formulation.

Without taking into account control, previous models could only generate synthetic data,

117

similar to the one observed during training. CGPDMs, on the other hand, can predict

the effects that new control actions have on the high-dimensional system. The proposed

method was used to model the movements of a piece of cloth handled by a robot. We

modeled the dynamics of a mesh of material points, commonly used as a representation

of cloth configuration. CGPDM was tested with both simulated and real data, proving

able to generalize over previously unseen control actions, in the two considered scenarios.

118 Conclusions

A
Appendix

A.1 Semi-Parametrical Kernel for the Cart-pole System

Let us consider the cart-pole system adopted as benchmark in Section 2.5. It consists of

a cart with mass M and an attached pendulum with mass m and length L, which swings

freely in the plane. The pendulum angle θ is measured anti-clockwise from hanging down.

The cart can move horizontally with an applied external force u. The position of the cart

along the track is denoted by p. We refer with b to the coefficient of friction between

the cart and the ground. The basis functions of the Semi-Parametrical (SP) kernel must

be derived from the true equations of motion. For this purpose, we make use of the

Lagrangian approach.

The coordinates of the pendulum midpoint (x, y) are given by

x = p +
1

2
L sin(θ)

y = −
1

2
L cos(θ)

while its squared velocity v2 can be obtained as

v2 = ẋ2 + ẏ2 = ṗ2 +
1

4
L2θ̇2 + Lṗθ̇ cos(θ).

120 Appendix

On the other hand, the squared velocity of the cartpole midpoint is simply ṗ2. Now,

recalling the expression of the moment of inertia of a pendulum around its midpoint

I = 1
12mL2, the total kinetic energy of the system T can be calculated as

T =
1

2
Mṗ2 +

1

2
mv2 +

1

2
Iθ̇2.

We are also interested in the expression of the potential energy, that is defined as

V = mgy, where g is the gravity acceleration. Finally, the Lagrangian of the system L

can be obtained as

L = T − V =
1

2
(M + m)ṗ2 +

1

6
mL2θ̇2 +

1

2
mL(ẋθ̇ + g) cos(θ).

Now, rename the generalized coordinates of the cart-pole system as q1 = p and q2 = θ

and define τ1 = u and τ2 = 0. The equations of motion can be derived from

d

dt

∂L

∂q̇i

−
∂L

∂qi

= τi for i = 1, 2.

Leaving out the explicit calculations, we obtain the following final expressions,

(M + m)p̈ +
1

2
mLθ̈ cos(θ)−

1

2
mLθ̇2 sin(θ) = u− bṗ

2Lθ̈ + 3ṗ cos(θ) + 3g sin(θ) = 0

Collecting the state variables x = [p, ṗ, θ, θ̇]T , the equations of motions can be

conveniently expressed as four coupled ordinary differential equations,

p̈ =
2mLθ̇2 sin(θ) + 3mg sin(θ)cos(θ) + 4u− 4bẋ

4(M + m)− 3m cos(θ)2

θ̈ =
−3mLθ̇2 sin(θ)cos(θ)− 6(M + m)g sin(θ)− 6(u− bẋ)cos(θ)

4L(M + m)− 3Lm cos(θ)2

Now, from these equations we can define the basis functions for the Physically Inspired

component of the SP kernel (details about this kind of kernel are given in Sec. 2.3.2).

Let us indicate with φṗ(x, u) and φθ̇(x, u), respectively, the basis functions for the

Gaussian Processes that predict velocity changes of cart and pole’s angle. Those basis

functions can be obtained by isolating, in each ordinary differential equation, all the

different state-dependent components that are linearly related. In particular, we obtain

φṗ(x, u) = [θ̇2 sin(θ), sin(θ)cos(θ), u, ẋ]

φθ̇(x, u) = [θ̇2 sin(θ)cos(θ), sin(θ), u cos(θ), ẋ cos(θ)]
.

