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Abstract. In this work a finite element analysis of a slope instability due to capil-
lary and water pressure variation is presented. To this aim, a non-isothermal elasto-
plastic multiphase material model for soils is used. Soils are described as a three-
phase deforming porous continuum where heat, water and gas flow are taken into
account. In particular, the gas phase is modelled as an ideal gas composed of dry
air and water vapor. Phase changes of water, heat transfer through conduction and
convection and latent heat transfer are considered. The independent variables are
the solid displacements, the capillary and the gas pressure and the temperature.
The effective stress state is limited by Drucker-Prager yield surface for simplicity.
Small strains and quasi-static loading conditions are assumed. Numerical simula-
tion of a partially saturated slope stability experiment is presented assuming plane
strain condition during the computations.

1 Introduction

In recent years, increasing interest in thermo-hydro-mechanical (THM) anal-
ysis of saturated and partially saturated materials has been observed, because
of its wide spectrum of engineering applications. Typical examples belong to
environmental geomechanics, where some challenging problems are of interest
for the research community.

Landslides and slopes failure are one of these important problems, because
they may cause loss of life, human injury and economic devastation. There



is a wide variety of types of landslides, depending on the triggering mecha-
nisms, the kind of propagation and the materials involved, (e.g. Dikau et al.,
1996; Bolton et al., 2003). Landslides are caused by changes of effective stress
induced by external forces (earthquake, human action) and/or variation of
the pore pressures due, e.g., to rainfall, variation of the material properties
(e.g. due to degradation by weathering and chemical attack) and changes in
geometry (due, e.g., to erosion or or human action like excavation). In some
cases, the failure mechanism consists of a clearly defined localized zone, while
in other cases a diffuse type develops. From an engineering point of view, the
prediction of the initiation and propagation of such events are important and
expected also from the social community.

Several authors are working worldwide on the numerical simulation of
slope instability. Among them, the modelling of diffuse failure mechanism
and the propagation of fast landslides are presented in Fernandez Merodo
et al. (2004), Pastor et al. (2004a) and Pastor et al. (2004b), Pastor et al.
(2004c), respectively. An example dealing with an excavation problem is stud-
ied by Ehlers et al. (2004) with a triphasic elasto-plastic isothermal model;
a three-phasic elastic isothermal model was used in Klubertanz (1999) and
Klubertanz et al. (2003) to simulate a small-scale slope stability test. An
application of a water saturated model was done by Tacher et al. (2005) to
determine the pore pressure fields in La Frasse landslide mass (CH) during a
crisis.

Often, the approach for landslide simulation in engineering practice is
uncoupled in the sense that a seepage analysis is performed first, followed
by a limit analysis (e.g. Cascini et al. (2005), which analyzes the onset of
landslides in pyroclastic soils).

In this work, a fully coupled, non-isothermal and transient analysis is
adopted and an application to the initiation of landslides due to capillary/water
pressure variation is considered. To this end, a 2-D partially saturated slope
stability experiment (Klubertanz, 1999; Klubertanz et al., 2003), is simulated
by using the geometrically linear finite element code Comes-Geo (Lewis and
Schrefler, 1998) for non-isothermal elasto-plastic multiphase solid porous ma-
terials as developed by Sanavia et al. (2006).

In the following, we summarize the mathematical and finite element model
in Section 2. The multiphase material is described as a deforming porous
continuum where heat, water and gas flow are taken into account (Lewis
and Schrefler, 1998; Gawin et al., 1995; Schrefler, 2002). Small strains and
quasi-static loading conditions are assumed. The elasto-plastic behaviour of
the solid skeleton is assumed homogeneous and isotropic; the effective stress
state is limited by a temperature independent Drucker-Prager yield surface
for simplicity, with linear isotropic hardening and non associated plastic flow,
as summarized in Section 2.2. The model equations are discretized in space
and time within the finite element method in Section 2.3. In particular, a
Galerkin procedure is used for the discretization in space and the General-
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ized Trapezoidal Method is used for the time integration. Finally, the finite
element results of the 2-D partially saturated slope stability experiment de-
scribed in Section 3 are presented in Section 4.

This example has been simulated to emphasize the importance of the
multiphase modelling for the simulation of the hydro-thermo-mechanical be-
havior of partially saturated slopes at the onset of failure. It can be considered
as a step in the development of a suitable numerical model for the simulation
of non-isothermal geo-environmental engineering problems.

