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Abstract

In this article we study a binary fluid saturating a rotating porous medium; the fluid is modeled
according to Darcy-Brinkman law and the boundary conditions are rigid or stress-free on the velocity
field and of Robin type on temperature and solute concentration.

We determine the threshold of linear instability and its dependence on Taylor and Darcy numbers.
Using a Lyapunov function we prove analytically, under certain assumptions, the coincidence of linear
and nonlinear thresholds. A second Lyapunov function allows us to prove numerically the coincidence
of the two thresholds with weaker assumptions on the parameters.

We show that in the particular limit case of fixed heat and solute fluxes this system has a re-
markable feature: the wave number of critical cells goes to zero when the Taylor number is below a
threshold. Above such threshold, the wave number is non-zero when the Darcy number belongs to a
finite interval. These phenomena could perhaps be tested experimentally.
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1 Introduction

The problem of thermal convection of a binary fluid saturating a porous medium is a subject of intense
research [34, 40, 44]. Double-diffusive flow in porous media has immediate applications in geophysical
problems such as contaminant transport in groundwater [15] and exploitation of geothermal reservoirs
[20, 36], but it also occurs in astrophysics [27, 17], metallurgy [13], and electrochemistry [12]. In many
of these problems, rotation of the medium plays an important role (see e.g. [21, 22, 23, 24, 25, 26]).

Other than a linear analysis of the problem, nonlinear analysis by means of Lyapunov functions can
give results of global stability, and in any case gives indications on the radius of the basin of attraction
of the equilibrium. The technique of Lyapunov functions has been used to investigate the coincidence
between linear instability and non-linear stability threshold for a fluid modeled by Darcy’s law in the
case of a rotating porous layer [40, 38]. Similar problems have been extensively studied in fluid dynamics
[30, 29, 16].

Many phenomena in porous media cannot be described by the simple Darcy law and require the
inclusion of Brinkman’s term, which gives equations better suited to describe the fluid motion in a
sparsely packed media [45]. The case of a rotating binary fluid modeled by Darcy-Brinkman law has been
treated by [18] under the hypothesis of stress free boundary conditions on velocity and fixed temperature
and solute concentration. Even though such boundary conditions allow an analytic treatment of the
problem, they still are too restrictive for physical models.

It is known that in the case of Neumann boundary conditions on the temperature the critical wave
number of the perturbation goes to zero (see [35] for the simple Bénard system and [32, 33] for the case
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of binary fluids and porous media). This physically means that the convection will take place in a cell
with the largest extension allowed by the system or the experimental setup. In [10] the writers have
found an interesting analytical and physical result for a rotating porous layer: under Neumann boundary
conditions, the wave number of the critical perturbation goes to zero only when the rotation number is
sufficiently low. The same result holds in the rotating Bénard problem [8]. This phenomenon is probably
suitable for experimental verification. The novelty of this work with respect to the literature cited above
(in particular [10]) is that here the fluid is modeled by the Brinkman-Darcy law; moreover we consider
the effect of the diffusion of a solute. The presence of the solute field makes the energy analysis of the
system much more complex.

In this article we investigate the problem of a rotating binary fluid in a porous medium with Robin con-
ditions on temperature and solute concentration. Such boundary condition correspond to the physically
relevant cases in which the media surrounding the porous layer have a relatively small conductivity and
heat capacity. For the same reason the solute flow at the boundaries is better modeled by a Robin-type
law [14]. The relevance of this type of boundary conditions is stated in recent works (see e.g. [1]).

In section 2 we describe the problem and obtain the differential equations and boundary conditions.
We investigate in section 3 the associated linear system and the validity of the principle of exchange of
stability (PES) i.e. we verify when instability can arise only as stationary convection. In particular we
prove analytically that a strong PES (SPES) — that is the spectrum of the linear system is always real
— holds when εLe = 1 and also when the fluid is homogeneous. We find numerical evidence that PES
always holds when εLe < 1 while, when εLe > 1, overstability appears for some choice of the parameters.
As far as we know determining exact condition for PES or SPES is still an open problem.

Under the hypothesis of PES, we derive and numerically plot critical stability parameters for a variety
of boundary conditions. In particular we obtain that, in the case of fixed heat fluxes, the critical wave
number is non-zero when the Darcy number belongs to a finite interval depending on the rotation speed.
In section 4 we use two Lyapunov functions to investigate the non-linear stability of the stationary
solution when temperature and solute concentration are subject to the same Robin boundary conditions.
Using the first Lyapunov function we prove analytical coincidence of linear and non-linear threshold when
εLe = 1; using the second Lyapunov function we provide numerical evidence of coincidence in all other
cases. In both cases global stability is proved for some values of the physical parameters.

