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Abstract  24 

Broken rice, a low-cost starchy residue of the rice industry, can be an interesting 25 

substrate to reduce the polyhydroxyalkanoates (PHAs) production cost. However, since 26 

the most common PHAs-producing strains lack amylases, this waste must be firstly 27 

hydrolysed by additional commercial enzymes. In this work, the acidogenesis phase of 28 

the anaerobic digestion was exploited as efficient hydrolysis step to convert broken rice 29 

into volatile fatty acids (VFAs) to be used as PHAs carbon source by Cupriavidus 30 

necator DSM 545, one of the most promising PHAs-producing microbes. Broken rice, 31 

both non-hydrolysed and enzymatically hydrolysed, was processed in two continuous 32 

stirred tank reactors, at hydraulic retention times (HRT) of 5, 4 and, 3 days, to produce 33 

VFAs. The highest VFAs levels were obtained from non-hydrolysed broken rice which 34 

was efficiently exploited for PHAs accumulation by C. necator DSM 545. Moreover, in 35 

view of a biorefinery approach, the residual solid fraction was used for methane 36 

production resulting in promising CH4 levels. The highest PHAs titers and methane 37 

yields, 0.95±0.02 g/L and 228.63±20.56 mL CH4/gVS, respectively, were both achieved 38 

for 4 days HRT. 39 

These results demonstrate that broken rice could be efficiently processed into two 40 

valuable products without any costly enzymatic pre-treatment and pave the way for 41 

future biorefining approaches where this by-product can be converted in a cluster of 42 

added-value compounds. 43 

Keywords: starchy organic waste, broken rice, Cupriavidus necator DSM 545, 44 

anaerobic digestion, biorefinery  45 

 46 
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1. Introduction  47 

During the last decades, the increase in the fossil-based plastic applications is triggering 48 

huge environmental issues, further highlighting the need to investigate new alternatives 49 

to replace the fossil-based plastic materials (Prata et al., 2019; Verlinden et al., 2007). 50 

The environmental accumulation of plastic waste will reach nearly 12,000 million tons 51 

by 2050 (Sheldon and Norton, 2020) leading to additional environmental pollution 52 

threats. Nowadays, some bioplastics as poly-lactic acid (PLA), polybutylene succinate 53 

(PBS), and polyhydroxyalkanoates (PHAs) are already available. PHAs, a family of 54 

biodegradable polyesters (Meereboer et al., 2020), represents a very interesting 55 

alternative to the oil-derived plastics because of their chemical-physical characteristics 56 

similar to the most common single-use plastics polyethylene (PE) and polypropylene 57 

(PP) (Sheldon and Norton, 2020). Despite their great advantages over fossil plastics, 58 

PHAs production is still very expensive as 50% of the total cost is linked to the carbon 59 

sources, usually glucose or glycerol (Favaro et al., 2019; Koller et al., 2017). In fact, 60 

since the most known PHAs-producers lack hydrolytic enzymes, the PHAs 61 

accumulation with complex carbon sources required specific pre-treatments or enzymes 62 

addition. Therefore, the search for low-cost suitable substrates is crucial for PHAs 63 

production at industrial levels and, consequently, for their market competitivity 64 

(Akiyama et al., 2003). 65 

The agricultural by-products could be promising PHAs feedstocks. Among all, an 66 

interesting substrate is represented by broken rice, a starchy rice milling residue, which 67 

accounts for a worldwide availability of about 45 million tons (Favaro et al., 2017). 68 

Broken rice was already exploited for fructose syrup (Chen and Chang, 1984), high-69 

protein rice flour (Chen and Chang, 1984), and ethanol (Myburgh et al., 2019). 70 
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This substrate was recently converted to PHAs using Cupriavidus necator DSM 545 in 71 

an SSF (Simultaneous Saccharification and Fermentation) setting (Brojanigo et al., 72 

2020). PHAs content was promising, with a dry cell matter content of 44.09% and a 73 

final PHAs concentration of 5.18 g/L. However, to hydrolyse starch in glucose, a costly 74 

commercial enzymatic cocktail (STARGENTM 002) was needed. Therefore, an 75 

alternative strategy to avoid the use of the expensive enzymes and/or costly pre-76 

treatments would improve the economic feasibility of the conversion of broken rice, and 77 

the other starch-rich materials, into PHAs. This perspective can be achieved by two 78 

different paths: i) the development of an engineered starch-hydrolysing C. necator 79 

strain as recently described by this group (Brojanigo et al., 2021) or ii) the search for 80 

low-cost hydrolysis processes. This paper specifically targets the latter strategy towards 81 

the conversion of broken rice into PHAs by exploiting the hydrolysis and acidogenesis 82 

steps of anaerobic digestion (AD) (Campanaro et al., 2016; Weiland, 2010), as 83 

milestones to process starch into volatile fatty acids (VFAs). The liquid fraction of the 84 

acidogenesis process was used as carbon source for PHAs accumulation, whereas the 85 

solid fraction was exploited in anaerobic batches for methane (CH4) production. 86 