For the description of the propagation phase, a different approach has to
be followed since it is characterized by very large displacements and a change
in the material structure, as e.g. the fluidization (Pastor et al., 2004c).

2 Mathematical and Finite Element Model

The mathematical model necessary to simulate the thermo-hydro-mechanical
transient behaviour of fully and partially saturated porous media is developed
in Sanavia et al. (2006) following the works by Lewis and Schrefler (1998)
and Schrefler (2002) and using averaging theories by Hassanizadeh and Gray
(1979a,b, 1980). The model is briefly summarized in the present section for
sake of completeness.

The partially saturated porous medium is treated as multiphase system
composed of a solid skeleton (s) with open pores filled with water (w) and
gas (g). The latter is assumed to behave as an ideal mixture of two species:
dry air (non-condensable gas, ga) and water vapour (condensable one, gw).

At the macroscopic level the porous media material is modelled by a
substitute continuum of volume Bt with boundary ∂Bt that fills the en-
tire domain simultaneously, instead of the real fluids and the solid which
fill only a part of it. In this substitute continuum each constituent π has a
reduced density which is obtained through the volume fraction ηπ(x, t) =
dvπ(x, t)/dv(x, t) where x is the vector of the spatial coordinates, t is the
current time and π = s, w, g. In the model, heat conduction, vapour diffu-
sion, heat convection, water flow due to pressure gradients or capillary effects
and water phase change (evaporation and condensation) inside the pores are
taken into account. The solid skeleton is deformable; the solid and water
constituents are assumed incompressible at microscopic level and non-polar,
while gas is considered compressible. The fluids, the solid and the thermal
fields are coupled. All fluids are in contact with the solid phase. The con-
stituents are assumed to be isotropic, homogeneous, immiscible except for
dry air and vapour, and chemically non reacting. Local thermal equilibrium
between solid matrix, gas and liquid phases is assumed. The model is devel-
oped in the geometrically linear framework by considering quasi-static loading
conditions. The state of the medium is described by capillary pressure pc, gas
pressure pg, absolute temperature T and displacements of the solid matrix
u.
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In the partially saturated zones water is separated from its vapour by a
concave meniscus (capillary water). Due to the curvature of this meniscus the
sorption equilibrium equation (e.g. Gray and Hassanizadeh, 1991) gives the
relationship between the capillary pressure pc(x, t), the gas pressure pg(x, t)
and water pressure pw(x, t) (Gray and Hassanizadeh, 1991)

pc = pg − pw (1)

Pore pressure is defined as compressive positive for the fluids, while stress
is defined as tension positive for the solid phase. For a detailed discussion
about the chosen primary variables see Sanavia et al. (2006). The balance
equations of the implemented model are now summarized.

2.1 Macroscopic Balance Equations

The linear momentum balance equation of the mixture in terms of modified
Cauchy effective stress σ′(x, t), also called generalized Bishop stress tensor
(Nuth and Laloui, 2008), assumes the form

div(σ′ − [pg − Swpc]1) + ρg = 0 (2)

where ρ(x, t) is the density of the mixture. ρ = [1− n]ρs + nSwρw + nSgρ
g,

with n(x, t) the porosity, Sw(x, t), and Sg(x, t) the water and gas degree of
saturation, respectively and 1 is the second order identity tensor. This form
using saturation as weighting functions for the partial pressures was first
introduced by Schrefler (1984) using volume averaging (see also Lewis and
Schrefler, 1987; Schrefler et al., 1990) and is thermodynamically consistent
(Gray and Hassanizadeh, 1991; Gray and Schrefler, 2001; Borja, 2004).

The mass conservation equation for the water and the vapour is

n[ρw − ρgw]
∂Sw

∂t
+ [ρwSw − ρgw [1− Sw]] div

(
∂u
∂t

)

+n[1− Sw]
∂ρgw

∂t
− div

(
ρg MaMw

M2
g

Dgw
g grad

(
pgw

pg

))

+div
(

ρw k krw

µw
[−gradpg + gradpc + ρwg]

)

+div
(

ρgw k krg

µg
[−gradpg + ρgg]

)
− βswg

∂T

∂t
= 0

(3)

where, in particular, k(x, t) is the intrinsic permeability tensor, krπ(x, t) the
fluid relative permeability (π = w, g), µπ(x, t) the fluid viscosity and βswg =
βs[1−n][Sgρ

gw + Swρw] + nβwSwρw. βs(x, t) and βw(x, t) are the solid and
water cubic thermal expansion coefficient, respectively. The inflow and out-
flow fluxes have been described using the Fick law for the diffusion of the
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vapour in the gas phase and by the Darcy law for the water and gas flows.
Dgw

g is the effective diffusivity tensor of water vapour in dry air, and Ma, Mw

and Mg(x, t) the molar mass of dry air, water and gas mixture, respectively.