References

References 123

[1] Abbeel P., Coates A., Quigley M., and Ng A. An application of reinforce-

ment learning to aerobatic helicopter flight. In Schölkopf B., Platt J., and

Hoffman T., editors, Advances in Neural Information Processing Systems, vol-

ume 19. MIT Press, 2007. URL https://proceedings.neurips.cc/paper/2006/

file/98c39996bf1543e974747a2549b3107c-Paper.pdf.

[2] Alberto N. T., Mistry M., and Stulp F. Computed torque control with

variable gains through gaussian process regression. In 2014 IEEE-RAS International

Conference on Humanoid Robots, pages 212–217, 2014.

[3] Atkeson C. G. and Santamaria J. C. A comparison of direct and model-based

reinforcement learning. In Proceedings of international conference on robotics and

automation, volume 4, pages 3557–3564. IEEE, 1997.

[4] Baldassi C., Malatesta E. M., and Zecchina R. Properties of the geometry

of solutions and capacity of multilayer neural networks with rectified linear unit

activations. Phys. Rev. Lett., 123:170602, Oct 2019. URL https://link.aps.org/

doi/10.1103/PhysRevLett.123.170602.

[5] Baldassi C., Pittorino F., and Zecchina R. Shaping the learning landscape

in neural networks around wide flat minima. Proceedings of the National Academy

of Sciences, 117(1):161–170, 2020. ISSN 0027-8424. URL https://www.pnas.org/

content/117/1/161.

[6] Baraff D. and Witkin A. Large steps in cloth simulation. Association for

Computing Machinery, pages 43–54, 1998.

[7] Baraff D. and Witkin A. Dexterous manipulation of cloth. Computer Graphics

Forum, 35(2):523–532, 2016.

[8] Beckers T., Umlauft J., Kulic D., and Hirche S. Stable gaussian process

based tracking control of lagrangian systems. In 2017 IEEE 56th Annual Conference

on Decision and Control (CDC), pages 5180–5185, 2017.

[9] Berkenkamp F., Turchetta M., Schoellig A., and Krause A. Safe model-

based reinforcement learning with stability guarantees. In Advances in neural

information processing systems, pages 908–918, 2017.

[10] Bersch C., Pitzer B., and Kammel S. Bimanual robotic cloth manipulation

for laundry folding. In 2011 IEEE/RSJ International Conference on Intelligent

Robots and Systems, pages 1413–1419, 2011.

124

[11] Bishop C. M. Pattern recognition and machine learning. Springer, 2006.

[12] Bochkovskiy A., Wang C.-Y., and Liao H.-Y. M. Yolov4: Optimal speed

and accuracy of object detection, 2020.

[13] Borràs J., Alenyà G., and Torras C. A grasping-centered analysis for cloth

manipulation. IEEE Transactions on Robotics, PP:1–13, 05 2020.

[14] Bottou L. Large-scale machine learning with stochastic gradient descent. In in

COMPSTAT, 2010.

[15] Byrd R. H., Lu P., Nocedal J., and Zhu C. A limited memory algorithm

for bound constrained optimization. SIAM Journal on scientific computing, 16(5):

1190–1208, 1995.

[16] Caccavale F., Siciliano B., and Villani L. Robot impedance control with

nondiagonal stiffness. IEEE Transactions on Automatic Control, 44(10):1943–1946,

1999.

[17] Caflisch R. E. and others . Monte carlo and quasi-monte carlo methods. Acta

numerica, 1998:1–49, 1998.

[18] Cazzolato B. S. and Prime Z. On the dynamics of the furuta pendulum.

Journal of Control Science and Engineering, 2011, 2011.

[19] Chatzilygeroudis K., Rama R., Kaushik R., Goepp D., Vassiliades V.,

and Mouret J.-B. Black-box data-efficient policy search for robotics. In 2017

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),

pages 51–58. IEEE, 2017.

[20] Chua K., Calandra R., McAllister R., and Levine S. Deep reinforcement

learning in a handful of trials using probabilistic dynamics models. In Advances in

Neural Information Processing Systems, pages 4754–4765, 2018.

[21] Colomé A. and Torras C. Dimensionality reduction for dynamic movement

primitives and application to bimanual manipulation of clothes. IEEE Transactions

on Robotics, 34(3):602–615, 2018.

