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Abstract

To conduct landslide risk assessment and structural health monitoring, it is
important to understand the overall failure evolution process that ranges from
small-strain initiation to large-strain post-failure run out. To achieve this goal
and simulate such events, emerging large-strain numerical approaches, such as
the Material Point Method (MPM), show promising potential as tools to model
the entire instability mechanism, whilst successfully incorporating multi-phase
interactions in granular porous media. In the specific context of water retaining
geostructures stability predictions, the quantification of the mobilized soil mass
and the run-out distance are not traditionally addressed. This is related to the
common approaches in use, relying on the definition of the Factor of Safety (FS)
using Limit Equilibrium Methods (LEM) and Finite Element Methods (FEM).

Based on these premises, this thesis work is focused on improving predictive
numerical techniques for slope stability analysis, developing and using multiphase
MPM approaches.

In Chapter 1 research context and motivations of the study are presented. The
chapter is articulated in a brief review of river levee collapse mechanisms, stressing
the accent on macro or global instability mechanisms, the ones considered in this
thesis. Approaches from the literature used to study this complex problem are
retraced, which include experimental approaches (small, large scale and centrifuge
tests), study of case history, and numerical approaches (mostly LEM and FEM
based analysis). An example of a typical levee safety analysis, based on the use of
conventional numerical methods, is presented.

Chapter 2 focuses on the fundamentals of MPM, together with an overview
of the current multiphase formulations of the method. This chapter provides a
further contextualization of the research work.

At this point, the research activity is configured in a “testing” phase. An existing
multiphase MPM formulation, the 2Phase Double Point approach, suitable for
fully saturated soils and able to track relative displacements between fluid and
solid, is considered. A well-known benchmark case, the soil column collapse, is
investigated numerically and experimentally. Subsequently, the analysis moves to
a large-scale problem, the failure of a levee due to rapid draw down. The results
of the testing phase are presented in Chapter 3.

Based on the experience collected, and some limits identified in the saturated
formulation used, a “development” phase starts (Chapter 4), focused on the
implementation of an unsaturated MPM formulation with a complete set of
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hydraulic boundary conditions. The governing equations are derived from the
balance equations of the solid and liquid phases that account for partial saturation
effects, and the soil is discretized with a single set of material points that move
according to the displacement of the solid phase. The implementation of different
types of boundary conditions, such as transient hydraulic head, seepage face, and
infiltration/evaporation, is discussed in detail. A validation procedure is put in
place by considering 1D and 2D examples of seepage in different domains.

A numerical stability study is conducted for the first time for an unsaturated
MPM formulation, given the explicit nature of the integration in the time scheme.
Some preliminary criteria are obtained, relating the critical time step and the
degree of saturation, and compared with the numerical simulation results. The
formulation development and the study about the critical time step have a strong
general validity for MPM users.

Finally, Chapter 5 is dedicated to applications of the newly developed formula-
tion to several slope stability cases. At first, the method is applied to theoretical
cases to simulate levee collapse due to rapid drawdown and rainfall. It these cases
it emerges the capability of MPM in fully quantifying the displacements character-
izing the slope’s movement, giving further meaning to situations where FS < 1: it
is possible to distinguish between load combinations inducing catastrophic collapse
or small displacements.

Later, a large-scale slope failure experiment, carried out in 2009, is considered
to test the formulation. Results are compared with the Limit Equilibrium Method
(LEM), and an advanced constitutive model accounting for suction effect on
strength parameters is used.

Additional applied cases are explored and presented in this thesis at a preliminary
level: the investigation of a levee instability induced by toe uplift. This case
considers a centrifuge experiment carried out in 2003 which is reproduced with
MPM, with the aim of understanding the triggering mechanism and exploring
the post failure behavior. The last two examples allows for reproducing massive
collapse of the investigated earth structures.

The ease in employing the formulation in different cases, and the chance to
perform whatever parametrical analysis, appears as a strong feature to extend in
the future the use of this MPM formulation to several other applied cases where
partially saturated slopes, artificial or natural, and other geotechnical problems of
soil-water-structure interactions are investigated.

Conclusions and potential future developments conclude the thesis.
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1
Research context and motivations

1 Introduction

River levees are earth embankments, also named flood embankments or dikes,

designed to protect from flooding. Water tightness and stability are the primary

functions of these earth structures. When levees collapse, economical and human

lives losses are extremely impacting on the surrounding territories. In relation

to this aspect, a progressive increase of failure events has occurred in the last

century. This trend has pushed researchers to investigate the main causes of failure,

with the aim of improving prediction techniques and consequent risk mitigation

measures.

On a general level, it is well known that the global climate change, impacting

on the hydrologic regimes and runoff capacity of rivers [1], is among the primary

causes of the increasing failure rate. In addition, progressive urbanization of

areas near levees, in relation to population growth, is determining an increased

vulnerability, thus an increased risk.

On a more specific level, failure of levees is characterized by several complexities

in relation with their geotechnical behavior as water retention earth structures.

Among these complexities we can mention the understanding of the behavior of a

levee in relation with its heterogeneous composition, or understanding in which

extent certain combinations of hydraulic loads impact on the overall stability, how
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much is sptatially extended a levee breach, but also the impact of unsaturated

soil state on the hydromechanical response during transient loading events.

When it comes to identifying and reproducing instability of levees, these chal-

lenging aspects need to be carefully studied and included in the description.

Identification and reproduction are at the base of a correct prediction, allowing to

control the structure behavior in time and to put in place suitable interventions.

In the following section, some major complexities associated to the understanding

and prediction of river levees behavior are presented, to highlight the research

context and the specific gap of knowledge target of this research work.

2 Identification and reproduction of failure mechanisms in flood

embankments

Researchers and geotechnical engineers, called to formulate hypothesis on fail-

ure causes and failure progression, have been developing models to explain the

complex reality characterizing river levees along the years. In fact, to improve

the understanding of failure causes, in several manuals and publication ([1, 2],

among others) it is common to find a classification of levee’s collapse mechanisms.

These mechanisms depend on levee consistency, stratigraphy of foundation soils

and hydraulic loads intensity. They are summarized in Fig. 1.1. For sake of

simplicity, only static conditions are considered, since failure induced by shaking

would require an in-depth treatment, out of this work scope.

1. External erosion

The first three mechanisms, Fig. 1.1(a), (b), (c), are classified as external
erosion phenomena. The first one, Fig. 1.1(a), overtopping and overflowing,
is globally responsible of about 50 % of levee failures [3]. Most of the
time, the direct consequence is a breach opening in the levee with rapid
development and destruction of the entire section. Erosion of the first bank,
reported in Fig. 1.1(c), also known as undercutting, develops when tangential
forces exerted by the river flow exceed the erodibility threshold of the soil of
the inner bank. Sediment transport can further contribute to the erosion
process, together with the natural settlement of the river bed.

Ultimately, the collapse of the inner slope usually occurs when the river
level is decreasing. Another frequent phenomenon of erosion of the inner
side occurs at the interface between the levee and man-made structures on
it (see Fig. 1.1(b)), linked to the stiffness contrast between the materials.
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2. Internal erosion

The second subcategory is represented by internal erosion, reported in
Fig. 1.1(d), (e), (f)). Internal erosion takes place either in the levee body or
in the foundation soils and usually impacts on the landside stability. It is the
result of progressive removal of fine particles due to seepage forces, hence the
soil mixture tends to become progressively more permeable, thus favoring
stronger seepage flows. It is recognized that there are four mechanisms of
initiation and progression of internal erosion.

Contact erosion, occurs at the contact between coarse and fine layers, with
some washing out of fine particles, due to seepage forces parallel to the
stratification.

Migration erosion, suffosion, Fig. 1.1(d) is a not localized phenomenon
whereby fine particles are transported through the voids of the solid matrix
during seepage flow.

Retrogressive erosion (piping, Fig. 1.1(e)), begins at a free surface on the
downstream side of a dam or levee. The process progresses beneath the
levee or dam. For this to occur, the levee or dam, or the cohesive strata,
must form a roof for the eroding “pipe”. The presence of backward erosion
piping is often exhibited by the presence of sand boils at the downstream
side of the dam or dike [4].

Concentrated leak erosion, may occur through a crack or hydraulic fracture.
Cracks or other continuous open paths for water may occur because of the
collapse of settlement of poorly compacted fill in the embankment, around
conduits and adjacent walls. They may also occur due to the action of animals
burrowing into levees Fig. 1.1(f) and small dams and tree roots rotting in
the dam and forming a hole [4]. Internal erosion can be associated also
with through-penetrating structures, such as conduits associated with outlet
works, in analogy with the previous case (b) of soil-structure interaction.

3. Macro or global instability

Macro-instability is characterized by rotation and sliding of portions of the
levee and its foundation on either landside Fig. 1.1(g) or riverside Fig. 1.1(h).
The sliding can occur at the landside (during a high level of the outer water)
or at the riverside (during a quick fall of the outer water level after a period
of high water). Favorable conditions for this mechanism are represented by
transient seepage in the levee, modifying the pore pressure distribution with
an overall increase. This alteration of pore pressure results in a reduction
of the effective stress, thus a progressive decrease of strength. When the
maximum strength is exceeded, localized failure occurs, which can progress
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with the formation of slip surfaces along which rotation or roto-translation
occurs. If in addition, the levee materials have experienced progressive
damage with time, due to cycles of wetting and drying, cracks may be
present, favoring the pressure increase, thus accelerating the phenomenon
[1].

In the same category of macro-instabilities, it is possible to classify the
instability induced by toe-uplift impacting on the levee external slope (see
Fig. 1.1(i)). This mechanism occurs when a permeable layer of sand in the
subsoil is covered by a relatively impermeable, weak and lightweight layer
of clay/peat. In addition, the sand layer is in direct connection with the
river, functioning as a water conduit. During extreme river levels, the water
pressure in the deeper more permeable sand layer increases relatively fast,
and as a result the upper clay/peat layers at the inner side can be lifted due
to the upward water pressure. Under the lifting zone, a zone of constant
pressure develops at the interface between sand and clays, and sliding of the
top layer occurs. Lastly, the failure surfaces can extend on the landside and
riverside, determining a well known block-shapes surface, which can involve
total-height portions of the levee body.

Naturally, the above-mentioned mechanisms can also combine in some real

scenario. Despite this classification, which summarizes the main physical aspects

of each mechanism, a complete understanding of these failure events is not yet

reached. These events depend on complex multiphase processes, before, during

and after failure.

Overtopping Erosion structure-levee interface Erosion first bank

Internal erosion Piping Animal burrows

Landside sliding Riverside sliding Toe-uplift and sliding

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 1.1: Principal levees collapse mechanisms: (a), (b), (c) External erosion related; (d), (e),
(f) Internal erosion related and (g), (h), (i) Macro-instability, seepage related.

The focus of this research work is exploring a specific category of instability
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affecting levees and other water retaining geostructures: the macro-instabilities.

Identification and reproduction are herein explained in relation to this category of

instabilities. However, some considerations are valid also when considering other

specific mechanisms.

In general, we can say that identification has two connotations: prior to the

event, in the sense of detection/anticipation, and after the event, when causes

and evolution of failure need to be reconstructed, considering the occurred soil

mass movement. Failure of levees or portions of them due to a global or macro

instability is most of the time rapid, characterized by extremely fast movement

of soil masses with variable saturation. This rapidity poses difficulties in the

detection prior to the event. Indeed, it is troublesome to track evolution of small

displacements, or identify strain threshold which can be used as an indicator in

time, like in landslides, before the event. Thus, design of specific monitoring

and early-warning systems for levees is a challenging and up-to-date research

branch working in parallel with the numerical modelling activity. Most of the time,

rather than deformation, the focus is on hydraulic variables monitoring, since

in many circumstances it’s pointless to monitor deformation with conventional

geotechnical instruments (like inclinometer), or use non-invasive techniques (like

photogrammetry or geophysical tests). Seepage flow detection is hard to be

performed even using conventional geotechnical instrumentation, such as pore

pressure sensors, because its effect on pore water pressures is highly localized [5].

In light of the current limitations associated to in site instrumentation’s predic-

tion capacity and the economical constrains for the installation in these kilometric

earth structures, it emerges that the use of numerical predictions is straightforward

and more convenient.

The washing out of soil, when water previously retained is released on the

landside, often erases every trace of the pre-existent structure, making it tough to

understand causes of collapse, stratigraphy before the event and the predominant

failure mechanism occurred. This aspect is peculiar of water retention earth

structures and requires the development of numerical tools able to account for two

main elements: full hydromechanical interactions, in saturated and unsaturated

conditions, and large displacements. Multiphase interactions in unsaturated

and saturated conditions determine hydraulic and mechanical response at the

macro-scale. Often there are gaps between laboratory experiment conditions
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and real field, due to scale effects and heterogeneity of the involved soils [4],

making troublesome understanding the actual phenomenon occurring at the

macro scale. When considering for example a global stability assessment, it is

common practice to perform uncoupled seepage and stability analysis. With this

procedure, hydromechanical interactions between soil skeleton and pore fluid,

governing the embankment response, are generally not considered, which often

makes the results inaccurate and unreliable. For example, neglecting the suction

effects in unsaturated soil behavior can introduce excessive underestimation of soil

shear strength. In practice, unsaturated conditions are often neglected or loosely

considered in an extremely crude manner. In the past two decades, the geotechnical

research community has been determined to clarify the role of unsaturated soil

behavior in the governing failure mechanism of water retention structures, with

numerical and field studies [6, 7, 8, 9]. In this work particular importance is given

to this aspect in the modelling activity, and an entire chapter will be dedicated to

the development of a multiphase tool able to fully account for the unsaturated

soil behavior.

The hydromechanical interactions in water retention earth structures like levees

are a consequence of the hydrodynamic load system acting on them. This system

needs to be carefully studied to understand its evolution with time, including the

effects of climate change [9]. River level rise and infiltration due to rainfall induce

variations in the phreatic level in the levee body, in turn affecting the effective

stress state and the material strength. When considering a levee with a clay core,

a high river level will mainly influence the phreatic level at the riverside. Due to

the relatively short duration of a high river level, extreme rainfall has, for most

clay dikes, a stronger influence on the phreatic level development. A worst-case

scenario is the occurrence of a high water level after a period of extreme rainfall

[10]. This scenario of combined hydraulic loads, rainfall and high river level,

is not categorized among the principal instability mechanisms above-mentioned.

However, it is reasonable to assume that a macro-instability can be triggered

in an easier manner, and for lower river levels, if rainfall is contributing to the

saturation. This occurrence will be carefully examined in the following chapters,

and specific features developed to reproduce transient hydrodynamic load systems.

A challenging aspect in slope stability prediction includes the quantification

of the mobilized soil mass and the run out distance, which are not traditionally
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addressed by practitioners. An example of a conventional numerical analysis for

levees’ safety assessment is carried out in the following Sec. 2.2, complemented by a

brief list of limitations of the conventional approach used. Common approaches to

perform safety assessment rely on the Factor of Safety (FS) definition by means of

Limit Equilibrium Methods (LEM) and Finite Element Methods (FEM) [11]. FS

is commonly defined as the ratio between maximum available shear strength and

mobilized shear stress. This ratio does not provides information on deformations

that can generate catastrophic consequences to the downstream communities.

With LEM, FS is estimated on the basis of equilibrium considerations assuming

an arbitrary failure mechanism and rigid-plastic soil behaviour. The fundamental

shortcoming of limit equilibrium methods, which only satisfy equations of statics,

is that they do not consider strain and displacement compatibility [12]. With

the advent of FEM, the FS calculation has been enhanced considering the soil

stress-strain behaviour [13]. Hence, the failure surface is a result of the model

and does not need to be defined prior to the analysis. Moreover, the complex

hydromechanical behaviour of the soil can be included at small-strain. However,

modelling the deformations beyond the onset of failure is not possible with FEM

since the method is limited to small deformations of the computational mesh

elements. A more robust safety assessment should be based on the simulation of

the entire failure mechanism from failure initiation to post-failure behaviour of

the structure. This is of vital importance as the severity of floodplain inundation

depends on the magnitude of the large deformations potentially experienced by

flood embankments. Quantifying the deformations occurring in these structures,

in terms of crest settlement and breach extension in longitudinal direction, is

considered a key element to the design reliable risk assessments. The cost of river

levees can be significantly reduced if targeted repairing or improvements could

be designed based on the effect of the potential instability. This requires the

simulation of large-strains, that is possible by using the Material Point Method

(MPM) as shown in the following chapters of this thesis.
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2.1 Current approaches to study and predict the macro-instability

mechanisms

The current approaches to increase knowledge about macro-instability in river

levees can be categorized in four main types:

1. Experimental approaches

These approaches can be further subdivided in small scale and large scale.
Small scale approaches can aid in clarifying some detailed physical processes
governing the slope instability mechanisms ([14, 15]). Thus, these experi-
ments have validity on several applied cases, not only considering levees. In
particular, studies on the impact of rainfall on model slopes stability can
provide guidance in treating similar issues for levee ([16, 17]) To bypass
the problem of scaling laws, to extend considerations from small-scale to
large scale, geotechnical centrifuge apparatus are used. This system allows
for working on a small scale physical model but considering a real state of
stress, thanks to the progressive gravity increase ([18, 19, 20]). Large scale
approaches are based on the construction of real scale levees, both in the
laboratory or in the field. As major drawback, they are limited by high costs.
Among them, it’s worthy to mention the experiences by [21, 22, 23, 24].

2. Monitoring approaches

Monitoring system, as previously introduced, are mostly focused on pore
pressure record, phreatic surface definition and evolution, together with the
monitoring of unsaturated soil variables. Monitoring system can be installed
in existing levee structure or in experimental slopes [21, 25, 26], and needs
preliminary calibration steps. They can be categorized in localized system
(like piezometers, tensiometers) or distributed systems (like optical fibers),
but also they can be based on geophysical measurements [27]. Lastly, they
can be suited to function as early warning systems [28].

3. Numerical approaches

As previously mentioned, the most used numerical approaches are based on
LEM and FEM. There are plenty of cases in the literature and in technical
reports which report the use of these numerical techniques to assess levee’s
safety by computing the FS. The numerical methods can be employed to
investigate experimental results, explain failure causes and mechanisms in
relation to selected case studies, to understand failure with theoretical slopes
with realistic solicitation scenario, to calibrate models, to make prediction
and to assess the increase of safety with introduction of reinforcement
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measures. Very limited experiences with the use of large strain numerical
models have been attempted before this research work [29, 30].

4. Probabilistic approaches

Given the extent of the levee systems and the complexity of the interaction
between the different potential modes of failure, stochastic methods are
increasingly being applied in the context of risk analysis to assess potential
for failure and to prioritize repairs and modifications [31]. Either analytical
or numerical methods are used to assess safety in a conventional manner
by defining the FS. However, a reliability analysis consists in accounting
for parameters variability (material, geometry, boundary conditions, failure
modes) in the computation of FS. Thus, the condition of FS ≤ 1 is also
expressed by a cumulative distribution function, also named fragility curve.
If considering a single failure mode, it is possible to determine the impact of
each property or parameter on the failure mode. Whereas, if several failure
modes are considered, the failure mechanism with the highest probability
to occur can be identified.Fragility curves for different failure mechanisms
can also be combined in a single composite fragility curve. Probabilistic
approaches combined with FEM seepage and LEM based safety assessments
can be found in [31, 32, 33, 34] Differently, other authors employ FEM or
Random Finite Element Method [35, 36, 37, 38].

5. Review of case studies

The review of case studies allows for understanding increase, and it has
relevant impact on the national and international level. Procedure of investi-
gations, and definitions of material parameters, methodologies to approach
to the failure analysis, are introduced and represent a reference for future
studies. In addition, they provide support for improvement of design and
safety assessments based on current legislations. There are several experi-
ences in the literature, some popular cases occurred on the national territory
and outside can be found in [6, 9, 39, 40, 41, 42]. Recently, a first attempt
to build an international levee failure database was done by [43].

The research work object of this thesis is focused on numerical approaches
improvement. Small and large scale experimental data are used to apply
the numerical tool which will be developed. Alternatively, it is possible to
apply the numerical tool to a case study. For a better understanding of the
state of the art of conventional procedures for safety assessment of levees,
an example of workflow to investigate a levee section stability is presented
in the following section.
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2.2 An example of workflow to assess levee safety with a con-

ventional numerical analysis

The safety analysis herein presented consider a typical levee section of the lower

Tagliamento river, in the north-east of Italy. An investigation campaign is carried

out in 2020 on a levee stretch of approximately 30km (starting from the river

estuary and going toward the north) considering only the right orographic side.

As previously introduced, a progressive level of detail is used for the investigation

of levee geometrical features, consistency state, i.e. physical and mechanical

properties.

To start, all the available information about the study area are collected.

Inspections are conducted along the entire levee stretch to acquire information

about the levee consistency (from the “outside”) and to check for the presence of

localized phenomena, like animal burrows or erosion near the inner banks. Animal

burrows are not clearly visible and erosion is limited to two locations where the

flood plain has an extension of hundreds of meters. Thus, the erosion phenomenon

is far from the levee toe. This is more of a hydraulic engineering problem, which

has been partially solved in the area with boulder shore revetments.

Concerning geometry, a topographic survey is compulsory to proceed with the

investigation design and build following numerical models. In the case study under

analysis, a topographical survey was carried out approx 10 years earlier to the

study.

Morphology of the river and geology of the area are collected from geological

reports. The lower course of Tagliamento river has a predominant meandering

form, compared to the upper course with a typical braided channel morphology.

The history of levees’ construction, damages and subsequent interventions, is

reconstructed based on reports filed at the local authorities in charge of the earth

structure. It emerges that the construction of the levees starts around the 1850,

and the majority of the reinforcement interventions dates back to the second

half of the 1900s. All this information is vital to identify those stretches with a

pre-existent vulnerability in relation to the river morphology, levee geometry and

local heterogeneity, and to be aware of recurrent instability types (for example

if there has been evidence of piping). In this area, old document report few

cases of piping which occurred in not a recent past, and the officer in charge of
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regular levee inspections doesn’t report any event in the last 40 years. Breaches

during extreme flooding events are recorded in the previous century, but with no

specification of the main collapse mechanisms and the extension of failure. It is to

note that the orographic left side of the Tagliamento river has been more impacted

by flood events of the last century compared to the right side. In particular, in

1966 an intense pluviometric event which impacted on the entire national territory,

induced severe damages on the levees on the left side and consequent flooding of

the surrounding areas. After this event, the levees on both sides were reinforced

with different interventions: heightenings, diaphragms in the levee body and at

the toe, concrete revetments on the inner slope. These interventions, with no full

continuity along the investigated stretch (and poorly documented), result in a

situation extremely varied, which overlaps to the potential spatial heterogeneity

of this long stretch.

It is of good practice to ascertain if results of antecedent geophysical or geotech-

nical surveys are available before a new investigation design, to optimize the

resources and acquire initial knowledge. In fact, two survey campaigns are carried

on in 2009 and 2013 (for the latter see [44]) but in very short portions of the levee.

Based on all the collected information, geophysical tests, fast and non-invasive,

are performed. They consist in EMI (ElectroMagnetic Induction) along the

entire stretch, from north to the mouth, followed by ERT (Electrical Resistivity

Tomography) along longitudinal and transversal sections (length of each section

is approx 100m). These last, for a total amount of 25 sections, are concentrated

in a shorter portion of the stretch, as indicated with a red trait in Fig. 1.2. The

ERT locations are chosen based on the EMI results, and the potentially critical

locations identified during the initial recognition. The main outcomes from the

EMI investigations consist in a zonation in homogeneous stretches based on the

resistivity parameters: the levees near the mouth, for an extension of approx 10km

are characterized by low resistivity, while the top portion levees are characterized

by increasing values of resistivity (¿150 Ohm ·m). ERT sections show important

variability, not only along the levee entire stretch in agreement with EMI values,

but also in the singular section. To this aim, transversal sections are particularly

useful, rather than longitudinal ones. The presence of a 2m layer of soil with

high resistivity (150-200 Ohm ·m) is detected in most of the sections investigated

(see Fig. 1.3), and in the foundation soils zones of high resistivity with apparent
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Figure 1.2: Test site location. On the satellite map, red lines outline levees stretch under analy-
sis, while the yellow line trace the section whose safety is assessed.

spatial continuity from land side to river side are identified.

The results of the geophysical tests act as a support for the geotechnical

investigations, which are concentrated along selected sections potentially at risk,

based on the alleged stratigraphy and heterogeneity presence. A section located

near San Giorgio al Tagliamento (a town in the territory of San Michele al

Tagliamento) is considered in the following to explain geotechnical test carried on

and safety analysis. In this section, the levee body has a height of 5.1m compared

to the ground level at landside and a 2.3m retention wall is present on this same

side, as visible in Fig. 1.5. On the landside, private properties are extremely close

to the levee structure, while on the riverside the flood plain is cultivated, with a

maximum extension of the flood plain in the order of 280m.

The purposed of the geotechnical tests is to allow for the subsoil geotechnical

model definition. The subsoil geotechnical model is a representative scheme of

a significant soil volume, subdivided in homogenous units considering physical

and mechanical properties, and those units has to be characterized in relation to

the specific geotechnical problem under analysis. Pore pressure and characteristic
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values of the geotechnical parameters have to be defined in the geotechnical model

[45]. Characteristic values of geotechnical parameters are well-thought-out and

cautious estimations for every limit state considered. Characteristic values need

to be defined based on interpretation of results of specific laboratory tests on

representative soil samples and of in site tests and measurements [45]. In addition,

geotechnical tests allow for geophysical tests verification and calibration (see

Fig. 1.3).

On the considered sample section and other selected sections, three CPTU

(Cone Penetration Test with pore pressure measurement) are carried out, from

the levee crest and at 20m distance from the levee axis on the riverside and on

the landside. The central CPTU reaches a depth of 20m, while the lateral CPTUs

are pushed at 15m. This combination of three tests on the same section allows

for a better understanding of stratigraphic spatial variability in the section. For

each CPTU a dissipation test is performed in a cohesive layer at variable depth.

The tip resistance for the three tests is reported in Fig. 1.3; the pore pressure

profile is not reported, given the execution inaccuracies (probably related to the

filter not complete saturation) which result in a poorly representative profile. Tip

resistance (and sleeve friction) give information about the stratigraphy, strength

but also deformability and hydraulic parameters, when suitable correlations are

employed. From the crest, a DMT (Dilatometer Test) is also carried out, reaching

a max depth of 15m, to provide complementary data with the CPTU. The DMT

outcomes have a particular capacity in detecting the state of stress in site, history

of the deposits, strength and deformability. Both CPT and DMT can be equipped

with geophones near their tip to measure soil dynamic parameters, like the shear

wave velocity VS and perform subsequent safety assessments in case of earthquake

(for example liquefaction susceptibility or macro instability with simplified pseudo-

static approaches). After in site-testing, soil sampling is performed along a

borehole from the levee crest, up to 15m depth. Four undisturbed samples are

collected along the vertical, together with all the disturbed material, for physical

characterization.

The stratigraphy to be used in the following safety analysis is inferred considering

CPTU, DMT data and granulometry tests (performed in the laboratory on the

collected samples). The material index ID from the DMT and the granulometric

fraction percentages at every meter are reported in Fig. 1.4. The index ID and
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Figure 1.3: Overview of geophysical and geotechnical test results for rapid understanding of soil
stratigraphy and geophysical tests verification.

the granulometric fraction show a soil profile in very good agreement: in the first

two meters sand is predominant, which corresponds to the heightening realized

around the 1970. Under this first unit, the materials of the original levee body are

identifiable, a mixture of sand and silt, with a predominance of the latter, up to

9m depth. At this depth, sand fraction increases again and becomes predominant

in the last 5m of the inspected stratigraphy. The presence of sand at depth is

representative of this fluvial deposition environment, where sediment transport

from the upper part of the river is recurring. Based on this information, and

the spatial continuity of the soil layers detected from the three CPTU profiles, a

simplified stratigraphy, with three main units, is considered for the safety analysis.

The stratigraphy is made by three main formations: sandy silt for the levee body

and the first 6m depth, silty sand (approx 1.5m) and sand (see Fig. 1.5). A

maximum depth of 15m is considered sufficient for a representative outcome of a

safety analysis. In terms of lateral extension, the model reach 100m on the landside

and 280m on the riverside, including the lower inner bank. The software Geostudio

[46] is used for the analysis which is articulated in two phases, uncoupled: first a

transient seepage analysis, then a LEM based analysis, considering pore pressure

distributions at every instant coming from the previous seepage analysis. The

transient seepage analysis is carried out with SEEP/W, which is a FEM-based
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Figure 1.4: Stratigraphy of levee and foundation soils from in-site (DMT ID index (a)) and
laboratory test (granulometric fractions (b)).

solver. The continuity equation of the fluid in the porous media is considered as a

governing equation, and the Darcy law is assumed for the flow regimes.

