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“At that time the wind was blowing
and the banner was moving. One
monk said that the wind was mov-
ing, while another monk said the
banner was moving. They argued
on and on, so I went forward and
said, ‘It is not the wind that is mov-
ing, and it is not the banner that is
moving. It is your minds that are
moving’.”

— quote from [1], appearing as the
foreword of Wong Kar-wai’s movie
Ashes of time.





Abstract

Low-dimensional quantum gases, produced by confining and cooling atoms in two-
or in one-dimensional configurations, display a rich variety of equilibrium and
nonequilibrium properties. The emerging experimental techniques for controlling
both their geometry and their topology, by trapping these systems, for instance, in
rings or in hollow shells, offer a promising route for the investigation of quantum
many-body physics in curved spatial domains. In this thesis, we discuss the
quantum statistical properties of spherically-symmetric bosonic shells, analyzing
the phenomena of Bose-Einstein condensation and of superfluidity in the finite-size
two-dimensional regime. Adopting the functional integral formulation of quantum
field theory, we obtain the finite-temperature equation of state of these shell-shaped
systems, and, with similar techniques, also of two-dimensional flat superfluids, both
bosonic and fermionic. Moreover, we quantitatively analyze the hydrodynamic
excitations at finite temperature, which consist of the first and second sound in flat
superfluids, and which are the main probe of the Berezinskii-Kosterlitz-Thouless
superfluid transition. We conclude our analysis by studying bright solitons in one-
dimensional Bose-Bose mixtures, and discussing the quench dynamics of tunneling
quasicondensate tubes.
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Introduction

1.1 Background

We can picture the research in physics as a collective enterprise of a heterogeneous
community that, implementing shared rules and beliefs, constructs and maintains
an idealized description of reality. Some special beliefs, that we call paradigms1,
are considered sufficiently general and convincing – in other words, fundamental –
that they constitute the theoretical basis to interpret the experiments. Paradigms
are typically simple and, in a certain sense, correct ideas that guide future research
and which are continuously put in a new perspective by new evidences. Indeed,
the “creation of a thing, and creation plus full understanding of a correct idea of
the thing, are very often parts of one and the same indivisible process and cannot
be separated without bringing the process to a stop” [2]. As other fundamental
concepts in quantum mechanics, the phenomenon of Bose-Einstein condensation,
which constitutes the core of the present thesis, has undergone this scientific process.

Quantum mechanics, indeed, was not fully established when Einstein, following a
paper by Bose [3], discussed the phenomenon of condensation in a series of papers in
1924 [4] and 1925 [5]. The exclusion principle was indeed discovered by Pauli only
in 1924 [6], and the classification of the particles as bosons and fermions was still
unknown. It is thus fair to say that Einstein idea was visionary and, at the same
time, rather rudimentary. Many years were necessary for the “full understanding
of the correct idea” of Bose-Einstein condensation and, to a certain extent, the
process is still ongoing.

1Here we define the word paradigm adopting, among two broad possibilities [7], the narrower
sense intended by T. Kuhn [8].
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When the experiments with liquid Helium of Kapitza [9] emerged in the 30’s, London
interpreted the superfluid properties as a manifestation of the phenomenon of Bose-
Einstein condensation [10]. Landau, on the contrary, considered Bose-Einstein
condensation as a pathological condition of a noninteracting Bose gas [11], and
described the observations only in terms of superfluidity [12], developing previous
theoretical analyses by Tisza [13–15].

The Bogoliubov theory [16] and following theoretical works have established the
existence of a Bose-Einstein condensate phase in interacting superfluid bosons,
but the heredity of Landau is still present, as the relation between Bose-Einstein
condensation and superfluidity is still not completely settled [17]. The tension
among these concepts, indeed, continues to emerge in the scientific process in which
new possibilities in terms of interactions, geometry, system size, spatial dimension,
etc. challenge the previous theoretical concepts, and theories are stretched to reach
the “full understanding” of the paradigm.

The key elements, which turned the study of Bose-Einstein condensation into
a structured field with heterogeneous ramifications, are the tunability and the
versatility of the experiments. The experimental milestone, from which the present
diversity originates, was the discovery of Bose-Einstein condensation in 1995
[18–20], obtained by confining alkali-metal atoms and cooling them at nK-range
temperatures. Rather than being a fortuitous chance, the first observation of
Bose-Einstein condensation was the outcome of progressive technical advances in
cooling and trapping of neutral atoms, which were mainly obtained in the 70’s
and in the 80’s. Among them, we remind the Zeeman slower [21], and the laser
cooling to produce optical molasses [22–24], combined with the trapping techniques
by means of optical and magnetic potentials [25–27]. With the development of
sub-Doppler cooling [28,29] and magneto-optical traps [30], most of the technical
advances were ready: the use of evaporative cooling [31, 32] allowed to reach a
sufficiently high phase-space density and observe the macroscopic occupation of
the condensate state [18,19].

Nowadays, it is possible to tune and control experimentally all the different contri-
butions of the many-body Hamiltonian: from kinetic and potential terms, to the
interaction ones, i. e. engineering both weakly- and strongly-interacting systems
with either short- or long-range interactions [33–35]. In perspective, these conve-
nient features make ultracold atoms a reliable platform for the future development
of quantum simulators and quantum computers [36–38]. Moreover, by strongly
constraining the dynamics of an atomic gas along one (or two) spatial directions [39],
i. e. decoupling the transverse dynamics from the in-plane (or in-line) degrees of
freedom, ultracold atoms allow to test and develop quantum many-body physics in
low spatial dimensions [40,41].
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1.2 This thesis

In this thesis, we discuss the physics of systems of ultracold atoms in low dimensions,
analyzing their equilibrium and nonequilibrium properties in the temperature and
density regimes where quantum degeneracy occurs. We will analyze both flat
geometries, as atomic gases in box potentials or in elongated tubes, and curved
configurations, as bosonic atoms confined on spherical or on ellipsoidal surfaces.
Most of the results regard bosonic atoms, but also fermionic systems and their
crossover from the Bardeen-Cooper-Schrieffer state to a Bose-Einstein condensate
(BCS-BEC) will be analyzed. Let us provide a brief introduction to the systems
and the phenomena that will be discussed in detail in the following chapters.

Shell-shaped condensates

In the field of quantum gases, most of the experimental and of the theoretical results
concerning one- and two-dimensional systems, are obtained in flat geometries, as
pancake or cigar-like shapes [42]. The idea of studying a curved quantum gas
can be initially traced in a 2001 seminal paper by Zobay and Garraway [43], who
analyzed the magnetic confinement of atomic gases with a combination of a static
field and of a radiofrequency field. By properly engineering the trap parameters,
it was shown that these radiofrequency-induced adiabatic potentials can trap the
atoms in a shell-shaped configuration, but only if the gravitational force can be
counterbalanced or neglected.

A new impulse to study theoretically these bubble-trapped condensates follows
the development of several microgravity facilities to cool and confine the atomic
condensates in microgravity conditions. Among them, we remind NASA-JPL Cold
Atom Laboratory (CAL) [44, 45], on board of the International Space Station,
drop towers [46–48], rockets [49], and a free falling elevator [50]. Experiments on
bubble-trapped condensates are currently being carried on in CAL [51, 52], and
will probably continue with BECCAL [53], a future microgravity facility on the
International Space Station. Thus, the experimental work has driven the need of
theoretical predictions, and the present thesis discusses some of the first theoretical
results derived for these systems [54, 55]. In particular, considering bubble-trapped
condensates in the two-dimensional thin-shell limit, we will analyze Bose-Einstein
condensation and superfluidity in the spherically-symmetric case. Moreover, we will
discuss the physics of prolate ellipsoidal shells [56], offering important predictions
for the upcoming experiments, and we will analyze the equilibrium phase diagram
of these systems.

To underline the rising interest on bubble-trapped condensates, and to provide
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a synopsis of the state of the art on this topic, we list and briefly comment the
main themes that have been studied recently in bubble-trapped condensates. The
most promising issue is probably vortex physics [57–59], which, together with the
system thermodynamics and the adiabatic expansion [60], will be the object of
careful investigation on CAL. Some works have analyzed the zero-temperature
hydrodynamic excitations [61–63], while others have focused on the properties of
dipolar bosons [64,65]. Also the supersolidity of few-body systems was discussed [66],
and a general zero-temperature framework to study quantum gases on manifolds
was introduced in Ref. [67]. Finally, Bose-Bose mixtures on a spherical surface and
their stability has been analyzed [68].

From our perspective, the research on curved quantum gases is still underdeveloped,
and the future discoveries in this subfield will improve our general understanding
of Bose-Einstein condensation and superfluidity in ultracold quantum gases.

Hydrodynamic excitations and sound modes

The two-fluid model of Landau and Tisza, developed to interpret the rich physics
of superfluid Helium [9], provides a long-wavelength hydrodynamic description of
a quantum liquid [12], which is modeled as a mixture of a normal fluid and of a
superfluid. Due to the presence of two components, one of the main predictions of
the model is the existence of two branches of hydrodynamic excitations. A major
part of the present thesis is devoted to the study of the hydrodynamic modes in
uniform two-dimensional superfluids which, in the box-trapped case, propagate as
sound waves.