[22] Coltraro F., Amorós J., Alberich-Carramiñana M., and Torras C. An

inextensible model for robotic simulations of textiles, 2021.

[23] Coumans E. and Bai Y. Pybullet, a python module for physics simulation for

games, robotics and machine learning. http://pybullet.org, 2016–2019.

References 125

[24] Craig J. J. Introduction to Robotics: Mechanics and Control. Addison-Wesley

Longman Publishing Co., Inc., USA, 2nd edition, 1989. ISBN 0201095289.

[25] Csató L. and Opper M. Sparse on-line gaussian processes. Neural Comput.,

14(3):641–668, March 2002. ISSN 0899-7667. URL https://doi.org/10.1162/

089976602317250933.

[26] Cutler M. and How J. P. Efficient reinforcement learning for robots using

informative simulated priors. In 2015 IEEE International Conference on Robotics

and Automation (ICRA), pages 2605–2612. IEEE, 2015.

[27] Dalla Libera A., Romeres D., Jha D. K., Yerazunis B., and Nikovski

D. Model-based reinforcement learning for physical systems without velocity and

acceleration measurements. IEEE Robotics and Automation Letters, 5(2):3548–3555,

2020.

[28] Dalla Libera A., Romeres D., Jha D. K., Yerazunis B., and Nikovski

D. Model-based reinforcement learning for physical systems without velocity and

acceleration measurements. IEEE Robotics and Automation Letters, 5(2):3548–3555,

2020.

[29] Dalla Libera A., Tosello E., Pillonetto G., Ghidoni S., and Carli R.

Proprioceptive robot collision detection through gaussian process regression. In

2019 American Control Conference (ACC), pages 19–24, 2019.

[30] Dalla Libera A., Carli R., and Pillonetto G. A novel multiplicative polyno-

mial kernel for volterra series identification. IFAC-PapersOnLine (to appear), 2020.

URL http://arxiv.org/abs/1905.07960. 21th IFAC World Congress.

[31] De Luca A. and Ferrajoli L. A modified newton-euler method for dynamic

computations in robot fault detection and control. In 2009 IEEE International

Conference on Robotics and Automation, pages 3359–3364, 2009.

[32] de Luca A. and Lucibello P. A general algorithm for dynamic feedback lin-

earization of robots with elastic joints. In Proceedings. 1998 IEEE International

Conference on Robotics and Automation (Cat. No.98CH36146), volume 1, pages

504–510 vol.1, 1998.

[33] Deisenroth M. and Rasmussen C. E. Pilco: A model-based and data-efficient

approach to policy search. In Proceedings of the 28th International Conference on

machine learning (ICML-11), pages 465–472, 2011.

126

[34] Deisenroth M. P., Calandra R., Seyfarth A., and Peters J. Toward fast

policy search for learning legged locomotion. In 2012 IEEE/RSJ International

Conference on Intelligent Robots and Systems, pages 1787–1792. IEEE, 2012.

[35] Deisenroth M. P., Fox D., and Rasmussen C. E. Gaussian processes for

data-efficient learning in robotics and control. IEEE transactions on pattern analysis

and machine intelligence, 37(2):408–423, 2013.

[36] Deisenroth M. P., Rasmussen C. E., and Fox D. Learning to control a

low-cost manipulator using data-efficient reinforcement learning. Robotics: Science

and Systems VII, pages 57–64, 2011.

[37] Delgado-Guerrero J. A., Colomé A., and Torras C. Contextual policy

search for micro-data robot motion learning through covariate gaussian process

latent variable models. In 2020 IEEE/RSJ International Conference on Intelligent

Robots and Systems, pages 5511–5517, 2020.

[38] Einicke G. A. Optimal and robust noncausal filter formulations. IEEE Transac-

tions on Signal Processing, 54(3):1069–1077, 2006.

[39] Gal Y. and Ghahramani Z. Dropout as a bayesian approximation: Representing

model uncertainty in deep learning. In Proceedings of the 33rd International Con-

ference on International Conference on Machine Learning - Volume 48, ICML’16,

page 1050–1059. JMLR.org, 2016.