2 The problem

We consider, in a reference frame Oxyz, with unit vectors (i, j,k), a fluid saturating a horizontal layer of
a porous medium bounded by the surfaces z = ±d/2. The layer rotates around the z-axis with angular
velocity ω = ωk and the system is subject to gravity g = −gk.

We assume a linear dependency of the fluid density ρf on its temperature T and on the concentration
C of a solute, ρf = ρ0[1 − c(T − T0) + c′(C − C0)]. Here c, c′ are positive coefficients, ρ0, T0, C0 are a
reference density, temperature, and solute concentration respectively.

If the fluid flow is governed by Brinkman’s law, then in the Oberbeck-Boussinesq approximation the
equations describing the system are

∇P = −ρfg k− µ1

K v + µ2∆v − 2ρ0ε ω × v
∇ · v = 0

1
M

∂T
∂t + v · ∇T = k∆T

ε ∂C∂t + v · ∇C = k′∆C.

Here P = p1 − 1
2ρ0[ω × x]2, p1 is the pressure, x = (x, y, z) and v = (U, V,W ) denotes the seepage

velocity of the fluid. The last two terms of the first equation are the Brinkman term and the Coriolis
acceleration.

The other quantities appearing in the system are: porosity (ε), viscosity and an effective viscosity
(µ1, µ2), permeability of the medium (K), salt diffusivity (k′). Quantities k and M are an effective
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thermal conductivity and the ratio of heat capacities; they depend on the different thermal properties of
the fluid and the porous medium according to

k =
(1− ε)ks + εkf

(ρ cp)f
, M =

(ρ cp)f
(1− ε)(ρ c)s + ε(ρ cp)f

,

where cp is the specific heat of the fluid at constant pressure and subscripts f , s denote fluid and solid
(porous matrix) values respectively. More details about these equations and physical quantities can be
found, e.g., in [34] or [40].

The velocity field is subject to

U = V = W = 0, at rigid boundaries and
Uz = Vz = W = 0, at stress free boundaries,

where subscript z denotes the partial derivative along the z-axis.
We study a basic motionless state in which temperature and concentration at the boundaries are given

by {
T (x, y,−d/2) = T1, T (x, y, d/2) = T2

C(x, y,−d/2) = C1, C(x, y, d/2) = C2

with T0 = (T1 + T2)/2 and C0 = (C1 + C2)/2. We also assume that T1 > T2 and C1 > C2, that is the
fluid is heated and salted from below. Observe that the values of T1, T2 do not necessarily correspond to
an hypothesis of fixed values at the boundaries (i.e. isothermal surfaces), but are consequence of the more
general and physically meaningful boundary conditions

α−(Tz + β)d− (1− α−)(T − T1) = 0, on z = −d/2
α+(Tz + β)d+ (1− α+)(T − T2) = 0, on z = d/2,

(1)

with α+, α− ∈ [0, 1] and β = (T1 − T2)/d. This boundary conditions are such that by varying the
parameter α+ (or α−) we get conditions of fixed temperature, fixed heat flux, or Newton-Robin (finite
conductivity) for, respectively, α+ = 0, α+ = 1, α+ ∈ (0, 1) at the boundary z = d/2 (or z = −d/2).

Similarly, we do not make the hypothesis of isosolutal surfaces, but we assume the boundary conditions

α′−(Cz + β′)d− (1− α′−)(C − C1) = 0, on z = −d/2
α′+(Cz + β′)d+ (1− α′+)(C − C2) = 0, on z = d/2.

(2)

with α′+, α
′
− ∈ [0, 1], and β′ = (C1 − C2)/d.

The above boundary conditions (1) and (2) are such that, for any choice of α±, α
′
±, the basic motionless

state is given by

m0 = {v = 0, T = T0 − βz, C = C0 − β′z, ∇P = ρ0(1 + (c β − c′ β′) z g)}.

With a suitable choice of units, the equations describing the evolution of a disturbance to m0 are

∇p = (R θ − C γ)k− u + Da ∆u− Tk× u

∇ · u = 0

θt + u · ∇θ = Rw + ∆θ

ε γt + u · ∇γ = Cw + 1
Le∆γ,

(3)

where p,u = (u, v, w), θ, γ are respectively the perturbations to pressure, velocity, temperature, and
concentration, and the following dimensionless quantities appear

T = 2
K ω

εµ1
, R2 =

c β g d2K

µ1 k
, C2 =

c′ β′ g d2K

µ1 k
,
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where T2 is the Taylor-Darcy number, R2,C2 are the thermal and solutal Rayleigh numbers, proportional
to temperature and solute gradient in the basic state m0 respectively. Moreover,

Da =
µ2K

µ1 d2
, ε = εM, Le =

k

k′
,

are the Darcy number, normalized porosity, and Lewis number. We eliminate the pressure field, taking
the third component of the curl and double curl of the first equation, and use the substitution γ → Le γ,
obtaining finally 

