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ABSTRACT 

Computer aided drug discovery (CADD) approaches have affirmed their role in many industrial and 

academic contexts as precious tools to rationalize and speed up the early stages of drug discovery 

pipelines. Starting from simple approaches focus only on the ligand properties and activities 

(ligand based methods), with the increasing number of available structural information regarding 

receptors a shift toward a new class of methods, called structure based approaches, occurred 

during the past 30 years.  

This PhD thesis focus on this class of CADD approaches (homology modelling, molecular docking, 

molecular dynamics) and show different application of these methods in various contexts: from 

virtual screening to the elucidation of the protein-ligand recognition process at the atomistic level, 

from small soluble proteins to G-Protein coupled receptors. 
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1 History of Drug Discovery. 

1.1 Medicines: From plants to synthetic molecules. 

For several thousand years different plant parts (roots, leaves, bark) have been used as medicines 

in all continents of the world. These plants were used to heal various diseases based on empirical 

observations of symptoms relieves like fever or pain.  

Along with the use of the plant itself, the use of extracts (like dried extracts or infusions) has 

always been present, as evidence of the awareness raised towards the presence of active 

ingredients in the plant, for example, the use of extracts of Ephedra sinicaas a stimulant can be 

dated up to 3000 B.C. in traditional Chinese medicine1. 

In the nineteenth century remarkable progress has been made with the isolation of the pure 

active ingredients from a plant: In 1804 Morphine was isolated from opium and in 1820 Quinine is 

isolated from cinchona bark. Along with this progress in 1828 is reported the first synthesis of an 

organic molecule, urea. Soon organic synthesis was applied for the synthesis of natural molecules, 

and in 1860 salicylic acid was synthesized for the first time and in the late 1800s, the extraction of 

this molecule from the natural source was replaced by its synthesis. 

The real revolution in the history of medicines was the application of organic synthesis for the 

preparation of new molecules. That is, not the replication of molecules that are already present in 

nature but the creation of new molecular entities. Acetylsalicylic acid was first prepared in 1853 

from salicylic acid, but while this is a semisynthetic derivate of a natural product, chloral hydrate 

can be considered the first synthetic drug (1832)2. 

While the application of organic synthesis for the creation of new molecules is a powerful concept, 

this new paradigm implies a new problem: which are the new molecules that have to be made? 

This question can be considered the central problem of modern Drug discovery.  

1.2 From Serendipity to Rational Drug Discovery. 

The drug discovery process can be ideally divided into three steps: Hit identification hit to lead 

optimization and lead optimization. A hit compound is a molecule that gives a positive response in 

a specific assay (an enzymatic inhibition assay for example), this molecule is optimized to improve 

not only the activity toward the target but also physicochemical properties, like solubility and 

lipophilicity, to give a lead compound. When more advanced studies on the lead compound have 

been performed, this is further optimized to improve properties like metabolic stability, toxicity, 

off-target effects. 
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During the 20th century many new hit compounds were often discovered by accident (often refers 

as serendipity in Drug Discovery) famous examples of these lucky events are the discovery of the 

first Penicillin and Librium. A huge progress was made with the setup of reliable and reproducible 

assays to test molecules for a specific purpose and the automation of this process, an approach 

known as High-throughput screening (HTS). 

The optimization process of the hit compound (that could be a new molecule like Librium or a 

natural product like morphine) was then carried out by synthesizing and testing many different 

analogs. Soon it was clear that some trends were present in the variation of the measured activity 

of the analogs series: some modifications were not tolerated (like the basic nitrogen in opioids, 

that must be present), the nature (bulkiness, hydrophobicity, etc.) of a substituent in a certain 

position correlate quite well with the activity, the length of a linker between two regions of the 

molecule must be in a restricted range, the cyclization of a part of the molecule improved the 

activity and many other observations that are collectively called Structure-Activity Relationships 

(SARs).  

The next step was the development of quantitative models to use these SARs (QSAR) in a 

perspective way, several equations were made for this purpose (or already existing models were 

applied to drug discovery): Hansch’s equation, Hammet’s equation, Taft’s Equation3.  

These equations were limited to small variations in highly congeneric series and often works 

better in the interpolative validation rather than in the extrapolative predictions, nevertheless, 

with these first approaches it was clear that rationalizing the early stages of drug discovery 

campaigns could be useful and powerful. Since these first approaches were quite limited, the 

necessity of more advanced models was clear, and with this necessity, informatics makes its 

entrance in Drug Discovery. 

The next generation of approaches were the so-called 3D-QSAR models. In these methods, several 

conformers are generated in silico and a multiple conformer alignment is performed (if a common 

scaffold is present this can be kept fixed and used to align all the conformers, for example). At this 

point a steric and electrostatic potential (in the classic COMFA approach) and eventually the 

hydrophobic potential (in the CoMSIA method) are calculated in a 3D grid surrounding the 

molecule, the obtained values are then correlated with the measured activity4. 

Other in silico approaches were developed not only for the lead optimization but also for the hit 

finding process. These methods start usually from an active compound and search similar 

molecules in virtual databases. To make this comparison, molecules can be represented in several 
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ways: using a set of molecular descriptors, using fingerprints (1D representation of the molecule 

obtained with different methods), representing the molecules with their 3D shape. More 

advanced methods can measure the similarity between molecules by comparing the electrostatic 

potentials exerted by these.  

Another approach that can be used to search new hit compounds is pharmacophore screening. 

When some active molecules for a specific target are known, these can be aligned to search a 

common pharmacophore, a set of features (hydrogen bond donor and acceptor, aromatic ring, 

and so on) that are present in all the molecules. This pharmacophore is then used to screen large 

virtual databases, searching for new molecules that can fit the model.  

While these methods have represented a great aid in the early stages of the many drug discovery 

processes, their main limitation was the high number of false positives, molecules that can fit very 

well a pharmacophore model or that are similar to a known active compound but when tested 

result not active. This high rate of false positives is mainly caused by neglecting the receptor role 

in the interaction. 

2 Structure-Based Drug Discovery. 

Starting from the late 90s the number of X-Ray, NMR, and electron microscopy structures in the 

Protein Data Bank (PDB5) has started to increase rapidly. In the beginning, the solved structures 

were mainly small soluble proteins, but in the 2000s many membrane proteins structures have 

been solved6. Often the protein’s structure is solved as a complex with a small organic molecule, 

like drugs or other active compounds. This precious structural information has soon been used to 

develop the next generation of computational methods in drug discovery, usually called Structure-

Based Drug Discovery approaches. 

2.1 Molecular Docking 

A molecular docking protocol is a computational tool that predicts the binding mode of a given 

molecule inside a site of a protein. It is made of a search algorithm that samples the 

conformational space accessible by the ligand, creating conformations that in the docking context 

are usually called poses, and of a scoring function, which evaluates the quality of such poses to 

assess which is the most probable (namely the one more similar to the real binding mode, the 

pose that would be observed in a crystal structure of the protein-ligand complex). 
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Note that while the aforementioned conformational search was operated on the ligand alone to 

find low energy and less constrained conformers, molecular docking can be thought of as a 

conformational search that takes into account (from a shape and interactive point of view) a 

protein environment surrounding the ligand. 

Different scoring functions have been adopted for the evaluation of docking poses. Scoring 

functions can be divided into different families: 1. Force field-based scoring functions, where the 

energy of the system is evaluated using a force field, this model the energy of the system as a 

function of the sum of different functional terms and the values of the parameters used in these 

terms. 2. Empirical scoring functions7,8 consist of different terms, each of which represents a 

different intermolecular interaction, every term is modeled using experimental values for that 

intermolecular interaction (so, for example, an angle of 180° and a length of 3Å are considered 

optimal for a hydrogen bond). The quality of the docking pose is evaluated by how far the system 

is from these experimental values and counting the number of positive interactions. 3. Knowledge-

based scoring functions. These are based on statistical analyses on the most observed contacts 

between certain ligand’s atom type and certain protein’s atom type. The Docking poses that are 

more similar to what is statistically observed in high-quality X-ray databases are preferred.  

Regarding the sampling of the conformational space, any type of search algorithm has been 

implemented in docking protocols over the years. Systematic search algorithms that exhaustively 

sample the conformational space defined by the degree of freedom of the ligand, heuristic and 

metaheuristic algorithms like Genetic algorithms9,10 and Ant Colony Optimization algorithms11,12. 

One of the major limitations of docking is that the search algorithm samples the conformational 

space of the ligand while the protein is usually kept rigid (this approach is the so-called semi-

flexible docking). However, there are some strategies to partially take into account the flexibility of 

the protein. The simplest way is to introduce some tolerance in the steric clashes between the 

protein and the ligand, with the logic that the protein can tolerate some steric clashes with the 

ligand adapting the binding site’s residues13. A more sophisticated approach retains the flexibility 

of the side chains for the protein’s residues in the binding site, the conformational space of these 

side chains is explored in a similar way to what is done for the ligand. Often only the position of 

some atoms of the side chains is optimized, these atoms are often polar hydrogens involved in 

hydrogen bonds. A different approach, called ensemble docking, involves the execution of docking 

run on different conformations for the protein (usually extracted from Molecular Dynamics 

trajectories), this way the flexibility of the protein is indirectly considered14. 
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Molecular docking has been applied in both the three fundamental steps of drug design: the hit 

finding, the hit to lead optimization, and the lead optimization. The application of docking to find 

new hit compounds is called Docking-based virtual screening15,16 or Structure-based virtual 

screening17,18. In this type of virtual screening, large virtual databases (up to billions of 

compounds19) are docked in the binding site of the protein of interest, and the poses are ranked 

according to the scoring function value. Note that while in the classic example discussed above the 

scoring function ranks the different poses of a molecule in virtual screening the scoring function is 

used to rank different poses of different molecules, with the aim to find the most promising 

molecules to test against the target.  

Once a hit compound is identified usually several analogs are prepared and tested. Molecular 

Docking can be a useful tool to rationalize the observed SARs for a ligand series, from a Structure-

based point of view. For this purpose, a common binding mode that can explain the observed SARs 

is searched. The decomposition of the scoring function value in the different constitutive terms 

(hydrogen bonds, electrostatics, etc.) can also help to understand the experimental observations.  

Once a docking model has been validated it can be used to rational suggest modifications that can 

be made on the hit compound to improve the affinity.  

It is well accepted that while usually, the conformational sampling of docking can often reproduce 

the crystallographic binding mode, scoring functions struggle to distinguish the native binding 

mode from wrong poses20 (figure 1). 

Figure 1.Three different Docking poses (green) of Adenosine and the crystallographic observed binding mode (yellow) 
in the orthosteric site of A2A adenosine receptor. All the three poses are reasonable but only one is correct (close to 
the experimental observed one). Note that for each pose the interaction pattern observed in the crystal structure is 
preserved (two hydrogen bonds with Asn-253, electrostatic interaction with Glu-169, π-π stacking with Phe-168). 
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The reasons why often docking fails are many because several are the implicit approximations in 

the way docking models the protein-ligand problem. The role of water molecules is neglected and 

the protein is kept rigid or almost rigid, often only one or few tautomeric and charge states of the 

ligand are considered. Finally, the experimental values, like Kd, that we are trying to rationalize are 

the result of a dynamic process of association and dissociation of the ligand, while with docking all 

the considerations are made on the final bound state. 

For these reasons, many approaches have been developed to improve docking performance. 

2.2 Pharmacophore constraints in molecular docking 

If for the target of interest more than one X-ray crystal structure of the protein-ligand complex is 

available, it is possible to model a pharmacophore hypothesis based on the commonly observed 

features, these structure-based pharmacophores are more reliable than the ligand-based models 

derived from multiple alignments of different conformers of a dataset of active molecules, 

especially if few active molecules are known21,22. Once this model has been validated it can be 

used to filter docking poses resulting from virtual screening, retaining only those that fit the 

pharmacophore model. Note that in this approach the scoring function values can also be 

neglected, being replaced by a knowledge-based selection criterion. Some docking software like 

MOE, Glide, and GOLD can also implement these pharmacophore constraints directly in the 

docking run, biasing the solutions toward the desired binding mode, if possible. 

2.3 Consensus Docking  

Consensus docking is an approach that tries to improve the performance of docking with a 

“wisdom of the crowd” logic. In this approach docking poses resulting from a virtual screening are 

rescored using several scoring functions and those with good values for the different metrics are 

prioritized23. Sometimes the consensus approach is also applied to the conformational search: the 

molecules that produce similar poses using different search algorithms are prioritized24.  

2.3 Water molecules in molecular docking 

The importance that water molecules play in the ligand-receptor interaction25,26. In the ligand-

receptor interaction perspective, water molecules can be divided into two categories: those which 

are displaced by the ligand during the recognition process, and those which are not displaced but 

can be stabilized by the ligand and participate in the complex formation as a third actor27. Like for 

the above-mentioned structure-based pharmacophores, also to model water molecules in a 
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protein’s binding site, several low-resolution X-ray crystal structures are required. If these are 

available, several docking software can include water molecules in the calculation. While some 

docking software like GOLD automatically calculates the optimal orientation of the water 

molecules, several others require the user to manually set the proper orientation28.  

The performance of docking usually increases when water molecules are included, this can be due 

to two main reasons. For some targets, like the HIV protease29, water molecules mediate the 

interaction of the ligand in the binding site of the protein, and the experimental binding mode 

cannot be reproduced without them. But it also must be remembered that by adding water 

molecules, we are also adding excluded volumes, so there is less accessible conformational space 

to be explored, the number of possible solutions Is therefore less.  

There are some problems in the inclusion of water molecules in docking calculation for virtual 

screening purposes since different ligands can displace or not displace different solvent molecules 

and interact with these in different ways, so adopting a single structural configuration for the 

solvent can lead to misleading results in virtual screening.  

2.4 The missing dimension: Molecular dynamics refinement of docking poses.  

Molecular dynamics (often abbreviated in MD) is a class of computational simulations where the 

time evolution of a molecular system is analyzed. Starting from an initial atomic configuration the 

evolution of the system in time is simulated using Newton’s equation of motion, which is 

integrated at every time step which are the short intervals in which time is discretized30,31. The 

length of the time step must assure an appropriate description of the fastest motion of the 

system, which is usually bonded vibration. The force acting on each particle is calculated using a 

force field and is then used to calculate the acceleration of the particle and so the position at the 

next time step. Many force fields have been developed for the simulation of biological systems: 

AMBER32, CHARMM33, OPLS34 are the most used among many others. 

Molecular dynamics simulations have been applied in recent years to refine docking poses35,36. 

Typically, the protein-docking pose complex is subjected to multiple MD simulations which are 

analyzed to assess the stability of the predicted binding mode. This stability is modeled as the root 

mean square fluctuation (RMSF) of the atomic positions during the trajectories, the persistence of 

particular interactions of interest (like the hydrogen bonds with hinge residues for a kinase 

inhibitor) can also be measured and used as a metric to evaluate the pose. 
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MD refinement of docking poses allows users to assess the severity of steric clashes between the 

protein and the ligand. While scoring functions values become quickly unfavorable in the presence 

of steric clashes, an MD refinement can be useful to understand if the protein can or not tolerate 

that steric clash by a conformational rearrangement and if the binding mode is preserved during 

this event. 

The implementation of molecular dynamics simulations allows more accurate treatment of the 

solvent concerning what is described above and also solves some of the problems associated with 

these classic protocols. First, no “a priori” information regarding the position of water molecules is 

needed. Indeed, the molecular system is solvated and during the simulation, water molecules tend 

to stabilize in the same positions observed in X-ray crystal structures37. The problem of water 

molecules' orientation is also intrinsically solved since these tend to orient themselves dynamically 

to form interactions with the ligand and the protein38. 

MD refinement of docking poses allows a more complete and accurate vision of the protein-ligand 

complex, but some limitations are still present and this type of investigation still focuses only on 

the final bound state, while a full description of the molecular recognition process requires also an 

analysis of the (un)binding pathway. 

 

3. Supervised Molecular Dynamics 

One of the major limitations of classic Molecular Dynamics simulations is the low sampling of the 

potential energy surface described by the force field. This means that usually, the system ends up 

in local minima, separated by a high energy barrier from other minima, without a complete 

exploration of the energetic landscape. To overcome this problem different methods have been 

developed, which fall into two main categories: Enhanced sampling methods and Markov State 

Models methods. 

Markov state models approaches39,40 to treat an MD event as an ensemble of independent 

microstates and calculate a transition probability matrix that allows computing the probability that 

the system occupies a certain state and the probability that the system transitions in another 

state.  

Enhanced sampling methods41,42 are based on an alteration of the potential energy surface to 

escape from local minima.  

SuMD43,44,45 (Supervised Molecular Dynamics)is a Molecular Dynamics based approach that allows 

the investigation of molecular recognition events without altering the potential energy surface 
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with biases. The algorithm supervises the distance between the ligand’s center of mass distance 

and the binding site’s center of mass (binding site is defined as an ensemble of residues). 

In a SuMD simulation a series of short classical MD simulations are performed (these are usually 

referred to as SuMD steps) and at the end of each of these small simulations, the distance 

between the two centers of mass is measured. If the ligand is approaching the binding site during 

the SuMD step, the simulation is prolonged by another SuMD step, otherwise, the simulation is 

restarted from the previous set of coordinates. So while enhanced sampling methods use an 

energetic bias to sample binding events (and other molecular events) SuMD adopts a pure 

geometric bias, without altering the potential energy surface. 

SuMD simulation allows a more accurate and complete depiction of the binding event than 

molecular docking calculations. The molecular mechanism of the binding event (and also of the 

unbinding process46) can be analyzed at the atomistic level, gaining information on how the ligand 

is recruited from the bulk by the protein. These kind of information cannot be obtained by docking 

analysis, and are fundamental in the description of the molecular recognition process. For 

example, the importance of extracellular loops in ligand potency and selectivity has been proved 

for GPCRs47.  

Figure 2.A possible binding trajectory of adenosine toward the orthosteric binding site of A2A adenosine 
receptor,sampled SuMD simulation (on the left) and the per residue decomposition of the interaction energy as a 
function of the time, on the right. 
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In some cases, meta-stable binding sites can be observed along the binding pathway toward the 

final orthosteric site. In figure 2 is reported a per residue analysis of the interaction energy 

between adenosine and A2A adenosine receptors during a SuMD simulation of the binding process. 

As it can be observed from this example, before the ligand reaches the final X-ray observed 

binding mode, interacting with residues 168, 169, and 253 (see figure 1), a meta-stable binding 

site is observed (between 2ns and 7ns). Here the ligand is interacting with some residues (153,157 

and 170) that are not present after, in the final bound state. 

Behind small molecules, SuMD has recently been applied to peptides48 and fragments38,49 which 

represent two difficult classes of ligands for molecular docking. 
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Overview of the Scientific publications 

1 Molecular Docking 

1.1 Cescon, E. et al. Scaffold Repurposing of in-House Chemical Library toward the Identification of 

New Casein Kinase 1 δ Inhibitors. ACS Med. Chem. Lett. 11, 1168–1174 (2020). 

In this work three different Molecular Docking protocols have been used (consensus docking logic) 

to identify two novel inhibitors of CK1δ, the library used was initially designed for other targets: 

the work can be considered an example of the so called scaffold repurposing approach.  

 

1.2 Bolcato, G. et al. A Computational Workflow for the Identification of Novel Fragments Acting 
as Inhibitors of the Activity of Protein Kinase CK1δ. Int. J. Mol. Sci. 22, 9741 (2021). 

For this project the same approach mentioned above has been applied for the identification of 

novel chemotypes that can inhibit CK1δ, starting from a database of commercialy available 

fragments. The Docking poses have been refined using Molecular Dynamics simulations. 

 

2 Molecular Dynamics 

2.1 Bolcato, G., Bissaro, M., Sturlese, M. & Moro, S. Comparing Fragment Binding Poses Prediction 

Using HSP90 as a Key Study: When Bound Water Makes the Difference. Molecules 25, 4651 (2020). 

Using HSP90 as a case study, in this work I studied the role of structural water molecules in the 

accuracy of Docking predictions and if the information derived from Molecular Dynamics 

simulations can replace these data when crystallographic solvent molecules are lacking in the 

crystal structure. 

 

2.2 Bissaro, M., Bolcato, G., Deganutti, G., Sturlese, M., & Moro, S. (2019). Revisiting the Allosteric 

Regulation of Sodium Cation on the Binding of Adenosine at the Human A2A Adenosine Receptor: 

Insights from Supervised Molecular Dynamics (SuMD) Simulations. Molecules, 24(15), 2752. 

In this work I used Supervised Molecular Dynamics simulations to investigate how the structural 

sodium ion in A2A Adenosine Receptor, could influence the molecular recognition of Adenosine. 

 

2.3 Palazzotti, D. et al. Deciphering the molecular recognition mechanism of multidrug resistance 

staphylococcus aureus nora efflux pump using a supervised molecular dynamics approach. Int. J. 
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Mol. Sci. (2019)  

Supervised Molecular Dynamics simulations have been applied here to elucidate the molecular 

recognition process of NorA substrates. NorA is an efflux pump involved in antibiotics resistance. 

 

2.4 Bolcato, G., Bissaro, M., Deganutti, G., Sturlese, M. & Moro, S. New Insights into Key 

Determinants for Adenosine 1 Receptor Antagonists Selectivity Using Supervised Molecular 

Dynamics Simulations. Biomolecules 10, 732 (2020). 

Since the selectivity profile of Adenonise receptor antagonsits has always been a difficult problem, 

in this work we studied if Supervised Molecular Dynamics simulations can help to solve this 

problem, taking advantage of the recently released X-Ray crystal structure of A1 Adenosine 

Receptor. 

 

2.5 Hassankalhori, M., Bolcato, G., Bissaro, M., Sturlese, M. & Moro, S. Shedding Light on the 

Molecular Recognition of Sub-Kilodalton Macrocyclic Peptides on Thrombin by Supervised 

Molecular Dynamics. Front. Mol. Biosci. 8, (2021). 

In this work we extended the applicability of Supervised Molecular Dynamics to the investigation 

of the molecular recognition process of Macrocyclic peptides, using Thrombin as a case study. 

 

2.6 Bissaro, M. et al. Inspecting the Mechanism of Fragment Hits Binding on SARS‐CoV‐2 M pro by 

Using Supervised Molecular Dynamics (SuMD) Simulations. ChemMedChem cmdc.202100156 

(2021) doi:10.1002/cmdc.202100156. 

Since Fragment posing as always been a difficult task for classic Molecular Docking calculations, in 

this work we used Supervised Molecular Dynamics as a tool to perform dynamic posing of 

fragments molecules, using the several X-Ray crystal structures of SARS-CoV-2 M Pro available. 

 

2.7 Bolcato, G., Bissaro, M., Pavan, M., Sturlese, M. & Moro, S. Targeting the coronavirus SARS-

CoV-2: computational insights into the mechanism of action of the protease inhibitors lopinavir, 

ritonavir and nelfinavir. Sci. Rep. 10, 20927 (2020). 

2.8 Pavan, M., Bolcato, G., Bassani, D., Sturlese, M. & Moro, S. Supervised Molecular Dynamics 

(SuMD) Insights into the mechanism of action of SARS-CoV-2 main protease inhibitor PF-

07321332. J. Enzyme Inhib. Med. Chem. 36, 1646–1650 (2021). 
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In this two works we applied Supervised Molecular Dynamics to investigate the molecular 

recognition process of clinical candidate SARS-CoV-2 M Pro inhibitors. 

  

3 Methodological works 

3.1 Bolcato, G., Cuzzolin, A., Bissaro, M., Moro, S. & Sturlese, M. Can We Still Trust Docking 

Results? An Extension of the Applicability of DockBench on PDBbind Database. Int. J. Mol. Sci. 20, 

3558 (2019). 

To assess the reliability of common used Docking protocols, here we systematically benchmarked 

the accuracy prediction of several Docking softwares. We also analysed the data to understand if 

the performance of Docking can vary among different protein families.  

 

3.2 Jiménez-Luna, J., Cuzzolin, A., Bolcato, G., Sturlese, M. & Moro, S. A Deep-Learning Approach 

toward Rational Molecular Docking Protocol Selection. Molecules 25, 2487 (2020). 

In this methodological work we used a Deep learning based approach to predict the best Docking 

protocol and scoring function to use for a particular Protein-ligand complex.  
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Can We Still Trust Docking Results?  

An Extension of the Applicability of DockBench on PDBbind Database 

Giovanni Bolcato, Alberto Cuzzolin, Maicol Bissaro, Stefano Moro and Mattia Sturlese 

Bolcato, G., Cuzzolin, A., Bissaro, M., Moro, S. & Sturlese, M. Can We Still Trust Docking Results? An Extension of the Applicability of 

DockBench on PDBbind Database. Int. J. Mol. Sci. 20, 3558 (2019). 

 

Abstract  

The number of entries in the Protein Data Bank (PDB) has doubled in the last decade, and it has 

increased tenfold in the last twenty years. The availability of an ever-growing number of structures 

is having a huge impact on the Structure-Based Drug Discovery (SBDD), allowing investigation of 

new targets and giving the possibility to have multiple structures of the same macromolecule in a 

complex with different ligands. Such a large resource often implies the choice of the most suitable 

complex for molecular docking calculation, and this task is complicated by the plethora of possible 

posing and scoring function algorithms available, which may influence the quality of the outcomes. 

Here, we report a large benchmark performed on the PDBbind database containing more than four 

thousand entries and seventeen popular docking protocols. We found that, even in protein families 

wherein docking protocols generally showed acceptable results, certain ligand-protein complexes 

are poorly reproduced in the self-docking procedure. Such a trend in certain protein families is more 

pronounced, and this underlines the importance in identification of a suitable protein–ligand 

conformation coupled to a well-performing docking protocol. 

1. Introduction 

Since its introduction in the early 1980s 1, molecular docking has served to aid medicinal 

computational chemists in optimizing the drug discovery process. Ten years later, due to 

methodological and technological advances, together with the increasing number of experimentally 

solved macromolecular structures, it became possible to process more and more molecules within 

a docking procedure, opening the era of Structure-Based Virtual Screening (SBVS) as a strategy in 

selecting appropriate compounds from large virtual libraries on the basis of good protein–ligand 

interaction patterns. 2 Thanks to molecular docking, Structure-Based Drug Discovery (SBDD) field 

has become very popular today. A docking protocol can be described as the combination of a search 

algorithm that samples the conformational space of a ligand, generating conformations for the 
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ligand itself (defined as poses) within a binding site, and a mathematical equation, called scoring 

function, which quantitatively evaluates the quality of such poses. The scoring function has always 

been the Achilles tendon of molecular docking due to the inaccuracy in quantified strength of the 

complex network of molecular interactions. Today, it is widely accepted that molecular docking has 

been outperformed by other structure-based in silico methodologies in investigating the stability 

and strength of the protein–ligand interaction, even though they are usually demanding 

techniques.3 However, molecular docking still represents a valid technique in sampling the 

conformations of the ligand in a binding site in a very efficient manner—at a fraction of the 

computational cost of more accurate methods based for example on Molecular Dynamics. 4 To 

prove the extensive adoption of molecular docking in research, there are more than 50 docking 

software options listed up to date in the on-line Click2Drug repository. 5 It should also be considered 

that each docking software usually provides more than one scoring function in which performance 

ought to be evaluated in the protocol tuning step. This means that computational chemists have at 

their disposal a plethora of different protocols when they face a docking calculation and, more 

importantly, the success, for example, of a Virtual Screening (VS) campaign, strongly relies on the 

accuracy of the protocol employed to place and rank the conformation of candidates into a target 

binding site.6 To further complicate matters, additional considerations need to be taken into 

account. In fact, more and more experimental structures are thankfully available, hence the range 

of possible combinations in protein conformation-docking protocol is growing in an unstoppable 

trend. It is, therefore, clear that a crucial step in SBVS is the selection of a proper docking protocol 

and an appropriate protein conformation.7,8 To address this issue, we recently proposed a platform, 

DockBench, with the aim of simplifying the non-trivial task of automatically comparing the 

performance of different docking protocols in a self-docking exercise. The criteria of selection of the 

most appropriate protocol are based on geometrical and statistical basis evaluating few 

observables: the lowest and the average Root Main Square Deviation (RMSD) obtained for a pose 

of the ligand compared to its crystallographic pose and the protocol score. 9 In 2011, Plewczynski et 

al. reported a comparison among seven docking protocols on the PDBbind 

(http://www.pdbbind.org.cn) that, at that time, counted on 1300 structures. 8 Here, we report a 

large benchmark of 17 different docking protocols compared on the basis of the self-docking 

procedure on a dataset of 4169 protein–ligand complexes. The notable number of structures has 

offered the opportunity to evaluate the performance of molecular docking from different points of 
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view, underlining how the efficiency of docking protocols may vary depending on the nature of the 

protein family. 

2. Results 

The benchmark was performed on 4169 structures obtained from PDBbind, a free database of 

binding affinity data for biomolecular complexes including protein–ligand, nucleic acid-ligand, 

protein-nucleic acid, and protein–protein complexes.10 The PDBbind “Refined set” is a subset of 

high-quality protein–ligand complex structures helpful for the validation of Docking protocols. All 

the structure needs to be processed prior to the docking calculation to keep only the protein and 

the ligand alone. This was necessary to simplify the execution on such a large set of complexes and 

protocols.The preparation of the data was accomplished by an automatic procedure based on the 

Molecular Operating Environment (MOE) suite for proteins and OpenEye toolkit for ligands (vide 

infra, see method section for details).11,12 The benchmark execution was performed on all 17 

protocols implemented in DockBench 1.0.6 based on seven different docking software options, each 

of which was coupled to different scoring functions whenever possible. The complete list of the 

protocols is reported in Table 1. The benchmark consisted of the execution of 70,873 single docking 

runs (4169 complexes; 17 protocols) distributed on a single server. The wall time necessary to 

perform all docking runs was approximately 72 h. 

Program 
Search Algorithm/ 

Placing Method 
Scoring Function Protocol 

Abbreviation 

Autodock 4.2 

Local Search AutoDock SF AUTODOCK-ls 

Lamarckian GA AutoDock SF AUTODOCK-lga 

Genetic Algorithm AutoDock SF AUTODOCK-ga 

Vina 1.1.2 
Monte Carlo + 

BFGS local search 
Standard Vina SF VINA-std 

Glide 6.5 Glide Algorithm Standard Precision GLIDE-sp 

GOLD 5.4.1 

Genetic Algorithm Goldscore GOLD-goldscore 

Genetic Algorithm Chemscore GOLD-chemscore 

Genetic Algorithm ASP GOLD-asp 

Genetic Algorithm PLP GOLD-plp 

MOE 2019.01 

Triangle Matcher London-dG MOE-londondg 

Triangle Matcher Affinity-dG MOE-affinitydg 

Triangle Matcher GBIVIWSA MOE-gbiviwsa 

PLANTS 1.2 ACO Algorithm PLP PLANTS-plp 
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ACO Algorithm PLP95 PLANTS-plp95 

ACO Algorithm ChemPLP PLANTS-chemplp 

rDock 2013.1 

Genetic Algorithm + Monte Carlo + 
Simplex minimization 

Standard rDock 

master SF 
RDOCK-std 

Genetic Algorithm + Monte Carlo  

+ Simplex minimization 

Standard rDock master SF + 
desolvation potential 

RDOCK-solv 

GA (Genetic Algorithm) BFGS (Broyden-Fletcher-Goldfarb-Shanno), ASP (Astex Statistical Potential), PLP (pairwise 
linear potential), ACO (Ant Colony Optimization) 

Table 1 List of docking protocols used in the benchmark. 

The automated analysis was based on the calculation of three scores: (i) RMSD minimum 

(RMSDmin), (ii) the RMSD average (RMSDave), (ii) the number of structure with RMSD lower than 

the (N(RSMD < R)), and a fourth score named Protocol Score Pscore that summarized the overall 

performance for a geometric point of view. The Pscore instead is defined as follows: One point is 

assigned to the protocols that have an RMSDave lower than the value of the crystallographic 

resolution, another point is assigned to the protocols producing at least 10 poses (50% of generated 

conformation) with an RMSD (compared to the crystallographic geometry) lower than the 

crystallographic resolution, and two points are assigned to protocols which fulfill both the previous 

conditions. The complete matrix of the results is available in supporting information. The observed 

RMSDmin values were in the range of 0.05 and 38.49 Å. High RMSDmin values are symptomatic for 

ligands placed far away from the native binding site. A possible explanation could be ascribed in 

having defined the pocket using a sphere with radius 15 Å. The radius was deliberately set large to 

give the possibility to be sufficiently broad for all the ligands in the dataset and may be problematic 

for docking of small ligands or in the case of multiple pockets closely located. 

An interesting question we were considered was about the performance of docking protocols in 

different target families since, in PDBbind, many protein families are represented by several entries. 

The results were grouped on the basis of the protein in families (PF) using the Pfam (Protein Family) 

database families as definition.13 For each complex, the PF Pfam code was retrieved for the protein 

chain and hence grouped. For many multi-domain proteins, a different Pfam code can be assigned 

depending on the domain solved in the structure; for instance, the proteins belonging to the family 

PF00069 (Protein Kinase) often contain domains labeled as PF02827 (Cyclic adenosine 

monophospate-dependent protein kinase inhibitor), PF00134 (Cyclin, N-terminal domain), PF02984 

(Cyclin, C-terminal domain), and a few others. Some proteins cannot be classified in a single group, 

and therefore we merged those groups for analysis (for example, PF00183 and PF02518, Heat Shock 
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Protein 90, HSP90 and GHKL domain). To address this issue, we compared the docking performance 

by the Protocol Score (Pscore) for the major cluster to investigate whether the docking 

performances of the different protocols vary among the different protein families. Unexpectedly, 

the performance among different families showed a remarkable fluctuation (Table 2), with certain 

families having many protocols with Pscore > 1 on most of the complexes. It is interesting to note 

that, between the best performing group (PF00104) and the worst (PF00026) one, the percentage 

of protocols with Pscore > 1 showed a difference of an order of magnitude, 41.66%, and 4.37%, 

respectively. Among the best-performing ones, the families with good Pscore were: PF00104 

(Hormone receptors), PF00497 (Bacterial extracellular solute-binding proteins, family 3), PF10613 

(Ligated ion channel l-glutamate and glycine binding site), and PF01048 (Phosphorylase 

superfamily). All these families showed a Pscore > 1 in more than 29% of the docking runs. 

Pfam 

Family 
Protein Description Size 

Protocol Score Pscore% 

0 1 2 3 >1 

PF00104 
Ligand-binding domain of nuclear 

hormone receptor 
85 59.34 10.24 26.57 4.84 41.66 

PF00497 
Bacterial extracellular solute-binding 

proteins, family 3 
38 59.29 9.44 25.70 5.57 40.71 

PF10613 
Ligated ion channel L-glutamate- and 

glycine-binding site 
83 67.97 6.80 20.55 4.68 32.03 

PF01048 Phosphorylase superfamily 47 70.09 8.01 16.77 5.13 29.91 

PF00102 Protein-tyrosine phosphatase 52 79.30 5.20 11.99 3.51 20.70 

PF00069 Protein kinase domain 207 80.68 5.43 10.46 3.43 19.32 

PF00061 
Lipocalin/cytosolic fatty-acid binding 

protein family 
49 82.11 4.08 10.80 3.00 17.88 

PF02518 

PF00183 
Hsp90 protein and GHKL domain 89 82.74 5.35 8.26 3.64 17.25 

PF07714 Protein tyrosine kinase 133 83.90 5.79 6.77 3.54 16.10 

PF00089 

PF14670 

PF09396 

Trypsin 330 85.54 4.65 6.84 2.96 14.45 
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PF00233 
3′5′-cyclic nucleotide 

phosphodiesterase 
37 87.92 3.82 5.41 2.86 12,08 

PF00439 Bromodomain 112 90.02 2.89 4.67 2.42 9.98 

PF00026 Eukaryotic aspartyl protease 73 90.49 3.14 4.11 2.26 9.51 

PF00413 Matrixin 49 90.88 3.24 4.20 1.68 9.12 

PF00077 Retroviral aspartyl protease 301 95.41 2.27 1.64 0.68 4.59 

PF00194 Eukaryotic-type carbonic anhydrase 273 95.63 2.28 1.17 0.91 4.37 

Pfam (Protein Family), Hsp90 (Heat shock protein 90). 

Table 2 Summary of benchmark results by Pfam families. Protocol scores are reported as percentage with respect to 
the total docking runs (Pscore%). 

On the other hand, we found that certain families had very poor results, with Pscore > 1 found below 

10%; this is the case for PF00194 (Eukaryotic-type carbonic anhydrase), PF00077 (Retroviral aspartyl 

proteases), PF00413 (Matrixin), and PF00026 (Eukaryotic aspartyl protease). The trend observed for 

Pscore is also evident in RMSDave. The results for the most populated families are reported in Figure 

1. The Pscores were reported as a heatmap to easily summarize the comparison of such a big matrix 

(higher scores highlight better protocol-complex couple). Numerical results are reported in the 

supplementary information. The results for the same families in terms of RMSDave are reported in 

Figure 2. 
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Figure 1 DockBench Results divided by Pfam protein families. The heatmaps are color-coded according to the Pscore. 
The ten families in panel (a) are: PF00439, Bromodomain; PF10613, Ligated ion channel l-glutamate and glycine-binding 
site; PF00102, Protein tyrosine phosphatases; PF000061 Lipocalin; PF00497, Bacterial extracellular solute-binding 
proteins family 3; PF00104, Hormone receptors; PF00026, Eukaryotic aspartyl protease Peptidase M_10; PF01048, 
Phosphorylase superfamily; PF00233, 3′5′-cyclic nucleotide phosphodiesterases. The six families in panel (b) are: PF00089 
Trypsin, PF14670 Coagulation Factor Xa inhibitory site, PF09396 Thrombin light chain, PF00077 Retroviral aspartyl 
proteases, PF00194 carbonic anhydrases, PF00069 protein kinase, PF07714 tyrosine kinase, PF02518 GHKL domain, and 
PF00183 HSP90. 
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Figure 2 DockBench Results divided by Pfam protein families. The heatmaps are color-coded according to the RMSDave. 
The ten families in panel (a) are: PF00439, Bromodomain; PF10613, Ligated ion channel l-glutamate and glycine-binding 
site; PF00102, Protein tyrosine phosphatases; PF000061 Lipocalin; PF00497, Bacterial extracellular solute-binding 
proteins family 3; PF00104, Hormone receptors; PF00026, Eukaryotic aspartyl protease Peptidase M_10; PF01048, 
Phosphorylase superfamily; and PF00233, 3′5′-cyclic nucleotide phosphodiesterases. In panel (b) the heatmaps are color-
coded according to the Root Main Square Deviation (RMSD)ave. The six families are: PF00089 Trypsin, PF14670 
Coagulation Factor Xa inhibitory site, PF09396 Thrombin light chain, PF00077 Retroviral aspartyl proteases, PF00194 
carbonic anhydrases, PF00069 protein kinase, PF07714 tyrosine kinase, PF02518 GHKL domain, and PF00183 HSP90. 
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A further aspect that was considered was the ability of the docking protocol in placing in the first 

position, according to their scoring function, the pose with the lowest RMSD. This aspect is 

particularly relevant because it indicates how the protocol is able to distinguish between different 

binding modes and, hopefully, prioritizing a binding mode close to the experimentally observed. In 

Figures S1 and S2, the heatmap plots reporting for the docking runs in which the best-scored pose 

is also the conformation with lowest RMSD. Unfortunately, in several cases, this simultaneous 

occurrence did not always guarantee the identification od near-native pose. Indeed, we observed 

for several cases where the lowest RMSD conformation was far from the experimentally solved one 

with RMSD values reaching values bigger than 10 Å. The RMSD value of the best conformations is 

reported on the heatmaps in Figures S3 and S4. Therefore, we performed further analysis focusing 

on investigation of when the best pose also had a low RMSD value but not necessarily the lowest 

values. We decided to set a threshold of 1.5 Å to define a near-native pose. In this way, we could 

highlight a protocol able to place a “good” pose as the first solution, even if potentially better 

conformation could be present among the 20 obtained.  