Interestingly, the measurement of the first and second sound velocities in a two-
dimensional system provides a direct evidence of the superfluid transition, which, in
the context of magnetic systems, was discussed by Berezinskii [69], Kosterlitz and
Thouless [70–72] (BKT). The BKT transition, in which the superfluid properties
are suppressed by the thermal proliferation of vortices, does not lead to any
discontinuity of the thermodynamic potentials, but consists of the universal jump
of the superfluid density at a critical temperature identified by Kosterlitz and
Nelson [73].

While the BKT transition has already been observed in superfluid Helium [74],
which is a strongly-interacting system, the first evidences in weakly-interacting
bosonic superfluids were initially indirect [75]. A clear experimental proof was
obtained just a few months ago [76], by measuring the first and second sound
velocities in box-trapped superfluid bosons. In this thesis, we will compare our
theoretical results with the experiment of Ref. [76], and we will obtain further
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predictions for future investigations.

In general, the observation of the hydrodynamic excitations in weakly-interacting
quantum gases confirms the validity of the two-fluid description, and demonstrates
the superfluid nature of the system. In the present work, we will also analyze
the propagation of sound in two-dimensional uniform fermions across the BKT
transition. In particular, we will compare our finite-temperature theory with the
experiment of Ref. [77], and we will discuss our results across the crossover from
weakly-bound BCS pairs to the BEC regime of composite bosons [78,79]. With the
same goal, we will consider a shell-shaped bosonic superfluid, and we will study the
finite-temperature hydrodynamic excitations of the system. Their experimental
characterization, indeed, can prove that the superfluid transition occurs also in
topologically-nontrivial compact shells, and that it is driven by the BKT mechanism
of the vortex-antivortex unbinding.

One-dimensional bosonic gases

In physics, one-dimensional models are usually implemented to analyze a simpli-
fied version of a complicated three-dimensional system. However, as the field of
ultracold quantum gases demonstrates, one-dimensional geometries can provide
new perspectives on quantum and statistical mechanics, since new and unexpected
phenomena emerge in these systems [80].

In this thesis, for instance, we will study the static and dynamic properties of
bright solitons in one-dimensional quantum gases. These configurations emerge
as the ground-state solution of the Gross-Pitaevskii equation [81,82], a nonlinear
Schrödinger-like equation that describes the one-dimensional gas and, therefore,
requires its transverse confinement. In particular, among different possible plat-
forms to realize these states, we will consider one-dimensional Bose-Bose mixtures,
obtained by confining ultracold atoms in different hyperfine states. On this specific
setup, it is important to highlight the seminal papers of Refs. [83,84], that set a
new paradigm in the study of quantum mixtures by pointing out the emergence of
self-bound states from the competition between the mean-field energy and quan-
tum fluctuations. Droplet and solitonic states occur, indeed, due to the different
density dependence of mean-field and beyond-mean-field energy contributions,
whose specific properties depend on the spatial dimension and can be controlled
experimentally.

We will also investigate the phase dynamics of two tunneling 1D Bose gases,
either in a head-to-tail tunneling configuration, or in a side-by-side one [85]. This
fundamental line of research has a long tradition, dating back to the analysis of
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tunneling in independent Bose-Einstein condensates [86–88], and its development
will lead to a better understanding of nonequilibrium quantum statistical physics.
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2

Fundamental results and
formalism overview

In this chapter, we provide a brief overview of the main models and techniques that
we will adopt to analyze the static and dynamic properties of quantum gases. The
chapter contains also the discussion of a few results, considered of fundamental
importance, on Bose-Einstein condensation and on superfluidity. Their derivation
is carried on in a consistent manner with respect to the perspective adopted in this
thesis.

2.1 Bose-Einstein condensation

The transition of a many-body system of identical particles to a Bose-Einstein
condensate occurs when a macroscopic fraction of the particles occupies the lowest-
energy single-particle state. The simplest realization of this transition takes place in
noninteracting bosons, which, historically, was the case analyzed by Einstein [4, 5].
Clearly, in the absence of interactions between the particles, the condensate phase
must emerge from the quantum statistical properties, which we now discuss, of a
large number of bosons that constitute the system.

We begin our analysis by considering a system of noninteracting particles confined
in a spatial domain V , which we assume to be sufficiently larger with respect to the
particle size. Working in the grand canonical ensemble, we suppose that the system
is in thermal equilibrium with a bath of temperature T . In the noninteracting
case, this condition can be established by turning off the interparticle interactions
once that the thermalization of the interacting system has occurred. Moreover, we

7



suppose that the system is in chemical equilibrium with the external reservoir of
chemical potential µ, so that the number of particles displays small fluctuations
around its mean value N . Considering a single particle, we denote the kinetic
part of the Hamiltonian with ĥkin, and we suppose that the external potential ĥpot,
which acts on the particle confined in V , also imposes proper boundary conditions
at the domain boundary ∂V . The Schrödinger equation of the particle reads

(ĥkin + ĥpot)ϕα = ϵα ϕα, (2.1)

where ϕα are the eigenfunctions, labelled by the quantum numbers α, and ϵα are the
eigenenergies. In the following, we suppose that the solution of this eigenproblem
is known, i. e., that ϕα and ϵα are known for each α. After reducing the problem
to this single solvable unit, we now construct the quantum statistical properties of
the many-body system.

Given the state with fixed quantum number α, we denote with p
(α)
0 , p

(α)
1 , ... p

(α)
r ,

... the probabilities that it is occupied by 0, 1, ... r, ... bosons. Our goal is to
determine, in conditions of thermal and chemical equilibrium, the average number
of bosons Nα that occupies the state α, which is given by

Nα =
∞∑
r=0

r p(α)r , (2.2)

and which is determined by the p
(α)
r . According to the original derivation of

Bose [3] and Einstein [4], i. e. imposing that the entropy S is maximum for a fixed
temperature T and for a fixed chemical potential µ, these probabilities are given by

p
(α)
0 = B, p

(α)
1 = B e−β(ϵα−µ), ... p(α)r = B e−β(ϵα−µ) r, ... (2.3)

where β = 1/(kBT ), with kB the Boltzmann constant, and B is a positive constant.
To determine B, we impose that the total probability of occupating the state α
is equal to one, i. e.

∑∞
r=0 p

(α)
r = 1, and we find that B = 1 − e−β(ϵα−µ). We now

calculate the sum over r in the definition of Nα, obtaining

Nα =
1

eβ (ϵα−µ) − 1
, (2.4)

which is the Bose-Einstein distribution. We emphasize that, to have positive
probabilities p

(α)
r and positive occupation numbers Nα, the chemical potential must

satisfy the inequality µ < ϵᾱ, with ϵᾱ = minα(ϵα) the single-particle ground-state
energy. In particular, when ϵᾱ = 0, as in the cases discussed in the next subsections,
the chemical potential can assume only negative values: µ < 0.
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The phenomenon of Bose-Einstein condensation consists in the macroscopic oc-
cupation of the lowest-energy single-particle state ᾱ by a macroscopic fraction
of the atoms in the system [5]. In general, this condition can be achieved by
following two slightly different procedures: either fixing the particle number and
decreasing the temperature, or fixing the temperature and increasing the particle
number. Actually, working in the grand canonical ensemble, the particle number is
determined by the chemical potential, and the relevant thermodynamic variables
are therefore T and µ. Let us rewrite the total number of bosons as

N = Nᾱ + Ñ , (2.5)

with

Nᾱ =
1

eβ (ϵᾱ−µ) − 1
, Ñ =

∑
α ̸=ᾱ

1

eβ (ϵα−µ) − 1
, (2.6)

where Nᾱ are the particles in the lowest-energy single particle state ᾱ, and Ñ is
the number of particles in the excited states α ̸= ᾱ.

If µ→ ϵ−ᾱ at a fixed temperature T , the number of particles Ñ tends to the critical
atom number Nc from below. Strictly speaking, depending on the dimensionality
of the system and on its (infinite or finite) size, Nc could be infinite when µ = ϵᾱ.
Thus, the following discussion applies only to the case in which Nc is finite. When
this occurs, since the chemical potential µ controls the total number of particles N ,
for µ larger than a critical value µc we find that N > Nc. Therefore, in the regime
of µc < µ < ϵᾱ a macroscopic number of particles Nᾱ occupies the condensate state
ᾱ. The total number of bosons N becomes infinite for µ = ϵ−ᾱ , when the condensate
state ᾱ becomes infinitely occupied.