0 = −ζ + Da ∆ζ + Twz

0 = R ∆∗θ − LeC ∆∗γ −∆w + Da ∆∆w − T ζz

θt + u · ∇θ = Rw + ∆θ

εLe γt + Leu · ∇γ = Cw + ∆γ,

(4)

where ζ = k ·∇×u is the third component of the vorticity, and ∆∗ = ∂2/∂2x+∂2/∂2y. The corresponding
boundary condition for the perturbation fields are

w = wzz = ζz = 0 on stress-free boundaries
w = wz = ζ = 0 on rigid boundaries
α±θz ± (1− α±)θ = 0, on z = ±1/2
α′±γz ± (1− α′±)γ = 0 on z = ±1/2.

(5)

We perform a linear instability analysis of (4) in section 3, and two energy analyses of the system,
corresponding to two different choices of the Lyapunov function (obtained using two field transformations)
in sections 4.1 and 4.2.

3 Linear instability

A linear instability analysis of system (4) was performed in [18] for stress-free, isothermal, isosolutal
boundary condition. With such choice of boundary conditions, the solutions are analytical. In this work
we investigate boundary conditions on temperature and solute concentration of Robin type, and also
combinations of rigid and stress-free boundaries. In these cases solutions can only be found numerically.
We perform our numerical investigation using the Chebyshev-tau method described in [5].

3.1 Associated linear system

As customary, we assume that the perturbation fields are periodic in the x, y directions with periodicity
cell Ω = [0, 2π/a1]× [0, 2π/a2]× [−1/2, 1/2], that is we assume that solutions are of the kind

f(x, y, z, t) = eσtF (z)g(x, y), with ∆?g + a2g = 0,

where f stands for the fields ζ, w, θ, γ, F stands for, respectively, Z,W,Θ,Γ, and a2 = a2
1 +a2

2 is the wave
number of the perturbation. Under these hypothesis, the linear equations associated to system (4) are

0 = −Z + Da (D2 − a2)Z + TDW

0 = −R a2 Θ + LeC a2 Γ− (D2 − a2)W + Da (D2 − a2)2W − TDZ

σΘ = RW + (D2 − a2) Θ

σ εLe Γ = CW + (D2 − a2) Γ,

(6)

where D denotes the derivative with respect to z. Boundary conditions for the above fields are

W = D2W = DZ = 0 on stress-free boundaries
W = DW = Z = 0 on rigid boundaries
α±DΘ± (1− α±)Θ = 0 on z = ±1/2
α′±DΓ± (1− α′±)Γ = 0 on z = ±1/2.

(7)
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3.2 Overstability

When the fluid is homogeneous, system (6) becomes
0 = −Z + Da (D2 − a2)Z + TDW

0 = −R a2 Θ− (D2 − a2)W + Da (D2 − a2)2W − TDZ

σΘ = RW + (D2 − a2) Θ.

(8)

By taking the scalar product of the first two equations with Z and W respectively, keeping in mind
boundary conditions (7) on W and Z, one shows that

Da ‖DZ‖2 + (1 + Da a2)‖Z‖2 = T(DW,Z) ∈ R

Da ‖D2W‖2 + (1 + 2 Da a2)‖DW‖2+
+a2(1 + Da a2)‖W‖2 + T (Z,DW ) = R a2 (Θ,W ) ∈ R

where (A,B) and ‖A‖ denote respectively the usual scalar product and norm in L2(−1/2, 1/2). From
the last equation of (8), using boundary conditions (7) on Θ, one has

σ‖Θ‖2 = R(W,Θ)− ‖DΘ‖2 − a2‖Θ‖2 − S(Θ, α+, α−) ∈ R,

where S is a real and non negative boundary term given, for a generic field A, by

S(A,α+, α−) =


1−α+

α+
A( 1

2 )2 + 1−α−
α−

A(− 1
2 )2, for α+ > 0, α− > 0

1−α−
α−

A(− 1
2 )2, for α+ = 0, α− > 0

1−α+

α+
A( 1

2 )2, for α+ > 0, α− = 0

0, for α+ = α− = 0.

Since Θ cannot vanish (unless also W and Z vanish), it follows that σ ∈ R, that is, when the fluid is
homogeneous the strong PES holds.

Considering the non homogeneous case described by (6), using similar arguments we obtain (DW,Z) ∈
R and a2(R Θ− LeC Γ,W ) ∈ R. Adding equation (6)3 times R with (6)4 times −LeC we obtain

σ
(

R Θ− LeC Γ + (1− εLe)LeC Γ
)

= (R2 − LeC2)W + (D2 − a2)(R Θ− LeC Γ).