In Figures S5 and S6, the runs that fulfill such concurrence are reported. Again, the performance of 

docking protocols showed a very different performance depending on the protein family and, 

interestingly, in agreement with the Pscore trends. The Ligand-binding domain of nuclear hormone 

receptor (PF00194) showed in 50% of the runs RMSD < 1.5 Å for the first pose. The percentage of 

success is also remarkable for the Ligated ion channel l-glutamate- and glycine-binding site 

(PF10613), 49.3%; the Bacterial extracellular solute-binding proteins (PF00497), 47.6%; and 

Phosphorylase superfamily (PF01048), 41.7%. On the contrary, certain families performed poorly in 

this analysis, in particular, Eukaryotic-type carbonic anhydrase, which showed only a 10.8% (Table 

S1, on Supporting Material). 

The factors that are so dramatically affecting the quality of the docking outputs among different 

families could be related to many variables. First, we address the possible different chemical natures 

of the ligands belonging to each protein family. To evaluate the ligand chemical space, several 

molecular descriptors were calculated, including weight, rotatable bonds, hydrogen bond acceptors, 

hydrogen bond donors, clogP, total polar surface area, and van der Waals volume. To reduce the 

number of the dimensions, and therefore make the distribution representable in a three-

dimensional plot, a Principal Component Analysis (PCA) was performed. As can be seen in Figure 3, 

ligands of the different clusters do not seem to occupy a different portion of the chemical space. 

Hence, we then moved attention to possible players removed during the complex preparation, 
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considering that the poor performances of docking in the cluster PF00077 (Retroviral aspartyl 

proteases) and PF00439 (Bromodomain) could be eventually ascribed to the removal of the 

crystallographic waters. It was already reported that the binding mode for several ligands is 

mediated by a series of water molecules for bromodomains.14 

 

Figure 3 Principal Component Analysis (PCA) analysis seven molecular descriptors for the groups of ligands on the base 
of protein families in Table 2. The PCA analysis of ligands from the protein families were split into two groups according 
to the same division on Figure 1b (a) and Figure 2b (b). The descriptors used in the analysis are weight, rotatable bonds, 
hydrogen bond acceptor, hydrogen bond donor, clogP, total polar surface area, and van der Waals volume. 

Similarly, in the performances observed for cluster PF00194 (Carbonic Anhydrases), a crucial aspect 

could be represented by the removal of the zinc ion from the binding sites. For this reason, we 

performed a further benchmark focused on this family, including the Zinc ion, employing the most 

promising protocols in the first benchmark, Plants- and Gold-based protocols. The comparison of 

the heatmaps of the Pscore reported in Figure 4 demonstrates that, despite the introduction of the 

Zinc ion, the trend of the Pscore improves only moderately. Surprisingly, the distribution of the high 

Pscore is different in the two benchmarks, suggesting that the Zinc ion introduction only improves 

for certain complex structures while getting worse for others 
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Figure 4 Comparison between DockBench Results in terms of Protocol Score for cluster PF00194 (carbonic anhydrases) 
with (b) and without (a) the Zinc ion. 

3. Discussion 

A computational chemist has to ask himself many of the right questions when facing molecular 

docking studies, and the answers are not univocal. Of course, the choice of the best performing 

protocol and, when multiple structures are available, of the target conformation is the most 

significant decision. However, the employment of molecular docking may have a different purpose, 

and a proficient protocol choice must consider such different use. If molecular docking is addressed 

in binding mode studies, the protocol performances should have the priority. At the same time, the 

choice of the protein target should depend on the similarity between the compounds to be studied 

and the ligand co-crystalized. When molecular docking is used in a VS campaign, more variables 

affect the selection, like the execution speed. The results obtained in this benchmark were obtained 

with parameter as close as possible to the default values resulting in very variable execution times. 

For instance, as already reported in previous Dockbench studies, certain protocols may require an 

order of magnitude of longer time in comparison to faster protocols. It is evident in the case of large 

libraries that this may represent a critical issue, hence protocols with similar outcomes in self-

docking procedure where the choice can be influenced by the execution speed. In our benchmark, 

we observed, for example, in certain families of proteins, several protocols showing good 

performance, hence protocol selection may depend on the other factor. It is interesting to note that 

in the protein families in which molecular docking shows a good trend in reproducing the 
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experimental conformation, certain protein–ligand complexes are far from being predicted 

correctly, suggesting the importance of excluding them for docking simulations. Differently, other 

protein families are challenging targets in which the choice of the posing-scoring algorithm seems 

to be crucial, as well as the identification of the most suitable complex structure. The performance 

of such a challenging target should also point out the necessity to investigate the issues that are 

affecting the docking calculation, for instance, in considering the role of stable water molecules in 

the binding site or the role of a cofactor, flexible regions of the pocket, or other drawbacks of the 

system. This study may help the user approach a new target by molecular docking in identifying 

promising protocols and excluding problematic complex structures. In our opinion, the assessment 

of the suitable procedure should become a good practice also in light of the increasing number of 

entries available in the PDB and the advent of novel techniques like Cryo-EM and Solid-State NMR 

are wading the landscape of an experimentally solved target. 

4. Materials and Methods 

4.1. Database Preparation 

The Refined-set of the PDBbind database was obtained from PDBbind web service 

(http://www.pdbbind.org.cn/).10 This dataset is composed of 4463 protein–ligand complexes, and 

4169 of them were used for this work. We excluded 294 structures containing peptide–protein 

complexes that are not particularly suitable for DockBench protocol since it used docking settings 

which were as close as possible to the default parameters provided by the developers of each 

software and mostly calibrated on small organic molecules typical of drug discovery. These 4169 

complexes were prepared as described below. 

The protein structures have been prepared using a Scientific Vector Language (SVL) script using the 

functions contained in MOE suite reproducing the protein preparation tool of MOE to fix crystal 

structures issues, such as prediction of coordinates of missing atoms of partially solved residues.11 

Co-crystallized solvent molecules and impurities (such as co-solvents) were removed, and only 

protein and ligand coordinates were retained. For all ligands, the most favorable ionic state was 

calculated with OpenEye tools fixpKa.12 The partial charges were assigned with molcharge, also part 

of OpenEye toolkit.12 Ligand geometries were minimized in the first step of DockBench with 

Openbabel routing using the MMFF94 force field.15 
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4.2. Benchmark: Software and Hardware 

The benchmark was performed with DockBench 1.06 software, running on a single HP ProLiant 

server DL585G7, equipped with four AMD Opteron Processor 6282 servers, for a total of 64 CPU 

cores.16,17 Docking protocol was executed according to the original implementation already 

reported.16 All the 17 protocols from seven different software options (AutoDock 4.2.5.1 18, Vina 

1.1.2 19, PLANTS 1.2 20, rDOCK 21, Glide 6.5 22, Gold 5.4.1 23,24, and MOE 2019.01 11) were included in 

the benchmark and run on all 4169 protein–ligand complexes. Briefly, 20 poses were generated 

every single run. The binding site was defined using a sphere having a radius of 15 Å centered on 

the center of mass of the co-crystalized ligand present in the complex. An RMSD threshold set to a 

value of 1 Å value to define unique poses. 

The analysis was performed with DockBench analyzer coupled to external Python and Bash script to 

manage the notable amount of data and to produce the plots. 25,26 The Pfam Protein family was 

retrieved for each protein using the RCSD PDB REST API service, while the Pfam Clan was obtained 

from Pfam REST API service. 13,27 Molecular descriptors were calculated using MOE suite.11 
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Abstract 

One of the most intriguing findings highlighted from G protein-coupled receptors (GPCRs) 

crystallography is the presence, in many members of the class A, of a partially hydrated sodium ion 

in the middle of the seven transmembrane helices (7TM) bundle. In particular, the human adenosine 

A2A receptor (A2A AR) is the first GPCR in which a monovalent sodium ion was crystallized in a distal 

site from the canonical orthosteric one, corroborating, from a structural point of view, its role as a 

negative allosteric modulator. However, the molecular mechanism by which the sodium ion 

influences the recognition of the A2A AR agonists is not yet fully understood. In this study, the 

supervised molecular dynamics (SuMD) technique was exploited to analyse the sodium ion 

recognition mechanism and how its presence influences the binding of the endogenous agonist 

adenosine. Due to a higher degree of flexibility of the receptor extracellular (EC) vestibule, we 

propose the sodium-bound A2A AR as less efficient in stabilizing the adenosine during the different 

steps of binding. 

1. Introduction 

The human genome encodes more than 800 different G protein-coupled receptors (GPCRs), 

membrane proteins characterized by a distinctive seven transmembrane helices (7TM) architecture. 

This superfamily of receptors recognizes an enormous variety of extracellular signals (i.e. ions, 

neurotransmitters, peptides) and transmits the chemical information into the intracellular 

compartment, modulating many cellular activities.1,2 This is achieved through the recruitment of 

different molecular effectors, such as G proteins, protein kinases, or β-arrestins. Given their crucial 

role at the cellular level, GPCRs represent an important family of therapeutic targets, and it is not 

surprising that more than 30% of the approved drugs act on at least one GPCR 3. 
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Adenosine receptors (ARs) are a family of class A GPCRs comprising four different subtypes, 

respectively, A1, A2A, A2B, and A3, all involved in purinergic signaling.2 ARs recognize the extracellular 

nucleoside adenosine as the endogenous agonist, which, depending on the receptor subtype and 

tissue localization, affects and modulates different pathophysiological cellular conditions in a 

pleiotropic way. For example, purinergic signalling is involved in inflammation, cancer, 

neurodegeneration, and cardiovascular diseases.4 The human A2A AR subtype has been studied in 

depth both from a pharmacological and structural point of view. To date, 46 structures deposited 

in the Protein Data Bank (PDB) show the adenosine A2A receptor (A2A AR) in complex with both 

agonists (active and intermediate active states) and antagonists (inactive states).5  

Interestingly, the A2A AR was the first GPCR co-crystallised with a monovalent sodium ion, explaining 

from a structural point of view its negative allosteric effect. 6 In 1973, Pert and co-workers 

discovered how physiological concentrations of specific ions could decrease the opioid receptor 

affinity for agonists, without influencing the antagonists binding profile.7,8 After this first body of 

evidence, the effect of the sodium ion (Na+) was particularly investigated, leading to the discovery 

of at least 15 further GPCR subtypes sensible to its allosteric effect. Site-directed mutagenesis 

studies led to the identification of the conserved amino acid D2.50 as a fundamental counterpart for 

sodium binding, later confirmed by the publication (2012) of the first high-resolution (1.8 Å) X-ray 

crystal structure of the A2A AR.6,9 In this structure, the Na+ was located at the interface between 

TM2, TM3, and TM7, coordinated to five oxygen atoms belonging to the side chain of the conserved 

residues D2.50, S3.39 (the Ballesteros-Weinstein GPCRSs numbering is reported as superscript) and to 

an ordinate cluster of three water molecules. The negatively charged aspartic acid is conserved in 

over 90% of the class A GPCRs, thus suggesting an evolutive role in binding the monovalent ion.10–

12 As reported in Table 1, 34 GPCRs have been co-crystallized with a sodium ion, spanning members 

from three of the four branches in which the class A GPCRs are classified. 

 Best Resolution (Å) Number of Structures Class A Branch 

A2A adenosine receptor 1.7 24 α 

Protease-activated receptor 1 2.2 1 δ 

Protease-activated receptor 2 2.8 2 δ 

β1 adrenergic receptor 2.1 3 α 

D4 dopamine receptor 2.1 1 α 

Complement component 5a receptor 1 2.2 1 γ 

δ opioid receptor 1.8 2 γ 

 
Table 1 Crystallographic structures of class A G protein-coupled receptors (GPCRs) deposited on the Protein Data Bank 
(PDB) and containing a sodium ion in the transmembrane helices (TM) region. 
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A large body of structural evidence indicates that the sodium ion is detectable exclusively in the 

presence of antagonists, as all the GPCRs solved in the active state do not coordinate the cation. It 

follows that a receptor can exist in at least two conformational states, one able to bind the sodium 

ion and antagonists, the other with high affinity only for agonists. From a functional point of view, 

it has been proposed that the sodium stabilizes a specific conformation of the receptor and shifts 

the conformational equilibrium towards the inactive state.13 In light of this, computational studies 

turned their attention to the influence of sodium ion coordination in the A2A AR affinity for 

antagonists, focusing less on the structural basis of the sodium-bound receptor’s inability to 

recognize agonists.14 The sodium binding mechanism to 18 different GPCRs has been recently 

investigated through microsecond-scale molecular dynamics (MD) simulations.15 Previous 

computational studies compared the allosteric binding site of the sodium ion in the A2A AR inactive 

and active states, suggesting the latter conformation is characterized by an important reduction of 

the volume of the allosteric cavity, unfavourable to the ion coordination.9,16 Although it is now 

widely accepted that the recognition of the sodium ion at its allosteric binding site occurs from the 

extracellular side, it is more complex to computationally describe how the sodium may dissociate 

and how the agonist can play a role in this process.15 Recent scientific work has shown that Na+ can 

leave the allosteric site either by translocating in the cytoplasmic side or by retracing the binding 

path towards the extracellular environment. Moreover, the protomeric state of the titratable 

residue D2.50 seems to be determinant in controlling the Na+ unbinding mechanism.17–20 Further 

studies are therefore necessary to investigate, from a mechanistic point of view, the negative 

allosteric modulation of the sodium ion and attempt to understand how the stabilization of the 

inactive state of the receptor results, from a macroscopic point of view, in a decreased ability of the 

receptor to recognize an agonist. 

In our laboratory we have implemented a computational method, named supervised molecular 

dynamics (SuMD), that enables the exploration of ligand-receptor recognition pathways in the 

nanosecond timescale.21–23 The performance speedup is due to the combination of a tabu-like 

supervision algorithm on the ligand-receptor distance with classic MD simulation. SuMD enables the 

investigation of binding events independently from the ligand starting position, its chemical 

structure (small molecules or peptides), and the thermodynamic affinity.21–23 In this work, we 

simulated and analysed the recognition between the sodium ion and the A  AR, both in the inactive 

and intermediate-active conformations. SuMD simulations shed light on the molecular basis 

underneath the allosteric effect of the sodium ion from a site distinct from the orthosteric one, 
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allowing for a better understanding of how its presence perturbs the binding mechanism of the 

endogenous agonist adenosine. 

2. Results 

2.1. SuMD simulations of the sodium ion on the A2A AR 

As anticipated, SuMD simulations allow for the simulation of intermolecular recognition pathways 

in a very compressed time scale. However, this limits exploration to a limited subset of the complex 

GPCR conformational landscape during a single SuMD simulation. Considering also the lack of 

reliable structural information on the unbound (apo) state of the receptor, the experimentally-

determined inactive (co-crystallised with the inverse agonist ZM241385) and intermediate active 

(co-crystallised with the adenosine) conformations of A2A AR were retrieved from the PDB database 

(PDB codes: 4EIY and 2YDO, respectively) and prepared for the SuMD simulations, as described in 

the Materials and Methods section. In order to ensure the robustness of the results, five SuMD 

replicates for each state of the receptor were performed to simulate the recognition of the sodium 

ion. As far as we know, this is an expansion of the applicability domain of this MD method; previously 

it was only to small molecules and peptides. As reported in Table 2, a few nanoseconds were 

sufficient to sample a complete Na+ binding pathway during each repetition, instead of several 

microseconds as required by classical MD experiments.15 

 A2A AR inactive conformation A2A AR intermediate active conformation 

 
SuMD time (ns) 

Reached the 

allosteric site 

RMSDmin 

(Å) 
SuMD time (ns) 

Reached the 

allosteric site  

RMSDmin 

(Å) 

Replicate 1 10.8 No 10.03 15.4 Yes 0.2 

Replicate 2 23.6 Yes 0.17 12.0 Yes 0.1 

Replicate 3 20.6 Yes 0.04 2.4 No 24.2 

Replicate 4 20.8 Yes 0.18 15.6 Yes 0.1 

Replicate 5 18.2 Yes 0.40 4.6 No 17.1 

 

Table 2 Supervised molecular dynamics (SuMD) simulations of the sodium ion performed on the inactive (left side) and 
intermediate active (right side) conformations of the adenosine A2A receptor (A2A AR). For each replica, the SuMD 
simulation time, the positive or negative outcome and the minimum RMSD (RMSDmin) reached by the sodium have been 
reported (the crystallographic structure 4EIY was used as a reference). 

On the inactive A2A AR conformation, the cation reached the allosteric site (identified by the triad of 

residues D2.50, S3.39, and N7.45) in four out of five SuMD replicates (low RMSDmin values in Table 2), 

reproducing the experimental coordination with three water molecules (Figure 1, Video 1). 

Surprisingly, the sodium ion also reached the allosteric binding site during three out of the five SuMD 



 

46 
 

replicates of the receptor intermediate-active conformation, which has been suggested as the low-

affinity state for the cation. In line with the results from a previous study, the active conformation 

of A2A AR was able to bind the sodium only after a rearrangement of the TM domain (TMD), 

characterized by the increase of the distance between the TM2 and TM3, as well as the outward 

movement of the TM7 (Figure 1).16 Of note, these are hallmarks of the inactivation process of 

GPCRs.24 

 

Figure 1 The recognition pathway of Na+ on the two relevant A2A AR conformations. TM = transmembrane helices. 

On the left side of the panel in Figure 1, the inactive state of the receptor is reported, along with the 

sodium positions mainly occupied during the SuMD replicates (yellow dots). The ten most engaged 

residues are shown as a stick. Within the round box, a magnification shows the sodium allosteric 

site from a SuMD representative frame (cyan ribbon) and the crystallographic reference 4EIY (white 

ribbon). The cation reached the experimentally solved position (transparent van der Waals volume). 

On the right side, the intermediate active conformation of the A2A AR is reported alongside the ion 

positions during binding (yellow dots). A SuMD final state (pink ribbon) and the crystallographic 

reference 2YDO (white ribbon) are compared in the magnification. The corresponding sodium 

location in the inactive structure 4EIY is showed as a transparent van der Waals volume. The 

receptor’s structural changes upon sodium binding (indicated with arrows) can be summarised with 

an increase of the inter-helical distances in order to accommodate the cation. 

To better analyse the sodium ion recognition against the two A2A AR conformations, the SuMD 

trajectories were subjected to a clustering analysis using the DBSCAN algorithm (for details see the 

Materials and Methods section), which was able to geometrically map the regions of the receptor 
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in which the cation was stationed the most during its approach to the allosteric site (Figure 1, Figure 

S8.)25 The clusters highlighted a binding mechanism articulated in three temporally consequent 

phases. During the first step, the sodium ion approached the vestibular region of the A2A AR and 

interacted with negatively charged residues located at the second extracellular loop (ECL2). A strong 

electrostatic interaction was formed with E169ECL2, before the breaking of the E169ECL2–H264ECL3 salt 

bridge.26 Interestingly, in Replicate 1 (the only unproductive simulation of the active A2A AR) the ion 

remained trapped in proximity to the ECL2 as strong interactions with E169ECL2 were retained for 

the entire simulation. In the successive binding step, the sodium ion explored the orthosteric site 

and made interactions with residue N2536.55, known to be fundamental for the binding of both 

agonists and antagonists. The final transition of the sodium to the allosteric site (step three) was 

controlled by the side chain rotameric state of the “toggle switch” W2466.48 residue.16,27 Although 

the sodium binding modes obtained from simulations on the two A2A AR conformations were similar 

(Figure 1), the recognition mechanism of the sodium ion significantly diverged (Figure S8). On the 

active A2A AR, indeed, the cation did not situate on the orthosteric site, putatively due to a different 

conformational state of the W2466.48 side chain (which has been suggested as being able to 

modulate the communication between the orthosteric and allosteric sites ).28  

To investigate the reversibility of the sodium ion binding to the inactive A2A AR, an unbiased MD 

simulation was performed from an SuMD replicate’s final state (see the Materials and Methods 

section). As expected, in about 600 ns, a spontaneous unbinding event from the allosteric site was 

sampled (Figure S9). 

SuMD simulation results suggested that in absence of the orthosteric ligand, the ion could 

spontaneously coordinate and stabilize the inactive conformation of the receptor (the receptor 

state also responsible for the antagonists and inverse agonists recognition). On the other hand, Na+ 

was able to bind the active state of the receptor only after an adaptation of the allosteric binding 

site. Only that conformational population not bound to the sodium ion, in equilibrium with the 

previous one, could, therefore, be recognized by an agonist, ready to trigger the receptor activation 

process. In this way, we could give a molecular interpretation to the pharmacological meaning of 

the negative allosteric modulator attributed to the sodium ion. 

To investigate the possible effects that these two different Na+–A2A AR complexes can trigger on the 

binding mechanism of the endogenous agonist, adenosine, further SuMD replicates were carried 

out and the results will be described in the next sections. 
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2.2. SuMD simulations of the adenosine on the intermediate-active, sodium-free, A2AAR 

conformation 

Ten SuMD replicates (Table 3) were performed using the A2A AR coordinates in the intermediate-

active conformation (PDB ID 2YDO). We define “productive” as a trajectory that resulted in the 

adenosine reaching the orthosteric site. The seven productive SuMD simulations were extended for 

a further 100 ns of unbiased MD simulation to evaluate the stability of the bound states sampled. 

 
SuMD 

time (ns) 

Reached 

orthosteric 

site 

Adenosine binding mode 
X-ray binding mode 

after 100 ns of MD 

RMSDmin 

(Å) 

Replicate 1a 7.2 No No (Meta-binding site on ECL2) - 14.3 

Replicate 2a 31.8 Yes No (Distorted binding mode) Yes 0.4 

Replicate 3a 40.8 Yes Yes Yes 0.4 

Replicate 4a 32.4 Yes No (Ribose Up) Yes (Ribose syn conformation) 2.5 

Replicate 5a 29.4 Yes No (Ribose Up) Yes (Ribose syn conformation) 2.7 

Replicate 6a 15.6 No No (Meta-binding site on ECL2) - 12.2 

Replicate 7a 28.2 Yes No (Ribose Up) Yes (Ribose syn conformation) 0.4 

Replicate 8a 32.4 Yes Yes (Ribose syn conformation) Yes (Ribose syn conformation) 2.7 

Replicate 9a 24.0 Yes No (Distorted binding mode) Yes (Ribose syn conformation) 2.3 

Replicate 10a 10.2 No No (Distorted binding mode) - 15.3 

 

Table 3 Summary of the adenosine SuMD simulations performed on the A2A AR intermediate-active conformation. For 
each replicate, the SuMD simulation time required, the positive or negative outcome, and the binding mode sampled at 
the end are reported along with the RMSDmin (calculated using 2YDO as a reference). MD = molecular dynamics. 

We begin the description of the results from trajectories 1a, 6a, and 10a, in which the adenosine 

did not reach the orthosteric site (Table 3). Interestingly the ligand extensively sampled a 

metastable-binding site at the interface between ECL2 and ECL3, putatively representing an ancillary 

site of recognition besides the orthosteric one.23,29 This intermediate binding mode was 

characterized by the polar interaction between the adenosine ribose moiety and the negatively 

charged residue E169ECL2, as well as hydrophobic contacts with M1745.35 and transient hydrogen 

bonds with residues at the ECL3 (Figure 2A). The interaction energy analysis (Figure S3) suggests 

that the stability of this metastable state is comparable with the adenosine in its crystallographic 

binding mode (Figure S4) and justifies the missed transition to the orthosteric site. The seven 

productive SuMD simulations (Table 3) allowed the adenosine to explore different conformations 

within the orthosteric site, including the crystallographic one. Trajectory 3a, indeed, was able to 

reproduce with great accuracy (RMSDmin = 0.45 Å) the experimental binding mode (Video 3), with 

all the key interactions faithfully recovered (Figure 2B).30 Interestingly, trajectories 2a, 4a, and 5a 
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described an alternative recognition mechanism, according to which the adenine ring of the agonist 

approaches the binding site, orienting the ribose moiety towards the extracellular (EC) receptor 

vestibule ("ribose-up" conformation). 31,32 These states were transient, as the classic MD simulations 

rapidly evolved towards the crystallographic binding mode, but without sampling the key hydrogen 

bond with residue S2777.42 side chain (Figure 2C), due to the so-called syn conformation of the β-

glycosidic bond (anti in the crystal structure). 

 

Figure 2 Conformations sampled by the adenosine while recognizing the A2A AR in the intermediate-active state. Top, 
the absence of a sodium ion in the allosteric binding site is highlighted. Panel A shows a representative adenosine binding 
mode in the extracellular loop 2 (ECL2) metastable binding. In panels B and C, the ribose in anti (B) and syn (C) 
conformation are reported. Only the syn orientation permits the hydrogen bonding with the residue S2777.42. 

2.2. SuMD simulations of the adenosine on the inactive, sodium-bound, A2A AR conformation 

As anticipated, to verify the different adenosine propensities to recognize divergent A2A AR 

conformational states, SuMD was performed on the inactive conformation of the receptor (PDB ID 

4EIY), retaining the sodium in its allosteric site (Figure 3) but depleting the inverse agonist 

ZM241385. Consistently with the first part of this work, ten SuMD replicates were collected (as 

summarized in Table 4). 
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SuMD time 

(ns) 

Reached the 

orthosteric site 
Adenosine binding mode 

X-ray binding mode 

after 100 ns of MD 

RMSDmin 

(Å) 

Replicate 1i 9.0 No No (Meta-binding site on ECL2) - 16.1 

Replicate 2i 16.8 No No (Meta-binding site on ECL2) - 13.6 

Replicate 3i 16.2 Yes No (Receptor Vestibule) No (Receptor Vestibule) 5.5 

Replicate 4i 31.2 Yes No (Receptor Vestibule) No(Adenosine unbinding) 6.1 

Replicate 5i 37.8 Yes No (Receptor Vestibule) No (Receptor Vestibule) 6.6 

Replicate 6i 24.6 No No (Meta-binding site on ECL2 - 15.4 

Replicate 7i 7.8 No No (Meta-binding site on ECL2) - 14.7 

Replicate 8i 7.8 No No (Meta-binding site on ECL2) - 13.8 

Replicate 9i 8.4 Yes No (Receptor Vestibule) No (Adenosine unbinding) 7.9 

Replicate 10i 45.6 Yes No (Receptor Vestibule) Yes 0.3 

 

Table 4 Summary of the adenosine SuMD simulations performed on the inactive conformation of the A2A AR. For each 
replicate, the SuMD simulation time required, the positive or negative outcome, and the binding mode sampled at the 
end is reported along with the RMSDmin (calculated using 2YDO as a reference). 

Unlike the intermediate-active conformation, on the inactive, sodium-coordinated A2A AR just one 

replication out of ten resulted in the adenosine reproducing the experimental binding mode. 

Specifically, in half of the trajectories sampled (replicates 1i, 2i, 6i, 7i, and 8i in Table 4) adenosine 

did not reach the orthosteric site, but sampled the solvent-exposed metastable binding site at the 

interface between ECL2 and ECL3 (Figure 3A), again interacting with E169ECL2 as reported in the 

previous section of the manuscript. The remaining five SuMD simulations were instead defined as 

quasi-productive, since the agonist reached the vestibular region of the orthosteric binding site 

without, however, reproducing the adenosine crystallographic pose. Lee and collaborators 

investigated, by means of classic MD simulation, the behaviour of adenosine within the inactive-

state A2A AR orthosteric site and pointed out the agonist’s inability to maintain the original binding 

mode, thus corroborating our SuMD results.33 

To evaluate the stability of the five quasi-productive SuMD final states (replicas 3i, 4i, 5i, 9i, and 10i) 

the trajectories were prolonged for 100 ns (unbiased MD). As reported in Figure 3B, during the 

extended trajectories, 3i and 5i the adenosine maintained its vestibular position. Trajectories 4i and 

9i, on the other hand, were characterized by the spontaneous dissociation of the ligand, indicating 

a poor ligand stabilization (Figure 3C). Curiously, the extended trajectory of 10i was the only one 

during which the adenosine reached the experimental bound state (RMSDmin = 0.3 Å Table 4, Figure 

3D). 
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Figure 3 Conformations sampled by the adenosine while recognizing the A2A AR in the inactive state. Top, the presence 
of the sodium ion in the allosteric binding site is highlighted. In panel A, a representative adenosine binding mode in the 
ECL2 metastable binding site is depicted. In panel B, one of the different conformations sampled by the adenosine in the 
receptor vestibule is reported. Panel C summarizes the number of ligand unbinding events collected, starting from the 
vestibule region. Panel D represents the only SuMD simulation (Replica 10i) that showed an adenosine crystallographic 
binding mode. 

2.3. Insight on the role of the sodium ion in the recognition of A2A AR agonists 

In a schematic way, Na+ coordination within the allosteric TMD allows for the discrimination of the 

two main conformational states of A2A AR (i.e., active and inactive); it is capable of recognizing 

adenosine with antithetical efficiency, as suggested by the divergent binding frequencies sampled 

through the SuMD simulations. As highlighted in Figure S10, in the supplementary material, the 

limited structural differences between the two crystallographic conformations of the receptor 

would not be sufficient to explain, from a mechanistic point of view, the negative allosteric effect 

mediated by a sodium ion. Consequently, the use of techniques able to take into consideration the 

conformational plasticity associated with the receptor functionality is essential to realistically 

rationalize the role played by the monovalent ion. To decipher the molecular basis underneath such 

misleading outcomes described by the SuMD simulations (i.e., replicas 3a and 5i, sampled, 
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respectively, starting from the active and inactive receptor states), cumulative maps of the 

interatomic contacts between adenosine and A2A AR binding site residues were graphically depicted, 

using polar diagrams. As reported in Figure 4, box A, the agonist’s inability to reproduce the 

canonical experimental conformation in the receptor inactive state is accompanied by discrepancies 

in the adenosine recognition pathway, mainly at the level of TM1, TM2, and TM7. These differences, 

on the other hand, were not noticed during replicate 10i, the only productive trajectory sampled 

starting from the inactive state of the receptor in the presence of the sodium ion, as indicated in 

Figure 4, box B. These data further emphasize the importance of residues located in TM1, TM2, and 

TM7 for the correct molecular recognition process of agonists. 

 

 

Figure 4 The adenosine experienced different patterns of interactions during SuMD dynamic docking on the 
intermediate-active and inactive A2A AR conformations. The adenosine-A2A AR contacts are plotted as polar diagrams of 
overlapping data. In panel A replicate 3a (productive binding to the intermediate-active receptor state, pink) and 
Replicate 5i (quasi-productive to the inactive receptor state, cyan) are compared. In panel B, replicate 3a (productive 
binding to the intermediate-active receptor state, pink) is compared with replicate 10i (the only productive binding to 
the inactive receptor state, cyan). 

Deciphering the dynamics of the A2A AR states is fundamental to interpreting the discrepant agonist 

recognition pathways. In a recent computational investigation, an increased flexibility of A2A AR EC 

domains was described in the receptor inactive state, a phenomenon that is less relevant in the 

active conformation and thus could help in differentiating agonist binding mechansisms.33 To verify 

if this evidence can be extrapolated from our SuMD simulations, the volume of the orthosteric 

binding site was dynamically monitored in the two aforementioned trajectories (replicates 3a and 

5i). Interestingly, even if the starting volumes computed for the A2A AR binding site on both 
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crystallographic structures taken under examination were quite similar (~ 250 Å3), only a few ns of 

simulation were required to reveal the different evolutions of the two systems. 

 

 

Figure 5 The orthosteric site volumes change differently during SuMD simulations of the intermediate-active and the 
inactive A2A ARs. Panels A, B, and C depict three snapshots from SuMD Replicate 3a, related to the key steps of the 
adenosine recognition. Initially, the agonist approaches the A2A AR extracellular vestibule (A) and through a polar 
interactions network mediated by ECL3, TM2, and TM7 (whose overall organization is not perturbed with respect to the 
crystal structure), inserts the purine ring into the binding site (B). The adenosine is then able to reach the canonical 
binding mode (C) only when the cavity volume recedes toward the original value. On the A2A AR inactive state, the binding 
site volume progressively increases due to the TM1 and TM7 outward movements (Panel D), making the agonist binding 
more difficult. 

On the intermediate-active conformation of the A2A AR, adenosine approached the receptor, 

interacting with the vestibular region ECL2 (Figure 2A). The transition to the orthosteric binding site 

was mediated by a series of polar interactions with residues located at the ECL2, TM2, and TM7. In 

this phase, the compactness of the receptor orthosteric site was necessary for the productive 

adenosine recognitions, as indicated by the small fluctuation of the cavity volume (Figure 5A). From 

this standpoint, the accommodation of the adenosine in the orthosteric site required the first 

adaptation of the surrounding TM helices, as suggested by a transient increase in the volume up to 

a value of about 600 Å3 (Figure 5B). Subsequently, the π-stabilizing interaction of the adenine 
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nucleus with the side chain of Phe168 compacts the structure of the recognition cavity, bringing its 

volume back to a value similar to the initial one (Figure5). 

The presence of the sodium ion within its putative binding site in the inactive A2A AR conformation 

markedly altered the receptor flexibility. Indeed, during the first step of the simulation, the TM1 and 

TM7 moved outwards, progressively increasing the volume of the orthosteric site up to about 700 

Å3, not allowing the driving interactions to the bound final state to be established (Figure 5D). As 

previously described, the outward movement of segment TM7, combined with TM2 shifting from 

TM3, represents the key steps for Na+ coordination in the active state of A2A AR. It is reasonable to 

speculate that the presence of the monovalent ion in the middle of the 7TM bundle could be 

responsible for the greater flexibility of the extracellular portion of the receptor, allowing it to alter 

the dynamics of the TM2 and TM7, and thus the agonist binding mechanism. 

4. Materials and Methods 

4.1. General 

MOE suite (Molecular Operating Environment, version 2018.0101) was exploited to perform most 

of the general molecular modelling operations, such as proteins and ligands preparation.34 All these 

operations have been performed on an 8 CPU (Intel® Xeon® CPU E5-1620 3.50 GHz) Linux 

workstation. Molecular dynamics (MD) simulations were performed with an ACEMD engine on a 

GPU cluster composed of 18 NVIDIA drivers, ranging from GTX 780 to Titan V.35 For all the 

simulations, the CHARMM36/CHARMM general force field (CGenFF) combination was adopted.36–

38 

4.2. Systems preparation 

Agonist and antagonist-bound complexes of A2A AR were retrieved from the RCSB Protein Data Bank 

database (PDB ID 2YDO and 4EIY respectively) and handled by means of the MOE protein structure 

preparation tool.6,30 Hydrogen atoms were assigned according to Protonate-3D, and any missing 

loop was modelled with the homology modelling protocol.39 In the case of PDB ID 4EIY, the 

apocytochrome b562 (BRIL) inserted in the ICL3 was removed prior to protein preparation and loop 

modeling. Missing atoms in the side chains, as well as non-natural N-terminals and C-terminals, were 

rebuilt according to the CHARMM force field topology.36 A2A AR apo forms were obtained by simply 

deleting the orthosteric ligands from their respective complexes. Adenosine force field parameters 

were retrieved from the Paramchem web service, in concordance with CGenFF.37,38 
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4.4. Solvated System Setup and Equilibration 

Systems were embedded in a 1-palmitoyl-2oleyl-sn-glycerol-3-phospho-choline (POPC) lipid bilayer, 

according to the pre-orientation provided by the Orientations of Proteins in Membrane (OPM) 

database and by using the VMD membrane builder plugin.40,41 Lipids within 0.6 Å from the protein 

were removed and TIP3P model water molecules were added to solvate the systems by means of 

Solvate1.0.42,43 Systems charge neutrality was reached by adding 100 Na+ atoms and 111 Cl+ 

counterions to a final concentration of 0.154 M (A2A AR net charge was +11 for both the system-

simulated 2YDO/4EIY). Equilibration was performed through a three-step procedure. In the first 

step, 1500 conjugate-gradient minimization steps were applied to reduce the clashes between 

proteins and lipids. Then, a 5 ns long MD simulation was performed in the NPT ensemble 

(Isothermal–isobaric statistic ensemble), with a positional constraint of 1 kcal mol−1 Å−2 on ligand, 

protein, and lipid phosphorus atoms. During the second stage, 10 ns of MD simulation in the NPT 

ensemble were performed constraining all the protein and ligand atoms but leaving POPC residues 

free to diffuse in the bilayer. In the last equilibration stage, positional constraints were applied only 

to the ligand and protein backbone alpha carbons for a further 5 ns of MD simulation. 

All the MD simulations were performed using the following protocols: an integration time step of 2 

fs; a Berendsen barostat maintained the system pressure at 1 atm; a Langevin thermostat 

maintained the temperature at 310 K with a low dumping of 1 ps−1; the M-SHAKE algorithm 

constrained the bond lengths involving hydrogen atoms.44–46  

4.5. Supervised Molecular Dynamics (SuMD) Simulations 

Supervised molecular dynamics (SuMD) simulations were exploited to sample and characterize the 

binding pathway of the Na+ monovalent ion, as well to simulate the binding of the endogenous 

agonist adenosine to the two pharmacologically relevant A2A AR conformations.21–23,31 SuMD 

methodology reduces the timescale necessary to sample a binding event in the range of 

nanoseconds, instead of hundreds of nanoseconds or microseconds usually necessary with unbiased 

MD. Sampling is improved by applying a tabu-like algorithm that monitors the distance between the 

ligand and centre of mass of the protein binding site, during unbiased MD simulations. A series of 

short unbiased MD simulations is performed, and after each simulation, the distance points 

collected at regular time intervals are fitted into a linear function. Only productive MD steps are 

maintained, those in which the computed slope is negative, indicating a ligand approach to the 

binding site. Otherwise, the simulation is restarted by randomly assigning the atomic velocities. The 
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length of each SuMD step in which the supervision is carried out was adapted relative to the nature 

of the ligand under investigation. In terms of the sodium ion, given its important diffusion rate, a 

200 ps SuMD time window proved to be adequate to accurately describe the binding, whereas for 

adenosine, the classic SuMD time window of 600 ps, previously optimized and validated for small 

organic molecules, was set. Short simulations are perpetuated under supervision until the distance 

between the ligand and the binding site dropped below 5 Å, then the supervision was disabled, and 

a classical MD simulation was performed. In the present study, for the computation of the allosteric 

Na+ binding site centre of mass, residues D52, S91, and N280 were chosen; for the orthosteric A2A 

AR binding site, residues N253, F168, H250, and H278 were selected.  

In all SuMD productive replicates in which adenosine reached the orthosteric binding site, the final 

state evolution and stability was evaluated through the collection of a 100 ns long classical MD. 

4.6. SuMD trajectory analysis  

All the SuMD trajectories collected were analysed by an in-house tool written in tcl and python 

languages, as described in the original publication.22 Briefly, dimension of each trajectory was 

reduced saving MD frames at a 20 ps interval, each trajectory was then superposed on the first-

frame Cα carbon atoms of the A2A AR and wrapped into an image of the system simulated under 

periodic boundary condition. In those cases where a reference was present, the RMSD of the ion or 

adenosine molecule was computed with respect to the experimental crystallographic complex (4EIY 

for sodium and 2YDO for adenosine). The RMSD values were plotted over time and reported in the 

movies present in the supplementary materials.  

SuMD trajectories investigating the recognition pathway of sodium were furthermore geometrically 

analysed to identify significant populations of ion position, among the multitude of sampled data. 