Thermodynamics of the noninteracting Bose gas

In the grand canonical ensemble, the thermodynamics of a noninteracting Bose gas
can be derived from the grand canonical partition function Z, which reads [89]

Z =
∞∑
N=0

zN QN(V, T ), (2.7)

where z = eβµ is the fugacity. In this expression, we introduce the canonical
partition function of the N -particle system as

QN(V, T ) =
∑
{Nα}

N=
∑
αNα

e−βE{Nα} , (2.8)
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which is calculated as the sum, over all possible occupation numbers {Nα} satisfying
the constraint N =

∑
αNα, of the Boltzmann factors e−βE{Nα} , where E{Nα} =∑

αNαϵα. After a few steps [89], the grandcanonical partition function can be
rewritten as

Z =
∏
α

∞∑
Nα=0

[
e−β(ϵα−µ)

]Nα
, (2.9)

and, calculating the sum, we find

Z =
∏
α

1

1 − e−β(ϵα−µ)
, (2.10)

which, assuming that the solution of eigenproblem of Eq. (2.1) is known, is also
a known function of T and µ. The grand canonical potential Ω = U − TS − µN ,
with U the internal energy, can be calculated from the grand canonical partition
function as Ω = −β−1 ln(Z), obtaining

Ω =
1

β

∑
α

ln
[
1 − e−β(ϵα−µ)

]
, (2.11)

and, using standard thermodynamic relations, also the other thermodynamic
functions can be obtained. For instance, the number of atoms is given by

N = −
(
∂Ω

∂µ

)
V,T

=
∑
α

1

eβ (ϵα−µ) − 1
, (2.12)

which coincides with the result of Eq. (2.5). Moreover, the entropy reads

S = −
(
∂Ω

∂T

)
µ,V

= kB
∑
α

{
β (ϵα − µ)

eβ (ϵα−µ) − 1
− ln

[
1 − e−β(ϵα−µ)

]}
, (2.13)

while the internal energy U can be calculated from U = Ω + TS + µN , and reads

U =
∑
α

ϵα
eβ (ϵα−µ) − 1

. (2.14)

Finally, the pressure is defined as

P = −
(
∂Ω

∂V

)
µ,T

, (2.15)

which, for a uniform system, coincides with the simple relation P = −Ω/V .
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2.1.1 Noninteracting bosons in a uniform 3D box

We consider a noninteracting Bose gas confined in a cubic box of volume V = L3.
The solution of the single-particle eigenproblem of Eq. (2.1) yields the eigenergies

ϵk =
ℏ2k2

2m
, (2.16)

where, due to the imposition of periodic boundary conditions on the eigenfunctions
ϕk = eik·x/

√
V , the wave vector is given by k = (2π/L)(nx, ny, nz), with nx, ny, nz ∈

Z. In this configuration, Bose-Einstein condensation occurs in the state ᾱ = 0, in
which the wave vector k is zero. To get an analytical insight on this problem, we
set the chemical potential to µ = ϵ0 = 0, and we ignore the fact that N0 diverges.

Implementing Eq. (2.5) for N0 = 0, we obtain a relation between the critical

temperature of Bose-Einstein condensation T
(0)
BEC and the total number of atoms

N = Ñ = Nc, over which the condensate state is macroscopically occupied. In
particular

N = 8
∞∑

nx=1

∞∑
ny=1

∞∑
nz=1

1

eϵk/(kBT
(0)
BEC) − 1

, (2.17)

where, in the sum, we are neglecting the terms with one null quantum number and
the others nonzero, and the terms with two null quantum numbers and the other
nonzero. For sufficiently large V these contributions are irrelevant, and the discrete
wave vectors k can be thought, in this limit, as a continuum of values. In this case,
we can substitute the sum with an integral:

∞∑
nx=1

∞∑
ny=1

∞∑
nz=1

→ L3

(2π)3

∫ ∞

2π/L

dkx

∫ ∞

2π/L

dky

∫ ∞

2π/L

dkz (2.18)

and the lower bounds, i. e. 2π/L, can actually be approximated with 0. Before
doing this substitution, let us briefly discuss the case of a large but finite volume.
Since the distance between the energy levels ϵk increases with the quantum numbers
nx, ny, nz, the continuum approximation of Eq. (2.18) seems to become invalid. At
the same time, the Bose-Einstein distribution cuts off the higher-energy states, and
the semiclassical approximation works well.

If we evaluate Eq. (2.17) analytically, by performing the wave vector integrals
Eq. (2.18) in the thermodynamic limit and using spherical coordinates, we find the
critical density

N

L3
= ζ(3/2)

(
mkBT

(0)
BEC

2πℏ2

)3/2

, (2.19)

11



where ζ(x) is Riemann’s zeta function. Inverting Eq. (2.19), we finally obtain

T
(0)
BEC =

2π

[ζ(3/2)]2/3
ℏ2n2/3

mkB
, (2.20)

which is the critical temperature of a noninteracting Bose gas with number density
n = N/L3 in a uniform box. We stress again that this relation between the critical

temperature T
(0)
BEC and n holds in the thermodynamic limit of N,L3 → ∞, with n

fixed.

2.1.2 Noninteracting bosons in a uniform 2D box

Let us now calculate the critical temperature of a bosonic gas confined in a uniform
square box with area V = L2. Similarly to the cubic case, the eigenergies are given
by ϵk = ℏ2k2/(2m), where k = (2π/L)(nx, ny) is the two-dimensional wave vector,
with nx, ny ∈ Z. In this context, the analogous of Eq. (2.17) reads

N = 4
∞∑

nx=1

∞∑
ny=1

1

eϵk/(kBT
(0)
BEC) − 1

, (2.21)

and, assuming that the energy levels are finely spaced in the region where the
Bose-Einstein distribution is nonzero, we write

N

L2
=

∫ ∞

2π/L

dkx
(2π)

∫ ∞

2π/L

dky
(2π)

1

eϵk/(kBT
(0)
BEC) − 1

, (2.22)

where, as in the three-dimensional case, we have substituted the sum with an
integral. However, in contrast with the three-dimensional case, here we cannot
consider the thermodynamic limit and set the lower bound 2π/L of the integrals to
0. Indeed, a simple numerical test shows that, for a nonzero critical temperature
T

(0)
BEC, the critical density n = N/L2 is finite only if the system size L2 is finite. More

quantitatively, in the thermodynamic limit of L2 → ∞, and assuming T
(0)
BEC > 0, the

critical density of Eq. (2.22) diverges in the infrared as
∫∞
0

dk/k. This divergence
is a manifestation of the Hohenberg-Mermin-Wagner theorem [90, 91], which, in
this context, states that there cannot be Bose-Einstein condensation at finite
temperature in a two-dimensional system at the thermodynamic limit.

For a finite-size system, both the critical density and the critical temperature
are finite, and the precise calculation of these quantities requires the numerical
evaluation of the sum in Eq. (2.21). However, an approximated result, which
neglects subleading corrections scaling with the inverse system size, can be obtained
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expressing the integral of Eq. (2.22) in polar coordinates, in which the radial
component of the wave vector is integrated in the interval [4

√
π/L,∞[1. In this

case, repeating the same steps of the previous section, we find

kBT
(0)
BEC ≈ 2π

ℏ2n
m

{
8πℏ2

mL2kBT
(0)
BEC

− ln
[
e8πℏ

2/(mL2kBT
(0)
BEC) − 1

]}−1

, (2.23)

which is an implicit equation relating the critical temperature T
(0)
BEC with the two-

dimensional number density n. The analysis of this result confirms our previous
considerations, namely, that n cannot be finite in the limit of infinite system size
L2 → ∞ unless T

(0)
BEC → 0.

2.1.3 Noninteracting bosons on the surface of a sphere

We now describe Bose-Einstein condensation of noninteracting bosons confined on
the surface of a sphere of radius R. We parametrize the surface of the sphere, whose
area is given by V = 4πR2, with the spherical coordinates {θ, φ} ∈ [0, π] × [0, 2π].
For this configuration, the single-particle Schrödinger equation of Eq. (2.1) can be
written as

L̂2

2mR2
Ymll (θ, φ) = ϵl Y

ml
l (θ, φ), (2.24)

where

L̂2 = −ℏ2
[

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2

]
, (2.25)

is the angular momentum operator in spherical coordinates, Ymll (θ, φ) are the spher-
ical harmonics, labelled by the main quantum number of the angular momentum l,
and by the magnetic quantum number ml = −l,−l+ 1, ...l− 1, l. The eigenenergies
ϵl, which are degenerate in ml, read

ϵl =
ℏ2l(l + 1)

2mR2
, (2.26)

and the lowest-energy condensate state ᾱ corresponds to l = 0, ml = 0, so that
ϵ0 = 0.

