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Abstract

In this paper, we analyse a new formulation of Stackelberg differential
games. We assume that the Leader can control not only the dynamics of
the game, but also the length of the programming interval. This formu-
lation of a free final time Stackelberg differential game is not explicitly
considered in the literature and presents some interesting issues. After
a formal definition of this kind of differential game, we show, using a
practical example, the main difficulties associated with this new defini-
tion. We close the article by presenting two open questions related to
this issue.

Mathematics Subject Classifications: 49N70, 91A23, 91A65

Keywords: Stackelberg differential games; Free final time; Optimal control

1 Introduction

Differential game theory is a widely used tool to study economic and market-
ing problems that involve interactions between some decision makers. Game
theory is essential for the formalisation of many problems [3], while optimal
control theory is fundamental for their analysis [6]. Among the main applica-
tions of this theory, we find advertising models [5] and supply chain problems
[2]. In both of these applications, hierarchical situations become increasingly
relevant [4], making the corresponding concept of Stackelberg equilibrium a
decisive matter. A differential game played la Stackelberg allows one to study
situations where players have asymmetrical roles. For this reason, they are
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68 C. Brambilla and L. Grosset

called Leader and Follower, and the game occurs as follows [3, Ch.5, p.113]:
the Leader first declares his strategy, and then the Follower chooses his own
best response to Leader’s announcement. At this point, knowing Follower’s
response, the Leader picks his best strategy choice. Free final time games
are useful to describe economic problems with time as a decision variable; al-
though, to the best of our knowledge, there are no papers analysing free final
time Stackelberg differential games [3]. When the final time is free, it becomes
a decision variable for the Leader. In a free final time Stackelberg differential
game, the sequential decision making is similar to what described above, ex-
cept that, at first, the Leader declares both his strategy and the final time,
and finally, computes the final time as well. We contribute to the literature
by introducing the definition of a free final time Stackelberg differential game
and by describing the analytical procedure to characterise such an equilibrium.
The paper is organised as follows. In Section 2, we present the definition of
a free final time Stackelberg differential game. In Section 3, we show how to
find such an equilibrium in an example. In Section 4, we describe two open
questions associated with this new definition.

2 Free final time Stackelberg differential game

Consider the following two-player differential game, where F denotes the Fol-
lower and L the Leader. The players’ profits are

Jj =

∫ T

0

gj(x(t), uL(t), uF (t), t)dt

where j ∈ {L, F}, and the motion equation is

ẋ(t) = f(x(t), uL(t), uF (t), t)

subject to the initial condition

x(0) = x0 ∈ R

and the final constraint

x(T ) ≥ x̄ ∈ R .

We assume that functions gF , gL are continuously differentiable in all their vari-
ables and the controls uF (·) , uL (·) are in L1 ([0,+∞) , Uj), where j ∈ {L, F}
and Uj ⊂ R, so that both objective functionals are well defined. Moreover, we
assume that f is continuously differentiable in all its variables and Lipschitz
continuous in the state variable x uniformly with respect to the control vari-
ables uL, uF so that the link between state and controls is well defined [6, Ch.2,
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p.73]. For the sake of simplicity, we deal with a one-dimensional instance of
the problem; the multidimensional extension is straightforward.

Instead of a formal definition of free final time Stackelberg differential game,
we prefer to illustrate a procedure to characterize an open-loop equilibrium.
This approach is useful because it directly refers to necessary conditions, hence
it is more practical and effective.

2.1 Follower’s optimal control problem

First of all, in a free final time Stackelberg differential game the Leader an-
nounces the control path ûL (·) and the final time T̂ ∈ [0, T ], where T is the
maximum feasible final time. We notice that in the literature the final time is
fixed, whereas here it is part of Leader’s strategy.

At this point, the Follower has to find a best response function [3, Ch.2,
p.17] to such a Leader’s strategy. To compute which, the Follower solves the
optimal control problem

max
uF (·)

∫ T̂

0

gF (x(t), ûL(t), uF (t), t)dt

s.t.
ẋ(t) = f(x(t), ûL(t), uF (t), t)
x(0) = x0 .

We observe that the Follower does not have to consider the final state con-
straint (otherwise the open-loop equilibrium would be time inconsistent, [1]).
Follower’s Hamiltonian function [6, Ch.2, p.85] is

HF

(
x, λF , uF , t| ûL(t), T̂

)
= gF (x, ûL(t), uF , t) + λFf(x, ûL(t), uF , t) .

We assume that the necessary conditions for Follower’s optimal control prob-
lem [6, Ch.2, p.85] are also sufficient. Hence, it is well defined the function

u#
F (x, λF , t| ûL(t), T̂ ) := arg max

uF

{
HF

(
x, λF , uF , t| ûL(t), T̂

)}
.