Prody, a python framework for MD manipulation and analysis, was exploited to compute the 

pairwise root mean square deviations (RMSDs) of Na+ atomic coordinates, during all replicates 

collected.47 From each replicate, a square matrix of RMSDs was obtained (nf x nf), in which nf stands 

for the number of trajectory frames. Subsequently, DBSCAN, a density-based clustering algorithm, 

part of the scikit-learn python packages, was applied to cluster the different ion atomic positions 

and graphically represent them by exploiting VMD software.25,41 The orthosteric binding site volume 

was dynamically monitored in the SuMD trajectories of adenosine recognition, collected starting 

from the two different A2A AR conformations. POVME 2 python software was exploited to perform 

the calculation, after defining a spherical inclusion region cantered on agonist centroid coordinates 

and characterized by a 9 Å radius dimension.48 
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5. Conclusion 

The molecular mechanism that triggers the negative allosteric modulation of the sodium ion on the 

A2A AR agonists is not fully understood. X-ray structural studies have pointed out the presence of a 

binding site for the cation in the core of the TMD of the resting receptor (and many other class A 

GPCRs). However, the high degree of similarity with the intermediate-active (agonist-bound) state 

of the receptor (Figure S10) does not completely clarify the molecular basis of this effect. In this 

study, the SuMD technique was therefore employed to simulate the binding processes of the 

sodium ion and the endogenous agonist adenosine on these two different A2A AR conformations 

(the intermediate-active and inactive one, respectively), in the attempt to retrieve mechanistic 

insight. 

The Na+, whose concentration in the extracellular environment is close to 140 mM, has a 

fundamental role in controlling the conformational landscape of the A2A AR, characterized by few, 

highly populated, stable states. The most accepted model describes the sodium as capable of 

selectively binding only to the inactive-like receptor population. The macroscopic effect of this is a 

shift of the equilibrium towards the resting state of the receptor, and a decrease in affinity towards 

agonists. In keeping with this conformational selectivity as well with previous work, our simulations 

outlined the A2A AR inactive structure as able to coordinate the sodium ion without any topological 

modification of the putative allosteric site.10,16 On the other hand, during the simulated binding on 

the intermediate-active conformation, an increase of the inter-TM distances was necessary to 

accommodate the cation, possibly anticipating a receptor transition toward the inactive-state. The 

“toggle switch” W2466.48 was pointed out as a possible gatekeeper of the sodium binding event. 

Interestingly, SuMD suggested different binding paths on the two A2A AR states. It is intriguing to 

speculate that the inactive state of the receptor could selectively drive the binding of the sodium 

ion by putatively shaping the charge distribution of the meta-stable binding sites along the path. 

During the successive SuMD simulations, the endogenous agonist showed a propensity to bind the 

sodium-free intermediate-active state of the receptor (Video 2). Indeed, seven simulations out of 

ten resulted in an orthosteric complex, while only one SuMD replica on the inactive structure was 

productive. We propose the different flexibilities of the extracellular side of the receptor (where the 

first interactions able to influence the agonists binding occur) as a driving force of this divergence. 

The presence of the sodium ion in its allosteric site possibly prevented the receptor from adapting 

to the incoming agonist, due to an opening up of the EC vestibule and, in turn, of the orthosteric 

site. As a partial confirmation of this, the TM1, TM2, and ECL2 formed less extensive contacts with 
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the adenosine in the inactive A2A AR (Figure 5) due to the increased volume of the orthosteric site 

(Figure 4). 

The speculative mechanism proposed in this work should be further investigated on other GPCRs. 
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Abstract 

The use and misuse of antibiotics has resulted in critical conditions for drug-resistant bacteria 

emergency, accelerating the development of antimicrobial resistance (AMR). In this context, the co-

administration of an antibiotic with a compound able to restore sufficient antibacterial activity may 

be a successful strategy. In particular, the identification of efflux pump inhibitors (EPIs) holds 

promise for new antibiotic resistance breakers (ARBs). Indeed, bacterial efflux pumps have a key 

role in AMR development; for instance, NorA efflux pump contributes to Staphylococcus aureus (S. 

aureus) resistance against fluoroquinolone antibiotics (e.g., ciprofloxacin) by promoting their active 

extrusion from the cells. Even though NorA efflux pump is known to be a potential target for EPIs 

development, the absence of structural information about this protein and the little knowledge 

available on its mechanism of action have strongly hampered rational drug discovery efforts in this 

area. In the present work, we investigated at the molecular level the substrate recognition pathway 

of NorA through a Supervised Molecular Dynamics (SuMD) approach, using a NorA homology model. 

Specific amino acids were identified as playing a key role in the efflux pump-mediated extrusion of 

its substrate, paving the way for a deeper understanding of both the mechanisms of action and the 

inhibition of such efflux pumps. 

1. Introduction 

Antimicrobial resistance (AMR) is a complex global health challenge, mainly resulting from the 

excessive use and abuse of antimicrobial agents in humans and animals. 1 Indeed, over the years, 

the microbial world has developed the molecular tools to drive resistance and evade antibiotic 

action via (i) alteration of targeted site, (ii) enzymatic drug inactivation/modification, (iii) decreased 

uptake or enhanced efflux of the drug, and (iv) biofilm formation 2. 
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In this context, Staphylococcus aureus represents the most dangerous superbug among Gram-

positive organisms due to its ability to develop resistance to a wide range of compounds 3. S. aureus 

possesses several efflux pumps belonging to different families able to extrude a wide array of 

common antibacterial drugs 4. NorA is a multidrug resistance (MDR) efflux pump, well-studied since 

1986 when it was isolated from the urine of a patient treated with norfloxacin (NOR). 

NorA was thus the first chromosomally-encoded S. aureus MDR pump to be identified: it is codified 

by norA gene and expressed in 43% of bacterial strains 5. From a structural point of view, NorA is a 

single-chain transmembrane protein of 42,385 kDa composed of 388 amino acids. It belongs to the 

Major Facilitator Superfamily (MFS) consisting of 12 hydrophobic transmembrane (TM) α-helices 

with the N- and C-terminal domains that are placed in the cytoplasmic side, connected by 

hydrophilic loops and arranged as pseudo-twofold symmetry 6,7. Unfortunately, little is known about 

the mechanism of efflux, except that it works by using the proton that allows the entry of a proton-

coupled to the extrusion of the drug from the cell. Indeed, NorA is classified as a drug/H+ antiporter. 

NorA overexpression is associated with drug resistance. In particular, NorA is a promiscuous efflux 

pump involved in quinolones and fluoroquinolones (such as ciprofloxacin—CPX) resistance 8, but 

also in the extrusion of other natural and synthetic structurally unrelated compounds (e.g., 

quaternary ammonium compounds and antiseptics, phenothiazines and thioxanthenes, totarol, 

ferruginol, carnosic acid, ethidium bromide (EtBr), tetraphenylphosphonium, rhodamine, acridine, 

and biocides)8. 

To date, several scientific efforts have been made to identify efflux pump inhibitors (EPIs) with the 

final aim to counteract the S. aureus resistance mechanism and restore bacterial susceptibility to 

antibiotic action 8–16. Even though structure information of different drug/H+ antiporter are publicly 

available 17–20 in the RCSB Protein Data Bank (PDB) 21, unfortunately, neither 3D structures of NorA 

have been made public nor computational studies have been reported to understand the 

recognition mechanism between the efflux pump and the substrate. 

Against this backdrop, the aim of the present work was to explore at the molecular level the possible 

recognition pathway and interactions between NorA efflux pump and its substrate CPX by using a 

Supervised Molecular Dynamics approach (SuMD) 22. In brief, a SuMD simulation is composed of a 

number of consecutive short unbiased MD simulations (600 ps) in which a supervision strategy, 

based on a tabu search-like strategy, is applied at the end of each simulation. The supervised 

variable is the distance between the ligand and protein binding site center of mass (dcm (L-R)). In 

few words, if this distance is likely to be shortened during the simulation, the MD simulation is 
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prolonged, otherwise, it is stopped, and the simulation is restarted from the previous set of 

coordinates. The supervision is maintained until the protein-ligand distance reaches a pre-set 

threshold value, then the simulation proceeds as a conventional unbiased MD simulation. 

SuMD aided for the first time the recognition pathway of the efflux pump NorA, with the substrate 

CPX giving interesting information about the sites explored during its trajectory prior to extrusion 

toward the periplasmatic side. 

2. Results and Discussion 

2.1. Prediction and Assessment of the NorA 3D Structure 

First, four bioinformatics tools—I-TASSER 23,24, SWISS-MODEL 25, RaptorX 26 and Phyre2 27—were 

used to generate NorA efflux pump homology models (Table S1; Supplementary Materials). Overall, 

two different conformations of NorA were obtained as output: an outward conformation (Cout) 

with an opening toward the periplasmic side, and an inward conformation (Cin) with an opening 

toward the cytoplasmic side. Given our main interest in the molecular recognition mechanisms 

underneath the interactions between a substrate and the transporter immediately antecedent to 

its extrusion, we decided to focus our subsequent studies on the predicted inward conformations. 

The different software used provided us with three Cin models using three different templates. 

Indeed I-TASSER, RaptorX, and Phyre2 produced Cin models built based on the MSF E. coli MdfA 

transporter (PDB: 4ZOW) 19, the MFS proton-dependent oligopeptide transporters (POTs) of E. coli 

(PDB: 4IKV) 28 and the MSF E. coli MdfA transporter (PDB ID 4ZP0), respectively (Table S1; 

Supplementary Materials). Interestingly, in the 4ZOW crystal structure, the MdfA efflux pump is co-

crystallized with its substrate chloramphenicol (CLM). 

The quality of the models was assessed on the basis of the geometry using MOE suite 29 and the 

Qualitative Model Energy ANalysis (QMEAN) value (Table S1). Model’s evaluation was also 

performed according to the Root Mean Square Deviations (RMSD). Noteworthy the RaptorX model 

RMSD was 3.234 Å, while the I-TASSER Cin RMSD on the template was 1.7 Å (Figure S1) and Phyre2 

Cin RMSD was 0.35 Å. All models were good and reliable from a geometric point of view, quality of 

prediction and RMSD compared to the templates. To support the choice of our model we also 

carried out a sequence alignment with MOE suite to evaluate the sequence similarity and identity 

between the template and the NorA model generated. Although the percentage of sequence 

identity was low for all models, the choice of the model generated from MdfA was strongly 
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supported by similarity (Figure S2). We chose the I-TASSER model Cin because, at the same quality, 

it was built on a crystal in which the substrate was present 19. 

2.2. MdfA Template and NorA Comparison 

Aside from predicting homology models, the Phyre2 web portal provided useful information to 

better understand the evolutionary correlation between NorA and MdfA. Indeed, even though the 

identity similarity percentage predicted by Phyre2 between the crystal structure of MdfA (PDB ID 

4ZP0) and the NorA model was very low (11% sequence identity), the associated confidence score, 

obtained by alignment of the sequence, was equal to 100%. Phylogenetically NorA and MdfA are 

strictly related: they belong in fact to the same transporter superfamily, MFS. Moreover, they also 

belong to the subfamily of drug/H+ antiporters. Thus, with a high degree of confidence, the software 

considered these two transporters as analogs, therefore hypothesizing a possible conserved 

transport mechanism. Since the two structures were closely phylogenetically linked, and therefore 

perform the same function, it is assumed that the folding and the generated structure can be 

reliable. 

2.3. Biological Assay of CLM on NorA 

While it is well known that CLM is a substrate of MdfA, there is no information in the literature 

about the possible role of CLM as a NorA substrate. As mentioned before, the superimposition 

between the generated NorA homology model and 4ZOW (MdfA co-crystallized with CLM) 

suggested a very close structure organization (RMSD of 1.7 Å). In 4ZOW structure, CLM performed 

two key interactions with Asn33 and Asp34. However, the visual inspection of the NorA amino acids 

corresponding to these two MdfA acidic residues highlighted the presence of Ile19 and Gly20 

(Supplementary Materials, Figure S3). 

Thus, we supposed that NorA could not extrude CLM. In order to have some experimental evidence 

on this topic, we evaluated the CLM minimum inhibitory concentration (MIC) on two different S. 

aureus strains, one of which was wild-type (SA-1199-norA wt) and the other one overexpressing the 

norA gene and also possessing an A116E GrlA substitution (SA-1199B-norA+), which is a known 

fluoroquinolones target 30. The obtained results showed that CLM had the same MIC values 

(4µg/mL) against the two used strains, thus highlighting that this compound could retain its 

antibacterial effect regardless of the NorA efflux pump overexpression. Indeed, MIC values of CPX 

and EtBr, known NorA substrates, appeared significantly different against SA-1199 and SA-1199B 

(Table 1). This data clearly demonstrated that CLM is not a NorA substrate. 
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2.3. Refinement of the NorA Predicted Model Using MD 

The chosen homology model (i.e., I-TASSER Cin) was embedded in a 1-palmitoyl-2-oleyl-glycerol-3-

phospho-choline (POPC) bilayer (Figure 1a) and subjected to MD simulations of 500 ns for structural 

refinement. All the subsequent analyses performed have been conducted in parallel using three 

different systems, i.e., (i) NorA homology model, (ii) MdfA in complex with CLM (PDB ID 4ZOW) and 

(iii) MdfA apo. The latter system was used as a reference structure. As highlighted by Figure 1b, the 

RMSD value of Cα showed good model stability for NorA. RMSD quickly reached a maximum value 

of approximately 4 Å, which remained steady and constant during the dynamic simulation time. 

Since the analyzed structure was a homology model, the value obtained, and in particular, the 

stability achieved can be considered good enough to validate the model. In addition, comparing the 

RMSDs trends for NorA and MdfA (Figure S4, Supplementary Materials), it was remarkable that the 

generated homology model became stable after 60 ns of the simulation time and seemed even more 

stable than the MdfA crystallographic structure. In accordance with the interval time within which 

SuMD samples binding events, the model can be considered stable. The most significant residue 

fluctuations occurred at the level of the loop connecting helix 6 and helix 7 and of the C-term and 

N-term domains (Figure 1c,d). 

Furthermore, to evaluate possible conformational changes during the NorA MD simulation, we 

clustered the MD conformations using the density-based algorithm DBSCAN 32. Although the whole 

MD protein conformations during the trajectory could be divided into two main clusters, we 

considered only the first cluster for its higher density. Indeed, the first cluster was populated by 

4928 protein conformations out of a total of 5000. The centroid conformation of this cluster was 

then selected for the structural analysis. 

The available biological data showed that CPX and CLM were endowed with different specificity for 

the MdfA and NorA efflux pumps. In particular, while CPX was a substrate of both proteins 30,33, no 

substrate activity against NorA was observed in our assays for CLM. 

Thus, we planned differently in silico approaches (including SuMD simulations) to get insights about 

the different behavior of the two ligands on MdfA and NorA efflux pumps. 
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2.4. Binding Site Definition and Preliminary Docking 

Since the SuMD approach requires the binding site knowledge to address the ligand in the right 

direction, we performed preliminary docking study only to assess the ability of the two ligands to 

be hosted into a specific pocket of MdfA and NorA. In a first analysis, we observed whether the 

crystallographic binding site was translatable into NorA (Figure S5). However, as we had no 

crystallographic information on NorA, we decided to explore further sites within the pump. Indeed, 

while for MdfA the binding site was defined by some of the twelve residues that showed interactions 

to the ligand with the crystallographic ligand (Tyr30, Asn33, Asp34 and 236), to identify the NorA 

putative binding site, the cluster centroid belonging to the most populated conformation was 

submitted to SiteMap tool 34 in Maestro suite. The highest-ranked binding site (SiteScore = 1.119) 

was selected as putative NorA binding site and in particular Ile23, Pro24, Pro27, Tyr225, Ser226, and 

Gly348 were set as binding site residues. Some of the selected binding site residues are in agreement 

with some of those residues chosen in previous studies 35. This site was located more outwards than 

the CLM binding site. First, three different docking programs (i.e., Glide 36, PLANTS 37 and GOLD 38) 

Figure 1 (a) NorA homology model embedded in POPC bilayer. (b) Calculated RMSD graph of 500 ns of MD simulation 
of multidrug resistance S. aureus NorA efflux pump. Time (ns) is plotted on the x-axis and RMSD (Å) on the y-axis. (c) 
RMSF fluctuation during the MD simulation time of the NorA model. Depending on the intensity of the fluctuation, the 
color ranges from yellow (low RMSF) to blue, for higher values. (d) RMSF of the protein residues. 
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were explored with the aim to identify the best performing method in reproducing the 

crystallographic binding mode of CLM into MdfA (Supplementary Materials, Table S2). Glide turned 

out to be the best protocol in generating the correct CLM pose on the basis of the obtained RMSD 

and E_rvdw (i.e., van der Waals interaction energy) values calculated for each pose. Second, the 

same Glide protocol was applied to dock CPX against the experimental MdfA pocket, and both CLM 

and CPX against the hypothesized NorA binding site. The gained results suggested that the two 

compounds could potentially be hosted in the defined efflux pump binding sites. 

2.6. Substrate Binding Simulations Using SuMD 

2.6.1. General Overview of SuMD Analysis 

As already anticipated, in this work the SuMD approach has been applied to MdfA and NorA 

proteins. Depending on the substrate (CLM or CPX) and on the protein (MdfA or NorA) used in the 

experiments, four complexes divided into two subsets (A and B) have been subjected to SuMD 

simulations (as summarized in Table 2). Using the binding site residues previously highlighted, 

different SuMD simulations were planned. The preliminary docking results suggested that CLM and 

CPX were potentially able to fit the cavity of the analyzed proteins (i.e., MdfA and NorA). 

System Replica Outcome Time (ns) Best dcm(L-R) Å 

Subset A 

CLM-MdfA 1 productive 32 3.1 

CLM-MdfA 2 productive 36 2.9 

CLM-MdfA 3 non productive 13 23.4 

CLM-MdfA 4 productive 37 3.1 

CLM-NorA 1 productive 16 34.4 

CLM-NorA 2 productive 58 0.4 

CLM-NorA 3 productive 47 1.7 

CLM-NorA 4 productive 14 30.7 

Subset B 

CPX-MdfA 1 productive 56 3.6 

CPX-MdfA 2 non productive 23 16.3 

CPX-MdfA 3 productive 44 28 

CPX-MdfA 4 productive 47 2.9 

CPX-NorA 1 non productive 16 25.5 

CPX-NorA 2 non productive 19 26.3 

CPX-NorA 3 non productive 26 26.3 

CPX-NorA 4 productive 73 3.4 

 

Table 2 SuMD replicas results summary. 
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SuMD replicas of the two studied systems (i.e., S. aureus NorA and E. coli MdfA) provided some 

interesting information about the molecular recognition mechanisms and the kinetic processes 

underlying the interaction between these efflux pumps and their substrates. 

First, a self-recognition SuMD simulation of the CLM into MdfA was performed to validate the 

applicability of the in-silico technique. Indeed, this work represents the first example of SuMD 

applied to efflux pumps. In total, four replicas were performed, and in three of them, CML was able 

to reach the defined orthosteric site. We refer to these replicas as productive replicas. It is worth 

noting that in one of the three productive replicas, this approach was able to reproduce the 

crystallographic binding mode of CLM. Indeed, the RMSD between the experimental and the SuMD 

pose of CLM was 1.77 Å, underling that the used technique worked pretty well in identifying the 

correct CLM pose on MdfA, also considering that the crystallographic resolution is 2.4 Å. 

The analysis of the SuMD results for CLM on NorA protein showed that a binding event was observed 

in two replicas. However, the in-silico results were not supported by the previously obtained 

biological assays, which showed that CLM was not a substrate of NorA efflux pump. However, it 

should be noted that the simulation data only indicated that CLM could be able to enter and reach 

the binding site (Figure S6). Thus, the fact that geometrically and energetically CLM could be hosted 

inside NorA did not mean that it had to be extruded at all. For instance, NorA binding by CLM could 

be compatible with the inhibitory activity of this compound, but unfortunately, no information is 

available in the literature about this topic to validate or not the hypothesis. The data obtained left 

the way open for this scenario. 

Second, we focused our attention on the recognition of CPX on MdfA and NorA. Both for CPX on 

MdfA and NorA, the SuMD simulation needed a remarkable number of SuMD steps. In the case of 

CPX on MdfA to sample a binding event within the orthosteric pocket, we had to increase the 

number of tries that the system could do before reaching the binding site. This behavior could be 

explained, considering that during the path the ligand was able to reach a meta-binding state, which 

was characterized by lower energy compared to that of the final state (Figure S7). 

When analyzing the NorA case study results, we observed this behavior again; indeed, in one 

productive replica, the final state reached by CPX at the defined site was energetically less stable 

than the ligand pose found at the meta-binding site identified during the path. Moreover, the 

channel of the pump is rich in charged amino acids. Overall, these observations once more 

suggested that the kinetic process that allows the substrate to reach the binding is hard and harsh. 
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2.6.2. SuMD Validation: MdfA-CLM Recognition Pathway 

The CLM was at first positioned 62 Å far away from the MdfA experimental canonical binding site 

defined by four residues (Tyr30, Asn33, Asp34, and Leu236) (dcm (L-R) = 62 Å). The whole 

recognition pathway can also be appreciated in this case by browsing Movie S1. The centers of mass 

distance (dcm (L-R)) quickly decreased from the initial 62 Å to about 30 Å during the first 2 ns of the 

SuMD simulation, as shown in the Dynamic Total Interaction Energy plot (Figure 2d). At this point, 

CLM established the first contacts with the protein by the “electrostatic recruiters” Arg131 (TM4) 

and Lys346 (TM10) located at the protein entry. Subsequently, the ligand was stabilized between 

the two residual recruiters and its center of mass was located at about 20 Å away from the 

orthosteric site. This recognition mechanism was clearly evident in the Interaction Energy Landscape 

(Figure 2b) in which there was the first region of minimum; the energy dropped from −40 kcal/mol 

to −70 kcal/mol. The substrate remained in this position for about 10 ns. Arg131 turned to have a 

key role in the molecular recognition mechanism, contributing to the binding events with 

cumulative energy of around −10,000 kcal/mol (Figure 2c). Later, the interaction between CLM and 

the two mentioned residues stopped and the ligand moved again along the trajectory pathway to 

penetrate the transporter. The protein region involved in this prolonged interaction could be 

defined as a meta-binding binding site, as revealed by the stability of MMGBSA energy values (see 

movie S1). A meta-binding site is a sort of stopover with enough residence time, which breaks the 

progressive and continual approach of the ligand. At this point, CLM orientation changed and 

reached a deeper position inside the canonical binding site, through a horizontal placement, where 

it makes contacts first with Tyr30 at 16 ns and then with Asp34. Noteworthy, this latter residue 

showed strong participated in the stabilization of CLM into the canonical binding site by interacting 

with the substrate OH groups. During the SuMD simulation, CLM was able to reach the orthosteric 

site in a conformation very close to the crystallographic one, as reported in Figure 2a, where the 

RMSD reached a minimum value of 1.77 Å at 17 ns. The geometric reproduction of the binding mode 

can also be observed from Movie S2. The predominant energy role of the amino acids mentioned 

above can be better understood by looking at the graph of the Total Interactions Energy (Figure 2c). 

Indeed, the cumulative interaction energy between residue Asp34 and the two ligand oxygens 

reached the value of −30,000 kcal/mol. Although this residue established contacts with the ligand 

until the end of the simulation at 37 ns, the substrate changed its binding mode during the 

interaction time. 

 



72 
 

 

Figure 2 SuMD MdfA-CLM recognition pathway analysis. (a) CM-distance between the ligand and the reference binding 
site calculated as RMSD of simulated position (light green) against the experimental (i.e., crystallographic) one (yellow). 
(b) Interaction Energy Landscape. (c) Total Interaction energy plot. (d) Dynamics Total Interaction Energy for each ligand-
interacting residue. 

 

To identify the possible CLM recognition sites during the SuMD trajectory, we performed a 

clustering analysis using DBSCAN (Figure S8). DBSCAN algorithm enables to identify clusters of ligand 

conformations during the SuMD trajectory, highlighting which regions were most explored by the 

ligand. Each sphere represents a population of ligand clustered conformations and the sphere radius 

in relation to the cluster population is set. According to what can be deduced from the analysis 

carried out, the CLM seemed to have a fairly immediate recognition pathway. Indeed, the clustering 

analysis identified two main steps characterizing the recognition process: the electrostatic 

recruitment by the vestibular region residues (Arg131 and Lys346), followed by a rapid transition to 

the crystallographic binding site, where the higher conformation cluster was identified and retained 

until the end of the simulation. 

2.6.3. NorA-CPX Recognition Pathway 

In the starting geometry, the ligand was placed at a distance of 84 Å far away from the postulated 

canonical binding site. As depicted in Figure 3d and shown in Movie S3, the first interaction between 

the ligand and the protein occurred after 3 ns of productive trajectory, involving the Lys127 side 

chain. The distance between the ligand and protein centers of mass then rapidly decreased from 84 

Å to about 40 Å (Figure 3a). This region of first recognition was very rich in positively and negatively 
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charged residues that slowed down the entry of the ligand such as Lys127 Lys264, Glu385, and 

Asn319 (Figures 3 and 4). This behavior was expected, considering the CPX zwitterionic nature. 

Indeed, the compound was almost always stabilized in the pump vestibular region by the Lys127 

side chain that had strong interactions with the carboxylate group of CPX. As Figure 3a shows, the 

ligand persisted in this first recognition site until 13 ns. The residence time of the ligand in this region 

was also supported by the energy interaction of the ligand-protein complex, which reached a value 

of -300 kcal/mol when the distance between the two centers of mass was between 30 Å and 40 Å 

(Figure 3b). Therefore, this region was considered a meta-binding site, a key region for the passage 

of the ligand inside the protein. Subsequently, CPX shifted deeper into the protein by losing the 

interaction with Lys127, but maintaining the interaction with Asn319. After about 15 ns, the 

carbonyl group of CPX established again an H-bond with Lys127, whereas the carboxylic group 

acquired interaction with Tyr131. This binding mode was also stabilized by Ser318. In this second 

site, the CPX binding mode changed. Indeed, while previously the protonated amine group was 

located towards the cytoplasmic side, it was now oriented towards the inner periplasmic side of the 

protein. The ligand was here stabilized by Ser318 and the hydrophobic component had a role in the 

orientation exploited by Met109. This was another site explored by the ligand, although at a low 

energy level of −150 kcal/mol (Figure 3b). The arene-H interaction with Thr314 also contributed to 

the CPX orientation, and this contact was retained until about 30 ns when the distance between the 

two mass centers was 20 Å. At 30 ns, the ligand again changed its conformation, establishing 

interaction with Gln51 at the level of the protonated amine. This binding pose was preserved up to 

about 36 ns, after which CPX began to interact with Arg310. The substrate carboxylic group was 

engaged in contacts with Arg310, Ser133, and Asn137, while the protonated piperidine nitrogen 

interacted with Gln51. As can be observed by the IE landscape (Figure 3b) this ligand conformation 

occurred at about 18 Å of distance from the binding site and was characterized by the energy of 

−150 kcal/mol. This kind of interactions was retained until 38 ns. Then Gln51 interacted with the 

carboxylic group of CPX. At about 10 Å from the orthosteric pocket, its orientation was strongly 

stabilized by Arg310 and Glu222 until 49 ns. The relevance of these two residues was also supported 

by the histogram of Total Interactions Energy (Figure 3c) and by the Dynamics Total Interaction 

Energy (Figure 4d). Indeed, Glu222 and Arg310 had total interaction energies of −100,000 kcal/mol 

and −150,000 kcal/mol, respectively. In addition, this conformation was stabilized by the π-π 

stacking interaction with Phe140. Finally, CPX shifted to the orthosteric binding site losing the 

interaction with Arg310 at around 52 ns. The CPX established π-π stacking interaction with Phe303. 
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This orientation was stabilized by Arg310 interaction and the arene-H interaction between the 

cyclopropyl and the aromatic moiety of the Tyr225. The minimum value of distance observed was 

3.6 Å and this conformation persists until the end of the SuMD simulation at 73 ns. 

 

Figure 3 SuMD NorA-CPX recognition pathway analysis. (a) CM-distance between the ligand and the binding site. (b) 
Interaction Energy Landscape. (c) Total Interaction energy plot. (d) Dynamics Total Interaction Energy for each ligand-
interacting residue. 

To reveal the most crucial binding sites, a clustering analysis was performed (Movie S4). As Figure 

3a shows, two meta-binding sites were identified at about 35 Å distance. As we previously 

highlighted, several charge residues hosted in this site. Subsequently, the ligand shifted at a distance 

of about 27 Å from the center of mass of the protein binding site. At this level, we found a third 

populated site formed by 940 conformations, where the ligand was stationed for a fairly long time 

(Figure 4a). CPX presented a conformation with the carboxylic group faced towards the cytoplasmic 

side, while the protonated amine group was directed towards the pump channel all the time. This 

cluster of conformations was stabilized by Ser318 whose side chain was hydrogen bonded to the 

CPX carboxylate, and by Met109, Thr314, Ile136, Ser133, Arg310, Phe129, Ala126, which 

contributed with the van der Waals component (Figure 4b). A further cluster of 653 conformations 

was found at 18 Å from the binding site cavity, as shown in Figure 4c. Here, the CPX binding mode 

is characterized by the interaction with Gln51. A small relatively sparsely populated cluster (233 

conformations) was identified immediately above the previous one, where this time CPX made polar 

contact with Gln51 at the level of its carboxyl group. The next cluster identified was that represented 

in Figure 4d populated by 348 conformations. In this pose, the substrate was firmly stabilized by the 
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two charged residues, Arg310 and Glu222. The CPX final state, identified by the fourth group of 

conformations, was broadly explored and widely populated (1980 conformations) (Figure 4d). 

 

 

 

Figure 4 Clustering analysis of CPX recognition pathway during a SuMD trajectory. (a) CPX binding mode in the first 
recognition site. The ligand establishes interactions with Ala126, Lys127, Lys264 and Asn319. (b) Panel b shows the 
interaction between CPX and NorA protein during its trajectory. CPX interacts with Met109, Ala126, Phe129, Ser133, 
Ile136, Arg310, Thr314, Asn315. (c) In cluster c, the ligand interacts with Phe16, Gln51; a hydrophobic contribute comes 
from Ser133 and Ile136 residues. (d) CPX is hosted in the orthosteric binding site. This is also the most populated cluster. 
CPX mostly establish contacts with Ile23, Phe140, Glu222, Tyr225, Ile244, Phe 303, Arg310. 

3. Materials and Methods 

3.1. General 

All simulations were performed on a hybrid CPU/GPU cluster. MD and SuMD simulations were 

carried out with the ACEMD 39 engine on a GPU cluster provided of 18 NVIDIA graphics cards, whose 

models include GTX 780 to Titan V. Before running MD and SuMD simulations, the following 

preliminary phases were carried out: (i) protein modeling, (ii) protein-ligand system preparation, (iii) 

ligand parametrization, and (iv) solvated system setup and equilibration. The protocol based on the 

CHARMM36/CHARMM general force field (CGenFF) force fields combinations was adopted for 

transmembrane systems. 
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3.2. Protein Modeling: Preparation of the NorA Target 

Quinolone resistance protein NorA amino acid sequence was downloaded in the FASTA format from 

the UniProtKB database (Uniprot: P0A0J4) 40 and submitted to the different software employed for 

the 3-D protein structure prediction. Towards this aim, we used I-TASSER 23, SWISS-MODEL 25, 

RaptorX web server 41 and Phyre2 server 27. The quality of the NorA 3-D structure models was 

assessed analyzing the Ramachandran plot generated by MOE suite and QMEANBrane 42. Model 2 

was then refined with MOE Geometry tool. The refined structure was aligned and superimposed on 

the MdfA crystal structure in the Orientations of Proteins in Membranes (OPM) database 43. 

3.3. MdfA Crystal Structure Preparation 

Protein-ligand complex of E.coli was retrieved from the RCSB PDB database (PDB: 4ZOW) 21. The 

protein structure to be used as template was prepared with the protein preparation tool as 

implemented in MOE 29: hydrogen atoms were added to the complex, and appropriate ionization 

states were assigned by means of the Protonate-3D tool. Missing atoms in protein side chains were 

built according to the CHARMM36 force field topology. Missing loops were modeled by the default 

homology modeling protocol implemented in the MOE protein preparation tool. Non-natural N-

terminal and C-terminal domains were capped to mimic the previous residue. 

3.4. Ligand Preparation 

The investigate substrates CLM and CPX are small organic molecules. The substrates were designed 

using MOE software, after which the partial charges were assigned, followed by a minimization step 

using the MMFF94 force field. The ligands parameters were achieved from the Paramchem service 

44 (CGenFF). Using these initial parameters, we subjected each ligand to 150 ns of preliminary MD 

simulation. Since the ligands’ behavior observed during the simulation was consistent, we decided 

to use these parameters for SuMD simulation. 

3.5. Molecular Docking Experiments 

The molecular docking experiments were performed using three different docking protocols: 

PLANTS 37, GLIDE 36 and GOLD 38. Starting from the crystal structure, the grid was centered on the 

center of mass of the co-crystallized ligand (CLM). The grid center was -17.2275, 13.7332 and 

24.7736 to x, y and z-axis for all the used protocols. The docking space was defined as a cubic box 

(22 Å side), with a nested cubic box (10 Å) defining the region where the centroid of the ligand had 

to be located using Glide. In GOLD and PLANTS protocols, the grid is a sphere with a radius set at 12 
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Å. Docking on NorA was performed using GLIDE as the best protocol selected. The grid coordinates 

for NorA model were -28.845, 15.2, 29.82 to x, y and z-axis. Each docking protocol generated 20 

poses per ligand. The RMSD and the E_rvdw were calculated with MOE tool. 

3.6. Solvated System Setup and Equilibration 

Four systems composed by the combination of the two analyzed proteins (MdfA and NorA) and the 

two designed substrates (CLM and CPX) were then prepared. Then, the position of the ligands was 

manually assigned. To avoid protein-ligand long-range interactions in the starting geometry, CLM 

and CPX was positioned 62 Å away from the MdfA transporter atom and 84 Å away from the NorA 

efflux pump atoms, respectively. Transmembrane proteins were embedded in a POPC lipid bilayer, 

according to the suggested orientation reported in the OPM database. Initial POPC atoms were 

placed through the VMD membrane builder plugin 45, and lipids within 0.6 Å from amino acid atoms 

were removed. The membrane used in all the simulations has a dimension of 120Å x 120Å. The 

systems were solvated with TIP3P water using the program Solvate 1.0 46 and neutralized by 

Na+/Cl−counterions to a final concentration of 0.154 M. The systems were then equilibrated through 

three main steps of molecular dynamics to equilibrate them. In the first stage, after 1500 steps of 

minimization to allow the system to reduce the clashes between proteins and lipids, 5 ns of MD 

simulation (2,500,000 steps) were performed in the NPT ensemble, restraining ligand, protein atoms 

and phosphorousof phospholipid by a positional constraint of 1 kcal mol−1 Å−2. The temperature was 

maintained at 310 K using a Langevin thermostat with low damping constant of 1 ps−1. The pressure 

was maintained at 1 atm using a Berendsen barostat; bond lengths involving hydrogen atoms were 

constrained using the M-SHAKE algorithm with an integration time step of 2 fs. In the second stage, 

applying the restraints only to the protein and to the ligand and keeping the conditions of constant 

pressure and temperature (NPT), the temperature was set at 310 K and the pressure at 1 atm, and 

10 ns of MD were performed. Then, the last equilibration step included 20 ns of MD simulation and 

the only restraints left were on the α carbon of amino acids and on the ligand. The stability of the 

cell volume and POPC area per lipid headgroup during the simulation were evaluated using a script 

that relies on VMD and GridMAT-MD, a tool for calculating bilayer parameters (Figure S9) 47. In 

according with GridMAT-MD values, the area per lipid headgroup ranged from 63 to 70. 
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3.7. Molecular Dynamics (MD) Simulations. 

MD simulations of 500 ns of the systems (MdfA and NorA Cin, both without substrates and MdfA in 

complex with CLM) were performed using ACEMD engine with a time step of 2 fs. The MD trajectory 

was stridden at 5000 frames. The protein RMSD and RMSF were computed on the protein Cα using 

VMD trajectory tool. The MD conformations were then clustered using the density-based clustering 

DBSCAN, setting the RMSD threshold to 2 and the minimum number of protein conformations that 

could generate a cluster to 30. The cluster centroid was selected using a script based on Numpy 48 

and MDTraj python library 49. 

3.8. Supervised Molecular Dynamics (SuMD). 

Each SuMD simulation is composed of a number of consecutive short unbiased MD simulations (600 

ps, editable by the user) in which a supervision strategy, based on a tabu search-like strategy, is 

applied at the end of each simulation. The supervised variable is the distance between the ligand 

and protein binding site center of mass it is maintained until the protein-ligand distance reaches a 

preset threshold value (5 Å in this case study). Then the simulation proceeds as a conventional 

unbiased MD simulation. For a more detailed description of the SuMD analyzer, Salmaso et al. 

provide all the necessary information 50. Four simulations were carried out for each system, starting 

from the same initial geometry is based on the subset. The more significant replicas are described 

in the results and discussion section. 

3.9. Analysis of pepSuMD Trajectories 

All the trajectories generated by pepSuMD 50 were analyzed by an in-house script written in tcl and 

python, that makes use of Numpy 48 and ProDy modules 51. The analyses were then performed on 

the whole trajectories. In brief, the single SuMD step trajectories were stridden, by a user-defined 

value (here 10), superposed on the first frame Cα carbon atoms of the target protein, wrapped and 

merged. The in-house script computes several sides of the SuMD simulation performed. It analyzes 

the geometry, such as the distance between the ligand and the binding site center of mass and the 

protein RMSD, the ligand-target interaction energy estimation during the recognition process 

plotted on the Interaction Energy Landscape plots. This analysis also calculates all the established 

interactions between the protein and the ligand. The clustering analysis was performed using the 

density-based clustering algorithm DBSCAN, setting the RMSD threshold to 1.75 Å and the minimum 

number of protein conformations that could generate the cluster to 200 for MdfA-CLM and NorA-

CPX system. Representations of the molecular structures were prepared with VMD 45. 
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3.10. Microbiological Assays 

The strains of S. aureus employed were SA-1199 (wt) and SA-1199B (overexpressing norA and also 

possessing an A116E Grla mutation). The MIC of the CLM was determined by microdilution 

technique according to CLSI guidelines 52. 

4. Conclusions 

This work investigated at the molecular level the substrate recognition pathway of NorA through a 

Supervised Molecular Dynamics (SuMD) approach, using NorA homology models. In this work, 

different NorA homology models’ structural quality assessment and validation was carried out. 

These analyses allowed the selection of a NorA model built based on the MSF E. coli MdfA 

transporter, showing an inward conformation with an opening toward the cytoplasmic side as the 

best starting point for further studies. Notably, the antibiotic CPX is a substrate of both NorA and 

MdfA efflux pumps, while CLM is a specific substrate of MdfA, as confirmed by our biological 

experiments. 

With this information in hand, a series of SuMD simulations were planned in an attempt to 

investigate the molecular basis of NorA substrate recognition. To test the ability of the chosen 

technique in studying these protein systems (i.e., efflux pumps), CLM was used as internal control 

given that a co-crystal structure between this substrate and MdfA was available. 

The obtained results on the MdfA-CLM system supported the choice of the SuMD methodology to 

study the substrate recognition by efflux pumps. Indeed, CLM was able to reach the orthosteric site 

in a very close orientation (RMSD of 1.77 Å) with respect to the crystallographic position. 

Interesting results were also obtained from the NorA-CPX SuMD simulations. In one of the five 

replicas, CPX was able to reach the orthosteric site. Additionally, in three replicas, CPX explored a 

meta-binding state where the strong electrostatic interaction seemed to be critical. This meta-

binding site, placed at the interface between the protein and the cytoplasm, could work as the first 

recognition site for CPX, which was then oriented and released into the protein cavity. During its 

trajectory, CPX explored several recognition sites, establishing interaction with Lys127, Lys264, 

Met109, Ser133, Ile136 Gln51, Arg310, Glu222, Phe303, and Tyr225. 

To correctly interpret the obtained results, we have to keep in mind that the efflux pumps (e.g., 

MdfA and NorA) are promiscuous proteins. They are involved in the extrusion of structurally 

unrelated chemical compounds. Thus, different pathways of substrates recognition can be used on 

the basis of the specific substrate chemical structure. The internalization of a molecule into the 



80 
 

efflux pump cavity cannot ensure the activation of the protein conformational change required to 

have the substrate extrusion. Thus, a binding event cannot always correspond to an extrusion event. 