Similarly, the mass balance equation for the dry air is

−nρga ∂Sw

∂t
+ nSg

∂ρga

∂t
+ [1− Sw]ρgadiv

(
∂u
∂t

)

+div
(

ρga k krg

µg
[−grad(pg) + ρgg]

)

−div
(

ρg MaMw

M2
g

Dga
g grad

(
pga

pg

))
− βsρ

ga[1− n][1− Sw]
∂T

∂t
= 0

(4)

The quantities Sw(x, t), Sg(x, t), krw(x, t) and krg(x, t) are defined at the
constitutive level, as described in Section 2.2.

The energy balance equation of the mixture is

(ρCp)eff

∂T

∂t
+ ρwCw

p

[
k krw

µw
[−grad(pg) + grad(pc) + ρwg]

]
· grad(T )

+ρgCg
p

[
k krg

µg
[−grad(pg) + ρgg]

]
· grad(T )− div(χeffgrad(T )) =

−ṁvap∆Hvap

(5)

where, in particular, ṁvap∆Hvap considers the contribution of the evapo-
ration and condensation. (ρCp)eff (x, t) is the effective thermal capacity of
porous medium, Cw

p (x, t) and Cg
p (x, t) the specific heat of water and gas

mixture, respectively and χeff (x, t) the effective thermal conductivity of the
porous medium. This balance equation takes into account the heat transfer
through conduction and convection as well as latent heat transfer (see Lewis
and Schrefler, 1998) and neglects the terms related to the mechanical work
induced by density variations due to temperature changes of the phases and
induced by volume fraction changes.

2.2 Constitutive Equations, Initial and Boundary Conditions

For a gaseous mixture of dry air and water vapour, the ideal gas law is
introduced because the moist air is assumed to be a perfect mixture of two
ideal gases. The equation of state of perfect gas (the Clapeyron equation)
and Dalton’s law are applied to dry air (ga), water vapour (gw) and moist
air (g). In the partially saturated zones, the water vapour pressure pgw(x, t)
is obtained from the Kelvin-Laplace equation

pgw = pgws(T ) exp
(
− pc Mw

ρw R T

)
(6)
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where the water vapour saturation pressure pgws(x, t), depending only upon
the temperature T (x, t), can be calculated from the Clausius-Clapeyron
equation or from an empirical correlation. R is the gas constant. The sat-
uration Sπ(x, t) and the relative permeability krπ(x, t) are experimentally
determined function of the capillary pressure pc and the temperature T

Sπ = Sπ(pc, T ) , krπ = krπ(pc, T ) , π = w, g (7)

The elasto-plastic behaviour of the solid skeleton is assumed to be de-
scribed within the classical rate-independent elasto-plasticity theory for geo-
metrically linear problems. The yield function F (p′, s′, ξ) restricting the mod-
ified effective stress state σ′(x, t) is developed in the form of Drucker-Prager
for simplicity (Sanavia et al., 2006),

F (p′, s′, ξ) = 3αF p′ + ‖s′‖ − βF

√
2
3
[c0 + hξ] (8)

to take into account the dilatant/contractant behaviour of dense or loose
sands, respectively. In eq. (8), p′ = 1

3 [σ′ : 1] is the mean effective Cauchy
pressure, ‖s′‖ is the L2 norm of the deviator effective Cauchy stress tensor σ′,
c0 is the apparent cohesion, αF and βF are two material parameters related
to the friction angle φ of the soil

αF = 2

√
2
3 sin φ

3− sin φ
βF =

6 cos φ

3− sin φ
(9)

and h and ξ the hardening/softening modulus and the equivalent plastic
strain variable, respectively.

Remarks: in the present contribution, the effect of the capillary pressure
pc and of the temperature T on the evolution of the yield surface is not taken
into account. The interested reader can refers, e.g., to Alonso et al. (1990),
Bolzon et al. (1996) and Borja (2004) for capillary dependent constitutive
relationships and to Zhang et al. (2000) for the numerical implementation of
constitutive law proposed by Bolzon et al. (1996). A model for non-isothermal
unsaturated soils has recently been proposed by Bertand and Laloui (2008).