[40] Gal Y., McAllister R., and Rasmussen C. E. Improving pilco with bayesian

neural network dynamics models. In Data-Efficient Machine Learning workshop,

ICML, volume 4, page 34, 2016.

[41] Garcia-Camacho I., Lippi M., Welle M. C., Yin H., Antonova R., Varava

A., Borras J., Torras C., Marino A., Alenyà G., and Kragic D. Bench-

marking bimanual cloth manipulation. IEEE Robotics and Automation Letters, 5

(2):1111–1118, 2020.

[42] Glorot X., Bordes A., and Bengio Y. Deep sparse rectifier neural networks.

In Gordon G., Dunson D., and Dudík M., editors, Proceedings of the Four-

teenth International Conference on Artificial Intelligence and Statistics, volume 15

of Proceedings of Machine Learning Research, pages 315–323, Fort Lauderdale,

FL, USA, 11–13 Apr 2011. PMLR. URL http://proceedings.mlr.press/v15/

glorot11a.html.

References 127

[43] Haddadin S., De Luca A., and Albu-Schäffer A. Robot collisions: A survey

on detection, isolation, and identification. IEEE Transactions on Robotics, 33(6):

1292–1312, 2017.

[44] Hogan N. Impedance control: An approach to manipulation. In 1984 American

Control Conference, pages 304–313, 1984.

[45] Kalman R. E. A New Approach to Linear Filtering and Prediction Problems.

Journal of Basic Engineering, 82(1):35–45, 03 1960. ISSN 0021-9223. URL https:

//doi.org/10.1115/1.3662552.

[46] Kingma D. P. and Ba J. Adam: A method for stochastic optimization. arXiv

preprint arXiv:1412.6980, 2014.

[47] Kingma D. P. and Welling M. Auto-encoding variational bayes. arXiv preprint

arXiv:1312.6114, 2013.

[48] Kober J. and Peters J. Policy search for motor primitives in robotics.

In Koller D., Schuurmans D., Bengio Y., and Bottou L., editors, Ad-

vances in Neural Information Processing Systems, volume 21. Curran Asso-

ciates, Inc., 2009. URL https://proceedings.neurips.cc/paper/2008/file/

7647966b7343c29048673252e490f736-Paper.pdf.

[49] Kocijan J., Girard A., Banko B., and Murray-Smith R. Dynamic systems

identification with gaussian processes. Mathematical and Computer Modelling

of Dynamical Systems, 11(4):411–424, 2005. URL https://doi.org/10.1080/

13873950500068567.

[50] Koganti N., Ngeo J. G., Tomoya T., Ikeda K., and Shibata T. Cloth

dynamics modeling in latent spaces and its application to robotic clothing assistance.

In 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), pages 3464–3469. IEEE, 2015.

[51] Koganti N., Shibata T., Tamei T., and Ikeda K. Data-efficient learning of

robotic clothing assistance using bayesian gaussian process latent variable model.

Advanced Robotics, 33:1–15, 04 2019.

[52] Koganti N., Tamei T., Ikeda K., and Shibata T. Bayesian nonparametric

learning of cloth models for real-time state estimation. IEEE Transactions on

Robotics, 33(4):916–931, 2017.

128

[53] Kuss M. and Rasmussen C. E. Gaussian processes in reinforcement learning.

In Advances in neural information processing systems, pages 751–758, 2004.

[54] Lakshmanan K., Sachdev A., Xie Z., Berenson D., Goldberg K., and

Abbeel P. A constraint-aware motion planning algorithm for robotic folding of

clothes. In Experimental Robotics, pages 547–562. Springer, 2013.

[55] Lawrence N. and Hyvärinen A. Probabilistic non-linear principal component

analysis with gaussian process latent variable models. Journal of machine learning

research, 6(11), 2005.

[56] Lawrence N. D. and Quinonero-Candela J. Local distance preservation in

the gp-lvm through back constraints. In Proceedings of the 23rd international

conference on Machine learning, pages 513–520, 2006.