In this context, the present work provides a solid homology structural model and an accurate 

technique (i.e., SuMD) that could rationally aid the comprehension of both the molecular 

mechanisms of action and inhibition of NorA efflux pump. 
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Abstract  

Recent studies have highlighted the key role of Casein kinase 1 δ (CK1δ) in the development of 

several neurodegenerative pathologies, such as Alzheimer’s disease (AD), Parkinson’s disease (PD) 

and Amyotrophic Lateral Sclerosis (ALS). So far, CK1δ inhibitors are non-covalent ATP competitive 

ligands and no drugs are currently available for this molecular target: hence the interest in 

developing new CK1δ inhibitors. The study aims to identify new inhibitors able to bind the enzyme, 

by a dual approach in silico/in vitro, the virtual screening has been performed on an in-house 

chemical library, which was previously designed and synthesized for other targets, the work can, 

therefore, be seen in the scaffold repurposing logic. The proposed strategy has led to the 

identification of two hits, having a novel scaffold in the landscape of CK1δ’s inhibitors and with an 

activity in the micromolar range. 

1. Introduction 

The development of novel therapeutic approaches for the treatment of neurodegenerative 

diseases is still a great challenge. The discovery of the CK1 isoforms involvement in the development 

of neurodegenerative disorders has paved the way for the development of CK1 inhibitors. In 

particular, the physiopathological role of CK1 isoform δ in neurodegenerative diseases like 

Alzheimer’s disease (AD), Parkinson’s disease (PD) and Amyotrophic Lateral Sclerosis (ALS) has 

encouraged the research for innovative therapeutic approaches. 

The protein kinase CK1 isoform δ is encoded by the gene CSNK1D which is located on chromosome 

17 (chromosomal localization 17q25). CK1δ human gene was characterized as a sequence of 1245 

nucleotides which is transcribed into a 49 kDa protein consisting of 415 amino acids. The poor 

substrate specificity of CK1 family members is supported by the fact that nearly 140 substrates are 

reported in the literature.1 CK1δ is an acidotropic protein kinase, which means it recognizes 
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substrates containing acidic or phosphorylated amino acid residues. The canonical consensus 

sequence for CK1 is:(P)S/T-X-X-S/T. Where (P)S/T indicates a phosphorylated serine or threonine 

residues. Nevertheless, CK1 can also phosphorylate the target if there is an N-terminal cluster of 

acidic residues or acidic amino acids in the N-3 position. This allows CK1 to play the role of priming 

kinase activating the substrate for other kinases. Also, non-canonical sequences are recognized by 

CK1 such as the SLS motif.2 

CK1 family members have several effectors able to modulate their expression and activity. X-ray 

studies demonstrate that the formation of homodimers could have a negative regulatory effect on 

CK1δ activity.3,4 Moreover, post-translational modifications as phosphorylation are involved in the 

regulation of CK1 activity. Ser318, Thr323, Ser328, Thr329, Ser331, and Thr337 are the main residues 

subjected to autophosphorylation. In addition to autophosphorylation, CK1δ is phosphorylated by 

other kinases including PKA, Akt, CLK2 (CDC-like kinase), PKC isoform α and Chk1.2, 5, 6 Several studies 

have also underlined the importance of compartmentalization and subcellular localization in CK1 

activity regulation. The subcellular localization of the kinases is mostly regulated by binding to 

intracellular structures or protein complexes.7, 8 Dysregulations in expression or activity of CK1δ 

have been observed in cancer as well as in different neurodegenerative disorders like AD, PD, and 

ALS.  

CK1δ appears to be involved in different stages of AD development. The residues Ser202/Thr205 

and Ser396/Thr404 have been identified as CK1δ phosphorylation sites on the Tau protein.9, 10 

Furthermore, CK1 family is overexpressed in Alzheimer’s disease and CK1 isoforms colocalize with 

granulovacuolar degeneration bodies in AD hippocampus.11 As concerns PD, it has been 

demonstrated that CK1 isoforms constitutively phosphorylate α–synuclein at Ser129. This suggests 

that CK1 mediated phosphorylation of the protein can play a key role in PD development.9 

Moreover, recent studies have demonstrated that CK1δ phosphorylates many different sites of TAR 

(TransActive Response) DNA-binding Protein 43 (TDP-43) in vitro.12 TDP-43 was identified as the 

major component of ALS protein aggregates and it is responsible for the onset and progression of 

ALS. As a consequence, the identification of potent and selective inhibitors of CK1δ may provide an 

innovative therapeutic strategy for ALS.13 

Initiating hit identification campaigns by using chemical scaffolds from an in-house library designed 

for other indications (scaffold repurposing) can speed up drug discovery in several therapeutic 

areas.13-14 Additionally, in silico approaches for the discovery of new kinase ligands is now mainly 
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structure-driven, with the determination of the X-ray of several hundred structures of kinase-ligand 

complexes. Structure comparisons have been widely used to identify the most common and 

stabilizing interaction networks between ligands and their corresponding kinase binding sites. 

Regarding specifically CK1δ, nowadays 19 unique protein–inhibitor complexes are available from 

the Protein Data Bank (PDB). In parallel, docking-based virtual screening (DBVS) has extensively and 

successfully used to identify potential hit compounds.14 

 

Figure 1 Workflow for hit compounds identification 

Following this approach, in this work, we have performed a DBVS of an in-house chemical library 

composed by 431 compounds synthesized over more than thirty years of research in the field of 

oncology and directed to the inhibition of several molecular targets such as topoisomerase 1 and 2, 

aromatase, and tubulin. In particular, our computational pipeline was based on a combination of a 
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canonical DBVS followed by a pharmacophore-driven filtering process of all obtained docking poses, 

as summarized in Figure 1. The primary goal of this study is to verify if in our in-house library there 

were some ligands characterized by a scaffold not yet used among the already known inhibitors of 

CK1, and that was therefore susceptible to a later phase of optimization. After the preliminary in 

silico screening, the most promising candidates have been undergone to the in vitro tests to confirm 

whether they have shown a detectable inhibition of CK1δ activity. Interestingly, we have identified 

two hit compounds, that share the pyrrolo[3,2-f]quinolinone moiety as key-scaffold, that are able 

to inhibit CK1δ activity in the micro-molar range. This repurposed scaffold is now subject to further 

study for the construction of focused libraries for the necessary phase of optimization of its 

pharmacodynamic and pharmacokinetic properties. 

2. Materials and Methods 

2..1 Preparation of the Virtual database for the Docking Protocol calculation 

The preparation of the in-house chemical library for the DBVS consisted in the enumeration of the 

tautomeric state and selection of the most stable one (when more than one tautomeric state is 

possible), the generation of the three-dimensional coordinates, the assignation of the correct 

ionization state for a given pH and the calculation of the atomic partial charges.  

The Tautomers application, which is included in the OpenEye toolkit QUACPAC, enumerates the 

most reasona-ble tautomeric forms of the molecule.  Subsequently, the FixpKa program (also 

included in the Openeye toolkit QUACPAC) can be used to assign the most probable mole-cule 

ionization state for pH 7.4. The 3D conformations were generated by Corina Classic. 15, 16 To 

determine the partial charges of each compound, the Molcharge applica-tion (also included in the 

Openeye toolkit QUACPAC) in accordance with the MMFF94 force field was used.  

2.2 Selection of the best Protocols trough DockBench and Virtual Screening 

All 19 Holo Crystal Structures of CK1δ were retrieved from the Protein Data Bank (PDB). These 

structures were prepared with MOE Structure Preparation tool.17 If more than one chain is reported 

in the crystal data file, the best-solved chain was selected. The highest occupancy alternative for 

each residue with alternate locations was selected. The system was protonated with the Proto-

nate3D tool (which assigns the most probable protonation state at selected pH) using the AMBER 

10 force field. The partial charges of the system (protein and ligand) were calculated and the 

hydrogen atoms were minimized. The co-crystalized ligands were saved in a separate database for 
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the following analyses while the protein structures were saved after removing ions, solvent or other 

molecules used to obtain the crystal formation. This procedure is speeded up by the use of a 

platform called DockBench.18 The software is based on a self-docking analysis. Briefly, each co-

crystallized ligand is docked using the docking protocols and the ability of each protocol in 

reproducing the pose of the crystallographic complex is evaluated. For each structure-docking 

protocol pair, minimum (RMSDmin) and average RMSD (RMSDave) values with respect to the X-ray 

binding mode were calculated. Twenty poses for each molecule were generated and analyzed. The 

VS was performed using GOLD (Scoring Function: Goldscore), PLANTS (Scoring Function: chemplp), 

and Glide (standard precision). The results were evaluated using a consensus strategy.  

2.3 Interaction Energy Fingerprint (IEF) 

The per residue analysis was performed using the software MOE (Molecular Operating 

Environment)17 and the SVL programming language. The electrostatic interaction energies were 

measured through the Coulombic function, and they were expressed in kcal/mol, while the 

hydrophobic contribution resulted from the contact surfaces analysis performed by MOE and are 

associated to a dimensionless score. To rationalize the binding mode of each compound, the 

interaction energy values can be translated into heat maps called Interaction Energy Fingerprint 

(IEF). 

2.4 Generation of the Pharmacophore model 

The conformation originated from docking were further filtered by a pharmacophore model. The 

alignment and the superimposition of CK1δ crystal structures have allowed a comparison between 

different ligands and the detection of common interaction features. The identification of the main 

features to build the pharmacophore model for CK1δ ligands has required a visual investigation of 

the protein-ligand crystallographic complexes in addition to information from the previous IEF 

analysis. The pharmacophoric query design and the consequential search was performed using the 

MOE pharmacophore modeling tools.17  

2.5 CK1δ activity assay 

Compounds were evaluated towards CK1δ (full length, ThermoFisher) with the KinaseGlo® 

luminescence assay (Promega) slightly modifying a procedure reported in literature.13 In detail, 

luminescent assays were performed in black 96-well plates, using the following buffer: 50 mM 

HEPES (pH 7.5),1 mM EDTA, 1 mM EGTA, and 15 mM magnesium acetate. Compound PF-670462 
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(IC50 = 7.7 nM) was used as positive control for CK1δ19 while DMSO/buffer solution was used as 

negative control. In a typical assay, 10 μL of inhibitor solution (dissolved in DMSO at 10 mM 

concentration and diluted in assay buffer to the desired concentration) and 10 μL (26 nM) of enzyme 

solution were added to the well, followed by 20 μL of assay buffer containing 0.1% casein substrate 

and 4 μM ATP. The final DMSO concentration in the reaction mixture did not exceed 1-2%. After 10 

minutes of incubation at 30 °C the enzymatic reactions were stopped with 40 μL of KinaseGlo ® 

reagent (Promega). Luminescence signal (relative light unit, RLU) was recorded after 10 minutes at 

30 °C using Tecan Infinite M100. For IC50 determination, ten different inhibitor concentrations 

ranging from 100 and 0.026 μM were used. IC50 values are reported as means ± standard errors of 

three independent experiments. Data were analyzed using GraphPad Prism software (version 8.0). 

 

3. Results and Discussion 

The first step of our work was the identification of a suit-able docking protocol on which to base the 

DBVS of our in-house library. To this purpose, we performed a benchmark of the 17 docking 

protocols applied to 19 lig-and- CK1δ complexes. This procedure was speeded up by the use of a 

platform for a self-docking comparison called DockBench.18 The results of the DockBench Analysis 

are visualized through the use of heatmap plots. In each plot, the vertical axis shows the docking 

protocols while the horizontal axis represents the protein-ligand complexes. A color code, from blue 

to red, displays the RMSD value. The plot in figure 2 summarizes the minimum value of RMSD 

(RMSDMIN) calculated for each docking protocol on each protein-ligand complex; blue spots 

represent low RMSD values while red ones indicate higher values. The average RMSD value 

(RMSDAVE) of poses generated by each docking protocol for each protein-ligand complex was also 

considered (Figure 2, right plot) reporting a sim-ilar profile to RMSDMIN. According to these metrics, 

the crystal structure selected for the subsequent molecular docking analyses was 3UZP since it has 

resulted in one of the protein structures for which molecular docking better reproduces the crystal 

structure pose with different protocols.  
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Figure 2 Heatmaps summarizing the performances of molecular docking benchmark in the self-docking procedure. In 
panel A, the RMSD lower value obtained by each Docking Protocol (y-axis) for each Protein-ligand complex (x-axis). In 
panel B, the RMSD average value obtained by each Docking Protocol (y-axis) for each Protein-Ligand complex (x-axis). 

The comparison of the different docking protocols on the complex 3UZP revealed that several 

different algo-rithms were able to nicely reproduce the experimental geometries showing RMSDMIN 

below 0.55 Å (Table 1). 

 RMSDMIN RMSDAVE 

GOLD - Goldscore 0.29 Å 0.54 Å 

PLANTS - Chemplp 0.35 Å 1.73 Å 

GLIDE - SP 0.55 Å 5.33 Å 

Table 1 

En-couraged by these performances, we decided to maximize the conformational sampling by using 

three different docking protocols in the Virtual Screening: GOLD20 coupled to Goldscore Scoring 

Function, PLANTS21,22 coupled to Chemplp Scoring Function23 and Glide-sp24. This strategy, usually 

named consensus docking25, is a method to improve the reliability of docking results, it consists in 

the parallel use of several docking protocols based on different search algorithms, and in the 

interpolation of the results of these. In this view, the selection of the protocols not only satisfies the 

benchmark results but also respects the fundamental requirement to have an orthogonal search 

algorithm. Indeed, PLANTS relies on an Ant Colony Optimization algo-rithm for the search algorithm, 

GOLD on a Genetic Algo-rithm and Glide on a systematic search. Ten poses for each molecule of the 

chemical library were hence calcu-lated generating a total of 12930 ligand conformations. 

To analyze the VS output instead of using a classical scor-ing function we adopted a geometrical 

based method based on a structure-based pharmacophore developed on the same dataset of CK1δ 
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holo-complexes used in the previous benchmark. The alignment and the superimposi-tion of CK1δ 

crystal structures have allowed a compari-son between different ligands and the detection of com-

mon interaction features to build the pharmacophore model. In addition, a qualitative analysis of 

the molecular interaction was carried out by considering the Interaction Energy Fingerprints (IEF) of 

the 19 ligands in our dataset (figure 3). 

 

Figure 3 Interaction Energy Fingerprint (IEF). Per residue Electrostatic (upper plot) and the hydrophobic contribution 
(lower plot) interaction for each crystallographic ligand (reported on the y-axis) of CK1δ. For Electrostatic interaction the 
colorimetric scale is blue to red while for the hydrophobic contribution it is white to green. 

 

By coupling the geometrical alignment and IEFs it was confirmed the relevance of interactions with 

the hinge region of the kinase. In particular, Leu 85 plays a key role in establishing two hydrogen 

bonds with most of the co-crystalized ligands. The hypothesis of the Leu 85 key role is strongly 

supported by studies reported in literature.26–28 For this reason, the H-bond interaction with the 

backbone of this residue has been included in the pharmacophore model. In addition, the 

superimposition of the compounds revealed the presence of aromatic moieties for most structures; 

their presence guarantees a strong hydrophobic contribution as con-firmed in the hydrophobic 

fingerprint (figure 3). All these analyses were summarized in a pharmacophore having 5 features: 

two hydrogen bonds (one acceptor and one donor) and three hydrophobic ones (figure 4).  
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Figure 4 The Pharmacophoric model superposed to the crystallographic complex ligand 0CK-CK1δ (PDB ID: 3UZP). The 
orange sphere represents an aromatic feature, while the blue and the green ones indicate respectively the presence of a 
Hydrogen Bond Donor (HBD) and a Hydrogen Bond Acceptor (HBA) acceptor mediating the interaction with Leu 85. 

To filter out the conformations obtained from the DBVS the following criterion was used: only the 

poses that sat-isfy at least three features of the pharmacophore model were retained including the 

mandatory presence of at least one donor/acceptor feature. The pharmacophoric filter was applied 

to each docking protocol separately in order to obtain three independent lists. Only the mole-cules 

that satisfy the pharmacophore model in each Dock-ing Protocol were retained. In this way, we 

were able to select two molecules: compound 1 and 2 (figure 5). For compound 2, the bromophenyl 

group fills the hydropho-bic pocket formed between the sidechains of Lys 38, Met 80 and the 

gatekeeper residue Met 82, while the pyrrolo-quinolinone scaffold occupies the outer portion of 

the binding site. The carbonyl oxygen of the pyrrolo-quinolinone portion maintains the recurrent 

interaction with the hinge region, especially with the backbone NH of Leu 85. In addition, π - CH 

interactions occur between the pyridone and pyrrole moieties and non-polar amino acids as Ile 15 

and Ile 23. 
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Figure 5 The resulting pose for compound 1 (panel A) and 2 (panel B). CK1δ Binding site is reported using the ribbon 
representation (light gray). The key residue Leu 85 in the hinge region is explicated by stick representation 

For compound 1, the hydrogen bond with Leu 85 is con-served as well as the CH – π interaction with 

Ile 23. The hydrophobic pocket is widely occupied by the naphthyl group while the ethyl-substituted 

pyrrole is faced out-ward. In figure 6 are reported the IEF of the two compounds while in the 

supplementary material are reported two comparison between the electrostatic interaction of 

Compound 1 and Compound 2 and the crystallographic ligand 0CK.  

 

Figure 6 Interaction Energy Fingerprint (IEF) for compound 1 and compound 2. Per residue Electrostatic (upper plot) and 
the hydrophobic contribution (lower plot). For Electrostatic interaction the colorimetric scale is blue to red while for the 
hydrophobic contibution it is white 

To verify the accuracy of the results obtained by our computational pipeline, the two selected 

candidates were tested using a conventional in vitro kinase activity inhibi-tory assay.  

The IC50 values against CK1δ were of 15.22 ± 2.71 μM for compound 1 and 12.95 ± 3.21 μM for 

compound 2, respec-tively (Figure 3 and 4 on SI). Despite the two selected mol-ecules showed an 
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inhibitory effect of CK1δ activity in the micro-molar range, it is worth to underline that they were 

initially designed for completely different targets and, consequently, the repurposing aim of a novel 

scaffold can be considered as achieved. In fact, pyrrolo[3,2-f]quinolinone represents a novel scaffold 

for designing new CK1δ inhibitors. It is interesting to note how the strategy of in-house chemical 

library repurposing can be now particularly useful to cherry-pick from the library the closest analogs 

to our hit for developing a very pre-liminary structure-activity-relationship useful to quickly 

investigate the role of certain molecular decoration. However, as already anticipated, this 

repurposed scaffold is now subject to further study for the construction of fo-cused libraries for the 

necessary phase of optimization of its pharmacodynamic and pharmacokinetic properties. 

Interestingly, during the writing of this work a new CK1δ crystal has been released (PDB code: 6RCH) 

co-crystallized with a ligand having a naphthyl substituent positioned like the one suggested by us. 

Concluding, the preliminary results here described sup-porting the fact that the suggested 

computational pipeline could represent an alternative valuable strategy to effi-ciently analyze the 

unexplored chemical space. 
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Abstract  

Adenosine receptors (ARs), like many other Gprotein-coupledreceptors (GPCRs), are targets of 

primary interest indrug design. However, one of the main limits for the development of drugs for 

this class of GPCRs is the complex selectivity profile usually displayed by ligands. Numerous efforts 

have been made for clarifying the selectivity of ARs, leading to the development of many ligand-

based models. The structure of the AR subtype A1 (A1 AR) has been recently solved, providing 

important structural insights. In the present work, we rationalized the selectivity profile of two 

selective A1 AR and A2A AR antagonists, investigating their recognition trajectories obtained by 

Supervised Molecular Dynamics from an unbound state and monitoring the role of the water 

molecules in the binding site. 

1. Introduction 

Adenosine receptors (ARs) are class A G protein-coupled receptors (GPCRs) that bind the 

endogenous agonist adenosine. ARs are composed of four subtypes: A1, A2A, A2B, A3. While A1 and 

A3ARs (which share 49% of a sequence identity) are preferentially coupled to Gαi proteins and 

therefore inhibit the adenylatecyclase, A2A and A2B ARs (sharing 59% of a sequence identity) 

stimulate this enzyme, as being coupled to Gαs proteins 1. Several ARs antagonists are in clinical trials 

for various diseases. With regards to A2AAR, istradefylline has been recently approved for 

Parkinson’s disease (NCT02610231) 2, PBF-509 is in phase I/II trials for non-small cell lung cancer 

(NCT02403193), and CPI-144 is in phase I trials for various cancer types (NTC02655822). PBF-680, 

on the other hand, is the only A1 AR antagonist in clinical phase II, for the treatment of Asthma 

(NTC02635945)3. 

One of the difficulties during the development of ARs agonists and antagonists as therapeutic agents 

is the poor selectivity between differentreceptors subtypes 4. For this reason, many efforts have 
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been made to elucidate the molecular basis of ARs ligands selectivity, and several structure-activity 

relationship (SAR) models have been developed for selective ligands of all the four subtypes 1,2,13,14,5–

12. With the increasing availability of structural information (mainly from mutagenesis, X-ray, and 

cryo-EM approaches 15) in the last few years, light has been shed on the origin of selectivity on ARs. 

Recently, the A1AR inactive (PDB, Protein Data Bank, code 5UEN 16 and 5N2S 17) and active (PDB 

code 6D9H 18) structures have been solved. Interestingly, in 17, Cooke and colleagues obtained the 

X-ray crystal structure of A1 and A2A Ars, in a complex with the same xanthine ligand PSB36, providing 

insight about the selectivity. There are several structural differences between A1 AR and A2A AR. The 

second extracellular loop (ECL2), in particular, is more folded in A1 AR and orients perpendicularly 

to the plane of the membrane, while in A2A AR it forms a longer helix, which is parallel to the lipid 

bilayer. This difference is probably due to the presence of two disulfide bonds uniquely present in 

A2A AR. Indeed, the bond between Cys71 and Cys159 anchors ECL2 to ECL1, while the bond between 

Cys74 and Cys146 tethers TM3 to ECL2. The class A conserved disulfide bonds between Cys80 and 

Cys169 is present in both the two subtypes. These differences in the disulfide bonds likely contribute 

to the outward movement of the top of transmembrane helix 2 (TM) in the inactive A1AR (Figure 1). 

Further divergence involves TM7, which is shifted outward compared to A2A AR, due to the shorter 

ECL3, and TM6 slightly shifted inward in A1 AR. These rearrangements, in turn, affect the orthosteric 

site of A1 AR, which is wider than A2A AR. Interestingly, the key residues in the orthosteric site of the 

two receptors are conserved and drive the same binding mode of the antagonist PSB36 (Figure 1). 

More precisely, the xanthine scaffold forms two hydrogen bonds with Asn254 (A1 AR, Asn253 in A2A 

AR) and a π- π stacking with Phe171 (A1 AR, Phe168 in A2A AR). Nevertheless, Asn254 (A1 AR) is 

located in the binding site deeper than Asn253 in A2A AR, and the xanthine ligand is consequently 

positioned deeply in the orthosteric site (Figure 1). 
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Figure 1 Comparison of A1AR and A2AAR structures (A): Superposition of the crystal structure of the inactive A1 (orange) 

and A2A (cyan) adenosine receptors (Ars) (PDB code 5N2S and 5N2R respectively). (B) Superposition of the same xanthine 

ligand PSB36 in the two aforementioned crystal structures. 

Despite the huge help provided from high-resolution structural biology techniques, certain 

selectivity profiles cannot be only rationalized by the mere coordinates of bound state or “final” 

state. Ligand recognition is an articulated mechanism in which many variables may play a relevant 

role and over the last few years, there has been rising attention in the understanding of binding 

kinetics at GPCRs and its determinant role to successfully target this class of proteins 19. 

In the present study, we used supervised molecular dynamics (SuMD) simulations to shed light on 

the molecular basis of the selectivity of three different ligands to A1 AR and A2A AR, not only 

considering the bound states, but also the possible different recognition mechanism preceding the 

final orthosteric site and the role of the solvent. We focus our attention on three antagonists: the 

A2A AR selective antagonists Z48 (Ki 16.9 nM in A2A AR and 1345.7 nM in A1 AR) 20; the A1 AR selective 

antagonist LC4 (Ki 16,800 nM in A2A AR and 89 nM in A1 AR) 21; and the nonselective antagonist 

caffeine (Figure 2). SuMD 22,23 is a molecular dynamics (MD) approach that allows for the study of 

molecular recognition processes in a fully atomistic way, in the nanosecond timescale, without 

introducing any energetic biases. 
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Figure 2. The three ligands considered in the present study. (A) Caffeine, a non-selective ARs antagonist. (B) LC4, an A1 
AR selective antagonist. (C) Z48, an A2A AR selective antagonist. 

2. Materials and methods 

2.1   System Setup 

The crystal structures of the two receptors were retrieved from PDB (the PDB code is 5N2S for A1 

AR and 5NM4 for A2A AR). Systems preparation was performed using a Molecular Operating 

Environment (MOE)) suite (Chemical Computing Group ULC, Molecular Operating Environment 

(MOE), 2019.01. 1010 Sherbrooke St. West, Suite #910, Montreal, QC, Canada, H3A 2R7, 2019) 24 

for protein preparation (removal of crystallographic water molecules, ions, and other solvent 

molecules, selection of the highest occupancy for each residue, assignment of the correct 

protonation state at pH 7.4). Systems preparation for the molecular dynamics simulations was 

carried out using VMD 25. The protein was explicitly solvated in a water box with the borders placed 

at a distance of 15 Å from any protein atom, the water model used was TIP3P 26. The system charge 

was neutralized to a concentration of 0.154 M using Na+/Cl−. The lipid bilayer consisted of 

phosphatidylcholine (POPC) units. The sodium ion within the TMD allosteric site of A2A AR was 

retained, and it was also placed by superposition in A1 AR. 

2.2. Equilibration of the System 

All the simulations were performed with a CHARMM36 force field 27 and using ACEMD2 28. Ligands 

parameters were retrieved from Paramchem 29, a web interface for the assignment of parameters 

based on the CGenFF 30 force field. The system energy was minimized in 1500 steps using the 

conjugate-gradient method, then the equilibrationof the system was done in four steps. The first 

one consisted of 5 ns of NPT simulation with harmonic positional constraints of 1 kcal mol−1Å−2 on 

each atom of the protein and the lipid bilayer. The second step consisted in 10 ns of NPT simulation 

with harmonic positional constraints of 1 kcal mol−1Å−2 only on eachprotein atom and on the 

phosphorus atom of the POPC units, the third step consisted in 5 ns of NPT simulation with harmonic 
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positional constraints of 1 kcal mol−1Å−2 only on the alpha carbons of the protein, and the last step 

consisted in 50 ns of NVT simulation without any constraints. 

For the productive simulations, the temperature was maintained at 310 K using the Langevin 

thermostat (company, city, city abbreviation if USA, country), with a low dumping of 1 ps−1. The 

pressure was set at 1 atm using the Berendsen barostat 31. The particle-mesh Ewald (PME) method 

was used to calculate the electrostatic interactions with a 1 Å grid 32. A 9.0 Å cutoff was applied for 

long-term interactions. The M-SHAKE algorithm was applied to constrain the bond lengths involving 

hydrogen atoms. 

At the end of the equilibration, several parameterswere calculated to assess the stability of the 

system:the root mean square deviation (RMSD) of the alpha carbons of the protein ,the root mean 

square fluctuation (RMSF) of each protein residue, the volume of the cell (which should tend to a 

plateau in the NPT ensemble), and the area per lipid (APL) for each membrane layer (calculated 

using GridMAT-MD 33). We also computed the volume of the orthosteric siteduring the equilibration 

using POVME 34. Figure S1 (A2A AR) and Figure S2 (A1 AR) report the analysis performed during the 

equilibration of the system. In both the two systems, the protein reached a stable conformation 

(RMSD of the protein Cα (panel A, figure S1 and S2) stably below 2 Å for A2A AR and below 3 Å for A1 

AR). The volume of the orthosteric site reached a plateau in both cases (Panel B, figure S1 and S2). 

The most flexible parts of the protein, as expected, are the loops. Indeed, the RMSF of these regions 

is higher than the TMs (panels C and D, figure S1 and S2). 

As shown in Figure S5, the orthosteric site of A1 AR appears to be deeper than A2A AR, due to a cleft 

between TM5 and TM6. The APL and the volumetric analysis are reported in Figure S3 (A1 AR) and 

Figure S4 (A2A AR). For both systems, the cell volume reached stable values. 

2.3. Supervised Molecular Dynamics Simulations 

SuMD 22,23 is a molecular dynamics (MD) approach that allows for the investigation of molecular 

recognition processes in a fully atomistic way, in the nanosecond timescale, without introducing any 

energetic bias (Figure 3). Ligands were placed 35 Å away from the protein. Each SuMD step was set 

to 600 ps. During each SuMD step, the distance between the center of mass of the binding site 

(defined by a series of residues) and the center of mass of the ligand is monitored. These data are 

then fitted, and if the slope of the interpolating linear function is negative, then the coordinates and 

the velocities are used for the successive time window, otherwise, the last time window is simulated 

again reassigning the velocities (this reassignment of the velocities is intrinsic in the use of Langevin 

thermostat). If the condition fails 30 consecutive times, then the simulation is stopped. Otherwise, 
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the algorithm continues until the distance between the two centers of mass is below the threshold 

of 5Å; at this point, the supervision is turned off and 30 short classical MD simulations are 

performed, switching on the supervision if the distance between the centroids becomes greater 

than 5Å. At the end of the SuMD process, the trajectory is prolonged for 25 ns of classical MD 

simulation. 

 

Figure 3 Representation of a binding event sampled by a supervised molecular dynamics (SuMD) simulation. After each 
reported step, the distance between the ligand and the binding site decreases. In less than (merged) 50 ns, a binding 
event was sampled. 

Twenty simulations were performed for each of the six systems (Z48/A1 AR, Z48/A2A AR, LC4/A1 AR, 

LC4/A2A AR, Caffeine/A1 AR, Caffeine/A2A AR). Only the simulations that sampled the ligand reaching 

the orthosteric site and interacting with the classic fingerprint of these class of ligands (Figure S6) 

were here reported (e.g., one replica for each system, excepted LC4/A1 AR for which two replicas 

were analyzed). For each system, the reasons for failure are similar. In most cases, the ligands 

interact strongly with the residues of the ECLs, and do not reach the binding site. In a few cases, the 

ligands only partially reach the orthosteric site. Finally, in other rare cases, the ligands get stuck 

between the protein and the membrane. 

2.4. Trajectories Analysis 

The SuMD trajectories were analyzed using anin-house python tool (described in 35) that provides 

information on the geometry and the energetic of the system. The output consists of a per-residue 

analysis of the electrostatic and van Der Waals contributions to the protein-ligand interactions; a 

representation of the distance between the center of mass of the ligand and the center of mass of 

the binding site as a function of time; a global energetic evaluation of the system as a function of 

the aforementioned distance. This analysis allowscomparing the energetic profile of two systems 

both in a general way and, through the per-residue analysis (i.e., it is possible to evaluate which 

ligand has better interaction with some specific amino acids of interest over the time). 

Three replicas of 50 ns were performed on the apo form of A1 AR and A2A AR, after the equilibration 

stage described before. These three replicas were merged and analyzed by AquaMMapS 36. 
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3. Results 

3.1. SuMD Binding of the A1 AR Nonselective Antagonist Caffeine 

According to the SuMD simulations (Figures S7,S8; Video 1 for A1 AR and Video 2 for A2A AR in the 

Supplementary Information), the nonselective antagonist caffeine establishes intermediate 

interactions with the extracellular vestibule of A1 AR and A2A AR, before reaching the orthosteric 

site. The most stable bound configurations sampled on A1 AR and A2A AR differed for theorientation 

of the xanthine ring (Figure S9). On A2A AR, caffeine pointed the N7-methyl toward Asn253, while in 

A1 AR it was rotated by 180°, with the N3 methylin the proximity of Asn254. Notably, both these 

two conformations have been experimentally observed in X-ray crystal structuresof A2A AR 17. 

Fluctuations of the ligand in both orthosteric sites and the transient nature of the interactions are 

easily depicted in the energy interaction landscapes (Panels A,S7,S8) in which the points are 

particularly scattered over the distance between the centers of mass of the ligand and the 

orthosteric site. 

3.2. SuMD Binding of the A2A AR Selective Antagonist Z48 

Figures S10,S11 report the analysis of Z48/A1 AR and Z48/A2A AR, including 25 ns of classic MD 

simulations performed at the end of each SuMD simulation (Videos 3,4 in the Supplementary 

Information). For what concerns the SuMD trajectory of Z48 on A1 AR, notable electrostatic 

repulsion took place between the ligand and Lys168, Lys173, and Lys265, before the ligand reached 

the orthosteric site, as clearly observable in the per-residue electrostatic interaction energy plot 

(Panel C,S10). These residues are positioned on the ECLs (Lys168 and Lys173 on ECL2, and Lys265 

on ECL3). As a result, in A1 AR, Z48 did not adopt the binding fingerprint of the ARs antagonists (e.g., 

only one hydrogen bond with Asn254 out of two was formed). Moreover, this binding mode was 

unstable over the 25 ns of classic MD simulations. Interestingly, the terminal amine group of the 

ligand strongly interacts with Glu170 (Leu167 in A2A AR). Figure 4 reports the binding modes of Z48 

at the end of the SuMD simulation on A1 AR (the binding mode at the end of the 25 ns of classic MD 

simulation is shown in Figure S12) and A2A AR (at the end of the 25 ns of classic MD simulation), 

respectively. Moving to the binding simulations of Z48 toA2A AR, two SuMD replicas led to the classic 

binding mode of the ARs antagonists. The π πstacking with Phe168 was present, along with the 

hydrogen bonds with Asn253 and with Glu169. Both binding modes were stable during 25 ns of 

classic MD simulations (Figure S11, Panel C,D, Figure 4). No significant protein-ligand electrostatic 
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repulsions were observed. The narrow funnel-like interaction energy profile of the ligand in the 

orthostatic also suggested a good complementarity of the ligand in the pocket, and a rapid reaching 

of a stable bound state. 

 

Figure 4 Binding mode of Z48 within the binding site of A1 AR on the left-hand side, and within the binding site of A2A AR 
on the right-hand side (superposition of the two simulations analyzed). For A1 AR, the binding mode is reported at the 
end of the SuMD simulation. For A2A AR, the two poses at the end of the classic MD simulation are reported. 

3.3. SuMD Binding of the A1 AR Selective Antagonist LC4 

With regards to LC4, two SuMD replicas led to different binding modes of LC4 into the A1 AR 

orthosteric site. During Replica 1, the ligand formed a complex characterized by the xanthine 

scaffold positioned in the orthosteric binding site, and the N8-substituent pointed outward the 

receptor (Figure 5). A hydrogen bond with Asn254 and hydrophobic contacts with Phe171 occurred 

(Figure 6A). Interestingly, the LC4 oxygen atom in the N8 substituent interacted with and stabilized 

water molecules in the proximity of the Phe171 backbone, a hydrated spot on ECL3, according to 

the AquaMMapS analysis (Figure 6A). 

In the case of A2A AR, the xanthine scaffold reached the orthosteric site rotated by 180° compared 

to the binding mode adopted in A1 AR (Figure 6B) and with an unfavorable geometry for hydrogen 

bonding with Asn253. In both of these two binding modes (Figure S13 and Figure S14), LC4 did not 

interact withconserved glutamate Glu172 (A1 AR) or Glu169 (A2A AR). 

During SuMD Replica 2 on A1 AR, LC4 experienced a two-step binding (Figure 6). First, the antagonist 

entered the orthosteric site pointing the methylphenyl group into a hydrophobic pocket located 
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between TM2 and TM3. This cryptic pocket is not present in A2A AR in light of bulkier residues and 

a higher degree of packing between the helixes (Figure 6B). From this metastable configuration, LC4 

moved deeper into the orthosteric site and engaged Asn254 and Glu172 in hydrogen bonds (Figure 

6). In this binding mode, the ligand inserted the N8-substituent inside a further cryptic pocket 

between TM5 and TM6 (Figure 6C,D), which is delimited by the “toggle switch” residue Trp247 15, 

and the residues Ile95 and Phe253, being part of the conserved class A structural motif PIF 37. 

Notably, this hydrophobic sub-pocket was occupied by likely “unhappy” water molecules during 

simulations of the apo-A1 AR (Figure 6A). The video of these three simulations can be found in 

Supplementary Materials, Video 5 and Video 6 for the two simulations of LC4/A1 AR, and Video 7 

for the simulation of LC4/A2A AR. 

 

Figure 5 Binding mode of ligand LC4. A1 AR on the left and A2A AR on the right. 
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Figure 6 (A) Hydrated spots within A1 AR with AquaMMapS occupancy > 10%. The cryptic pocket between TM5 and TM6, 
as well as the spot nearby the Phe171 backbone, are indicated; (B) comparison between A1 AR (orange) and A2A AR(cyan) 
at the level of TM2 and TM3—a sub-pocket formed only in A1 AR during MD simulations, due to different residues and 
interhelical packing; (C) and (D) two side views of the two superimposed binding steps of LC4 (green stick) to A1 AR. 
Hydrophobic contacts are shown as cyan transparent surfaces. 

4. Discussion 

Here we present results from SuMD simulations performed to shed light on the selectivity displayed 

by LC4 and Z48, two antagonists of A1 AR and A2A AR, respectively. The nonselective antagonist 

caffeine was also dynamically docked to the two ARs subtype. Caffeine, which is in a weak binder 

(micromolar range 38) of all the ARs, experienced more than one binding mode, in line with our 

previous simulations 22 and experimental observation 17. 

SuMD binding of the selective A2A AR antagonist Z48 on A1 AR and A2A AR suggested different 

interaction patterns along the pathways. Z48 experienced unfavorable electrostatic interactions 

between positively charged A1 AR residues Lys168, Lys173 (ECL2), and Lys265 (ECL3), and the ligand 

charged amine on the N8-substituent. Such transitory states did not take place during binding to A2A 

AR, as no significant electrostatic repulsions were computed at the extracellular vestibule. 

Interestingly, A2A AR bears Ala265 instead of Lys265 on the ECL3, while Lys168 and Lys173 (ECL2) 

are farther from the binding site, compared to A1 AR. This is consistent with mutagenesis studies 

that demonstrated the importance of these lysine residues for the binding of several A1 AR ligands 
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40,41. On A2A AR, Z48 reached the orthosteric site producing the classic interactions fingerprint of the 

ARs antagonists. On A1 AR, on the other hand, the ligand sampled a different binding mode. 

Moreover, the A1 AR residue Glu170 (Val167 in A2AAR) strongly interacted with the charged 

terminal amine of the ligand, stabilizing this alternative binding mode. Z48 was proposed to bind to 

A2A AR overcoming low enthalpy transition state(s) 40. From this standpoint, the unfavorable 

electrostatic interactions with ECL2 could implicate a slower binding toA1 AR, and therefore a kinetic 

selectivity for A2A AR. 

SuMD simulations of the antagonist LC4 proposed two possible binding modes that could drive 

selectivity. It is possible that the ligand binds A1 AR and A2A AR with the same conformation, but 

differently interacting with water molecules nearby ECL3. From this standpoint, and in analogy with 

41, we propose these “happy” water molecules contribute to the ligand stabilization in A1 AR (Figure 

S16), but not in A2A AR (Figure S17). An alternative and unique LC4 binding mechanism was sampled 

only on A1 AR, with a metastable state before the final complex formation. Along this pathway, two 

cryptic hydrophobic pockets (between TM2 and TM3 and between TM5 and TM6) allowed the N8-

substituent of the ligand to correctly orient first, and then engage key residues for the receptor 

activation (the “toggle switch” Trp247, Ile95, and Phe253, which are part of the conserved class A 

motif PIF). Notably, the cryptic pocket between TM2 and TM3 has recently been proposed as a 

determinant for A1AR selectivity displayed by the triazolotriazine antagonist LUF5452 42 

5. Conclusions 

Understanding the selectivity of GPCRs ligands is an important task in drug design. This study 

supports the emerging idea that selectivity is driven by a plethora of phenomena, other than the 

protein-ligand interactions in the bound state. Receptor-ligands recognitions are multistep events 

modulated by intermediate interaction along with the (un)binding paths. This picture may be further 

complicated by the presence of stable water molecules, which can have a tremendous impact on 

stabilizing or destabilizing an orthosteric complex. To consider different aspects that may affect the 

selectivity on A1 AR and A2A AR, we used SuMD simulations to investigate the recognition of thee 

different antagonists. Overall, our results suggest that kinetic selectivity may favor the binding of 

Z48 to A2A AR over LC4. A different scenario was observed for A1 AR, the recognition trajectories 

highlighted the key role of water molecules in the binding mode of LC4, which is favored by two 

hidden sub pockets within A1 AR. 
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Abstract 

While a plethora of different protein–ligand docking protocols have been developed over the past 

twenty years, their performances greatly depend on the provided input protein–ligand pair. In this 

study, we developed a machine-learning model that uses a combination of convolutional and fully 

connected neural networks for the task of predicting the performance of several popular docking 

protocols given a protein structure and a small compound. We also rigorously evaluated the 

performance of our model using a widely available database of protein–ligand complexes and 

different types of data splits. We further open-source all code related to this study so that potential 

users can make informed selections on which protocol is best suited for their particular protein–

ligand pair. 