For the model closure the initial and boundary conditions are needed.
The initial conditions specify the full fields of primary state variables at
time t = t0, in the whole analyzed domain B and on its boundary ∂B,
(∂B = ∂Bπ ∪ ∂Bq

π, π=g, c, T, u):

pg = pg
0, pc = pc

0, T = T0, u = u0, on B ∪ ∂B, (10)

The boundary conditions (BCs) can be of Dirichlet’s type on ∂Bπ for
t ≥ t0:

pg = p̂g on ∂Bg, pc = p̂c on ∂Bc,

T = T̂ on ∂BT , u = û on ∂Bu
(11)
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or of Cauchy’s type (the mixed BCs) on ∂Bq
π for t ≥ t0:

(nSgρ
gavgs + Jga

d ) · n = qga on ∂Bq
g

(nSwρwvws + nSgρ
gwvgs + Jgw

d ) · n
= qgw + qw + βc (ρgw − ρgw

∞ ) on ∂Bq
c

(nSwρwvws∆Hvap − χeffgrad T ) · n
= qT + αc (T − T∞) + eσo

(
T 4 − T 4

∞
)

on ∂Bq
T

σ · n = t̄ on ∂Bq
u

(12)

where n(x, t) is the unit normal vector, pointing toward the surrounding gas
and qga(x, t), qgw(x, t), qw(x, t) and qT (x, t) are the imposed fluxes of dry
air, vapour, liquid water and the imposed heat flux, respectively. t̄(x, t) is
the imposed traction vector related to the total Cauchy stress tensor σ(x, t).
ρgw
∞ (x, t) and T∞(x, t) are the mass concentration of water vapour and the

temperature in the far field of undisturbed gas phase, e(x, t) the emissivity
of the interface and σo the Stefan-Boltzmann constant. αc(x, t) and βc(x, t)
are convective heat and mass exchange coefficients, respectively.

2.3 Finite Element Formulation

The finite element model is derived by applying the Galerkin procedure for
the spatial integration and the Generalized Trapezoidal Method for the time
integration of the weak form of the balance equations of Section 2.1 (see e.g.
Lewis and Schrefler, 1998; Zienkiewicz et al., 1999).

In particular, after spatial discretization within the isoparametric formula-
tion, a non-symmetric, non-linear and coupled system of equation is obtained




Cgg Cgc Cgt Cgu

0 Ccc Cct Ccu

0 Ctc Ctt Ctu

0 0 0 0







˙̄pg

˙̄pc

˙̄T
˙̄u


 +




Kgg Kgc Kgt 0
Kcg Kcc Kct 0
Ktg Ktc Ktt 0
Kug Kuc Kut Kuu







p̄g

p̄c

T̄
ū


 =




fg
fc
ft
fu


(13)

where the solid displacements u(x, t), the capillary and the gas pressure
pc(x, t) and pg(x, t) and the temperature T (x, t) are expressed in the whole
domain by global shape function matrices Nu(x), Nc(x), Ng(x), NT (x) and
the nodal value vectors ū(t), p̄c(t), p̄g(t) and T̄(t)

u = Nuū , pc = Ncp̄c , pg = Ngp̄g , T = NT T̄ (14)

In eq. (13), the symbol (•̇) means the time derivative. In the example section,
implicit one-step time integration has been performed.

After time integration the non-linear system of equation is linearized con-
sistently with the integrated constitutive equations, thus obtaining the equa-
tions system that can be solved numerically. Details concerning the matrices
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and the residuum vectors of the linearized equations system can be found in
Sanavia et al. (2006). Owing to the strong coupling between the mechanical,
thermal and the pore fluids problems, a monolithic solution of the linearized
system is preferred using a Newton scheme.

The return mapping and the consistent tangent operator are derived by
Sanavia et al. (2006) for isotropic linear hardening/softening and volumetric-
deviatoric non-associative plasticity, solving the singular behaviour of the
Drucker-Prager yield surface in the zone of the apex using the concept of
multisurface plasticity (Sanavia et al., 2002).