1The integral in Eq. (2.22) cannot be expressed in polar coordinates in a straightforward way,
due to the squared shape of the cutoffed area (−2π/L, 2π/L)× (−2π/L, 2π/L). Our choice of
the infrared cutoff for the radial wave vector coordinate, i. e. kc = 4

√
π/L, allows to keep the

cutoffed area constant.
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The relation between the critical temperature of Bose-Einstein condensation T
(0)
BEC

and the number of atoms N is given by

N =
∞∑
l=1

l∑
ml=−l

1

eϵl/(kBT
(0)
BEC) − 1

, (2.27)

where we set the chemical potential to µ = ϵ0 = 0. To obtain an analytical result
for T

(0)
BEC, in analogy to the previous cases, we substitute the sum with an integral,

i. e.
∑∞

l=1

∑l
ml=−l →

∫∞
1

dl (2l + 1) [92], finding

N

4πR2
=
mkBT

(0)
BEC

2πℏ2

{
ℏ2

mR2kBT
(0)
BEC

− ln
[
eℏ

2/(mR2kBT
(0)
BEC) − 1

]}
, (2.28)

which allows to calculate the critical number of atoms for a given critical tem-
perature. The critical temperature can be obtained by solving the following
equation [54]

kBT
(0)
BEC = 2π

ℏ2n
m

{
ℏ2

mR2kBT
(0)
BEC

− ln
[
eℏ

2/(mR2kBT
(0)
BEC) − 1

]}−1

, (2.29)

where we define the two-dimensional number density of the spherical Bose gas as
n = N/(4πR2). In Fig. (2.1) we plot the dimensionless critical temperature as a
function of the parameter nR2, obtained by solving numerically Eq. (2.29). The
critical temperature, for a fixed density n, is finite for a finite radius of the sphere R,
and it tends to 0 in the limit of R → ∞. As seen in the two-dimensional flat case,
this behavior is consistent with the prescription of the Mermin-Wagner-Hohenberg
theorem.

Note that it is not possible to identify the critical temperature in the spherical case
with Eq. (2.23), i. e. the analogous result for the two-dimensional box, by simply
substituting 4πR2 = L2 into Eq. (2.29). Indeed, even by doing this, a factor of 2
remains in the expressions and prevents their identification. The presence of this
factor signals the different value of the infrared energy cutoff in the two cases: while
in the spherical case the first state above the condensate has the energy ℏ2/(mR2),
in the spherical one we assumed ℏ2k2c/(2m) = 8πℏ2/(mL2), and these, even setting
4πR2 = L2, differ by a factor 2.

At temperatures lower than T
(0)
BEC, determined by Eq. (2.29), the condensate state

is occupied by a macroscopic fraction of bosons n0/n, with n0 = N0/(4πR
2). The

condensate fraction reads [54]

n0

n
= 1 −

1 − kBT
mR2

ℏ2 ln
[
eℏ

2/(mR2kBT ) − 1
]

1 − kBT
(0)
BEC

mR2

ℏ2 ln
[
eℏ

2/(mR2kBT
(0)
BEC) − 1

] , (2.30)
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Figure 2.1: Critical temperature of noninteracting bosons on the surface of a sphere
(black line), plotted as a function of the parameter nR2. The green dashed line represents
the direct evaluation of the sum of Eq. (2.27), showing that the analytical result improves
for larger values of nR2. Note that the critical temperature tends logarithmically to zero
in the thermodynamic limit. From Ref. [54].

Figure 2.2: Condensate fraction of noninteracting bosons on the surface of a sphere

plotted as a function of the adimensional temperature T/T
(0)
BEC for different values of

nR2. From Ref. [54].
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which can be calculated evaluating the sum in Eq. (2.5) and following the analogous
of the procedure adopted for the critical temperature. In Fig. 2.2, we plot n0/n for
different values of the parameter nR2.

2.2 Functional integral of a many-body bosonic

system

The quantum statistical properties of a many-body system, due to the interaction
between the particles, cannot be determined in a straightforward manner from
the solution of the single-particle eigenvalue equation. In the formalism of first
quantization, the solution of the N -body bosonic problem requires the proper
symmetrization of the wave function of the system, and the complexity of the
problem increases exponentially with N . Second quantization offers an elegant way
to reformulate the problem, including the quantum statistics in the properties of
operators, and focusing only on the occupation numbers of the different states. In
this section, starting from the second-quantized Hamiltonian of a system of bosons,
we express the grand canonical partition function as a coherent-state functional
integral of a bosonic complex field.

We consider a many-body system of interacting bosons, whose grand canonical
partition function Z is given by

Z = Tr
[
e−β(Ĥ−µN̂)

]
, (2.31)

where Ĥ is the many-body Hamiltonian of the system, and N̂ is the number
operator. We express Ĥ and N̂ in terms of the field operator ψ̂(r) in second
quantization, which annihilates a boson at the spatial coordinate r. In particular,
considering a generic D-dimensional system of bosons in the hypervolume V , the
Hamiltonian reads

Ĥ =

∫
V

dr ψ̂†(r)

[
− ℏ2∇2

2m
+ U(r)

]
ψ̂(r)

+
1

2

∫
V

dr

∫
V

dr′ ψ̂†(r)ψ̂†(r′)V (r− r′)ψ̂(r′)ψ̂(r), (2.32)

where U(r) is the external potential, and V (r− r′), with a slight abuse of notation,
is also the two-body interaction potential between the particles. Moreover, we write

N̂ =

∫
V

dr ψ̂†(r)ψ̂(r), (2.33)
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which is the number operator in second quantization.

Since the grand canonical partition function is the trace of the operator e−β(Ĥ−µN̂),
it can be calculated by summing the expectation values of this operator over
all the possible states of a proper basis. For this scope, we choose the basis of
generalized coherent states |ψ⟩, which are defined as the eigenstates of the field
operator ψ̂(r) |ψ⟩ = ψ(r) |ψ⟩. These states are normalized by construction, but are
not orthogonal, and, calculating the trace in Eq. (2.31) in this basis [93], we get

Z =

∫ ∏
r

dψ̄0(r)dψ0(r)

2πi
⟨ψ0| e−β(Ĥ−µN̂) |ψ0⟩ , (2.34)

where, in the following, we will express the measure of the integral in a com-
pact form as d[ψ̄0, ψ0]. To proceed further, we reinterpret the expectation value

⟨ψ0| e−β(Ĥ−µN̂) |ψ0⟩ as the probability amplitude of a system with Hamiltonian
Ĥ − µN̂ that propagates in the imaginary time interval τ ∈ [0, βℏ]. Specifically:
the many-body system starts at time 0 in the initial state |ψ0⟩, evolves under the

action of the operator e− (τ/ℏ)(Ĥ−µN̂), and ends at time βℏ in the same state |ψ0⟩.
Exploring this fruitful analogy, the partition function of a many-body system can be
calculated as a Feynman path integral [94]. Thus, we split β into many imaginary
time intervals ∆τ , by writing β = M∆τ/ℏ, with M ≫ 1. In this way, the expo-

nential e−
M∆τ

ℏ (Ĥ−µN̂) can be split into the product of M exponentials, committing
for each subdivision an error of o(∆τ 2), which is negligible for sufficiently large M .
Inserting M − 1 coherent-state identities between the M exponentials, the field
operators inside Ĥ−µN̂ are substituted by the classical fields ψ(r, j∆τ) =: ψ(r, τ),
and this occurs for each time step j∆τ , with j = 0, ...,M . Besides this generic
description, we do not enter into the details of the calculations, which can be found
in Refs. [93,95,96], and we report now the final results.

The grand canonical partition function of a many-body system of interacting bosons
is given by

Z =

∫
D[ψ̄, ψ] e−

S[ψ̄,ψ]
ℏ , (2.35)

where the Euclidean action S, i. e. the action in imaginary time, is defined as

S[ψ̄, ψ] =

∫ βℏ

0

dτ

∫
V

drL(ψ̄, ψ), (2.36)

and the Euclidean Lagrangian L reads

L = ψ̄(r, τ)

(
ℏ∂τ−

ℏ2∇2

2m
−µ

)
ψ(r, τ)+

1

2

∫
V

dr′ |ψ(r′, τ)|2V (r−r′)|ψ(r, τ)|2. (2.37)
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Note that the measure of the functional integral is defined as

D[ψ̄, ψ] =
M∏
j=0

d[ψ̄j, ψj], (2.38)

namely, as the product of the integration measures for all the intermediate imaginary-
time steps.

Let us now interpret broadly our result for the partition function. Within this
formalism, we are calculating Z as a sum over all possible configurations of the
classical field ψ(r, τ) which describes a specific trajectory of the system in the
imaginary time interval [0, ℏβ]. The factor e−S[ψ̄,ψ]/ℏ assigns a different weight,
throughout the value of the action S[ψ̄, ψ], to the different configurations. The
quantum nature of the system, embodied by the bosonic statistics, is included
through the periodic boundary conditions in imaginary time, which determine the
specific form of the trace in Eq. (2.34). The functional integral representation of
the partition function is equivalent to the general definition of Z, thus, it does not
involve any approximation. At the same time, it constitutes an intuitive description
in terms of a complex bosonic field and allows for a practical implementation of
approximated calculations [97,98].

2.3 Functional integral of a many-body fermionic

system

The majority of the results of this thesis concerns systems of bosonic ultracold
atoms. However, we will later analyze the phenomenon of sound propagation in
Fermi superfluids, which requires the knowledge of the system thermodynamics. In
this section, in analogy with what we have done in the bosonic case, we implement
a coherent-state functional integral formulation of the grand canonical partition
function of a fermionic system. For this scope, we need to implement explicitly
Eq. (2.31), specifying the second-quantized Hamiltonian and the number operators
of the fermions.