Taking the scalar product of this equation with RΘ − LeCΓ, and under the assumption εLe = 1, we
obtain

(σ + a2)‖R Θ− LeC Γ‖2 = (R2 − LeC2)(W,R Θ− LeC Γ)+
+(D2(R Θ− LeC Γ),R Θ− LeC Γ).

(9)

The last term equals

−‖D(R Θ− LeC Γ)‖2 − R2S(Θ, α+, α−)− Le2C2S(Γ, α′+, α
′
−)+

+R LeC
[

1−α+

α+
Θ+Γ+ + 1−α−

α−
Θ−Γ− +

1−α′+
α′+

Θ+Γ+ +
1−α′−
α′−

Θ−Γ−

]
,

where z̄ denotes the complex conjugate of z and the subscripts ± indicate that the functions are evaluated
in ±1/2. The expression between square brackets is guaranteed to be real only when α+ = α′+ and
α− = α′−, that is when the temperature and solute fields are subject to the same boundary conditions.
Under these hypotheses, the imaginary part of (9) becomes

=(σ)‖R Θ− LeC Γ‖2 = 0.

Since it can be easily shown that ‖R Θ−LeC Γ‖ = 0 implies also W = Z = 0 and in turn Θ = Γ = 0, the
above equality implies =(σ) = 0. This proves that in the binary fluid case, the SPES holds when εLe = 1
and temperature and solute are subject to the same Robin boundary conditions.
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Figure 1: Critical Rayleigh number as functions of εLe. Dotted lines correspond to the onset of over-
stability. The plots are for stress free (left) and rigid (right) boundary conditions, with α = α′ = 1

2 ,
T2 = 10, Da = 0.1, ε = 1. The curves are computed for C2 = 0, 100, ..., 1000 (from bottom to top).

We find also a strong numerical evidence supporting the validity of the SPES for εLe < 1, even if
we cannot prove it analytically. We note that this behaviour is coherent with the results shown in [31],
where SPES is proved for εLe < 1, stress-free boundary conditions on velocity, and Dirichlet conditions
on temperature and solute.

In the case εLe > 1 and for some values of the parameters Da,R,C, we can prove numerically the
appearance of overstability (see Fig. 1). It is hence expected that for εLe > 1 there is a threshold for
C and T above which SPES does not hold. We have not been able to prove analytically also this fact,
which remains an open problem.

3.3 Numerical investigation

In view of a comparison with the non-linear results of section 4, we consider the case in which instability
arises as stationary convection. Under such hypothesis system (6) becomes

0 = −Z + Da (D2 − a2)Z + TDW

0 = −a2( Θ− Γ)− (D2 − a2)W + Da (D2 − a2)2W − TDZ

0 = R2W + (D2 − a2) Θ

0 = LeC2W + (D2 − a2) Γ.

(10)

A few considerations on (10) can be made immediately: the system does not depend on ε and depends
on Le and C2 only through LeC2. It follows that its solutions depend only on three independent physical
quantities, i.e. T,Da, and LeC2 (and on the parameters α±, α

′
± that appear in the boundary conditions).

Furthermore we note that if the boundary conditions on Θ and Γ are the same (i.e. α± = α′±) then the
system becomes equivalent to a system whose two last equations are replaced with 0 = (R2 −LeC2)W +
(D2 − a2) (Θ − Γ). The resulting system is formally equivalent to the one describing an homogeneous
fluid (with the substitutions Θ→ Θ− Γ,R2 → R2 − LeC2). It follows that the critical Rayleigh number
equals that of the homogeneous case translated by LeC2 and hence the dependence of the solutions on
C2 is trivial. Under the same hypotheses on boundary conditions, from the last two equations we can
also derive (D2 − a2) (LeC2 Θ− R2 Γ) = 0, which implies LeC2 Θ− R2 Γ = 0 except for a discrete set of
values of a.

In all the plots that follow, we keep equal the parameters relative to temperature and solute concen-
tration and those relative to the upper and lower boundaries as well, i.e. α+ = α− = α′+ = α′− ≡ α. The
analysis of independent variations of α+, α−, α

′
+, α

′
−, in correspondence with fixed values of the other pa-

rameters, would require a much longer investigation. We illustrate the effects of the independent variation
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of Da,T2 and of the transition of boundary condition from fixed temperatures and solute concentrations
(α = 0) to fixed heat flux and solute flux (α = 1). Computations are performed for either stress free (F)
or rigid (R) conditions on both boundaries.

Fig. 2 illustrates clearly that rotation has stabilizing effects for every value of α, while the most
stabilizing conditions are those of fixed temperature and solute concentration. Transition from Dirichlet
to Neumann boundary conditions is destabilizing. A partial analysis of the case α+ 6= α−, which we do
not present in this article, shows that R2

c and ac are monotonically increasing with respect to α+ or α−
independently, while they are monotonically decreasing with respect to α′±.
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Figure 2: Critical R2 as function of α when T2 = 0, 5, 10, . . . , 50 from bottom to top. Left FF boundaries,
right RR boundaries.