Although other studies are reported in literature on the VFAs conversion into PHAs by 87 

the wild-type C. necator from cheese whey (Domingos et al., 2018), olive mill waste 88 

(Agustín et al., 2015), sugarcane (Dalsasso et al., 2019), and other food waste (Hafuka 89 

et al., 2011; Passanha et al., 2013), this is the first report describing both broken rice 90 

acidogenesis towards VFAs production and the co-production of two valuable products 91 

(PHAs and methane) after the efficient acidogenic pre-treatment of a starchy residue.  92 

 93 

 94 
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2. Materials and methods 95 

2.1 Broken rice, inoculum, and digested biopulp characterisation 96 

Before characterisation, broken rice, supplied by La Pila (Isola della Scala, Verona, 97 

Italy), was pre-dried at 60 °C for 48 h and then left to cool down at room temperature. 98 

After 24 h, the feedstock was grounded with a hammer mill (1.00 mm screen). 99 

Mesophilic inoculum for biochemical methane potential (BMP) experiments was 100 

provided from Hashøj full-scale biogas plant, located in Zealand, Denmark. The 101 

inoculum was sieved to remove big particles before the BMP assays.  102 

A mixture of digested food waste (hereafter named as biopulp), obtained from a 103 

mesophilic reactor in our lab facilities, was used as a start-up inoculum for the 104 

acidogenesis reactors because of its high acidogenic capacity since it was already 105 

adapted to easily biodegradable compounds which are converted into VFAs. 106 

APHA standard methods (APHA, 2005) were applied for the determination of total 107 

solids (TS), volatile solids (VS), ash, chemical oxygen demand (COD), and total 108 

nitrogen (TKN) for broken rice, inoculum, and digested biopulp (Table 1).  109 

Broken rice was also analysed, according to the AOAC (Association of Official 110 

Analytical Chemists) (Baur and Ensminger, 1977), for starch, protein, hemicellulose, 111 

cellulose and lignin content (Table 1).  112 

 113 

2.2 Acidogenesis fermentation experiments  114 

Acidogenesis fermentation was performed using two lab-scale continuous stirred tank 115 

reactors (CSTRs): in the first reactor, broken rice was used without any treatment 116 

(hereafter named as BR) while, in the second reactor, the by-product was previously 117 

enzymatically hydrolysed (hereafter named as HBR). 118 
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When needed, the enzymatic cocktail STARGENTM 002, usually adopted in the 119 

industrial applications for the mesophilic saccharification of raw starch, was used to 120 

hydrolyse broken rice into glucose. This enzymatic blend contains Aspergillus kawachii 121 

α-amylase expressed in Trichoderma reesei and T. reesei glucoamylase that works 122 

synergistically for the rapidly conversion of raw starch in glucose. The amylolytic blend 123 

had a specific gravity and an enzymatic activity of 1.14 g/mL and 570 GAU/g (GAU, 124 

glucoamylase unit), respectively. The hydrolysis of broken rice, with STARGENTM 002, 125 

was performed in a Sartorius bioreactor (Sartorius AG, BIOSTAT®) at 55 °C and pH 4 126 

for 24 h. The resulting hydrolysate was then used to feed the relative CSTR reactor.  127 

Each reactor, with a working and total volume of 1.8 and 2.0 L, respectively, was 128 

equipped with an influent and effluent bottle and the substrate was provided twice a day 129 

by a peristaltic pump. To maintain mesophilic conditions (37 °C), a heated jacket 130 

equipped with a probe was installed and two magnetic stirrers were present to maintain 131 

homogenised both the influent and the reactors. 132 

In both reactors, to acclimate the microbial community of the biopulp, acidogenesis was 133 

performed for 3 days only with the inoculum, before starting the feeding with the BR 134 

and HBR. Three different hydraulic retention times (HRTs) at 5, 4, and 3 days were 135 

investigated using BR and HBR at organic loading (OL) of 20 gVS/L. Each HRT was 136 

maintained three times consecutively (hereafter called phase I, II, III of 5, 4, and 3 days 137 

HRT), for a total of 36 days of operation (Table S1). 138 

Anaerobic conditions were established by flushing influents, effluents, and reactors with 139 

nitrogen for 10 min each. Every day, immediately after sampling, the pH of the 140 

effluents was measured by a pH meter (HANNA Instruments, Italia srl). Phase II of 5, 141 

4, and 3 days HRT from BR reactor was selected, among all the collected effluents, as 142 
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substrates for PHAs and CH4 production since the second phase (Phase II) represents 143 

the intermediate phase of each HRT. Effluents were centrifuged to separate the liquid 144 

fraction, used for PHAs production, from the solid fraction which was used later for 145 