Let describe a system of uniform fermions confined in the D-dimensional hyper-
volume V . If we would consider a single fermionic species, i. e. fermions in a
single hyperfine state, the Pauli principle would prevent s-wave interactions to
occur. To avoid this limitation, we suppose to have an equal mixture of fermionic
atoms in two different hyperfine states, labelled with the index σ = {↑, ↓}, and
we assume an attractive contact interaction between fermions with opposite spins.
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The grand-canonical Hamiltonian, written in terms of the second-quantized field
operator ψ̂σ(r), is given by

Ĥ − µN̂ =
∑
σ=↑,↓

∫
V

dr

[
ψ̂†
σ(r)

(
− ℏ2∇2

2m
− µ

)
ψ̂σ(r) + g ψ̂†

↑(r)ψ̂
†
↓(r)ψ̂↓(r)ψ̂↑(r)

]
,

(2.39)
where m is the atomic mass, µ is the chemical potential, and g is the s-wave
contact interaction strength between fermions with opposite spins. Note that, by
tuning the Feshbach resonance with the application of a static magnetic field [99],
it is possible to change the strength g and study the crossover from BCS pairs of
weakly-interacting fermions to a bosonic BEC made of tightly-bound composite
molecules [79]. The grand canonical partition function Z, according to its definition
of Eq. (2.31), is given by

Z =

∫ ∏
σ=↑,↓

∏
r

dψ̄σ(r)dψσ(r) ⟨−ψ| e−β(Ĥ−µN̂) |ψ⟩ , (2.40)

where we are calculating the trace in the basis of generalized fermionic coherent
states [93,95]. The latter are the eigenstates of the fermionic field operator with
eigenvalue ψσ(r), namely

ψ̂σ(r) |ψ⟩ = ψσ(r) |ψ⟩ , (2.41)

and the fermionic statistics results in the non commutativity of the complex
fermionic field ψσ(r), which assumes the values of Grassmann anticommuting
numbers [95]. The construction of the functional integral in the fermionic case is
similar to that of the bosonic case, with the crucial difference that the fermionic
Grassmann field satisfies antiperiodic conditions at the boundaries of the imaginary
time interval, i. e. ψσ(r, 0) = −ψσ(r, βℏ). Keeping in mind this distinction, which
stems from the fermionic quantum statistics, we now report the results, while the
full derivation can be found in Ref. [95].

The grand canonical partition function of a system of fermions across the BCS-BEC
crossover reads [100]

Z =

∫
D[ψ̄σ, ψσ] e−

S[ψ̄σ,ψσ ]
ℏ , (2.42)

where the Euclidean action is defined as

S[ψ̄σ, ψσ] =

∫ βℏ

0

dτ

∫
V

drL(ψ̄σ, ψσ), (2.43)

and the Euclidean Lagrangian reads

L =
∑
σ=↑,↓

ψ̄σ(r, τ)

(
ℏ∂τ −

ℏ2∇2

2m
− µ

)
ψσ(r, τ) + g ψ̄↑(r, τ) ψ̄↓(r, τ)ψ↓(r, τ)ψ↑(r, τ),

(2.44)
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where the imaginary-time dependence of the fermionic field emerges from the
construction of the functional integral, and

D[ψ̄, ψ] =
∏
σ=↑,↓

∏
r

M∏
j=0

dψ̄σ(r, jβℏ/M) dψσ(r, jβℏ/M), (2.45)

with M → ∞, is the measure of the integral.

The grand canonical partition function of Eq. (2.42) has been obtained without
further approximations with respect to the Hamiltonian in second quantization.
As a natural consequence, due to the quartic dependence of the Lagrangian on the
fermionic field, it is not possible to calculate exactly the functional integral. To
facilitate the development of an approximated theory, we introduce the bosonic
pairing field ∆(r, τ), which pairs fermions with opposite spins and, therefore,
represents the Cooper pairs in the system [101]. In particular, after defining

∆(r, τ) = gψ↓(r, τ)ψ↑(r, τ), (2.46)

and analogously for the complex conjugate field ∆̄, we perform the following
Hubbard-Stratonovich transformation [100,102]

exp

[
−

∫ βℏ

0

dτ

∫
V

dr g ψ̄↑(r, τ)ψ̄↓(r, τ)ψ↓(r, τ)ψ↑(r, τ)

]
=

exp

{∫ βℏ

0

dτ

∫
V

dr

[
∆̄(r, τ)∆(r, τ)

g
+ ψ̄↑(r, τ)ψ̄↓(r, τ)∆(r, τ)

+∆̄(r, τ)ψ↓(r, τ)ψ↑(r, τ)

]} (2.47)

which, despite the disadvantage of introducing an additional field, allows us to get
a Gaussian integral in the fermionic fields. Indeed, the partition function has been
transformed in this way as [103]

Z =

∫
D[ψ̄σ, ψσ]

∫
D[∆̄,∆] exp

{
−
∫ βℏ

0

dτ

∫
V

dr

[
∑
σ=↑,↓

ψ̄σ(r, τ)

(
ℏ∂τ −

ℏ2∇2

2m
− µ

)
ψσ(r, τ) (2.48)

− ∆̄(r, τ)∆(r, τ)

g
− ψ̄↑(r, τ)ψ̄↓(r, τ)∆(r, τ) − ∆̄(r, τ)ψ↓(r, τ)ψ↑(r, τ)

]}
.

which is an alternative form with respect to Eq. (2.42) that does not involve any
further approximation.

In the following chapters, we will describe how to derive the system thermodynamics,
by developing an approximated calculation of Z.
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2.4 Landau two-fluid model

An interacting quantum gas in a regime of quantum degeneracy displays the property
of superfluidity. This peculiar phenomenon, which consists in the capability of
a quantum liquid to flow through narrow capillaries without friction, was first
discovered in experiments with Helium-II by Kapitza [9]. In a seminal paper,
published in 1941, Landau formulated a complete theory to describe this and
other experimental properties of Helium-II [12], developing the concepts previously
introduced by Tisza [13–15].

The behavior of a superfluid, which is intrinsically quantum mechanical, can be
explained with a semiclassical two-fluid model. The main idea is that the fluid can
be thought as composed by two parts: the superfluid part, which is not viscous
and has zero entropy, and the normal part, which behaves like a viscous fluid. At
sufficiently low temperatures, therefore, the hydrodynamic behavior of a many-body
system consists in the superposition of the superfluid motion (i. e. a portion of
the fluid in the same coherent state), and of the motion of the bosonic excitations,
constituting the normal fluid. Notably, the two fluids do not exchange momentum
with each other: there is no internal friction between the normal fluid and the
superfluid one, neither within the superfluid itself. It is also important to stress that
the fluids are not separable, but must be thought as the simultaneous capability of
a quantum system to display two different and independent motions.

To develop an hydrodynamic description, we suppose that the thermodynamic
quantities fluctuate around the average value that they assume at thermodynamic
equilibrium. Thus, we require that, during the dynamics, the system is always
in local equilibrium, so that the thermodynamic functions acquire an additional
dependence on space and on time. Under these assumptions, let us briefly introduce
and comment the equations of Landau-Tisza two-fluid model [12]. We consider a
system of mass density ρ, such that

ρ = ρn + ρs, (2.49)

where ρs is the mass density of the superfluid part of the fluid and ρn is the mass
density of the normal part of the fluid. The total mass current results from the
superposition of the normal flow and of the superflow, namely

j = ρnvn + ρsvs, (2.50)

where vn is the normal fluid velocity and vs is the superfluid velocity. The
conservation of mass is expressed by the continuity equation

∂ρ

∂t
+ ∇ · j = 0, (2.51)
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and the conservation of momentum is described by

∂ji
∂t

+
∂Πik

∂xk
= 0, (2.52)

with we define the tensor Πik = P δik + ρnvn,ivn,k + ρsvs,ivs,k, with P the pressure
of the fluid. As a consequence of the irrotational nature of the superfluid velocity,
i. e. ∇× vs = 0, the superfluid motion is reversible, and entropy is carried only by
the normal part of the fluid. Therefore, the continuity equation for the entropy
density ρs̃ can be written as

∂ρs̃

∂t
+ ρs̃∇ · vn = 0, (2.53)

where s̃ = S/M is the entropy per unit mass of fluid M described in this model.

To close the system of equations of the two-fluid model, another relation is needed.
It is the Newton equation of the superfluid, obtained by equating the acceleration
of the superfluid, i. e. dvs/dt, to the force per unit of mass necessary to accelerate
it. The latter quantity is equal to −∇(∂U/∂M)S,V , where U is the internal
energy and (∂U/∂M)S,V is the potential energy per unit of mass associated to
the motion of the sole superfluid. Now, considering the thermodynamic relation
(∂U/∂M)S,V = (∂G/∂M)P,T , we conveniently discuss the derivative of G, the Gibbs
free energy, rather than that of U . We write G as G0 + P2/(2Mn), with G0 the
free energy of the stationary fluid, P = Mn(vn − vs) the momentum of the normal
fluid, and Mn ∝ M the normal fluid mass. Differentiating G with respect to M ,
and putting all the elements together, Landau obtained the following equation [12]

∂vs
∂t

= −∇
[
G0

M
+

vs
2

2
− 1

2
(vn − vs)

2 ρn
ρn + ρs

]
, (2.54)

where the Lagrangian derivative has been expressed in terms of the Eulerian one
as dvs/dt = ∂vs/∂t+ ∇(v2

s/2). Note that G0 satisfies the Gibbs-Duhem relation
G0 = µN , with µ the chemical potential of the stationary fluid. Thus, interpreting
the mass M as M = mN , with m the mass of the identical microscopic constituents
of the fluid, the term G0/M in Eq. (2.54) is equal to µ/m.