After the definition of surface and subsurface geometry, material properties

should be assigned to the different units. It is possible to consider soil with

unsaturated or fully saturated behavior. In absence of specific information com-

ing from in-site or laboratory test on the unsaturated soil properties, like the

experimental soil water retention curves (SWRC) or the hydraulic conductivity

curve (HCC), it is decided to consider a saturated soil model, which requires as

the most relevant input parameter the saturated hydraulic conductivity and to

specify potential anisotropy of it. In the present case, hydraulic conductivity has

been firstly estimated from in-site tests and lab tests (using a flow pump system

during a consolidated undrained triaxial test). Then a more precise calibration is

performed, using data coming from an open tube piezometer installed in the levee.

Lastly, the hydraulic conductivity is considered isotropic. It should be specified

that the SWRC, in absence of experimental calibration, can be estimated from

the granulometry (see [47, 48]), however for the purpose of the study it was not

required such a level of detail in the hyromechanical description. Information

about the levee compressibility are retrieved from the DMT results, and assigned

to each layer with the parameter MV , inverse of the oedometric modulus. The

hydraulic properties are summarized in Tab 1.1.

After material properties’ specification, the hydraulic boundary conditions are
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assigned. On the landside a potential seepage face condition is assigned, while on

the riverside a transient total head condition is imposed. The model is extended

to 280m on the riverside, but the results are presented considering a reduced view

of the model. Based on a hydraulic modelling preliminary to the geotechnical

analysis, a peak hydrograph corresponding to a return time of 100yr is provided,

with a growing phase of approximately 24hr and a more gentle decrease in 48hr. It

is reported in Fig. 1.5. The initial condition is created by specifying the location

of the water table, at the depth recorded during boreholes execution. Lastly, the

model geometry needs to be discretized: a triangular mesh of 0.5m is considered

for the top layer, while the underneath layers are discretized with a coarser mesh

of triangles of 1m edge size. A total time of 72hrs is analyzed.

The results are used as input of the LEM analysis, which needs additional

information to be specified: the strength parameters and the slip surface specifi-

cation. Strength parameters are related to the failure criterion choice. A simple

Mohr-Coulomb model is used, disregarding the potential increase in strength in the

unsaturated zone above the phreatic surface. This is a conservative assumption.

Drained parameters, friction angle and effective cohesion, are determined taking

into account in-site tests and laboratory triaxial tests on undisturbed samples.

The mechanical properties are summarized in Tab. 1.1. A circular slip surface is

considered and by specifying ranges of entry and exit points on the ground surface,

the software automatically chooses the slip surface and compute the relative FS.

The soil mass above the slip surface is subdivided in slices, and static equilibrium

equations are solved for each slice. The problem is statically undetermined, thus

sub-methods has been developed in the mid 1900s to solve the problem based

on additional assumptions. These assumptions consist in the selection of one

or more static equations to solve (or to “respect”) and in the specification of

interslice forces ratios. In the present case, Morgestern-Price method is used

which considers both equilibrium of forces and momentum. Hence, two factors of

safety are computed, which vary depending on a function governing the variable

inclination of the resultant ratio between horizontal and vertical interslice forces.

The intersection between the two FS’ curves defines the actual FS shown by the

software. A LEM analysis is carried out for every instant of the transient seepage

analysis. In Fig. 1.5 the surface associated to the minimum FS in time is reported,

together with the value of FS. Lastly, the instant of occurrence is reported with a
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Layer Mv [1/kPa] k [m/s] γ [kN/m3] φ [◦] c′ [kPa]
Sandy Silt 7.67 ·10−5 5.0 ·10−6 20.2 32 0.0
Silty sand 6.49 ·10−5 2.0 ·10−7 20.2 30 0.0
Sand 3.20 ·10−5 3.0 ·10−4 20.2 35 0.0

Table 1.1: Material parameters for transient seepage and LEM analysis.

Figure 1.5: LEM analysis result at a levee section on the Tagliamento river.
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red vertical line on the left-hand side hydrograph. This value of FS, immediately

above 1, may be interpreted as a stable condition, however the strength reserves

are practically absent, and each following solicitation or a potential localized

damage not considered in the model, can represent a trigger for a full instability

mechanism. Based on the current reference national law [45], this section is unsafe,

since FS should be higher than 1.1 to consider the section as safe. Based on this

result suggestions for future reinforcement interventions are provided. This type

of result has certain limitations, listed in the following:

1. LEM is based on the hypothesis of rigid-plastic soil behavior, thus no state
of stress in relation to the strain is accounted for in the analysis

2. The FS is considered the same along the entire slip surface extension, and
this doesn’t correspond to the real physics

3. The analysis is uncoupled, thus the multiphase interactions are not fully
captured (just in simplified terms)

4. No displacements are quantifiable, the approach is purely based on forces
(and momentum) computations. The actual soil mass movement can not
be defined and subsequent considerations about areas impacted during the
collapse are not traceable

5. No description of failure evolution in time (no post-failure). After FS¡1 the
following modifications of it are not reliable and non precisely linked with
the structure damage.

Based on this simple example of a conventional analysis, it appears appropriate

and of paramount importance to improve numerical tools to overcome these

limitations and provide higher quality predictions. In this manner, mitigation

measures can be designed more efficiently, which is a fundamental aspect for these

long extension structures. The development and use of the Material Point Method,

in the field of levee safety, will be presented in the following chapters.
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2
MPM multiphase formulations

1 Fundamentals of the Material Point Method

The material point method (MPM) is a numerical technique capable of handling

large deformations. As a continuum method, the study of deformation and forces,

i.e. studying the mechanical behavior of bodies, is done considering conservation

laws, like mass, momentum and energy balance. In most of MPM formulations,

heat effects or any source of thermal energy is disregarded, and the mechanical

work is the only considered source/sink of energy. The materials’ behavior is

described by a constitutive model, and compatibility equations are necessary to

relate strain and velocity. In addition to the conservation equations, a set of initial

and boundary conditions is necessary to solve any given problem. This set of

equations and conditions is usually referred as a boundary value problem (BVP).

Equations sets characterizing BVPs are partial differential equations (PDE),

which can be solved adopting suitable numerical techniques, like Finite Element

Method (FEM) or Finite Difference method (FDM) among others. Galerkin FEMs

[49, 50] are among the most popular techniques to solve a BVP in engineering

disciplines. With these methods, the governing equations are transformed from a

strong form (PDE) to a more convenient weak form (integral form). Then, making

use of interpolation functions (also named shape functions) and a convenient

spatial discretization with a computational mesh, the solution of the equations is
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obtained, as a nodal approximation of the actual solution.

MPM can be viewed as an extension of the FEM procedure. The weak form

of the governing equations as well as the final system of equations posed at the

nodes of the computational mesh are identical in both schemes. Nonetheless,

MPM is a particle-based while FEM is a mesh-based method. If on one hand, in

mesh-based methods the only space discretization entity is the mesh, on the other,

in particle-based methods, a cloud of material points/particles discretizes the

continuum body. All the physical properties are attached to the particles, not to

the mesh elements. In some cases, in particle-based methods, the particles are the

only entity, like in meshless methods as SPH (Smoothed Particle Hydrodynamic)

[51, 52, 53]. In other cases, like in MPM, PFEM (Particle Finite Element Method)

or FEMLIP, mesh and particles are both present [54, 55, 56, 57]. In this last case,

the approximated solution is computed at the mesh nodes, however no permanent

information is stored at the mesh level. To this aim, projection of nodal quantities

to particles is done via shape functions.

To better understand the hystorical development of MPM, it is common to

define this method in the framework of Lagrangian and Eulerian descriptions. In

Lagrangian methods, the computational grid is embedded and deformed with the

material [58]. There is no advection of mass flow across element boundaries, so no

advection terms appear in the governing equations. It is easy to impose boundary

conditions since element boundaries coincide with material interfaces. To avoid

extreme distortion of the elements, thus introducing errors and preventing the

convergence to the solution, remeshing may be necessary.

On the contrary, in Eulerian methods the material flows through the grid and

this last is fixed. The volume of each element keeps constant during a simulation,

but its density varies due to advection of mass [58]. In this case, interfaces and

boundaries are more challenging to be tracked.

Finally, there are hybrid methods, like arbitrary Lagrangian-Eulerian (ALE) and

Particle-in-cell (PIC) methods, which benefit from aspects of both the previous

methods. In ALE methods, the computational mesh may be moved with the

material like Lagrangian approach, or be held fixed in Eulerian manner, or be

moved independently of material deformation to optimize element shapes and for

a more accurate boundaries’ description [59]. From PIC method, MPM has been

developed. In fact, in PIC the computational cycle is divided into two phases, a
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Lagrangian phase and an Eulerian phase. In the first Lagrangian phase, equations

of motions are solved. In the Eulerian phase, the particles are moved and advection

fluxes are considered, while the mesh is mapped back to the original configuration.

MPM has been formulated in 1994 to solve solid mechanics problems, repurposing

and improving many aspects of PIC and FLIP (an improvement of PIC using a

fully Lagrangian formulation) [54].

MPM applies two levels of spatial discretization: (i) the body is discretized by a

cloud of material points (MPs) which moves attached to the material and carry all

the updated information such as velocities, strain, stresses, and history variables;

and (ii) a fixed finite element mesh used to assemble and solve the system of

balance equations. Large deformations are simulated by MPs moving through

the computational background grid that covers the full problem domain (not only

the bodies shape). This grid is used to solve the system of equilibrium equations,

but since no information is stored at the mesh, the distortion or entanglement are

completely avoided. The MPM computational scheme, presented in the following

summary, can be divided in two phases, named Lagrangian (steps 1 and 2) and

Eulerian or convective (steps 3 and 4), as in PIC.

1. At the beginning of a computational step, the material information, kinematic
and stress variables are stored at the MPs. Therefore, this information need
to be mapped from the MPs to the background mesh nodes by means of
shape functions (Fig. 2.1(a))

2. The momentum balance equations can be solved at the nodes and the
accelerations obtained (primary unknowns) (Fig. 2.1(b))

3. The kinematic quantities are updated at MPs, using interpolation functions.
In this manner it’s possible to update also strains and stress (secondary
unknowns) at MPs, according to the constitutive models (Fig. 2.1(c))

4. The particle positions are updated, and the mesh is reset to the original
location (Fig. 2.1(d)).

A strong point of MPM, included since its first formulation, is the adaptation to

materials with history-dependent constitutive models. Since each material point is

followed, history-dependent variables, such as plastic strain and strain-hardening

parameters, can be associated with the material point for the complete evolution

of the problem [54]. Geomaterials are typical history-dependent materials, and
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Figure 2.1: Computational scheme of MPM: (a) Information mapping to the nodes. (b) Resolu-
tion of momentum balance equations at the nodes. (c) MP quantities update. (d) MP housekeep-
ing update. i stands for the node entity, while MP for the material point.

therefore in the last twenty years MPM has become increasingly popular in the

field of geomechanics and geotechnical engineering. Among others, the applied

cases explored are slope instabilities, failure of earth retaining structures, tunneling

and underground collapses, soil penetration testing, pile installation, scour and

internal erosion [60, 61, 62, 63, 64, 65, 66, 67].In addition to being characterized

by large displacements, these applications often require the use of a multiphase

description of soil.

Historically, [68] present several formulations for saturated and unsaturated

soils referring to FEM implementations and discuss their applicability for different

kinds of problems in geotechnical engineering. These formulations can also be

extended for MPM. In fact, in Sec. 2 the current MPM multiphase formulations

are presented to provide a framework for this research work.

Before we start covering the aspects of multiphase formulations, some of the

principal implementation features of the MPM are introduced (considering a

1Phase material). The open-source software Anura3D (www.Anura3d.com) is the

numerical tool selected for testing and development in this research work, hence,

the mathematical framework herein presented, will refer mostly to it. Anura3D is

based on a dynamic MPM formulation and an explicit in time integration scheme.

It has been developed for the purpose of analyzing soil-water-structure interactions,

so balance equations refer to the soil behavior as a porous medium. Constitutive

laws are typical for soil and the principle of effective stress is included.
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1.1 Dynamic formulation

The momentum conservation of the continuum can be written with the differential

Eq. 2.1. A dynamic formulation is considered, which means that the acceleration

term a is taken into account. In the same equation ρ stands for material density,

σ is the stress tensor and g is the gravity vector

ρa = ∇σ + ρg (2.1)

Boundary conditions correspond to the same types of FEM, i.e. Dirichlet (or

essential) and Neumann (or natural). In the first case, the values of imposed

velocity are directly injected in the system of discretized equations (usually

displacements equal to zero in a prescribed direction). In the second case, Neumann

conditions correspond to tractions applied along a portion of the border, and

require the specification of an outward normal unit vector. The weak form

equivalent to Eq. 2.1, considering a resolution domain Ω with traction boundary

conditions τ applied on a portion of the boundary ∂Ω, is given as∫
V

ρa · u dV =

∫
∂Ω

τdu ∂Ω−
∫
V

σ : (∇u) dV +

∫
V

ρg · u dV (2.2)

where u stands for the test function. At this point, the equation needs to be

discretized. First an approximation of accelerations, velocity, displacements and

test function vectors via shape functions N is introduced. For example,

v(x, t) =
Ni∑
i=1

vi(t)Ni(x, t) (2.3)

The most distinguishing feature between FEM and MPM is the calculation of the

numerical integration over the volume of a finite element. Meanwhile, in FEM the

integrations are carried out using Gaussian quadrature points, in MPM they are

calculated based on the material points which are not fixed like Gaussian points.

The MP integration is applied by assuming that mass is concentrated at MPs

location, thus

ρ(x, t) =

nMP∑
MP=1

mMP δ(x− xMP ) (2.4)
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where mMP and xMP are the mass and the position of the material point, δ(x) is

the Dirac delta function, and nMP is the total number of material points. The

final discretized form, considering approximated variables with shape functions

and MP integration can be finally written in compact form as Eq. 2.5

Ma = f ext − f int (2.5)

where a is the nodal accelerations vector, M is the mass matrix, f ext is the external

force vector and f int is the internal force vector, reported in Eqs. 2.6, 2.7, 2.8.

M ≈
nMP∑

MP=1

mMPNMP (2.6)

f ext ≈
∫
∂Ωτ

NT
MP τd∂Ωτ +

nMP∑
MP=1

mMP
m NT

MPg (2.7)

f int ≈
nMP∑

MP=1

BT
MPσMPVMP (2.8)

In Eq. 2.8, BMP stands for the spatial derivative of the shape functions NMP ,

both particularized for the MP. Usually, the mass matrix is lumped to simplify the

inversion procedure and solve the linear system of discretized equations. The type

of shape functions used has a determinant impact on the simulation outcomes. In

fact, one of the shortcomings of using linear shape functions is the phenomenon of

volumetric locking in a nearly incompressible solid. Volumetric locking consists

in an unrealistic stiff body response and an erroneous velocity field. In Anura3D

linear shape functions are used, however a Nodal Mixed Discretization (NMD)

technique [69] is put in place to tackle the issue. With this technique, the element

volumetric behavior is averaged over the elements sharing its nodes via a least

square smoothing process. This is why this technique is also referred as strain

smoothing procedure. The effect of applying the NMD scheme is to increase the

number of degrees of freedom per element [70].

Another well-known drawback related to linear shape functions in MPM is the

cell-crossing instability. Whenever material points cross boundaries of any element

in the computational background grid, a nonphysical unbalance force appears at
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the nodes that are shared between previous and new elements of that crossing MP

[71]. This is directly depending on the gradient of the shape functions, constant

but discontinuous at element borders. In turn, the gradient impacts on internal

forces computation, resulting in significant oscillations of stress variables. In

Anura3D a simplified approach allows mitigating this problem by averaging the

stress of all the MPs in an element. Based on that, Gauss integration is adopted

to determine the internal forces (as in FEM), in which a single point with an

averaged stress is considered in each element. The calculation of the internal

forces by means of the Gauss point integration is only considered in the elements

located in the interior of the continuum. In Anura3D this procedure is commonly

referred as MPM-MIXED since it uses both MPs and Gauss points [70]. This is

not the only way to mitigate cell-crossing instability: other more sophisticated

techniques has been proposed in the literature to mitigate locking, like the most

popular Generalized Interpolation Material Point Method (GIMP) [72] and others

[73, 74, 75, 76].

1.2 Time integration schemes

The resolution of the Eq. 2.5 provides values of nodal acceleration at each time

step of a simulation. At this point different time integration schemes are possible:

explicit, implicit or semi-implicit.

In Anura3D an explicit Euler time scheme is adopted to compute velocity and

displacements (Eqs. 2.9 and 2.10). The variables are given at time tk+1, considering

the solution at the previous time tk and an increment of time ∆t.

vk+1
i = vki + ∆t ak (2.9)

uk+1
i = uki + ∆tvk+1 (2.10)

Explicit time schemes are conditionally stable, which means that ∆t has a maxi-

mum value, usually named critical, above which the simulation doesn’t converge

anymore to the actual solution. The critical time step can be computed by solving

an eigenvalue problem and imposing that the spectral ratio of the amplification

matrix is equal to 1 (as reported for example in [71]). In this case, the amplifica-
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tion matrix is obtained by considering an appropriate system of equations, those

stemming from the discretization of momentum balance equation and considering

the explicit in time scheme. For one phase materials with linear elastic behavior

the equation of the critical time step corresponds to the Courant Fredrich Levy

(CFL) condition, i.e., Eq. 2.11

∆tcrit =
Li√
E
ρ

(2.11)

where Li is the minimum mesh size, E is the Young modulus and ρ is the medium

density. The denominator of Eq. 2.11 is the speed of compression waves. Other

MPM codes benefit of explicit integration in time [77, 78, 79, 80].

On the other side, unconditionally stable implicit schemes, has also been

proposed in the literature [81, 82]. In this case, momentum balance equation

becomes implicit for velocity at time tk+1, usually written as Eq. 2.12. The

parameter µ allows the user to adjust between explicit and implicit: 0 < µ < 1

with µ = 0 being fully explicit and µ = 1 being fully implicit. The solution is

obtained with an iterative procedure.

mk
i

vk+1
i − vki

∆t
= µ fk+1

i + (1− µ)fki (2.12)

In Eq. 2.12, fi stands for internal force. External forces are not reported to

simplify the presentation, but they can be easily combined with the internal forces.

Some examples of current MPM codes relying on implicit schemes are [83, 84, 85].

Very recently a semi-implicit scheme has been proposed by [86] in a multiphase

formulation. In fact, the effective stress is treated explicitly to avoid successive

iteration associated with elastoplastic material responses, while the pore-pressure

term is treated implicitly by solving the pressure Poisson equation.

1.3 Numerical algorithm: the example of Anura3D

At this point, after presenting the spatial and temporal discretization, it is possible

to go through the steps of a typical MPM algorithm, for large strain problem

analysis. The algorithm presented in the following is based on [87]. The main

computational steps are listed below
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1. The nodal mass is calculated using the shape functions and the lumped mass
matrix at time tk is formed. The internal and external forces are evaluated
in the nodes (Eqs. 2.7, 2.8).

2. The momentum balance equation is solved, and the nodal accelerations aki
are determined

aki = Mk
i

−1
(f ext,ki − f int,ki ) (2.13)

3. The velocity at the material points is updated considering Eq. 2.14 as

vk+1
MP = vkMP + ∆t

ni∑
i=1

NikMP aki (2.14)

4. Updated nodal velocities are calculated taking into account Eq. 2.15 as

vk+1
i =

1

mk
i

nMP∑
MP=1

NikMPvk+1
MP (2.15)

5. Particle positions are updated considering Eq. 2.16 as

xk+1
MP = xkMP + ∆t

ni∑
i=1

NikMP vki (2.16)

6. The strain increment of a material points can be expressed as function of
the nodal velocity, i.e. as function of the deformation gradient, as

∆εk+1
MP = ∆t

ni∑
i=1

Bk
i,MP vk+1

i (2.17)

where Bi,MP are shape function derivatives, evaluated at MPs.

7. The constitutive stresses are updated using a preselected material constitu-
tive model.

8. The material properties are updated in the material points, such as volume
and density, which are updated considering the increment of volumetric
strain.

9. The computational grid is initialized for the next step, nodal values are
discarded, and the material points carry all the updated information.
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The structure of this algorithm is very similar in all the multiphase formulations

of Anura3D, the major difference is the presence of one or two fluids, which impacts

on the number of governing equations and the kinematic and stress variables that

need to be computed accordingly.

2 Multiphase formulations

Soil as a porous media consists of a combination of three phases (ph): solid (S),

liquid (L), and gas (G). The solid phase is made of solid grains that constitute the

solid skeleton, while the fluid phases (i.e., liquid and gas) fill the pore space. The

phases interact with each other determining the mechanic and hydraulic behaviour

of the material.

Taking rigorously into account these interactions may be in many cases un-

acceptably complicated, computationally expensive, and even unnecessary for

engineering applications [70]. For example, in numerical analyses of saturated soil,

dealing with fully drained or fully undrained conditions means that the presence

of water can be considered in a simplified way. In the first case, the excess pore

pressure is assumed to be zero, thus the presence of the liquid can be neglected,

and the solid skeleton can be regarded as 1Phase even though it is saturated.

In the second one, because of the negligible relative movement between solid and

liquid, the equilibrium of the solid-liquid mixture can be considered rather than the

equilibrium of solid skeleton and pore liquid as separate phases. The dissipation

of pore pressure is not considered, given the fast time of load application. The

analysis can be carried out considering total stress or effective stress. In undrained

conditions, Eq. 2.18 is the momentum balance equation to solve

ρsata = ∇σ + ρsatg (2.18)

where a is the soil acceleration, σ is the total stress tensor and ρsat is the saturated

soil density. Pore pressure increments for an effective stress analysis in undrained

conditions are computed as

ṗL =
KL

n
ε̇vol,L (2.19)

where ṗL is the derivative respect to time of liquid pressure, KL is the liquid Bulk

modulus, n the porosity and ε̇vol,L the time derivative of liquid volumetric strain.
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Eq. 2.19 is valid under the assumption of weakly compressible fluid.

In all the other cases where partially drained conditions are recognized, a

fully-coupled multiphase formulation is necessary to capture the soil behavior.

Two MPM frameworks have been presented to study fully-coupled multi-phase

problems [88]: the single-point approach and the multi-point approach. The single-

point framework represents the multi-phase soil mixture as a unique continuum

represented with one set of MPs [86, 89, 90, 91]. During the calculation, all MPs

move with the displacement of the solid skeleton represented using Lagrangian

formulation and consequently the solid mass in the MP remains constant. Fluids’

motion is described with respect to the moving solid skeleton. Saturated and

unsaturated soil can be described with this approach.

The multi-point framework requires more than one set of MPs to represent

different phases. In particular, the double-point approach for saturated soil

is available in the literature and represents solid skeleton and liquid with two

completely separate sets of MPs [92, 93, 94]. Each set of MPs moves accordingly

to the displacement of the corresponding phase and carries the information of one

phase only, hence solid and fluid are represented using Lagrangian formulation. In

the double-point configuration presented in [92, 93], the soil is considered either

fully dry or fully saturated. Very recently, [95] proposed an extension of this

same approach to include hydro-mechanical interactions resulting from partially

saturated conditions, where the liquid MPs carry information of the degree of

saturation. Currently, the study of unsaturated soils using a three-point approach

(i.e. three sets of MPs for solid, liquid and gas) has never been attempted yet.

Based on the existent formulations, Fig. 2.2 outlines the MPM soil descriptions,

considering multiphase nature and MPs layers. A detailed comparison between

saturated MPM formulations can be found in [96]. Once more, since Anura3D is

the numerical tool selected for testing and development in this research work, the

mathematical description of the following sections will be mostly focused on it.

2.1 Saturated single point formulations

The 2Phase Single Point MPM formulations (2P-SP) for saturated soils most of

the time are based on two main approaches: the vL − vS [80, 86, 89, 90, 97] and

the uS − pL [98, 99]. The first one is the most popular approach and the one
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Figure 2.2: Soil states in MPM: distinction based on the number of phases and discretization in
MP layers.

implemented in Anura3D. Each MP represents a portion of saturated porous media

and carries the information of the solid (solid skeleton) and liquid in the pores

(e.g., water). In this case, the MPs remain attached to the solid skeleton giving

a Lagrangian description of the solid-phase movement, while the liquid-phase

behavior is described with respect to the MPs by means of an Eulerian approach.

In particular, the vL − vS approach is implemented in Anura3D, based on the

work of [97]. The set of governing equations includes momentum balance of the

liquid and the mixture; mass balance, constitutive relations and compatibility

equations, for each phase. The momentum balance equations (Eqs. 2.20, 2.21)

are solved for the primary unknowns aL and aS, accelerations of solid and liquid

respectively.

ρLaL = ∇pL − fdL + ρLg (2.20)

nSρSaS + nLρLaL = ∇ · σ + ρmg (2.21)

In Eqs. 2.20 and 2.21, ρL and ρS are liquid and solid density, while ρm = nSρS +

nLρL is the mixture density, i.e. saturated soil density; the liquid concentration

ratio is nL = n and the solid concentration ratio is nS = (1 − n), where n is

the porosity. The term fdL stands for liquid drag force, and in this formulation is
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expressed considering Darcy law (see Eq. 2.22).

fdL =
nLµL
kL

(vL − vS) (2.22)

The intrinsic permeability is expressed as Eq. 2.23

kL = κL
µL
ρLg

(2.23)

where κL is the hydraulic conductivity (for instance expressed in m/s) and µL is

the dynamic viscosity of the liquid (for instance expressed in kPa · s). The mass

balance equations for each phase are reported in Eqs. 2.24, 2.25

DSnS

Dt
+ nSdiv(vS) = 0 (2.24)

ρL
DLnL

Dt
+ nL

DSρL

Dt
+ nLρLdiv(vL) + (vL − vS) · ∇(nLρL) = 0 (2.25)

The mass balance equations can be combined to obtain an expression for the liquid

pressure increment (Eq. 2.26). In the latter, once again, a weakly compressible

behavior is assumed for the liquid, i.e. 1
ρL

dρL
dpL

= − 1
KL

ṗL = KL · ε̇vol,L = KL ·
1

n
[(1− n)div(vS) + n div(vL) +∇n (vS − vL)] (2.26)

The principle of effective stress is considered in this formulation, thus the total

stress σ in 2.21 is expressed as Eq. 2.27

σ = σ′ + pLm (2.27)

where m is a unit vector. During a computational cycle, the increment of liquid

pressure are computed with Eq. 2.26 and the pressure values updated, then the

increment of effective stress are computed with a predefined constitutive model,

implemented in incremental form as reported in Eq. 2.28

σ̇′ = D · ε̇ (2.28)

where D is the tangent matrix.
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Boundary conditions need to be specified for both phases: on the liquid, it is

possible to impose pressure (analogous to traction for solid) or fix displacements

in one or more directions (when both directions are fixed, the border is considered

impermeable). Whereas on the solid, imposed traction or fixed displacements can

be assigned, as previously introduced for the monophase formulation.

2.2 Saturated double point formulation

The 2Phase Double Point (2P-DP) formulation was initially presented by [100],

and later extended by [79, 92] and [93, 101]. The formulation assumes that the

soil is a superposition of two continuum media: the solid skeleton and the liquid

phase. These are represented separately by two sets of Lagrangian MPs: solid

material points (SMPs) and liquid material points (LMPs). The computational

domain in which the material moves is as usual discretized with a finite element

mesh. According to this framework, three possible domains can emerge:

• Porous medium in saturated conditions, when SMPs and LMPs share the
same grid element

• Porous medium in dry conditions, when only SMPs are located in the grid
element

• Free liquid, when only LMPs are located in the grid element.

The dynamic behavior of the continuum is described with the solid and liquid

dynamic momentum balances (Eqs. 2.29 and 2.30), which are solved at the grid

nodes for the acceleration of solid and liquid aS and aL.

nLρLaL = ∇ · σ̄L − fSL + nLρLg (2.29)

nSρSaS = ∇ · σ̄S + fSL + nSρSg (2.30)

In the previous expressions

σ̄S = σ′ + nSσL (2.31)

and

σ̄L = +nLσL (2.32)
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correspond to the macroscopic partial stresses for solid and liquid phases, where

nL = 1− ns is the liquid volumetric fraction (in the hypothesis of fully saturated

soil nL = n), σ′ is the effective stress tensor, and σL is the stress tensor of the

liquid phase. The force representing the interaction between solid and fluid, fSL,

assumes the expression proposed by [102] (Eq. 2.33)

fSL = fn + fd = σL∇nL + fd. (2.33)

In this expression, fn accounts for the porosity gradient. The second term, fd, is a

drag force, a function of the relative velocity between fluid and solid (vL − vS).