BMP experiments. 146 

 147 

2.3 Bacterial strain, culture media, and PHAs fermentations 148 

C. necator DSM 545 was provided by DSMZ (Deutsche Sammlung von 149 

Mikroorganismen und Zellkulturen, Germany). All media and effluents used during the 150 

experiments were autoclaved at 121 °C for 20 min. The strain was plated on nutrient 151 

agar containing (g/L): peptone 15, yeast extract 3, NaCl 6, glucose 1, agar 15.  152 

C. necator DSM 545 was aerobically pre-inoculated at 37 °C (140 rpm) for 24 h in a 153 

250 mL flask with 100 mL of DSM81 broth (DSMZ, Germany) containing glucose (30 154 

g/L) as carbon source. Before inoculation, cells were collected after centrifugation 155 

(5500 rpm for 15 min) and washed twice with sterile NaCl 0.9% (w/v) to remove any 156 

trace of glucose that could interfere with the fermentation. Cells were inoculated at an 157 

initial optical density (OD600nm) of 0.3 in 250 mL flasks containing 100 mL of the liquid 158 

effluent collected from the acidogenesis reactors. At the beginning, all the DSMZ81 159 

broth chemicals were added to the effluents before the fermentation. Specific 160 

experiments were also performed supplementing the system only with DSMZ81 broth 161 

standard vitamin solution. pH was adjusted at 7, which is the optimal pH for C. necator 162 

DSM 545 growth (Mohd et al., 2012; Wei et al., 2011), adding NaOH 5 M, and flasks 163 

were incubated (140 rpm) at 37 °C. 164 

Experiments in DSMZ81 broth with glucose having the same carbon molar availability 165 

as the selected effluents were included as benchmarks for PHAs fermentation.  166 
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Bacterial cells were collected after 72 and 96 h of fermentation, centrifuged (5500 rpm 167 

for 15 min) and kept at -80 °C before freeze-drying for PHAs analysis as described 168 

below (section 2.6). 169 

All the experiments were carried out in triplicate, standard deviation is also included. 170 

 171 

2.4 Biochemical methane potential (BMP) experiments  172 

The theoretical methane potential of broken rice (both BR and HBR) and of the solid 173 

fraction of the selected effluents were calculated using their COD levels (Angelidaki et 174 

al., 2011). 175 

The theoretical methane potential of broken rice corresponded to 494.16 mLCH4/gVS, 176 

obtained by the conversion based on COD/VS ratio. For the three selected BR effluents, 177 

the phase II of 5, 4, and 3 days HRT, the theoretical methane potential of the solid 178 

fraction of the effluents, were 365.50, 346.58, and 246.00 mLCH4/gVS, respectively. 179 

The effluents collected from the acidogenesis reactor were centrifuged (5500 rpm for 15 180 

min) to separate the solids from the liquid fraction and only the solids were processed as 181 

substrate for methanogenesis experiments.  182 

For the BMP set-up, two different organic loadings, 1 and 2 gVS/L, were tested in 183 

triplicate using 500 mL bottles. Substrates were mixed with 120 mL of mesophilic 184 

inoculum and with the corresponding weight of distilled water required to reach the 185 

working volume of 150 mL. To establish anaerobic conditions, both liquid and 186 

headspace were flushed with nitrogen for 10 min each. The bottles were immediately 187 

sealed with stoppers and aluminium crimps and incubated at 37 °C. Once a day, the 188 

bottles were manually shaken to keep the solution well homogenised.  189 
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Benchmark experiments, containing only inoculum and distilled water, were performed 190 

to calculate only the CH4 production of the substrates. Values of CH4 were expressed in 191 

mLCH4/gVS. 192 

 193 

2.5 Data analysis  194 

One-way analysis of variance followed by Tukey test (p < 0.05) was applied to reveal 195 

significant differences among the experimental data. OriginPro 9.0.0 SR2 software 196 

(OriginLab Corporation, USA) was used to perform statistical analysis. 197 

 198 

2.6 Analytical methods  199 

Elemental analysis was carried out for broken rice and the liquid fraction of the 200 

acidogenesis effluents using an inductively coupled plasma equipped with an optical 201 

emission spectrometry (ICP-OES).  202 

For BMP batches, the concentration of CH4 was periodically monitored using a micro 203 

gas chromatograph (MicroGC) (Agilent 490, Agilent Technologies, Inc, USA) equipped 204 

with a thermal conductivity detectors (TCD) and two different capillary columns, one 205 

using argon as carrier gas and the other using helium, operating at 145°C, 30 psi and 206 

100°C, 28 psi, respectively. MicroGC values were analysed by SOPRANO software 207 

(S.R.A. Instruments). 208 

TVFAs (acetic, butyric, propionic, hexanoic, valeric, iso-butyric, iso-valeric acid) and 209 

lactic acid were analysed with a Thermo AI/ AS 1310 Series Autosampler Trace 1300 210 

GC equipped with a flame ionization detector (FID). The initial temperature of the 211 

Agilent J&W capillary column was set at 200 °C and helium was the gas carrier. 212 