[57] LeCun Y., Bengio Y., and Hinton G. Deep learning. Nature, 521:436–44, 05

2015.

[58] Levine S., Finn C., Darrell T., and Abbeel P. End-to-end training of deep

visuomotor policies. J. Mach. Learn. Res., 17(1):1334–1373, jan 2016. ISSN

1532-4435.

[59] Li P. and Chen S. A review on gaussian process latent variable models. In CAAI

Transactions on Intelligence Technology,, volume 1, pages 366–376, 2016.

[60] Libera A. D. and Carli R. A data-efficient geometrically inspired polynomial

kernel for robot inverse dynamic. IEEE Robotics and Automation Letters, 5(1):

24–31, 2020.

[61] Libera A. D., Carli R., and Pillonetto G. A novel multiplicative polynomial

kernel for volterra series identification. arXiv preprint arXiv:1905.07960, 2019.

[62] MacKay D. J. Bayesian methods for adaptive models. PhD thesis, California

Institute of Technology, 1992.

[63] McHutchon A. J. and others . Nonlinear modelling and control using Gaussian

processes. PhD thesis, Citeseer, 2015.

[64] Miller S., van den Berg J., Fritz M., Darrell T., Goldberg K., and

Abbeel P. A geometric approach to robotic laundry folding. The International

Journal of Robotics Research, 31(2):249–267, 2012.

References 129

[65] Neal R. M. Bayesian learning for neural networks, volume 118. Springer Science

& Business Media, 2012.

[66] Nealen A., Muller M., Keiser R., Boxerman E., and Carlson M. Physically

based deformable models in computer graphics. Computer Graphics Forum, 25:

809–836, 2006.

[67] Ng A. Y. and Jordan M. I. Pegasus: A policy search method for large mdps

and pomdps. arXiv preprint arXiv:1301.3878, 2013.

[68] Nguyen-Tuong D. and Peters J. Using model knowledge for learning inverse

dynamics. In 2010 IEEE International Conference on Robotics and Automation,

pages 2677–2682, 2010.

[69] Nguyen-Tuong D., Seeger M., and Peters J. Computed torque control with

nonparametric regression models. In 2008 American Control Conference, pages

212–217, 2008.

[70] Parmas P., Rasmussen C. E., Peters J., and Doya K. Pipps: Flexible

model-based policy search robust to the curse of chaos. In International Conference

on Machine Learning, pages 4065–4074, 2018.

[71] Paszke A., Gross S., Chintala S., Chanan G., Yang E., DeVito Z., Lin

Z., Desmaison A., Antiga L., and Lerer A. Automatic differentiation in

pytorch. In Proceedings of Neural Information Processing Systems, 2017.

[72] Paszke A., Gross S., Massa F., Lerer A., Bradbury J., Chanan G.,

Killeen T., Lin Z., Gimelshein N., Antiga L., Desmaison A., Kopf A.,

Yang E., DeVito Z., Raison M., Tejani A., Chilamkurthy S., Steiner

B., Fang L., Bai J., and Chintala S. Pytorch: An imperative style, high-

performance deep learning library. Advances in Neural Information Processing

Systems 32, pages 8024–8035, 2019.

[73] Quinonero Candela J. and Rasmussen C. A unifying view of sparse ap-

proximate gaussian process regression. Journal of Machine Learning Research, 6:

1935–1959, December 2005.

[74] Rasmussen C. E. and Williams C. K. I. Gaussian Processes for Machine

Learning (Adaptive Computation and Machine Learning). The MIT Press, 2005.

ISBN 026218253X.

130

[75] Rezaei-Shoshtari S., Meger D., and Sharf I. Cascaded gaussian processes for

data-efficient robot dynamics learning. In 2019 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS), pages 6871–6877, 2019.

[76] Rezende D. J., Mohamed S., and Wierstra D. Stochastic backpropagation

and approximate inference in deep generative models. In International conference

on machine learning, pages 1278–1286. PMLR, 2014.

[77] Romeres D., Zorzi M., Camoriano R., Traversaro S., and Chiuso A.