Having introduced the equations of the two-fluid model, we specify that all the
thermodynamic quantities depend on space and time: ρ(r, t), ρn(r, t), ρs(r, t), j(r, t),
vn(r, t), vs(r, t), P (r, t), S(r, t), G0(r, t). For simplicity, their explicit dependence
is omitted unless it becomes necessary.
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2.4.1 Sound propagation in a quantum fluid

Within the phenomenological description of the two-fluid model, a quantum liquid
admits two different kinds of hydrodynamic excitations. If the system is uniformly
confined in a D-dimensional box V = LD, these excitations are labelled by a wave
vector and correspond to sound waves: the first and the second sound. In this case,
the velocity with which these waves propagate is simply defined as the constant of
proportionality between the frequency of these modes and the wave vector itself.

Starting from the equations of the two-fluid model, we derive here the Landau
biquadratic equation for the calculation of the sound velocities. In particular,
we will limit our derivation to the case in which the superfluid and the normal
fluid velocities are small, thus neglecting all the o(v2) terms, and we consider the
linearized equations [12]

∂ρ

∂t
+ ∇ · j = 0, (2.55)

∂ρs̃

∂t
+ ρs̃∇ · vn = 0, (2.56)

∂j

∂t
+ ∇P = 0, (2.57)

∂vs
∂t

+ ∇
(
G

M

)
= 0, (2.58)

where, in the last equation, we omit the subindex 0 in the stationary Gibbs free
energy. Deriving Eq. (2.55) with respect to t and substituting it into Eq. (2.57) we
get

∂2ρ

∂t2
= ∇2P, (2.59)

which is the familiar wave equation of a single classical fluid. Indeed, if the system
would be composed only by one species, Eq. (2.59) would describe a wave where
pressure fluctuations induce density fluctuations and vice versa.

However, a system composed by two fluids hosts two sounds, and this additional
degree of freedom is encoded in the equation

∂2s̃

∂t2
= s̃2

ρs
ρn

∇2T, (2.60)

which, if it were decoupled from the previous equation, would describe the propa-
gation of temperature fluctuations that induce entropy fluctuations.

We now briefly discuss how to obtain Eq. (2.60), by reviewing the original derivation
of Landau [12]. We substitute ∂ρ/∂t of Eq. (2.55) into Eq. (2.56) and, employing
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the relations (2.49) and (2.50), we get

∂s̃

∂t
= s̃

ρs
ρ
∇ · (vs − vn). (2.61)

Then, differentiating with respect to time, we rewrite this differential identity as

∂2s̃

∂t2
= s̃

ρs
ρ
∇ ·

[
∂(vs − vn)

∂t

]
, (2.62)

where we neglect higher order terms in the velocities. As can be seen differentiating
the Gibbs-Duhem relation G = µN and considering M = mN , we have d(G/M) =
m−1dµ = −s̃ dT + ρ−1 dP . From this relation it follows that

∇P = ρs̃∇T + ρ∇(G/M), (2.63)

and, inserting ∇(G/M) from Eq. (2.58), ∇P from Eq. (2.57) and using again
Eqs. (2.49) and (2.50), we obtain

ρn
∂(vs − vn)

∂t
= ρs̃∇T. (2.64)

Finally, the wave equation (2.60) can be obtained calculating the divergence of
Eq. (2.64) and inserting it into Eq. (2.61).

The sound velocities can be calculated by expanding Eqs. (2.59) and (2.60) for
small perturbations around the equilibrium configuration, namely

s̃ = s̃0 + s̃′, ρ = ρ0 + ρ′, P = P0 + P ′, T = T0 + T ′, (2.65)

where the primed quantities represent small fluctuations with respect to the uniform
and constant equilibrium values and, therefore, depend on the coordinates (r, t). In
particular, the fluctuation fields are not independent from each other, and, knowing
the equation of state, it is possible to determine two of the thermodynamic variables
by fixing two of the others. For instance, we write

ρ′ =

(
∂ρ

∂T

)
P

T ′ +

(
∂ρ

∂P

)
T

P ′ s̃′ =

(
∂s̃

∂T

)
P

T ′ +

(
∂s̃

∂P

)
T

P ′, (2.66)

where the derivatives are calculated using the equilibrium values. Employing these
equations to eliminate ρ′ and s̃′ and decomposing each fluctuation field P ′(r, t)
and T ′(r, t) in the basis of plane waves exp[iω(t− x/c)], where c is the sound wave
velocity and ω its frequency, the equations of sound become{

P ′(ω)
[
− c2

(
∂ρ
∂P

)
T

+ 1
]

+ T ′(ω)
[
− c2

(
∂ρ
∂T

)
P

]
= 0,

P ′(ω)
[
− c2

(
∂s̃
∂P

)
T

]
+ T ′(ω)

[
− c2

(
∂s̃
∂T

)
P

+ s̃2 ρs
ρn

]
= 0,

(2.67)
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where P ′(ω) and T ′(ω) are the amplitudes of the Fourier components of the pressure
and temperature fluctuation fields. To find a nontrivial solution of the system, we
impose that its determinant is zero, obtaining an equation for the velocity of sound,
namely

c4
[(

∂ρ

∂P

)
T

(
∂s̃

∂T

)
P

−
(
∂ρ

∂T

)
P

(
∂s̃

∂P

)
T

]
− c2

[(
∂s̃

∂T

)
P

+ s̃2
ρs
ρn

(
∂ρ

∂P

)
T

]
+s̃2

ρs
ρn

= 0,
(2.68)

which is a biquadratic equation for the velocity c of the sound waves. To put it in
a standard form we need to invert the coefficient of the c4 term, which, using the
Jacobian notation [104], can be rewritten in the following equivalent ways: either
as

∂(ρ, s̃)

∂(P, T )
=

∂(ρ, s̃)/∂(ρ, T )

∂(P, T )/∂(ρ, T )
=

c̃V
T (∂P/∂ρ)T

, (2.69)

where c̃V is the specific heat at constant volume per unit of mass M , or as

∂(ρ, s̃)

∂(P, T )
=

∂(ρ, s̃)/∂(P, s̃)

∂(P, T )/∂(P, s̃)
=

(
∂s̃

∂T

)
P

(
∂ρ

∂P

)
s̃

. (2.70)

From the previous relations, we finally obtain the Landau equation of sound, namely

c4 − c2
[(

∂P

∂ρ

)
s̃

+
T s̃2ρs
c̃V ρn

]
+
ρsT s̃

2

ρnc̃V

(
∂P

∂ρ

)
T

= 0, (2.71)

which relates the sound velocity c to the equilibrium thermodynamics of a quantum
liquid. Note that this biquadratic equation admits only two linearly independent
solutions, and the degeneracy is associated to the positive or negative speed with
respect to the direction of propagation.

To simplify the notation, in the coefficients of the equation of sound we introduce
the definition of the following velocities:

vA =

√(
∂P

∂ρ

)
s̃

, vT =

√(
∂P

∂ρ

)
T

, vL =

√
ρsT s̃2

ρnc̃V
, (2.72)

which are, respectively, the adiabatic velocity vA, the isothermal velocity vT and
the Landau velocity vL. Depending on the thermodynamics of the physical system
considered and on the temperature regime, it may occur that the general solutions
of Eq. (2.71) are well approximated by these expressions. Before analyzing specific
systems, we write the Landau equation as

c4 − (v2A + v2L) c2 + v2Lv
2
T = 0, (2.73)
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and we explicitly calculate its general solutions, namely

c1 =

[
v2A + v2L

2
+

√(
v2A + v2L

2

)2

− v2Lv
2
T

]1/2
,

c2 =

[
v2A + v2L

2
−

√(
v2A + v2L

2

)2

− v2Lv
2
T

]1/2
,

(2.74)

which are the velocities of the first and second sound. Note that, by definition, the
first sound propagates with a higher velocity with respect to the second one.

At the critical temperature at which the superfluid density vanishes, the Landau
velocity vL and, consequently, the second sound velocity c2, become zero. Therefore,
only the first sound can propagate in this high-temperature regime, and its velocity
c1 coincides with the usual adiabatic sound velocity vA. Actually, vA is usually
derived as the solution of Eq. (2.59), which encodes the interplay of pressure and
density fluctuations. In the standard discussion of sound waves, thus, there is
not an analogous of the sound equation (2.60), and only Eq. (2.59) is adopted.
Indeed, in a classical fluid, heat propagates in a diffusive manner rather than as a
wave. On the contrary, in a superfluid system, heat can propagate as a wave, as
a consequence of the zero entropy of the superfluid component. In general, the
pressure-density oscillations of a superfluid and entropy-temperature ones are not
mutually independent: c1 and c2 are the result of these combined phenomena and,
indeed, are obtained by putting Eqs. (2.59) and (2.60) together.