1. Introduction  

Molecular docking is nowadays a common approach in a computational drug discovery pipeline1,2: 

knowing a good approximation to the crystal pose of a ligand can provide medicinal chemists with 

new ideas for lead optimization that could potentially accelerate structure-based drug design. A 

docking protocol can be described as the combination of a search algorithm that samples the 

conformational space of a ligand within a binding site and a scoring function, which quantitatively 

evaluates the accuracy of such poses. While in many cases the conformational search operated by 

docking protocols is effective in producing the correct pose for a ligand (i.e., the crystallographic 

pose is generally reproduced within reasonable accuracy), scoring functions often fail in ranking 

them (i.e., the crystallographic pose often is usually not the one with the best score)3. Given that 

the choice of the scoring function considerably affects results, and, to rationalize protocol choice, 

the comparison of the performance of different protocols is commonly performed in the early 

stages of docking studies. In particular, the DockBench platform4 was recently developed with the 

aim to facilitate protocol selection. The aforementioned platform presents a benchmark of different 

docking protocols in a self-docking routine, whose goal is to reproduce the pose of a ligand with a 
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known co-crystal: the ability of each protocol in producing the crystallographic pose being measured 

in terms of their Root Mean Square Deviation (RMSD). 

In particular, the average and the lowest RMSD (RMSDave and RMSDmin) of the generated poses 

are reported, as well as the number of poses with a lower RMSD than the X-ray resolution of the 

corresponding crystal (nRMSD)5. The success of introducing a benchmarking procedure in molecular 

docking campaigns has been reported in several blind challenges6,7. This approach has been shown 

to be particularly useful when multiple protein–ligand complexes are available for the same target, 

making protein conformation choice a further variable to be considered. An ideal docking scoring 

function would produce the lowest RMSDave and RMSDmin metrics, leading to a better 

reproduction of the crystallographic pose. Motivated by this and the previously mentioned 

challenges, in the work presented here, we try to address the following two questions: 1. Given a 

particular docking protocol, would it be possible to know a priori which protein–ligand pairs will 

result in the best docking pose? 2. Is there a preferable way of choosing the best docking protocol 

for an arbitrary ligand rather than selecting the one that reproduces the best self-docking pose for 

a particular proteins structure? Applications of Deep Learning (DL) in drug discovery have become 

ubiquitous in the last few years, as these methods have shown promise in relevant problems such 

as property prediction8,9,10,11,12,13, compound retrosynthesis14, de-novo drug design15,16, and 

reaction prediction17, among many others. In the context of molecular docking, DL approaches have 

been investigated to replace classical scoring functions, showing moderate success18,19, but still far 

behind the accuracy provided by standard docking procedures. Partially due to this fact, in this 

study, we explored the potential of DL approaches to both select the best possible docking protocol 

given a protein–ligand pair and to provide insight into which protein–ligand pairs will result in a 

better pose given a docking protocol. We performed an exhaustive evaluation of the proposed 

methodology using the diverse and well-known PDBbind protein–ligand database20 and different 

data splits to conclude that the approach is able to help users make informed docking modeling 

choices. We furthermore open-source all our production and evaluation code so that the 

community can either use our models or reproduce the results presented in this work easily. 

2. Results and Discussion  

We prepared the protein–ligand refined set of the PDBbind database21 (v.2017) according to the 

workflow previously described in the DockBench suite (see Sections 3.1 and 3.2). With these data, 

we used the aforementioned software to generate docking results for 14 different well-known 
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commercial and open-source protocols (see Section 3.3). A combination of 3D-convolutional and 

fully connected neural networks (see Section 3.5) was used as our main model alongside a voxelized 

representation of the protein pocket and a mixture of extended connectivity fingerprints22 and two-

dimensional descriptors for the ligand (see Section 3.4). The proposed model was trained to predict 

three quantities of interest (RMSDave,RMSDmin, and nRMSD) with the goal of determining which 

protein–ligand pairs work better under specific docking protocols (i.e., our first research question). 

We furthermore used four different evaluation data splits (see Section 3.6) to understand under 

which circumstances the models here presented perform optimally. For each docking protocol (see 

Section 3.3), we present results on the evaluation of the predicted RMSDave, RMSDmin, and nRMSD 

against the molecular docking results, using the root mean squared error (RMSE) and Pearson’s 

correlation coefficient R metrics (Table 1 and Tables S1 and S2). 

 

Table 1. Predictive performance for RMSDave (±1 std.) per docking protocol, for each of the four splits considered. 

We first focus on the comparison between the random and ligand scaffold splits, arguably the most 

commonly used evaluation procedures in other chemoinformatics ML-based studies. Results for the 

random split show moderately good results, with some docking protocols showing average 

correlations over 0.6 (autodock-ga, autodock-lga, gold-asp, gold-chemscore, and gold-plp), 

suggesting that for those it is easier to predict which ligands will result in a better docking pose. On 

the other hand, results are significantly worse for the ligand-scaffold-based split for most protocols, 

which suggests that it is significantly harder for the model to distinguish which compounds outside 

the training set chemical manifold will result in a better docking result. This conclusion is in line with 

other works, where random-split-based results were significantly better than those provided by 

more sophisticated alternatives, such as the ligand-scaffold-based one13,23,24. Given that docking is 

inherently a structure-based problem, we also decided to explore model performance under 
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different protein-dependent splits. The first protein-based split separates samples into different 

non-overlapping PFAM clusters (here named protein classes), showing a similar performance to the 

random split, albeit slightly inferior, suggesting that, while protein information plays a role, wider 

sampling of ligand chemistry space during training may have a more relevant impact. In the last type 

of split we evaluated, we sampled for training a percentage of complexes belonging to each protein 

family (protein classes balanced): our reasoning was that having a more homogeneous sampling of 

protein space would show a significant performance improvement. Further evaluation was 

considered to tackle our second research question, the capability of the proposed model to choose 

the optimal docking protocol given a particular protein–ligand pair. Results can be consulted in Table 

2 and Tables S3 and S4 as well as in Figure 1, where we draw similar conclusions as in the protocol-

centric evaluation, with the proposed model performing worse in the ligand scaffold split scenario 

than in the others. Furthermore, in Figure 2, we consider the distribution of the experimental 

RMSDmin, RMSDave, and nRMSD values had we followed the recommendations of the proposed 

model, with the intent of investigating whether in fact it produces protocol selections that may 

improve docking errors. For both RMSDmin and RMSDave values, the protocol with the minimum 

predicted value was selected, while for nRMSD the maximum was chosen—and then their 

corresponding experimental values were analyzed. With the exception of the ligand scaffold 

scenario, the decisions undertaken by the proposed model produce the lowest mean RMSDmin and 

RMSDave, and the highest nRMSD values compared to the rest of the protocols. Additional 

significance analyses were performed with a unilateral two-sample Mann–Whitney test. Using a 

significance level of α = 0.01, we can conclude that the procedure here proposed results in 

significantly lower RMSDave values than the rest of the protocols in all the evaluation scenarios, 

with the notable exception of gold-goldscore, where no statistical conclusion could be drawn in any 

direction either in the Molecules 2020, 25, 2487 4 of 12 random, ligand scaffold, and protein clases 

splits. Interestingly, in the balanced protein split scenario, our approach manages to significantly 

outperform the aforementioned protocol. 

Table 2. Ligand-centric evaluation (RMSDave, ±1 std.) for the four different proposed split types in this study. 
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Figure 1. Ligand-centric RMSDave evaluation merging all protocols and for all different types of proposed splits 

Overall results suggest that the proposed model provides better suggestions if both ligand chemistry 

and protein families are not significantly far from the training set manifold. We also investigated 

disaggregated performance for the 30 most populated PFAM families in our dataset (Figure 3 and 

Figure S1), to find similar conclusions to the previous evaluations. The results show that the model 

performs similarly well for the most populated families, and particularly for those splits that more 

uniformly sample protein space (i.e., the random and protein classes balanced), again highlighting 

the importance of structure-based models.  
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Figure 2. Distribution of RMSDmin, RMSDave, and nRMSD values in a self-docking scenario using the PDBbind v.2017 

database of cocrystals, for all the protocols described in Table 3, and the approach proposed in this work under different 

evaluation scenarios 

 

Figure 3. Average Pearson’s R correlation coefficient for the RMSDave metric for all types of splits disaggregated into 

the 30 most populated PFAM families in the PDBbind refined dataset. 
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3. Materials and Methods  

In this section, we first describe the preprocessing procedure for the complexes considered in this 

study as well as the docking simulation setup. We then describe the two different types of features 

used and the proposed neural-network architecture. Finally, we discuss technical training details as 

well as the evaluation procedure undertaken. 

3.1. Datasets  

The complexes considered for this study were retrieved from the 2017 version of the PDBbind 

database21 In particular, we focused on its refined set, that we recently used for a large docking 

benchmarking campaign25. It consists of 4463 protein–ligand complexes, although 294 protein–

peptide complexes were excluded as they were not considered in the original DockBench study, 

resulting in a final dataset of 4169 complexes. Docking settings were selected so as to match as close 

as possible the default parameters provided by the developers of each protocol for the handling of 

small organic molecules. 

3.2. Complex Preparation. 

The proteins in the complexes were prepared according to a protocol previously reported25. 

Structures were processed using an internal workflow written in Scientific Vector Language (SVL), 

based on the protein preparation tool included in the MOE molecular suite26. First, crystal structural 

issues such as missing atoms and partially solved residues were fixed, hydrogen atoms were added 

and protonation states for all titrable residues were computed. Finally, solvent molecules and 

impurities (e.g., co-solvents) were removed. An additional preparation step for the ligands was 

taken, in which the most favorable ionic state was calculated and partial charges of atoms were 

assigned. Towards this end, we take advantage of two tools provided by the OpenEye toolkit: fixpKa 

and molcharge27. Finally, ligand geometries were minimized before docking using Open Babel’s28 

routing and the MMFF94 force field29.  

3.3. Data Generation 

The docking simulation and consequent data generation were performed via the DockBench 

software (version 1.06), which automates docking simulations and evaluates protocol performances 

in reproducing ligand conformations in the crystal structure. We included 14 docking protocols from 

six different software alternatives: AutoDock 4.2.5.130, Vina 1.1.231, PLANTS 1.232, rDOCK33, Glide 
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6.534, and Gold 5.4.135. For each of the included protocols, we defined the binding site as a sphere 

of a 15Å radius centered at the center of mass of the co-crystalized ligand, and we generated 20 

poses with an RMSD separation of at least 1Å. In the case of both Autodock and Vina, since they do 

not support spheric site definition, the cube side is scaled to r (((4π/3)*r))1/2 to maintain comparable 

volumes with the protocols adopting parallelepiped-shaped cavity definitions, where r is the sphere 

radius. In addition, in the case of Vina, to guarantee that at least 20 poses were returned, we 

modified the “maximum energy difference” argument. Description of the protocols, as well as their 

search algorithms and scoring functions can be found in Table 3. We studied three different and 

complementary evaluation values for prediction as described in the DockBench suite: the minimum 

RMSD (RMSDmin), the average RMSD (RMSDave) and the number of poses with an RMSD lower 

than the resolution of their corresponding crystal structures (nRMSD). Box plots detailing the 

distribution of these values are available in Figure 2, where we can clearly highlight that some 

protocols (e.g., gold-asp, gold-goldscore, gold-plp, or glide-sp) display consistent accuracy in many 

benchmark scenarios, while others (e.g., rdock-solv and autodock-lga) display a higher error 

variability depending on the input. 

 

Table 3. Docking protocols, search algorithms, and scoring functions considered in this study 
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3.4. Descriptor Calculation 

 We take a structure-based approach to represent proteins, deciding to use 3D-voxel descriptors36,37 

that capture the influence of each atom to each voxel of the grid via a pair correlation function n(r) 

that depends on their euclidean distance r and the Van der Waals radius rvdw of the first:  

 (1)  

We used the voxelization routines available in the HTMD python framework for molecular 

modeling38, which computes eight different pharmacophore-like properties: hydrophobic, aromatic, 

hydrogen-bond acceptor and donor, positive and negative ionizable, and metallic and total excluded 

volume. A 24 Å3 array was computed and centered on the center of mass of the co-crystalized 

ligand, with a resolution of 1 Å. For the ligands, we used Extended Connectivity Fingerprints 

(ECFP4)22 with a size of 1024 bits and a radius of 2 bonds as well as a set of 183 physical-chemical 

descriptors available in the RDKit software39. 

3.5. Neural Network Architecture  

A Neural Network (NN) architecture usually takes an array-based input and performs several 

transformations to obtain another array-based output40. Depending on the nature of the input 

array, some architectures are more appropriate than others. For instance, when the input 

represents a spatial arrangement (e.g., an image or the 3D-voxel representation described here), a 

convolutional neural network (CNN) is a typical choice, whereas a fully forward neural network 

(FNN) is more suitable for a one-dimensional vector, such as a chemical fingerprint41. In this study, 

we designed a specific neural network that takes advantage of both CNN and FNN architectures so 

as to handle both input types appropriately.  

We designed a two-legged neural network that takes protein voxels and ligand fingerprints as inputs 

separately (Figure 4). Protein voxels pass through five convolutional layers with a rectified linear 

unit activation function and then they are flattened into a one-dimensional vector. In parallel, ligand 

descriptors are fed to three consecutive linear layers again with the ReLU activation function. Then, 

the outputs of both legs are concatenated into a single vector of size 1024. A batch normalization 

layer42 is then applied to this hidden protein–ligand representation and three different output linear 
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layers with ReLU activation function are computed, corresponding to each of the three metrics used 

Molecules 2020, 25, 2487 8 of 12 by DockBench: RMSDmin, RMSDave and nRMSD. For the first two 

RMSD-based outputs, we used a standard mean-squared-error loss, while, for nRMSD, we use a 

Poisson negative log-likelihood loss function, defined by:  

                                                                                    (2) 

where y and yˆ are true and predicted values, respectively. We consider the unweighted sum of 

these three objectives for loss minimization. 

 

Figure 4. Schema of the proposed architecture in this work. A fully connected neural network handles ECFP4 fingerprints 

and descriptors computed from RDKit while a 3D-convolutional neural network processes a voxelized representation of 

the protein binding site. Latent space from both inputs is then concatenated and fed into further fully connected layers 

that predict the three outputs of interest per docking protocol. 

3.6. Training and Validation  

We used a k-fold cross-validation scheme (k = 5) to estimate model performance under different 

split scenarios: for each split, a model is trained on k − 1 non-overlapping subsets and evaluated on 

the remaining one. Furthermore, we decided to investigate the dependency of the performance 

with respect to the composition of the chosen subsets. For this reason, we considered four different 

sampling procedures, each representing a particular application scenario: (i) a completely random 
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split; (ii) a ligand-scaffold-based split where compounds are grouped according to a k-means 

clustering of the ligands’ ECFP4 fingerprints43; (iii) a protein-based split based on non-overlapping 

PFAM families44; and (iv) a balanced protein-class-based split, where we randomly sample 20% of 

the validation complexes from each PFAM family. In each of the splits, we trained the model for 200 

epochs using the Adam optimizer45 (β1 = 0.99, β2 = 0.999) with a starting learning rate of 10−3 

coupled with an exponential learning rate scheduler (γ = 0.95) and a batch size of 32 samples. Data 

augmentation was performed during training by applying random rotations to the protein pocket 

coordinates using the geometric center of the ligand as point of reference. 

3.7. Implementation and Code Availability  

The final production model as well as code to train it and replicate all results and analyses in this 

paper are openly available on a GitHub repository (github.com/cuzzo87/CNN_DockBench) under an 

AGPLv3 license. Users can easily use production model scripts to run predictions for their protein–

ligand pairs. Our model was implemented in Python using PyTorch (version 1.0)46 as our main tensor 

manipulation and automatic differentiation library. While GPU support is not needed Molecules 

2020, 25, 2487 9 of 12 for the replication of our work, as well as its production usage, it is strongly 

recommended, as it can substantially accelerate computations.  

4. Conclusions  

In this study, we developed a deep-learning-based pipeline for the informed selection of a particular 

molecular docking protocol, given a protein–ligand pair, and the elucidation of which protein–ligand 

pairs result in a better pose with a predefined docking algorithm. In conclusion, we believe that we 

successfully managed to answer both of those research questions. First, we show that it is possible 

to predict which protein–ligand pairs produce the best poses given a particular docking protocol, 

although results greatly vary depending on the latter. Interestingly, some protocols (autodock-ga, 

autodock-lga, gold-asp, and gold-plp) show easier predictability across different data splits than 

others (plants-plp95, plants-plp, rdock-solv, and rdock-std). We also show that it is certainly possible 

to predict which docking protocols are better suited for a given protein–ligand pair using the 

proposed model, although predictive performance greatly depends on the type of the evaluation 

split taken. Specifically, performance on the random and balanced protein classes splits is 

undoubtedly superior to that on the ligand scaffold split in most of our evaluations. In addition, we 

measured the distribution of several relevant docking-related metrics according to the suggestions 
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of the proposed methodology, to find that these are consistently better than other existing 

individual protocols under most circumstances. In general, the results presented in this work 

highlight the usefulness of the presented methodology, but also show that its performance greatly 

varies depending on the type of evaluation split taken, suggesting that its prospective applicability 

may differ depending on how close both protein and ligand queries are to the training set manifold. 

Along those lines, we believe that future interested users in the proposed approach should take 

these points into consideration before evaluation or re-training of the neural network on their own 

data. Additionally, while we thoroughly benchmarked our model, all the evaluations presented here 

are retrospective per se. Future blind structure-based evaluations, such as the ones proposed by 

the D3R Grand Challenges47,48,49, would provide excellent opportunities to evaluate approaches 

similar to the one proposed here prospectively. Methodology-wise, there are several interesting 

directions for future research regarding neural network architectural design. In particular, it is a 

well-known issue that 3D-convolutional neural networks are not rotationally equivariant50 (i.e., the 

output of the network varies if the coordinates of the protein are rotated), a desirable characteristic 

when modeling atomistic systems. While this issue is mitigated in the current work through data 

augmentation, recent approaches such as SE(3) equivariant neural networks51 bear promise 

towards solving this issue. On the ligand side, graph convolutions52 are a family of approaches that 

are displaying good results in a variety of tasks relevant to drug discovery, such as property 

prediction11,12,53 or compound generation54. How these approaches would perform in the task 

proposed here remains a topic for further exploration. Finally, while we firmly believe that future-

generation docking protocols will more tightly incorporate machine-learning elements into their 

pipelines18,19 (e.g., by the design of more efficient search algorithms or scoring functions55,56), we 

think that the approach proposed in this paper represents a novel research direction that will drive 

structure-based drug design researchers towards more rational existing docking protocol choices. 

Hence, with the intent of improving research reproducibility and lowering accessibility barriers, we 

have open-sourced all evaluation and deployment code as well as trained models related to this 

work. 
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Abstract:  

Fragment-Based Drug Discovery (FBDD) approaches have gained popularity not only in industry but 

also in academic research institutes. However, the computational prediction of the binding mode 

adopted by fragment-like molecules within a protein binding site is still a very challenging task. One 

of the most crucial aspects of fragment binding is related to the large amounts of bound waters in 

the targeted binding pocket. The binding affinity of fragments may not be sufficient to displace the 

bound water molecules. In the present work, we confirmed the importance of the bound water 

molecules in the correct prediction of the fragment binding mode. Moreover, we investigate 

whether the use of methods based on explicit solvent molecular dynamics simulations can improve 

the accuracy of fragment posing. The protein chosen for this study is HSP-90. 

1. Introduction 

Fragment-Based Drug Discovery1 (FBDD) is an ensemble of approaches used in the early stages of 

drug candidates identification which consists in the screening of small molecules, typically with a 

molecular weight below 250-300 Da and a logP value below 3 (these empirical criteria are known as 

the “rule of three”2). FBDD approaches have gained popularity not only in industry, but also in 

academic research institutes, speeding up the hit-to lead-process and showing an interesting 

success rate. 

Generally, fragment screens lead to the identification of a subset of hit-fragments having an affinity 

range from μM to mM to the target. However, their identification only represents the beginning of 

an iterative optimization process to turn a weak fragment into a mature high-affinity lead3. One of 

the challenging aspects of FBDD is the detection of such weak binders commonly achieved by high-

sensitivity biophysical techniques, such as isothermal titration calorimetry (ITC), surface plasmon 

resonance (SPR), thermal shift assay, nuclear magnetic resonance (NMR), and X-ray crystallography 

(XRC), with only the last two methodologies able to provide structural information. 

An alternative to a biophysical method to quickly selecta putative binder from a chemical library is 

represented by in silico strategies in particular when the target structure is available. The virtual 
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screening of fragments is typically a challenging task; mostly due to the weak performance of scoring 

functions used to discriminate native from non-native poses34. 

Most of the scoring functions indeed were mainly developed on high-affinity ligands while 

fragments are more prone to experience less stable binding states or in certain cases multiple 

binding modes. For certain targets, the situation can be further complicated by the presence of 

stable water molecules within the binding site. In fact, for those cases, the understanding of the 

fragment-target recognition is not only depending on the mere shape or electrostatic and chemical 

complementarity to its target but also the presence of stable solvent molecules. The presence of 

stable water molecules can be considered if high-resolution crystallographic structures are available 

or by computational methodologies investigating the position or the thermodynamic profile of 

explicit water molecules in protein hot-spots such as 3D-RISM5, AquaMMapS6, GIST7, JAWS8, 

SZMAP9, WaterAlignment10, WATCLUST11, WATERDOCK12, Water FLAP13, WaterMap14, and 

WATsite15. Other tools can support the user in selecting those waters that are more stable in high-

resolution structures like HINT16, pyWATER17, ProBiS H2O18,WaterScore19. It should be noted that 

the stability of the water network within the protein binding site could be similar to that of weak 

fragments20 and, taking this concept to the extreme, a stable water molecule could be considered 

similar to a very low molecular weight fragment21. In this scenario, it is clear that whenever a 

computational approach is adopted to predict the fragment binding mode an appropriate 

investigation about the role of the water molecules within the binding site is necessary. From a 

historical point of view, the first structure-based approach aimed to consider the explicit presence 

of a water molecule within the binding site was molecular docking22. The presence of a stable 

molecule mediating the ligand interaction may have a great impact on the quality of the pose 

prediction. Nevertheless, appropriate knowledge about which water molecules to be included is 

required. The rise of molecular dynamics (MD) strategies which include explicit water offers further 

alternatives to docking like investigating the stability of a predicted pose along with the monitoring 

of the water molecules. Novel strategies developed from MD allow investigating the small molecule 

recognition from the target unbound state with direct observation of the water molecules displaced 

during the ligand association. One example of these simulations is the supervised molecular 

dynamics (SuMD)23 which allows us to follow the molecular association in the nanosecond scale 

without introducing forces or energetical bias. 
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The present work aims to compare the performance of different methodologies to face the problem 

of studying the binding mode of fragments in the challenging scenario of a binding site in which 

stable water molecules are present and play a pivotal role in their stabilization. 

Our comparison embraced four different computational approaches: (i) molecular docking without 

explicit solvent molecules, (ii) molecular docking with highly conserved water molecules, (iii) 

molecular docking (without solvent) followed by MD simulation in explicit solvent, and (iv) SuMD 

starting from the unbound state in explicit solvent. For this study, we have chosen the crystal 

structures of the loop-in N-terminal domain of Heat. 

Shock Protein 90 (N-HSP90) cocrystallized with a low molecular weight ligand (MW < 175 Da). Those 

crystal structures correspond to the PDB codes: 2JJC, 2WI2, 2YE4, 2YE5, 2YE6, 2YEA, 2YEB, 2YEC, 

2YED, 3B24, 4FCP (The structure of the corresponding ligands is reported in Figure 1). We also 

decided to focus only on the loop-in structures since all the structures of N-HSP90 in apo-form have 

this specific conformation. HSP90 is a molecular chaperone involved in the maturation of several 

other proteins and it is a target for the development of chemotherapy agents in many types of 

cancer. The N-terminal domain of HSP90 binds ATP, essential for the activity of HSP90 2425. The 

choice of N-HSP90 as a case study is based not only because several high-resolution crystal 

structures are available for this protein, both in the apo form and in complex with low molecular 

weight ligand (allowing an accurate study of the structural water molecules), but also due to the 

well-known role that the solvent plays in the binding between the protein and its ligands26,27,28. 

Interestingly, as pointed out in29, fragments bind HSP90 through a network of conserved water 

molecules that mediate the interaction with the protein (in particular with Asn51, Ser52, Asp93, and 

Gly97). The importance of these structural water molecules in the design of HSP90 inhibitors has 

been proven28. 

2. Results and Discussion 

2.1. AquaMMapS Simulation Results 

Since our comparison includes also MD-based strategies, we first investigated if the conditions used 

for the MD simulations and the force field chosen were appropriate to simulate the correct behavior 

of water. To address this issue, we performed an MD simulation of the HSP90 in the apostate and 

subjected to AquaMMaps6 to assess if the regions with predicted stationary water molecules were 

in agreement with the position of those having low B-factor observed in X-ray structures. 
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AquaMMaps is a software that, through a posteriori analysis of water molecule trajectories during 

explicit solvent molecular dynamics simulations can calculate for each space region an occupancy 

value that expresses the ratio between the time during which a water molecule is located in that 

region during the dynamics and the total time of the simulation. 

 

Figure 1. Structure of the crystal ligands bound to N-HSP90 in the structures used for the present work. All the ligands 

have a molecular weight below 175 Da. Only for complexes 2WIC, 2YE4, and 2YE6 affinity data was reported on literature 

(2WI2IC50 = 350 µM; 2YE4,IC50 = 570 µM; 2YE6, IC50 = 4000 µM; 3B24, Kd = 42 µM). 

The AquaMMapS analysis was performed for five replicates of 100 ns for a total simulation time of 

500 ns. These five replicates were merged and submitted to the AquaMMapS analysis. As reported 

in Figure 2, a good agreement as observed between the AquaMMapS cells with a %ORMSF value 

greater than 25 (see Materials and Methods for a detailed explanation of AquaMMapS and its 

outputs) and the crystallographic waters with a B-factor below 25, especially within the binding site. 

The crystal structure employed for these simulations is 5J2V, this is one of the several structures of 

N-HSP90 in apo form. 

2.2. Docking, MD Post-Docking,and SuMD Simulation Results 

Four different approaches were set up to assess their ability in reproducing the crystallographic 

structure by evaluating the RMSD: (i) molecular docking without explicit solvent molecules, (ii) 

molecular docking with highly conserved water molecules, (iii) molecular docking (without solvent) 

followed by MD in explicit solvent (post-docking MD), and (iv) SuMD starting from the unbound 

state in fully explicit solvent. 
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The docking simulations have been performed using GOLD 5.4.1 with the Chemscore scoring 

function. We identified this protocol by comparing the performance of 17 different docking 

protocols over all the available ligand-HSP90 complexed reported in the protein data bank (see 

details supporting information and Figure S1). Starting from this benchmark, we focused our 

attention on the results for the 11 test cases selected in this work. Among all others, Gold-based 

protocols outperformed the other ones. Finally, we restricted the comparison on the two scoring 

functions on which the implementation of water molecules has been reported: goldscore and 

chemscore30. Besides the identical dockbench cumulative score of the two (both scored 5, see table 

S1 on SI), chemscore showed better results in terms of minimum RMSD averaged on the 11 

structures (goldscore:2.64Å; chemscore: 1.64 Å) and hence selected for docking calculation. In the 

first approach (i), the crystallographic ligands have been docked within the binding site of N-HSP90 

without any water molecule. On the contrary, in the second method, the same docking protocol 

was implemented to include four water molecules placed in the binding site. These four water 

molecules have been chosen as they appear to be highly conserved in all the structures employed 

in this work. To address the challenging issue in identifying which water molecules to include in the 

calculation among those experimentally reported on the test set, we decided to adopt pyWATER 

tool17. This method identifies stable water molecules by a consensus strategy through a cluster-

based approach. For each docking protocol, (i) and (ii), three poses have been generated for each 

ligand. 

Figure 2. Identification of water molecules within the binding site of N-HSP90 (PDB ID: 5J2V). Panel (A): The red 

opaque spheres correspond to the oxygen atom of the crystallographic water with a low B-factor (below 25) while 

the transparent spheres are the cell predicted by AquaMMapS with a high %ORMSF value (above 25), the color of 

the AquaMMapS cell refers to the %ORMSF value of that cell (the %ORMSF value increases from red to blue). As it can 



133 

 

be observed, there is a good agreement between the high occupancy AquaMMapS cells and the low B-factor 

crystallographic water molecules. Panel (B): Superposition of the 11 crystals structures used in this work. The Four 

highly conserved water molecules identified by pyWATER are marked by the black arrows. Each highly conserved 

water molecule corresponds to a high %ORMSF value AquaMMapS cell (the cells displayed have all an %ORMSF value 

greater than 25). 

The post-docking MD strategy started with the best pose obtained from the docking without 

solvent. The pose was hence equilibrated in a fully explicit solvent simulation box and the system 

was finally refined by classical MD for 25 ns. This approach aimed to observe if the role of the solvent 

missing in the docking calculation could be eventually restored by an a posteriori strategy. The 

advantage of this strategy is that a priori information about the stable water molecules is not 

required. On the contrary, the drawback of an a posteriori strategy could be eventually the steric 

hindrance of the ligand placed in the binding site that could obstruct the correct placing of the 

waters. In light of this hypothesis, the fourth protocol was based on a more demanding strategy 

simulating the recognition event of a fragment from the unbound state by using SuMD. In this 

protocol, the fragment was placed 30Å away from its HSP90 binding site. In this way, the binding 

site is fully solvated by explicit water and the ligand needs to displace them during the recognition. 

To better understand the SuMD methodology, a recognition trajectory for the complex HSP90–2-

pyrimidinamine (PDB ID: 2JJC) is represented in Video-S1. The fragment nicely displaced the solvent 

in the HSP90 cavity but the regions characterized by stable water molecules are not explored where 

the water molecules are retained and they mediate the interaction with the fragment and HSP90 in 

a very similar way to the experimentally solved complex. The comparison between the first pose for 

the fourprotocols is reported in figure 3. To go into more detailed comparison, in Figure 4 (panel B), 

the RMSD value of each pose for each ligand is reported, the poses are ordered according to their 

docking score and to their MMGBSA value (for docking-based and MD-based, respectively). The 

RMSD values were further used to measure the ability four protocols in geometrically reproducing 

the experimental complex; in panel A we reported the relationship between the fraction of poses 

reproduced (below a certain RMSD) to the RMSD. We performed this analysis for both for the first 

pose and the top-three poses. Ideally, the sooner the profile reaches the top of the fraction of poses 

reproduced respect to RMSD better the protocol is performing. It should be noted that for the 

considered complexes we observed that the poses with RMSD lower than 2 Å showed also a correct 

pattern of interaction with the target, in particular presenting the key interaction with Asp93. 
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Figure 3. First pose comparison between the different methods (yellow: GOLD without water molecules. Orange: GOLD 

with water molecules. Blue: Post-Docking. Green: SuMD) for each fragment. In gray is reported the crystallographic 

pose. 

The most clear results is about the performance of the docking protocol without water molecules 

which results are poor; this can be expected since this is a challenging scenario for a docking protocol 

not only for the low molecular weight of the ligands but also for the use of the apo form of the 

protein. The best scoring poses for this protocol report high RMSD values spanning from 2.7 to 5.7 

Å; in this range of RMSD the specific fragment-protein molecular interactions observed in the 

experimentally solved complex are lost. Instead, a dramatic increase in the performance of docking 
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posing is observed simply retaining the four aforementioned water molecules in the calculation. 

When the four water molecules are taken into account the performance notably increases, and 

most importantly the binding mode of the fragments 2YED, 2YEA, 2WI2 is correctly predicted (the 

RMSD of best pose for these complexes drops below 1.2 Å). 

Figure 4. Performance comparison between Docking with and without the consideration of conserved water molecules 

within the binding site and the two MD based approach: post-Docking and SuMD. These comparisons are made 

calculating the RMSD values of the predicted poses respect to the crystallographic ones. In Panel (A) the fraction of 

poses below an RMSD threshold are displayed as a function of the threshold itself, this analysis is reported both for the 

first pose (the one with the best score value for Docking and with the best MMGBSA value for SuMD) and for the top 

three poses (always the three with the best score or MMGBSA values).In Panel (B) the RMSD values of each pose are 

reported for each ligand as heatmaps. The poses are ordered from left to the right according to their score values for 

Docking and to their MMGBSA values for SuMD and for post-Docking (so pose 1 has a better score/MMGBSA value in 

comparison with pose 2 and so on), the heatmap is colored according to the RMSD value which is reported in each grid 

box. To better compare docking strategies, (i) and (ii), which resulted in three poses, also for MD-based protocol (the 

post-docking MD and SuMD), three poses for each fragment have been selected by adopting a clustering strategy to 

select significant representative fragment conformation among the trajectory frames and ranked by the MMGBSA 

method. 

The performance of molecular docking without explicit water molecules is enhanced when coupled 

with a post-docking refinement of the best scoring pose. The refinement of the docking pose lead 

to a lower RMSD value for every fragment except for 3B24. It should be noted that despite the 
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improvement in terms of RMSD only in one case—2YEA—in which the hydrogen bond with the 

Asp93 is restored, was the correct binding mode recovered. Despite the improvement due to the 

refinement procedure the results do not reach the quality of the docking protocol with the explicit 

water molecules. 

Among the MD-based protocols, SuMD (iv) outperformed post-docking MD both in terms of RMSD 

and in the binding mode sampling. In Video-S2 (Supplementary Material) the superposed 

trajectories of SUMD runs are reported to highlight the association process of the fragments to the 

fully solvated HSP90 binding site. The performance of SuMD in terms of RMSD seems to be superior 

also to the molecular docking without water molecules (i) but slightly below to GOLD retaining the 

four crystallographic water molecules (ii). The poses of 2JJC, 2YEB, 2WI2, 2YE4 have been predicted 

by SuMD with an RMSD value below 2Å with respect to the crystallographic pose and most 

importantly for those fragments, the binding mode is correctly predicted by SuMD. It is interesting 

to note that despite the lower performance respect to the docking with the explicit water molecules 

(ii) from a geometric point of view (i.e., RMSD), SuMD (iv) is slightly better in reproducing the correct 

binding mode: four complexes for SuMD while only three complexes GOLD with explicit solvent (ii). 

A further notable observation is that all the four protocols failed to reproduce the poses for 2YE6, 

2YEC, 4FCP, and 3B24. This observation indicates that fragment pose prediction still represents a 

challenging task, even for advanced structure-based approaches. Also, we observed that the 

docking differently performed depending on the test case (i.e., the complexes correctly reproduced 

are different for each protocol), suggesting that it is difficult to have a clear picture in the 

identification of the most appropriate protocol a priori. 

The case of 3B24 and 2WI2 is particularly interesting. The two fragments differ only in a methylene 

group: 3B24 presents an ethyl group attached to the sulfur atom while 2WI2 has a methyl group. 

The crystallographic binding mode of the two fragments is very well conserved but the pose 

prediction performance of the different protocols is quite different. In the case of 2WI2, both 

molecular docking with water molecules (ii) and SuMD (iv) reproduced the crystallographic pose 

with an RMSD tolerance of 1.2 Å and 1.5 Å, respectively. On the contrary, in the case of3B24, all 

protocols fail in the pose prediction with RMSD values over 4 Å. Surprisingly, the affinity reported 

for 3B34 is particularly high (KD = 42 µM) for such a small fragment and the resolution of the complex 

is higher than 2WI2 (1.70 Å and 2.09 Å, respectively). 

It is clear that the molecular docking in presence of defined and explicit water molecules 

outperformed in terms of RMSD the other approaches followed by a more time-demanding SuMD 
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method that on the contrary did not require a priori information about the stable solvent molecules. 

We observed that for the correctly predicted case SuMD not only nicely reproduced the bound-state 

geometries, but the stable hydration sites were also retained (Video-S1). This aspect represents the 

most notable advantage of SuMD and, in perspective, it could be particularly relevant for all those 

cases in which a few information is available about the role of the solvent in mediating the ligand-

protein interaction. MD-based refinement slightly improves the performance of the docking without 

water molecules but is not able to balance the performances neither of docking with water 

molecules nor SuMD. 

A further aspect that should be considered in the comparison of those methodologies is the 

different calculation time required. While for molecular docking a single run can be performed on 

the order of minutes, MD-based approaches are more demanding and to complete a SuMD 

simulation usually requires around a dozen hours to complete on a modern GPU card. On the same 

hardware, a post-docking MD refinement can be easily achieved within a couple of hours. Finally, it 

should be also considered that the four different protocols present a different level of complexity. 

Undeniably, molecular docking protocol is easier to set up in comparison to molecular dynamics, 

and as a consequence, it is suitable for a larger number of users. 

3. Materials and Methods 

3.1. System Preparation and MD Setup 

System preparation has been performed using the Molecular Operating Environment (MOE) suite 

31 for what concerns the protein preparation (removing the crystallographic water molecules, ions, 

and other solvents, selecting of the highest occupancy alternate for each residue, assigning the 

correct protonation state at pH 7.4 to all atoms). The system preparation for the Molecular 

Dynamics Simulations has been carried out using AmberTools1432,33 for what concerns the 

simulations performed with the ff14SB force field. The protein was explicitly solvated in a water box 

with the borders placed at a distance of 15 Å from any protein atom, the water model used was 

TIP3P34. The system charge was neutralized to a concentration of 0.154 M using Na+/Cl-. 

Molecular dynamics simulations have been performed using ACEMD35. The system energy was 

minimized in 500 steps using the conjugate-gradient method, then, during the equilibration stage, 

two simulations have been done. The first consisted of 0.1 ns of NVT simulation with harmonic 

positional constraints of 1 kcal mol–1 Å–2 on each protein atom. The second consisted of 0.5 ns of 

NPT simulation with harmonic positional constraints of 1 kcal mol–1 Å–2 only on the α-carbons of the 
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protein. The simulations consist of 100 ns NVT simulations (temperature 310 K, timestep 2 fs), the 

last 50 ns of these simulations were submitted to the AquaMMapS analysis. 

3.2. AquaMMapS 

AquaMMapSis a software aimed to identify hydration sites at the protein-solvent interface in which 

water molecules show a high-occupancy rate during an MD simulation. Briefly, the tool performs a 

grid-based analysis of the frequency of occupation of the water molecules. The size is chosen to 

accommodate one water molecule per cell at most. For each cell of the grid two data are computed: 

an occupancy value that expresses the ratio between the number of frames during which that cell 

has been occupied by a water molecule and the total number of frames (%Oall), and an occupancy 

value that expresses instead the ratio between the number of frames during which that cell has 

been occupied by a stationary water molecule (i.e., water molecules with an RMSF below1.4Å) and 

the total number of frames (%ORMSF), so if a cell has an %ORMSF of 25%, this means that during the 

simulation this cell has been occupied by a stationary water molecule for 25% of the frames. 