Moreover, we suppose that the two-point boundary value problem
ẋ(t) = f(x(t), ûL(t), u#

F (x(t), λF (t), t| ûL(t), T̂ ), t)
x(0) = x0

λ̇F (t) = −∂xHF

(
x(t), λF (t), u#

F (x(t), λF (t), t| ûL(t), T̂ ), t
∣∣∣ ûL(t), T̂

)
λF (T̂ ) = 0

has a unique solution (x#(t), λ#
F (t)), for all t ∈ [0, T̂ ] and for all ûL(t) ∈

L1([0, T̂ ], UL).
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Finally, we assume that UF is a convex subset of R and the function

(x, uF ) 7→ HF

(
x, λ#

F (t), uF , t
∣∣∣ ûL(t), T̂

)
is concave for all T̂ ∈ [0, T̄ ], for all t ∈ [0, T̂ ] and for all uF ∈ UF . Under these
hypotheses, the function

u#
F (x, λF , t| ûL(t), T̂ )

is the best response function of the Follower to any Leader’s strategy [3, Ch.2,
p.17].

2.2 Leader’s optimal control problem

Now we can focus on the optimal control problem of the Leader.

max
T∈[0,T̄ ],uL(·)

∫ T

0

gF (x(t), uL(t), u#
F (x, λF , t|uL(t), T ), t)dt

ẋ(t) = f(x(t), uL(t), u#
F (x(t), λF (t), t|uL(t), T ), t)

x(0) = x0

x(T ) ≥ x̄

λ̇F (t) = −∂xHF (x(t), λF (t), u#
F (x(t), λF (t), tuL(t), T ), t|uL(t), T )

λF (T ) = 0 .

This is a free final time optimal control problem; therefore, if we characterise
the optimal time T ∗ and the optimal control u∗L(·), we find an open-loop Stack-
elberg equilibrium for a free final time Stackelberg differential game.
This approach has two critical issues:

• The previous free final time optimal control problem is not standard
since the differential equation for the adjoint function of the Follower is
backward, so the function λF (·) becomes a new state function for the
Leader, and, as a consequence, the standard necessary conditions for a
free final time optimal control problem do not hold.

• Time consistency is crucial for an open-loop Nash equilibrium in a Stack-
elberg differential game; however, in this new framework, the standard
condition about the controllability of the adjoint function of the Leader
is not straightforward because the Leader can control the final time.

In the following section, we introduce an example to better explain this pro-
cedure.
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3 Numerical example

In this section, we propose a numerical example to show how to characterise
an open-loop equilibrium for a free final time Stackelberg differential game.
The objective functional of the Leader is

JL =

∫ T

0

e−t
(
uL(t)− 1

2
uF (t)u2

L(t)

)
dt

while the objective functional of the Follower is

JF =

∫ T

0

(
uF (t)− 1

2
u2
F (t)

)
dt .

The motion equation is described by the Cauchy problem{
ẋ(t) = −uL(t)− uF (t)
x(0) = 4 .

Moreover, we assume that the Leader has to satisfy the final constraint

x(T ) ≥ 0 .

Both controls must be positive, i.e. uL(t), uF (t) ≥ 0 for all t ∈ [0, T ], and the
Leader can choose the final time in the interval [0, 2.5].
Let us start our analysis by assuming that the Leader proposes a strategy to
the Follower. We denote by ûL(·) and T̂ this strategy (with T̂ > 0). At this
point, we find the best response function of the Follower.
Follower’s Hamiltonian function is

HF (x, uF , λF , t) = uF −
1

2
u2
F + λF (−ûL(t)− uF ) .

We compute
∂uF

HF (x, uF , λF , t) = 1− uF − λF
and

∂2
uFuF

HF (x, uF , λF , t) = −1 ;

hence, Follower’s best response function is

u#
F (x, λF , t) = 1− λF .

Moreover, from the adjoint equation and the transversality condition, we have
λ̇F (t) = 0 and λF (T̂ ) = 0; therefore, λF (t) = 0 for all t ∈ [0, T̂ ]. Thus, the
best response function becomes

u#
F (x, λF , t) = 1 .

We notice that the Hamiltonian function of the Follower is concave in the state
and in the control, hence the sufficient conditions [6, Ch.2, p.105] are satisfied.
In this example:
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• the adjoint equation is uncoupled from the motion equation, therefore we
can explicitly solve it, and, as a consequence, Follower’s adjoint equation
does not become a motion equation for Leader’s problem;

• Follower’s best response function does not depend on T̂ , because of the
simplicity of the model.

Now, we study Leader’s optimal control problem. The Hamiltonian function
is

HL(x, uL, λL, t) = λ0e
−t
(
uL −

1

2
u2
L

)
+ λL(−uL − 1) .