In the thesis, we will discuss the propagation of sound in different physical systems,
whose thermodynamic and superfluid properties produce a different qualitative
and quantitative behavior of the sound modes. To facilitate that analysis, it
is historically and scientifically relevant to discuss the propagation of sound in
superfluid 4He. In this system, the adiabatic compressibility κs̃ = ρ−1(∂ρ/∂P )s̃
and the isothermal one κT = ρ−1(∂ρ/∂P )T are approximately the same. As a
consequence, also the adiabatic and the isothermal velocities, as can be seen from
their definitions, are approximately equal: vA ≈ vT . In this case, the velocities of
the sound modes of Eq. (2.74) can be approximated as

c1 ≈ vA, c2 ≈ vL, (2.75)

which explains the notation of the “Landau” velocity, for the additional (second)
sound velocity that he originally identified.

In liquid helium, the first sound propagates with vA and is, therefore, a pure density
wave in which the normal fluid and the superfluid propagate in phase. The second
sound, instead, propagates with vL and constitutes a pure heat wave, in which the
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normal fluid and the superfluid oscillate with opposite phase. Thus, the pressure-
density oscillations of 4He are essentially decoupled from the temperature-entropy
ones. This statement can be expressed mathematically as (∂s̃/∂P )T = (∂ρ/∂T )P =
0, where the equality follows from known Maxwell relations. It is also easy to verify
that when these partial derivatives are zero, the equations of the system (2.67) are
decoupled and, the same expressions for c1 and c2 of Eq. (2.75) can be obtained
from this complementary perspective.

2.5 Magnetic trapping of ultracold atomic gases

Ultracold atoms undergo the phase transition of Bose-Einstein condensation when
the phase-space density exceeds a critical value. This phenomenon was observed
for the first time in 1995, by cooling atomic gases with the combined use of laser
and evaporative cooling techniques. These experiments relied on the magnetic and
optical confinement of the sample, which could not be cooled in the nK temperature
range if held in physical containers. In this section, we discuss briefly the basic
ideas to confine atoms with magnetic traps. We avoid analyzing the pre-cooling
stage in magneto-optical traps and the evaporative cooling (for details on this topic
see [105]), and the short analysis implemented here aims to provide a background
for discussing radiofrequency-induced adiabatic potentials.

Let us discuss how weakly-interacting bosonic gases are confined. In these systems,
the interactions are so weak that, to describe the trapping mechanism, it is sufficient
to understand how a single atom interacts with the magnetic field. Given a static
space-dependent magnetic field B0(r), the potential energy of an atom interacting
with the field reads

U(r) = −µ ·B0(r), (2.76)

where µ is the magnetic dipole moment of the atom. This dipole moment is
proportional to the total angular momentum operator F̂ = Î + Ĵ, which is given by
the sum of the nuclear spin Î and of the angular momentum of the electrons Ĵ. In
particular, we write µ = −gFµBF̂/ℏ, where µB is Bohr’s magneton and gF is the
Landé factor [106]. The projection of F̂ on the local direction of the magnetic field is
quantized as ℏmF , where mF = −F, ...,+F is the magnetic quantum number which,
for bosonic atoms, assumes only integer values. Therefore, the space-dependent
energy levels of the atom, which result from the interaction of its magnetic dipole
moment with the magnetic field, are given by

umF (r) = mFgF µB|B0(r)|. (2.77)
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By properly engineering the static magnetic field to have a minimum at a certain
position, the atoms with mFgF > 0, usually called low-field-seeking states, will be
subject to the force −∇umF (r) directed towards the trap minimum. To confine
the atoms, a possible magnetic field configuration is the quadrupole field B0(r) ∝
(x, y,−2z), which however suffers from losses of atoms due to the likely occurrence
of Majorana spin-flips at the trap minimum [105]. Other static magnetic field
configurations include the Ioffe-Pritchard trap and cloverleaf traps (see, for more
details, Refs. [105,107] and the references therein).

The atoms are typically confined in magnetic conservative traps after the stage of
laser cooling, in which the optical molasses reach a temperature in the mK range
and densities of 1012 cm−3. To produce a Bose-Einstein condensate, it is however
necessary to further decrease the temperature: this is typically done by letting the
most energetic atoms escape from the trap, allowing the system to thermalize at a
lower temperature. This technique is called evaporative cooling, and the loss of
energetic atoms is realized by coupling, via a radiofrequency magnetic field, the
potential of low-field seeking states with repulsive potentials in the regions far from
the trap minimum.

But adopting the setup used to perform the evaporative cooling, it is also possible
to engineer radiofrequency-induced adiabatic potentials that trap the atoms in a
spatially-confined superposition of their hyperfine states. Let us consider an atom
in a region of space where both a static magnetic field B0(r) and a time-dependent
magnetic field Brf(r, t) are nonzero. Due to the static magnetic field, the atom
precesses around the local direction of the static field with the Larmor frequency

ωL(r) =
|gF |µB|B0(r)|

ℏ
, (2.78)

which depends on the spatial position. Due to the radiofrequency field Brf(r, t),
whose frequency is given by ωrf, tunneling between different magnetic sublevels
can occur, and it is more likely to happen in the regions where ωL(r) ≈ ωrf. Thus,
when both fields are present, the atoms can be confined or repelled in dressed
magnetic levels which correspond to a superposition of the bare energy levels of
Eq. (2.77). By writing the Hamiltonian of the interaction between the magnetic
fields in the rotating wave approximation, and moving to the frame rotating at ωrf,
the radiofrequency-induced adiabatic potentials read [106]

UMF
(r) = MF

√
[ℏωL(r) − ℏωrf]2 + [ℏΩr(r)]2, (2.79)

where MF labels the dressed magnetic state, while

Ωr(r) =
|gF |µB|B⊥

rf(r)|
2ℏ

(2.80)
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is the Rabi frequency among the bare levels, with B⊥
rf(r) the component of Brf(r, t)

perpendicular to B0(r) in the position r.

Considering a system confined optically along two spatial directions, the potential
UMF

(r) consists of a double well potential, as it is illustrated in Ref. [108]. In two
dimensions, UMF

(r) confines the atoms on a ring, while in three-dimensions, the
atoms will be confined around a two-dimensional shell-shaped surface [43]. We will
analyze more in detail the latter configuration in the next chapter, adopting the
formalism developed insofar to analyze the physics of shell-shaped Bose gases.
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3

Quantum physics of shell-shaped
Bose gases

In this chapter, which contains the central results of the thesis, we analyze the
physics of two-dimensional shell-shaped Bose gases. To investigate experimentally
the properties of this atomic configuration, it is necessary to implement a magnetic
confinement with radiofrequency-induced adiabatic potentials, whose basic details
are discussed in section 2.5. We model explicitly these external potentials as [43]

Ububble(r) = MF

√
[u(r) − ℏ∆]2 + (ℏΩr)2, (3.1)

where MF is the magnetic quantum number of the dressed state populated by the
atoms, ∆ and Ωr are tunable frequencies, and u(r) = m(ω2

xx
2 + ω2

yy
2 + ω2

zz
2)/2 is

the bare harmonic trap with frequencies ωx,y,z. The set of points which minimize
the potential Ububble(r) corresponds to the surface of a triaxial ellipsoid, whose
equation reads (ω2

xx
2 + ω2

yy
2 + ω2

zz
2) = 2ℏ∆/m. When the energy contribution

associated to the trapping potential is sufficiently stronger than the mean kinetic
and interaction energy, the particles will be confined across the surface of this
ellipsoid.

Actually, the first experiments with radiofrequency-induced adiabatic potentials
[109] featured an additional gravitational potential contribution mggravz, with ggrav
the acceleration of gravity. In the presence of gravity, thus, it is only possible
to produce flat condensates [109,110], or to engineer ring-shaped traps [111–114].
To confine the atomic cloud in fully-closed shells, it is necessary to carry on the
experiments in microgravity facilities, as the Cold Atom Lab [44, 51, 52], or in
free-falling experiments conducted in a drop tower [46] or in a falling elevator [50].
Most of the work of the current chapter is devoted to studying the physics of shell-
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Figure 3.1: Typical configuration of a spherically-symmetric shell-shaped condensate,
obtained by trapping an atomic gas with a radiofrequency-induced adiabatic potential in
microgravity. From Ref. [55].

shaped condensates in microgravity and, therefore, we will neglect the gravitational
potential energy mggravz.

When all the harmonic frequencies are equal, i. e. ωx,y,z = ωr, the trapping configu-
ration is spherically symmetric. In this case, and considering the limit of ∆ ≫ Ωr,
the potential of Eq. (3.1) can be approximated as the radially-shifted harmonic
trap

Uthin =
m

2
ω2
⊥(r −R)2, (3.2)

where ω⊥ = ωr(2MF∆/Ωr)
1/2 is the transverse frequency, and R = [2ℏ∆/(mω2

r )]
1/2

is the radius of the sphere. In the initial sections of this chapter, we will analyze
the thermodynamic properties of a system of interacting bosonic atoms confined
on a spherically-symmetric thin shell, see Fig. 3.1. However, instead of describing
a three-dimensional system of bosonic particles confined in the external potential
of Eq. (3.2), we will adopt the formalism of functional integration (see section 2.2)
to model a uniform Bose gas on the surface of a sphere. This explicit discussion
of the trapping potential, however, is useful to check if a purely two-dimensional
formalism is adequate. Indeed, the typical energies of the 2D phenomena we will
analyze must always be lower than the energy of the transverse confinement ℏω⊥.