3.3. Molecular Docking 

A benchmark of 17 different docking protocols over 200 HSP90-ligand x-ray complexes was 

performed using DockBench36 to select the most suitable protocol (details are provided in the 

Supplementary Material). The results were in agreement with previously reported docking studies 

on HSP9037 . 

GOLD 5.4.1 was used as docking engine and coupled to the scoring function Chemscore. GOLD is a 

flexible docking protocol that relies on a genetic algorithm for the pose generation while Chemscore 

is an empirical Scoring Function38. 

The center of the binding site has been defined by superposing all the structure on 2JJC and using 

the center of mass of its crystallographic ligand. Two docking runs have been performed, one with 

the inclusion of water molecules within the binding site and one without those water molecules. 

For each run three poses for each fragment have been generated with an RMSD clustering value of 

2 Å. In the docking run with the inclusion of the water molecules, these have always been present 

(on option), the position of the oxygen atom is fixed while the position of the hydrogen is optimized 

by GOLD (spin option). 

The clustering analysis on the holo loop-in crystal structures of HSP90 has been performed using the 

tool PyWATER17. PyWATER works aligning a series of protein crystal structures of interest and 
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performing a clustering analysis on the crystallographic water molecules to identify the most 

conserved water molecules among the different crystals. 

Four highly conserved water molecules have been detected and retained in the protein structure 

for the Docking calculation. The four water molecules correspond to residues 2078,2082, 2164, and 

2166 in the PDB entry 2JJC. The orientation of the water molecules is optimized by GOLD for each 

case. 

3.4. SuMD Simulations, Post-Docking Simulations, and Pose Selection 

SuMD39,40 is a method based on MD aimed to investigate molecular recognition events without 

energetic biases. Briefly, the algorithm relies on the supervision of the ligand-protein center of mass 

distance during consecutive small classical MD simulation. The supervision algorithm acts at the end 

of each small simulation, named SuMD step: if this distance is likely to be shortened during the 

SuMD step, the simulation is prolonged by a further SuMD step, otherwise, it is stopped, and the 

simulation is restarted from the previous set of coordinates. In this work, fragments were placed 30 

Å away from the protein. Each SuMD step was set to 300 ps The default settings were maintained 

except the maximum number of consecutive rejected SuMD step that was set to 30. At the end of 

the SuMD process, the simulation has been extended for 25 ns of classical MD. 

The three conformations reported for each fragment have been selected as follows. For each case 

study, ten SuMD simulations have been performed and only the simulations which led to a binding 

event have been retained (so only the simulation in which the 30 classical steps of MD below 5 Å 

has been performed). These trajectories have been aligned on the same reference and merged. The 

position of the ligand in the merged trajectory has been clustered using Scikit-learn 41. First, all the 

sets of coordinates of the ligand (each set is composed of the coordinates of the ligand in a frame 

of the trajectory) identified as noise by the OPTICS algorithm have been discarded, then all the 

remaining set of coordinates have been clustered using K-means. The number of clusters has been 

set to three, in analogy to the three poses obtained in the docking calculation, and to facilitate the 

comparison with this. For each cluster, the set of coordinates identified as a centroid has been 

selected as representative of that cluster and then the three centroids obtained for each fragment 

have been ranked according to their MMGBSA value. 

For what concerns the post-docking refinement, three simulations of 25ns for each fragment have 

been performed on the best pose resulting from the docking calculation with GOLD (without water 

molecules within the binding site). The simulations have been performed with the same conditions 



140 

 

used for the SuMD simulations. The three trajectories for each fragment have been aligned and 

merged, then three poses have been extracted as described above for SuMD. 

4. Conclusions 

The results of the present work emphasize once again the importance of taking into account 

structural water molecules in the prediction of fragment binding modes. We have focused our 

investigation on small molecular weight ligands for which molecular docking protocols usually 

exhibit poorer performance than with classical high-affinity ligands. As expected, the docking 

simulation carried out without any structural water resulted in poor results; this observation was in 

agreement with our previous observation that for HSP90 the absence of stable water molecules 

deteriorates the docking performances even for ligand with stronger affinity 37. On the contrary, 

when the conserved water molecules within the binding site are retained or more sophisticated 

methods like SUMD have used the performances increase dramatically. 

For the protein under investigation, N-HSP90, several crystal structures are available, so the 

identification and the placement of conserved water molecules is an easy task. In this scenario, 

molecular docking with specific water mediating the interaction remains the best choice both in 

terms of computational effort and in geometrical terms, but in the worst-case scenario where no 

information about water molecules is available, like in the case of low-resolution XRC structures or 

for NMR-based ones, the use of explicit solvent MD simulation can be useful to fill this gap from 

several points of view. First, one could place stable water molecules using MD-based tools, several 

tools are already designed with this aim. A further possibility is investigating the ligand recognition 

process starting from a distant position of the ligand; the role of stable water molecules could be 

restored since the ligand will need to displace most of the solvent present in the binding site but 

maintain those water molecules that guarantee a more stable interaction or that are less prone to 

be displaced. Finally, a slight improvement of pose prediction could be obtained by performing the 

post-docking refinement of the docking pose, the results are better than those obtained with 

Docking when no water molecules are considered. 
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Abstract 

Coronavirus SARS-CoV-2 is a recently discovered single-stranded RNA (ssRNA) betacoronavirus, 

responsible for a severe respiratory disease known as coronavirus disease 2019 (COVID-19), which 

is rapidly spreading. Chinese health authorities, as a response to the lack of an effective therapeutic 

strategy, started to investigate the use of lopinavir and ritonavir, previously optimized for the 

treatment and prevention of HIV/AIDS viral infection. Despite the clinical use of these two drugs, no 

information regarding their possible mechanism of action at the molecular level is still known for 

SARS-CoV-2. Very recently, the crystallographic structure of the SARS-CoV-2 main protease (Mpro), 

also known as C30 Endopeptidase, was published. Starting from this essential structural 

information, in the present work we have exploited Supervised Molecular Dynamics (SuMD), an 

emerging computational technique that allows investigating at an atomic level the recognition 

process of a ligand from its unbound to the final bound state. In this research, we provided 

molecular insight on the whole recognition pathway of Lopinavir, Ritonavir, and Nelfinavir, three 

potential C30 Endopeptidase inhibitors, with the last one taken into consideration due to the 

promising in-vitro activity shown against the structurally related SARS-CoV protease. 

1. Introduction  

Coronavirus SARS-CoV-2, previously known as 2019-nCoV, is a recently discovered single-stranded 

RNA (ssRNA) betacoronavirus, responsible for a severe pathological condition known as coronavirus 

disease 2019 (COVID-19).1 Since it was first identified in December 2019, this novel coronavirus has 

rapidly spread all around the world, being since now responsible for the death of nearly one milion 

of people, which have lost their lives due to a severe respiratory illness.2  

The first outbreak of this new disease originally took place in the city of Wuhan (China), rapidly 

spreading in the southeast of Asia and, recently, in other continents like Europe, North America and 

Africa.1The astonishing rate at which COVID is expanding compared to previous coronavirus related 

diseases (SARS-CoV and MERS-CoV), in conjunction with the absence of approved drugs or effective 
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therapeutic approaches for its treatment, has gathered the attention of the international 

community, which is promoting a cooperative effort to face this emergency.3,4 On January 2020 

indeed, the International Health Regulations Emergency Committee of the World Health 

Organization declared the outbreak a “public health emergency of international concern” in 

responding to SARS-CoV-2. 

Unfortunately, the timeline characterizing a typical drug discovery process badly couples with the 

urgency of finding a cure for the already infected patients as rapidly as possible. In this kind of 

scenario, it is of paramount importance to accelerate the early stages of the drug discovery process 

for COVID-19 treatment, and for all possible future emergencies.5 

The early isolation of the SARS-CoV-2 genome from ill patients represented a first crucial outcome, 

making it possible to highlight an important sequence identity (~80% of conserved nucleotides) with 

respect to the original SARS-CoV epidemic virus.6 In light of this similarity, some therapeutic 

strategies could be inherited from other genetically related CoV diseases.  

A possible target is for example represented by structural viral proteins, therefore interfering with 

the assembly and the internalization of the pathogen into the host, which was shown to occur also 

in this case through the Angiotensin-converting enzyme II (ACE2) receptor. From this perspective, 

the development of a vaccine is desirable, and it is foreseen that the first candidates will be 

advanced to clinical phase I around mid-2020.7–9  

In the meantime, however, a great effort involves the targeting of non-structural viral proteins 

which are instead essential for the viral replication and the maturation processes, thus representing 

a crucial and specific target for anti-COVID drug development.3,10In this regard, the crystallographic 

structure of the SARS-CoV-2 main protease (Mpro), also known as  C30 Endopeptidase, was 

elucidated and made available to the scientific community with impressive timing, just a few weeks 

after the first COVID-19 outbreak (PDB ID: 6LU7). The structural characterization of the protease, 

which shares 96.1% of its sequence with those of SARS-CoV, has revealed a highly conserved 

architecture of the catalytic binding site. 

As a result, Structure-Based Drug Discovery techniques (SBDD) can now be applied to efficiently 

speed up the rational identification of putative Mpro inhibitors or to drive the repurposing process 

of known therapy. This latter route is particularly attractive, as it allows to significantly shrink the 

time required to access the first phases of clinical trials, without compromising patient safety. A 

multitude of research groups has begun to apply computational approaches, such as molecular 

docking based virtual screening (VS), to evaluate already approved FDA approved drugs against the 
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aforementioned viral protease.11–14 Many of these studies have found convergence in suggesting 

compounds inhibitors of the human immunodeficiency viruses (HIV) as possible anti-COVID 

candidates; this is surprising considering the important structural differences exiting among these 

two homologous enzymes. The repositioning of HIV antiviral drugs for the treatment of coronavirus 

infections found, however, a foundation in the scientific literature of the past 20 years. Some of 

these compounds have therefore been experimentally investigated, showing promising activity, 

both in the case of SARS-CoV and MERS-CoV outbreak.15,16 

Moreover, at least three randomized clinical trials are currently been held in China in order to 

evaluate the therapeutic efficacy of Lopinavir and Ritonavir,  a combination of HIV protease 

inhibitors, in COVID-19 treatment.7 In this perspective and preliminary computational research, we 

took advantage of the recently solved crystallographic structure of SARS-CoV-2 Mpro to perform a 

cutting edge in-silico investigation.  

 

Figure 1. The crystallographic structure of SARS-CoV-2 C30 Endopeptidase exploited in our computational investigation 
(PDB ID : 6LU7) is reported in Panel A. The two different monomers composing the homodimeric proteases are depicted 
using different colors (i.e. pink and white respectively for monomer A and B). As represented on Panel B, only one chain 
(monomer A) was exploited in our SuMD protocol to describe the putative inhibitor binding mechanism.  

Supervised Molecular Dynamics (SuMD), an emerging technique allowing to investigate at an atomic 

level of detail the molecular recognition process, was exploited to characterize the putative binding 

mechanism of three HIV protease inhibitors.17–19 In detail, along with the aforementioned 

combination of Lopinavir and Ritonavir, also Nelfinavir was taken into consideration, due to the 

promising in-vitro activity shown by this compound against the structurally related SARS-CoV 

protease.20 SuMD protocol implements a tabu-like algorithm that controls the sampling of short 

unbiased MD trajectories, each of which hundreds of picoseconds (ps) long. In detail, simulation 

steps are accepted only when describing a ligand approaching a known binding site, otherwise, the 

simulation is discharged and restarted from the previous coordinate set. The combination of all 

productive SuMD simulation steps represents, therefore, a putative molecular recognition 

trajectory collected, differently from brute force MD, in a very competitive computational time not 
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exceeding the nanoseconds (ns) timescale. Contrary to molecular docking, SuMD simulations fully 

consider both the flexibility characterizing the protein target during the binding event and the 

contribution played by water molecules during the recognition. Moreover, the study is not limited 

to a possible final state but allows peeking dynamically at the whole process of recognition, also 

identifying putative metastable binding sites. 

2. Results 

The combination of the structurally related antiviral protease inhibitor Lopinavir and Ritonavir, 

commercially known with the name Kaletra, represent an effective therapeutic weapon ensuring an 

adequate and durable suppression of viral load in HIV positive patients. The synergistic 

coadministration of these two compounds exploits low-dosage concentration of Ritonavir which, 

inhibiting the metabolic inactivation of Lopinavir, acts as a pharmacokinetic enhancer.21 Following 

a preliminary favorable clinical response in SARS-CoV related diseases, the combination of the drug 

is currently under investigation also against SARS-CoV-2, with at least three randomized clinical trials 

undergoing with Chinese infected patients.15 In our computational study, we considered Lopinavir 

and Ritonavir as two independent inhibitors, performing separate SuMD binding simulations, which 

results are herein reported an analyzed. 

As highlighted in Figure 2 (Panel B) about 20 ns proved to be sufficient to sample a putative Lopinavir 

recognition trajectory with SARS-CoV-2 protease. At a distance of about 15 Å from the binding site, 

the first molecular contacts are recorded (Figure 2 – Panel C, D and Video 1), which guide the 

subsequent accommodation of the ligand into the catalytic site. The predicted final state is stabilized 

by a double hydrogen bond interaction with residue Glu166 backbone, tightly anchoring the 

inhibitor (Figure2 - Panel A). This strong and persistent interaction (Figure 2 – Panel B) is known to 

be crucial in many SARS-CoV complexes and moreover, was also found to stabilize the covalent 

peptidomimetic compound crystallized in the recently published SARS-CoV-2 Mprostructure. In 

addition, the cyclic urea moiety of Lopinavir mediates a hydrogen bond interaction with the side 

chain of Gln189, another residue whose importance has been elucidated by means of several SARS-

CoV three-dimensional complexes.  
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Figure 2: This panel summarizes the recognition pathway of Lopinavir against the SARS-CoV-2 main protease. (A) 
Lopinavir conformation sampled in the last frame of the SuMD trajectory (green-colored molecule). The residues 
surrounding the binding site are reported in pink color. (B) Distance between the ligand center of mass (Cm) and the 
catalytic binding site of the Mproduring the SuMD simulation. (C) Interaction Energy Landscape describing the protein-
ligand recognition process; values are arranged according to the distances between ligand and protein target mass 
centers. (D) Dynamic total interaction energy (electrostatic + vdW) computed for most contacted Mpro residues. 

Despite the modest pharmacodynamic contribution made by Ritonavir in the combined formulation 

under investigation by the Chinese scientific community, in which the drugs act as a 

pharmacokinetic enhancer rather than a protease inhibitor, we still tried to elucidate its putative 

molecular recognition pathway. Also, in this case, 20 ns of SuMD simulation time were sufficient to 

sample a binding trajectory (Figure 3 – Panel B). Although some key interactions – i.e. hydrogen 

bond network with residue Glu166 and Gln189 – are appreciable also in this final state (Figure 3 – 

Panel A,D and Video 2), a comparative analysis of the Interaction Energy Landscape graphs (Panel C 

of Figure 2 and 3) suggests lower energy stability of the SuMD predicted binding mode, when 

compared with that characterizing Lopinavir. A reason could be seeking on the non-optimal 

accommodation of Ritonavir urea moiety, which floats outside the binding site exposed to the bulk 

solvent during all the simulation (Video 2). 
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Figure 3. This panel summarizes the recognition pathway of Ritonavir against the SARS-CoV-2 main protease. (A)  
Ritonavir conformation sampled in the last frame of the SuMD trajectory (orange-colored molecule). The residues 
surrounding the binding site are reported in pink color. (B) Distance between the ligand center of mass (Cm) and the 
catalytic binding site of the Mproduring the SuMD simulation. (C) Interaction Energy Landscape describing the protein-
ligand recognition process; values are arranged according to the distances between ligand and protein target mass 
centers. (D) Dynamic total interaction energy (electrostatic + vdW) computed for most contacted Mpro residues. 

In light of the promising experimental results shown by Nelfinavir, which milded the cytopathic 

effect induced by SARS-CoV infection strongly inhibiting the virus replication, we decided to 

computationally evaluate its possible molecular recognition mechanism also against SARS-CoV-2 

protease. As reported in Figure 4 (Panel B), a slightly longer SuMD simulation was necessary to fully 

describe a putative Nelfinavir binding trajectory. Once it has approached the vestibular region of 

the protease catalytic site, the ligand spends the first 20 ns negotiating the accommodation with a 

series of polar residues with which it mediates intermittent interactions, as highlighted in the 

interaction energy fingerprint (Figure 4 - Panel D, Video 3). The importance of this metastable site 

is also depicted in the Interaction Energy Landscape (IEL) graphic (Figure 4 – Panel C, Figure S3 – 

Panel A and B,), from which it is possible to notice a highly populated region presenting ligand-

protein interaction energy comparable to the final states previously described for the other two 

inhibitors. The last 10 ns of the simulation were characterized by a series of conformational 

rearrangements, which resulted in an optimal Nelfinavir accommodation within the protease 

binding cleft stabilized through a dense hydrogen bond network, tightly anchoring the inhibitor to 

the protease. As shown in Figure 4 (Panel A), SuMD predicted binding mode of Nelfinavir is 
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characterized by great analogies with that of the originally crystallized covalent peptidomimetic 

compound. Residues His164, Glu166, Gln189, Thr190, and Gln196 mediate a series of directed or 

water-bridged hydrogen bonds interactions. Moreover, as highlighted in Figure 4 (Panel D), on the 

last ns of the simulation a stabilizing salt bridge interaction occurs between the side chain of residue 

Glu166 and the octahydro-1H-isoquinoline charged moiety of Nelfinavir. Intriguingly, mutagenesis 

studies have corroborated the crucial role played by this residue. Mutation of Glu166 correlated 

therefore with the block of substrate-induced dimerization of the main protease, both in SARS-CoV 

and in MERS-CoV.22,23 

Figure 4. This panel summarizes the recognition pathway of Nelfinavir against the SARS-CoV-2 main protease. (A)  
Nelfinavir conformation sampled in the last frame of the SuMD trajectory (cyan-colored molecule). The residues 
surrounding the binding site are reported in pink color. (B) Distance between the ligand center of mass (Cm) and the 
catalytic binding site of the Mpro during the SuMD simulation. (C) Interaction Energy Landscape describing the protein-
ligand recognition process; values are arranged according to the distances between ligand and protein target mass 
centers. (D) Dynamic total interaction energy (electrostatic + vdW) computed for most contacted Mpro residues. 

3. Discussion 

In the last two decades, three major outbreaks of coronavirus-related diseasesSARS-CoV, MERS-CoV 

and ultimatelySARS-CoV-2 have been responsible for significant public health issues, along with 

dramatic social-economic consequences. The process of drug discovery often undergoes timelines 

which are difficult to reconcile with the urgency and the need to provide an effective therapeutic 

response to such an emergency health situation. Drug repurposing could represent a viable 

possibility, and this is the case for some anti-HIV compounds targeting SARS-CoV-2C30 
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Endopeptidase. The molecular basis underneath their therapeutic action remains however often 

obscure. In this preliminary computational investigation, we have taken advantage of the recently 

published crystallographic structure of SARS-CoV-2 Mpro to investigate the putative binding 

mechanism of three antiviral compounds, previously designed as selective HIV protease inhibitors 

and now under investigation as anti-COVID-19 emergency treatments. SuMD protocol was in detail 

exploited to collect, for each of the three inhibitors, MD simulation describing the possible 

mechanism of molecular recognition, thus providing an atomistic insight to interpret their data of 

therapeutic efficacy. An interesting aspect is represented by the speed of this approach: a few days 

of calculation in a modest GPU cluster allowed to collect a multitude of simulations, from which it 

was possible to hypothesize the recognition mechanism of Lopinavir, Ritonavir, and Nelfinavir. An 

approach of this type, therefore, becomes crucial in all emergencies, making it possible to overcome 

the lack of structural data to guide and understand the possible repositioning of already approved 

drugs. In this particular case study,the SuMD protocol not only allowed to hypothesize a possible 

recognition method for each antiviral but also to advance some preliminary comparative 

considerations. Nelfinavir, in particular, showed the best fitting for the catalytic site of SARS-CoV-2 

Mpro, establishing an interactions network similar to those elucidated in the crystallographic 

complex for the covalent peptidomimetic compound N3. More specifically, the phenyl sulfanyl 

moiety of the protease inhibitor at the end of the simulation was completely buried within the 

hydrophobic sub-pocket S2, which is delimited by residues His41, Cys44, Met49 and Met165. The 

stabilizing vdW contribution mediated by these residues has been dynamically mapped during the 

entire simulation and it is appreciable in Figure S3.  Encouragingly, a recent fragment 

crystallographic screening has highlighted how this site, precisely renamed “aromatic wheel”, 

consistently accommodates aromatic fragments mediating hydrophobic interactions with the 

surrounding residues.24 Furthermore, Nelfinavir hydroxyl group engages a hydrogen bond 

interaction with the carbonyl backbone of Glu166, a key residue found to stabilize most of the 

aforementioned non-covalent fragments as well as many covalent peptidomimetic inhibitors. The 

optimal interactive network differentiating Nelfinavir from the other two protease inhibitors is 

probably responsible for its total interaction energy which, as reported in Figure 4 (Panel C), is 

quantitatively greater than that computed for Lopinavir and Ritonavir (Figure 2 and 3 – Panel C). 

Intriguingly, this in-silico hypothesis has recently found two independent experimental validations, 

which have highlighted a mild inhibitory activity of Nelfinavir against the SARS-CoV-2 Mpro 

(estimated between 250 and 600 μM).25,26 
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4. Methods 

4.1 Software overview  

MOE suite (Molecular Operating Environment, version 2018.0101) was used to perform most of the 

general molecular modeling operations, such as proteins and ligands preparation.27 All these 

operations have been performed on an 8 CPU (Intel® Xeon® CPU E5-1620 3.50 GHz) Linux 

workstation. Molecular dynamics (MD) simulations were performed with an ACEMD3 engine on an 

Nvidia GPU cluster composed of 20 NVIDIA drivers, whose models go from GTX 1080 to Titan V.28 

For all the simulations, the ff14SB force field was adopted to describe C30 Endopeptidase protein 

while general Amber force field (GAFF) was adopted to parameterize small organic molecules.29–31 

4.2 Structures Preparation 

The three-dimensional coordinates of C30 Endopeptidase protein in complex with a covalent 

peptidomimetic inhibitor (N3) were retrieved from the RCSB PDB database and prepared for SuMD 

simulations as herein described.32 Considering the perfect symmetry that characterizes this 

homodimeric protein, and therefore its two catalytic binding sites, only one of the two monomers 

was used in this computational investigation. Once the covalent ligand was removed, residue 

Cys145 was restored to its reduced form. Protein was then processed by means of MOE protein 

structure preparation tool: residues missing atoms were built according to AMBER14 force field 

topology. Missing hydrogen atoms were added to X-ray derived complexes and appropriate 

ionization states were assigned by the Protonate-3D tool.33The coordinates of three antiviral 

compounds were prepared through MOE builder tool and subsequently moved at least 30 Å away 

from the catalytic protease binding cleft, a distance bigger than the electrostatic cut-off term used 

in the simulation (9 Å with Amber force field) to avoid premature interaction at the initial phases of 

the SuMD simulations. 

4.3 Solvated System Setup and Equilibration 

Each system investigated by means of SuMD contains a C30 Endopeptidase target macromolecule 

and respectively one of the three HIV antiviral compounds taken into consideration in this study, 

moved far away from the protein binding site as previously described. The systems were explicitly 

solvated by a cubic water box with cell borders placed at least 15 Å away from any protein/ligand 

atom, using TIP3P as a water model. To neutralize the total charge of each system, Na+/Cl- 

counterions were added to a final salt concentration of 0.154 M. The systems were energy 

minimized by 500 steps with the conjugate-gradient method, then 500000 steps (1 ns)  of NVE 
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followed by 500000 steps (1 ns) of NPT  simulations were carried out, both using 2 fs as time step 

and applying harmonic positional constraints on protease and ligands heavy atoms by a force 

constant of 1 kcal mol-1 Å-2, gradually reduced with a scaling factor of 0.1. During this step, the 

temperature was maintained at 310 K by a Langevin thermostat with low dumping of 1 ps−1 and the 

pressure at 1 atm by a Monte Carlobarostat34. The M-SHAKE algorithm was applied to constrain the 

bond lengths involving hydrogen atoms. The particle-mesh Ewald (PME) method was exploited to 

calculate electrostatic interactions with a cubic spline interpolation and 1 Å grid spacing, and a 9.0 

Å cutoff was applied for Lennard-Jones interactions 35. 

4.4 Supervised Molecular Dynamics (SuMD) Simulations 

SuMD code, in this implementation, is written in Python and exploits the ProDy python package to 

perform the geometrical ligand-target supervision process 36. SuMD protocol reduces the timescale, 

and consequently the computational effort, required to sample a binding event in the range of 

nanoseconds, instead of hundreds of nanoseconds or microseconds usually necessary with unbiased 

MD. Sampling is improved by applying a tabu-like algorithm that monitors the distance between the 

ligand center of mass with respect to the protein binding site, during short unbiased MD simulations 

of 600 ps. Once a SuMD step has been collected, the distance points calculated at regular time 

intervals are fitted into a linear function. Only productive MD steps are maintained, those in which 

the computed slope is negative, indicating a ligand approach toward the protease catalytic binding 

site. Otherwise, the simulation is restarted by randomly assigning the atomic velocities. Supervision 

algorithm controlled the sampling of short simulations until the distance between the ligand and 

the protein binding site dropped below 5 Å, then was disabled, and a classical MD simulation was 

performed. For each case study up to a maximum of ten SuMD binding simulations were collected, 

of which only the best was thoroughly analyzed and discussed in the manuscript.  

4.5 SuMD Trajectories Analysis  

All the SuMD trajectories collected were analyzed by an in-house tool written in tcl and python 

languages, as described in the original publication 19. Briefly, the dimension of each trajectory was 

reduced saving MD frames at a 20 ps interval, each trajectory was then superposed and aligned on 

the proteaseCα atoms of the first frames and wrapped into an image of the system simulated under 

periodic boundary condition.  The molecular recognition was monitored by calculating for each 

simulation step the distance between the catalytic binding site and the center of mass of the ligand 

taken into consideration (Figure F2 to F4 – Panel A). A ligand-protein interaction energy estimation 
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during the recognition process was calculated using an NAMD engine, plotting the ligand-receptor 

interaction energy values over time.37 These values were also arranged according to the distances 

between ligand and protease binding site mass centers in the Interaction Energy Landscape plots 

(Figure F2 to F4 – Panel B). Here, the distances between mass centers are reported on the x-axis, 

while the ligand-receptor interaction energy values on the y-axis, and are rendered by a colorimetric 

scale going from blue to red for negative to positive energetic values. These graphs allow evaluating 

the variation of the interaction energy profile at different ligand-protein distances, helping to 

individuate meta-stable binding states during the binding process. Furthermore, for each target 

investigated in this work, the residues within a distance of 4 Å from the respective ligand atoms 

were dynamically selected, to qualitatively and quantitatively evaluated the number of contacts 

during the entire binding process. The most contacted residues were thus selected, to compute a 

per-residues electrostatic and vdW interaction energy contribution with the protease target. NAMD 

was used for post-processing computation of electrostatic interactions, using AMBER ff14SB force 

field. The cumulative electrostatic interactions were computed for the same target residues by 

summing the energy values frame by frame along the trajectory, and the resulting graphs were 

reported at the lower-right of movies provided on supplementary material (Video V1 to V3). 

Representations of the molecular structures were prepared with VMD software 38.  

4.6 SuMD videos 

Each video is composed of four synchronized and animated panels that depict the molecular 

trajectory obtained by the SuMD simulation considering different aspects of the simulation. The 

time evolution is reported on an ns scale. In the first panel (upper-left), the molecular representation 

of the SARS-CoV-2 main protease is shown. The protein backbone is represented by the ribbon style 

(pink color) and the residues within 4 Å of each ligand investigated are shown in green, orange and 

cyan colors respectively for Lopinavir, Ritonavir, and Nelfinavir. In the second panel (upper-right), 

the dynamic distance of each ligand center of mass (CM) from the respective protein catalytic 

binding site during the trajectory is reported. In the third panel (lower-left), the ligand-protein 

interaction energy profile is reported. The animated red circle highlights the value of the 

corresponding frame. The trend is depicted by a continuous black line obtained by smoothing the 

raw data (grey circles) using a Bezier curve procedure. In the fourth panel (lower-right) cumulative 

electrostatic interactions are reported for the 15 protein residues most contacted by each ligand 

during the whole simulation. 
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Abstract  

The chemical structure of PF-07321332, the first orally available Covid-19 clinical candidate, has 

recently been revealed by Pfizer. No information has been provided about the interaction pattern 

between PF-07321332 and its biomolecular counterpart, the SARS-CoV-2 main protease (Mpro). In 

the present work, we exploited Supervised Molecular Dynamics (SuMD) simulations to elucidate the 

key features that characterize the interaction between this drug candidate and the protease, 

emphasizing similarities and differences with other structurally related inhibitors such as Boceprevir 

and PF-07304814. The structural insights provided by SuMD will hopefully be able to inspire the 

rational discovery of other potent and selective protease inhibitors. 

1. Introduction 

The Covid-19 pandemic, caused by a single-stranded RNA betacoronavirus known as SARS-CoV-2, 

has caused the death of more than 3 million people around the world since its outbreak in December 

20191,2. Despite the impressive cooperative effort promoted by the international community and 

by medicinal chemists around the world3,4, to date, there is only one drug approved by the Food 

and Drug Administration (FDA) for the treatment of Covid-19 patients. 

Remdesivir, a polymerase inhibitor initially conceived to target Ebola Virus, proved to be efficient in 

shortening the recovery time in adult patients hospitalized with Covid-195,6 and has therefore been 

granted Emergency Use Authorization (EUA). Unfortunately, due to its pharmacokinetic profile, this 

drug has to be administered intravenously in a hospital setting, thereby limiting its use for Covid-19 

treatment on a massive scale. The first attempts to face this lack of pharmacological tools to contrast 

the Covid-19 pandemic involved the repurposing of antiviral drugs designed for the treatment of 

other virus-related illnesses against Covid-19: this approach, despite being very appealing from a 
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timescale perspective7, did not bring any significant results, with several clinical trials showing little 

to no efficacy of those active principles against SARS-CoV-28. 

Meanwhile, the early release to the scientific community of the crystallographic structure of the 

SARS-CoV-2 main protease (Mpro) (PDB ID: 6LU7), caused a shift in the attention of researchers 

around the world towards the Structure-Based approach to the rational design of new potential 

protease inhibitors9. Among all the different chemical entities developed to target the main 

protease, PF-07321332 is, to date, the first and only orally available COVID-19 antiviral clinical 

candidate. 

Designed amid the pandemic, the structure of PF-07321332 was unveiled by Pfizer on April 6th at 

the American Chemical Society Spring 2021 meeting10. This compound, which has recently entered 

clinical phase I, was developed to target SARS-CoV-2 main protease, thereby impairing the virus's 

ability to reproduce itself, and it is intended as a pharmacological tool to prevent the development 

of COVID-19 in people who have been exposed to the pathogen. Even though the compound 

structure has been revealed, no further information has been provided yet about the way PF-

07321332 interacts with the main protease active site, except for the fact that it reacts reversibly 

with a cysteine residue located in the binding site.  

In this perspective computational investigation, we exploited Supervised Molecular Dynamics 

(SuMD)11, an emerging protocol allowing to decipher at an atomic level of detail the recognition 

process between two molecular entities, to sample and characterize a putative binding pathway for 

PF-07321332. As described in the original publication, SuMD simulations fully consider both the 

protein flexibility and the contribution of the solvent molecules, which are explicitly simulated, 

throughout the binding process. As shown by previous scientific works12,13, this makes it possible to 

overcome the limitations of traditional techniques such as molecular docking when working on 

challenging targets such as Mpro, whose active site is relatively shallow, plastic and solvent 

exposed14.  

2. Methods 

2.1 Software overview 

For every general molecular modeling operation, such as protein and ligand structure preparation, 

MOE suite (Molecular Operating Environment, version 2019.0115) was used, exploiting an 8 CPU 

(Intel Xeon E5-1620 3.50 GHz) Linux Workstation. Molecular Dynamics simulations were carried out 
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with ACEMD16 (version 3.3.0), which is based upon OpenMM17 (version 7.4.0), on a cluster 

composed of 20 NVIDIA GPUs. 

2.2 Structure preparation 

The crystallographic structure of the unliganded Mpro was retrieved from the Protein Data Bank (PDB 

ID: 7K3T). At first, the active functional dimer of the protease was restored applying the symmetric 

crystallographic transformation to each asymmetric unit. Residues with alternative conformation 

were assigned to the one with the highest occupancy. The Protonate3D tool was then used to add 

missing hydrogen atoms, evaluating the most probable protonation state for each titratable residue 

at pH 7.4. Finally, each non-protein residues (e.g.: water, co-solvents, etc.) were removed before 

successive steps. The ligand structure was prepared exploiting tautomers, fixpka, and molcharge 

tools from the QUACPAC OpenEye18 software suite to assign the most probable tautomeric and 

protomeric state at pH 7 and ligand partial charges according to the MMFF94 force field. Three-

dimensional coordinates were generated with Corina Classic19.  

2.3 Molecular Dynamics system setup 

The simulated system contained both the protein and the ligand structure prepared as described in 

the previous section, with the ligand positioned at least 30 Å away from the nearest receptor atoms. 

For system parametrization, the combination of Amber ff14SB and General Amber Force Field 

(GAFF) was used to describe each component of the simulation box. 

The system was explicitly solvated in a cubic TIP3P20 water box with 15 Å padding and neutralized 

with the addition of Na+/Cl- ions until a 0.154 M concentration was reached. Prior to the simulation, 

1000 steps of energy minimization with the conjugated-gradient algorithm were performed. A two-

step equilibration stage was carried out in the following way: the first step consisted of 0.1 ns of 

simulation in the canonical ensemble (NVT) with harmonic positional restraints applied both on the 

protease and ligand atoms using a 5 Kcal mol-1 Å-2 force constant, the second step consisted of 0.5 

ns of simulation in the isothermal-isobaric ensemble (NPT) with the same harmonic positional 

restraints applied only on protein alpha carbons and ligand atoms. For each simulation, an 

integration timestep of 2 fs was used. To constrain bonds involving hydrogen atoms the M-SHAKE 

algorithm was used. A 9.0 Å cutoff was applied for the calculation of Lennard-Jones interactions, 

while electrostatic interactions were computed exploiting the particle-mesh Ewald method (PME). 

The temperature was maintained at the constant value of 310K by the Langevin thermostat, with a 
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friction coefficient of 0.1 ps-1. During the second equilibration stage, the pressure was maintained 

constant at 1.0 atm utilizing a Monte Carlo barostat.  

2.4 Supervised Molecular Dynamics (SuMD) simulation 

SuMD code is written in Python 2.7 and exploits the ProDy21 package to perform geometrical 

supervision upon the ligand-binding process. This supervision allows to reduce the timescale, hence 

shrinking the computational effort, that is required to sample the ligand-biomolecular target 

recognition process to the range of nanoseconds, instead of the usual hundreds of nanoseconds or 

microseconds that are required by unbiased molecular dynamics (MD) simulations. The entire SuMD 

derived trajectory is composed by short unbiased 600 ps MD simulation runs (NVT ensemble, T= 

310 K) with the ACEMD3 software: at the end of each simulation (the so-called “SuMD-step”), the 

distance between the center of mass of the ligand and the binding site is computed at five different 

points, picked at regular time intervals, and fitted into a linear function evaluated by a tabu-like 

algorithm. Only those SuMD-steps whose computed slope is negative (indicating that the ligand is 

approaching the binding site) are retained. Every time a SuMD-step is rejected (positive slope), the 

simulation is restarted from the previous productive step by randomly assigning the atomic 

velocities. The supervision algorithm is switched off after the distance between the center of mass 

of the ligand and the binding site drops below 5 Å: from that point on the simulation continues as a 

classical MD simulation.  

3. Results 

In our computational study, we exploited Supervised Molecular Dynamics simulations to obtain a 

putative binding pathway between PF-07321332 and the SARS-CoV-2 Main Protease (Mpro) catalytic 

site. A total amount of 36 ns of SuMD simulation time proved sufficient to sample the entire 

recognition trajectory, from the starting unbound state to the final predicted protein-ligand 

complex. 

As can be seen in Video1, PF-07321332 reaches Mpro active site after about 7 ns of simulation time, 

making its first contacts with Leu141, Asp 142, Gln189, and Glu166. Leu141 and Asp142 are part of 

the oxyanion loop (residues 138-145), which lines the binding pocket of Glutamine P1 and is 

assumed to stabilize the tetrahedral acyl transition state14. Glu166 is a key residue located in the 

middle of the binding site: mutagenesis studies carried out on SARS-CoV Mpro (which has 96% 
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sequence identity with SARS-CoV-2 Mpro and is identical at the binding site level12) showed that this 

residue plays a key role in linking the dimer interface with the substrate-binding site22. Gln189 is 

located at the boundary of the S3 site and is assumed to be one of the key interactors with SARS-

CoV-2 Mpro inhibitors, as well as Glu16623. Asn142 and Gln189, located on opposite sides at the  

Figure 1. This panel encompasses the recognition pathway between PF-07321332 and the SARS-CoV-2 main protease 

predicted by SuMD. (A) PF-07321332 conformation within the binding site, sampled in the last SuMD trajectory frame 

(orange). Binding site residues within 4 Å of the ligand are depicted in ice-blue. (B) Profile of the distance between the 

center of mass of the ligand and the Mpro catalytic site during SuMD simulation. (C) Interaction Energy Landscape 

describing the protein-ligand binding pathway; values are arranged according to distances between the center of mass 

of the ligand the one of the Mpro catalytic site. (D) Dynamic total interaction energy (sum of electrostatic and van der 

Waals contribution) computed for the 25 most contacted residues throughout the SuMD trajectory. 

boundary of the binding sites, seem to serve as electrostatic recruiters for the ligand, exploiting 

their polar and flexible sidechains to maneuver the entrance of the ligand into the core region of 

the binding site. Glu166 appears to instead serve as an electrostatic anchor that tightly hooks the 

middle portion of the ligand with the central region of the binding site, facilitating the formation of 

further interactions with residues such as His 164. 

After the tri-fluoro-acetamide moiety of the compound establishes contact with the side chain of 

Gln189, the cyclopropyl-proline moiety occupies the central portion of the binding site, establishing 

a series of coordinated hydrogen bonds with the backbone of His164 and Glu166 and orientating 

the cyclopropyl group towards the hydrophobic S2 pocket, delimited by the side chains of His41, 
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Met49, Tyr54, and Met165. Meanwhile, the pyrrolidone moiety is inserted in the S1 pocket, 

interacting with key residues of the oxyanion loop such as Asn142, Gly143, and Ser144, before 

undergoing a conformational rearrangement around the 18 ns simulation time mark which allows 

the carbonyl of the pyrrolidone to establish a hydrogen bond with His163. This interaction has been 

flagged as a conserved interaction across several deposited structures of non-covalent inhibitors24. 

Moreover, this interaction is conserved across all possible substrate peptide crystal structures, 

where the interacting group is the sidechain of the Glutamine P1 residue25. 

Subsequently, the pyrrolidone moiety rearrangement also allows the reactive nitrile group to face 

the catalytic Cys145, making it possible to reach the final covalent-bound state which cannot be 

described through molecular mechanics. Finally, in the final conformation, the tri-fluoro acetamide 

moiety is fully inserted in the S4 subpocket, establishing two additional hydrogen bonds with the 

backbone of Thr190 and Glu166. 

4. Discussion 

Intriguingly, the binding mode proposed by the SuMD simulation for PF-07321332 is fairly 

superimposable to the ones of other two covalent protease inhibitor, Boceprevir (PDB ID: 6WNP) 

and PF-00835231 (PDB ID: 6XHM) which share common structural features with the oral candidate, 

validating the hypothesis that they could also share an overall similar interacting pattern (Figure 2).  