 10 

Each phase of 5, 4 and 3 days HRT were also evaluated in term of bioconversion 213 

efficiency (Greses et al., 2020) using the following equation: 214 

% Bioconversion = (VFAs effluents / TCOD influent) • 100 215 

where the VFAseffluents is the concentration of the acetic, propionic, isobutyric, butyric, 216 

caproic, isovaleric and valeric acid in the effluent measured as g COD/L, and the 217 

TCODinfluent is the total COD (g/L) of the broken rice used as substrate. 218 

The 3-hydroxybutyric acids (3HB) and 3-hydroxyvaleric acid (3HV) content in 219 

microbial cells were quantified according to Braunegg et al. (1978) using a Thermo 220 

Finnigan Trace gas chromatograph (GC). GC was equipped with an AT-WAX column 221 

(30 m × 0.25 mm × 0.25 μm) and an FID detector. FID was set at 270 °C whereas 150 222 

°C was the temperature of the oven. Helium was the gas carrier with 1.2 mL/min of 223 

flow rate and the split/splitless was set up at 250 °C. Benzoic acid, 3HB, and poly 224 

3(hydroxybutyric acid-co-hydroxyvaleric acid P3(HB-co-12 mol% HV) were used as 225 

internal and external standards, respectively. 226 

PHAs were expressed as grams of PHAs per liter of culture or as a percentage of PHAs 227 

on cell dry matter (CDM). 228 

 229 

3. Results and discussion 230 

3.1 Characterisation of the feedstock 231 

The composition of broken rice (Table 1) agrees with recently reported values. For 232 

instance, a cluster of Italian rice varieties was described for similar Mg2+ and K+ 233 

concentrations (Somella et al., 2013). The main component is represented by starch 234 

(77.74% TS), followed by protein (8.31% TS), with values consistent with those 235 

previously described (Brojanigo et al., 2020; Favaro et al., 2017; Nunes et al., 2017).  236 
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 237 

3.2 Acidogenesis fermentation profiles 238 

To process broken rice into PHAs by non-amylolytic PHAs producers, the substrate 239 

needs to be hydrolysed into glucose by expensive commercial enzymes. These and other 240 

pre-treatments costs could be avoided by exploiting microbial acidogenesis under 241 

anaerobic conditions, which usually converts carbohydrates, proteins, and lipids in 242 

VFAs (Liang and McDonald, 2015; Lu et al., 2020). 243 

In this work, two lab-scale CSTRs were operated for 36 days with an organic loading of 244 

20 gVS/L of BR or, as a benchmark, 20 gVS/L of enzymatically HBR. 245 

During the first three days, to acclimatise the microbial community before starting HRT 246 

configurations, the reactors were fed only with mesophilic digested biopulp. Three 247 

different HRTs were tested for three phases consecutively: the first HRT was set at 5 248 

days (from day 1 to 15), the second at 4 days (from 16 to 27), and the last at 3 days (Fig. 249 

1). The change in HRT from 5 to 3 days, increased the organic loading rate (OLR) from 250 

4.00 to 6.66 gVS/L per day. 251 

Since pH values affect the hydrolysis of the substrates as well as the VFAs composition 252 

and production during the acidogenesis (Lu et al., 2020), pH values were daily 253 

monitored (Fig. 1). At the beginning of fermentation, the pH values were similar (pH 254 

4.98), as the same digested biopulp was used for both reactors. Nevertheless, after 36 255 

days, pH values significantly decreased (p<0.05) to 3.48 and 2.98 in both BR (Fig. 1a) 256 

and HBR reactor (Fig. 1b), respectively. The difference in pH values from the reactors 257 

could be due to the lower starting pH of the HBR, which was set at pH 4 to support 258 

enzymatic activity of the STARGENTM 002.  259 
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VFAs and lactic acid concentration trends were different in the two reactors (Fig. 2). In 260 

both CSTRs settings, acetic, butyric and propionic acid were the main VFAs produced 261 

during the acidogenesis (Fig. 2), whereas also small titers of valeric, hexanoic, iso-262 

butyric and iso-valeric acid were detected (data not shown).  263 

These findings agree with other studies reporting that acetic, butyric and propionic acid 264 

are the main VFAs produced during the acidogenesis of a carbohydrate-rich substrate 265 

(Alibardi and Cossu, 2016; Parawira et al., 2004). In this study, the different VFAs 266 

concentrations and profiles here found could be due to the specific operation conditions 267 

(i.e., HRT, temperature, and feed) adopted that influenced the metabolic pathways of 268 

the established microorganisms during the fermentation (Magdalena et al., 2019; Sarker 269 

at al., 2019; Strazzera et al., 2018). 270 

At the beginning of 5 days HRT, the high VFAs concentration (11.13 g/L) is likely 271 

derived from the initial biopulp digestion and significantly decreased (p<0.05) to 6.31 272 

and 5.43 g/L for BR and HBR, respectively, after the first phase of 5 days HRT due to 273 

the feeding with the substrates. In the BR reactor (Fig. 2a), at the beginning of 4 days 274 