The necessary conditions [6, Ch.2, p.143] are

1. (λ0, λL(t)) 6= (0, 0) for all t ∈ [0, T ∗];

2. u∗L(t) ∈ arg maxw{HL(x∗(t), w, λL(t), t)} for all t ∈ [0, T ∗];

3. λ0 ∈ {0, 1};

4. λ̇L(t) = 0 for a.e. t ∈ [0, T ∗];

5. λL(T ∗) ≥ 0, x∗(T ∗) ≥ 0, λL(T ∗)x∗(T ∗) = 0;

6. HL(x∗(T ∗), u∗L(T ∗), λL(T ∗), T ∗) = 0.

Suppose, at first, that λ0 = 0. Then λL(t) = λ̄ for all t ∈ [0, T ∗] and λ̄ must be
strictly positive. However, by maximising the Hamiltonian function, we have
u∗L(t) = 0 for all t ∈ [0, T ∗], which is not feasible because

HL(x∗(T ∗), u∗L(T ∗), λL(T ∗), T ∗) = λL(T ∗)(−u∗L(T ∗)− 1) = −λ̄ < 0 .

Hence, let us assume that λ0 = 1. We compute

∂uL
HL(x, uL, λL, t) = e−t (1− uL)− λL

and
∂2
uLuL

HL(x, uL, λL, t) = −e−t ;

thus,
u#
L (x, λL, t) =

[
1− λ̄et

]+
.

If λ̄ = 0, then u∗L(t) = 1 for all t ∈ [0, T ∗]; therefore the solution is not feasible
because

HL(x∗(T ∗), u∗L(T ∗), λL(T ∗), T ∗) = e−T
∗
/2 > 0 .

Thus, it must be λ̄ > 0. We notice that the map t 7→ 1 − λ̄et is a strictly
decreasing function, hence either u∗L(T ∗) = 0, or u∗L(T ∗) > 0. If u∗L(T ∗) = 0,
then

HL(x∗(T ∗), u∗L(T ∗), λL(T ∗), T ∗) = −λ̄ < 0 ,
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hence this solution is not feasible. Therefore, for all t ∈ [0, T ∗]

u#
L (x, λF , t) = 1− λ̄et .

From the motion equation, we obtain x∗(t) = 4 − 2t + λ̄(et − 1) and, by the
transversality condition, we get x∗(T ∗) = 4 − 2T ∗ + λ̄(eT

∗ − 1) = 0 , which
gives us

λ̄ =
2(T ∗ − 2)

(eT ∗ − 1)
,

that is feasible if and only if T ∗ > 2.
Finally, by the free final time condition, we have

HL(x∗(T ∗), u∗L(T ∗), λL(T ∗), T ∗) = e−T
∗
u∗L(T ∗)

(
1− 1

2
u∗L(T ∗)− λ̄eT ∗

)
−λ̄ = 0 ,

which becomes

4(T ∗ − 2)2eT
∗ − 8(T ∗ − 2)

(
eT

∗ − 1
)

+ e−T
∗
(eT

∗ − 1)2 = 0 ,

whose unique solution is T ∗ ≈ 2.1179.
Futhermore, we observe that HL(x∗(T ), u∗L(T ), λL(T ), T ) is positive for T <
T ∗, while it becomes negative for T > T ∗. Therefore, the sufficient conditions
[6, Ch.2, p.145] are satisfied. Hence, we have completely characterized the
open-loop equilibrium for the free final time Stackelberg differential game.

4 Conclusions and open problems

In this paper we have introduced the definition of open-loop equilibrium for
a free final time Stackelberg differential game. Then, we have proposed a nu-
merical example to prove that this equilibrium can be explicitly characterized.
After our analysis, two issues remain open.

First of all, in the numerical example introduced in Section 2, the adjoint
function of the Follower can be explicitly solved, hence the Leader has to solve
a standard free final time optimal control problem. In the numerical example,
the condition about the vanishing of the Hamiltonian function in the optimal
final time is correct. However, it cannot be used in general because of the
backward motion equation introduced by the adjoint function of the Follower.

Furthermore, time consistency is a key issue in Stackelberg differential
games. In our numerical example, time consistency is trivially satisfied be-
cause the strategy of the Follower is uniform with respect to Leader’s one.
In general, this is not true and time consistency become more relevant to pre-
serve the credibility of an equilibrium. It seems interesting to characterize some
classes of problem that have a simple structure such that time consistency is
automatically satisfied.
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In conclusion, even though this new definition seems to be a straightforward
extension of the original Stackelberg differential game, its analysis appears to
be rich of new stimulant situations.

Acknowledgements. Luca Grosset would like to dedicate this paper to his
colleague and friend Silvia Mendo who prematurely passed away last year.
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