Figure 2. This panel illustrates the similarities between PF-07321332 conformation in the final SuMD trajectory frame 

and the crystallographic complexes of two structurally related covalent inhibitors of SARS-CoV-2 Mpro: Boceprevir and 

PF-00835231 (active metabolite of PF-07304814). (A) superposition between the binding mode predicted by SuMD for 

PF-07321332 (orange) and the crystallographic complex of Boceprevir within the catalytic site of SARS-CoV-2 Mpro (cyan, 
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PDB ID: 6WNP). (B) superposition between the binding mode predicted by SuMD for PF-07321332 (orange) and the 

crystallographic complex of PF-00835231 within the catalytic site of SARS-CoV-2 Mpro (green, PDB ID: 6XHM) 

Boceprevir is a protease inhibitor originally developed for the Hepatitis C Virus (HCV) NS3 

protease26. It shares many common structural features with PF-07321332, such as the cyclopropyl 

proline residue at P2 and the alanine at the P3 position but has a different reactive group (α-

ketoamide), a cyclobutyl alanine at P1, and a tert-butyl carbamate capping moiety at P4. From a 

binding mode point of view, the most prominent difference between the newly developed inhibitor 

and Boceprevir regards the hydrogen bond with His163 (absent in Boceprevir complex with the 

protease) which, as previously mentioned, is a crucial interaction also for natural peptidic 

substrates. 

PF-07304814 is a Phase I clinical candidate originally developed by Pfizer in 2002-2003 against SARS-

CoV and repurposed for SARS-CoV-2 due to the aforementioned similarities between the two 

viruses proteases27. The compound contains a hydrolyzable phosphate group which enhances its 

solubility and is cleaved by alkaline phosphatases in tissue releasing the active compound PF-

00835231. The main limiting factor for this candidate is that, unlike its successor PF-07321332, it 

has to be administered intravenously, making it less appealing for massive distribution and 

relegating its usage to hospital settings. From a structural point of view, this latter compound is less 

similar to PF-07321332 compared to Boceprevir, but still retains the key features concerning its 

binding mode with the MPro active site. The only conserved structural feature between the two 

inhibitors developed by Pfizer is the pyrrolidone group at the P1 position, which establishes a 

hydrogen bond with His163. The reactive group, in this case, is an aldehyde, the same as for 

Boceprevir. The hydrophobic residue at P2, in this case, is a leucine, which is the most recurrent 

amino acid that can be found at the P2 position in natural substrate peptides (included the N-term 

of Mpro itself)25, while the P3 terminal residue is a 4-methoxyl indole group, which interacts through 

a hydrogen bond with the backbone of Glu166. Additional interaction occurs at the P1’ subsite, 

where the two hydroxyl groups (one of which is formed upon reaction between the aldehyde group 

and Cys145 sidechain) form hydrogen bonds with Cys145 backbone and His41 sidechain. 

Overall, PF-07321332 appears to have combined the strong points of both Boceprevir and PF-

07304814 in a single molecular entity, showing that it is possible to repurpose the knowledge 

acquired in previous drug development campaigns on different virus proteases to rationally design 

SARS-CoV-2 Mpro inhibitors suitable for advancement to clinical phases, hence addressing the need 
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for a quick response against a widespread disease like Covid-19. Moreover, the combination of 

innovative computational strategies such as SuMD with experimental data coming from X-Ray 

Crystallography could provide useful structural insights to stir the rational development of antiviral 

drugs in a more rational and less time-consuming way. 

5. Conclusions 

In this computational study, we employed Supervised Molecular Dynamics (SuMD) to investigate 

the recognition process between PF-07321332, the first orally available Covid-19 antiviral candidate 

to reach clinical phase I, and its biological target, SARS-CoV-2 main protease (Mpro).  

About 36 ns of SuMD simulations proved sufficient to sample a putative binding process, allowing 

to simulate the whole approaching path from the unbound state to the final protein-ligand complex. 

SuMD simulations suggest a possible role in the first stages of the recruitment of the ligand for 

residues such as Leu141, Asp 142, Gln189, and Glu166, which have already been acknowledged as 

crucial residues for the binding of both natural and synthetic substrates. 

Finally, the binding mode predicted by SuMD for PF-07321332 is quite similar for other structurally 

related protease inhibitors, namely Boceprevir and PF-07304814, which could also share a similar 

binding pathway.  
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Abstract 

Computational approaches supporting the early characterization of fragment molecular recognition 

mechanism represent a valuable complement to more expansive and low-throughput experimental 

techniques. In this retrospective study, we have investigated the geometric accuracy with which 

high-throughput supervised molecular dynamics simulations (HT-SuMD) can anticipate the 

experimental bound state for a set of 23 fragments targeting the SARS-CoV-2 main protease. Despite 

the encouraging results herein reported, in line with those previously described for other MD-based 

posing approaches, a high number of incorrect binding modes still complicate HTSuMD routine 

application. To overcome this limitation, fragment pose stability has been investigated and 

integrated as part of our in-silico pipeline, allowing us to prioritize only the more reliable predictions. 

1. Introduction 

Fragment-based drug discovery (FBDD) has progressively established as a game-changing approach 

to navigate the chemical space in the drug discovery pipelines, both on academic and industrial early 

discovery stages1,2,3. By definition, fragments are low molecular weight organic molecules able to 

recognize a target of therapeutic interest in a mild affinity range and with a poor selectivity profile4. 

Intriguingly, the screening of small sized fragment libraries in place of conventional larger ones has 

proven to provide better coverage of the chemical diversity and higher hit rates5,6. The identification 

of such weak binders, however, strictly depends on the implementation of biophysical screening 

techniques, such as X-Ray Crystallography (XRC), Nuclear Magnetic Resonance (NMR), surface 

plasmon resonance (SPR), or Thermal Shift Assay (TSA)1,7,8. Anyway, broad differences exist among 

such methods and each of them suffers unique limitations in the challenging identification of 

reliable fragment; indeed the agreement in the hits identified is surprisingly limited9,10,11. Besides, 

only XRC and NMR offer the possibility to investigate the binding mode of weak binders. In light of 

this, structure-based computational strategies have increasingly gained appeal12,13,14. As highlighted 

in a recent review, during the last decade Molecular Dynamics (MD) simulations have been 
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extensively applied also in the FBDD field, providing an atomistic insight on the fragment-receptor 

binding mechanisms, with a femtosecond temporal resolution15. From this perspective, we recently 

developed HT-SuMD, a computational protocol exploiting supervised MD simulations to perform 

the screening of a small fragments library in a competitive timescale16. The performance of the 

protocol in prioritizing the most promising fragment binders was compared with NMR-based 

screening, against the oncological protein target Bcl-xL. Despite the notable agreement with NMR 

in identifying the most promising hits, the lack of structural data prevent the assessment of HT-

SuMD accuracy in fragments binding mode prediction, which would represent a valuable set of 

information to guide the subsequent hit to lead (H2L) optimization steps. In this methodological 

study, we have therefore retrospectively investigated the accuracy of HT-SuMD simulations in 

reproducing the experimental binding mode of several fragment-protein complexes, exploiting the 

3- C-like main protease (Mpro) of the novel SARS-CoV-2 coronavirus as a relevant case study. 

Following indeed the dramatic spread of the COVID-19 pandemic, a collaborative XRC fragment 

screening against the protein Mpro has timely offered to the scientific community valuable 

structural information to accelerate the rational design of new protease inhibitors17,18,19. For this 

validation study in detail, among the 71 fragments targeting the catalytic site of Mpro originally 

identified by the XRC screening, only the 23 presenting a reversible mechanism of recognition were 

taken into consideration, due to the impossibility of modeling covalent reactivity through classical 

molecular mechanics (MM) force fields20,21. 

2. Results and Discussion  

2.1 Characterization of fragment-receptor complexes  

The high-quality Mpro crystallographic structures were collected from the Protein Data Bank 

database (PDB ID are reported in Table 1 of SI) and prepared by applying symmetric transformation 

to each asymmetric unit, thus recreating the original functional dimer22. A visual inspection of the 

catalytic clefts has revealed how the 23 non-covalent fragments comprehensively explore most 

protease binding subsites (S1, S2, S3, and S1’) while providing decent coverage of chemical diversity. 

Besides, Mpro catalytic cleft is easily accessible from the bulk solvent and hence suitable to SuMD 

studies, as recently demonstrated for a couple of Mpro inhibitors23. The complexity, as well as the 

plasticity of the Mpro binding pocket, made this test case particularly challenging, the reason why 

an MD-based stability characterization of all the experimental-solved crystallographic complexes 

was performed, before investigating HT-SuMD accuracy in the fragment posing process. For this 
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purpose, the AMBER14SB force field was combined with the general amber force field (GAFF) to 

parameterize respectively the protein biopolymers and the small organic fragments24,25. To ensure 

results robustness, 5 trajectories each 20 ns long were collected for all Mprocomplexes, resulting in 

a total of 2.3 μs of conventional MD simulations. The content of information extrapolated from a 

single trajectory has been hence doubled by simply repeating the analysis against the two distal and 

independent catalytic sites of the homodimeric SARS-CoV-2 Mpro. To characterize the geometric  

Figure 1. Fragment stability assessed by classical MD of the 23 crystallographic complexes. For each MD simulation 

collected (x-axis) starting from the crystallographic ligand-receptor complexes (y-axis), the pose stability value of the 

fragment is herein reported through a heatmap representation. The colorimetric scale, from green to red, quantitatively 

represents the RMSF computed for each ligand heavy atoms (0 to 5 Å scale). The MD simulation were carried out on 

each subunit of the Mpro functional dimer resulting in two set (labelled a and b) for each of the 5 runs 

stability of the experimental-solved fragment complexes the root-mean-square fluctuation (RMSF) 

of ligands heavy atoms has been chosen as a metric, then summarizing the results through a 

heatmap representation, as reported in Figure 1. The colorimetric scale helps in differentiating 

those fragments which maintained the original binding mode during all the collected replicates 
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(green color), from others undergoing a neat perturbation of the recognition modality (yellow color) 

or that even experience a spontaneous unbinding event, repetitively leaving the catalytic cleft (red 

color). Interestingly, a strong correlation was identified between the topological localization of the 

fragments and their RMSFavg, with those ligands occupying the highly flexible S2 subsite also 

showing the more pronounced propensity in losing the experimental solved binding mode. This 

information not only offers valuable insights for the H2L optimization phase but also opens up 

questions about the suitability of MD-based approaches for the posing of ligands characterized by 

such limited structural stability.  

2.2 Fragments posing through HT-SuMD  

HT-SuMD protocol has been applied to investigate the binding mechanism of the 23 non-covalent 

fragments against the unliganded crystal structure of the SARS-CoV-2 Mpro (PDB ID 6YB7). As 

accurately described in the original paper, HT-SuMD manages the preparation, collection, and 

analysis of multiple SuMD simulations in an automatic modality, only requiring the binding pocket 

localization as initial information. SuMD, briefly, exploiting a tabu-like supervision algorithm that 

monitors in times variations in the ligand-protein binding site distances, could be considered an 

enhanced sampling approach improving the efficiency with which rare events, such as binding, are 

described26,27. For each fragment investigated, a solvated MD simulation box has been set up (a 

detailed description is reported on supplementary materials) and equilibrated after distancing the 

ligand at least 30 Å away from the protein catalytic cleft, to avoid premature intramolecular 

interactions. Also in this case, as an attempt to increase the robustness of the results, 10 SuMD 

replicates have been collected, resulting in a total of 6.3 μs of simulation time. The ensemble of 230 

trajectories describing different fragment binding pathways has been later geometrically discretized 

through DBSCAN, a density-based clustering algorithm, which allows all the most populated ligand-

protein states to emerge from the background noise28,29. In detail, a cluster is initialized if it contains 

at least 25 similar fragments conformations, which therefore differ from each other by no more 

than 1.5 Å. Finally, each binding mode was qualitatively evaluated using the MM/GBSA approach to 

approximate the ligand-protein free energy of binding, thus allowing to perform a ranking of the 

predicted poses30. The accuracy of the predictions was assessed by comparing each cluster of 

fragment conformations identified with the respective crystallographic reference, computing the 

root-mean-square deviations (RMSD) of non-hydrogen atomic coordinates. The results obtained for 

the 23 Mpro crystallographic inhibitors have been extensively reported in the supplementary 
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information (SI_HT-SuMD.xlsx) and graphically summarized in Figure 2, exploiting a colorimetric 

map to differentiate the correctness of the posing protocol. More specifically, for each fragment, 

the minimum RMSD (RMSDmin) and the average RMSD (RMSDavg) values for the best cluster, i. e. 

the cluster closer to the crystallographic reference, were reported then comparing the 

 

Figure 2. The results of the HT-SuMD posing protocol have been herein summarized. For each of the 23 fragments 

investigated the cluster of ligand conformations closes to the experimentally solved binding mode was reported, 

measuring the accuracy of the prediction through the RMSDavg and RMSDmin values of the selected cluster. The 

crystallographic reference has been rendered in white color, while the HT-SuMD predicted binding modes have been 

differentiated in green, yellow, and red color, following the criteria described in the legend. In the case of partially 

predicted fragments, in which a good binding geometry was retrieved but erroneously ranked, the magnitude of the 

error has been underlined reporting the incorrect ranking position. 



173 
 

predicted binding mode with the experimental one. The fragment posing exercise was considered 

correctly achieved if the RMSDmin of the cluster selected falls below the cut-off value of 2 Å.  

For 11 fragments out of 23, representing almost half of the considered cases, the protocol was able 

to identify and correctly rank the experimental binding mode (green-coloured molecules). Among 

these, the most noteworthy case is represented by the fragment with the PDB ID 5RGI, the only one 

targeting the S1’ subsite. HT-SuMD posing approach, fully exploring the conformational flexibility of 

the receptor, was able to reproduce the fragment crystallographic binding mode in an extremely 

accurate way, with an RMSDmin value of 0.46 Å. This result is impressive since, in the unliganded 

Mpro structure chosen in this study, the S1’ pocket, due to a different orientation of the residues 

composing the catalytic dyad (H41 and C145), is initially inaccessible.  

Figure 3. HT-SuMD predictions have been analyzed and related to the average fragment pose stability values (RMSFavg) 

showed by each original crystallographic complex during the MD-based characterization study 

For the remaining 12 fragments, an in-depth analysis highlighted two orthogonal reasons 

underneath the HT-SuMD based posing failures. In 5 cases the MM/GBSA-based scoring method 

was unable to prioritize the experimental binding mode, even if it was exhaustively sampled by 

SuMD simulations (yellow-colored molecules). The incorrect ranking position was then reported in 
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Figure 2 within a squared box, to underline the magnitude of the scoring error. This disagreement 

may be caused by limitations affecting the MM models, as errors in the fragments force field 

parameters or, more intriguingly, the crystallographic structures could capture only one of the 

possible accommodation states that the ligand can explore within the binding site31. In the other 7 

cases instead, the experimental conformation was never sampled (red-colored molecules), 

suggesting possible MD-sampling issues that may be addressed by widening the number of SuMD 

replicates performed for each compound, however increasing the computational cost of our 

approach. The accuracy of HT-SuMD protocol, therefore, with 48% of correct binding mode 

predictions is greater than non-native docking-based protocols reported in the literature and in line 

with that of other MD based fragments posing approaches32,33. It appears however evident how the 

posing of fragments still represents a tough pharmaceutical challenge, in particular, as suggested by 

Verdonk, for those characterized by a low-ligand efficiency (LE). Even our computational approach, 

in about half of the examined cases, fails to return a reliable result making its routine application 

very complex in a pharmaceutical drug discovery context.  

To elucidate the applicability domain of HT-SuMD and better understand the limitations related to 

the implementation of MD-based protocols for the fragment binding modes prediction, we have 

therefore investigated if the fragment pose stability, a geometric-dynamic property, could impact 

the predictivity of our method. The fragment pose stability retraces the concept behind the 

structural stability criterion that has recently been discussed also by Barril’s research group, as a 

complement to more traditional thermodynamic-based approaches in the identification of correct 

fragment-receptor binding mode34. HT-SuMD outcomes have therefore been compared, as 

reported in Figure 3, with the average values of atomic coordinates fluctuation (i. e. RMSFavg) 

respectively showed by each crystallographic fragment in the classical MD study previously 

discussed. Intriguingly, a clear pattern is noticeable since almost the totality of the correctly 

predicted binding modes (9/11) has been recovered for those fragments characterized by marked 

structural stability, with an RMSFavg value lower than 2.5 Å. Above this empirical cut-off, 

consistently most of the incorrect predictions concentrate, thus corroborating the existence of an 

inverse relationship linking together the stability of a crystallographic final state and the ability to 

correctly anticipate it through MD-based approaches, as our protocol configure. 
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Fragment poses stability as a confidence metric.  

The relationship described above could therefore be exploited to drive the analysis and the 

interpretation of HT-SuMD results, providing an observable with which distinguish reliable binding 

modes predictions from decoys. To test this hypothesis, the results collected through HT-SuMD 

posing protocol were retrospectively evaluated simulating a real screening scenario, in which 

crystallographic references are not available. Hence, for each of the 23 Mpro fragments previously 

investigated through HT-SuMD, the binding mode with the lowest MM/ GBSA score was blindly 

selected, regardless of whether or not it corresponds to the original experimental pose. Then, 

multiple classical MD simulations 20 ns long were started from the predicted final states, to 

characterize their relative fragment pose stability. Results of this study have been summarized in 

Figure 4, sorting the data concerning the RMSFSuMD values, or the average fluctuations of SuMD-

predicted binding poses, computed on the fragment‘s heavy atoms. A first interesting aspect to 

underline is how almost the totality of the correct binding modes anticipated by HT-SuMD (green-

colored molecules) only undergoes a mild conformational perturbation during classical MD 

simulations, in agreement with the results described in the first part of the manuscript for the 

crystallographic complexes. On the contrary, incorrect binding mode (yellow and red-colored 

molecules) in most of the cases experience great lability when refined through MD simulations, 

sometimes even culminating in a spontaneous unbinding event of the fragment.  

These observations corroborate the initial hypothesis, suggesting how a combination of HT-SuMD 

protocol for the posing of fragments with classical MD simulation for the refinement of results could 

represent an optimal operative pipeline, which allows overcoming some of the previously discussed 

methodological limitations. In this specific case indeed, the implementation of a geometric-dynamic 

property, namely the RMSFSuMD, results extremely useful to qualitatively estimate the reliability 

of the in-silico predicted poses. 

Observing the ranking reported in Figure 3, as the structural stability of the HT-SuMD predicted 

binding mode decreases, a worsening in posing accuracy occurs contextually. Intriguingly, also, in 

this case, 2.5 Å configure as a valuable empirical threshold which allows us to prioritize all the 11 

correct fragment binding mode predictions. However, it is worth noting how the same cut-off is also 

responsible for the incorporation of three false positives, predictions characterized by remarkable 

structural stability, but which are nevertheless geometrically far from the crystallographic 

reference. For what concerns the fragment belonging to the PDB ID 5R7Y complex, HT-SuMD 

protocol has probably prioritized a metastable binding mode anticipating the experimental one, that 
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has been nevertheless sampled through MD simulations but incorrectly scored by MM/GBSA. In the 

other two cases (PDB ID 5REH and 5RGK) the misprediction affects two fragments sharing a similar 

structure and interactivity. In the specific case of the 5REH complex, the HT-SuMD posing protocol 

has prioritized an alternative binding mode in which the pyridine portion of the fragment is correctly 

predicted, reproducing the key hydrogen bond interaction with H163 residue, while the remaining 

flexible portion is erroneously accommodated in the subsite S2 causing, as indicated in Figure 2, the 

high RMSD value of the cluster. This aspect is particularly interesting in the FBDD context, 

considering how the mild affinity profile characterizing these compounds could determine multiple 

recognition modes. 

Figure 4. HT-SuMD predicted binding modes (i. e. the cluster of fragments conformations characterized by the lowest 

MM/GBSA value) have undergone an MD-based refinement step. The fragment poses stability of each prediction, 

measured as the RMSFSuMD, has been exploited to rank HT-SuMD results, allowing in this way to efficiently prioritizing 

the correct binding modes at the expense of the incorrect ones. The dashed line delimits the empirical cut-off of 2.5 Å 

used to discriminate the reliability ofHT-SuMD posing prediction 
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Conclusion 

The elucidation of fragment binding modes in the early stages of FBDD campaigns still represents a 

tough medicinal chemistry task, which can be mitigated by the concomitant application of in-silico 

approaches. In this work, we have therefore investigated the geometric accuracy with which our 

recently developed computational protocol can reproduce experimentally solved fragment-

receptor complexes. For this purpose, the XRC structures of 23 non-covalent fragments targeting 

SARSCoV-2 Mpro, a pharmaceutical hot target in this actual COVID-19 pandemic, were exploited. 

HT-SuMD, as summarized in Figure 5, samples for each fragment multiple binding trajectories (Box 

1), which are subsequently geometrically discretized through DBSCAN clustering and energetically 

evaluated using the MM/ GBSA approach (Box 2). Our methodology was able to recover and 

prioritize in almost half of the cases taken into consideration (48%) the original fragment bound 

geometry, with an accuracy comparable to that described for other MD-based posing approaches.  

 

Figure 5. HT-SuMD protocol for the posing of fragments mainly consists in three operative steps, that are respectively 

summarized in this graphical workflow. In detail, supervised MD simulations are exploited to sample multiple binding 

trajectories for all the fragments analyzed (1), then DBSCAN clustering algorithm allows to identify of the most 

populated ligand conformation, which is energetically evaluated using MM/GBSA scoring method (2). The in-silico 

predicted binding modes finally undergo an MD-based refinement step, using the RMSFSuMD as a metric to qualitatively 

characterize the posing reliability. 

Intriguingly, a clear correlation has been identified between HT-SuMD posing accuracy and the 

stability of the respective crystallographic complexes, with most of the correct binding modes 

predictions retrieved for those fragments characterized by a low RMSFavg. In light of this aspect, a 

refinement step of HT-SuMD results through classical MD simulations has become an integrative 

part of our posing protocol (Figure 5– Box 3). More specifically, the structural stability of the 

predicted binding mode, i. e. the RMSFSuMD, has been exploited and validated as a metric to 

qualitatively estimate the reliability of each single in-silico prediction. In this way, it was possible to 
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effectively rank and prioritize the 11 correct HT-SuMD binding poses while discharging the ones 

characterized by a marked instability that was mainly revealed as incorrect predictions. This concept 

is exemplified in Video1 (supplementary information), reporting how MM/GBSA, a thermodynamic-

based approach, fails in distinguishing a correct form and incorrect fragment binding pose, while 

the subsequent MD refinement steps allow highlighting a marked difference between the two 

different predictions, in terms of RMSFSuMD.  

Despite these preliminary encouraging results, which must be certainly consolidated with further 

case studies, an improvement in the fragment posing accuracy is however still desirable. From this 

perspective, the ever-increasing computing power that will be available in the next years coupled 

with the continuous optimization of the conformational sampling algorithm, as well as the force 

fields model used, could pave the way for the development of more accurate fragment posing 

protocols, that could massively impact many in-silico FBDD pipelines. 
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Abstract 

Macrocycles are attractive structures for drug development due to their favorable structural 

features, potential in binding to targets with flat featureless surfaces, as well as their ability to 

disrupt protein-protein interactions. Moreover, large novel highly diverse libraries of low molecular 

weight macrocycles with therapeutically favorable characteristics have been recently established. 

Considering the mentioned facts, having a validated fast, and accurate computational protocol for 

studying the molecular recognition and binding mode of this interesting new class of macrocyclic 

peptides deemed to be helpful as well as insightful in the quest of accelerating drug discovery. To 

that end, the ability of the in-house supervised molecular dynamics protocol called SuMD in the 

reproduction of X-ray crystallography final binding state of a macrocyclic non-canonical 

tetrapeptide—from a novel library of 8988 sub-kilodalton macrocyclic peptides—in thrombin active 

site was successfully validated. A comparable binding mode with the minimum root-mean-square 

deviation (RMSD) of 1.4 Å at simulation time point 71.6 nanoseconds was achieved. This method 

validation study extended the application domain of SuMD sampling method for computationally 

cheap, fast but accurate, and insightful macrocycle-protein molecular recognition studies. 

1 Introduction 

The ever-increasing expeditious development of computer hardware, software, and algorithms 

have positively contributed to many domains of research such as drug design. The developed 

computational methods, namely molecular docking, and molecular dynamics (MD) simulations, to 

name but two, greatly reduce the time and cost of drug development, in a way that in silico modeling 

tools are highly utilized in the research ambit of drug discovery1,2,3. Particularly, the investigation of 

binding mode, following the steps of varied ligand-target recognition pathways, as well as exploring 

their interactions have been claimed to be the area of impressive application of MD computational 

protocols3. 
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Molecular dynamics simulations are considered an endorsed computational method in which by 

integrating the numerical solution of the Newton equation of motion, the time-dependent evolution 

of a molecular system can be revealed and described. However, obtaining a complete molecular 

recognition trajectory leading to binding, from the unbound to the bound state, is a rare event, and 

to capture moments of importance, therapeutically speaking, via free classical molecular dynamics 

approach requires a long microsecond timescale and therefore massive computing resources even 

with the novel GPU-based protocols4,5,6. 

Our in-house alternative MD approach, compared to the classical method, named supervised 

molecular dynamics (SuMD), improves the efficiency of sampling a binding event and decreases the 

simulation time from a microsecond (µs) to a nanosecond (ns) timescale7. To do that, it applies a 

tabu-like algorithm to monitor the distance between the ligand center of mass and the target 

binding site center of mass during a short classical MD simulation; only productive simulations in 

terms of reducing this distance are considered productive. Despite the exploration of the 

recognition event, SuMDhas been previously proved to be able to reproduce the experimental 

bound state of several various kinds of complexes with great geometric accuracy. Its already 

validated application domain covers the molecular recognition simulation of small molecules, 

natural linear peptides, most classic peptidomimetics, and nucleic acidss8. 

Among different classes of compounds, macrocycles are attractive structures for drug development, 

due to their potential in binding to “undruggable with canonical small molecules or proteins”9. 

Macrocyclic peptides represent an efflorescing class of molecules potentially targeting numerous 

disease-related protein targets otherwise intractable via established pharmacological approaches10. 

Several remarkable characteristics can be considered for this class of molecules. First, compared to 

linear peptides, they are relatively stable and less prone to protease degradation. The cyclization 

also confers advantages such as having a compromised state between a flexible and preorganized 

structure required for dynamic interactions with protein targets with a conformational bias; a 

reduced binding entropy cost can be imagined compared to their linear counterparts11. However, it 

is worth to mention that due to the reduced accessible conformational states, shifting the 

structure—upon macrocyclization—toward states that can anticipate bioactivity for a specific target 

binding site is consequential, because otherwise the non-bioactive conformation stabilization can 

slow down the binding. Therefore, identification of highly populated conformations of macrocycles 

is of significance when it comes to drug design12. Moreover, it has been shown that macrocyclic 

peptides are capable of selectively bind to relatively shallow, flat, and featureless protein surfaces 
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often involved in clinically important protein−protein interactions (PPI), in a fashion similar to 

antibody-based therapeutics and conversely to small molecules which generally need a pocket to 

bind13,14. Furthermore, thanks to their amino acid composition, a low innate toxicity is anticipated 

which is of advantage as therapeutic modalities. Being synthetically accessible makes possible lead 

optimization attempts and altering biophysical properties in terms of binding affinity and specificity, 

proteolytic stability, and/or solubility improvement for a particular purpose. A variety of 

macrocyclization reactions has been devised over the years and now different topologies can be 

easily synthetically available14. However, this interesting class of molecules has been 

underrepresented in numbers and diversity in the available libraries9. In recent years, innovative 

approaches evolved for further development of cyclic peptides, like generating and screening large 

combinatorial cyclic peptide libraries using in vitro display. These attempts have increased the 

availability and potential screening of ten to hundreds of thousands up to 1 trillion compounds or 

more highly diverse macrocycles with extraordinary target affinity, selectivity, and 

bioactivity13,9,10,15. In a recent research project of Kale et al., via novel thiol-to-amine cyclization 

reactions, they introduced a strategy that enables the generation of high yield purification-free large 

library of diverse macrocycles to screen for various targets in an efficient, relatively small-effort 

manner. Generating a library containing 8988 macrocycles of sub-kilodalton molecular weight (ideal 

for addressing the lingering challenge of macrocycles) and screening of this library against thrombin 

and other homologous targets identified a potent selective thrombin inhibitor called P2 (Ki = 42 ± 5 

nM)9. 

Given the emerged perspective stemming from all referred above, having a reasonably fast and 

accurate computational method like SuMD for studying the molecular recognition pathway and 

reproduction of experimentally comparable binding mode of this promising macrocyclic class of 

peptides is deemed significant. With that intent, through this study, the ability of the SuMD protocol 

in the reproduction of X-ray crystallography final bound state of the candidate macrocyclic peptide 

P2 as a potent thrombin inhibitor was evaluated. 

P2 is a tetra-peptide composed of “Glycine”-“L-beta-homoproline”-“Arginine”-“Cysteine” cyclized 

with a linker of di-bromomethyl benzyl and an N-(2-(hydroxymethyl)benzyl) substituent coming 

from an additional reaction of the linker (Figure 1). P2 is proved to be a highly selective inhibitor for 

thrombin with a snug fit of the specific backbone to the target while did not show any considerable 

inhibition for other homologous structurally and functionally similar proteases such as activated 

protein C (APC), tissue plasminogen activator (tPA), to name but two9. A representation of thrombin 
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in complex with P2 structure is shown in Figure 1. During library screening, another macrocycle 

called P1, with a similar structure as P2 and merely lacking hydroxymethyl-benzyl moiety showed 

three orders lower inhibition constant than P29. Given that and the fact of not being available any 

experimental reported binding state for P1, the idea to try simulating a probable binding mode of 

P1 in addition and possibly hypothesizing the inhibition potency difference through our in silico 

studies was emerged. 

 

Figure 1. (A) The structure of P2 is shown; the hydroxymethyl-benzyl moiety(in green) that is lacking in the P1 

macrocycle is highlighted by a black frame. (B) Thrombin in complex with P2; Thrombin structural determinants for its 

function and client recognition are also reported.  

The protein target in this study, thrombin, is a typical trypsin-like serine protease and the final 

generated protease during blood coagulation cascade. It is worth raising the point that distinct 

structural features are present in this single protease for the recognition ability of different 

substrates in a specific manner16,17. As reported in figure 1, the walls of a deep active site cleft—

often referred to as canyon—are formed by the 2 insertion loops known as the 60-loop and γ-loop. 

The upper 60-loop, is a rigid, hydrophobic cap over the active site, while the more hydrophilic and 

flexible γ-loop is situated at the downside of the cleft. A constricted access to the catalytic site of 

thrombin is provided only to proteins with long, flexible substrate loops17. The substrate recognition 

within the active site of thrombin occurs thanks to favorable interactions between the P1 residue 

(according to the Schechter and Berger nomenclature of amino acid residues around the substrate 

scissile bond18) and the deep acidic S1 pocket (Asp189, Ser190, Gly219), as well as presence of 

hydrophobic/aromatic residues N-terminal to P1 occupying S2 pocket (Tyr60A and Trp60D as the 

main residues), and S3 (the aryl-binding pocket composed of Trp215, Leu99, Ile174)19,17. Apart from 
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the active site, three other regions are involved in the diverse specific recognition of different 

substrates. There are two electropositive exosites, termed anion binding exosites (ABE), and a 

sodium-binding site. All-natural thrombin substrate directly or via cofactor mediation establish 

contacts with at least one exosite and usually both; this represents the prerequisite event to form 

initial stable complex conformation needed for the peptide bond cleavage17,16,20. Sodium-binding 

site, 15 Å away from the catalytic triad (His57, Asp102, Ser195), with Na+ coordinated to the main 

chain oxygens of Arg221a and Lys224 and four conserved water molecules, is considered as another 

allosteric activity modulator site of this protease, helping the maintenance of the hemostatic 

balance. Upon binding to sodium, thrombin shifts toward a conformation known as ‘fast 

conformation’ able to cleave all procoagulant substrates such as fibrinogen and protease-activated 

receptors more readily. On the other hand, in the Na-unbound ‘slow’ state, the protein C 

anticoagulant pathway is preferentially activated. Under physiologic conditions, the 140 mmol/L 

Na+ concentration in the blood would not saturate the site, and a present 2:3 ratio between slow: 

fast accounts for optimal allosteric regulation of anticoagulant: procoagulant activities and 

hemostasis6,16,21. 

2 MATERIALS AND METHODS 

2.1 Computational Study Infrastructure 

This project was carried out a hybrid GPU-CPU Linux cluster of 280CPU-cores and 30 NVIDIA graphic 

cards. 

2.2 Structure Preparation 

To begin with the simulation, the three-dimensional coordinates of the crystal structure of thrombin 

bound to P2 macrocycle (PDB ID: 6GWE) were retrieved from RCSB Protein Data Bank (PDB) with a 

resolution of 2.3 Å9. Then, using MOE suite version 2019.0122, the structure was checked and 

modeled (via loop modeler plugin) for the missing loop, 3D protonated and energy minimized 

regarding the energy of the added hydrogens and their positions. For this study one of each unique 

chain which is chain A with 257 residues and chain B with 30 residues in their sequence, in addition 

to the sodium ion bound to the chain A sodium binding loop was kept. The modeled 8-residue 

missing loop between Glu146 and Gly150 amino acid sequence comprised of TWTANVGK.   

2.3 Solvated system setup and Equilibration  
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All MD simulations were carried out using AMBERTools14. To parametrize the ligand, Antechamber 

tool23 in conjunction with General Amber Force Field (GAFF) was utilized to classify atom and bond 

types, assign charges, and estimate force field parameters. The charge method AM1-BCC of GAFF 

which is semi-empirical was used in this study. The solvation box with charge neutrality and 

physiological ionic strength (0.154 M in Na+ and Cl- ions), as well as complex system parameters and 

topology files, were prepared using tLEaP24. Protein and water were represented by Amber ff14SB25  

and TIP3P26 models respectively in the prepared system. In all SuMD replicas, simulation starts with 

ligand located 40 Å far from the orthosteric active site at time zero, which is a distance bigger than 

the electrostatic cut-off term used in the simulation (9 Å with Amber force field), to avoid premature 

interaction during the initial phases of SuMD simulations. 

All simulation systems were energy minimized through two equilibration steps. Considering 2 fs as 

a time step equal to the vibrational frequency of bonds, 500,000 steps (1 ns) of NVT in addition to 

500,000 steps (1 ns) of NPT simulations were carried out. Gradual reduction of harmonic positional 

constraints by a force constant of 5 kcal mol−1 Å−2 was applied in both steps. In the first equilibration, 

ions (except bounded Na+ in the sodium-binding loop) and water were kept free, while protein and 

ligand atoms were constrained. However, in the second equilibration, the constraints were kept 

only on the alpha carbons of the protein, as well as ligand atoms and the loop sodium. In both steps, 

the temperature was maintained at 310 K by a Langevin thermostat with low damping of 0.1 ps−1, 

and in the second NPT step, the pressure was maintained at 1 atm by a Berendsenbarostat27 as well. 

To calculate electrostatic interactions with a cubic spline interpolation and a 9.0 Å cutoff for 

Lennard–Jones interactions, the Particle-mesh Ewald (PME) method was utilized28.  

2.4 Supervised Molecular Dynamics (SuMD) production 

The SuMD simulations were done in NVT conditions with the temperature equal to 310 K, while the 

pressure of the system was free to change. To perform a supervised MD, the topology and 

coordinates of the last frame of the second equilibration phase were used as the starting point. In 

the configuration file of SuMD, three selected amino acid residues Glu97A, Gly219, Cys191 that 

whose center of mass (CM) approximately define the binding site CM were inputted. SuMD applies 

a dynamic selection on the indicated residues position to calculate the center of mass of the binding 

site. MOE suite was used to determine the center of the mass of the co-crystallized ligand regarded 

as the center of the mass of the thrombin active site to be then visually selecting a combination of 

residues that their center of mass could represent the approximate position of the binding site 

guiding the supervision. Each SuMD replica was produced on a graphics machine using ACEMD329 
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as the MD engine. The length of the SuMD steps for SuMD replicas was set either to 600 ps or 1 ns 

time window.  

2.5 Free (unsupervised) Classical Molecular Dynamics (cMD) production 

For each cMD, after system preparation and equilibration steps, ACEMD329 engine was used with 

the same settings, except for the simulation length, of the cMD simulation in each SuMD step. 

2.6 Visualization of the MD trajectories 

Visual Molecular Dynamics (VMD)30 and MOE suite22 were utilized during this project for molecular 

visualization and analysis of the trajectories. 

2.7 Trajectory versus Trajectory RMSD calculation 

Using MDAnalysis31,32, a matrix of frames related to the cMD of reference against frames of each 

SuMD replica was set for comparative RMSD calculation. Then via Seaborn python library33, a heat 

map of the resulted RMSD calculation was illustrated (Figure 2). 

 

Figure 2. Superposition of the P2 reported X-ray crystallography conformation (magenta), the frame number 102 (2.04 

ns) of reference cMD(green), and the frame number 3579 (71.56 ns) of replica 74 (yellow; the frame with lowest RMSD 

value compared to both reported binding conformation and the parallel trajectory analysis reference resulted in frame). 

The minimum obtained RMSD compared to the reported binding conformation showed a value of 2.27 Å at time point 
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71.56 ns. However, considering observed instability of the reported conformation, parallel frame RMSD calculation of 

replica 74 trajectory versus reference cMD trajectory was performed which resulted in the minimum RMSD value of 1.4 

Å at 71.56 ns for the frame number 3579 (the same frame with the lowest RMSD value compared to the reported binding 

conformation). Heat map of the parallel trajectory RMSD analysis of replica 74 versus reference cMD is shown in the 

top right. 

2.8 MM-GBSA Energetic Profile Analysis and Clustering  

All total free energy calculations in this work were computed using the MMPBSA.py tool34 using GB-

OBC(II) Born solvation model and no entropy calculation. To identify other energetically favorable 

binding sites and elucidate P2 ligand−protein recognition scenario, the trajectories of 99 SuMD 

replicas of P2 were first solvent-dried, aligned, merged and ten times strided as input for positional 

clusterization. To do so, ligand sets of coordinates (each set of coordinates corresponds to the ligand 

conformation in a frame) after discarding noise sets considering cosine similarity value of 0.01 were 

clusterized using OPTICS algorithm of Scikit-learn35. Thereafter, given MM-GBSA value of the 

included ligand coordinates in each cluster, the representative ligand conformation with the most 

favorable energetic value was selected for the corresponding cluster.  

3 Results  

3.1 Study principal outcomes 

This study was conducted aiming to extend the application domain of our molecular dynamics 

supervision method for studies related to models of sub-kilodalton macrocyclic peptide-protein 

binding event. As a case study, the SuMD ability to reproduce the X-ray crystallography bound state 

of P2 macrocyclic peptide to thrombin was evaluated. To that end, 99 SuMD simulations were 

performed starting from an unbound state obtained by separating P2 from its binding site by around 

40 Å. Among 99 SuMD replicas, 84 trajectories finished with the ligand arriving in the proximity of 

the binding site and its sub-pockets with different binding orientations and conformations, while 15 

trajectories ended with ligand stopping over a varied site categorized as “failed” based on SuMD 

termination criteria (far from the binding site). Overall, five trajectories concluded with the ligand 

reached the narrow S1 pocket (guanidinium moiety entering S1), all below 100 nanoseconds of 

SuMD-productive simulation time.  