The drag law proposed by [103] is implemented in the 2P-DP formulation of

Anura3D :

fd = f1 + f2 =
ν

kL
n2
L(vL − vS) + βn3

Lρl|vL − vS|(vL − vS). (2.34)

It includes a linear term f1 (low-velocity regime) and a quadratic term f2 (high

velocity regime). The former is a Stokesian drag term while the latter, named the

non-Darcy flow coefficient, has been estimated by many authors both numerically

and experimentally. It shows dependence on porous media features like permeabil-

ity, porosity, and tortuosity [104, 105]. The formulation determines the empirical

coefficient β using Ergun coefficients (Eq. 2.35) [106] A = 150, B = 1.75.

β = B/
√
κLAn3

L. (2.35)

The intrinsic permeability κL can evolve in time due to the variation of porosity.

This is taken into account with a Kozeny-Karman formula (Eq. 2.36):

κL =
D2

150
n3

L/(1− nL)2. (2.36)

In Eq. 2.36 D is the effective grain diameter and can be referred to D50.

Granular materials can experience a transition between solid-like behavior to

fluid-like behavior when the porosity and the shear rate increase. The 2P-DP

formulation accounts for the phase transition process by a maximum porosity

criterion. Below a threshold porosity value (nmax) solid-like behavior persists (Solid

state) with positive effective stress, updated with constitutive relations typical

33



of soils, like Mohr-Coulomb. Even in this formulation, solid stress is updated at

the MPs level: the increment of stress is a function of the increment of strain, the

effective stress current state and the state variables of the constitutive model in

use. Conversely, above the maximum porosity, grains are supposed to be detached.

Thus, the stress transmission is no more possible, the effective stress is zero and

the soil behaves like a fluid (Liquid state), with an effective viscosity νeq (Eq. 2.37)

[107], affected by the solid volumetric fraction (1− nL).

νeq = νm

(
1 +

5

2
(1− nL) + 5.2(1− nL)2

)
(2.37)

In this formulation, the liquid phase is assumed weakly compressible and the stress

increment is computed with Eq. 2.38

σ̇L = ṗLI + σ̇L,dev = KLε̇vol,LI + 2νeqε̇L, (2.38)

where I is the identity vector, KL , ε̇L and ε̇vol,L as previously defined. The

expression of the volumetric component (Eq. 2.39) is obtained by rearranging

the mass balance equations, again considering weakly compressible liquid. The

complete mathematical developments can be found in [93].

ε̇vol,L =
1

n
[(1− n)div(vS) + n div(vL) +∇n (vS − vL) (2.39)

Going back to the fluid transition, in elements with SMPs in Solid state the

deviatoric part of the liquid stress tensor is assumed to be zero (σ̇L,dev = 0).

In Liquid state, i.e., as soon as fluidization occurs, the deviatoric component is

computed considering Eq. 2.37 for the equivalent viscosity. It should be noted

that in this simplified approach to reproduce fluidization, once the soil change to

the Liquid state, it is not possible to reverse back to the Solid state.

Concerning boundary conditions, as in any other multiphase formulation, they

need to be specified for each phase. These are fixity for the velocities (Dirichlet BC)

or traction/pressure imposed (Neumann BC). When the free surface is considered,

i.e., the boundary between free water and the atmosphere, the imposed pressure

on the liquid is automatically equal to zero. The detection of the free surface of

the liquid domain is based on a threshold value for the interpolated filling ratio η
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at LMPs location, as expressed in Eq. 2.40. This threshold value FFreeSurf should

be lower than 1, it is mesh-dependent and in simulations it is often set between

0.6 and 0.8.

η̃MPL < FFreeSurf (2.40)

This approach resembles the Volume of Fluid (VoF) method, where the physical

volume fraction is used as an indicator to track the discontinuous volume change

across the interface. The indicator function equals to unity at any point occupied

by the fluid and zero elsewhere, and interface is detected if the value between zero

and one [108], with a threshold value as previously specified.

In addition to these BCs, recently inflow/outflow BCs have been presented

in the work by [109]. Specifically, in this implementation, the inflow boundary

control the kinematics, i.e., velocity is imposed, while the outflow boundary has

an imposed pressure. The MPs added or removed are related to an ad-hoc element

layer, which has a fixed dimension. Due to this aspect, the implementation is

not suitable to reproduce a transient total head condition, indeed corresponding

to spatial variations of river levels. The 2P-DP formulation, as implemented in

Anura3D, is tested in Chapter 3.

2.3 Unsaturated single point

The single-point approach is the general framework selected to represent soils in

unsaturated conditions. The current unsaturated single point formulations can be

distinguished based on the number of computational phases described

1. Fully 3Phase formulation by [71, 110]

2. Simplified 2Phase formulations: [66, 111, 112, 113, 114, 115, 116, 117].

This distinction implies that in the 3Phase formulation three equations for

each set of the governing equations (set of momentum balance, mass balance,

constitutive equations and compatibility equations) are present. Whereas, in the

2Phase formulations, only two equations for each set are used. This is valid under

the hypothesis of negligible density and pressure of the gas, ρG = 0 and pG = 0,

in turn, allowing for elimination of gas as a computational phase. Matric suction,

s = pG − pL can still be defined as s = −pL.
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The formulation developed by [116] is the object of Chapter 4, and there it will

be explained in detail as it represents one of the principal activities of this research

work. The 3Phase formulation ([71, 110]) is the first formulation developed to

study unsaturated soil behavior. The momentum balance equations, relative to

gas phase, liquid phase and mixture are reported in the strong form

ρGaG = ∇pG − fdG + ρGg (2.41)

ρLaL = ∇pL − fdL + ρLg (2.42)

nSρSaS + nLρLaL + nGρGaG = ∇ · σ + ρmg (2.43)

This formulation is fully dynamic, and all relative acceleration terms are fully

accounted with the accelerations of each phase being the primary unknowns of

the system, i.e. aS, aL and aG. The notation is the same as in the SinglePoint

saturated formulation, the only new terms appearing are related to the gas phase,

i.e. gas pressure pG, gas density ρG, fdG gas drag force and ρm include a new

term, ρm = nSρS + nLρL + nGρG. The porosity of the solid skeleton becomes

n = nL + nG, and the volumetric concentration ratio of the fluid phases can be

expressed in terms of the degree of saturation (SL) and porosity as nL = nSL

and nG = n(1 − SL), respectively for liquid and gas. Note that fully saturated

conditions are the particular case when the degree of saturation SL is one.

The fluid flow (either liquid or gas) is assumed laminar (as in the Single Point

saturated formulation), and the liquid and gas drag forces (fdG and fdL) are written

taking into account validity of Darcy law, (Eq. 2.44). The subscript f denotes

fluid phase, that can be either gas G or liquid L.

fdf =
nfµf
kf

(vf − vS) (2.44)

Where µf and kf correspond to the viscosity and intrinsic permeability of the

fluids (i.e. f = G,L). The intrinsic permeability is defined in terms of hydraulic
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conductivity (κf ), in analogy with 2.23

kf = κf
µf
ρfg

(2.45)

In the formulations proposed by [66, 95, 112, 113, 114, 115, 116, 118] all dynamic

terms, i.e., liquid and solid inertia, are considered and the main unknowns of the

system are the accelerations of the solid and liquid phases (aS and aL). The linear

momentum of the liquid is identical to Eq. 2.42. The linear momentum of the

mixture is equivalent to Eq. 2.43 but removing the dynamic term corresponding

to the gas phase, which yields Eq. 2.46.

nSρSaS + nLρLaL = ∇ · σ + ρmg (2.46)

Very similarly, the formulation from [117] considers all dynamic terms and the

solid and liquid accelerations as primary variables, but the momentum balance of

the solid per unit of total volume (Eq. 2.47) is posed instead of the momentum

balance of the mixture. I is the identity matrix.

nSρSaS = ∇ · (σ − nLpLI) + (ρm − nLρL)g + fdL (2.47)

Finally, the formulation by [111] neglects the relative acceleration of the liquid

with respect to the solid skeleton. Therefore, all phases have the same acceleration

a (i.e., acceleration of the system, a = aS = aL). The momentum balances of

the liquid, which is equivalent to the generalized Darcy equation (Eq. 2.48), and

the mixture (Eq. 2.49) are the governing equations posed at the nodes of the

computational mesh and the main unknowns are the acceleration of the system a

and the liquid seepage velocity (w = nSL(vL − vS)).

w = −κL
µf

(∇pL + ρL − ρLg) (2.48)

ρmaS = ∇ · σ + ρmg (2.49)

In the 3Phase MPM formulation [71, 110] the liquid and gas are considered to be

a mixture of water and air, and mass exchange between liquid and gas phases is
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allowed to account for “water vapour” in the gas and “dissolved gas” in the liquid.

Assuming incompressible solid grains (DSρS
Dt

= 0), the expressions for the mass

balance of the solid is the same es Eq. 2.24 while for the fluids, the equations are

written as Eqs. 2.50.

n
DS(ρfSf )

Dt
+∇ · (ρfSfn(vf − vS)) + ρfSf∇ · vS = 0 (2.50)

In those problems where the spatial variations of fluids mass in the soil are small

(∇(ρfSfn) ≈ 0), [110] simplify the term with the gradient of the advective fluxes

of the fluid phases (i.e. ∇ · (ρfSfn(vf − vS))) yielding to Eq. 2.51. The effect of

neglecting part of the advective flow gradients is further discussed in Sec. 2.2.1.

n
DS(ρfSf )

Dt
+ ρfSfn∇ · (vf − vS) + ρfSf∇ · vS = 0 (2.51)

The fluid mass balances are solved in the MPM computational cycle in terms of

the variation of liquid and gas pressure (DSpL
Dt

and DSpG
Dt

).

DS(ρfSf )

Dt
=

(
Sf
∂ρf
∂pL

+ ρf
∂Sf
∂pL

)
DSpL

Dt
+

(
Sf
∂ρf
∂pG

+ ρf
∂Sf
∂pG

)
DSpG

Dt
(2.52)

The 2Phase MPM formulations neglect the gas density, and only the mass balances

of the solid and liquid phases are required. All approaches consider the mass

balance of the solid as presented in Eq. 2.24, but propose slightly different versions

of the mass balance of the liquid. The formulation proposed by [66, 114] extends

the previous works to account for internal erosion of the solid skeleton, based on

the work from [119] for saturated conditions. The mass exchange between the

solid and liquid phases is allowed according to an erosion law that controls the

rate of eroded mass.

The system of governing equations is closed by compatibility equations and

constitutive relations. Various hydro-mechanical stress frameworks are available

in the literature to describe the behaviour of unsaturated soils [120]. They

are inherited from the Bishop single effective stress approach [121] or from the

independent stress variable approach [122]. The Bishop effective stress approach is

the most commonly implemented in the MPM formulations [66, 95, 111, 113, 116,

117, 118]. The general form of the constitutive equation is presented incrementally
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as Eq. 2.28, where the effective stress essentially controls the stress state of

unsaturated soil and is defined as Eq. 2.53. σnet is the net stress (σnet = σ− pGI),

s is the matric suction and χ is an effective stress parameter generally assumed

equal to SL. Note that most of the works assume pG = 0.

σ′ = σnet − χsI (2.53)

The independent stress variable approach is used in [110], where the net stress is

defined more generally as Eq. 2.54. In this context, the stress state is described by

two state variables (i.e. σnet and s) and a double constitutive matrix is required

(Eq. 2.55), where h is a constitutive vector controlling the influence of suction.

σnet = σ −max{pG, pL}I (2.54)

dσbet = D · dε+ hds (2.55)

In addition to the constitutive equations, in any unsaturated formulation, the

hydraulic model is required. The hydraulic model consists in two relations:

Soil Water retention curve (SWRC) and hydraulic conductivity curve (HCC),

respectively relating saturation degree with suction (s = pG − pL) and hydraulic

conductivity with saturation degree.

Concerning boundary conditions, again they need to be specified for each phase,

like in the previous saturated formulations. The same conditions are present for

solid and liquid, plus the conditions for the gas are added, in terms of prescribed

gas pressure or fixed gas displacements. Consistent research has been done in recent

years to account for additional hydraulic boundary conditions that are relevant in

several applications where earth structure/slopes/soil volumes are in contact with

water or the atmosphere. These are infiltration/evaporation, potential seepage

face and total head. In Chapter 4 the development and implementation of this

full set of hydraulic boundary conditions is discussed in detail for the formulation

by [116]. For the fully 3Phase formulations, these conditions are not implemented

yet. Some of them are present in the other 2Phase formulations, but total head

and seepage face are present only in the formulation object of this thesis work.
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2.4 Unsaturated double point

Finally, the only available formulation for unsaturated soils that uses a double-

point configuration [95] considers as governing equations, momentum balance of

the liquid and the mixture. In addition, it rewrites the mass balance of the liquid

Eq. 2.50 taking into account that the liquid mass is transported by the liquid

material points. The material derivative can be described with respect to the

liquid motion (DLpL
Dt

), and neglecting the gradient of porosity, it yields to Eq. 2.56.

In this formulation, the gradients of degree of saturation and liquid density are

implicitly accounted. The mass balance of the solid is posed exactly as Eq. 2.24.

n
DL(ρfSf )

Dt
+ ρfSf (1− n)∇ · vS +∇ · vL = 0 (2.56)

A weakly-compressible behavior is assumed for the liquid, and the variation of the

liquid pressure (DS/LpL
Dt

) is derived again from the mass balance equations.

DS/LρLSL
Dt

= ρL
DS/LSL

Dt
− ρL
KL

DS/LpL
Dt

(2.57)

Despite the sophisticated multipoint modelling, this formulation has simple hy-

draulic boundary conditions, i.e., imposed pressure or fixities, which limit the

applicability to real scenarios of earth structures.

3 Current applications of MPM in the field of river levees

MPM has been applied to several geotechnical problems in the last decade [89,

123, 124, 125, 126], however in the field of levees, earth dams or dikes there

are limited experiences. In relation to the collapse mechanisms introduced in

Chapter 1, a levee overtopping has been analyzed in the work of [127] using the

Double Point formulation. However, this is not a macro-instability mechanism.

Suffusion (internal erosion) has been implemented in Single Point [64] and Double

Point formulation [128]. The only examples about macro-instabilty are dikes

instabilities with seepage flow in the work by [29] or without seepage in [129] and

the reproduction of a centrifuge experiment where a soft clay dike is brought to

failure by [30]. In these two examples, the unsaturated soil behavior has not been

considered.
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Based on the few examples analyzed with MPM and a rapidly increasing interest

in these topics from the computational geomechanics community, it emerges that

the present work is focused on the development of cutting-edge numerical tool

and represents a pioneering study in the use of a displacements based approach

to analyze the macro-instabilities undermining water retention earth structures

safety.
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3
Testing the 2Phase-Double point

formulation in selected slope stability

cases

1 Introduction

In this chapter, the 2Phase Double Point (2P-DP) formulation, suited for saturated

soil and able to capture the relative displacement between the two phases, is tested

in some selected slope stability problems. The aim of these studies is understanding

the potential and limits of this approach while giving new insights about the

analyzed phenomena.

The first example is the collapse of a soil column on a horizontal plane. This

small-scale benchmark is commonly employed in geotechnical modelling to study

the rheology of complex natural mixtures, as well as to calibrate major parameters

controlling free surface earth fall behavior and potentially correlated debris flows.

Small-scale laboratory experiments are designed and carried out to establish a

reference case for the MPM numerical simulations. Unlike previous experiments

of column collapse in completely submerged conditions, completely dry conditions,

or with very small amount of fluid [see e.g. 130, 131, 132, 133, 134, 135, among

others], the material is saturated and propagates in air. These conditions are
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closer to natural flow-like landslides. A plane strain numerical model is built,

and the results are discussed with emphasis on the collapse dynamics, run-out,

and size scale effects. In particular, the 2P-DP formulation is able to reproduce

soil-fluid coupling in an advanced manner by considering a nonlinear drag force

expression and phase transition from solid to liquid state. These two aspects and

their impacts on propagation and run-out distance are investigated in this study.

Afterwards, a different problem is considered to test the formulation. Unlike the

first case, the second is at the engineering scale: the failure of a levee section due

to rapid drawdown. This case is treated in a simplified manner, by progressively

removing liquid material points (LMPs) to mimic the emptying process. The

aim of this second example is to show the power of MPM in quantifying failure

and post-failure behavior. This kind of analysis can provide a safety assessment

not only in qualitative terms by expressing a factor of safety (FS), but rather in

quantitative terms, thanks to the full displacement analysis. To make this aspect

more clear, a comparison with analysis based on LEM and FEM is carried out.

The examples presented in this chapter are taken from two papers coauthored

by the thesis author [136, 137]. In the first paper, the study of the column collapse

is enriched with a comparison between 2P-DP MPM and a micromechanical

numerical approach, i.e., the DEM (Discrete element method) coupled with LBM

(Lattice Boltzman method). Some of the most relevant findings arising from the

comparison will be briefly presented.

2 Saturated granular column collapse in air

Many hazardous natural phenomena like debris flow, avalanches and submerged

landslides are characterized by rapid movement of a mixture of solid particles and

fluid. During motion the two phases can separate. Depending on the flow velocity

and the mixture characteristics, the front can be dominated by the solid phase

(granular front) or the liquid phase (fluid front). The interactions between these

phases govern the propagation of the mixture, and this behavior is still poorly

understood.

The numerical simulation of these phenomena is attractive, because it allows

the use of numerical models in the context of hazard assessment and mitigation.

On the other side, experimental data helps to calibrate numerical models, validate
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Figure 3.1: Illustration of the experimental setup used for column-collapse tests, from [136].

them and develop the intuition needed for the derivation of fundamental governing

equations [130]. A commonly employed small-scale model for the study of flow-like

landslides is the column collapse. The results of an experimental and numerical

study of this specific problem are herein presented.

2.1 Experimental study

The sketch of the experimental configuration is illustrated in Fig. 3.1. It consists

of a standard glass flume 0.70 m-long, 0.05 m-wide, and 0.12 m-high, closed at

one end. The flume is equipped with a movable vertical gate at a distance of

L0 = 0.04 m from the closed end: in this way, a storage partition is created, where

the saturated granular mixture is placed. By modifying the filling height, columns

with different aspect ratios can be prepared. The channel base and the lateral

walls are made of glass, while the gate is made of plexiglass.

The gate and the opening mechanism have been designed to address both water

tightness before collapse and sudden gate uplift. The first is crucial to avoid

partial desaturation prior to the collapse, thus an immiscible fluid (vaseline) was

used to coat the interfaces between gate and flume sides; in addition, the same

fluid favors the fast uplift of the gate, triggering the propagation of the saturated

mixture in a way that can be well described by the sudden removal of fixities in

the numerical models. The granular material (an artificial sand) has a uniform

granulometric distribution with mean diameter D = 2.5 · 10−3 m and grain density

ρS = 2625 kg/m3. The fluid phase is water dyed with a natural colorant in order

to improve the visualization of the fluid motion.

The preparation method of the saturated sample aims at controlling the initial

volumetric fractions of the components. At the beginning, the column volume is
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Conditions H0 [m] L0 [m] a [-] number

Saturated and Dry

0.07 0.04 1.75
0.06 0.04 1.50
0.05 0.04 1.25
0.04 0.04 1.00
0.03 0.04 0.75

Table 3.1: Summary of experimental tests. The aspect ratio is computed as a = H0/L0.

filled with 2 · 10−5 m3 of water. Subsequently, a controlled amount of granular

material is gently poured with a spoon immersed in the water to allow deposition

without compaction and to avoid gas bubble inclusion. Soil layering continues

until the column reaches the desired initial dimensions. If necessary, the water

level is adjusted using a syringe. The liquid volume VL and the solid mass ms are

carefully measured; the porosity is computed from the liquid volume as in Eq. 3.1

nVL = VL/(H0L0W ) (3.1)

and subsequently cross-checked with a second equation (Eq. 3.2), based on solid

mass

nms = 1−ms/(ρsH0L0W ) (3.2)

In Eqs. 3.1, 3.2 H0 is the initial column height, L0 initial column base dimension

parallel to x-axis (see Fig. 3.1 for the reference system) and W is the other base

dimension of the column, corresponding to the flume thickness. Some differences

were reported in the initial aggregation state due to the operator influence on the

preparation procedure, however, the initial porosity values were always bounded

between 0.39 and 0.43, with an average of 0.40.

The experimental tests considered are summarized in Tab.3.1. The initial column

basal dimensions are fixed, since they are related to the apparatus configuration,

while the height of the column is varied between H0 = 0.03 m and 0.07 m, obtaining

different aspect ratios a = H0/L0. Three tests for each configuration are carried

out to verify the repeatability of the results and estimate the experimental error.

The process is recorded with a high-resolution and high-speed camera (500frames/s)

placed at the channel side and aligned with the horizontal channel axis. The

apparatus is illuminated by a constant artificial LED light, as visible in Fig. 3.2.

The videos are elaborated with a MATLAB code, which extracts the frames and
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Figure 3.2: Complete apparatus set up ready for column collapse tests.

detects the edges of the column, creating the corresponding coordinates data set

[138]. Note that with this procedure only the lateral profile of the column can

be observed. Fig. 3.3 provides an overview of the collapse evolution for a = 1.5,

with four extracted frames overlapping with the detected profiles (in red). Time is

normalized with respect to a reference time, defined in accordance with previous

numerical studies on dry and submerged granular column collapse [135, e.g.]:

tref =
√
H0/g for dry conditions and tref =

√
H0/g′ for saturated conditions. The

reduced gravity g′ = g(ρS−ρL)/ρS accounts for the buoyancy effect in the ambient

fluid [135, 139].

When the gate is lifted, at the column foot, both grains and water starts

moving forward (Fig. 3.3(a)). Then, the top part heads toward the flume base,

slipping along a failure surface progressively evolving with time (Fig. 3.3(b), (c)),

which separates the flowing layer from the underneath static region. Finally,
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Figure 3.3: Frames of the saturated soil collapse experiment (a = 1.5) with edge detection at
different time instants, from [136].
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Figure 3.4: Time evolution of normalized front position for dry (a) and saturated cases (b), from
[136].

the granular front decelerates and stops, while water filters through the solid

phase (Fig. 3.3(d)). A comparison with tests of column collapse in dry conditions

is also presented. Fig. 3.4 plots the evolution of the normalized front position

(Xf − L0)/L0 as function of the normalized time t/tref for different aspect ratios

in dry and saturated conditions. The evolution of the process and the run-out are

very similar in dry and saturated conditions for a ≤ 1.0. In contrast, the process

is slightly faster in terms of normalized time and the run-out is longer in saturated

conditions for a > 1.0. Overall, it is possible to identify, according to previous

publications [132, 140, 141], three phases during the collapse: firstly, a transient

acceleration phase of ∼ 0.8tref , then a constant velocity interval ∼ 2tref and lastly

the deceleration phase, which can last up to ∼ 6tref .
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2.2 Set up and calibration of numerical model

A two-dimensional MPM model is set up, considering plain strain conditions.

Frictional effects of the lateral boundary are neglected, and these are assumed

small at the symmetry plane of the experiment. The bottom boundary is fixed (i.e.,

fully rough), while roller boundary conditions are applied at the other surfaces.

A linear-elastic perfectly-plastic model with a Mohr-Coulomb failure criterion is

used.

The MPM model applies a structured mesh with element size of 4 · 10−3 m; 12

LMPs and 12 SMPs are assigned to each initially active element. A small value of

local damping (0.02) is used to stabilize the results [142]. This damping is not an

input of the constitutive relation, instead it is an additional force included in the

momentum balance, proportional to the system unbalance force (f ext − f int), to

the nodal velocity vector and to a damping coefficient (in this case equal to 0.02).

This small damping coefficient does not significantly influence the run-out.

The influence of element size, MPs number, and local damping has been deeply

discussed in previous works [143] considering dry column collapse simulated with

a 1Phase approach. It was shown that mesh refinement improves the definition of

the failure surface, while having a small effect on the runout. These considerations

are confirmed for the 2P-DP MPM model considered in this study. Moreover, the

mesh refinement impact on the computational time, since the critical time step is

directly proportional to the mesh size, and more precisely to the minimal length

of a element. The mesh chosen optimizes computational time and allows for a

satisfactory reproduction of the experiment.

However, while in the dry case increasing the number of MPs does not improve

significantly the results, with the 2P-DP approach, the use of only 3 MPs/elem

sometimes leads to numerical instabilities, and better results are obtained with 12

MPs/elem. A larger number of MPs reduce the quadrature error [144] and the

occurrence of elements filled with only a small number of MPs, which seems to be

essential for the stability of 2P-DP MPM. A further increase of the number of

MPs increases the computational cost without improving the results.

The boundary conditions for the liquid are identical to those of the solid. A

simple Newtonian model is used to describe the material. In the 2P-DP MPM

model, a reduced value of the bulk modulus (2 · 107 Pa) compared to pure water
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Soil density ρS 2600 [kg/m3]
Initial porosity n 0.4 [-]
Friction angle φ 35 [◦]
Cohesion c′ 0.0 [kPa]
Young modulus E 1 ·107 [kPa]
Poisson’s ratio ν 0.3 [-]

Table 3.2: Material and strength parameters for SMPs in the column collapse model.

is used to speed up the calculation. A cavitation threshold is imposed in MPM to

overcome numerical difficulties (“explosion” of MPs since the very beginning of

the simulation), thus only positive pressures are allowed. In fact, introduction of

negative pressure would require a suitable adaptation of the entire formulation

to reproduce the unsaturated behavior. For instance, the mass balance equation

should be consistently adapted, to account for the partially saturated state of the

soil, impacting on the fluid quantities in the pores and volumetric strain evolution.

The method has been extensively tested in the classical 1Phase (liquid) dam-break

problem, showing good agreement with experimental results and other numerical

methods [145, 146]. Following the experimental configuration, a mean diameter of

2.5 · 10−3 m is used to update the intrinsic permeability and the drag force with

Eq. 2.34 and Eq. 2.36. The initial porosity is set to 0.4.

Before studying the saturated conditions, a preliminary calibration of the

material parameters governing the behavior of the solid phase is carried out based

on dry column collapse tests. A reference height H0 = 0.06 m is considered for

calibration. A series of parametric analyses has been performed to calibrate the

macroscopic friction angle, showing that φ = 35◦ gives the best results. Tab.3.2

lists the chosen set of parameters for the model. The simulation result that gives

the best fit to the experimental data is illustrated in Fig. 3.5. The model based

on DEM-LBM is also calibrated based on these experimental results.

2.3 Numerical results

The current section presents the numerical results obtained in saturated conditions

for the cases summarized in Tab.3.1. The results are analyzed in light of the

experiment outcomes.
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Figure 3.5: SMPs strength parameters’ calibration. Final configuration of dry column collapse:
experimental (a) vs. numerical results (b), adapted from [136].

2.3.1 Initialization

In the numerical model, the initial stress state is initialized during a gravity

loading step in which gravity is applied while preventing horizontal displacement

of both sides of the column. In Fig. 3.6(a) liquid pressure and Fig. 3.6(b)vertical

effective stress are reported. The horizontal fixity on the left boundary (visible in

Fig. 3.6) is then removed and the failure of the column is initiated.

2.3.2 Collapse dynamics and deposition

Figs.3.7 and 3.9 present the results obtained for the case H0 = 0.06 m, which

corresponds to a time scale of tref = 0.1 s.

In Fig. 3.7 the collapse dynamic is captured by plotting SMPs displacements,

using a color legend and scaling them compared to the initial column height, while

LMPs are represented by blue dots. In the four normalized time instants selected

it is evident that liquid and solid front are progressing in parallel, and only after

t/tref = 1 the liquid flows out and propagates much further than the solid phase.
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Figure 3.6: Results of the initialization phase, before column “release”. Liquid pressure distribu-
tion (a) in LMPs and vertical effective stress in SMPs (b). The horizontal fixity imposed only in
this phase is indicated with roller boundary symbols.

These results are analysed together with the experimental results. In fact, the

selected times are very close to the experimental times of Fig. 3.3. Thus, after

a first qualitative assessment, it appears that the shape of the moving soil mass

resembles the experiment, apart from the top part, which is strongly influenced

by the partially saturated state. For the cases H0 = 0.03m, 0.05m, and 0.07m

(a = 0.75, 1.25, and 1.75, respectively) the time-evolution of the normalized solid

front position is shown in Fig. 3.8 comparing numerical and experimental results.

The position of the front in the numerical simulations is defined as the horizontal

coordinate Xf,S overtaken by 0.5% of the total solid mass. From direct observation,

the fluid front appears to be slightly ahead of the granular front in all tests. MPM

correctly reproduces this behavior, see Fig. 3.8.