HRT (day 16), the VFAs daily production was significantly stable at around 4.50 g/L 275 

(p>0.05). In the HBR reactor, VFAs content was lower with no significant variations 276 

(p>0.05). This lower VFAs production could be explained by the inhibition in 277 

acidogenic bacteria occurring in the inoculum as the substrate was already hydrolysed 278 

and pH was strongly acidic (pH 3). In fact, the optimum pH range for VFAs production 279 

goes from 5 to 11, and extremely acidic or alkaline pH values could reduce their 280 

production (Dahiya et al., 2015; Singhania et al., 2013). Moreover, as shown in Figure 281 

2b, consistent production of lactic acid was detected indicating a possible lactic acid 282 

bacteria proliferation in the reactor with HBR, probably due to the different microbial 283 
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consortia established as this substrate was previously hydrolysed. This hypothesis is 284 

currently under evaluation through Next-Generation Sequencing (NGS) approaches to 285 

identify which bacterial families were mostly involved in the acidogenesis of both BR 286 

and HBR. Noteworthy, such investigation will be crucial to elucidate how the 287 

hydrolysis of the broken rice, before the acidogenesis, differentially shaped the 288 

microbial community of the inoculum, resulting in differential metabolites production.  289 

The bioconversion efficiency was also calculated for each phase and HRT tested in BR 290 

and HBR reactors during the acidogenesis step (Table 2). Higher bioconversion VFAs 291 

potential was assessed using BR compared to the HBR performances. The higher value 292 

was reached for the 5 days HRT, with an average bioconversion efficiency from the 293 

three phases of 33.04% in the case of BR. Bioconversion efficiencies obtained in this 294 

work are promising and comparable with values recently reported in the literature 295 

(Bolaji and Dionisi, 2017; Inglesias et al., 2019; Greses et al. 2020; Valentino et al., 296 

2018). Greses et al. (2020), using vegetables waste, described bioconversion yields 297 

ranging from nearly 40 to 52%, whereas lower bioconversion values of 22 and 31% 298 

were found from sewage sludge (Inglesias et al., 2019) and organic waste (Valentino et 299 

al., 2018), respectively.  300 

Overall, the most efficient VFAs production and bioconversion yields were achieved in 301 

the BR reactor. The phase II was then selected as a representative of 5, 4, and 3 days 302 

HRT for BMP and PHAs production.  303 

 304 

3.3 Accumulation of PHAs using the acidogenesis effluents as a carbon source 305 

C. necator DSM 545, a well-known PHAs producer, was adopted in a one-step PHAs 306 

production process using the VFAs obtained by the acidogenesis of BR, which showed 307 
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the highest and most interesting VFAs profiles.  308 

In the first experiments carried out with the addition of DSMZ81 broth chemicals, C. 309 

necator DSM 545 was able to grow and accumulate PHAs in all the selected effluents 310 

(Table 3). PHAs concentrations significantly increase (p<0.05) from phase II of 5 days 311 

HRT to 3 days HRT with the highest values obtained using phase II of 3 days HRT, 312 

with 0.92±0.02 and 0.73±0.04 g/L after 72 and 96 h of fermentation, respectively. 313 

Noteworthy, as reported in Table 3, PHAs contained both 3HB and 3HV units probably 314 

due to the presence of VFAs with an odd number of carbons, such as propionic and 315 

valeric acid, which act as precursors for the synthesis of P3(HB-co-HV) (Gahlawat and 316 

Soni, 2017). Such co-polymers greatly enlarge the range of applications of the PHAs 317 

obtained in this study (Grigore et al., 2019).   318 

Biomass and PHAs produced by C. necator DSM 545 from glucose, supplemented at 319 

levels equivalent on a carbon molar basis to the VFAs available in each effluent, were 320 

also quantified (Table 3). Only in the case of 5 days HRT, higher growth and PHAs 321 

accumulation was detected with glucose (p<0.05), whereas for 4 days HRT glucose 322 

supported higher biomass but PHAs accumulation similar to those obtained by the 323 

corresponding effluents. Comparable biomass and PHAs values were displayed by C. 324 

necator DSM 545 for 3 days HRT both with effluents and glucose equivalent.  325 

Overall, considering the biomass yields and PHAs titers obtained from effluents it 326 

seems that the strain was pushed to grow instead of accumulating PHAs. The elemental 327 

analysis, conducted for all the three selected effluents, revealed high concentrations of 328 

nutrients, and among all nitrogen, mostly in the case of phase II of 5 days HRT (Table 329 