In Fig. 3 we illustrate the much more complex stabilizing effect of Darcy’s coefficient. Also in this
case Neumann boundary conditions on temperature and solute are the most destabilizing. On the other
hand the dependence of critical Rayleigh number R2

c on Da is not monotonous. This is more evident
in the stress-free case. Moreover, the sensitivity of R2

c on the boundary conditions (α) becomes more
pronounced as Da increases, i.e. when the effective viscosity µ2 increases.
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Figure 3: Critical R2 as function of α when Da = 0.01, 0.02, . . . , 0.2 from bottom to top. Left FF
boundaries, right RR boundaries.

The transition from fixed temperature and solute to fixed heat and solute fluxes has a much stronger
effect on the wave number of the critical perturbation. Indeed, as was noted both in fluid dynamics and
in flows in porous media (see e.g. [8, 9]), when the boundary conditions approach fixed heat flux, the
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critical wave number can go to zero (i.e. the wavelength tends to infinity). In Fig. 4 (left panel) we show
how, for T small the critical wave number goes to zero when approaching fixed flux boundary conditions
while for T big enough the critical wave number tends to a non-zero value when α tends to 1. The critical
threshold Ta such that if T < Ta then ac = 0 for a given Da number is shown in Fig. 4 (right panel) in
stress-free and rigid cases. From this last plot it is clear that there exists a Taylor number below which
the critical wave number is zero for every value of Da.

In principle, one should expect no differences between rigid and stress-free cases when the Darcy
number is zero. In fact in this case the equations become of second order in W , and the conditions on the
value of W should suffice to determine the solution. This does not happen in our plots, and will require
further investigations.
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Figure 4: Left: critical wave number ac as function of α, with Da = 0.1 and T2 = 0, 5, 10, . . . , 50 from
bottom to top. When α = 1, ac is non-zero for T above a threshold. Right: dependence of ac on T for
fixed heat fluxes; Da = 0, 0.005, . . . , 0.08.

The remarkable behavior of the critical wave number is better represented in Fig. 5, where the bound-
ary conditions are of fixed heat and solute flow, and some values of T are chosen big enough to have
a positive ac for some Da numbers. In this case there exist an interval of values of the Darcy number
for which the critical wave number is non-zero. Such interval grows monotonically with T. This effect
seems to indicate a complex interaction of the two viscosity coefficients and rotation, whose physical
interpretation escapes our understanding.

4 Nonlinear stability via energy method

It is a known fact that using the classical energy (||ϑ||2 + ε ||γ||2)/2 as Lyapunov function, the stabilizing
gyroscopic effects, due to solute gradient and rotation, are lost. To build an optimal Lyapunov function,
we need to introduce a different “generalized” energy. In this article we obtain two Lyapunov functions
using two different field transformations. In section 4.1 we use the classical canonical reduction method
(see [28], [31], [19]), which relies on the eigenvalues of the linear problem. In section 4.2 we use the energy
based on the field transformation proposed by [29] for fluids.

4.1 First Lyapunov function

The transformation proposed in [31] (in the absence of rotation) is a transformation that typically depends
on the wave number of the linear solution which, in the stress free case can be found analytically. In
other cases the method requires the use of numerical solutions of the linear system.

Nevertheless, when εLe = 1 the transformation depends only on the parameters Le,C,R, and knowl-
edge of the linear solutions is not required. Under this hypothesis, and applying the substitutions θ → R θ
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Figure 5: Critical wave number ac as function of Da for fixed heat flux and T2 = 8, 9, . . . , 15 from bottom
to top.

and γ → C γ, system (4) becomes

−ζ + Da ∆ζ + Twz = 0

∆∗(R2 θ − LeC2 γ)−∆w + Da ∆∆w − T ζz = 0

θt + u · ∇θ = w + ∆θ

γt + Leu · ∇γ = w + ∆γ.

The field transformation and its inverse are φ = 1
R2−LeC2 (R2θ − LeC2γ)

ψ = R2

R2−LeC2 (θ − γ),

{
θ = φ+ LeC2

R2 ψ

γ = φ+ ψ,
(11)

the corresponding equations in the new fields become

0 = −ζ + Da ∆ζ + Twz

0 = −∆w + (R2 − LeC2) ∆∗φ+ Da ∆∆w − T ζz

ψt = R2(1−Le)
R2−LeC2 u · ∇φ− Le(R2−C2)

R2−LeC2 u · ∇ψ + ∆ψ

φt = −R2−Le2 C2

R2−LeC2 u · ∇φ− LeC2(1−Le)
R2−LeC2 u · ∇ψ + ∆φ+ w.