As previously mentioned, a comparison with a different numerical technique

has been carried out during this study, using coupled DEM-LBM. The simulations

based on this approach have been performed with an in-house code [147] by a

colleague. The comparison with the MPM results is interesting because it helps

shed light on this complex dynamic process and at the same time provide a

characterization based on elements not present in a macro-mechanic continuum

approach, like the MPM. In Fig. 3.9 grey points indicate the position of the solid
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Figure 3.7: Numerical results at four time instants t/tref = 0.4; 1; 2; 5. Blue circles indicate the
position of the liquid phase (LMPs) while a colour scale is used to visualize the normalized solid
displacements.
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Figure 3.8: Evolution of normalized front position in time for different aspect ratios. Numerical
results (holow circles for DEM-LBM and full circles for 2P-DP MPM) and experimental results
(triangles) in saturated conditions, from [136].

phase (SMPs) while a colour scale is used to visualize the normalized fluid speed

vL/(g(H0)0.5. The MPM model (panels a-c) predicts a faster collapse, with higher

front velocity and, as previously mentioned, no clear separation between granular

and liquid fronts. In the DEM-LBM model (panels d -f ), the collapse develops

more slowly and the formation of a granular front is recognizable up to t/tref = 5.

After this time, the water slowly flows out of the soil. The difference in collapse

speed can be explained as due to three simultaneous effects. Firstly, DEM-LBM

is more dissipative, because it resolves the energy losses due to granular collisions.

These are not directly considered in the Mohr-Coulomb model applied in 2P-DP

MPM [148]. Second, DEM-LBM can account for negative pore pressures when the

granular skeleton dilates. Conversely, in the 2P-DP MPM formulation the excess

pore pressure can only be positive due to numerical difficulties. Thus, in the

pure-continuum model the changes in pore pressure can promote granular mobility,

but cannot reduce it. Since granular columns in loose packing are considered here,

this effect must be limited. Third, DEM-LBM considers the confining effect of

the lateral walls, but this is minor compared to other contributes.

The phase transition aspect can now be considered. In the experiments, after

gate opening, the granular material collapses and water tends to flow out of the

sample. At the same time, the top part of the column desaturates. When the

granular material mobilizes, the grains closer to the free boundary accelerate, with

the superficial layer of material moving towards fluidized conditions. The change
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Figure 3.9: Numerical results at three time instants t/tref = 1; 2; 5. Grey circles indicate the
position of the solid phase (SMPs) while a colour scale is used to visualize the normalized fluid
speed vL/(g(H0)0.5, from [136].

of state in the medium can be observed thanks to the phase status definition. It

appears as a decrease of the mean effective stress due to the lack of confinement

at the top and lateral boundary of the column. At these locations, the effective

porosity increases, bringing (eventually) the solid to the fluidized state. In this

state, soil effective stress is zero, and its presence in the fluid phase increases the

apparent viscosity, according to Eq. 2.37. The boundary between the fluidized

and non-fluidized state is nmax, which is a model parameter. Fig. 3.10 shows the

phase status at SMPs at t/tref = 2 for nmax = 0.5 and nmax = 0.8. This parameter

affects the soil profile slightly, but does not seem to be relevant for the run-out

and collapse dynamics. Concerning deposition, Fig. 3.11 shows the final shape of

the deposit for different initial column heights obtained with MPM (red-yellow

dots) and DEM (gray circles). The black line indicates the experimental profile.

The final shape of the solid deposit in MPM is approximately a straight line, while

in DEM-LBM it is convex. This effect is due to the discrete description of the

granular assembly in DEM-LBM. There is a relatively good agreement between

the two numerical models.

The discrepancies with the experimental results are mainly due to the behavior

of the top part of the column. This is in partially saturated conditions, and not

completely dry as assumed by the numerical models. In the experiments, some

grains and fluid remain attached to the lateral walls due to the fluid surface tension.

These are recognized by the edge detection algorithm. This effect is pronounced

only within the area covered by the initial position of the column, which is shown
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Figure 3.10: Phase status of SMPs at t/tref = 2 in case (a) nmax = 0.5 and (b) nmax = 0.8.
Black points are in fluidized state, grey points are in solid state. The grey and black lines indicate
the final deposition for nmax = 0.5 and nmax = 0.8 respectively, from [136].
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in Fig. 3.11 with a hollow rectangle. Outside of this area, the surface detection is

fair.

2.3.3 Drag force impact on propagation

In multiphase continuum methods the definition of the drag force is an essential

ingredient of the model. The ratio between the quadratic and the linear term in

Eq. 2.34 is proportional to a modified particle Reynolds number Rep [139] defined

as:
f2

f1

≈ Rep =
DρL||vL − vS||

νm

(3.3)

For low Rep, the quadratic term f2 is negligible compared to the linear term f1. In

the following, the reference velocity for the solid phase is assumed vS,ref =
√
g′H0,

which is a reasonable reference value for the solid front velocity as shown in [135].

The reference velocity for the liquid phase is assumed vL,ref =
√
gH0, which is

the free fall velocity. Note that vL,ref − vS,ref does not represent any true relative

velocity between phases during the collapse, but it is considered as a representative

parameter of the solid-fluid interaction.

In order to explore the importance of the quadratic term in Eq. 2.34 we performed

parametric analyses increasing the size of the column up to a factor of 100 while

keeping a = 1.5. The liquid viscosity νm is varied between 0.001 Pa · s and 0.1 Pa · s
and the grain size D between 0.0025 m and 0.25 m while keeping ρL = 1000 kg/m3

and ρS = 2600 kg/m3.

Fig. 3.12 illustrates the results for two different values of the particle Reynolds

number Rep = 4 · 103 and Rep = 4 · 105, showing the position of LMPs and SMPs

at different time instants. The results obtained using the linear and the quadratic

term in Eq. 2.34 are shown in panels (a-f ). Those obtained using only the linear

term are shown in panels (g-l).

In the case Rep = 4 ·103, shown in Fig. 3.12 (a-c,g-i), there is no clear separation

between fluid and solid fronts. Neglecting the quadratic term of the drag force does

not significantly alter the results. In contrast, for Rep = 4 · 105, Fig. 3.12 (d -f,j -l),

the fluid can easily flow out of the mixture, and in this case the effect of the

quadratic term is significant.

The results of the parametric analyses showed that the importance of term f2 in

Eq. 2.34 becomes significant for the relative position between fluid and solid front
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approximately for Rep > 4 · 104. This means that an appropriate formulation of

the drag force is crucial to capture correctly the solid-fluid interaction in these

phenomena, especially for high Reynolds numbers.
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3 Levee failure induced by rapid drawdown

This section considers the effect on the stability of a levee or dam of a rapid

decrease of water level, occurring in the river or reservoir retained by the considered

levee. The treatment of this engineering problem with the 2P-DP formulation is

an evident simplification, since the partially saturated state of soil, its variations

during the drawdown and the impact on the flow process are not fully captured.

It is a preliminary study, to better understand the importance and the practical

consequences of developing an MPM unsaturated formulation, as presented in the

following Chapter.

3.1 Preliminary conventional analysis

The geometry of the levee section is presented in Fig. 3.13(a). The levee is 4m

high, with slope inclinations equal to 28◦ and 32◦, respectively on the riverside

and the landside. In addition, the initial and final river levels are indicated in the

same figure. The initial water level in the reservoir is H = 3m and it is decreased

to H = 0m in 30 minutes. The decrease is linear, as visible in the hydrograph in

Fig. 3.13(b).
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Figure 3.13: Levee section considered for the drawdown analysis(a), with indication of initial and
final water levels. Hydrograph applied in the simulations(b).

The stability of the earth structure after rapid drawdown is customarily investi-

gated coupling transient seepage analyses and LEM or applying a phi−c reduction

approach in finite element models. In both models the constitutive model adopted

is a simple Mohr-Coulomb with strength parameters friction angle φ = 28◦ and

effective cohesion c′ = 2kPa. In Fig. 3.14 the results obtained with LEM using
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Figure 3.14: Drawdown stability analysis. (a) Pore pressure distribution prior to the drawdown,
(b) Pore pressure distribution at 27 minutes, slip surface with minimum factor of safety FS =
1.039 and safety map.

the software Geostudio [46] are presented. The initial piezometric line and the

pore pressure distribution are determined with a steady state seepage analysis,

considering saturated hydraulic conductivity Ksat = 4 · 10−6m/s. The mesh for

the seepage analysis is made with triangular elements of edge size equal to 0.5m.

Fig. 3.14(a) shows the initial pore pressure distribution, before the drawdown.

In the next phase, the water level is decreased linearly to H = 0 in 30 minutes

and the pore pressure distribution is computed with a transient seepage analysis.

At the end of the drawdown, the Bishop method is applied to determine the

safety factor, which is 1.039 at 27 minutes (Fig. 3.14(b)). The slope is at the

limit of static equilibrium, sensitive to instability mechanisms due to a minimal

subsequent increase in solicitation or resistance reduction. Fig. 3.15 shows the

results obtained with the FEM code Plaxis2D [149] (just the internal slope is
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depicted). The phi − c reduction method is applied at the end of the seepage

analysis and provide a safety factor of FS = 0.987. With this method the factor

of safety correspond to the strength reduction factor SRF which is defined as in

Eq. 3.4

SRF =
( tanφ′
tanφ′f

)
=
( c′
c′f

)
(3.4)

where φ′f and c′f are the soil parameters at “failure”. In this situation, the

numerical FEM solution doesn’t converge anymore.

The displacement contour indicates the potential sliding surface, but the cal-

culated maximum displacement of 12mm shouldn’t be considered representative

of any realistic condition of failure. The advantage of FEM over LEM is that

the sliding surface is a result of the analysis and does not have to be specified a

priori. These methods provide an estimate of the safety factor, and the sliding

mechanism but do not give any information on the displacements. To evaluate

the failure process, the 2Phase double-point approach can be applied as shown in

the next section.

Figure 3.15: Drawdown stability analysis with FEM and phi− c reduction method, from [137].
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3.2 Model set up

In order to reduce the computational cost, only the river-side slope is considered.

The geometry and discretization of the problem are shown in Fig. 3.16. The

mesh is realized with linear triangular elements. The initial number of MP per

element is: 3 LMPs and 3 SMPs for the saturated soil area, 3 LMPs in the free

water area and 3 SMPs in the dry soil area. The lower boundary is fixed for the

solid phase, and horizontal displacements are prevented at the lateral boundary.

All boundaries are impermeable for the liquid phase. The material parameters

are summarized in Tab.3.3. The water level is assumed initially horizontal and

stresses are initialized with a quasi-static gravity loading phase. The drawdown

is simulated removing progressively the LMPs in the free water area in 5 load

steps reaching H=0m in 30 minutes, then the simulations proceeds for 5 hours to

visualize the evolution of displacements. During these 5 hours the LMPs keep to

be removed in front of the slope, to maintain the outflow and the liquid pressure

to zero on the slope border, to mimic a potential seepage face condition.
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Figure 3.16: Geometry and discretization of the MPM model for the drawdown (displacements
based) analysis, from [137].
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Soil density ρS 2650 [kg/m3] Liquid density ρL 1000 [kg/m3]
Porosity n 0.4 [-] Liquid Bulk modulus KL 8 ·104 [kPa]

Friction angle φ 28 [◦] Liquid dynamic viscosity µL 1 · 10−6 [kPa · s]
Cohesion c′ 2 [kPa] Intrinsic permeability k 4.08 ·10−12 [m2]

Young modulus E 3 ·104 [kPa]
Poisson’s ratio ν 0.3 [-]

Table 3.3: Material and strength parameters for the 2P-DP drawdown analysis.

3.3 Results

Fig. 3.17 shows the displacement of SMPs and the position of LMPs at different

time instants. At the beginning of the drawdown the displacements are very

small, the failure surface begins to develop when the water level is lowered at 0.6m

and at t=26.7min the maximum superficial displacement is 0.18m. The slope

rapidly stabilizes at a new deformed configuration: at t=33.3min the maximum

displacement is only 0.20m, and after 5 hours it reaches the value of 0.21m.

The shape of the failure surface agrees well with the FEM results. The MPM

results show that in this example, seepage due to water drawdown induces the

development of a failure surface; however, the displacements remain relative small

and a new stable configuration is reached. Different scenarios can be investigated

with this approach and parametric analyses can be performed. For example,

decreasing the friction angle to 24°, the factor of safety obtained with LEM at the

end of the drawdown reduces to 0.93. In this case, the failure surface develops

earlier and the maxim displacement reaches 0.60m at the end of the simulation

(Fig. 3.18). In this example, the 2P-DP MPM analysis, shows how a safety factor

lower than 1 can lead to limited displacements of the slope that will reach a

new final configuration without severely compromising the ability to absolve its

function in the short term. Different scenarios could be investigated modifying the

geometry and mechanical behavior of the soil, thus offering valuable results for risk

assessment. However, in terms of limitation of the 2P-DP formulation, it emerges

that the lack of suitable hydraulic boundary conditions and a description of the

unsaturated soil behavior are limiting the capability of reproduction. Evolution of

hydraulic and mechanical parameters are not fully captured, especially considering

the importance of describing the unsaturated state for water retention earth

structures. These considerations prepare the ground for the development of an

unsaturated formulations object of the following chapter.
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Displacement solid [m] Displacement solid [m]

Displacement solid [m] Displacement solid [m]

0.0 0.20 0.0 0.20

0.0 0.20 0.0 0.20

t=1000s (16.7 min) t=1600s (26.7 min)

t=2000s (33.3 min) t=20000s (5hr 33 min)

(a) (b)

(c) (d)

Figure 3.17: Solid displacements at different time instants during drawdown. LMPs are repre-
sented by blue dots, from [137].

t=1200s (20 min) t=20000s (5hr 33 min)

(a) (b)Displacement solid [m] Displacement solid [m]
0.0 0.60 0.0 0.60

Figure 3.18: Solid displacement for φ = 24◦. LMPs are represented by blue dots, from [137].
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4
Developing a 2Phase Single Point MPM

formulation for unsaturated soil

1 Introduction

This chapter is focused on the 2Phase Single Point formulation developed during

this thesis work. After the main hypothesis, the governing equations are presented.

The innovative aspect of this formulation is the implementation of transient

hydraulic boundary conditions. Validation with 1D and 2D cases is presented.

Lastly, a preliminary study about numerical stability in unsaturated conditions is

introduced. The contents of this chapter refer to three papers coauthored by the

thesis author [115, 116, 150].

2 Governing equations

In the formulation here presented, named 2Phase with suction, the following

assumptions are adopted:

1. Gas pressure is neglected (pG = 0)

2. Gas density is negligible compared to liquid and solid ones (ρG ≈ 0)

3. Compressibility of solid grains is negligible compared to solid skeleton one
(ρS ≈ 0)
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4. Isothermal conditions.

Figure 4.1: Unsaturated soil schematization in the 2Phase with suction MPM formulation. MP
stands for Material Point while i stands for node.

2.1 Momentum balance equations

The formulation is derived considering dynamic momentum balance of the liquid

phase, dynamic momentum balance of the mixture, and mass balances and

constitutive relationships of both phases involved (i.e. solid and liquid). All

dynamic terms are taken into account; acceleration of the solid skeleton aS and

acceleration of the pore liquid aL are the primary unknowns.

Unsaturated conditions are accounted, considering that the liquid phase does not

entirely fill the voids. The balance equations of gas phase are neglected, thus the

presented formulation can be considered 2Phase and is an extension of the one

presented in [97] and [113]. The idealization behind this formulation is presented

in Fig. 4.1. The momentum balance of the liquid phase per unit of liquid volume

is given in Eq. 4.1

ρLaL = ∇pL − fd
L + ρLg (4.1)

where ρL is the liquid density, fd
L is the drag force which accounts for solid-fluid

interaction, pL is the liquid pressure and g is the gravity vector.

The flow is considered laminar and stationary in the slow velocity regime. Hence,
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the drag force is governed by Darcy’s law (Eq. 4.2)

f d
L =

nLµL

κL

(vL − vS) (4.2)

where µL is the dynamic viscosity of the liquid, κL is the liquid intrinsic perme-

ability, nL is the liquid volumetric fraction and vL, vS are the absolute liquid and

solid velocities respectively. The isotropic intrinsic permeability of the liquid κL

can also be expressed in terms of Darcy permeability, or hydraulic conductivity,

kL (Eq. 4.3).

κL = kL
µL

ρLg
(4.3)

The mixture dynamic momentum conservation can be written as Eq. 4.4,

nSρSaS + nLρLaL = div(σ) + ρmg (4.4)

where ρS is the solid grain density, nS is the volumetric concentration ratio of

solid, and ρm = nSρS + nLρL is the density of the mixture. Note that nS = 1− n
and nL = SLn, where n is the porosity of the solid skeleton and SL is the degree

of saturation.

σ is the total stress tensor, which can be computed with the Bishop’s effective

stress equation for unsaturated soils and has the form of Eq. 4.5, where χ is an

effective stress parameter, here assumed equal to SL, and m is the unit vector,

equal to (1 1 1 0 0 0)T in 3D. In this thesis, stresses and pressures are positive for

tension, thus suction is equal to pL.

σ = σ′ + χpLm (4.5)

2.2 Mass balance equations

The mass conservation of the solid phase is expressed as given in Eq. 4.6,

∂(nSρS)

∂t
+ div(nSρSvS) = 0 (4.6)

where vS is the velocity of the solid phase.
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Similarly, the conservation of liquid mass can be written as Eq. 4.7,

∂(nLρL)

∂t
+ div(nLρLvL) = 0 (4.7)

where vL is the (true) velocity of the liquid phase

The material derivative with respect to the solid can be expressed as

DS(•)
Dt

=
∂(•)
∂t

+ vS∇(•) (4.8)

When considering incompressible solid grains and disregarding the spatial

variations in density and porosity, the expressions for the conservation of mass of

the solid and the liquid reduce to Eqs. 4.9 and 4.10 respectively.

DSnS

Dt
+ nSdiv(vS) = 0 (4.9)

DS (ρLnL)

Dt
= (vS − vL)∇(nLρL)− nLρLdiv(vL) (4.10)

Including Eq. 4.9 into Eq. 4.10, taking into account the definitions of liquid

volumetric concentration ratios in terms of porosity and degree of saturation,

nL = SLn, and rearranging terms give Eq. 4.11

n
DS (ρLSL)

Dt
= div [ρLnSL(vS − vL)]− ρLSLdiv(vS) (4.11)

Finally, the material derivative in Eq. 4.11 is solved assuming liquid pressure as

state variable, which yields to Eq. 4.12.

n

(
SL
∂ρL

∂pL

+ ρL
∂SL

∂pL

)
DSpL

Dt
= div [ρLnSL(vS − vL)]− ρLSLdiv(vS) (4.12)

The derivative of liquid density with respect of pressure is given by the state

equation of liquid, Eq. 4.13, where KL is the Bulk modulus of the liquid; while

the derivative of the degree of saturation is given by the soil-water retention

curve (SWRC). Eq. 4.13 states again the weakly compressible behavior of the

liquid. This assumption is made to mitigate numerical instabilities arising at
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the incompressible limit. These numerical instabilities/inaccuracies are related

to the low-order interpolation functions used in the present MPM formulation.

The shape of Eq. 4.12 makes it look like the storage term accounts only for water

compressibility and variation of degree of saturation with respect to the liquid

pressure. Actually there is a third term, accounting for the compressibility of the

solid, which is introduced in the final equation when the mass balance of the solid

Eq. 4.9 is included into Eq. 4.10.

∂ρL

∂pL

= − ρL
KL

(4.13)

When spatial variations of fluid mass in the soil are negligible, i.e ∇(ρLnSL) ≈ 0,

Eq. 4.12 can be simplified in Eq. 4.14

n

(
SL
∂ρL

∂pL

+ ρL
∂SL

∂pL

)
DSpL

Dt
= ρLnSLdiv(vS − vL)− ρLSLdiv(vS) (4.14)

This simplified form has been adopted also by [113]. [115, 151] showed that the

use of Eq. 4.14 gives reasonably good results for applications where the degree

of saturation varies in a limited range and the derivative of the SWRC is small.

The effect of the gradient of advective fluxes in the fluid mass balance equations

is discussed in Sec. 2.2.1 which is complemented with an illustrative example.

2.2.1 Discussion about gradient of advective fluxes in the mass

balance equation

Eq. 4.11 can be written as Eq. 4.15, by expanding the gradient of the advective

flux term.

n
DS(ρLSL)

Dt
+∇(ρLSLn) ·(vL−vS)+ρLSLn∇·vL+ρLSL(1−n)∇·vS = 0 (4.15)

The first addend is related to the liquid mass change as a result of pressure

and degree of saturation variation in time. All other terms explain the variation

of liquid mass as a result of the liquid inflow/outflow gradients resulting from

different mechanisms. In particular, the second term in Eq. 4.15 describes the
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variation of the liquid mass induced by a flow triggered by the fluid mass gradient;

the third term describes the variation of liquid mass due to the divergence of

the fluid velocity (equivalent to a volumetric deformation of the fluid); and the

fourth term describes the variation of liquid mass due to the divergence of the

solid velocity (equivalent to a volumetric deformation of the solid skeleton).

The mass balance equation is solved at the MP level, where the computation

of the last two terms of Eq. 4.15 is straightforward because nodal velocities are

already available during the traditional computational cycle. In contrast, the

evaluation of the fluid mass gradient requires the additional step of mapping the

quantity ρLSLn to the nodes and then calculate the gradient at the MP [71]. This

is relatively simple and does not significantly increase the computational cost. The

gradient of fluid mass can be calculated as Eq. 4.16. While the spatial gradient of

liquid density (∇ρL) and porosity (∇n) can be assumed negligible in most cases,

the gradient of the degree of saturation depends on the pressure gradient and

the SWRC. The importance of the last term of Eq. 4.16 increases with pressure

gradient and ∂SL/∂pL.

∇(ρLSLn) = SLn∇ρL + SLρL∇n+ nρL∇SL (4.16)

To visualize the effect of this term, the evolution of suction in a 1m soil column

during an infiltration test is considered. For t = 0, an initial suction s0 is applied

along the column. For t > 0, zero suction is imposed at the top boundary while the

bottom is impervious. Gravity is neglected. The soil permeability is constant and

the SWRC is linear (Eq. 4.27). Under these assumptions, an analytical expression

that describes the evolution of the normalized suction along the column with time

can be derived from the mass balance equation of the liquid following [152]

s

s0

=
4

π

∞∑
j=1

(−1)j−1

2j − 1
cos

[
(2j − 1)

π

2

y

h

]
e−(2j−1)2Tπ2/4 (4.17)

The non-dimensional time factor T (Eq. 4.18) is defined as a function of the

infiltration coefficient Ci (Eq. 4.19) and the drainage length (h).

T =
Cit

h2
(4.18)

74



Solid density [kg/m3] ρS 2700
Liquid density [kg/m3] ρL 1000
Porosity [-] n 0.3
Liquid bulk modulus [kPa] KL 80000
Liquid dynamic viscosity [kPa · s] µL 1 · 10−6

Intrinsic permeability liquid [m2/s] κL 5 · 10−11

Table 4.1: Material parameters for 1D infiltration example with applied pressure.

Figure 4.2: Evolution of normalized suction with depth. Comparison between numerical and
analytical formulations.

Ci =
k

nρLg
(
SL
KL

+ ∂SL
∂pL

) =
k

nρLg
(
SL
KL

+ av

) (4.19)

Figure 4.2 compares the results obtained with the complete mass balance

equation (Eq. 4.12, circles) and with the simplified mass balance equation (Eq. 4.14,

cross symbol) considering different values of initial suction s0 and ∂SL/∂pL = av.

For s0 = 500kPa and av = 1 · 10−3 (Fig. 4.2a) the simplified mass balance

equation leads to a delay in the evolution of suction, while the complete mass

balance equation gives results in very good agreement with the analytical solution.

Decreasing the slope of the SWRC to av = 1 · 10−5 (Fig. 4.2b) or reducing the

initial suction to s0 = 5kPa, i.e. the pressure gradient, (Fig. 4.2(c) the two

approaches give very similar results. Indeed, in these cases, the contribution of

the last term of Eq. 4.16 is very small and neglecting the gradient of fluid mass

is an acceptable simplification. For the range of pressure gradients and SWRC

typical of many civil engineering applications, the error introduced using Eq. 4.14

is acceptably small.
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In the following examples of this thesis, the more general Eq. 4.12 is used for

liquid pressure updates.

2.3 Compatibility equations

The compatibility equations allow obtaining the infinitesimal strain rate tensor of

each phase at the MPs. These can be written in terms of the corresponding phase

velocities as in Eqs. 4.20 and 4.21.

DSεL
Dt

=
1

2

[
∇ · vL + (∇ · vL)T

]
(4.20)

DSεS
Dt

=
1

2

[
∇ · vS + (∇ · vS)T

]
(4.21)

2.4 Mechanical constitutive equation

In unsaturated soils, two stress variables can be used to capture the soil behavior,

e.g. net stress σnet = σ−pG and suction s = pL−pG. The incremental stress-strain

equation becomes Eq. 4.22,

DSσnet

Dt
= Dep DSε

Dt
+ h′

DSs

Dt
(4.22)

where Dep is the tangent stiffness matrix, h′ is a constitutive vector. Both are

defined by the constitutive model.

A great number of constitutive models for unsaturated soils have been presented

in the literature [153, 154, 155, 156, 157, 158]. In this thesis, a suction-dependent

Mohr-Coulomb failure criterion is employed in Chapter 5 as formulated by [159]

in terms of net stress σnet = σ − pG and suction s = pL − pG.

The parameters of the yield function are expressed as

c = c′ + cs (4.23)

φ = φ′ + φs (4.24)

where cs and φs are the strength components depending on suction, and c′ and φ′
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are the effective strength parameters in saturated conditions. The components

depending on suction are defined as

cs = ∆cmax(1− e−Bs/patm) (4.25)

φs = A(s/patm) (4.26)

where B and A stand for calibration parameters, controlling cs and φs rate of

variation with suction, respectively, and ∆cmax is the maximum increment of

cohesion. The formulation doesn’t pose any limit to the use of ulterior advanced

constitutive models for unsaturated soils, which can more accurately capture some

aspects of the soil behavior.

2.5 Hydraulic constitutive equation

The relationship between pore liquid pressure and degree of saturation or liquid

content is essential to model the behavior of unsaturated soil. This is given by the

SWRC which can assume different analytical expressions [160, 161, 162]. In the

following, two alternative relationships are used: (i) a linear relation (Eq. 4.27)

where av is a constant parameter, Smin is the residual degree of saturation and

Smax is the maximum degree of saturation, and (ii) the Van-Genuchten relationship

[160] (Eq. 4.28) where pref , λ, are fitting parameters.

SL = Smin + (Smax − Smin)pL
av (4.27)

SL = Smin + (Smax − Smin)

[
1 +

(
pL
pref

) 1
1−λ
]−λ

(4.28)

Suction modifies the soil hydraulic conductivity and usually, unsaturated soils

are less permeable than fully saturated soils. The ratio of the actual hydraulic

conductivity to the saturated hydraulic conductivity (k/ksat) is given by the

hydraulic conductivity curve (HCC). A number of relationships has been proposed

in the literature, however in this research, three HCCs are considered:

1. Constant permeability: this expression is appropriate if soil hydraulic con-
ductivity is not expected to change significantly during the simulated process
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k

ksat
= const (4.29)

2. HCC function as proposed by [163] (Eq. 4.30) where r is a calibration
parameter that usually varies from 2 to 4.

k

ksat
= SrL (4.30)

3. HCC function as proposed by [164] (Eq. 4.31), where λ∗ is commonly assumed
identical to λ in the Van-Genuchten curve (Eq. 4.28).

k

ksat
=
√
SL

[
1−

(
1− S

1
λ∗
L

)λ∗]2

(4.31)

3 MPM formulation

3.1 Weak form

The governing equations (liquid and mixture momentum balance) are transformed

in the weak form, starting from a system of PDE to a system of integral equations

among the domain. Test fields w and u are used in the framework of a virtual

power formulation. Then, the divergence theorem is applied to bring out boundary

conditions.∫
V

ρLaL ·wdV =

∫
V

[
∇pL + ρLg − nLµL

κL

(vL − vS)
]
·wdV (4.32)

The application of the divergence theorem to Eq. 4.32 results in Eq. 4.33

∫
V

ρLaL ·wdV =

∫
∂Ωp

p̂Ld∂Ωp −
∫
V

pL ·wdV +

∫
V

ρLg ·wdV−

∫
V

[nLµL

κL

(vL − vS)
]
·wdV

(4.33)
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The mixture momentum balance equation in the weak form corresponds to Eq. 4.34

∫
V

[(1−n)ρSaS] ·udV =

∫
V

[
−nLρLaL +∇σm +((1−n)ρS +nLρL)g

]
·udV (4.34)

The application of the divergence theorem to Eq. 4.34 results in Eq. 4.35∫
V

[(1− n)ρSaS] · udV =

∫
V

[
− (nLρLaL) · udV +

∫
∂Ωt

τdu∂Ωt −
∫
V

σm : (∇u)dV+

∫
V

[((1− n)ρS + nLρL)g] · udV

(4.35)

Where p̂L is the prescribed liquid pressure in the boundary ∂Ωp and τ is the

prescribed traction vector in the boundary ∂Ωτ .