4). This could indicate that the digested biopulp, used as a reactor start-up inoculum, 330 

initially provided a high nutrients concentration (Tsapekos et al., 2019; Zha et al., 331 
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2020). Such high nutrients content originating from the liquid acidogenesis effluent of 332 

the phase II of 5 days HRT, together with the addition of DSMZ81 broth chemicals, 333 

may have negatively affected C. necator DSM 545 growth and, mostly, PHAs 334 

accumulation, which was found to be very low (Table 3). In fact, to trigger PHAs 335 

accumulation in C. necator DSM 545, unbalance growth conditions should occur, with 336 

a C/N higher than 20 (Lee et al., 1994; Obruca et al., 2018). From Table 4, it is evident 337 

that unbalanced nutrient conditions were not established during the growth of C. 338 

necator DSM 545 in the presence of DSMZ81 broth as the C/N values of the three 339 

effluents (8.13, 28.99, and 24.61) greatly decreased to 5.02, 7.81 and 7.07 from phase II 340 

of 5, 4 and 3 days HRT, respectively, after the supplementation of 1510 mg/L of N 341 

according to the formulation of DSMZ81 medium. As such, C. necator DSM 545 was 342 

stimulated to grow rather than producing PHAs. The monitoring of acids consumptions 343 

at the end of 72 and 96 h of incubation (Fig. 3) could explain the different biomass and 344 

PHAs patterns exhibited by the strain in the presence of the three HRT effluents. The 345 

higher VFAs and lactic acid detected after the fermentation by C. necator DSM 545 346 

with the 5 days HRT effluent could be harmful to the bacterial growth and, 347 

consequently, limited biomass production and no accumulation was detected (Table 3). 348 

Dalsasso et al. (2019) observed a reduction of C. necator DSM 545 growth when both 349 

acetic and lactic acid were present leading to a rapid consumption of lactic acid at the 350 

expense of acetic acid. This agrees with the VFAs consumption reported in Figure 3 for 351 

the phase II of 5 days HRT and the resulting low biomass produced by C. necator DSM 352 

545 (Table 3). On the contrary, in the effluents from phase II of 4 and 3 days HRT, 353 

where lactic acid was absent, VFAs were almost completely depleted by C. necator 354 

DSM 545, thus further supporting biomass yield (Table 3).  355 
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In order to increase the C/N ratio, hence supporting PHAs accumulation in C. necator 356 

DSM 545, a new set of experiments was carried out using the same effluents without 357 

the addition of DSMZ81 broth chemicals, except for standard vitamin solution (Table 358 

3). For phase II of 5 days HRT, PHAs values were still low and comparable with those 359 

obtained in the presence of DSMZ81 broth, whereas the biomass slightly increased 360 

pointing out that the addition of chemicals may have triggered toxic levels of few 361 

nutrients. Supplementing the effluents only with vitamins resulted in significantly 362 

higher differences (p<0.05) for PHAs titers from phase II of 4 days HRT with 363 

0.95±0.02 g/L of PHAs and 76.55±0.81% on CDM (Table 3).  364 

Noteworthy, the percentage of PHAs on cell dry matter using the effluents from phase II 365 

of 4 and 3 days HRT was around 2.7-fold that obtained in the presence of DSMZ81 366 

broth, while the biomass values obtained decreased to about 40% of those detected 367 

supplementing DSMZ81 broth. These findings are very promising as higher PHAs 368 

levels were obtained without the supplementation of costly chemicals. PHAs titers 369 

obtained in this paper could be further improved by the continuous fermentation as well 370 

as C. necator DSM 545 pre-adaptation to high VFAs concentrations.  371 

The PHAs results obtained by C. necator DSM 545 are even of greater value once 372 

compared to the low performances reported about the valorisation of starchy wastes to 373 

PHAs after their conversion into VFAs. In the literature, there are few examples of 374 

starch by-products being investigated as PHAs feedstocks. Yu et al. (2001) processed 375 

starchy wastewater into PHAs with an accumulation of about 34.1% on CDM. In their 376 

work, the starch-rich wastewater was first converted, at thermophilic temperatures, into 377 

VFAs and then the resulting VFAs adopted for PHAs production by C. necator. 378 

However, the PHAs accumulation was lower (1.2 g/L) compared with the PHAs 379 
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accumulation obtained in this work, maybe due to the lower time of fermentation (48 h). 380 

Other papers reported the PHAs production by C. necator using starchy waste without 381 

their previously conversion into VFAs, but in those cases many pre-treatments and/or 382 

costly enzymatic steps were required to obtain limited amounts of PHAs, 5.00 g/L 383 

(Rusendi and Sheppard, 1995) and 0.61 g/L (Ugwu et al., 2012) both at bioreactor scale. 384 

 385 

3.4 Methane production 386 

Besides PHAs, this work focused also on the production of methane from broken rice. 387 

BMP experiments were carried out with two different organic loadings (1 and 2 gVS/L) 388 

for BR and HBR substrates (Fig. 4). The highest methane yield was obtained for BR 389 

with 465.28±47.80 and 493.27±18.34 mLCH4/gVS at 1 and 2 OL gVS/L, respectively, 390 

corresponding to 94 and 99% of the theoretical methane potential yield. Duan et al., 391 