(12)

The boundary conditions for the new fields φ, ψ are not decoupled unless θ and γ are subject to the
same conditions, i.e. α± = α′±, in which case they are

α±φz ± (1− α±)φ = 0 on z = ±1/2
α±ψz ± (1− α±)ψ = 0 on z = ±1/2.

(13)

We introduce the following generalized energy

E0 =
1

2

(
||ψ||2 + ||φ||2

)
. (14)

Despite its independence on ζ, w, this function can be proven to be zero, in the manifold given by the first
two equations, only in the origin. The time derivative of E, according to equations (12), is Ė0 = F2 +F3

where
F2 = (φ,w) + (φ,∆φ) + (ψ,∆ψ),

F3 = R2+LeC2

R2−LeC2 (1− Le)(u · ∇φ, ψ).
(15)

9



When the boundary conditions for solute concentration and temperature are the same, then F2 can
be rewritten as

F2 = (φ,w)− ||∇φ||2 − S(φ, α+, α−)− ||∇ψ||2 − S(ψ, α+, α−).

When Le = 1 the nonlinear term disappears, and the stability condition is global. When Le 6= 1 we
must take into consideration also the non linear contribution F3, as described in [28].

To take into account the functional constraints provided by the first two equations, we multiply them
respectively by ζ and w and integrate over Ω, obtaining

V1 = − ||ζ||2 −Da ||∇ζ||2 + T (wz, ζ) = 0

V2 = (R2 − LeC2)(w,∆∗φ) + ||∇w||2 + Da ||∆w||2 + T (wz, ζ) = 0.
(16)

Note that equation (16)1 implies (wz, ζ) ≥ 0, then from (16)2 we get also (R2 − LeC2)(w,∆∗φ) < 0,
or (R2−LeC2)(w, φ) > 0. Then in the region R2 < LeC2 of parameter space, it is necessarily (w, φ) < 0,
and hence F2 < 0, so that the Lyapunov function (14) proves at least linear stability of the equilibrium.

We are left to study the stability in the case R2 > LeC2, i.e. show that Ė0 is negative in a punched
neighborhood of the origin. To do so, we need to begin by investigating the signature of the quadratic
function F2.

The function F2, subject to the constraints V1, V2, can be expressed introducing Lagrange multipliers
λ1, λ2. The resulting function can be decomposed as F2 = I −D, where

I = (w, φ) + (λ1 + λ2)T(wz, ζ) + λ2(R2 − LeC2)(w,∆∗φ)+

−λ1(||ζ||2 + Da ||∇ζ||2)

D = −(φ,∆φ)− (ψ,∆ψ)− λ2(||∇w||2 + Da ||∆w||2).

(17)

Observe that D > 0 whenever λ2 < 0. From V1 = 0 it follows

Da ||∇ζ||2 = − ||ζ||2 + T(wz, ζ) ≤ T(wz, ζ) ≤ T ||w|| ||ζz|| ≤ T ||w|| ||∇ζ|| ,

i.e. ||∇ζ|| ≤ T ||w|| /Da. Using this inequality, one can show that the ratio I/D is bounded from above.
We can define then m = max(I/D), where the maximum is taken over the space H of functions satisfying
boundary conditions and constraints (12)1,2. F2 is then negative definite in the region of parameter space
in which m < 1, where in fact

F2 =

(
I

D
− 1

)
D ≤

(
max
H

[
I

D

]
− 1

)
D = (m− 1)D (18)

holds. We hence need to determine the critical points σ̄ = (ζ̄, w̄, φ̄, ψ̄) which are critical for the function
I/D and such that I(σ̄)/D(σ̄) = 1. This condition corresponds to the equations

(λ2 − λ1) T w̄z = 0

φ̄− λ1 T ζ̄z + λ2 (Da ∆2w̄ −∆w̄) = 0

w̄ + 2 ∆φ̄+ λ2((R2 − LeC2)∆∗w̄) = 0

∆ψ̄ = 0,

(19)

where the first two equations have been simplified using (12)1.
From the first equation one obtains that λ1 = λ2 = λ then, from the second equation one obtains

that φ̄ + λ(R2 − LeC2)∆∗φ̄ = 0, from which it follows that λ−1 = −a2(R2 − LeC2). The last two
equations become 0 = w̄ + ∆φ̄, and 0 = ∆ψ̄, which are precisely the equations satisfied by a marginal
convective solution of system (12). This indicates the coincidence of the linear instability and energy
stability thresholds.

To estimate the non-quadratic part of Ė, we recall equation (3)1

∇p = (R θ − C γ)k− u + Da ∆u.
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Rewriting it according to the substitutions employed in deriving system (12), i.e. θ → R θ, γ → LeC γ,
and (11), we obtain

∇p = (R2 − LeC2)φk− u + Da ∆u.