3 Experimental test

A 2-D laboratory test was carried out by G. Klubertanz during his PhD thesis
at the Soil Mechanics Laboratory of the Swiss Federal Institute of Technology
(LMS-EPFL) in Lausanne (Klubertanz, 1999; Klubertanz et al., 2003).

The experiment reproduces a stability problem of a small-scale slope of
1m hight, 1.5m in length and 0.25m wide (Figure 1) due to variations in
water pressure boundary condition. To this end, a constant water table was
first imposed at the left- and right-hand sides of the slope below the upper
surface (at 0.2 and 0.15 m, respectively). Then, a constant water pressure load
of 1.6 kPa was applied at the left third of the bottom surface. Water pressure
and solid displacements where measured (Klubertanz, 1999; Klubertanz et
al., 2003). A local rupture of the lower part of the slope was observed after
about t = 80 s since the application of the water load at the base of the
experimental set-up. The slope continued to fail by backward erosion for
further 10 s and outflow appeared at the lower part soon afterwards.

 

 

 

 

 

 

Fig. 1. Description of the geometry, boundary and loading conditions
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4 Numerical Results

A finite element analysis of the Klubertanz experimental test has been per-
formed with the non-isothermal elasto-plastic multiphase model presented in
the previous sections, with the aim to analyze the hydro-mechanical condi-
tions for the initiation of the slope failure observed at the toe of the slope.

The material parameters used in the computation are listed in Table 1.
Most of them have been chosen from the laboratory tests performed on the
material (fine silty sand) used for the experiment (see Klubertanz, 1999,
for the geotechnical properties). The solid skeleton is assumed to obey the
Drucker-Prager constitutive model in isothermal condition, with isotropic
linear softening behaviour and non-associated plastic flow. Two cases have
been simulated, assuming a dilatant angle of 00 and 50, respectively (a pos-
itive value is more realistic for the material used for the experiment; this
choice permits to underline the capabilities of the multiphase modelling, as
we will see by analyzing the numerical results). The value of cohesion mea-
sured in saturated conditions was about 0 kPa; for numerical purposes, it
has been selected to 420Pa in order to get the failure of the slope at about
90 s with a dilatancy angle of 00. The constitutive relationship for the water
degree of saturation Sw(pc) is that of Seker, with the parameters Ψ0 = 1.89
and Ψ1 = 0.05 to fit the experimental retention curve measured by labora-
tory tests (Klubertanz, 1999). For the water and gas relative permeability,
krw(Sw) and krg(Sw), the relationships of Safai and Pinder and Brooks and
Corey in isothermal condition have been selected, respectively. These rela-
tionships have been used because of the lack of experimental results. Plane
strain condition has been assumed in the computation.

Table 1. Material parameters used in the computation

solid density ρs 2650 kg/m3

water density ρw 1000 kg/m3

Young modulus E 0.43E+06 Pa
Poisson ratio ν 0.46
apparent cohesion c0 420 Pa
linear softening modulus h -4.30E+04 Pa
angle of internal friction φ 340

angle of dilatancy ϕ 00 or 50

porosity n 0.415
water conductivity in saturated conditions kw 8.00E-6 m/s
First Sw − pc parameter Ψ0 1.89
Second Sw − pc parameter Ψ1 0.05

We have simulated the experimental test by carrying out three successive
runs (the spatial discretization adopted is depicted in Figure 2). With the
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first one, a uniform capillary pressure pc of 9.0 kPa (which correspond to a
water saturation Sw of 0.32), a uniform ambient temperature and atmospheric
pressure were applied to simulate the almost dry material packed within
the experimental box before the application of the constant water tables
at the lateral surfaces of the slope. Horizontal displacements of the lateral
surfaces and vertical displacements of the lower surface are constrained. The
mechanical equilibrium with these thermo-hydro conditions was computed
consequently by the model, assuming for the solid skeleton a linear elastic,
isotropic and homogeneous constitutive law. The stress state and the state
variables computed by this THM analysis form the initial conditions for the
successive run.