(2019) reported that higher CH4 yield occurs with the increasing of OL.  392 

Also, for HBR, whose starch was already pre-treated by STARGENTM 002, the highest 393 

methane level (478.43±13.71 mLCH4/gVS) was achieved with 2 OL gVS/L (with 394 

almost 96% of the theoretical yield) whereas, with 1 OL gVS/L, the substrate 395 

conversion was 92% of the theoretical (455.65±21.53 mLCH4/gVS).  396 

BMP batches were then performed on the solids of the effluents collected from the 397 

phase II of 5, 4, and 3 days HRT of the BR reactor (Fig. 4). To our knowledge, this is 398 

the first time that BMP was performed after acidogenesis treatment on a starchy waste, 399 

such as broken rice. This data set will provide useful information towards the 400 

development of a biorefinery approach tailored to the production of a cluster of 401 

bioproducts from a single feedstock. As reported in Figure 4, with 1 OL gVS/L, the 402 

methane yield was 134.89±28.44, 192.15±25.44, and 90.79±6.48 mLCH4/gVS for 5, 4, 403 
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and 3 days HRT, respectively. Increasing the organic loading at 2 gVS/L, also methane 404 

values from the solid effluents increased with 168.01±7.65, 228.63±20.56, and 405 

102.73±7.55 mLCH4/gVS for 5, 4, and 3 days HRT, respectively, following the same 406 

increasing trend of the initial, BR and HBR, substrates with the higher CH4 levels 407 

achieved at 2 gVS/L. Significant differences between the three solid fraction of the 408 

effluents tested and the two OLs selected were recorded (p<0.05). Therefore, the 409 

highest CH4 yield was achieved from the solids of phase II of 4 days at 2 OL gVS/L. As 410 

expected, the solid fraction of BR collected effluents gave CH4 levels much lower than 411 

those reported for the initially broken rice feedstock, since the rest of the organic 412 

material dissolved in the liquid fraction was reserved for VFAs-to-PHAs conversion. 413 

This hypothesis is in agreement with the different COD values analysed for the 414 

substrates: 392.48, 255.99, 309.91, and 268.3 mg/L for broken rice, 5, 4, and 3 days 415 

HRT, respectively, with a much lower organic content detected in the case of the 416 

effluents due to their partial conversion into VFAs during the acidogenesis step. 417 

 418 

4. Conclusions  419 

This research paves the way for the processing of broken rice in two valuable products: 420 

PHAs and CH4. Non-hydrolysed broken rice was effectively converted into high VFAs 421 

levels through the acidogenesis step. The spent solids were then processed into CH4 422 

whereas the liquid fraction was efficiently converted into PHAs by C. necator DSM 423 

545. Liquid and solid effluents of 4 days HRT displayed the highest PHAs and CH4 424 

values. Techno-economical evaluations are in progress to assess the overall feasibility 425 

of the process, in view of supporting the definition of biorefinery approaches converting 426 

organic waste into clusters of valuable compounds.  427 
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Figures legends (no print colours) 644 

 645 

Figure 1: Profiles of pH and total volatile fatty acids (TVFAs) during 36 days 646 

acidogenesis of non-hydrolysed broken rice (a) and hydrolysed broken rice (b).  647 

 648 

Figure 2: Total volatile fatty acids (TVFAs), acetic, butyric, propionic and lactic acid 649 

profile during 36 days acidogenesis of non-hydrolysed broken rice (a) and hydrolysed 650 

broken rice (b).  651 

 652 

Figure 3: VFAs (acetic, butyric, iso-butyric, hexanoic, propionic, valeric and iso-valeric 653 

acid) and lactic acid consumption by C. necator DSM 545 after 72 and 96 h of 654 

fermentation in BR acidogenesis reactor effluents from phase II of 5, 4, and 3 day HRT.  655 

 656 

Fig. 4: Methane yield of non-hydrolysed (BR) and hydrolysed broken rice (HBR) 657 

substrates and for the phase II of 5, 4, and 3 days HRT from BR acidogenesis reactor. 658 

Substrates were loaded at 1 and 2 gVS/L and BMP performed at 37° C.  659 

 660 

 661 

 662 

 663 

 664 

 665 

 666 

 667 
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Table 1: Characterisation of mesophilic inoculum used for BMP experiments, the 668 

digested biopulp, used as inoculum for the acidogenesis reactors, and broken rice (nd: 669 