To better compare the SuMDresults with the experimental structure, the X-ray crystallography 

complex (reference) was subjected to 200 ns of cMD, allowing to have both systems in similar 

conditions:  equilibrated and relaxed in a fully explicit solvent environment. In fact, during the initial 

4 ns of the cMDa fluctuation within the range of experimental resolution (2.3 Å) was observed while, 
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after 4 ns, a more significant shift of the macrocycle occurred as confirmed by a drop of its RMSD 

values to above 3 Å and below 5.66 Å until the end (200 ns) was detected(Video-S1). The mean 

calculated RMSD during this trajectory was 3.57 ± 0.47 Å(Figure-S1). Those RMSDvalues highlight a 

discrepancy between the experimental bound conformation and the one assumed once the system 

is equilibrated in fully explicit solvent suggesting that the cMD could represent a more adequate 

comparison for SuMD.  Indeed, we performed a frame-to-frame analysis of the SuMD trajectory 

versus cMD trajectory monitoring the ligand RMSD.  Among all replicas, replica 74 is deemed as the 

best-produced binding event trajectory for P2. This SuMD simulation (replica 74) with 94 

nanoseconds duration reproduced a possible binding event trajectory with the most comparability 

to the X-ray crystallography binding mode. The minimum obtained RMSD compared to the X-ray 

conformation showed a value of 2.27 Å at time point 71.56 ns. However, considering thecMD 

trajectory as reference the minimum RMSD value of 1.4 Å at the same time-point(71.56 ns, frame 

number 3579) versus frame number 102 (2.04 ns) of reference cMD (Figure 2). 

The simulation started with P2 located 40 Å far from the orthosteric active site (AS) at time zero 

(Video-S2), and then upon approaching toward the AS the first stable binding occurred from time 

point 5.5 ns until 43 ns with a mean MM-GBSA free energy (∆G) of -27.1 kcal/mol. As this stopover 

had enough residence time to break the progressive and continual approach of the ligand, it can be 

defined as a meta-stable binding site. Afterward, for around 4 ns from time point 48 ns, another 

stable contact near the active site (∆G = -18.9 kcal/mol) was seen as the ligand was transitioning to 

the active site area. Then, from 54 ns a favorable orientation of P2 facilitated the entrance of the 

fundamental guanidinium moiety to the S1 pocket. From that point, an initial evolution of the final 

binding state phase was followed by fluctuating but stable similar conformations until the end. The 

mean total ∆G of the last 22.44 ns (from the RMSDmin frame until the end) resulted in a value of -

27.3 kcal/mol compared to the calculated mean total ∆G value of -32.2 kcal/mol in the same 

duration (22.44 ns) of reference cMD, showing similar with no meaningful MM-GBSA difference 

(∆∆G < 5 kcal/mol) energetic profile. A figure reporting some of the most relevant ligand P2 

conformations during this binding trajectory is present in Figure 3. To evaluate the P2 flexibility we 

calculated its RMSD during the best 5 trajecories; the ligand fluctuates until 5.7 Å, suggesting that a 

certain flexibility is explored during the recognition (Figure S2). To identify significant states during 

the P2 recognition and their corresponding meta-stable binding sites, all the conformations sampled 

during all the SuMD trajectories were geometrically clustered resulting in seven clusters (Figure 4). 

All the clusters showed a favorable average of MM-GBSA binding free energy value compared to 
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the calculated value for the reference binding conformation in the canonical binding site (active site) 

(Table 1). This outcome suggests that multiple energetically favorable binding patches on the 

thrombin surface for P2. Among all the clusters, the seventh cluster comprised of 2-3 times higher 

number of frames with the minimum average free energy value of -33 kcal/mol. The position of this  

Cluster No. Number of included frames Average MM-GBSA total ∆G kcal/mol (rounded) 

1 459 -22 

2 309 -28 

3 460 -27 

4 356 -32 

5 438 -26 

6 275 -28 

7 890 -33 
Table 1. Size and energetic analysis of all the clusters obtained during P2 SuMD simulations. Several conformation 

showed a favorable MM-GBSA binding free energy value suggesting multiple energetically favorable binding states on 

thrombin surface for P2. 

cluster population was identified near to the exosite II. Given high population of the seventh cluster, 

highly favorable binding free energy value—closely comparable to the canonical binding site—of 

this positional cluster near exosite II which is considered as an important contact point for natural 

thrombin substrates to form an initial stable complex conformation required for the peptide bond 

cleavage; it can be hypothesized that thrombin inhibition by P2 might be resulted from dual-site 

inhibition i.e. allosterically preventing the selective stable recognition of substrates in addition to 

occupying the orthosteric proteolysis site and thus be a potent thrombin inhibitor.   
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Figure 3. This figure shows some representative P2 poses along the binding trajectory (94 ns) produced in SuMD replica 

74 during which P2 start approaching the active site from 30 Å far from any protein atom at time zero and reaches the 

binding site and S1 pocket in an experimentally comparable binding mode (RMSDmin=1.4 Å at 71.56 ns). 

3.2 Elucidation of the role hydroxymethyl-benzyl-moiety  

AsP1 shares the same structure of P2 except for the presence of a hydroxymethyl-benzyl structure 

on the latter, it could be hypothesized that a similar binding mode and orientation of the ligand with 

guanidinium moiety entering the S1 pocket and the macrocycle occupying the rest of the active site. 

For further witnessing of SuMDhelpful implication in depicting the molecular basis of the 

recognition of this class of compounds, we investigate the hydroxymethyl-benzyl role that leads to 

an increased inhibition activity (three orders of magnitude); SuMD simulations for P1were 
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Figure 4.This figure shows the representative frame (minimum MM-GBSA free binding energy in each cluster) and the 

position of each cluster. For the collective illustration of all representing poses on one protein surface, the molecular 

surface of the reference PDB was selected to be shown here. On the top right reference, complex is shown to indicate 

the active site position. 

additionally performed until reaching a representative replica (Video-S3) in which P1 fully enters the 

active site S1pocket to establish a salt bridge with Asp189. After 18 replicas (in 16 replicas P1 

reached the binding site in different final binding modes among which 6 replicas had the supposed 

orientation; one of those had expected orientation while entered the S1 pocket), we obtained a 

possible binding trajectory in which during 34.84 ns of simulation, P1 reached the active site with 

guanidinium partly inside S1 pocket as supposed. For further evolution and reaching the most stable 

conformation, the simulation continued with 50 ns of cMD. After that, a stable conformation was 

achieved; having a salt bridge with Asp189 and contacting four of the same reference P2 interacting 

residues(Asp189, Cys220, Gly216, Glu217) (Figure 5). 
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Figure 5. The reported binding mode interactions of P2 (A) and the interaction panel of P1 simulated final stable 

conformation (B).  

To compare P1 and P2 from an energetic point of view, the mean total MM-GBSA binding free 

energy during 50 ns of cMD trajectories were taken into consideration. The calculated total ∆G P1= 

-20.2 kcal/mol and total ∆G P2= -29.3 kcal/mol, show a more favorable energy profile in P2 as 

expected. To be confident about compared value correctly associated with the final evolved stable 

P1 binding conformation, similar total ∆G P1= -20.37 kcal/mol was obtained for the last 6 ns of the 

P1 continued cMD(RMSDlast 6 ns=1.4 ± 0.4 Å). The energy landscape of P1 and P2 trajectories (Figure 

6) indicates a similar profile characterized by a large number of energetically stable frames when 

the distance between the centers of mass (dcmL-R) is in the range of 3-7.5 Å. This observation 

suggests that many ligand states, even if they present different binding modes, contribute to a 

stable protein-ligand association. The presence of metastable binding sites far from the active site 

(dcmL-R> 10 Å )is slightly more pronounced in the representative trajectory of P2 where three 

transient spikes are evident at dcmL-R  9 Å, 15  Å, and 20 Å. 

Additionally, to compare P1 and P2 structural characteristics and their possible effects on each 

ligand dynamics and binding during SuMD condition, the representative replica of P2 and the 

P1were selected for further analysis. Given the experimental final binding state of P2, an internal 

hydrogen bond (2.15 Å/H-O) between the hydrogen of the hydroxyl group of hydroxymethyl-benzyl 

moiety and the nearby carbonyl group of the macrocycle ring can be seen. This hydrogen bond 

during produced binding event trajectory (replica 74) sustains an average value of 2.72 Å (H-O).  
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Figure 6. Energy landscape of P2 (A) and P1 (B) representative produced trajectories. The interaction energy calculation 

is based on mdenergy function of VMD36 and plotted via in-house pepSuMD analyzer3. (A)along this trajectory 2 to 3 

local minima can be seen which correspond to meta-stable binding sites for P2. (B) P1 directly goes to the canonical 

active site during this representative trajectory. 

Considering that, it could be hypothesized that this present internal bond thanks to hydroxymethyl-

benzyl moiety which is absent in P1, contributes to a less flexible structure and a biased maintained 

conformation necessary for the observed favorable snug-fit binding. To corroborate this idea, the 

average RMSD of mutual macrocycle ring of P2 and P1 during the time, in addition to the RMSD of 

the whole structure of each ligand along their representative SuMD trajectory was calculated. For 

this RMSD calculation, all frames of each representative replica were aligned on the comprising 

atoms of the mutual ring of the corresponding replica first frame separately. The calculations 

obtained in this way indicate the flexibility of the mutual ring and each ligand and not the ligand 

transition during their molecular dynamics trajectory. The achieved values of the mutual ring and 

the whole ligand in P2 trajectory were respectively four times and 2.7 times less than calculated 

values for P1 (average RMSD ring/P2= 0.41 ± 0.15 Å, average RMSD ligand/P2= 1.62 ± 0.4 Å; average RMSD 

ring/P1= 1.68 ± 0.22 Å, average RMSD ligand/P1= 4.43 ± 0.56 Å). Thus, as expected, this result can 

quantitatively show a more biased stable conformation for P2 during time compared to P1. 

4 Discussion 

In this study, the ability of SuMD protocol in the reproduction of X-ray crystallography final binding 

state of the candidate macrocyclic tetrapeptide P2—from a novel library of 8988 sub-kilodalton 

macrocyclic peptides—bound to thrombin to inhibit its activity, was successfully investigated 

(minimum RMSD of 1.4 Å at 71.56 ns). The outcomes reported that more than 80 percent of 
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trajectories reached the canonical binding surface in varied conformations below or around a 

hundred nanoseconds, and near five percent mimic the experimentally-solved final bound state for 

this class of macrocyclic peptides to a challenging target, characterized by a narrow active site cleft 

and deep significant-for-activity sub-pocket (S1). These results reiterated and extended SuMD high 

value as a computational protocol to explore the recognition pathway. Additionally, based on the 

observations, SuMD can be regarded as an insightful tool in terms of meta-stable binding sites 

identification, as well as the binding mode and molecular recognition pattern elucidation of sub-

kilodalton macrocyclic peptides (with different scaffold than natural peptides or small molecules) to 

a protein target with relatively low computational expense. Therefore, this study further validated 

and expanded the applicability of SuMD as a valuable protocol in studying varied molecular complex 

recognition. 

The main advantages of the method used in this work are being able to correctly parametrize ligand 

P2 of this class of macrocyclic peptides with a general amber force field (GAFF) similar to small 

molecules and thus no need for tailored parametrization due to the presence of unnatural amino 

acids and linkers; as well as the possibility to simulate the trajectory of a binding event in 

nanosecond timescale thanks to SuMD. Consider that the association event starting from an 

unbound state is arare event to be observed by cMD without the implementation of a enhanced 

sampling strategy. For instance, in Video-S4 a comparative cMD starting from the same state of 

SuMD is reported; during the 900 ns of simulation P2 never approached thrombin, confirming the 

different sampling rate of the two methods. Given that, the opportunity of performing an efficient 

high-throughput molecular dynamics study of the remaining macrocyclic peptides of the same class, 

after further optimization and validation can be envisioned. Therefore, the prospective use of this 

study findings would be toward using SuMD to perform high throughput molecular dynamics studies 

of other available macrocyclic peptides of the same class, enjoying highly diverse scaffold, to find 

probable hit candidates for various protein targets of interest and predict their binding mode as an 

adjunct predictive and screening tool, similarly to what recently reported for fragments37; narrowing 

down the requirement of going through experimental structural studies for each molecular complex 

of interest. On the contrary, a particular attention should be paid to the starting conformation of 

the macrocycle that could affect the recognition sampling since their flexibility could be rather 

pronounced. Using specific methods (e.g. low-mode MD) to preproccess novel ligand for selecting 

at least one of few adequate starting conformation in solution. It should be also considered that 

particularly flexible sub-kDa macrocycle could present more issue in sampling the bound 
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conformation during the recognition. Anyway, all of these prospective enhancements would lead to 

the main goal of achieving computationally cheap molecular dynamics study methods with ever-

increasing power in predicting experimental-equivalent final binding states and recognition of key 

elements and patterns of complexes.  
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Abstract:  

Fragment-Based Drug Discovery (FBDD) has become, in recent years, a consolidated approach in the 

drug discovery process, leading to several drug candidates under investigation in clinical trials and 

some approved drugs. Among these successful applications of the FBDD approach, kinases 

represent a class of targets where this strategy has demonstrated its real potential with the 

approved kinase inhibitor Vemurafenib. In the Kinase family, protein kinase CK1 isoform δ (CK1δ) 

has become a promising target in the treatment of different neurodegenerative diseases such as 

Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. In the present work, we 

set up and applied a computational workflow for the identification of putative fragment binders in 

large virtual databases. To validate the method, the selected compounds were tested in vitro to 

assess the CK1δ inhibition. 

1. Introduction 

1.1. Protein Kinase CK1δ 

Protein kinase CK1δ belongs to the family of CK1 Kinases (Casein Kinase 1), which in turn belongs to 

the class of Ser-Thr Kinases; seven isoforms of this family were identified in mammals: α, β, γ1, γ2, 

γ3, δ, ε. All the isoforms of CK1 are constitutionally active and they exhibit activity in monomeric 

form, They present a highly conserved catalytic domain (unlike in N and terminal C domains), they 

utilize ATP as a phosphate group donator and they are generally independent of the presence of a 

cofactor 1. 

CK1δ and the other isoforms of the family of CK1 can phosphorylate Ser or Thr residues in sequences 

such as (P)Ser/Thr-X1-2-Ser/Thr, where (P)Ser/Thr indicates a Ser or Thr pre-phosphorylated residue 

2; CK1, therefore, needs the substrate to be already phosphorylated. Nevertheless, it has been 

demonstrated that a set of amino acids with acidic character in the direction of the N-terminal with 

respect to Ser/Thr target residue or an acidic residue in position 3 (preferably Asp) can provide for 
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the lack of the pre-phosphorylated amino acid 34. This allows CK1 to act also as a Priming Kinase 

activating the substrate towards a second enzyme by phosphorylation. Currently, about 140 

substrates (in vitro or in vivo) recognized by CK1 have been described 1. 

The activity of CK1 isoforms is regulated in different ways. Phosphorylation is the principal strategy 

adopted for the activity regulation of this family of kinases. CK1δ is phosphorylated by kinases such 

as Akt, PKA, PKCα, CLK2, and Chk1. Moreover, CK1δ can also be subjected to auto-phosphorylation 

1,5,6. Another fundamental aspect in the CK1δ activity regulation is the subcellular 

compartmentalization, operated through the binding to intracellular structures and other proteins 

7,8. One last mechanism reported in the literature for the CK1δ regulation is the formation of 

homodimers 9,10. 

CK1δ, together with other CK1 isoforms, has been correlated to several neurodegenerative 

processes 11; in particular, CK1 seems implied in tauopathies, among which Alzheimer’s disease (AD) 

is the most representative one. 

AD is associated with several cellular processes. The first mechanism described is correlated to Tau 

protein, which after phosphorylation tends to come off from the microtubules forming aggregates 

at a cytoplasmatic level, leading to cellular damage. A second mechanism implies instead production 

and accumulation, with consequent cellular death, of the β-amyloid peptide. This is produced by 

the cut of its precursor APP (Amyloid Precursor Protein) by β-secretase 1 and γ-secretase enzymes. 

The implications of CK1 isoforms in pathogenetic processes at the root of Alzheimer’s disease are 

many. In general, CK1δ proves to be overexpressed in brain tissue, up to 30 times in patients 

affected by Alzheimer’s disease 12,13. 

Concerning Tau protein, initially, it was observed how CK1 turns out to be associated with fibrillar 

masses of hyperphosphorylated Tau protein (Paired Helical filaments) 14; in particular, CK1δ seems 

to be accumulated within these fibrillar masses 15. Later it was demonstrated how CK1δ can 

phosphorylate Tau protein causing its separation from microtubules; the residues of Tau 

phosphorylated by CK1δ are Ser202, Thr205, Ser396, and Thr404 11,16. As regards β-amyloid peptide, 

it was described how this can stimulate the activity of CK1 and CK2 (employing casein as a substrate) 

17. Likewise, there is evidence that CK1 activity would be proportionally correlated to β-amyloid 

peptide production, since in presence of constitutionally active CK1 forms the amount of this 

peptide increases, whereas it decreases in presence of CK1 inhibitors. CK1 interference seems to 

take place along with the γ-secretase enzyme 18, but it is more likely correlated to CK1ε isoform, 

than to CK1δ19.  
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As regards Parkinson’s Disease, it has been observed how CK1 isoforms phosphorylated Ser129 of 

α-synuclein 11,20.  

Amyotrophic lateral sclerosis (ALS) is another neurodegenerative disease where CK1δ plays a role. 

Indeed, CK1δ phosphorylated TDP-43 (TransActivate Response DNA Binding Protein 43) at many 

different residues. TDP-43 is the principal component of the protein aggregates observed in the 

pathogenesis of ALS 21,22. 

1.2. Fragment-Based Drug Discovery (FBDD) Principles. 

FBDD is a strategy used in drug discovery that has gained popularity both in the industrial and 

academic contexts. In a typical FBDD process a library of polar low molecular weight compounds is 

screened against a specific target. Usually, the screening is performed by biophysical methods 

including X-ray crystallography, nuclear magnetic resonance (NMR), thermal shift assay, and surface 

plasmon resonance (SPR). One of the key factors in the FBDD success is the smaller size of the 

fragment-like chemical space compared to the size of the drug-like one. The size of the drug-like 

chemical space has been estimated at around 1060 compounds, many orders of magnitude greater 

than that of the fragment-like compounds’ chemical space 23. This means that, through the 

screening of fragments, the portion of chemical space sampled is larger than the one sampled with 

the screening of drug-like molecules. This will promisingly also allow the attainment of innovative 

scaffolds for drug candidates. 

Despite the hit fragments having typically a low affinity, they could be turned into a lead compound 

that efficiently binds the target. Fragments, having a low molecular weight, establish few 

interactions with the target; however, the combination of multiple fragments by linking and merging 

or by decorating them with adequate functional groups (fragment growing) allows the development 

of specific and more affine compounds.  

1.3. Fragment-Based Drug Discovery and Kinase Inhibitors 

Concerning the identification of kinase inhibitors through an FBDD approach, X-ray crystallography 

has also been largely employed because kinases represent a class of protein that provides good 

results with this technique.  

The most outstanding example of kinase inhibitors derived from an FBDD approach is Vemurafenib 

(inhibitor of BRAF) which is an approved drug for the treatment of metastatic melanoma 24. The 

discovery of vemurafenib started with an enzymatic assay screening of a fragment library. The hit 

compounds identified were analyzed through X-ray crystallography, using the structural information 
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so obtained one fragment was chosen for optimization leading at the end to Vemurafenib 25. 

Another notable example is Asciminib an allosteric inhibitor of BCR-ABL1 tyrosine kinase, now in 

phase III clinical trial for resistant chronic myeloid leukemia. This compound was identified from an 

NMR-based fragment screening; the fragment hits identified were then optimized using In Silico 

methodologies, X-ray crystallography, and NMR 26,27.  

Many other Kinase inhibitors derived from FBDD approaches are in clinical trials; for a 

comprehensive review of FBDD derived drugs that have been approved or which are in clinical trials 

see 28. 

An interesting observation is that the fragments identified often bind at the hinge region of the 

kinase and maintain this binding mode also in the mature compound. For this reason, the library of 

compounds tested in the present work has been focalized, using in silico methodologies described 

in the next sections, to be composed of putative hinge-binding fragments. 

1.4. Computational Methods in FBDD 

Since the dawn of FBDD, computational chemistry has played a major role in both fragments’ hit 

identification and in the process of fragment optimization. The MCSS (multiple copy simultaneous 

search) algorithm 29 was a pioneering method for the study of fragment binding modes in a protein 

site. Another method for fragment posing based on grand canonical Monte Carlo (GCMC) has been 

reported 30. 

Over the years many in silico methods have been proposed non only for fragment placement 

prediction but also to aid the fragment optimization process. Software like LUDI 31, HOOK 32, CAVEAT 

33, RECORE 34, and many others have been developed for this purpose. Additionally, Schrodinger 35 

and CCG 36 implement in their software suites many tools to aid the fragment optimization process.  

Molecular dynamics (MD)-based tools represent the most advanced in silico techniques used in 

FBDD. The first application of MD to FBDD was the refinement of docking poses, a method note as 

post-docking 37. More advanced protocols have also been developed. Nonequilibrium candidate 

Monte Carlo (NCMC) is an algorithm that has been applied to enhance the sampling of fragment 

binding modes 38; this method has been successfully applied to FBDD 39. Another promising 

approach is the application of Markov state models to MD simulations, which has proved its 

potential to FBDD 40. Recently, Supervised Molecular Dynamics (SuMD) 41 has been applied as a 

fragment screening tool 42.  
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Molecular docking has also become a routinely used tool in FBDD. While the conformational 

sampling performs by docking protocols is generally effective in reproducing the correct pose for a 

ligand, the scoring functions frequently fail in valuating this pose 43, this is especially true for 

Fragment-like compounds for which many doubts have been raised about the docking applicability 

44. This said, to make the docking results more reliable a consensus docking approach was used 45, 

and instead of the scoring function, the poses were evaluated using a pharmacophore model. A 

post-docking refinement of the poses was then performed. A detailed explanation of the 

computational workflow adopted in the present work is reported in Section 4.1, Section 4.2, and 

Section 4.3. 

2. Results 

2.1. Computational Results 

A library of around 272,000 commercially available fragment compounds was screened in silico 

using an integrated structure-based approach based on different techniques such as molecular 

docking, molecular dynamics (MD), and pharmacophore filter. The workflow adopted is reported in 

Figure 1. 

At first, three independent docking-based virtual screenings were performed in parallel exploiting 

three different protocols: PLANTS-ChemPLP, GOLD-ChemScore, and Glide-SP. PLANTS exploits an 

Ant-Colony Optimization (ACO) algorithm, GOLD a genetic one while Glide performs an exhaustive 

search. The choice of these three protocols was made to evaluate the virtual library with three 

orthogonal search algorithms, to minimize the false-positive rate to which traditional docking-based 

virtual screenings are prone. At the end of each virtual screening, a total of about 13.6 M poses (50 

per ligand) was obtained for each protocol. The choice to generate such a great number of poses 

for each ligand was taken in order not to rely on the scoring function ability to prioritize the best 

binding mode for each compound, since fragments can have multiple binding modes that are similar 

from an energetic and qualitative point of view and are therefore difficult to distinguish for scoring 

functions that are trained upon mature, lead-like, compounds.  
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Figure 1. Schematic representation of the workflow adopted in the present work. First the fragments are 

retrieved from several vendors libraries. After proper preparation, the database is docked using three different 

docking protocols. the resulting poses have been filtered using a pharmacophore model and only the molecule 

that fit the model for each protocol have been retained. The poses of these molecules were further refined 

using MD to assess the stability of the binding mode. the molecules that appear to be stable were finally 

selected trough visual inspection. 

To filter this huge amount of ligand conformations and retain only the most interesting compounds, 

we decided to exploit the structural knowledge provided by the 23 Ck1d protein–ligand complexes 

deposited in the Protein Data Bank and create a pharmacophore filter. This pharmacophore model 

was built to retain those features which are vital for the interaction with the hinge region of the 

kinase since these features are the most commonly found across the structures. The 

pharmacophore included three features, two of them to guarantee the interaction with Leu85 (a 

hydrogen bond donor and a hydrogen bond acceptor) and the presence of and a feature for an 

aromatic ring also in the proximity of the hinge region. 

The pharmacophore filter was then applied independently on each pose database generated by the 

three different docking protocols. Exploiting an approach known as consensus docking, the three 

libraries containing those ligand conformations that fit the pharmacophore model were merged, 

retaining only those found within each dataset. After this consensus filtering, only 840 docking poses 

were left.  
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Figure 2. Representation of the pharmacophore model used in the present work. Some representative crystallographic 
ligands are displayed (not all for clarity). The Pharmacophore model is formed by an aromatic ring (the three orange 
spheres define the position and its orientation) and two hydrogen bonds with the backbone of Leu85 (an acceptor and 
one donor). 

To further filter out those poses characterized by unstable binding modes, a post-docking molecular 

dynamics refinement was performed (three replicates, 10 ns each). The average Root Mean Squared 

Fluctuation of atomic positions (RMSF) across the three replicates was used as a cutoff to eliminate 

those poses characterized by conformational instability over time. After filtering out those ligand 

conformations with RMSF > 2Å, 650 stable poses were maintained. 

With the intent of prioritizing the most interesting compound for in vitro assays, each pose was 

carefully manually examined. After this visual inspection 46 step, 66 fragments were finally selected 

to be purchased and tested. The structure of all the 66 fragment compounds tested are reported in 

supplementary Table S1, while the pose of each of them resulted from the VS pipeline is reported 

in Video S1.  

2.2. Enzymatic Assay Results  

Fragments were tested against CK1δ using a luminescent-based assay. Compounds were evaluated 

at a fixed concentration of 100 μM(see Figure 3) and those that showed a kinase residual activity 

lower than 40% were tested also at a fixed concentration of 40 μM (see Figure 4). 

IC50 values were calculated for compounds with a residual kinase activity lower than 40%. 

Compounds 37, 38, 52, 59,62 and 63 showed IC50 values in the micromolar range of 12.71 μM (9.57–

16.80), 20.49 μM (17.46–24.08), 13.50 μM (12.47–14.62), 13.92 μM (11.89–16.29), 18.15 μM 

(16.78–19.64) and 24.86 μM (21.46–28.92), respectively. Remarkably, compound 28 shows a half-

maximal inhibitory concentration of 3.31 μM (2.67–4.12). The IC50 curves for the seven hits are 

reported on SI. The value of IC50 is based on the average of three independent measurements. 
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Figure 3. CK1δ residual activity at a concentration of 100 μM of the ligand under examination.The molecules marked 
with a star has been tested at 50 μM due to solubility issues.  

 

Figure 4. CK1δ Residual activity at a concentration of 40 μM of the ligands that showed a residual activity of less than 
40% at 100 μM. 

2.3. Molecular Recognition Studies of the Most Promising Fragment 

To shed light on the possible recognition mechanism of the most effective inhibitor, compound 28 

(IC50 = 3.31 µM) was investigated by mean of Supervised Molecular Dynamics simulations (SuMD). 

The primary scope was to assess if the hypothesized bound state obtained by our computational 

protocol was also accessible by simulating the fragment association from the unbound state without 

any information about the ligand conformation. Since in our VS-pipeline the pharmacophoric filter 

plays a primary goal in defining the bound geometries, its validation by using a more articulated 
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technique based on MD and in which the water molecules need to be displaced by the fragment to 

reach the hinge region would provide the reliability of the binding mode.  

A complete recognition pathway of the length of 15 ns is reported in Video S2 (SI). Compound 28 

showed three steps during the recognition, with two stable states (Figure 6A).  

A pivotal role in the first phases (around 1 ns time mark) of the ligand recruitment within the binding 

site is played by Asp149, which acts as an electrostatic recruiter for the amino-thiophene moiety of 

the ligand. By contrast, the vicinal residue Lys38 hampers the ligand entrance into the core portion 

of the binding site due to the electrostatic repulsion between the charged amino group of the amino 

acid side chain and the non-charged amino group of the ligand. The balance in attraction and 

repulsion between the flexible side chains of these two amino acids located at the boundary of the 

binding site is depicted also by the large energetic funnel shown in Figure 6A at around 10 Å with 

regard to the distance between the centers of mass of the binding site and the ligand (dcmL-R). 

Afterwards, the binding pathway is characterized by two stable ligand conformations within the 

binding site. The first state (S1) occurred at a dcmL-R distance of 4.5 Å, with the ligand interacting 

with the backbone of Leu85 through its amino-thiophene moiety and the morpholine moiety 

oriented towards the external part of the binding site (solvent-exposed), while the second one (S2) 

at a dcmL-R distance of 1.5 Å is characterized by a bivalent hydrogen bond with Leu85 and the 

morpholine moiety of the ligand buried within the hydrophobic selectivity pocket defined by Met80, 

Met82, Ile23 and the alkyl portion of the Lys38 side chain. Although these two states are 

characterized by similar interaction energy values (according to the AMBER forcefield), their 

energetic funnels have different shapes: the final state (S2) shows a narrower profile than the S1 

state, suggesting that the pharmacophore binding mode (S2) has a higher stability than S1. 

Furthermore, the final bound state nicely retraced the pose obtained with the VS pipeline, validating 

both the pharmacophore model used in this work and the binding mode proposed by molecular 

docking for this compound (Figure 6B) 
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Figure 6. SuMD simulation of compound 28. In panel (A) the interaction energy landscape is reported for the recognition 
trajectory displaying the ligand–protein interaction energy plotted against the distances between the protein–ligand 
center of mass. In panel (B), the superposition of the VS-pose (cyan) for compound 28 against the lowest energy frame 
from the SuMD trajectory (orange). 

3. Discussion 

The seven fragments that were characterized by calculating the IC50 showed a noticeable 

chemical diversity including scaffolds spanning from one to three nitrogen-containing fused 

rings. The poses of the seven hits as obtained in the VS are reported in Figure 5. All the 

fragments logically share the common interaction pattern required by the pharmacophore 

filter. Interestingly, compounds 28, 37, 38, 52, 62, and 63 showed a similar interaction scheme 

in which an aromatic amine moiety was able to establish a hydrogen bond with the carbonyl 

oxygen of the Leu85 backbone while a further hydrogen bond between the Leu85 backbone 

amide is guaranteed by aromatic nitrogen in ortho to the amine group. Compounds 37, 52, 

and 59 share a conserved pyrimidine ring that is part of different fused systems. Compound 

59 also has the pyrimidine ring in a different orientation: it restores the hydrogen bond 

donor by its fused pyridone ring. Compounds 38 and 63 present the same scaffold. To assess 

the novelty of the identified fragments, a substructure search was performed against 

ChEMBL using the main ring recognized by the pharmacophore as a query; except for 

compounds 38 e 52, which resulted in 34 and 20 already known CK1δ inhibitors, for all the 

remaining hits none known inhibitors were found sharing the principal ring. The 3-amino-

indazole scaffold of compound 38 was found in a multikinase inhibitor (CHEMBL1999931) 

with a Ki of 316.23 nM 47. For compound 52 a couple of ligands with low uM activity were 

found; in particular CHEMBL2000114 with a Ki of 1 uM arose from the same kinome scan 
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from Abbott Labs 47. Additionally, compound GSK1838705A showed the same scaffold of 

52, in this case the Ki reported is 3.5 uM but it is a residual activity since the compound is a 

potent inhibitor of ALK kinase (IC50 = 0.5 nM) 48.  

Figure 5. The structure and binding mode for the seven compounds for which the IC50 value is reported. The 
value of IC50 is based on the average of three independent measurements. 

4. Materials and Methods 

4.1. Molecular Modelling and Docking 
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The virtual library used in this work was obtained through the merging of different libraries of 

commercially available compounds designed for FBDD. The vendors are Asinex, Chembridge, 

Enamine, Life Chemicals, Maybridge, Otava, Timtec, Vitas. The total number of fragments in the 

merged library is about 272,000 virtual compounds.  

The merged library was prepared to be suitable for the Docking-Based Virtual Screening. This 

preparation consists of the following steps: the tautomeric state enumeration for each compound 

and determination of the most probable tautomer (for each molecule at the three most tautomeric 

states was retained), the most probable ionization state at pH 7.4 calculation, the atomic partial 

charge calculation (using MMFF94 force field), the 3D coordinates generation. All these steps were 

performed using QUACPAC of the Openeye suite 49 except for the 3D coordinated generation for 

which Corina Classic was used 50. 

The protein used both for Docking and for MD simulation was prepared using MOE. The preparation 

consists of the removal of the crystallographic water molecules and other solvent molecules 

together with ions and the ligand. The correct protonation state for each residue at pH 7.4 was 

calculated with the Protonate3D tool of MOE. 

For the Consensus Docking strategy, three different Molecular Docking protocols were used. To 

make the results more robust, the three docking protocols chosen rely on search algorithms of 

different types. The Molecular Docking Protocols are PLANTS 51 which is based on an Ant Colony 

Optimization algorithm, GOLD 52,53 which employs a genetic algorithm, and Glide 54,55 which use a 

systematic searching approach. The Scoring Functions adopted are CHEMPLP for PLANTS, 

ChemScore for GOLD, and Glide SP for Glide. For each fragment 50 poses were generated using each 

Docking Protocol even if the termination criteria and the nature of the algorithms did not always 

provide 50 poses, in particular for Glide SP. 

Similarity and substructure searches were performed with MOE using the ChEMBL29 database. 

4.2. Pharmacophore Modeling 

Each ensemble of poses (one for each docking protocol) was then filtered using a pharmacophore 

model. This pharmacophore model was calculated using MOE: all the holo crystal structures 

available on the PDB for human CK1δ were superposed and the common features of each ligand 

were analyzed. The list of complexes included 23 complexes with PDB ID: 3UYT, 3UZP, 4HGT, 4HNF, 

4KB8, 4KBA, 4KBC, 4KBK, 4TN6, 4TW9, 4TWC, 5IH5, 5IH6, 5MQV, 5OKT, 5W4W, 6F1W, 6F26, 6GZM, 

6HMP, 6HMR, 6RCG, 6RCH.  
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Since the ligands present in the crystal structures are drug-like molecules, it is difficult that a 

fragment can comply with all the common features observed in the crystal structures. For this 

reason (and because as stated above the first fragment identified in an FBDD process of a kinase 

inhibitor is a hinge binding fragment) the pharmacophore model was built using only the features 

involved in the interaction with the hinge region of the kinase. The model included three features: 

one hydrogen bond donor and one hydrogen bond acceptor to guarantee the interaction with the 

backbone of Leu85 (Figure 2). The last feature represents an aromatic ring also in the proximity of 

the hinge region. Only the molecule that has passed the Pharmacophore filtering for each protocol 

hwas retained (consensus). 

4.3. Molecular Dynamics 

The molecules retained after the consensus filtering were subjected to a post-docking refinement. 

The docking pose used in this step is the one obtained from Glide. All the simulations were carried 

out using ACEMD3 56 with ff14SB as force field 57, the system preparation was conducted with MOE 

concerning protein preparation and with the use of AmberTools14 for the simulation box 

preparation. 

For each complex, a simulation box was prepared: the protein was immersed in an explicit TIP3P 58 

solvent box, with an ionic strength of 0.154 M obtained using Na+/Cl−. The protein is 15Å away from 

the border of the box.  

Using the conjugate gradient method, the system energy was minimized for 500 steps; after this 

minimization the system was equilibrated in two stages. The first equilibration consists of 1ns of 

NVT simulation with harmonic positional constraints of 1 kcal mol−1 Å−2 on the protein. In the second 

equilibration step, which consists in this case of 1ns of NPT simulation, the constraints of 1 kcal mol−1 

Å−2 were applied only on the α carbons of the protein. After the equilibration for each protein–pose 

complex, three NVT trajectories of 10 ns were produced. The average RMSF of the ligand during 

these three replicas was calculated and if this value was greater than 2Å the molecule was discarded. 

A Supervised Molecular Dynamics59,41 simulation was performed to gain some insights into the 

binding process of the most potent fragment (Compound 28). SuMD is an MD-based method 

developed to investigate molecular binding events without energetic biases. The algorithm is based 

on the supervision of the ligand–protein binding site center of mass distance during a classical short 

MD simulation. At the end of each small simulation (SuMD step), this distance is measured: if it has 

shortened during the SuMD step, the simulation continues with another SuMD step, otherwise, it is 
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stopped, and the simulation restarts from the previous set of coordinates. The fragment was placed 

30 Å away from the protein. Each SuMD step was set to 300 ps. 
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4.4. Enzymatic Assay  

Compounds were evaluated towards CK1δ (aa 1-294, Merck Millipore) with the KinaseGlo® 

luminescence assay (Promega) following procedures reported in the literature 22. In detail, 

luminescent assays were performed in white 96-well plates, using the following buffer: 50 mM 

HEPES (pH 7.5),1 mM EDTA, 1 mM EGTA, and 15 mM MgCl2. Compound PF-670462 (IC50 = 14 nM) 

was used as a positive control for CK1δ 60 and DMSO/buffer solution was used as a negative control. 

In a typical assay, 10 μL of inhibitor solution (dissolved in DMSO at 10 mM concentration and diluted 

in assay buffer to the desired concentration) and 10 μL (16 ng) of enzyme solution were added to 

each well, followed by 20 μL of assay buffer containing 0.1% casein substrate and 4 μM ATP. The 

final DMSO concentration in the reaction mixture did not exceed 1%.  

After 60 min of incubation at 30 °C, the enzymatic reactions were stopped with 40 μL of KinaseGlo® 

reagent (Promega). The luminescence signal (relative light unit, RLU) was recorded after 10 min at 

25 °C using Tecan Infinite M100. Fixed-dose experiments were performed at 100 μM and for more 

potent compounds also at 40 μM. Two independent experiments were performed in duplicate and 

the corresponding residual activity of CK1δ was obtained. Data were analyzed using Excel and 

reported as the mean of the two experiments with standard deviation. For IC50 determination ten 

different inhibitor concentrations ranging from 100 to 0.026 μM were used and each point was 

assessed in duplicate. IC50 values are the mean of three independent experiments and 95% 

confidence limits were also reported. Data were analyzed using GraphPad Prism software (version 

8.0). 

5. Conclusions 

In the present work to find new potential CK1δ inhibitors, we elaborated a computational workflow 

for the identification of candidate hinge binding fragments. This workflow consists of the generation 

of a large number of poses for each compound of a virtual library of commercially available 

fragments using three different Docking protocols. These poses were filtered using a 

pharmacophore model and only the fragment for which each docking protocol was able to produce 

a pose that fits the model was retained (consensus docking). In the next, step each protein-fragment 

complex that passed the previous filter was subjected to an MD-driven post-docking refinement to 

inspect the geometric stability of the pose. Finally, some fragments were manually selected among 

the group that demonstrated a good performance in the post-docking refinement; to validate the 

method these fragments were tested using an enzymatic assay test to assess the CK1δ residual 
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activity, and for the most promising candidates, the IC50 value was determined, with a value in the 

low micromolar range. Five of seven fragments showed novel scaffolds for CK1δ, confirming that 

the proposed pipeline could be particularly useful to identify novel structures.  
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In the Ph.D project discussed in the present thesis several structure based computational 

approaches have been discussed and their application in different contexts have been shown.  

These approaches include classic methods like Molecular Docking, that have been extensively 

analysed and applied for Virtual screening of Fragment molecules and for scaffold repurposing in 

order to find new kinase inhibitors, while these approaches still have a relevant role in 

Computational Aided Drug Discovery (CADD), more advanced tools to investigate in detail the 

ligand-receptor recognition are needed. In this perspective Supervised Molecular Dynamics 

simulations (SuMD) applications in CADD have been studied. 

SuMD has been applied for the prediction of Fragment molecules binding mode, studying the 

importance of structural water molecules, to assess if the explicit solvent full atomistic conditions 

used in the SuMD simulation can compensate for the lack of structural information regarding the 

solvent molecules (using HSP90 as a case study). Other target investigated for the applicability of 

SuMD for fragment posing include SARS-CoV-2 main protease.  

SuMD application has also been studied to elucidate the selectivity profile in a case study of 

Adenosine Receptors antagonists, where the final bound alone state cannot explain the observed 

differences, indeed some strong interactions between the antagonists and the receptor 

extracellular loops can be observed before the ligands reach the orthosteric binding site. 

Other case studies include the elucidation of the recognition pathway for a macrocyclic peptide 

ligand that bind thrombin, for several inhibitors of the SARS-Cov-2 main protease and the NorA 

efflux pump. 

 