3.2 Discretized equations

The discretized equations (Eqs. 4.36, 4.37) are obtained using the Galerkin

procedure, and approximating the acceleration and velocity fields by means of

finite element shape functions N. Then, the grid elements are utilized to decompose

the integrals among the entire volume domain, and the MP numerical integration

procedure (Chapter 2, 1.1) is adopted for every integral on the element volume.

M̃LaL = f ext
L − f int

L −QL(vL − vS) (4.36)

MSaS + MLaL = f ext − f int (4.37)

aL, aS, vL, and vS are the nodal acceleration and velocity vectors; MS, ML,

and M̃L are solid and liquid lumped mass matrices (Eq. 4.38- 4.40); f ext
L , f int

L ,

f ext, f int are internal and external nodal force vectors of the liquid phase and the

mixture (Eqs. 4.41- 4.44), and QL is the drag force matrix (Eq. 4.45).

M̃L ≈
nMP∑

MP=1

m̃MP
L N (4.38)
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ML ≈
nMP∑

MP=1

mMP
L N (4.39)

MS ≈
nMP∑

MP=1

mMP
S N (4.40)

f ext
L ≈

∫
∂Ωp

NTp̂Ld∂Ωp +

nNP∑
MP=1

mMP
L NTg (4.41)

f ext ≈
∫
∂Ωτ

NTτd∂Ωτ +

nMP∑
MP=1

mMP
m NTg (4.42)

f int
L ≈

nMP∑
MP=1

BTpMP
L mVMP (4.43)

f int ≈
nMP∑

MP=1

BTσMPVMP (4.44)

QL ≈
nMP∑

MP=1

NTn
MP
L ρLg

kMP
L

NVMP (4.45)

N is the matrix of nodal shape functions and B is the matrix of the gradients

of the nodal shape functions evaluated at local MP positions. The treatment of

boundary conditions for unsaturated soils is described in details in Sec. 4. The

phase mass of the MP is calculated as Eqs. 4.46- 4.49, where VMP is the volume of

the MP.

m̃MP
L = ρLVMP (4.46)

mMP
L = nMP

L ρLVMP (4.47)

mMP
S = nMP

S ρSVMP (4.48)

mMP
m = ρmVMP (4.49)

Eqs. 4.36 and 4.37 are integrated in time using the Euler-Cromer explicit

method. This time integration scheme is conditionally stable and the critical

time step size is computed by considering the minimum value between the critical
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time computed with the criterion proposed by [165] and the one associated to

consolidation processes. A review of critical time step criteria in saturated MPM

formulations is presented in Sec. 7.2, followed by a preliminary study on the

influence of unsaturated conditions on the critical time step.

The momentum balances (Eqs. 4.36 and 4.37) are discretised and solved at the

nodes of the mesh as in [97]. Mass balances (Eqs. 4.9 and 4.12) and constitutive

equations (Eqs. 4.22) are posed locally at the MPs to update secondary variables.

3.3 Numerical algorithm

The formulation presented in previous section is implemented in the open source

code Anura3D. The numerical algorithm is based on the modified lagrangian

algorithm originally proposed by [87] for one-phase material, and successfully

extended to multiphase materials (see e.g. [97, 110]). The MPM solution scheme

for each time step can be summarised as follows.

1. Liquid momentum balance equation (Eq. 4.36) is assembled and solved for
the liquid nodal acceleration aL

2. Mixture momentum balance equation (Eq. 4.37) is assembled and solved to
obtain the nodal acceleration of the solid aS

3. Velocities and momentum of the MPs are updated from nodal accelerations
of each phase

4. Nodal velocities are calculated from nodal momentum and used to compute
the strain increment at the MP location and the terms on the right-end-side
of Eq. 4.12

5. Mass balance equation (Eq. 4.12) and soil stress-strain equation (Eq. 4.22)
give the increment of pore pressure and effective stress respectively

6. State variables at MPs are updated. Degree of saturation and hydraulic
conductivity are updated according to SWRC and HCC respectively

7. Displacement and position of each MP are updated according to the updated
velocity of the solid phase

8. Nodal values are discarded, the MPs carry all the updated information, and
the computational grid is initialised for the next time step.
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4 Treatment of boundary conditions

The proposed formulation requires the definition of the following boundary condi-

tions (BC):

1. Prescribed liquid displacement or velocity on ∂ΩvL and prescribed pressure
on ∂Ωp, where ∂Ω = ∂ΩvL ∪ ∂Ωp and ∂ΩvL ∩ ∂Ωp = 0

2. Prescribed solid displacement or velocity on ∂Ωu and prescribed traction on
∂Ωτ , where ∂Ω = ∂ΩvS ∪ ∂Ωτ and ∂ΩvS

∩ ∂Ωτ = 0.

Essential boundary conditions on ∂ΩvL and ∂ΩvS are imposed on the nodes

of the computational grid. Natural boundary conditions on ∂Ωp and ∂Ωτ are

included in the weak form of the momentum balance equations.

In typical problems with partially saturated soil in geomechanics, prescribed

liquid velocity can be applied on infiltration boundaries as described in Sec. 4.2,

and prescribed pressures can be applied either by defining a pressure load p̂L or by

assigning a total hydraulic head Ĥ as explained in Sec. 4.1. Assuming the validity

of Bernoulli’s equation and neglecting the kinematic head, the total hydraulic

head can be written as

Ĥ = hg −
p̂L
ρLg

(4.50)

where hg stands for the potential head or geometric head and p̂L/(ρLg) is the

pressure head. The minus sign in Eq. 4.50 is introduced because pressure is

assumed negative for compression.

Sometimes, the boundary condition is part of the problem solution, i.e. it is

not known a priori if the boundary belongs to ∂ΩvL or ∂Ωp. This is typical of

free surface flows across porous media along the so-called potential seepage face

[166, 167]. Moreover, the size of this boundary condition can evolve along time.

This boundary condition can be applied as presented in Sec. 4.3. Figure 4.3

represents schematically how these BCs simulate different hydraulic loading acting

on a levee.

In classical FEM, the application of prescribed boundary conditions is simple

as these can be specified directly on the boundary nodes, which coincide with the

boundary of the continuum body and are well defined throughout the computation.

However, the computational mesh in MPM does not necessarily align with the
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River level

Total head BC
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𝜕Ω𝜏

Figure 4.3: Typical boundary conditions for liquid phase (a) and mixture (b), from [150].

boundary of the material making the application of the prescribed boundary

conditions more challenging.

In the numerical framework proposed here, zero-traction and zero-pressure

boundary conditions are automatically enforced to be satisfied by the solution of

equations of motion, but difficulties arise when dealing with non-zero boundary

conditions. The nodes belonging to the boundary are determined with a procedure

similar to the surface boundary algorithm presented in [79], here extended for

unstructured mesh.

For each time step, firstly the active elements (i.e. elements containing MPs)

adjacent to an empty element (i.e. element without MPs) are detected (boundary

elements); then the nodes belonging to the element side adjacent to an empty

element (boundary side) are marked as boundary nodes. The MPs next to the

boundary side are identified as boundary material points as shown in Fig. 4.4.

Finally, if the boundary node lies inside the area where a specified condition has

to be applied, e.g. in the infiltration zone or on the potential seepage face, the

corresponding boundary condition is applied.

Another difficulty with moving boundaries appears when prescribed velocity
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Material point (MP)

Boundary material point (BMP)

Boundary node (BN)

Non-active node

Active node
Empty 
element

Active 
element

Boundary 
side

Figure 4.4: Definition of boundary nodes and boundary material points, from [116].

or traction (pressure) do not have a constant direction, but it is normal to the

boundary. This means that if the shape of the contour changes, the direction

of the applied condition has to be updated during the calculation. The normal

direction at the node is determined by means of the gradient of mass as Eq. 4.51

n ≈
∑nMP

MP=1 m
MP
m B

‖
∑nMP

MP=1 m
MP
m B‖

(4.51)

4.1 Hydraulic head BC

Examples in which hydraulic head BC can be used are the seasonal fluctuations of

groundwater tables [168], impoundement or drawdown of a water reservoir [169],

the sudden increase of river levels due to an extreme flood event, the rupture of

buried water pipes altering the surrounding water table distribution in a urban

environment, or the effect of introducing a drainage system to stabilize a slope.

The hydraulic head BC is converted to an imposed pressure condition p̂L,

using Eq. 4.50 solved for the liquid pressure. This means that a hydrostatic

approximation is adopted, neglecting local turbulence induced by the river flow or

by the potential collapse of the internal bank. The element’s nodes affected by

this condition are detected with the algorithm introduced in the previous section.
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A series of hydraulic head values in time, like the ones provided by water gauges

readings, is assigned with an input file, and at each time step the current hydraulic

head Hcurr is computed by linear interpolation. The resulting nodal vector is part

of the vector of external forces in the liquid momentum equation (f ext
L in Eq. 4.36)

and in the mixture momentum equation (f ext in Eq. 4.37) to account also for

water weight.

Concerning the boundary nodes included in the hydraulic head BC but lying above

Hcurr, at first a “pressure approach” is implemented, and two scenarios considered:

(i) constant pressure and (ii) linear pressure distribution (in suction), following

the same hydrostatic gradient given by γW . In the case of a homogeneous slope

in stationary flow regimes, it is common to introduce the unsaturated condition

above the water table [170, 171], which reflects in the pore pressure distribution.

Close to the phreatic surface, a linear increase of suction can be explained by the

capillary rise controlled by the SWRC. The upper portion, closer to the interface

with the atmosphere, is governed by climate conditions and suction depends on

the water mass balance at the soil surface [171, 172]. The constant approximation

reproduces this last effect, while the linear approximation simulates better the

capillary effect. The drawback of the later approach is the overestimation of

suction at higher locations.

In the literature, the BC above the river level has been reproduced in different

ways. In some cases, an infiltration/evaporation BC is applied [171, 172] or a zero

nodal flux is imposed [46], in other cases the condition has been approximated with

the use of a potential seepage face [166, 173]. This last approach is followed in the

second implementation, which can be considered an advancement of the pressure

approach and will be used in the 2D seepage validation example of Sec. 6.2.

The two treatments of this boundary condition above Hcurr are compared in

the drawdown examples in Chapter 5.

4.2 Infiltration BC

This boundary condition is necessary to simulate rainfall or evaporation boundary

condition. It consists in applying a prescribed specific discharge q = ŵ · n along

the boundary, where n is the outward normal unit vector (Eq. 4.51) and the
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seepage velocity ŵ is defined as Eq. 4.52,

ŵ = nL(vL − vS) (4.52)

The application of this boundary condition is based on a predictor-corrector

scheme: liquid and solid velocity are first predicted assuming zero-pressure bound-

ary conditions at the infiltration boundary and then (eventually) corrected to

ensure the prescribed infiltration rate. The procedure can be summarized in the

following steps, also shown in Fig. 4.5:

1. atL and atS are computed by solving Eqs. 4.36 and 4.37 assuming p̂L = 0 at
the infiltration boundary

2. Nodal velocities are predicted as ṽt+∆t
L = vtL + aL∆t and ṽt+∆t

S = vtS + aS∆t

3. Infiltration condition is checked. If the net infiltration discharge qnet
(Eq. 4.53) is positive, ponding conditions occur and if fluid accumulation
above the boundary is not allowed (it must remain at zero pressure) no
correction is necessary. If the net infiltration discharge is negative, or liquid
ponding is allowed above the surface, then liquid velocity must be corrected
to ensure the correct infiltration rate

qnet = (nL(ṽt+∆t
L − ṽt+∆t

S )− ŵ) · n (4.53)

4. If necessary, the liquid nodal velocity is corrected by Eq. 4.54

vt+∆t
L = ṽt+∆t

L + ∆vL (4.54)

where ∆vL is derived by imposing qnet = 0 (Eq. 4.55) and it is given by
Eq. 4.56

(nL(ṽt+∆t
L + ∆vL − ṽt+∆t

S )− ŵ) · n = 0 (4.55)

∆vL = ((nL(ṽt+∆t
L − ṽt+∆t

S )− ŵ) · n)n (4.56)

5. The corrected liquid acceleration is computed as atL = (vt+∆t
L − vtL)/∆t

6. The MPM solution scheme can proceed with the convective phase as ex-
plained in steps 3-8 of Sec. 3.3.
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Note that this boundary condition is applied at nodal level, thus nodal liquid

volumetric fraction is necessary. This can be computed by mapping nL = nSL

from the MPs to the nodes of the mesh. This implementation is subsequently

improved by taking inspiration from a recent formulation [117] similar to the one

herein proposed. In this work the authors consider also a solid velocity correction

such that Eq. 4.55 becomes

(nL(ṽt+∆t
L + ∆vL − ṽt+∆t

S −∆vS)− ŵ) · n = 0 (4.57)

By imposing the conservation of the mixture momentum balance the solid velocity

correction is computed as follows

∆vS = −mL∆vL
mS

(4.58)

and the liquid velocity correction becomes

∆vL = −(nL(ṽt+∆t
L − ṽt+∆t

S )− ŵ) · n)n

nL

(
1 + mL

mS

) (4.59)

where mL and mS are the liquid and solid nodal masses. This approach accurately

ensures the conservation of momentum balance of the mixture at the boundary, i.e.

the total stress remains constant at the ground level. The previous implementation,

with the only correction of liquid velocity, implicitly assumes that the relative

acceleration between solid and liquid is negligible and that the effective stress at

the boundary is constant and equal to zero.

4.3 Potential seepage face BC

A potential seepage face can be defined as an interface between soil and atmosphere

where the fluid is free to exit at zero pressure when the soil is saturated, but

it cannot enter when the soil is partially saturated. An example of potential

seepage face is the downstream surface of a river embankment (Fig. 4.3(a), or

it can also arise in after a rapid drawdown of the river level. This boundary

condition is necessary where it is unknown if the boundary is an essential or a

natural boundary condition.
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Solve momentum balance equations 
assuming �𝑝𝑝𝐿𝐿 = 0 at seepage boundary.

𝑞𝑞𝑛𝑛𝑛𝑛𝑛𝑛 > 0?

Predict liquid and solid velocity

Correct liquid velocity  
and acceleration

Go to convective phase

Is ponding 
allowed?

No correction 
required

yes

yes no

no

Figure 4.5: Flow chart of the infiltration boundary condition, from [116].
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The implementation can be considered as a special case of the infiltration

boundary condition described in Sec. 4.2, where ŵ = 0. Liquid and solid nodal

velocities are predicted assuming zero-pressure at the potential seepage face

(natural boundary condition). If (nL(ṽt+∆t
L − ṽt+∆t

S )) · n > 0 it means that

fluid is flowing out of the soil at zero pressure and no correction is required. If

(nL(ṽt+∆t
L − ṽt+∆t

S )) ·n < 0, then fluid is flowing into the soil at zero pressure, thus

liquid velocity must be corrected with Eqs. 4.54 and 4.56 in which ŵ = 0 (switch

to essential boundary condition).

5 Improvement of initialization procedure

5.1 New K0 -procedure

At the beginning of every simulation it is required to initialize stress in the solid

skeleton and liquid pressure. Stress distribution depends on solid weight and the

deposition history, while liquid pressures depends on the water table location and

the atmospheric condition history. The initialization procedure can be performed

in two ways named gravity load and K0 -procedure.

In both cases it is suggested to run one or more steps using the quasi-static

calculation [70] to let the system reach a balanced configuration under the effect

of the gravity vector and applied boundary conditions. If gravity load is used,

stress is computed based on soil weight and the constitutive model under use. In

this case, it is possible to assign an initial homogeneous value of liquid pressure to

all the MPs.

On the other side, while using K0 -procedure, it is additionally possible to specify

the ratio between horizontal and vertical stress (K0 ), and the water table location.

This is particularly important to “favour” the quasi-static convergence towards

more realistic stress and liquid pressure gradients in the entire domain. In the

present work K0 -procedure has been improved in the following manner:

1. A non-horizontal soil surface can be specified for stress computation

2. A phreatic surface (not coinciding with the soil surface) can be specified at
every location of the domain

3. A suction threshold above phreatic surface can be used, to limit the excessive
suction values at soil surface (see Fig. 4.7)
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Figure 4.6: Stress and liquid pressure initialization with new K0 -procedure in different cases.

In the scheme of Fig. 4.6 the stress and pressure computation based on soil and

phreatic surface identification is presented. yMPS stands for the vertical distance

between a MP and the soil surface, while yMPPH is the distance of the MP from

the phreatic surface. The phreatic surface should be most properly defined as a

zero pressure surface, thus it is as a geometric entity corresponding to the phreatic

surface in the soil but also to an external water level (like river or sea level). A

simplified assumption in terms of dry soil weight is made to compute stress above

the phreatic surface. Case 4 of Fig. 4.6 reproduce MPs liquid pressure computation

above the phreatic surface in the case that a maximum value of suction is not

specified.

The two options introduced in this work are presented in Fig. 4.7. In case (a)

max suction is specified, the liquid pressure above phreatic surface is computed
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Figure 4.7: K0 -procedure liquid pressure computation above phreatic surface: (a) linear until
specified max suction is reached b) linear.

following the gradient of hydrostatic pressure, i.e. linear approximation, until

the max suction value is met. Case (b) corresponds to the general case with no

max suction value specification. It is important to underline two aspects: this

implementation is currently valid just for 2D problems, however it can be easily

extended to 3D problems to consider more complex domains.

K0 -procedure should be always coupled with a quasi-static calculation, thus

the stress and pressure assigned in the K0 procedure are always modified during

the computational step, given the present boundary conditions, the constitutive

model and the Bishop principle of effective stress.

6 Validation

Validating the presented formulation is not straightforward because no analyt-

ical solution is available for coupled soil deformation-fluid flow in unsaturated

conditions. To this aim, simple benchmarks where fixed solid skeleton (just flow

problems) or small deformations can be considered. By comparing the results

obtained by MPM and well-established FEM softwares, satisfying results could be

achieved in terms of testing and validation, keeping in account slight differences
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in the implementations. In the choice of the benchmarks it is also fundamental

to consider an optimized combination of material properties, range of saturation

degree variation and mesh sizes, to limit excessive computational times in MPM.

How these aspects can impact on the duration of an MPM simulation, will be

covered in detail in Sec. 7.

In this section two simple benchmarks will be studied: (i) a 1D column infiltra-

tion in a fixed solid skeleton (Secs. 6.1.1) and (ii) a 2D seepage flow in a fixed

solid skeleton levee (Sec. 6.2). The MPM results are compared with the ones

provided by the commercial FEM code - SEEP/W by Geostudio [46].

6.1 Infiltration in a 1D soil column

6.1.1 Infiltration in rigid solid skeleton

A 1m-high soil column is considered with the material parameters listed in Tab.

4.2. For simplicity, the intrinsic permeability is assumed constant and equal to

κL = 1 · 10−11m2, corresponding to a hydraulic conductivity of k = 1.0 · 10−4m/s.

Van-Genuchten SWRC is accounted (Eq. 4.28), with parameters pref = 3kPa,

λ = 0.7, Smin = 0.125, Smax = 1. Liquid Bulk modulus KL is reduced to a value of

80000 kPa compared to the real value for computational speed up and numerical

stability. Notwithstanding, this value is sufficiently high compared to the soil

compressibility. In the FEM software used for comparison this term is considered,

and can be computed thanks to the following Eq. 4.60 (retrieved from [46]).

Ss = ρLg (α + nβ) = ρ g mv (4.60)

where Ss is the specific storage, α is the compressiblity of the soil structure,

β is the compressiblity of the water, and mv is the coefficient of volume change

(ρL, n, g as defined above). Thanks to the specification of mv it is possible to

account for water compressibility values different from an assumed incompressible

behavior.

The column is discretized with 20 rows of 2 square triangular elements filled with

3 MPs each (Fig. 4.8(a). The bottom and lateral boundaries are impervious, while

a vertical infiltration rate ŵy = 1.0 · 10−4 m/s is applied at the top boundary. An

initial suction of 2kPa is assigned at t = 0s along the column, which corresponds

to an initial degree of saturation SL0 = 0.87.
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Solid density [kg/m3] ρS 2700
Liquid density [kg/m3] ρL 1000
Porosity [-] n 0.4
Liquid bulk modulus [kPa] KL 80000
Liquid dynamic viscosity [kPa · s] µL 1 · 10−6

Table 4.2: Material parameters for 1D infiltration example and 2D seepage flow.

Figure 4.8: Geometry of the problem (a). Evolution of liquid pressure (b) and degree of satura-
tion (c) along the column. Comparison between MPM and FEM, from [116].

The liquid infiltrates from the top and flows down though the column accu-

mulating at the impervious bottom. Here suction starts decreasing and the soil

saturates increasing SL to 1. Fig. 4.8 plots the evolution of pore pressure and

degree of saturation distribution along the column at different time instants. MPM

results are in very good agreement with FEM. As expected, it can be noted that

at long time (t = 600s) soil is saturated at the top boundary, i.e. pL = 0, thus the

infiltration BC switches from essential, i.e. applied infiltration velocity, to natural,

i.e. zero-pressure, and the pore pressure does not increase further.

A small note: this case could have been considered also with a deformable solid

skeleton. However, the major difference between the present unsaturated MPM

formulations and most of the commercial codes FEM based is the computation of

mixture weight above phreatic surface. In MPM this value is updated at every

time step considering the actual saturation degree, while in the other cases the
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Soil density ρS 2700 [kg/m3]
Liquid density ρL 1000 [kg/m3]
Porosity n 0.4 [-]
Liquid Bulk modulus KL 80000 [kPa]
Liquid dynamic viscosity µL 1 · 10−6 [kPa · s]
Maximum degree of saturation Smax 1.0 [-]
Minimum degree of saturation Smin 0.1 [-]
Reference suction pref 2.0 [kPa]
Lambda λ 0.5 [-]
Saturated hydraulic conductivity ksat 1.962 ·10−4 [m/s]

Table 4.3: Material and SWRC parameters for the 2D seepage problem.

unsaturated weight is kept constant, with a predefined value since the simulation

beginning. Given this aspect, it would be inaccurate to propose a validation

example with MPM and one of these codes.

6.2 2D seepage flow in a river levee

This case corresponds to a typical pre-failure transient seepage analysis. Geometry,

initial water table position, and applied BCs are reported in Figure 4.9a. Two

cross-sections, S1 and S2, are also sketched for the outcomes presentation. The

progressive river-level rise is simulated with the total head BC. As a consequence,

a seepage flow is induced in the levee body. On the land side, the seepage face

BC ensures the free location of the phreatic surface exit point. The considered

hydrograph is presented in Figure 4.9b. The river level reaches the peak height

of 0.85m at 150s, followed by a gentle decrease. Tab.4.3 reports the material

properties, for both solid and liquid phases. A reduced liquid bulk modulus KL is

used for computation speedup. In addition, the Van-Genuchten model (Eq. 4.28)

is used for the SWRC and the corresponding parameters are presented in the

same Tab. 4.3. The HCC is assumed constant, i.e. k = ksat, not depending on

saturation degree changes. The solid skeleton is fixed, i.e. soil deformability is

neglected for a better comparison with FEM.

The spatial discretization consists of 3-node triangular linear elements of 0.05m

side length, each filled with 3 MPs. The initial pore pressure distribution is

hydrostatic, with water table position outlined in Figure 4.9a. The simulation

time is 300s, and a mass scaling factor of 400 is used to optimize the computational
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Total head BC
Potential seepage 
face BC

(a)

(b)

Initial water table

S1

S2

Figure 4.9: (a) 2D seepage problem geometry with outlined initial and BCs, plus sections S1 and
S2.(b) Simulated hydrogram, applied as BC on the riverside slope of the numerical model, from
[150].
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Figure 4.10: Saturation degree SL contour at four instants, for MPM (left column) and FEM
(right column)from [150]. Dashed blue line stands for the phreatic line.

time [90]. The simulation results are presented herein, and compared with those

obtained with the FEM code. Figure 4.10 depicts the saturation degree, SL,

contour plot for four particular time instants. These time instants (i.e., 75, 150,

225, and 300s) and their respective total head levels are indicated by the dashed

vertical lines in Figure 4.9b. River levels and phreatic surface locations are

outlined on the contour plots with blue lines. The spatial distribution of SL and

its evolution with time are in good agreement in MPM and FEM. The phreatic

surface curvature at each time instant reflects the crescent and descending phases

of the applied hydrograph in an identical manner by both numerical methods.

In particular, Figure 4.10d captures the transient nature of this phenomenon,
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Figure 4.11: Pore pressure pL and saturation degree SL along vertical section S1 (panels (a) and
(b)) and section S2 (panels (c) and (d)). Black triangles stands for FEM while colored dots for
MPM, from [150].

by showing a delay between the effective minimum river level and the phreatic

surface exit point on the riverside. This behavior depends on a slower desaturation

rate compared with the river level decrease, resulting from the current suction

distribution and soil permeability.

To further quantify the MPM formulation efficacy, Figure 4.11 shows the pore

pressure pL and saturation degree SL along two sections, S1 and S2 (Figure 4.9(a).

Figure 4.11a and c correspond to section S1, while Figure 4.11b and d correspond

to section S2. Three time instants, 72s, 160s, and 300s are selected to present the

temporal seepage flow evolution. These trends highlight the good match between

the MPM and FEM results. By comparing curves at 160s and 300s, it is observed

that section S1 undergoes full saturation during the rising phase, followed by a

desaturation of its upper portion. By contrast, section S2 never reaches complete
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saturation along most of its vertical extension, which reflects in higher suction

values and a saturation degree that never reaches 100% above 0.2m. The trends

of pore pressure and saturation degree provide insightful information about the

evolving saturation portion of the levee body and the time necessary to return to

the initial water table location (not reached during the simulation time).

7 Preliminary study on numerical stability in unsaturated condi-

tions

7.1 Review of stability criteria

In two-phase problems we can define two time scales of interest, namely that of

excess pore pressure dissipation related to consolidation and infiltration and that

of compression wave propagation within the solid-fluid mixture. In mathematics,

consolidation (infiltration) is seen as parabolic behavior, while wave propagation

is hyperbolic behavior. The associated critical time steps are expresses by Eq. 4.61

and Eq. 4.62 respectively, where Li is a characteristic length, i.e. the element size.

∆tc =
L2
i

2c
(4.61)

∆tc =
Li
vc

(4.62)

The coefficient c can be written as Eq. 4.63 where E ′c is the effective oedometric

modulus. Note that for SL = 1 and dSL
ds

= 0 it coincides with the consolidation

coefficient.

c =
kL

µL

(
1
E′c

+ SLn
KL

+ ndSL
ds

) (4.63)

vc in Eq. 4.62 represents the one-dimensional compressing wave speed propa-

gation and can be estimated with Eq. 4.64, where Ec and ρ are the oedometric

modulus and the density of the considered material.

vc =

√
Ec
ρ

(4.64)
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Eq. 4.64 can be particularized for undrained conditions using Ec = E ′c + n/KL

and ρ = ρsat or for dry conditions using Ec = E ′c and ρ = ρdry.