Multiplying by u and integrating over the cell Ω, we obtain

||u||22 + Da ||∇u||22 = (R2 − LeC2)(w, φ).

Using Cauchy-Schwarz and Poincaré inequalities for w, we obtain that

||∇u||22 ≤ |R
2−LeC2|

Da |(w, φ)| ≤ |R
2−LeC2|

Da ||w||2 ||φ||2 ≤

≤ |R
2−LeC2|
πDa ||∇w||2 ||φ||2 ≤

|R2−LeC2|
πDa ||∇u||2 ||φ||2 ,

which can be summarized in the inequality

||∇u||2 ≤
|R2 − LeC2|

πDa
||φ||2 .

From which also follows

||u||2 ≤
|R2 − LeC2|

π2 Da
||φ||2 .

To estimate the nonlinear term F3, one can use Hölder inequality to obtain that |(u · ∇φ, ψ)| ≤
||u||4 ||ψ||4 ||∇φ||. By Sobolev embedding theorems (see [39] page 389), one has that

||u||4 ||ψ||4 ||∇φ||2 ≤ 32a
1
3

√
||u||22 + ||∇u||22

√
||ψ||22 + ||∇ψ||22 ||∇φ||2 ≤

≤ C1 ||φ||2 C2

√
(ψ,∆ψ)(φ,∆φ)

(20)

where C1 = 32a
1
3 |R2 − LeC2|

√
1 + π2 π−2Da−1 and C2 =

√
1 + ξ2. ξ is a constant coming from the

generalized Poincaré inequality
||ψ||2 ≤ ξ

√
−(ψ,∆ψ)

for functions satisfying Robin boundary conditions (13), whose dependency on the parameters α+, α− is
shown in Fig. 6 in the particular case α+ = α− = α.

Using the fact that ||φ|| ≤
√

2E and the definition of D, we then obtain that

C1C2 ||φ||2
√

(ψ,∆ψ)(φ,∆ψ) ≤ C1C2

√
2E1/2 1

2 (−(φ,∆φ)− (ψ,∆ψ))

≤
√

2
2 C1C2E

1/2D.
(21)

Summarizing, we have shown that

|F3| ≤
√

2

2
C1C2

∣∣∣∣ (R2 + LeC2)(1− Le)

R2 − LeC2

∣∣∣∣E1/2D. (22)

It hence follows from (18) and (22) that Ė ≤ χD, where

χ = m− 1 +

√
2

2
C1C2

∣∣∣∣ (R2 + LeC2)(1− Le)

R2 − LeC2

∣∣∣∣E1/2. (23)

Whenever the physical parameters are below threshold, which is equivalent to the fact that m − 1 < 0,
all initial data such that

E ≤ 2(m− 1)2 (R2 − LeC2)2

(R2 + LeC2)2(1− Le)2 C2
1 C

2
2

(24)

yield a negative χ. The generalized Poincaré inequality recalled above gives Ė ≤ χD ≤ 2χ ξ−2E. It
hence follows that

Theorem 1 Let σ(t, x, y, z) = (ζ, w, φ, ψ)(t, x, y, z) be any solution of equation (12) with physical param-
eters such that m < 1, and denote by E(t) = E(σ(t, x, y, z)). If σ is such that E(0) satisfies equation

(24), then E(t) ≤ e2χξ−2tE(0) where χ is the negative constant defined in (23). This implies that the
basic motion is conditionally asymptotically exponentially Lyapunov stable.
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Figure 6: Poincaré constant for functions with Robin boundary conditions

4.2 Second Lyapunov function

For εLe 6= 1 we use the transformation introduced for fluid dynamics in [29] and used also in [18]. We
consider again system (4) and introduce the auxiliary fields{

φ = R θ − LeC γ

ψ = R θ − δ pLeC γ
↔

 θ = 1
R(δ p−1) (δ p φ− ψ)

γ = 1
LeC(δ p−1) (φ− ψ)

where p denotes εLe, and we assume δp 6= 1. Making the above substitution and linearizing, we obtain

−ζ + Da ∆ζ + Twz = 0

∆∗φ−∆w + Da ∆∆w − T ζz = 0

ψt = (R2 − δ LeC2)w + 1
δ p−1

[
δ (p− 1)∆φ+ (δ − 1)∆ψ

]
pφt = (pR2 − LeC2)w + 1

δ p−1

[
(δ p2 − 1)∆φ+ (1− p)∆ψ

]
.