Fig. 2. Finite element mesh used for the computation

 

Pw h

Pg

Pw h

Fig. 3. Boundary conditions of the second run

Then, with the second run, the hydrostatic water load on the lateral sur-
faces was applied, as depicted in Figure 3. The upper surface is at atmospheric
pressure, while the lateral and the lower surfaces are impervious to any fluid
flow. The computation was performed until the steady-state condition was
reached in the domain (Figure 4, where a uniform water flux distribution can
be observed) and the free surface was determined (Figure 5). This free sur-
face is below the upper surface of the slope (Figure 5) and two small partially
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saturated zones are obtained, as indicated in Figure 6. The volumetric strain
εv, the mean effective pressure p′ and the shear stress τ ′xy are depicted in
Figure 7, Figure 8 and Figure 9, respectively (again, a linear elastic, isotropic
and homogeneous solid material has been assumed). It can be observed that
all the solid skeleton is compressed and the lower part of the slope results to
be the favorite zone for the initiation of failure because of the lower mean
pressure and the higher shear stress. Also the displacements contour reveals
that the deformation is higher in the lower part of the slope (Figure 10).

Fig. 4. Water flow vectors at the end of the second run

Fig. 5. Free surface at the end of the second run
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Fig. 6. Water saturation contour at the end of the second run

Fig. 7. Volumetric strain contour at the end of the second run

With the third run, the experimental water load of 1.6 kPa was applied
at the left third of the bottom surface of the slope.

The case using a dilatant angle of 00 is now summarized, as described in
detail by Sanavia and Schrefler (2005). The water pressure gradient applied
at the lower boundary caused an increase of the level of the free surface
up to lower part of the slope, similarly to the case with a dilatant material
(see Figure 12). After 91.5 s, the numerical solution became unstable and
the numerical convergence was lost; we can assume that the experimentally
observed local failure of the slope is described because the plastic strains
are concentrated in the lower part of the slope (the equivalent plastic strain
contour is very similar to the case with dilatant solid skeleton, Figure 13,
and hence is not plotted here; the interested reader is referred to Sanavia
and Schrefler 2005). Moreover, the maximum water velocity is concentrated
in the lower part of the slope (Figure 11), as experimentally observed.
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Fig. 8. Mean effective pressure p′ contour at the end of the second run

Fig. 9. Shear stress τ ′xy contour at the end of the second run

Fig. 10. Displacements contour at the end of the second run

The simulation which assume a slightly dilatant material (ϕ = 50) is
more interesting because it reveals the capability of the multiphase approach
to deal with such kind of problems.
Again, the water pressure gradient applied at the lower boundary caused an
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increase of the level of the free surface up to the lower part of the slope, as
it can be seen in Figure 12. The initiation of the slope failure occurred after
135 s, because the volumetric plastic behaviour of the material increases the
stiffness of the solid skeleton, and hence delays the development of the phe-
nomenon. The plastic strains was concentrated in the lower part of the slope
(Figure 13), as experimentally observed (Klubertanz, 1999; Klubertanz et
al., 2003). At this local failure, the free surface decreased a little (Figure 14)
and the maximum water velocity was concentrated in the failure zone (Fig-
ure 15), as experimentally observed. Because of the rapid plastic dilatation
(see Figure 16, where positive volumetric strain are observed only inside the
zone of inelastic strains, and Figure 22), the plastic zone became partially
saturated (Figure 17) due to a formation of vapour (Figure 18) and the free
surface was pushed down (Figure 14). The displacements are higher in the
failure zone, as experimentally observed (Figure 19).

Fig. 11. Water velocity contour at the end of the third run (at 91.5 s), with ϕ = 00

Fig. 12. Capillary pressure contour after 115 s of the third run, with ϕ = 50
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Fig. 13. Equivalent plastic strain contour at the end of the third run (at 135 s),
with ϕ = 50

Fig. 14. Capillary pressure contour at the end of the third run (at 135 s), with ϕ =
50

Fig. 15. Water flow vectors at the end of the third run (at 135 s), with ϕ = 50

A closer look inside the plastic zone reveals that the stress state of the
material in its natural state (i.e. at the end of the second run) is closed to
the Drucker-Prager yield surface (point A in Figure 20) and reaches the yield
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Fig. 16. Volumetric strain contour at the end of the third run (at 135 s), with ϕ =
50

Fig. 17. Water saturation contour at the end of the third run (at 135 s), with ϕ =
50

Fig. 18. Vapour pressure contour at the end of the third run (at 135 s), with ϕ =
50

surface (point B in Figure 20) because of the increase of the water pressure
(point B in Figure 21).