Derivative-free online learning of inverse dynamics models. IEEE Transactions on

Control Systems Technology, 28(3):816–830, 2020.

[78] Romeres D., Jha D. K., DallaLibera A., Yerazunis B., and Nikovski D.

Semiparametrical gaussian processes learning of forward dynamical models for

navigating in a circular maze. In 2019 International Conference on Robotics and

Automation (ICRA), pages 3195–3202. IEEE, 2019.

[79] Romeres D., Zorzi M., Camoriano R., and Chiuso A. Online semi-

parametric learning for inverse dynamics modeling. In 2016 IEEE 55th Conference

on Decision and Control (CDC), pages 2945–2950. IEEE, 2016.

[80] Rother C., Kolmogorov V., and Blake A. "grabcut": Interactive foreground

extraction using iterated graph cuts. ACM Trans. Graph., 23(3):309–314, August

2004. ISSN 0730-0301. URL https://doi.org/10.1145/1015706.1015720.

[81] Rumelhart D. E., Hinton G. E., and Williams R. J. Learning Represen-

tations by Back-Propagating Errors, page 696–699. MIT Press, Cambridge, MA,

USA, 1988. ISBN 0262010976.

[82] Sanchez J., Corrales Ramon J. A., BOUZGARROU B. C., and Mezouar

Y. Robotic manipulation and sensing of deformable objects in domestic and

industrial applications: A survey. The International Journal of Robotics Research,

37:688 – 716, 06 2018.

[83] Scholkopf B. and Smola A. J. Learning with Kernels: Support Vector Machines,

Regularization, Optimization, and Beyond. MIT Press, Cambridge, MA, USA, 2001.

ISBN 0262194759.

[84] Schreiter J., Englert P., Nguyen-Tuong D., and Toussaint M. Sparse

gaussian process regression for compliant, real-time robot control. In 2015 IEEE

References 131

International Conference on Robotics and Automation (ICRA), pages 2586–2591,

2015.

[85] Siciliano B. and Khatib O. Springer Handbook of Robotics. Springer-Verlag,

Berlin, Heidelberg, 2007. ISBN 354023957X.

[86] Siciliano B., Sciavicco L., Villani L., and Oriolo G. Robotics: Modelling,

Planning and Control. Springer Publishing Company, Incorporated, 2010. ISBN

1849966346.

[87] Siciliano B. and Villani L. Robot Force Control. Kluwer Academic Publishers,

USA, 1st edition, 2000. ISBN 0792377338.

[88] Sousa C. D. and Cortesão R. Physical feasibility of robot base inertial pa-

rameter identification: A linear matrix inequality approach. The International

Journal of Robotics Research, 33(6):931–944, 2014. URL https://doi.org/10.

1177/0278364913514870.

[89] Srivastava N., Hinton G., Krizhevsky A., Sutskever I., and Salakhut-

dinov R. Dropout: A simple way to prevent neural networks from overfit-

ting. Journal of Machine Learning Research, 15(56):1929–1958, 2014. URL

http://jmlr.org/papers/v15/srivastava14a.html.

[90] Sutton R. S. and Barto A. G. Reinforcement learning: An introduction. MIT

press, 2018.

[91] Takegaki M. and Arimoto S. A New Feedback Method for Dynamic Control

of Manipulators. Journal of Dynamic Systems, Measurement, and Control, 103(2):

119–125, 06 1981. ISSN 0022-0434. URL https://doi.org/10.1115/1.3139651.

[92] Terzopoulos D., Platt J., Barr A., and Fleischer K. Elastically deformable

models. SIGGRAPH Comput. Graph, 21(4):205–214, 1987.

[93] Todorov E., Erez T., and Tassa Y. Mujoco: A physics engine for model-based

control. In 2012 IEEE/RSJ International Conference on Intelligent Robots and

Systems, pages 5026–5033. IEEE, 2012.

[94] Urtasun R., Fleet D. J., and Fua P. 3d people tracking with gaussian process

dynamical models. In 2006 IEEE Computer Society Conference on Computer

Vision and Pattern Recognition (CVPR’06), volume 1, pages 238–245. IEEE, 2006.