In this case, when p = 1 we obtain global stability. We introduce then the Lyapunov function
(generalized energy) E = 1

2

(
µ ||ψ||2 + p ||φ||2

)
, with µ a (positive) parameter. By multiplying the last two

equations just found by ψ and φ respectively, and evaluating the time derivative Ė of the energy, we
obtain that

Ė = µ(R2 − δ LeC2)(w,ψ) + (pR2 − LeC2)(w, φ)− C(φ, ψ),

where C(φ, ψ) in the function

C(φ, ψ) = −c1(ψ,∆ψ)− c2(φ,∆ψ)− c3(φ,∆φ) =

c1 ||∇ψ||2 + c2(∇φ,∇ψ) + c3 ||∇φ||2 +

+ 1−α+

α+

(
c1ψ

2
+ + c2φ+ψ+ + c3φ

2
+

)
+ 1−α−

α−

(
c1ψ

2
− + c2φ−ψ− + c3φ

2
−
)
,

where

c1 = µ
δ − 1

δ p− 1
, c2 =

(µ δ − 1)(p− 1)

δ p− 1
, c3 =

δ p2 − 1

δ p− 1
.
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To take into account the first two equations, we multiply them respectively by ζ and w, integrate over
Ω {

− ||ζ||2 −Da ||∇ζ||2 + T (wz, ζ) = 0

(w,∆∗φ) + ||∇w||2 + Da ||∆w||2 + T (wz, ζ) = 0.

We multiply the above equations by the new parameters λ1 and λ2 and add them to the expression
previously obtained for Ė.

For C(φ, ψ) to be positive definite, we need to impose the two conditions c1 > 0, c22 − 4c1c3 < 0,
which can be viewed as conditions on δ and µ. The time derivative of E can be then expressed as Ė as
Ė = I −D where

I = µ(R2 − δ LeC2)(w,ψ) + (pR2 − LeC2)(w, φ) + λ2(w,∆∗φ)

+(λ1 + λ2)T (wz, ζ)− λ1

(
||ζ||2 + Da ||∇ζ||2

)
D = λ2

(
||∇w||2 + Da ||∆w||2

)
+ C(φ, ψ).

(25)

We have then

Ė ≤
(

max
H

[
I

D

]
− 1

)
D.

We derive then the Euler-Lagrange equations associated to the above maximum problem. The equation
for the variation of ζ is

(λ1 + λ2)T wz − 2λ1 ζ + 2λ1 Da ∆ζ = 0,

from which, using the first equation of motion, it follows that λ1 = λ2 = λ. The other Euler-Lagrange
equations are 

µ(R2 − δ LeC2)ψ + (pR2 − LeC2 + λ a2)φ = 0

(pR2 − LeC2 − λ a2)w + 2 c3 ∆φ+ c2 ∆ψ = 0

µ(R2 − δ LeC2)w + c2 ∆φ+ 2 c1 ∆ψ = 0

(26)

with c1, c2, c3 defined previously and where the second equation was simplified using (12)1. The param-
eters λ, µ, δ, that we call Lyapunov parameters, define a family of candidate Lyapunov functions. Fixing
physical parameters which give linear stability there are appropriate choices of these parameters which
provide a Lyapunov function. Indeed, our numerical investigation shows that there is a 1-parametric
choice of such parameters. This choice of Lyapunov functions proves coincidence of the threshold of
linear instability with that of energy stability.

The numerical procedure is the following. After fixing the physical parameters Da,T,C, ε,Le and the
boundary parameters α±, α

′
±, equations (26) become a spectral eigenvalue problem in R depending on

a and the Lyapunov parameters λ, µ, δ. Minimizing with respect to a, we obtain the critical Rayleigh
number associated to such Lyapunov parameters. Maximizing then with respect to the parameters we
obtain the best choice of Lyapunov function. Comparing the threshold associated to such Lyapunov
function with the linear threshold, we see their coincidence.

5 Conclusions

We have analyzed the thermal stability of a binary fluid in a rotating porous layer. The fluid motion is
modeled by the Darcy-Brinkman equation and the fluid is subject to several combinations of boundary
conditions. We considered in particular the effect of Robin boundary condition on temperature and
solute, adapting to this particular setup the two Lyapunov functions introduced in [18, 31]. We obtained
coincidence of linear and non linear critical values, and we have shown, in some cases, the global stability
of the solutions.

We have shown that the most stabilizing conditions are those with prescribed values of the fields
(Dirichlet boundary conditions). The same effect is also described in [8, 9] both for fluids and porous
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media. In the limit case of fixed heat fluxes, the critical wave number strongly depends on Da and T
numbers, and vanishes for any Darcy number for low rotation, and conditionally on Darcy number for
high rotation.

This article extends in a non-trivial way the results of [18] who obtain results only under ideal stress-
free boundary conditions and fixed temperature and solute concentration at the boundaries.

The numerical investigation confirms the physically relevant appearance of zero wave numbers in some
regions of the parameter space of the problem when the boundary conditions on temperature are of fixed
flux.
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