Once the stress state is on the yield surface, as a consequence of the
increase of water pressure and the softening behaviour of the solid skeleton
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Fig. 19. Displacements contour at the end of the third run (at 135 s), with ϕ = 50
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Fig. 20. p′ − q stress path during the third run

(see Table 1), the stress state remains on the yield surface (Figure 20) and
plastic strains continue to develop (Figure 22) up the failure (at which the
cohesion becomes zero because of its softening behaviour, see eq. (8)). When
the volumetric strain becomes positive because of the dilatant behaviour of
the solid skeleton (Figure 23), the water pressure decreases and becomes
negative (Figure 21), reaching in this case the value of the saturation water
pressure at ambient temperature with the development of vapour (Figure 18).
Temperature and gas pressure at the nodes of the mesh do not change in time,
practically, and hence their contours have not been included in this paper.

In case of isochoric material (dilatant angle ϕ = 00), the local behaviour
is quite similar to the case of dilatant material (unlike the volumetric strain
behaviour due to its plastic part), as it can be observed in Figures 21, 22
and 23.

Moreover, additional aspects can be noted in the time histories just ex-
plained, as for example the influence of dilatancy on the water pressure evo-
lution. In fact, in Figures 21, 22 and 23, it can be observed that smaller pw
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Fig. 21. Water pressure history during the third run 
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Fig. 22. Equivalent plastic strain history during the third run

develops in case of dilatant material since the early times. This influence in-
creases with the development of plastic strains and strongly affects the water
pressure evolution when the plastic strain rate becomes high.

The numerical example has been solved also for ϕ = 100 and ϕ = 200. The
numerical results are qualitatively similar to those obtained with ϕ = 50 and
hence are not written here. However, they are of some interest because they
show how the time of the initiation of slope failure decreases with the dilatant
angle, as it is summarized in Table 2. This is a noteworthy result because it
has been observed experimentally (e.g. Tika and Hutchinson, 1999) and is one
of the reason that contributes to explain the very fast collapse of the Vajont
catastrophic landslide (Hendron and Patton, 1985), which occurred in Italy
on October 9, 1963 (a slide of 270 million m3 of rock moved in 20−25 s, with
a velocity of 20− 30 m/s; 2043 persons died and 8 villages were destroyed).

Finally, the comparison between the measured and computed displace-
ments contour, Figure 24 and Figure 19, respectively, reveals that the value
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Table 2. Influence of the dilatant angle on the time of the slope failure initiation

Dilatancy Failure time

200 235 s
100 175 s
50 135 s
00 91.5 s

of the maximum displacement is captured, while the general shape is differ-
ent. This is probably due to a limit of the used Drucker-Prager model, which
assumes homogeneous elastic parameters. The comparison between the mea-
sured and computed water pressure in some points, Figure 25 for the case
with dilatant material, shows a quite good agreement (the location of those
points is indicated in the caption of Figure 25).

The aspects of the regularization properties of the multiphase model when
the solid skeleton obeys to a softening behaviour are beyond the aim of this
paper. The interested reader can see, e.g., Zhang et al. (1999), Ehlers and
Volk (1999) and Zhang et al. (2007) for some recent findings.

5 Conclusions

In this work, a finite element analysis of the initiation of a slope failure in
a small-scale laboratory test has been analyzed by using a non-isothermal
elasto-plastic multiphase model. To this end, the mathematical formulation
for the hydro-thermo-mechanical behaviour of water saturated and partially
saturated porous materials has been summarized. The numerical results of a
slope failure experimental test loaded by a pore pressure boundary condition
have been presented. It has been shown that the multiphase modelling is able
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Fig. 24. Experimental displacements contour (Klubertanz, 1999)
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to capture the main experimental observations at global level such as the local
failure zone at the onset of slope failure and the outflow appeared in that zone.
This modelling approach, by the analysis of the THM computations at local
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level, also permits to understand the triggering mechanisms of the failure
zone.

In addition, the development of a vapour phase within the dilatant plastic
zone points out that with a sufficiently general THM model different situ-
ations can be modelled. This aspect justifies the use of a non-isothermal
formulation for the appropriate analysis of the water phase change from a
physical point of view. Moreover, the non-isothermal approach could be use-
ful for the analysis of the onset of shallow landslides in partially saturated
slopes, where the exchange of relative humidity with the atmosphere could
play a role.
In the author experience, it can be concluded that the multiphysics ap-
proach looks very promising for the analysis of the onset of landslides, pro-
vided that the constitutive models for the multiphase porous media in satu-
rated/unsaturated conditions and the related mechanical and hydraulic prop-
erties are described with sufficient accuracy.
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