not detected).  670 

 671 

Parameter Value 

 Inoculum Digested biopulp 

TS (g/100 g) 3.98 ± 0.78 2.80 ± 0.69 

VS (g/100 g) 2.43 ± 0.15 2.29 ± 0.56 

TKN (g/L) 4.45 ± 0.10 0.30 ± 0.04 

COD (g/L) nd 32.08 ± 1.41 

TVFAs (g/L) nd 11.13 ± 0.77 

 Broken rice 

TS (g/100 g) 94.91 ± 0.06  

VS (g/100 g) 93.85 ± 0.10 

Ash (g/100 g) 1.06 ± 0.15 

Protein (% TS) 8.31 ± 0.77 

Starch (% TS) 77.74 ± 5.00 

Cellulose (% TS) 0.22 ± 0.01 

Hemicellulose (% TS) 0.54 ± 0.05 

Lignin (% TS) - 

TKN (mg/Kg) 15.26 ± 0.02   

COD (mg/Kg) 392.48 ± 0.33 

Ca (mg/Kg) 235.37 ± 29.10 

Fe (mg/Kg) 64.18 ± 1.00 

K (mg/Kg) 1425.28 ± 32.83 

Mg (mg/Kg) 450.13  ± 6.26 

Na (mg/Kg) 140.30 ± 33.99 

P (mg/Kg) 1148.82 ± 25.45 

 672 

 673 

 674 

 675 
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Table 2: Bioconversion efficiency (%) of phase I, II and III during the three different 676 

HRT at 5, 4 and 3 days. 677 

 678 

HRT Phase Non-hydrolysed broken rice  Hydrolysed broken rice  

5d 

I  44.87 42.31 

II 25.90 20.86 

III 28.36 14.18 

4d 

I  19.53 10.02 

II 18.11 8.16 

III 17.40 7.83 

3d 

I  17.89 9.12 

II 20.19 6.27 

III 18.48 5.07 

 679 

 680 

 681 

 682 

 683 

 684 

 685 

 686 

 687 

 688 



 31 

Table 3: PHAs production by C. necator DSM 545 after 72 and 96 h growth in BR 689 

effluents of phase II of 5, 4, and 3 days HRT. Effluents were supplemented with 690 

DSMZ81 broth chemicals, or with vitamin solution, and pH adjusted to 7. Experiments 691 

with glucose as the only carbon source, supplemented at levels equivalent on a carbon 692 

molar basis to the VFAs available in each effluent, were also performed as a 693 

benchmark.  694 

HRT Substrate Time 

(h) 

CDM 

(g/L) 

PHAs 

(%CDM) 

3HB 

(%CDM) 

3HV 

(%CDM) 

PHAs 

(g/L) 

5 d 

Glucose 

72 2.98 ± 0.22 46.46 ± 5.59 46.46 - 1.39 ± 0.22 

96 3.12 ± 0.03 44.96 ± 0.91 44.96 - 1.40 ± 0.02 

DSMZ81 

72 0.14 ± 0.24 7.44 ± 2.58 7.19 0.25 0.14 ± 0.10 

96 0.34 ± 0.41 13.48 ± 2.64 12.60 0.88 0.34 ± 0.20 

Vitamins  

72 0.70 ± 0.02 11.07 ± 0.87 11.05 0.02 0.08 ± 0.01 

96 0.65 ± 0.02 10.77 ± 0.50 10.77 - 0.07 ± 0.01 

4d 

Glucose 

72 2.40 ± 0.07 33.09 ± 1.68 33.09 - 0.79 ± 0.02 

96 2.38 ± 0.11 28.83 ± 2.44 28.83 - 0.67 ± 0.09 

DSMZ81 

72 1.66 ± 0.21 26.26 ± 1.84 25.81 0.45 0.43 ± 0.04  

96 1.88 ± 0.08 27.41 ± 5.15 26.96 0.45 0.51 ± 0.08  

Vitamins  

72 1.17 ± 0.17 71.33 ± 6.98 69.79 1.55 0.84 ± 0.20  

96 1.24 ± 0.03 76.55 ± 0.81 74.38 2.16 0.95 ± 0.02  

3d 

Glucose 

72 2.34 ± 0.03 28.95 ± 0.89 28.95 - 0.68 ± 0.02 

96 2.31 ± 0.03 27.42 ± 3.45 27.42 - 0.63 ± 0.08 

DSMZ81 

72 2.42 ± 0.18 38.25 ± 2.21 38.23 0.02 0.92 ± 0.02 

96 2.32 ± 0.12 31.48 ± 0.08 31.46 0.02 0.73 ± 0.04 

Vitamins 

72 1.23 ± 0.41 61.44 ± 0.85 60.99 0.50 0.75 ± 0.24 

96 0.90 ± 0.05 62.79 ± 0.99 61.59 0.49 0.56 ± 0.04 
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Table 4: Elemental analysis of BR effluents from the phase II of 5, 4 and 3 days HRT and C/N values in the effluents after DSMZ81 broth 695 

supplementation. 696 

 697 

HRT Ca  Fe  K  Mg  Na  P N C  C/N 

C/N 

after DSMZ81 broth 

supplementation 

 mg/L   

5d 286.93 8.46 205.00 30.50 111.10 56.05 487.63 3963.45 8.13 5.02 

4d 20.66 0.65 63.71 13.51 6.29 20.36 111.64 3236.32 28.99 7.81 

3d 5.96 0.08 42.41 14.37 3.44 33.29 122.81 3002.18 24.61 7.07 

 698 
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Figure 1 699 
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Figure 2 712 
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Figure 3 725 
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Figure 4 742 
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 758 