132

[95] Wang J. M., Fleet D. J., and Hertzmann A. Gaussian process dynamical

models for human motion. IEEE transactions on pattern analysis and machine

intelligence, 30(2):283–298, 2007.

[96] Wang J. M., Hertzmann A., and Fleet D. J. Gaussian process dynamical

models. Advances in neural information processing systems, 18:1441–1448, 2005.

[97] Williams C. K. and Rasmussen C. E. Gaussian processes for machine learning.

MIT press Cambridge, MA, 2006.

[98] Zhan Q., Liang Y., and Xiao Y. Color-based segmentation of point clouds.

ISPRS Laser Scanning Workshop, 38, 07 2009.

[99] Zhu Z., You X., Yu S., Zou J., and Zhao H. Dynamic texture modeling and

synthesis using multi-kernel gaussian process dynamic model. Signal Processing,

124:63–71, 2016.

[100] Álvarez M., Rosasco L., and Lawrence N. Kernels for Vector-Valued Func-

tions: A Review. 01 2012. ISBN 9781601985590.

	Introduction
	Manuscript Overview
	Gaussian Process Regression
	Gaussian Process Models
	Making Predictions
	Learning the Model from Data

	I Gaussian Processes for Model-Based Reinforcement Learning
	Model-Based Policy Search Using Monte Carlo Sampling
	Background
	Model-based policy gradient
	GPR and one-step-ahead predictions
	Long-term predictions with GPs

	MC-PILCO
	Model Learning
	Speed-integration model
	Kernel functions
	Model optimization and reduction techniques

	Policy Optimization
	Policy structure
	Policy gradient
	Dropout of policy weights

	Ablation Studies
	Cost shaping
	Dropout
	Kernel function
	Speed-integration model

	Experiments in Simulation
	Cart-pole: comparison with other algorithms
	Cart-pole: handling multimodal distributions
	UR5 joint-space controller: high DoF application

	Conclusion

	Policy Search for Partially Measurable Systems
	State Estimation in Mechanical Systems
	MC-PILCO for Partially Measurable Systems
	Offline estimation of the GP training data
	Simulation of the online estimator during policy optimization

	Proof of Concept
	Experiments with Real Systems
	Furuta pendulum
	Ball-and-plate

	Conclusion

	Derivative-Free Model-Based Policy Search
	Derivative-Free MC-PILCO
	DF model learning
	DF particle-based policy gradient

	Experimental Validation: Simulated Cart-pole
	Modeling results
	Policy learning results
	Analysis of input vector structure

	High DoF Experiment: Simulated UR5 Robot
	Experiments with Real Systems
	Furuta pendulum
	Ball-and-plate

	Conclusion

	II Gaussian Processes for Data-Driven Robot Control
	Feedback Linearization Torque Control using Gaussian Processes
	Background
	Robot dynamics and control
	GPR for inverse dynamics identification

	Dynamics Components Estimation from Inverse Dynamics Model
	Gravitational contribution
	Inertial contributions
	Estimation of bold0mu mumu nnnnnn(bold0mu mumu qqqqqq)

	Feedback Linearization Control Based on Gaussian Process Model
	GP-FL
	GP-FL-DCE

	Experiments in Simulation
	Model learning performance
	Trajectory tracking without initial tracking error
	Trajectory tracking with initial tracking error

	Conclusion

	III Gaussian Processes for Modeling Cloth Dynamics
	Modeling Robotic Cloth Manipulation using Gaussian Processes
	Preliminaries: GPLVM and GPDM
	Controlled GPDM
	Latent variable mapping
	Dynamics mapping
	Multiple sequences

	CGPDM Training and Predictions
	Latent prediction
	Dynamics prediction
	Trajectory prediction

	Experiments with Simulated Cloth
	Data collection
	Model training
	Results

	Experiments with Real Cloth
	Data Collection
	Model training & Results

	Conclusion

	Conclusions
	Appendix
	Semi-Parametrical Kernel for the Cart-pole System

	References