[71] and [165] mathematically studied the stability of the two-phase MPM

formulation for saturated conditions proposed in [90]. Both analysis highlight

the dependency of ∆tc on hydraulic conductivity and characteristic length (i.e.

minimum mesh size). In the work of [71], the eigenvalue problem is solved to study

the stability of four different equations: (a) the liquid momentum balance ∆tc,liquid,

(b) the mixture momentum balance ∆tc,mixture, (c) the coupled hydro-mechanical

system (∆tc,coupled) (i.e. liquid and mixture momentum balances), and (d) the

momentum balance of the mixture in undrained conditions (∆tc,undrained). The

equations are all firstly written for a single node and the homogeneous form is

considered, obtaining a second order ODE. Then, the Euler-Cromer explicit time

discretisation is introduced, thus a system of two first-order ODEs is obtained. The

coefficient matrix of this system is considered: by imposing spectral radius equal

to 1, it is possible to solve the eigenvalue problem and determine an expression

for ∆tc. The critical time step criterion for the undrained analysis is identical to

Eq. 4.62, while the other three criteria share the following expression

∆tc,Y erro =
2

ω

[
− ξ +

√
ξ2 + 1

]
(4.65)

where ω and ξ vary depending on the set of equations considered, and provided

in Tab.4.4 (Saturated column). At this point, a series of oedometric tests are

performed with the MPM code based on the formulation by [90]. ∆t used in

the simulation is manually increased until a maximum value, respectful of the

analytical solution, is reached. As a last step, the numerical results are graphically

compared with the four mathematical expressions. The latter are modified by

adjusting Li around the value of the actual mesh size, to make the curves fit as

close as possible to the numerical results. By analyzing several cases, considering

different porosity, permeability and mesh sizes, the author concludes that the

safest criterion is

∆tc = min(∆tc,undrained; ∆tc,liquid) (4.66)

[165] considered the stability of the coupled hydro-mechanical system concerning

liquid and mixture momentum balances. In particular, the dependency of ∆tc on

hydraulic conductivity is investigated. This research is motivated by observations
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concerning sharp reductions of ∆tc for low permeability values, which can not

be explained by both consolidation and CFL criteria. Rigorous mathematical

stability analysis were conducted by means of the matrix method [174], and an

estimation of ∆tc is proposed as

∆tc,Mieremet =
−2a+

√
4a2 + 8(b+

√
b2 − 4d)

b+
√
b2 − 4d

(4.67)

where terms a, b and d are reported in Tab. 4.5 (Saturated column). The

performance of the proposed criterion is verified with 1D FEM-based simulations.

Based on the results of this final comparison, the author states that the criterion

is safer compared to previous expression proposed by the same author [175] and to

the CFL condition. At the current state, the results of this study are implemented

in Anura3D and for the majority of the simulations performed for this thesis the

following criterion is used

∆tc = min(∆tc,consolidation; ∆tc,Mieremet) (4.68)

where ∆tc,consolidation is expressed in Eq. 4.61. Regarding the analysis of the critical

time step in the unsaturated regime, as far as the authors know, there are no

studies in the context of MPM dynamic formulations. In the 3Phase formulation

by [176] the estimation of ∆tc is based on the above mentioned analysis by the

same author, conducted on saturated media. This choice is based on the fact

that ∆tc is inversely proportional to the Bulk modulus of the mixture. Hence, we

can expect that ∆tc in saturated conditions is smaller compared to unsaturated

ones. For the same reason, the potential increase of the critical time step in the

unsaturated regime, makes reasonable to conduct a detailed analysis.

7.2 New stability criteria for unsaturated conditions

Assuming that saturation can be understood as a particular case of unsaturated

conditions, one could expect that the ∆tc for unsaturated formulations is an

extension of those obtained for saturated conditions. In this work, the stability

of the 2Phase with suction formulation in unsaturated conditions is studied

considering the same approach followed by [71]. The stability of (a) the momentum

balance of the liquid, (b) the momentum balance of the mixture, and (c) the
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coupled system is derived. The main passages to obtain the stability criteria are

presented in detail in the Appendix (Sec. 7). The obtained expressions for the

critical time step follow the same structure as Eq. 4.65. The new terms ω and ξ

are reported in Tab. 4.4 (Unsaturated column).

Given the consistent complexities in applying the same rigorous procedure by

[165] to the formulation presented in this thesis, a simplified “adaptation” of

Eq. 4.67 to unsaturated conditions is proposed. The terms a, b and d are modified

in a similar manner to ω and ξ in saturated vs. unsaturated conditions (4.4). In

the term a, S2
L is added and ρsat is replaced by ρm. In terms b and d, the liquid

bulk modulus KL is replaced by SL(
dSL
ds

)
+
SL
KL

, based on ωC and ωM unsaturated

expressions. Note that, consistently for all the criteria, the saturated case (SL = 1)

is a particular case of the unsaturated expressions.
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7.3 Numerical analysis and discussion

In this section, the performances of the unsaturated criteria are evaluated. A

trial and error procedure is used to explore ∆tc in unsaturated conditions. A

series of MPM-based simulations is performed. The objective is to determine

∆tc for different degrees of saturation. The model is a soil column, 1m high and

0.05m wide. At the top of the column, an external load of 100kPa is applied, see

Fig. 4.12 (a). An initial suction is imposed to the entire column and the same

suction is applied at the top of the column during the rest of the calculation to

ensure that the degree of saturation remains as constant as possible in the model.

An infiltration problem wouldn’t be suitable to this aim. The material is linear

elastic and the intrinsic permeability (kL = 2 · 10−10m2, equivalent to a hydraulic

conductivity of κ ≈ 2 · 10−3m/s) is assumed constant. The mesh is made by linear

triangular elements of 0.05m side length. The bottom boundary is fully fixed

and impervious. The lateral boundaries only allow vertical movement and are

impervious.

The same analysis is repeated for three soil types (sand, silt, and clay) to

evaluate the effect of the SWRCs on the numerical stability. The Van-Genuchten

model is used to describe three reference SWRC from [170] (Fig. 4.12 (b)). The

SWRC parameters are provided in Tab. 4.6. The simulations are performed

for each soil type ensuring a large range of suction values, covering degrees of

saturation from saturated (SL = 1.0) to approximately dry conditions (SL = 10−2).

Moreover, to evaluate the critical time step in diverse conditions, we consider

Sand Silt Clay
Smax [-] 1.0 1.0 1.0
Smin [-] 0.003 0.001 0.001
pref [kPa] 9.9 100.0 196.0
λ [-] 0.8 0.75 0.5

Table 4.6: Van-Genuchten parameters for the three SWRCs used in the critical time step numeri-
cal analysis.

different sets of analysis varying the porosity (n = 0.4 and n = 0.6) and the Young

modulus (E1 = 104kPa and E2 = 5 · 104kPa). The Poisson ratio is assumed

constant for all the simulations, ν = 0.2. The time step of each calculation is

manually increased until the simulation does not converge. This iterative process

is repeated for each combination of material parameters. The maximum value that
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Figure 4.12: Critical time step in unsaturated conditions obtained from numerical simulations:
(a) geometry of the problem, (b) SWRCs tested.

ensures the solution convergence is considered the critical time step. Summarizing,

for each SWRC a simulation is performed with a constant suction value; in total

eight different values of suction (or saturation degree) are considered.

The critical time steps obtained from the numerical tests performed in sand, silt,

and clay are presented in Fig. 4.13, Fig. 4.14 and Fig. 4.15, respectively. In all

figures, the numerical results plotted together with the stability criteria proposed

in this work for unsaturated conditions (Tab. 4.4 and 4.5). In addition, the

expressions from the literature, i.e. consolidation and infiltration (Eq. 4.61), and

CFL in undrained and dry conditions (Eq. 4.62) are also presented for reference.

All the expressions are evaluated considering Li = 0.035m which corresponds to the

minimum altitude of the element. The numerical results show a general increase

of ∆tc in the unsaturated regime. The coupled criterion ∆tc,Coupled appears as the

one better fitting the results, however, it overestimates ∆tc near the extremes (dry

and saturated conditions). ∆tc,Mieremetadapted is the second-closest criterion, and it

trends to be more conservative than ∆tc,Coupled. It is important to note that near

the dry conditions (SL ≈ 10−2) a sharp decrease of ∆tc is consistently observed.

This decrease is highlighted by ∆tc,Coupled, ∆tc,Liquid and ∆tc,Mieremetadapted criteria.
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Figure 4.13: ∆tc results from MPM simulations compared with mathematical expressions and
literature criteria. Sand SWRC.
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Figure 4.14: ∆tc results from MPM simulations compared with mathematical expressions and
literature criteria. Silt SWRC.
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Figure 4.15: ∆tc results from MPM simulations compared with mathematical expressions and
literature criteria. Clay SWRC.
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Figure 4.16: Comprehensive numerical results normalized with respect to ∆tc,Mieremet, as func-
tion of saturation degree.

It should be noted that the use of ∆tc,Mieremetadapted is limited by negative values

under the square root present at the numerator of this expression (Eq. 4.67). This

situation seems to occur when suction values are extremely high (i.e. SL is very

low). This behavior occurs for silt SWRC when s > 1800kPa and for clay SWRC

when s > 4500kPa (although it is difficult to appreciate in the figures because

of the logarithmic scale). These values of suction are hardly encountered in real

geotechnical scenarios.

To better quantify the increase of ∆tc in unsaturated conditions and to visualize

the effect of each material parameter on it, in Fig. 4.16(a) the numerical ∆tc values

are normalized with respect to ∆tc,Mieremet (criterion for saturated conditions,

Eq. 4.67). We can observe that smaller porosity values result in bigger ∆tc,

as highlighted by circle and diamond symbols. On the other side, the higher

Young modulus results in lower ∆tc values, visible with square and cross symbols.

Furthermore, the higher Young modulus gives a more flat trend in the interval

between SL = 0.2 and SL = 0.8. It is interesting to observe the comparable (in

some cases identical) increase in ∆tc among the different materials for the same

combination of porosity and Young modulus. The major differences occur when

approaching dry conditions.
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Figure 4.17: (a) Comparison of normalized ∆tc numerical results for different mesh sizes using
silt SWRC. ∆tc results numerical and analytical for Li = 0.35m for porosity values (b) n = 0.4
and (c) n = 0.6.

7.3.1 Mesh size effect on ∆tc in unsaturated conditions

In Fig. 4.17(a), the numerical outcomes using the same model scaled up 10 times

(mesh size 0.5m and Li = 0.35m) are introduced to emphasize the mesh size effect

on ∆tc. The comparison with the previous Li = 0.035m is related to the silt

material. It is clear that ∆tc depends on the mesh size, in fact results with the

coarser mesh have a different trend of critical time step. The sharp reduction of ∆tc

near dry conditions seems no more present, on the contrary, in this normalization,

∆tc is continuously increasing. This behavior of ∆tc is explained to a good extent

by the proposed ∆tc,Coupled and ∆tc,Mieremetadapted criteria, as visible in Fig. 4.17(b)

and (c). In particular, if the minimum between the two criteria is considered, as

highlighted with the hatch below the two curves, a very similar trend emerges

compared with the numerical results. Fig. 4.17(b) and (c) are respectively related

to porosity values n = 0.4 and n = 0.6. The analytical criteria show in a more

definite manner, compared to the numerical results, a sharp reduction of ∆tc

for the dry conditions, according to the results for the smaller mesh. Given the

satisfying but still partial explanation of this behavior by the two criteria, more

extensive investigation is further necessary to understand the different trends of

∆tc for various mesh sizes.
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7.3.2 Permeability effect on ∆tc in unsaturated conditions

Lastly, the impact of different permeability values is investigated. For this purpose,

three additional set of simulations are performed using intrinsic permeabilities of

kL = 1 · 10−9, 8 · 10−11, and 7 · 10−12m2). In all simulations, kL is kept constant

during the calculation. ∆tc trends as function of kL are plotted in Fig. 4.18 for the

silt SWRC. The numerical results are presented as well as the infiltration criterion

(Eq. 4.61, dashed line), ∆tc,Coupled (solid lines in Fig. 4.18a) and ∆tc,Mieremetadapted

(solid lines in Fig. 4.18b). It is evident from the simulations that the critical

time step first increases with permeability and then decreases. For relatively low

permeability values, ∆tc,Mieremetadapted is a safe underestimation, while ∆tc,Coupled

is closer to them. For higher permeability values, the infiltration criterion can

explain the reduction of critical time step, but it offers only an overestimation of

it. Nevertheless, both criteria are not able to explain the reduction of ∆tc for high

permeability values. This behavior could be explained by considering that high

permeability determines a reduction of coupling between phases, the drag force is

reduced. Therefore, in this condition the momentum balance equations used to

evaluate the numerical stability scheme can become less efficient in explaining the

mixture behavior compared to the mass balance equation. Alternatively to this

analysis, the stability of the mass balance equation could have been studied, or

the stability of the entire system of governing equations, considering mass balance

and momentum balance equations.

These preliminary results can encourage future studies and provide an indicative

support to stimulate researchers using MPM unsaturated formulations in testing

higher values of ∆tc in situations where significant variations of SL or extreme

values in the unsaturated regime, i.e. full saturation or dry conditions, are not

encountered. Further studies need to be performed to investigate the effect of

other material parameters, such as permeability on the stability of the solution, or

numerical parameters, like particle position and interaction between elements. In

this regard, a recent study by [177] has highlighted the effect of these parameters

on the critical time step in a single phase MPM formulation. This study can be

considered in future developments of this work to enrich and make more accurate

the proposed criteria.
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Figure 4.18: ∆tc as function of intrinsic permeability (hydraulic conductivity is indicated in a
secondary axis). Comparison between numerical results and analytical expressions: infiltration and
∆tc,Coupled (a) or ∆tc,Mieremetadapted

(b).
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5
Applications: global instability

mechanisms in river levees and additional

slope stability cases

1 Introduction

In this chapter the newly developed unsaturated MPM formulation, presented in

the previous Chapter 4, is used to analyze different slope stability problems, to

investigate failure onset and full post failure behavior. Levees failure mechanisms

and more generally the ones determining natural and artificial slope failure are

explored; particular attention is given to the alteration of saturation regimes,

induced by the transient hydraulic boundary conditions.

Firstly some theoretical cases are considered, then the numerical method is applied

to several small and large-scale experiments. Where appropriate, a comparison of

results coming from the 2Phase with suction formulation with the 2Phase Double

Point formulation is presented.

Complex failure mechanisms occurring in levees built on top of permeable layers

hydraulically interconnected with the river are analyzed by considering centrifuge

experiments and MPM simulations. In this case, the MPM model is at prototype

scale.
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Some of the applications presented in this chapter are taken from two papers

coauthored by the thesis author [136, 150].

2 Exploring typical levee’s failure mechanisms with theoretical

slopes

Failure of dams and levees can be caused by several mechanisms, e.g. macro-

instability, overtopping, erosion (internal and external) [1, 2, 178]. Here the focus

is on the macro-instabilities due to changes in the pore pressure regime induced

by two typical phenomena schematically represented in Fig. 5.1a: (i) infiltration

due to heavy rainfall on the land side (Sec. 2.1) and (ii) a rapid drawdown of the

water level on the riverside (Sec. 2.2). MPM results are compared with the ones

obtained by FEM seepage analysis coupled with LEM analysis to evaluate FS.

The second case, the drawdown induced instability, differs from the example

presented in Sec. 3 of Chapter 3, in two fundamental aspects: first one, the

boundary condition above the current water level, having the chance of accounting

for suction in this case. Second, the storage term provided by changes in saturation

degree, which is among the most impacting factors in pore pressure distribution and

evolution in slopes subjected to a drawdown (together with the deformation of the

solid skeleton) [179]. Because of these features accounted for in this formulation,

the expected results may be more realistic. On the contrary, one of the strong

points of the 2P-DP formulation is the ability to reproduce (in a simplified manner)

fluidization. This aspect has impact on the shallow propagation, but potentially not

on shape and depth of the major slip surface involved in this phenomenon, which

can be captured with the unsaturated formulation. Reproduction of fluidization is

a complex and advanced modeling topic which can represent an important feature

requiring in-depth study and implementation strategies for future developments

of this work.

The considered levee is 3m-high with a slope inclination of 2/3. A low-

permeability layer is assumed to lie at a depth of 0.5m, here simulated with

an impermeable boundary. The levee is assumed to be symmetric, thus the same

geometry and discretization is used in both the drawdown and the rainfall case.

The geometry and mesh discretization is shown in Fig. 5.1b. For computational

efficiency, only half of the levee section is discretized. The model counts a total
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Figure 5.1: (a) Simplified representation of the levee example. (b) Geometry and discretization
of the MPM model, from [116].

of 1669 linear triangular elements and 897 nodes. The average element size on

the slope is 0.2m. 3 MPs are placed inside each initially active element. For the

seepage analysis, a mesh of the same average size and type is used in the FEM

model, for a total of 1158 elements. LEM analysis applies Bishop method and

the entry and exit option for the slip surface search. A linear SWRC, with slope

coefficient av = 4.0 ·10−4 1/kPa is used, and the hydraulic conductivity is assumed

constant. This permeability is higher than commonly found in these structures,

and allows reducing the simulated time and computational cost. As presented in

Sec.7, given the explicit nature of the numerical scheme used in Anura3D, the

critical time step is strongly affected by the hydraulic conductivity. Therefore, it

is very hard to currently assign values of hydraulic conductivity typical for silts

or clays to a real scale embankment, and with these values be able to reproduce

a phenomenon with hours duration in an acceptable computational time. For

example, depending not only on the material properties but also on the mesh

size, it may take months to simulate a physical phenomenon lasting few hours in

a real scenario. An elastic-perfectly plastic Mohr-Coulomb constitutive model,
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Solid density [kg/m3] ρS 2700
Liquid density [kg/m3] ρL 1000
Porosity [-] n 0.4
Liquid bulk modulus [kPa] KL 80000
Liquid dynamic viscosity [1/kPa] µL 1 · 10−6

Intrinsic permeability [m2] κL 4 · 10−11m2

Young modulus [kPa] E 50000
Poisson ratio [-] ν 0.30
Friction angle [◦] φ 27
Cohesion [kPa] c′ 2

Table 5.1: Material parameters for levee collapse example.

defined in terms of effective stress, is adopted to model the soil behavior, with the

material parameters listed in Tab. 5.1. Cohesion and friction angle in unsaturated

soils are function of suction, but this effect is assumed negligible in this example.

Although the constitutive model is simple, it can provide a realistic representation

of the levee response; more advanced constitutive models are used in following

examples of this chapter.

2.1 Reproduction of slope instability due to rainfall and high

river level

Enduring high water level on the riverside and heavy rainfall can sometimes concur

leading to rapid saturation of the levee and potential instability. The geometry

and boundary condition of the numerical model are shown in Fig. 5.2. At the

right-end, a liquid pressure linearly increasing with depth (hydrostatic pressure

distribution) is applied to reproduce in a simplified way a water level of 2.0m on

the riverside. The levee surface is a potential seepage face during the initialization

phase, and then an infiltration rate ŵy = 1 · 10−4m/s is applied to simulate a

heavy rainfall in the following steps. Horizontal fixities are applied to the solid

phase at the lateral boundaries and the bottom is fully fixed. To generate the

initial stress distribution, liquid pressure, seepage face and gravity load are applied

assuming an initially high material cohesion (20kPa). Then, cohesion is reduced

to 2kPa and the slope is stable with a stress distribution in equilibrium with the

applied initial loads.
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Figure 5.2: Geometry and boundary condition of the model simulating rainfall infiltration on a
levee, from [116].

2.1.1 Results

The initial pore pressure distribution obtained with MPM and FEM is in very

good agreement (Fig. 5.3). FS evaluated with Bishop method is higher than

1, and indeed the slope is stable and deformations are very small. After stress

initialization, rainfall infiltration is applied at the top surface, soil suction decreases

and the slope fails. LEM analyses give FS < 1 for a time t = 2s, which means

that the failure surface is fully developed at this moment (Fig.5.4). The MPM

results are now presented.

A small decrease of suction is sufficient to trigger the failure, as shown in Fig. 5.5a-

c. During soil movement, pressure oscillations are observed. Fig. 5.5d-f plots the

evolution of shear strain at significant time instants, showing that a circular failure

surface develops rapidly from the bottom of the slope and propagates upward.

The shape of the failure surface is in agreement with LEM; however, in MPM it is

a result of the calculation, while in LEM it is an hypothesis of the analysis.

Displacements increase suddenly between 5 and 20s (Fig. 5.6). At t=20s the slope

finds a new equilibrium configuration measuring 17cm of displacement of the toe

and 25cm at the crest. At about 100s there is a further increase of displacement of

2cm due to enduring rainfall infiltration. The crest of the levee moves downward

approximately 22cm, which means that the levee in its deformed configuration is

probably still able to fulfill its retaining function. This consideration, impossible
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Figure 5.3: Initial pore pressure distribution with (a) FEM and (b) MPM. Safety factor with
LEM, from [116].

Figure 5.4: First occurrence of FS < 1 in LEM analysis (a). Critical slip surface and safety map.
Contour of pore pressure from parent seepage analysis (b). Dashed blu line stands for the phreatic
line.
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Figure 5.5: Pore pressure (a-c) and deviatoric strain (d-f) contours at different time instant (10s,
20s and 250s)

to get with FEM or LEM, can have significant practical consequences for planning

of cost-effective remedial measures.

2.2 Reproduction of slope instability due to rapid drawdown

In this case, the initial stress distribution is generated with K0 -procedure, assuming

a river level at 2.0m and K0 = 0.5. Then, the applied total head is rapidly

decreased to the low water level of 0.5m (Fig. 5.7). As introduced in Sec. 4.1,

handling pore pressure in the boundary above the current river level has been

progressively improved during this thesis work. In this section, the results of the

initial implementation with constant pore pressure imposed are firstly presented.

Then, the subsequent (and current) implementation is tested, where the potential

seepage face is applied above the current river level boundary nodes. Note that, if

measurements of suction data collected on river levee with time are available for a

real case study, it is possible to set the constant approximated value based on the

real initial condition.
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Figure 5.6: Evolution of displacement with time and final displacement contour, from [116].

Total head BC

2.0m

Initial water level

Final water level 0.5m

River side

Figure 5.7: Geometry and boundary condition of the model simulating drawdown on a levee,
from [116].
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Figure 5.8: Onset of failure: a) Solid displacement norm for MPM and critical slip surface for
FEM-LEM b) Concurrent liquid pressure in the same moment, from [116]. Dashed blue line
stands for the phreatic line.

2.2.1 Results

In order to emphasize the hydromechanical character of the depicted process, the

onset of failure and the concurrent pore pressure distribution for MPM and FEM-

LEM analyses are presented in Fig.5.8. For MPM, the norm of solid displacement

is used to show the development of the slip surface, while in the LEM the circular

surface is automatically generated, just by imposing ranges of entry and exit,

and the relative FS is obtained. The failure onset is identified in LEM by the

FS passage to a value lower than one, while in MPM it is here identified when

the deviatoric strain assumes a value equal to 0.05 and at the same time vertical

displacements of the cm-order can be detected at the MPs on the levee crest. The

shape of the slip surface is consistent among the two models. The occurrence time

of the failure onset differs for a few seconds, which can be explained by looking at

the pore pressure distribution above the current river level, as visible in the sketch

of Fig.5.8. This difference can be explained because in the MPM simulation, a

constant pressure is imposed along the boundary portion above the river height,

while in FEM a potential seepage BC is applied instead [46]. Only for MPM it is

possible to track the river bank collapse progression during time. The post-failure
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Figure 5.9: Horizontal displacement contours at 10s, 20s and 60s. Identification of MP1, MP2,
MP3 along the slip surface, from [116].

behavior is captured in Fig. 5.9 by plotting the horizontal solid displacements at

three time instants, together with the initial soil surface elevation reference.

The phenomenon is clearly characterized by large displacements, at the end

exceeding 1m (Fig. 5.9c); thus the irreversible collapse of the internal bank is

determined. Three MPs nearby the slip surface (MP1, MP2, MP3) are tracked

during the slope motion in Fig. 5.9 and used to analyze the evolution of liquid

pressure (Fig. 5.10a) and deviatoric strain (Fig. 5.10b) with time. In the first 3

seconds, all the MPs experience a sudden reduction of liquid pressure as a result of

the dynamics induced by the rapid drawdown. It is followed by a gentle pressure

increase till 20s, and a subsequent interval of pressure oscillations. In general,
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Figure 5.10: Liquid pore pressure (a) and deviatoric strain (b) evolution with time for three
selected MPs nearby the slip surface, from [116].

the pore pressure values reflect the overall state of slow desaturation of the slope,

antithetic to the rapid kinematic process of slope instability. Concerning this

last, the deviatoric strain curves which represent the progressive increase of MPs

undergoing plastification around the slip surface area, follow a continuous increase

till maximum values are reached at 60s. In addition, the graph shows that from the

slope crest towards the toe, the MPs deformation magnitude coherently increases.

2.2.2 Results of new implementation of hydraulic head BC

The results of the same drawdown case with the new implementation of the total

head boundary condition are now presented. Dynamic and run out distance result

quite different from the previous case. In fact, case all the collapse and final

displacements develops in the first 10 seconds, and the maximum displacements

of occurs at 6s and remain constants until the end of the simulated time (100s).

This behavior is in agreement with a significantly higher pore pressure distribution

in the top portion of the slope. Contour of displacements and pore pressure at

three significant time instants are plotted in Fig.5.11. These values of suction

are in better agreement with the results provided by Geostudio. Therefore, when

a validation with this software is under treatment, this implementation of the

boundary condition is more suitable to compare the results. However, in real

case scenarios the pore pressure above the current river level is determined by the
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Figure 5.11: Displacements (a-c) and liquid pressure (d-f) contours for three time instants (t=3s,
6s and 60s).

atmospheric conditions and the retention properties of the soil, as explained in

Chapter 4.

In Fig.5.12 the quantities pore pressure, deviatoric strain and saturation de-

gree are tracked for three MPs (MP1,MP2 and MP3) indicated in the previous

Fig.5.11. On the contrary respect to the previous case, pressure and strain change

immediately after the river level reduction, then settle on the new value for the

rest of the simulation time.This is particularly true when looking at the deviatoric

strain graph, while for the pore pressure slight modifications are visible, depending

on the seepage face boundary conditions imposed. In agreement with this, it is

possible to observe that the MP undergoing greater modifications along time is

the one at the crest, MP1. Indeed, from Fig.5.12 it is visible that the saturation

degree keeps reducing after the drawdown, never stabilizing. It is important to

keep in account the effect of high suction values developing along the slope surface

when the seepage face condition is used. Effective stress distribution and strength

parameters of the soil can be impacted, resulting in a over estimation of the

actual slope stability. It is always advisable, when for example monitoring data
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Figure 5.12: Liquid pore pressure (a), deviatoric strain (b) and saturation degree (c) along time
for three selected MPs nearby the slip surface.
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from tensiometers are available, to set the suction distribution above the phreatic

surface in agreement with them.

3 Collapse of an experimental slope due to water table variations

A large-scale human-made slope stability problem inspired by [22] is now considered

to highlight the potential of unsaturated MPM as a computational tool for large

strain analysis. The sequence of hydraulic loads acting on the slope mimics real

field scenarios, thus giving the chance to model the failure mechanism and perform

a comparison of the shape of the failure surface. LEM and MPM analyses are

performed.

3.1 Experimental test description

The presented case is inspired by the work of [22], focused on the experimental

collapse of a 6m high slope. The test explores a slope collapse due to rising

and lowering of the water table, which is one of the primary causes of landslides

and human-made earth structure failures [41]. The collapse mechanism in this

experimental case depends on two factors: (i) firstly, a wetting-induced collapse of

the loose slope material which induces progressive settlements; (ii) secondly, shear

strength reduction due to suction decrease, which caused the generation of the slip

surface and slope collapse. In this work, the focus is on this second mechanism.

The model dimensions are 6x15x5m. The slope inclination is 45◦, with a crest

width of 5m. A silty-sand mixture is used. Local measurements of soil density

indicate some degree of inhomogeneity and that the material is in loose state.

Consistently, an average value of porosity n = 0.5 is assigned in the numerical

model. The strength parameters obtained with consolidated-undrained triaxial

tests are a cohesion of c′ = 1 kPa, and a friction angle of φ = 30◦. The parameters

of the SWRC (Tab. 5.2) are calibrated by fitting the adsorption branch found by

[22] (Figure 5.13) with the use of a volumetric pressure plate extractor.

In the experiment, the water table variations are produced by a network of

holed tubes in a sand layer at the base of the slope. The tubes are linked to an

external water storage tank which controls the applied total head.The slope model

and water level regulation system are reported in Fig. 5.14. The total head history

is divided in three main phases: (i) water table rising in 6 steps, (ii) maximum
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Figure 5.13: SWRC calibration by fitting the adsorption branch from [22].

Smax 0.8 [-]
Smin 0.16 [-]
pref 19.0 [kPa]
λ 0.75 [-]

Table 5.2: SWRC parameters for the numerical slope

Figure 5.14: Experimental set up: slope physical model and water level control system, from
[22].
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Figure 5.15: Slip surfaces sketch, associated to the two experimental phases, from [22].

level maintenance, corresponding to a fully submerged condition, and (ii) sudden

drawdown that brings the water table to 3m.

Two phenomena were observed while raising the water level. First, the crest

of the slope model settled.The observed settlements are likely attributable to

wetting-induced collapse of the unsaturated loose silt. Second, the loose fill under

the sloping surface collapsed gradually as the water level rose, as a consequence of

the reduction in shear strength. Only this second aspect can be captured by the

MPM model which will be presented in the following sections. The initial slope

angle of 45◦ was reduced to approximately 33◦ as the water level rose to near the

crest of the slope model, as visible in Fig. 5.15. In this sketch, the authors present

the slip surfaces identified at the end of the two phases of the experiment.

If on a side, the instability induced by the wetting progress doesn’t undermine

the overall safety of the slope, which finds a new stable configuration during the

level maintenance time, on the other the rapid drawdown generate a catastrophic

collapse of the model slope. This is visible in some pictures captured by the

authors during the collapse phase (see Fig. 5.16), where it is evident the formation

of cracks, detachment and rotation of blocks in series and significant propagation

of saturated soil masses. Despite the complexity of this experimental case, it

still represents a challenging situation to test the applicability of the unsaturated

formulation in reproducing large displacements in unsaturated slopes like water

retention earth structures.
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Figure 5.16: Pictures of experimental collapse evolution after rapid drawdown, from [22].
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3.2 Numerical model description

The geometry is built considering two-dimensional plane strain conditions con-

sistent with the dimensions of the experiment (Figure 5.19a). The overall dis-

cretisation is conducted with triangular 3-node elements of 0.3m length, each

assigned with 3 MPs. A local mesh refinement was applied along the slope surface

reducing element length to 0.2m. The total number of elements is 2679. Linear

elements are used in this study, thus an appropriate h-type mesh refinement is

considered to reach an adequate level of accuracy. Although the use of higher

order shape functions has been explored to improve accuracy in MPM [74, 180],

their applicability in complex problems is still under investigation.

The material properties are summarized in Tab. 5.3. The intrinsic permeability

corresponds to a saturated hydraulic conductivity of ksat = 5.3 · 10−5m/s, which

is one order of magnitude higher than the one reported in the experiment. This

is done to reduce the computational cost of the simulation. The numerical time

scheme employed in the MPM is explicit. Therefore, the use of extremely small

time step increments (e.g., 0.0001s) is required to ensure the stability of the

calculation. In these conditions, the computational resources needed to simulate

long timescale problems (e.g. days) are very large. The critical time step depends

on the hydraulic conductivity; the larger the hydraulic conductivity, the larger

the critical time step ([110, 175]). The approach of increasing the hydraulic

conductivity to speed up the calculation has been used previously ([159, 181])

when reproducing slope failures. Increasing the hydraulic conductivity will also

speed up the pore pressure dissipation and the water front progressing through

the slope. However, if the pore water pressures before the collapse obtained in

the numerical model are similar to those in the reference problem, it is expected

that the impact of using a larger hydraulic conductivity on the failure mechanism

is small. In the simulation presented herein, the pore pressures just before the

collapse obtained with the MPM simulations (i.e., H = 6m in Figure 5.20g) are

consistent with the laboratory measurements (t = 192 from [22]) and the FEM

calculations (i.e. Figure 5.21). Therefore, it is possible to conclude that using a

hydraulic conductivity one order of magnitude higher than the experimental value

is an acceptable approximation.

In addition to the saturated conductivity value, a HCC is specified. Since no
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ρS 2639 [kg/m3]
ρL 1000 [kg/m3]
n 0.5 [-]
KL 80000 [kPa]
µL 1.0 · 10−6 [kPa · s]
κL 5.4 · 10−11 [m2]
E 39000 [kPa]
ν 0.30 [-]

Table 5.3: Material parameters for the slope numerical model.

experimental data are reported, three different curves available in Anura3D code

are tested (Figure 5.17): a suction-independent HCC (i.e., constant and equal

to ksat), Hillel expression (Eq. 4.30), and Mualem expression (Eq. 4.31). In the

expression by Hillel, a reasonable value of 2 is assigned to the exponent r (usually

variable in the range 2-4) while the parameters for Mualem model are specified in

Tab. 5.2.

As for the soil constitutive model, an extension of the elastic-perfectly-plastic

Mohr-Coulomb model for unsaturated soils proposed by [159], introduced in

Chapter 4 Sec. 2.4 is adopted. The beneficial effect of suction on strength

parameters is included. The shape and evolution of the slip surface is influenced

by the evolution of the degree of saturation because the shear strength is non-

linearly dependent on suction. In the selected model, the non-linearity is accounted

in the cohesion variation, while the friction angle changes in a linear manner. In

absence of experimental data about the shear strength in unsaturated condition,

and in order to compare the results of LEM and MPM, the parameters of the

constitutive model are calibrated to define a reasonable strength variation in the

expected suction range. The LEM analysis is preceded by a transient seepage

analysis, considering the same hydraulic load history of the experiment. Two

different shear strength suction-dependent models are available in Geostudio

software to perform the LEM analysis: the non-linear equation depending on the

SWRC proposed by [154]

τ = c′ + (σ − pG) tan(φ′) + s
[(θw − θr
θs − θr

)
tan(φ′)

]
(5.1)
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Figure 5.17: HCCs tested in the slope numerical model, from [150].

Combination ∆cmax [kPa] B [−]
MC 1 15 0.04
MC 2 12 0.07

Table 5.4: Suction dependent elasto-plastic Mohr-Coulomb model parameters for two analyzed
combinations.

and the linear law by [182] depending on the parameter φb

τ = c′ + (σ − pG) tan(φ′) + s tan(φb) (5.2)

In the two equations, suction strength is the last term on the right-hand side,

which is plotted as a function of suction in Fig. 5.18. In the experiment, the

progressive onset of failure was observed when the water level was approximately

between 5 and 6m. Consistently, the shear strength parameters in Eq. 5.1 and 5.2

are calibrated in order to reach a value of FS slightly lower than one around the

time consistent with the observations. Then, the parameters of MCSS with suction

are obtained by fitting the shear strength vs suction behavior given by previous

models in the reference suction range (Fig. 5.18). The variation of friction angle

due to suction is typically smaller than the one in cohesion and has less impact on

the overall shear strength increment. In this particular example, the friction angle

is assumed constant (A = 0 in Eq. 4.26) and only the cohesion depends on suction.

The results from Fig. 5.18 lead to explore two different plausible combinations of

B and ∆cmax, reported in Tab. 5.4.
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Figure 5.18: Soil model calibrated curves (MC 1 and MC 2) and reference curves: Vanapalli
(1994) and Fredlund (1978), from [150].

3.3 Boundary conditions and calculation phases

Solid skeleton BCs include: (a) fixities along x-axis on the vertical lateral bound-

aries, (b) fixities along y-axis on the top edge, and (c) both x and y-axis fixities

along the slope base (fully fixed BC). The hydraulic BCs are a key aspect in the

reproduction of complex hydromechanical processes in the earth structure. To

reproduce the wetting process, we need to capture the water table rising from the

base of the model, whilst simultaneously considering the progressive water filling

in front of the slope. After this step, the rapid drawdown phase is simulated, which

triggers a rapid soil mass movement, until the entire slope collapses. Keeping in

mind this sequence, the numerical simulation phases are presented and explained

as follows:

Phase 1: Initialization A quasi static procedure is used to initialize pore pres-

sure and solid stress in the slope. Matching the actual initial condition as

seen in the experiment has a crucial impact on the subsequent reproduction

of coupled pore pressure-deformation phenomena. To set up suitable BCs,

the initial suction values provided by five tensiometers installed in the exper-

imental slope, ranging from 1 to 30kPa, bottom to top, can be considered as

a reference. Consistently, pressures from 30kPa to 5kPa are imposed along
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the slope surface, whereas a uniform value of 0kPa is applied along the lower

boundary. In addition, the lateral boundaries are impermeable to the flux.

The hydraulic BCs for this phase are presented in Fig. 5.19a.

Phase 2: Water table rising In the second phase, BCs are changed in time

and space: the slope undergoes a progressive increase of pore pressure from

the bottom, from -20kPa to -60kPa, in agreement with the experimental step

sequence. Every pressure increment is reached in 2s and maintained for 60s.

Simultaneously, along the surface nodes with initial imposed pressure, the

condition is replaced with the hydraulic head BC. This ensures that values

are in agreement with the bottom pressure, considering the hydrostatic

gradient, as pointed out in Fig. 5.19b. In this way, it’s straightforward to

account for the water weight accumulating in front of the slope, as seen

in the photographic documentation in the publication by [22]. Above the

current water level, the seepage face condition gradually replaces the imposed

pressure values. The final value of -60kPa along the bottom, corresponding

to a complete submerged condition, is maintained for 112s, in analogy with

the experimental procedure.

Phase 3: Rapid drawdown This phase investigates the slope failure mecha-

nism. A rapid draining is put in place by suddenly (within 1s) reducing the

bottom pressure to 30kPa and the hydraulic head BC is adjusted to a value

of 3m. The corresponding BCs are illustrated in Fig. 5.19c. The simulation

is then run for a sufficient time to observe the entire post-failure progression,

until the soil mass stops moving.

Finally, a mass scaling factor of 100 is used to optimize the computational

time and volumetric locking in triangular elements is mitigated by using a strain-

smoothing procedure as described in [142].

3.4 Results

In this section, the simulated results are described, focusing on the pore pressure

variation, failure mechanism, and post-failure behavior. First, general observations

from the numerical results obtained using the second combination of mechani-
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Figure 5.19: Hydraulic BCs for (a) initialization phase, (b) water table rising phase, and (c) rapid
drawdown phase, from [150].
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Figure 5.20: Pore pressure contour during the water table rising phase, (a) to (g) and at the
simulation end (h). Dashed blue line stands for the phreatic line. Note that pL range in color
legends are different for every panel, to highlight the pressure increment series, from [150].
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cal parameters, named MC 2. Then,a comparison of the outcome of different

simulations to assess the impact of:

• The input parameters in the constitutive model, i.e. by testing the combina-
tions presented in Tab. 5.4, while keeping constant the HCC;

• The different HCCs, while maintaining the same constitutive model parame-
ter (in this case, MC 2).

The progressive water table rise directly impacts the pore pressure distribution

in the slope. Fig. 5.20 presents pore pressure contours corresponding to each

pressure increment, from (a) to (g), corresponding to the rising water table phase,

and (h), corresponding to the end of the simulation. Note that the rising of the

phreatic surface inside the slope shows a delay compared to the external water

level. This effect is coherent with the resistance offered by the solid skeleton to

the water propagation in the pores. With the rapid drawdown phase, the slope

collapse is triggered as shown in Fig. 5.20h.

It is possible to observe that at the end of the rising water table phase, a shear

surface develops (Fig. 5.21c), but this does not lead to large deformations because

the slope finds a new equilibrium with small displacements. The geometry of the

slip surface coincides with the mechanism obtained when FS < 1 in LEM analyses,

as seen in Fig. 5.21a and b, using Fredlund and Vanapalli models respectively.

Despite the three models reach failure at slightly different water tables (5.8m LEM

and 6m MPM) the results are acceptable, especially considering the fact that in

the experiment, the failure develops when the water level raises between 5 and

6m.

Fig. 5.22 reports the velocity of three MPs, whose initial position is visible in

Fig. 5.20a. From this graph, it is possible to assess that the slope undergoes an

initial acceleration, but it rapidly stops and large displacements are not observed

before the drawdown. This behavior is not predictable by considering the LEM

analyses and highlights the advantages of MPM in front of LEM to provide

information of the extent of the slope run out. After this small movement, the

initiation of the rapid drawdown phase triggers an acceleration increase which

determines the large and irreversible soil mass movement. At the end, it can be

observed that a deceleration phase occurs until the slope stops moving.
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Figure 5.21: Slip surface occurrence before drawdown. LEM analysis (a) Fredlund model with
φb = 20◦, and (b) Vanapalli model with FS indication. For MPM (c), the contour of horizontal
displacements δx is depicted, from [150].
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The two combinations of material parameters give similar results in the first

phase. The calculated final displacements are different by approximately 30cm,

whereby the combination MC 1 results in a final value of 2.17m, whilst MC 2

results in a final value of 1.83m. The final deposit for the two combinations is

outlined in Fig. 5.23, depicting MC 1 in red and MC 2 in blue.

The experimental slope undergoes a complex failure mechanism: a combination

of rotation and detachment of single massive blocks, resulting in more than one

slip surfaces. More precisely, three slip surfaces can be observed and interpreted

through the collapse dynamics. By plotting in Fig. 5.23 the final displacements of

combination MC 1 and overlapping the deepest experimental failure surface, a

good agreement is visible. The rotational movement occurring in the real case

is well captured. However, our model is limited by its inability to fully capture

the soil fluidization, since free water is not explicitly simulated by the 2Phase

Single-Point approach. The fluidization during the experimental slope collapse is

a consequence of the interaction with the free water accumulated at the toe of the

slope. In the experiment, the slope toe reaches the model boundary, whereas the

numerical slope stops moving after a maximum displacement of approximately 2m.

In particular, all the performed simulations using both the constitutive parameter

combinations and the different HCCs, end up with a maximum displacement value

in the range between 1.8 and 2.3m. Finally, the impact of different HCCs is

assessed. All the simulations start from the same initial pore pressure distribution.

The models based on the constant and Hillel HCCs (Eq. 4.29 and 4.30) do not

show significant differences in terms of duration. On the other hand, the simulation

performed using Mualem (Eq. 4.31) requires more time to reach the full saturation

prior to drawdown, due to the lower permeability in the unsaturated upper slope

portion predicted by this approach. In Fig. 5.24, the pore pressure along a vertical

section at x=4.5m (indicated in Fig. 5.20) is depicted for three time instants using

the different HCCs. These three instants correspond to: (a) bottom pressure equal

to -30kPa, (b) bottom pressure equal to -58kPa and (c) bottom pressure equal

to -60kPa. Fig. 5.20c shows the slope saturation delay when using Mualem law.

The final slip surface shape turns out to be similar for all the various simulations.

As such, it is concluded the permeability law (HCC) has a substantial impact on

the timescale but not on the rupture mechanism and the subsequent propagation

phase.
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Figure 5.22: Kinematics of the slope model. Velocity norm vs time for three MPs using the two
constitutive parameter’s combinations. Initial time corresponds to the beginning of the maximum
level constant phase, from [150].

Figure 5.23: Norm of displacement at the end of the drawdown phase using MC 1. The final
surface profile of MC 2 is also reported (orange line), together with the experimental slip surface
(pink line), from [150].
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Figure 5.24: Comparison between different HCCs by plotting pore pressure pL along vertical
section S1 for three different time instants, from [150].
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Figure 5.25: Geometry, discretization and MPs assignment related to the 2P-DP model reproduc-
ing the experiment by [22].

3.4.1 Comparison with double point approach: impact of fluidiza-

tion on final run out

A model with the same geometrical features as the previous is built considering the

2Phase-DP formulation. Only the drawdown phase is captured, with the aim of

employing an MPM formulation more suitable to reproduce fluidization resulting

from dynamic processes in saturated soils. In this case the initial condition is the

one corresponding to full saturation of the experimental slope, i.e. fully submerged,

with a water table as high as the slope crest. Based on the experience collected

with the model presented in Sec. 3, the model is set up considering a region

of free water in front of the slope, and a region of saturated soil corresponding

to the slope domain. The average mesh size of the mesh, made by triangular

elements, is 0.3m. 12 LMPs are assigned to the free water domain, while 12LMPs

+ 12SMPs to the solid domain. Mesh discretization and MPs assignment at the

beginning of the simulation are visible in Fig. 5.25. The only material property

changing is the Bulk modulus of the liquid which is imposed equal to 25000 kPa,

for computational speed up. The other material parameters are the same as in

Tab. 5.3. In addition, in the double point formulation it is necessary to specify a

permeability update law, in this case Darcy law is use, for a better comparison

with the previous model. The parameter that control the fluidization process is

the maximum porosity. Usually it is defined based on laboratory data, in terms

of emax and emin, respectively, maximum and minimum void ratio. In this case
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these data were not present, so different values of maximum porosity are tested,

and the results compared with the final slope profile as a calibration. A value

of 0.5 is finally chosen. The initialization of stress and pressure is done with

K0-procedure, considering a value of K0=0.5. After the initialization, the water

table is drop to 3m by removing LMPs in a time of 1.2s, similar to the previous

model. Subsequently, the simulation is run until the slope stops moving, which

corresponds to a duration of 148s.

3.4.2 Results

The dynamic of the collapse is shown by plotting deviatoric strain of SMPs together

with LMPs (blue dots) in Fig. 5.26.The selected five instants of time to plot the

results are all after the level drawdown: at (a) 2.7s, (b) 10.2s,(c) 22.7s, (d) 72.7s

and (e) 148s (end of simulation).The slope failure starts with a shallow localization

as visible in Fig. 5.26(a) which deepens and spread laterally in a few seconds, as

visible in Fig. 5.26(b). After this instant, the slip surface doesn’t grow deeper while

it just involve a slightly bigger portion of the slope, in the direction of the crest,

while the slope front tends to propagate in the opposite direction (see Fig. 5.26(c)).

When looking at the LMPs, it appears that the slope collapse is inducing a very

turbulent behavior, with waves generation. As time progresses, while an imposed

external water level reduction occurs, with a consequent progressive reduction

of the phreatic surface in the slope, the free water in front of the slope tends to

accumulate and its level increases. Concerning this aspect, it’s hard to compare

it with the experimental results since the pictures captured in the second phase,

see Fig. 5.16, cut the lower portion of the slope. Given the numerical boundaries

assigned to LMPs and SMPs, the result looks physically coherent. The evolution

of collapse shows that the majority of the soil mass failure is concentrated in the

first 23s, slightly longer compared to the previous model results, but still very

rapid. The following part consists in a slower soil and water settlement toward a

new equilibrium configuration. This final configuration is reported in Fig. 5.27.

The norm of displacement contour is used and the final profile of the experimental

slope is also reported with a dashed red line. It is possible to appreciate that

the final run out is significantly greater compared to the previous model results

(see Fig. 5.23), with maximum displacements of the SMPs equal to 7.43m along x
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Figure 5.26: Temporal evolution of SMPs deviatoric strain and tracking of LMPs (blue dots)
after the rapid drawdown of the water level.
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Figure 5.27: Norm of displacements at the end of the drawdown phase with the 2P-DP model.
The final experimental profile is reported with a dashed red line.

direction and -3.31m along y direction. The final profile is on average closer to the

experimental one, however the top portion appears lower and not characterized

by distinct blocks, when compared to experiment. This behavior is most probably

due to the rapid desaturation of the experimental slope and the suction increase,

which tends to give more cohesion to the top part and to result in the blocks

configuration. The use of a multipoint approach, able to consider also the variation

in saturation degree, could represent the turning point to explain this complex

physical behavior.

4 Levees’ instability induced by toe uplift

4.1 Background studies

One of the most critical failure mechanisms is represented by the instability of

the landside slope triggered by the development of high uplift pressures at the toe

of the embankment, often accompanied by the formation of sand boils. This is

frequently the case when embankments are built on top of foundation layers having

significantly higher hydraulic conductivity. The development of uplift pressure at

the toe of the embankment can lead to failure by triggering two different failure
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mechanisms: one is the piping process, caused by seepage and internal erosion,

while the other is the instability caused by the increase of pore-water pressure and

consequent decrease of shear strength of the soil.

The focus of this section is on this second mechanism.

When the river level increases, the pressure in the coarse layer rises accordingly,

and high overpressure can be reached if the layer is confined above by a low

permeability layer. The latter, a typically soft material like clay or peat, is

characterized by very low mechanical strength. Due to the overpressure in the

coarse layer, the effective stresses at the interface between coarse and soft layer

is almost annulled. The effective stress annulment occurs when overpressure

approaches the overburden stress value, depending on thickness, specific weight

and saturation degree of the clay layer at the landside. As a consequence of

stress annulment, shear strength of the soft layer significantly reduces. In these

conditions, sliding occurs along the interface between the two materials, while

uplift near the toe area occurs. As a consequence, when the contribution of the

toe is missing from the overall strength, the levee external slope starts translating

toward the landside, with displacement of even the meter entity ([183]).

It is conventional to define as uplift length the thin water zone forming between

coarse and soft layer, characterized by constant pore pressure, equal to the

overburden weight of the soft layer. This length has been analytically computed by

[184] considering either stationary and non-stationary flow below the embankment,

and infinite or finite extension of the landside.

[184] concludes that the analytical expression provides only an order of mag-

nitude for the uplift length, since it tends to overestimate it from 25% to either

100% the actual length. This specific collapse mechanism is dominant only if the

levee is high enough to withstand other failure mechanisms like overtopping and

shallow slope failure [185].

Previous studies about the toe-uplift failure mechanism fall into two categories:

experimental, using geotechnical centrifuges, and numerical, aimed at explaining

real cases of occurred instabilities or experimental results, even adopting probabilis-

tic approaches ([31] based on LEM analysis). The first studies have been performed

in geotechnical centrifuge in the late 1900 and beginning of 2000, [18, 186, 187]. In

these tests the control of geometry, materials and boundary conditions allows to

better understand the type of mechanism developing under certain gravity levels
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and head/pressure conditions. Moreover, evolution of collapse can be followed

thanks to continuous image recording. The use of reinforcements, like berms, can

also be tested (see [18]) to provide design orientation for practitioners.

On the other side, the study of real failure cases, like the famous case of Wilnis

in the Netherlands (2003) [40, 183], pushed the development of analytical and

numerical methods [185, 188], and to even perform in-site tests [185].

Experiences gained with the use of the Finite Element Method (FEM) have

shown its limitations in reproducing this mechanism for two main reasons: for

situations with a vertical safety factor (defined as the vertical weight divided by

the water pressure in the sand layer) lower than 1.04 [185], it is not possible to

apply FEM, since numerical difficulties occur. Moreover, as FEM is basically a

stiffness approach, additional parameters and schematisations are required, like

moduli, element type/size, initial stress state, acceptable error level– which makes

design more time-consuming [185].

Based on these considerations, a simplified analytical method based on the

Limit Equilibrium Method (LEM), named Van Method [185], (initially developed

in 1999) has progressively gained popularity in the geotechnical community.

Van Method is developed in agreement with Bishop method. According to Van

Method, the toe uplift instability is characterized by a triple sliding zone: an active

circular, a straight and a passive circular. A schematization is reported in Fig. 5.28

with the reference symbology. The interslice forces of the active and passive zones,

Ia and Ip are computed separately considering a momentum equilibrium, and

including Mohr-Coulomb failure criterion. The third force which comes into play

is the friction force Fs along the straight segment. Fs is computed by considering

the expression of the factor of safety FS according to Bishop method

FS = − τs
FS
· L (5.3)

The length of the uplift zone L can be defined with a groundwater analysis,

considering quasi-steady state flow conditions. Finally, the factor of safety FS is

computed by solving the horizontal forces equilibrium (Eq. 5.4)

Ia + Ip + Fs = 0 (5.4)
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Figure 5.28: Triple sliding zone scheme according to Van Method (adapted from [185]).

Eq. 5.4 is implicit in FS, hence the solution is found by iteration. For R1 = R2

and L = 0 a completely circular slip plane is obtained, and Van Method reduces

to Bishop method. Despite its ease of use, Van method has also limitations:

it is based on a force approach, which doesn’t allow post-failure description.

Consequently, it is necessary to employ a large strain approach, like MPM, to

capture the full behavior, thus provide new insights about the mechanism. In

particular, the ratio between overpressure and vertical total stress near the toe

area can be investigated in detail during the entire failure process, without being

limited by FEM assumptions.

The kinematic behavior after the onset of failure can be determined, under-

standing the impact of pressure evolution on the earth structure movements. In

this manner, the problems doesn’t need to be simplified with the preselection of a

critical slip surface, like in LEM, because it is the result of the MPM computation.

Given the significant contribution of centrifuge tests to the understanding of

the toe-uplift failure mechanism, an experiment performed in 2003 by [18] is

selected to be reproduced with MPM. In this manner, it is possible to investigate

the kinematic of the phenomenon in well-controlled conditions and to test the

capability of MPM as prediction tool for events at the real scale.
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4.2 Investigation of levee failure and post-failure with centrifuge

tests and MPM simulations

4.2.1 Baseline physical test

In this section, the main aspects of the physical test, used as a reference to

apply MPM in the study of the toe uplift mechanism, are introduced. The

reference experiment is part of a series of tests conducted by [18] in a geotechnical

centrifuge at Delft University of Technology, in 2003. These experiments aimed

at reproducing in a controlled environment the conditions triggering toe uplift

collapse mechanism, thus improving the understanding of the phenomenon. In

addition, the presence of berms and trenches were tested experimentally. The

standard dike test is considered here as reference for the MPM model.

In the centrifuge, the levee is built at model scale, with dimensions reported in

the sketch of the experimental configuration in Fig. 5.31 (to facilitate reading,

also dimensions of the levee at prototype scale are added). In the selected case,

the levee and the shallow foundation layer are built with the same material, kaolin

clay, while the deep layer is made of sand. Strength parameters are computed

based on consolidated undrained triaxial tests (see Tab. 5.5).

The reservoir representing the riverside is progressively filled with water; this is

hydraulically disconnected from the levee body because of the presence of a plastic

membrane that prevents the seepage in the levee body and in the clay foundation.

On the contrary, the reservoir is connected to the deep sandy layer with a tube.

A small vertical polystyrene wall is placed on top of the levee, thus allowing water

levels higher than the levee’s crest to generate higher pressure in the sand layer.

On the other end of the layer, the total head in the sand is controlled with a

height-adjustable drain, at a fixed height of 2cm above the ground level [189].

The centrifuge is accelerated in steps of 10g until the final value of 120g is

reached in approximately 15min. The reservoir level is initially at half the levee

height, and it is progressively raised to the maximum value, along with the gravity

increment. From the pictures of the experiment, it results that the maximum level

H is between 6.5 and 7cm.

In Fig. 5.30 it is reported the evolution of collapse in the centrifuge test with

respective gravity levels. This graphical representation (adapted from [189]) is

done by subtracting greyscale values of the current phase from the previous
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phase to highlight deformations. In Fig. 5.30(a), the displacements resulting

from accelerating from 1g to 90g are shown. At this step, the slip surface is

still not visible and the water level is low (half the dike height). In Fig. 5.30(b),

the displacements caused by the acceleration from 90g to 100g can be seen. A

sliding mass is now visible, bounded by an active sliding surface. Fig. 5.30(c)

the displacements between 100g and 120g are shown. Meanwhile, the water level

has also increased at crest height. A secondary shallow slip plane is created over

which the levee slides. Afterwards, a passive slip plane arises due to the increasing

horizontal deformation. This slip plane forms an approximate straight line. To

the right of this line, no deformation can be recognized anymore.

Figure 5.29: Sketch of the principal features of the baseline centrifuge test (model scale). The
dimensions at prototype scale are reported in red.

Figure 5.30: Experimental results. Relative displacements at three progressive increments of the
gravity level in the centrifuge test. Adapted from [189].

4.2.2 Numerical model set up

The MPM model is built considering the main geometrical features of the experi-

ment at the prototype scale, following the well known similitude ratio (Eq. 5.5).

Lm
Lp

=
1

N
(5.5)
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In Eq. 5.5, N is the amplification factor of gravity, which in the reference

experiment assumes a final value of 120, and Lm and Lp are geometrical lengths

in the model and the prototype. In addition, plain strain conditions are assumed.

The geometry of the model and the mesh discretization are reported in Fig. 5.31.

The mesh is made of 3-noded triangular elements with an average edge size of

0.8m. At the beginning of the simulation, 3MPs are assigned to each element.

The material properties for the two materials are listed in Tab. 5.5. The retention

properties were not reported in the reference paper, so simplified linearized SWRCs

are used according to Eq. 5.6.

SL = 1− av · (pL) (5.6)

The values of the calibration parameter av are based on the literature for similar

materials.

The hydraulic conductivity function for each material is assumed constant

(not changing with the saturation degree), equal to the saturated hydraulic

conductivity value. In the experiment, the saturated hydraulic conductivity of

clay is kc = 1.16 · 10−9m/s, while in the numerical model a higher value is used,

as reported in Tab. 5.5. The final value of clay hydraulic conductivity of Tab. 5.5

represents a compromise between minimizing the computational cost and best

matching with the experimental outcome. In Sec. 4.3 the impact of hydraulic

conductivity of the clay layer on the MPM simulation is investigated.

Regarding soil strength, an elastic perfectly plastic Mohr-Coulomb model is used

for both materials, considering parameters in agreement with the experimental

values [18]. Young modulus is selected considering the unloading path, more

representative of the phenomenon under analysis. A mass scaling of 100 is used

to reduce the computational cost and a small value of damping, equal to 0.05, is

used to guarantee numerical stability [115].

The boundary conditions (BCs) are specified as follows. The BCs for the

solid phase are reported in Fig. 5.31(a) and they remain constant for the entire

simulation. The choice of fixing the inner slope is related to the experimental

configuration, where the reservoir, progressively filled, is acting in a stabilizing

manner for the riverside slope, which otherwise would tend to collapse before the

maximum water level is reached. The bottom edge of the model is fully fixed, while
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Sand Clay
ρS [kg/m3] 2610 2542
ρL [kg/m3] 1000 1000
n [−] 0.355 0.3
KL [kPa] 60000 60000
µL [kPa · s] 10−6 10−6

av [1/kPa] 6 · 10−3 4 · 10−4

ksat [m/s] 7.44 · 10−3 7.44 · 10−5

E [kPa] 55860 5520
ν [−] 0.33 0.15
φ [◦] 37 22
c′ [kPa] 0.0 10

Table 5.5: Material parameters for the MPM model of toe uplift induced instability.

the other lateral edges are normally fixed. Pressure and stress are initialized with

the K0 -procedure (K0 = 0.5), assuming that the water table is at the interface

between sand and clay. The water table initial location guarantees unsaturated

conditions of the levee body and the clay foundation layer. One step of quasi-

static gravity loading is run after K0 -procedure to improve the stress distribution.

During the initialization, the bottom is impermeable, as visible in Fig. 5.31(b).

The hydraulic condition on the inner slope is impermeable, resembling the plastic

membrane effect, while on the land side a potential seepage face is assigned.

After initialization, only the bottom BC for the liquid is changed to an imposed

pressure (Fig. 5.31c). The applied pressure has a linear distribution with a

maximum on the left side p̄L|x=0m and a minimum on the right side p̄L|x=50m. The

first changes in its magnitude during the simulation, resembling the water table

rising in the reservoir, while the latter is constant as the drain height is kept fixed

in the experiment. The term “Phase” in the following is used to define a part of

the simulation characterized by a specific distribution of nodal pressure at the

bottom.

In the MPM model, a uniform initial distribution of imposed nodal pressure

equal to -82kPa is assigned (Phase 1), which corresponds to a water column of

2.4m above ground level, equal to the height of the drain. This condition is

maintained for 8 min. The values at the extreme nodes of the model which bound

the linear distribution, i.e. x = 0m and x = 50m, are reported in Tab. 5.6. Each

new pressure distribution defines a new phase of the simulation with a certain
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Figure 5.31: MPM model of centrifuge test (prototype scale). (a) BCs for the solid. (b) BCs for
the liquid during initialization, (c) BCs for the liquid after initialization.
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duration, also reported in Tab. 5.6. The horizontal gradient of pressure at the

bottom boundary tends to become progressively steeper, as visible in Fig. 5.32.

ID ∆t [min] p̄L|x=0m [kPa] p̄L|x=50m [kPa]
Phase 1 8 -82 -82
Phase 2 45 -102 -82
Phase 3 116 -122 -82
Phase 4 182 -142 -82
Phase 5 202 -162 -82

Table 5.6: Boundary values of the imposed nodal pressures at the model bottom edge.

Figure 5.32: Imposed nodal pressure along the bottom edge of the model, in the five subsequent
phases.

The sequence of pressure increments and each duration is schematized as follows.

From Fig. 5.30, it is identified the position of the maximum water level reached

during the experiment (H = 7.8 − 8.4m), which corresponds to a pressure of

approximately -120 kPa at the interface between sand and clay. This means that

the critical pressure distribution able to trigger the instability should be between

Phase 3 and Phase 4. Phase 5 does not have an experimental counterpart, and it

is carried out to explore numerically the evolution of failure in the event of an

additional pressure increase.

To monitor the stresses and pressures at the interface between sand and clay,

the MPs nearby section S1 are highlighted in Figure 5.31(c). Furthermore, in the

same figure, three locations are selected, crest, interface, and toe, to track the

evolution of MPs kinematic variables in the next section.
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4.2.3 Results

As introduced in the previous sections, the problem under analysis is strongly

controlled by three main aspects: stratigraphy, material properties, and variation

of hydraulic boundary conditions (mainly the pressure in the sand layer). Among

the objectives of the MPM model, there is the identification of the critical pressure

gradient at the interface between sand and clay, triggering failure, and the following

displacements. These displacements can be entirely reproduced by the MPM

model, in response to each modification of the boundary conditions. This is a

major aim when employing MPM in the investigation of toe uplift.

Two figures are herein presented to explain the main outcomes of the simulation:

Fig. 5.33 and Fig. 5.34. These figures illustrate stress and deformation behavior

respectively. It has to be noted that the pressure at the interface between sand and

clay does not correspond to the bottom imposed pressure, it is necessarily decreased

by a factor (γw h), where h is the sand layer thickness. This pressure, stored at the

MPs, is computed along the interface section S1 at every computational step and

compared with the total vertical stress along the same section in Fig. 5.33. The

overburden stress on the landside, considering a clay thickness of 3.6m, outside

the load footprint of the levee, is equal to 73.44kPa. As a reference, this value is

reported in Fig. 5.33 with a horizontal red line.

Each panel of Fig. 5.33 depicts the stresses along S1 at instants corresponding

to the end of each Phase. It is visible that, starting from t=169min (end of Phase

3), the liquid pressure values approach the total vertical stress values near the toe

(around x = 30− 35m), thus uplift occurs and consequently a shear failure surface

develops and an acceleration of the displacements is observed. This is visualized

in Fig. 5.34 which reports contours of deviatoric strain and norm of displacements.

At t=169min, high deviatoric strains are observed near the interface between sand

and clay and extend both toward the landside toe and the riverside crest. The

corresponding situation in terms of displacements is the following: the vectors near

the landside slope are oriented upward and toward the landside, with maximum

displacements equal to 13cm. The direction of movement appears as the onset

of a rotation. At the same time, along the interface, between x = 20m and

x = 25m, vectors are horizontal and directed toward the landside, showing a

translational movement. Lastly, the vectors along the landside surface display an
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uplift movement.

At t=170min (beginning of Phase 4), pressure increases and the failure process

is fully triggered (Fig. 5.34). At this time, the slip surface is more marked and

continuous, with an overall increment of strain. The displacement vectors show

that the movement is characterized by a translation in the foundation, near the

levee’s toe, and a roto-translation of the levee slope. This result is distinctive of

the phenomenon under analysis, well captured by MPM.

During Phase 4, the process evolves, reaching displacements even higher than 1m.

Consistently, in the range 25 < x < 35, total stress and pressure are approximately

equal along S1, as visible in Fig. 5.33 at the end of Phase 4 (t=351min).

The subsequent increment of pressure (Phase 5) triggers additional movements

and larger displacements, which impact on a more irregular stress distribution on

the landside, with oscillations typical of MPM (see Fig. 5.33). At the end of Phase

5 (t=553min), the levee crest settled about 2m, while the toe reached a vertical

displacement of approximately 0.8m (Fig. 5.34). The entity of these displacements

provide a clear picture of the damage to the earth structure, and this quantification

has never been possible until now with other numerical techniques.

The impact of pressure increments of Phases 3, 4, and 5 on the displacements

is reported in Fig. 5.35 with relative displacements. Relative displacements

are computed for consecutive instants, thus, for instance, relative displacement

vectors at t=54min are obtained by subtracting displacement vectors at 53min

from displacement vector at 54min. With this graphical representation, it is

quantifiable the boost in movement of each new pressure distribution and the

progressive development of the instability mechanism.

As previously mentioned, the pressure distribution of Phase 3 is critical, in the

sense that uplift and translational movement near the toe occur at the beginning

of it. In Phases 4 and 5, large displacements characterize the levee movement with

crest height lowering. This behavior may favour overtopping but also relevant

damage to infrastructures and private buildings on the landside.

The dynamic process of levee failure can be additionally analyzed by considering

the kinetic energy of the system (Fig. 5.36a). Two peaks of major intensity can

be recognized at approximately 180min and 360min, immediately after applying

bottom pressures of Phases 4 and 5. The peaks correspond to a rapid acceleration

of the soil masses, in response to the applied pressure.In Fig. 5.36(b) liquid pressure
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Figure 5.33: MPs stress variables along section S1 at five instants, corresponding to the end of
each Phase.
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Figure 5.34: Contours of deviatoric strain (left column) and norm of displacements (right col-
umn) for five instants of time.
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Figure 5.35: Relative displacements at three selected instants of time, corresponding to the
passage between Phases 2 and 3 (t=54min), between Phases 3 and 4 (t=170min), and between
Phases 4 and 5 (t=352min).
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and vertical stresses at MPs on S1 (in the sand layer) with coordinate x ≈ 30m,

are plotted. Liquid pressure increases in each phase and remains almost constant

for the entire phase. For the first three phases total vestical stress is approximately

constant, while effective stress decreases. At t=70s, liquid pressure and total

stress are approximately equal in this location, thus effective stress is nearly zero.

Subsequently, while time progress, the slope deforms, thus increasing the total

and effective stresses. A similar process is observed in phase 5. Mild oscillations

are visible in the solid stress graphs in correspondence of phases 4 and 5.

In Fig. 5.36(c)the uplift length at prototype scale, computed from the simulation

outcome, is reported. The numerical uplift length is computed considering a set of

MPs near the interface S1, in a range 11 < x < 50m, and evaluating the position

of those MPs having vertical effective stress σ′y ≈ 0. Since t=54min (Phase 3),

the uplift length increases progressively, reaching a maximum value of 7.6m at

t=180min. This value is very close to the experimental uplift length measured

≈ 6cm [189] (=7.2m at the prototype scale, see Fig. 5.36(c)). After this peak,

during the dynamic motion of the slope, the uplift length oscillates and it initially

decreases during Phase 4, and then progressively increases. During Phase 5, the

uplift reaches a maximum value of 13.5m, followed by a decrease around the value

of 9m. This response is the result of both numerical and physical factors. In

fact, stress oscillations are observed in MPM during the highly dynamic motion

and since stresses are used to compute the uplift length, as a consequence, the

calculated uplift length oscillates too. Therefore, the computation is indicative

and provides a general order of magnitude for Phases 4 and 5, while it is more

meaningful in the previous part of the simulation. Concerning the physical aspects

impacting on the trend of the uplift length during post-failure, i.e. Phases 4 and 5,

it is possible to find an explanation considering Fig. 5.33 and Fig. 5.36(b): during

collapse, the effective stress increases again, thus decreasing the uplift length.

Fig. 5.36(d) reports the time evolution of some components of displacement

at three locations (indicated in Fig. 5.31(c)): at the levee crest, at the interface

at depth (but considering MPs in the clay) and at the toe, near the soil surface.

These trends aid in a precise quantification of the large displacements affecting

the levee collapse.

In Fig. 5.37 the experimental result (a) is compared with the simulated norm

of displacement (b) at the end of Phase 4. As previously mentioned, in Phase 5
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Figure 5.36: Time evolution of kinetic energy of the system (a). Liquid pressure and stress for a
MP at the interface between sand and clay (in sand) (b). Time evolution of uplift length (c), and
components of MPs displacement at three locations (d) (negative values stand for settlement of
the levee crest).
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Figure 5.37: Comparison between experimental (a) and numerical (b) final configurations.

boundary pressures higher than the experiment are applied to the model, thus it

is not considered here. It is possible to identify the typical triple sliding surface

and the zones bounded by it: the active zone, the uplift length, and the passive

zone. The extension of the zones is very similar between experiment and numerical

results. The magnitude and direction of displacements aid in visualizing the

types of movement, showing a rotation in the active area, horizontal translation

along the uplift length, and a roto-traslation in the passive area. The shallower

slip surface, visible in the experimental picture, is responsible for some material

accumulation at the toe, visible as a small bulging at the end of the slope. This

slip surface and its impact on the final profile can not be accounted for in the

MPM model. This is probably due to the difference in the loading path between

numerical and experimental models. In fact, in the experiment, a rise in g-level

with the progressive rise of water level is carried out, while the numerical model

is already at the final g-level and only the pressure is progressively increasing.

Unlike the numerical model, the initial vertical settlement of the experimental

levee after construction may also have impacted on the formation of this shallow

slip surface.
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4.3 Effect of permeability ratio on MPM

The effect of foundation soils’ hydraulic conductivity on the collapse mechanism is

investigated in this section. Fig. 5.38 reports deviatoric strain and liquid pressure

contours for three MPM models with different hydraulic conductivity ratios (kc/ks,

where kc and ks respectively stand for clay and sand hydraulic conductivities).

In each model, kc is varying, while ks is kept constant. Deviatoric strain and

liquid pressure contours at the beginning of Phase 4 (t=170min) are presented in

Fig. 5.38.

In the investigated cases, high shear strains initially localize at the interface

between sand and clay, and the location of this area is similar. However, the

reduction of hydraulic conductivity ratio modifies the temporal development of the

entire slip surface in the active and passive zones. At t=170min, for kc/ks = 10−1

the slip surface is well developed on both sides of the levee (Fig. 5.38). The slope

collapse has been triggered and the crest settled slightly. In this scenario, the

mechanism is more rapid and less extended toward the landside. For kc/ks = 10−2,

the slip surface on the passive zone is not clearly developed yet. For kc/ks = 10−3,

high shear strains are visible only in the uplift zone at this stage, and additional

time is necessary to appreciate the entire slip surface formation. The reduction

of hydraulic conductivity ratio implies a slower development of the slip surface

and evolution of post-failure displacements, plus a slightly more extended uplift

length zone.

This behavior is directly linked to the liquid pressure distribution, which depends

on the hydraulic conductivity. Indeed, as expected, the sand layer is characterized

by similar values in the three investigated cases, thus favouring the localization

of shear at depth. On the other side, the levee body and the clay layer record

different values of pressure in the three investigated scenarios. To this aim, the

pressure distribution at two sections, S2 and S3, is indicated in Fig. 5.38. The

higher suctions in the case with smaller hydraulic conductivity ratio (kc/ks = 10−3)

are counteracting the development of the slip surface in the levee body. This

phenomenon is of transient nature and the hydraulic conductivity of the clay layer

seems to be playing a major role in delaying the progression of movement.
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Figure 5.38: Impact of hydraulic conductivity on uplift failure mechanism. Deviatoric strain and
liquid pressure contours at the beginning of Phase 4 (t=170min) for numerical models with three
different permeability ratios.

4.4 Conventional numerical analysis

In this section, conventional numerical methods, based on force approach, are used

to analyze the same case. Once again, it is possible to understand the innovation

of using MPM to investigate failure mechanisms of levees, and the benefits in

terms of supporting risk assessments. LEM based analysis are carried out with the

software Geostudio. while Van Method based analysis are run with the software

D-Stability [190].

The LEM analysis is based on a simplified distribution of pore pressure depending

on a phreatic surface drawn by the user. No seepage analysis is run. The pore

pressure is applied only on the sand layer. Two distribution of pressure are

considered: one corresponding to the pressures of the MPM model at the end

of Phase 3 and the other one at the end of Phase 4. The materials are assigned

the same constitutive model as in the MPM model, i.e. Mohr-Coulomb with

parameters as specified in Tab. 5.5. An entry and exit specification of the slip

surface is used and Morgenstern-Price method is considered. The results of

the analysis are reported in Fig. 5.39. In contrast to the MPM outcomes, the
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Figure 5.39: Results of LEM analysis for a pore pressure distribution corresponding to Phase 3
(a) and Phase 4 (b).
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LEM analysis shows an instability at the end of Phase 3 with a slip surface fully

developed at depth. This is due to an imprecise distribution of effective stress in

this analysis, which is not physically consistent. However, the shape of the slip

surface on the riverside (the circular part before the uplift zone) is very similar

to the MPM localization of strain and the overall dimension of the potentially

unstable mass, inferiorly bounded by the slip surface, is similar to the one visible

in the MPM analysis at the end of Phase 4 (see Fig. 5.34). The values of the FS

clearly identify a potential instability, but no movement quantification and no

information concerning the toe uplift are retrievable from this kind of analysis.

Concerning the model with Van method, the uplift pressure is applied assigning

a total head level to the sand layer with values corresponding to the applied

pressure. A horizontal phreatic surface is applied at the ground level for the clay.

Only material unit weight and strength parameters are necessary for this analysis.

Fig. 5.40 shows the results obtained with Van method. In Phase 2, FS is greater

than one, thus the slope is stable. In Phase 3, FS is slightly lower than one,

meaning that failure can occur. This result agrees with the MPM simulation, in

which an increase of Kinetic Energy and large displacement are observed at the

end of this phase. Even lower FS are obtained for Phases 4 and 5 due to the

increase of pressure in the sand layer, but these results are not representative of

real conditions because the geometry of the slope will change during the collapse

as can be observed with MPM.

The Van method has the advantage of requiring a limited number of parameters

and allows to determine the slip surface with the lowest safety factor (critical

slip surface). Since it enforces only force equilibrium disregarding the slope

deformation, FS lower than 1 can be obtained as an output, but post-failure

displacement cannot be inferred. The method is very simple and computationally

inexpensive, thus well suited for projects requiring a large number of simulations.

166



Figure 5.40: Slip surface and FS with Van Method for (a) Phase 2, (b) Phase 3, (c) Phase 4 and
(d) Phase 5.
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6
Conclusions

In the research work object of this thesis, a new approach to investigate and

predict macro-instability in river levees is proposed: the use of multiphase MPM

formulations. MPM is a powerful large strain approach with the capability of

modelling failure and post-failure behavior of geotechnical structures. This aspect

is fundamental and innovative in the realm of risk assessment associated to slope

stability of river levees.

In fact, in the current practice, numerical approaches based on forces, resulting

in the computation of the factor of safety, are used to predict the behavior of

these earth structures. Only the onset of failure can be identified and evolution

of a collapse mechanism, thus of the levee safety with time, can not be fully

quantified. The importance of improving numerical predictions is even more

significant if we consider the difficulties and economical limitations associated to

physical modelling of levees and the use of monitoring techniques. The experience

with the design of a complete investigation campaign on a levee stretch in the

lower Tagliamento river in Italy and the consequent conventional safety analysis

based on the Limit Equilibrium Method, allows understanding peculiarities of

these water retention earth structures, like the construction materials and the

natural ones, the spatial heterogeneity and their impact on the overall behavior,

the impact of variable saturation and the importance of quantifying the transient

hydrodynamic load system acting, and finally the necessity of optimizing resources
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in these long extension structures.

After the review of the current knowledge and techniques put in place to predict

the behavior of levees, a state of the art about multiphase MPM formulations

is carried out. The review of the major features of each formulation and the

following testing activity using the 2Phase Double Point formulation (the more

advanced formulation at the beginning of this research work) aided in the selection

of the formulation to develop for the scopes of this study.

An unsaturated MPM formulation, computationally efficient, based on the

approximation of gas pressure equal to the atmospheric pressure and constant,

hence accounting for only two phases, is the focus of this research activity. The for-

mulation features a full set of hydraulic boundary conditions which guarantee the

reproduction of river level oscillations near levee banks, rainfall and the potential

seepage face condition at the landside. This is among the most innovative aspects

of this research work. A study about numerical stability is additionally carried out

at a preliminary level, showing the potential increase in critical time step, thus

potentially reduced simulation times, in unsaturated conditions. The formulation

development and study about the critical time step have a strong general validity

for MPM users. The formulation is validated with two examples, but additional

cases can be found in the publication list reported at the end of this thesis. The

comparison with already validated FEM codes provides very satisfying results. It

is nevertheless important to underline that the validation doesn’t consider any

large strain example, since analytical cases with this characteristic are not available.

After validation, the formulation is tested in several applied cases: theoretical

slopes, large scale experimental slopes, centrifuge tests. As a result, new insights

are provided about the instability in levees by quantifying the actual movement

and subsequent evolution of a collapse mechanism under different hydraulic load

combinations. The ease in employing the formulation in different cases, and the

chance to perform whatever parametrical analysis, appears as a strong feature to

extend in the future the use of this MPM formulation to several other applied

cases where partially saturated slopes, artificial or natural, and other geotechnical

problems of soil-water-structure interactions are investigated.
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To this aim, the implemented code should be included in the open source version

of Anura3D ; this activity can be carried on in the immediate future. On a general

basis, some additional improvements may be done. Indeed, based on the outcomes

of the different applied cases treated in this research work, some potential future

developments can be foreseen.

• Improve the physical description of fluidization. This aspect is particularly
relevant when propagation of highly saturated soil masses are present. It
was particularly evident in the large scale slope reproduced in Chapter 5.
To this aim, more advanced constitutive models should be explored.

• Further investigation about numerical stability in unsaturated conditions.
The preliminary study at the end of Chapter 5 can be enriched with more
numerical results and a detailed treatment considered also MPs location.

• Improve the efficiency by implementing strategies able to account for large
timescale events. Among them, the use of an implicit in time integration
scheme may represent the most efficient way to tackle this issue. However,
other approaches, for example by coupling implicit FEM and MPM in the
same simulation, may be explored.

• Improve the pressure oscillations. On a general level, this problem requires
higher order shape functions, thus a new consistent and robust implementa-
tion.
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7
Appendix

In this appendix, the steps followed to study the numerical stability of the

formulation presented in Chapter 4 are presented. Three different ∆tc criteria are

obtained taking into account the stability of (a) the coupled system of momentum

balance equations, (b) the momentum balance of the liquid phase, and (c) the

momentum balance of the mixture.

1 Stability of the coupled system of momentum balance equations

The governing equations in the strong form considered are the liquid momentum

balance and the mixture momentum balance as in

ρLaL = ∇pL − fdL + ρLg (7.1)

nSρSaS + nLρLaL = ∇ · σ + ρmg (7.2)

Additionally, the mass balance equation is considered to express the liquid

pressure as function of velocity (Eq. 7.3). A linear elastic solid constitutive law

(Eq. 7.4) is assumed to express effective stress as function of solid displacements.
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The sign convention used expresses suction s as s = −pL.

n

(
SL
∂ρL

∂pL

+ ρL
∂SL

∂pL

)
DSpL

Dt
= ρLnSLdiv(vS − vL)− ρLSLdiv(vS) (7.3)

dσ′ = Ec · dε (7.4)

If a single node i is considered, the momentum balances per unit volume at

time tk can be written as a system of second-order ordinary differential equations

(ODE). The homogeneous form for both equations follows

ρLa
k
L + qLv

k
L − qLvkS +KLu

k
L +

(1− n)

n
KLu

k
S = 0 (7.5)

(1− n)ρsa
k
S + nSLρLa

k
L +KSu

k
S +

(1− n)

n
KLu

k
S +KLu

k
L = 0 (7.6)

where

qL =
SLnµL
kL

(7.7)

KL =
SL
L2
i

· 1(
dSL
ds

+ SL
Kw

) (7.8)

KS =
Ec
L2
i

(7.9)

In this notation Kw is the bulk modulus of the liquid, while KL is a term

which includes Kw, SL (the saturation degree), dSL
ds

, the derivative of SL respect

to suction, and Li as the characteristic length of a mesh element.

The use of an Euler-Cromer time scheme leads to the following set of equations

(introduced in Chapter 2)for the kinematic variables of liquid and solid phases.

vk+1
L = vkL + ∆t akL (7.10)

vk+1
S = vkS + ∆t akS (7.11)
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uk+1
L = ukL + ∆t vk+1

L (7.12)

uk+1
S = ukS + ∆t vk+1

S (7.13)

From Eq. 7.5 and Eq. 7.6 it is possible to express accelerations as function of

all the other terms as follows.

akL = − qL
ρL

vkL +
qL
ρL

vkS −
KL

ρL
ukL −

(1− n)

nρL
KLu

k
S (7.14)

akS = − nSLρL
(1− n)ρs

akL −
KS

(1− n)ρs
ukS −

KL

nρS
ukS −

KL

(1− n)ρs
ukL (7.15)

Now, the acceleration expressions (Eqs. 7.14 and 7.15) are substituted in the

explicit time scheme set (Eqs. 7.12, 7.10, 7.13, 7.11).

uk+1
L = ukL + ∆t

[
vkL + ∆t

(
− qL
ρL

vkL +
qL
ρL

vkS −
KL

ρL
ukL −

(1− n)

nρL
KLu

k
S

)]
(7.16)

vk+1
L = vkL + ∆t

(
− qL
ρL

vkL +
qL
ρL

vkS −
KL

ρL
ukL −

(1− n)

nρL
KLu

k
S

)
(7.17)

uk+1
S = ukS + ∆t

[
vks + ∆t

(
− nSLρL

(1− n)ρs
akL−

KS

(1− n)ρs
ukS−

KL

nρS
ukS−

KL

(1− n)ρs
ukL

)]
(7.18)

vk+1
S = vkS + ∆t

(
− nSLρL

(1− n)ρs
akL −

KS

(1− n)ρs
ukS −

KL

nρS
ukS −

KL

(1− n)ρs
ukL

)
(7.19)

The coefficients’ matrix of the system of Eqs. 7.16, 7.17, 7.18, 7.19 is evaluated

to solve the eigenvalues problem

det(A− λI) = 0 (7.20)

Thus, a quadratic equation for λ is obtained (Eq. 7.21). In this equation, the
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terms ≥ ∆t3c are neglected

λ2 + λ
(

∆tcqLQ−
c∆t2c
ρs

+
KL∆t2c
ρL

− 2
)

+
(

1−∆tqLQ
)

= 0 (7.21)

If Eq. 7.21 is solved for ∆tc by imposing |λ| = 1, it results in

∆tc =

−qLQ+

√
(qLQ)2 + 4

(
KL
ρL
− c

ρs

)
(
KL
ρL
− c

ρs

) (7.22)

Eq. 7.22, rearranged in a more general form, is equivalent to Eq. 4.65 proposed

by [71],

∆tc =
2

ω

[
− ξ +

√
ξ2 + 1

]
(7.23)

where the parameters ω and ξ have a new expression

ωc =

√(KL

ρL
− c

ρs

)
=

1

Li

√√√√[ SL(
dSL
ds

+ SL
Kw

)][ 1

ρL
+

1

ρS
(
1

n
− SL)

]
+

Ec
ρS(1− n)

(7.24)

ξc =
qLQ

2ωc
=
SLnµL
2kLωc

[ SLn

(1− n)ρS
+

1

ρL

]
(7.25)

2 Stability of the momentum balance of the liquid phase

The same procedure presented for the coupled system can be applied to study

the stability of the momentum balance of the liquid phase. By considering the

homogeneous form of Eq. 7.5 (without the terms referring to the solid phase), we

obtain

ρLa
k
L + qLv

k
L +KLu

k
L = 0 (7.26)

The set of two ODEs (by considering the Euler-Cromer time scheme) is now

uk+1
L = ukL + ∆t

[
vkL + ∆t

(
− qL
ρL

vkL −
KL

ρL
ukL

)]
(7.27)
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vk+1
L = vkL + ∆t

(
− qL
ρL

vkL −
KL

ρL
ukL

)
(7.28)

The characteristic polynomial based on the resolution of the eigenvalues problem

for Eqs. 7.27 and 7.28 is

λ2 + λ
(∆tcqL

ρL
+
KL∆t2c
ρL

− 2
)

+
(

1− ∆tcqL
ρL

)
= 0 (7.29)

Eq. 7.29 solved for ∆tc gives

∆tc =
− qL
ρL

+

√(
qL
ρL

)2

+ 4KL
ρL

KL
ρL

(7.30)

Arranged in a more general form, it is equivalent to 4.65, where

ωL =

√
KL

ρL
=

1

Li

√√√√ SL

ρL

(
dSL
ds

+ SL
Kw

) (7.31)

ξL =

(
qL
ρL

)
2ωL

=
SLnµL
2kLωL

1

ρL
(7.32)

3 Stability of the momentum balance of the mixture

Same procedure presented for the coupled system can be applied to study the

stability of the momentum balance of the mixture. By considering the homogeneous

form of Eq. 7.6, we obtain

(1− n)ρSa
k
S + nSLqLv

k
S +

[
KS + (1− n)

(
− SL +

1

n

)
KL

]
ukS = 0 (7.33)

The set of 2 ODEs (by considering the Euler-Cromer time scheme) is now

uk+1
S = ukS + ∆t(vks + ∆taks) (7.34)

vk+1
S = vks + ∆taks (7.35)
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The characteristic polynomial (related to Eqs. 7.34 and 7.35) is now

λ2 + λ
[
P∆t2c +

SL∆tcnqL
(1− n)ρS

− 2
]

+
[
1− SL∆tcnqL

(1− n)ρS

]
= 0 (7.36)

where the term P is expressed as

P =
1

ρS

[ KS

(1− n)
+
(
− SL +

1

n

)
KL

]
(7.37)

If we solve Eq. 7.36 for ∆tc we obtain

∆tc =

(
− nSLqL

(1−n)ρs
+

√(
nSLqL

(1−n)ρs

)2

+ 4P
)

P
(7.38)

Arranged in a more general form, it is equivalent to Eq. 4.65, where

ωM =
√
P =

1

Li

√√√√ 1

ρS

[ Ec
(1− n)

+
(
− SL +

1

n

) SL(
dSL
ds

+ SL
Kw

)] (7.39)

ξM =

(
nSLqL

(1−n)ρs

)
2ωM

=
S2
Ln

2µL
2(1− n)ρskLωM

(7.40)
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