The properties of ellipsoidal shells will be discussed only in the last section, where we
formulate several theoretical predictions for the ongoing microgravity experiments
on the Cold Atom Laboratory [51,52].
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3.1 Bose-Einstein condensation and thermody-

namics

Let us consider a spherically-symmetric two-dimensional Bose gas, obtained by
confining a system of atomic bosons on the surface of a thin spherical shell. We
implement here a two-dimensional description of the thermodynamic properties of
the system, based on the coherent state functional integral formulation of quantum
field theory developed in the section 2.2.

3.1.1 Derivation of the grand potential

At the equilibrium, the quantum statistical properties of the Bose gas can be
derived from the grand canonical partition function Z, which reads

Z =

∫
D[ψ̄, ψ] e−

S[ψ̄,ψ]
ℏ , (3.3)

where we define the Euclidean action S of a spherical gas as

S[ψ̄, ψ] =

∫ βℏ

0

dτ

∫ 2π

0

dφ

∫ π

0

dθ sin θ R2L(ψ̄, ψ). (3.4)

and L is the Euclidean Lagrangian. We limit ourselves to the description of bosons
with a zero-range interaction of strength g0, for which L reads

L = ψ̄(θ, φ, τ)

(
ℏ∂τ +

L̂2

2mR2
− µ

)
ψ(θ, φ, τ) +

g0
2
|ψ(θ, φ, τ)|4, (3.5)

where the kinetic part contains the angular momentum operator in spherical
coordinates

L̂2 = −ℏ2
[

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2

]
, (3.6)

and the radius of the sphere R is considered a fixed constant.

Note that, to avoid discussing the details of the external potential, we are directly
implementing the description of a two-dimensional Bose gas on a spherical manifold.
The connection between our theory and the experiments, and the discussion of
the trapping parameters requires the modeling in this space of the bare contact
interaction strength g0 between the bosons. We will make this connection in section
3.1.3 and, for now, we derive a general theory in which g0 is a generic parameter.
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The standard Bogoliubov-Popov theory of a two-dimensional Bose gas [115], and
particularly its implementation with the functional integral, can be extended to the
spherical case. The main technical differences concern the different geometry, which
produces different quantum numbers in the implementation of the Bogoliubov
transformations. We decompose the bosonic field as

ψ(θ, φ, τ) = ψ0 + η(θ, φ, τ), (3.7)

where, as in the noninteracting problem studied in section 2.1.3, the condensate
state ψ0 is represented by the l = 0, ml = 0 mode of the field. The complex
fluctuation field η(θ, φ, τ) contains all the components {l,ml} ≠ {0, 0}, and can
therefore be written as

η(θ, φ, τ) =
∑
ωn

∞∑
l=1

l∑
ml=−l

η(l,ml, ωn)

R
e−iωnτ Ylml(θ, φ),

η̄(θ, φ, τ) =
∑
ωn

∞∑
l=1

l∑
ml=−l

η̄(l,ml, ωn)

R
eiωnτ Yl †ml(θ, φ),

(3.8)

where ωn = 2πn/(βℏ) are the Matsubara frequencies, and where the factor R is
introduced to adimensionalize the components.

We substitute the field decomposition (3.7) into the Lagrangian of Eq. (3.5), and
we neglect the contributions containing cubic and quartic powers of the fluctuation
field, finding [54]

L = L0 + Lg, (3.9)

where the mean-field Lagrangian is given by

L0 = −µψ2
0 +

g0
2
ψ4
0, (3.10)

and where the Gaussian Lagrangian reads

Lg = η̄(θ, φ, τ)

(
ℏ∂τ +

L̂2

2mR2
− µ+ 2g0ψ

2
0

)
η(θ, φ, τ)

+g0ψ
2
0 [η̄(θ, φ, τ)η̄(θ, φ, τ) + η(θ, φ, τ)η(θ, φ, τ)].

(3.11)

By expanding the fluctuation field as in Eq. (3.8), we express the action of Eq. (3.4)
as a sum over ωn, l and ml, and, using the property of orthonormality of the
spherical harmonics δll′δmlm′

l
=

∫ 2π

0
dφ

∫ π
0

dθ sin θ Yl
′∗
m′
l
(θ, φ)Ylml(θ, φ), we obtain

S = S0 + Sg, (3.12)
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where S0 = 4πR2βℏ (−µψ2
0 + gψ4

0/2) is the mean-field action. The Gaussian action
Sg can be written in the following matricial form

Sg[η̄, η] =
βℏ
2

∑
ωn

∞∑
l=1

l∑
ml=−l

[
η̄(l,ml, ωn)

η(l,−ml,−ωn)

]T
M

[
η(l,ml, ωn)

η̄(l,−ml,−ωn)

]
, (3.13)

where the elements of the matrix M are defined as

M11 = −iℏωn + ϵl − µ+ 2g0ψ
2
0,

M22 = +iℏωn + ϵl − µ+ 2g0ψ
2
0,

M12 = M21 = (−1)mlg0ψ
2
0,

(3.14)

and ϵl = ℏ2l(l + 1)/(2mR2) are the energy levels of a free particle on the sphere.
Having neglected the non-Gaussian terms in the Lagrangian, it is possible to
calculate the partition function by performing the Gaussian functional integral of
the action Sg. Here we simply report the final result for the grand potential

Ω = −β−1 lnZ = Ω0 + Ωg, (3.15)

where

Ω0 = 4πR2

(
− µψ2

0 +
g0
2
ψ4
0

)
(3.16)

is the mean-field grand potential, and with

Ωg(µ, ψ
2
0) =

1

2β

∑
ωn

∞∑
l=1

l∑
ml=−l

ln{β2[ℏ2ω2
n + E2

l (µ, ψ2
0)]}, (3.17)

the Gaussian beyond-mean-field grand potential. In the previous expression, we
define El(µ, ψ

2
0) as

El(µ, ψ
2
0) =

√
(ϵl − µ+ 2g0ψ2

0)2 − g20ψ
4
0, (3.18)

which represents the excitation spectrum of the quasiparticles.

The last steps consist in calculating the sum over the Matsubara frequencies in
Eq. (3.17), namely, the sum of the discrete frequencies ωn = 2πn/(βℏ) over all
n ∈ Z. To perform this operation, we multiply the logarithm by the convergence
factor eiωn∆τ , with ∆τ → 0+. The reason for including this term lies in the
construction of the functional integral, where the field ψ̄ is evaluated at a time
infinitesimally higher than the field ψ (infinitesimally for M → ∞ imaginary
time slices) [103,116,117]. With this operation, the sum in Eq. (3.17) converges,
producing two Gaussian contributions, one is temperature-independent, the other

35



depends on temperature [117]. We report the final result for the effective grand
potential Ω(µ, ψ2

0), which reads [54]

Ω(µ, ψ2
0) = 4πR2

(
− µψ2

0 + g0ψ
4
0/2

)
+

1

2

∞∑
l=1

l∑
ml=−l

[El(µ, ψ
2
0) − ϵl − µ]

+
1

β

∞∑
l=1

l∑
ml=−l

ln
[
1 − e−βEl(µ,ψ

2
0)
]
,

(3.19)

and where the counterterms at the first line appear due to the convergence-factor
regularization. The classical field ψ0 can be determined imposing that it extremizes
the grand canonical potential, i. e. ∂Ω/∂ψ0 = 0. This condition, defining the
condensate density as n0 = ψ2

0, leads to the following relation

n0(µ) =
µ

g0
− 1

4πR2

∞∑
l=1

l∑
ml=−l

2ϵl + µ

EB
l

(
1

2
+

1

eβE
B
l − 1

)
, (3.20)

where we treat the Gaussian contributions perturbatively, considering them as
small contributions with respect to the mean-field term [118,119]. In the previous
relation, we define the Bogoliubov spectrum as

EB
l =

√
ϵl(ϵl + 2µ), (3.21)

which is obtained neglecting the higher-order beyond-mean-field corrections of
Eq. (3.20).

Substituting the previous equation into the effective grand potential, we finally
obtain the grand canonical potential Ω as a function of the chemical potential

Ω[µ, n0(µ)] = Ω0[µ, n0(µ)] + Ω(0)
g [µ, n0(µ)] + Ω(T )

g [µ, n0(µ)], (3.22)

where we define the mean-field grand potential as

Ω0[µ, n0(µ)] = −(4πR2)
µ2

2g0
, (3.23)

and the beyond-mean-field Gaussian contributions at zero and at finite temperature,
respectively, as

Ω(0)
g [µ, n0(µ)] =

1

2

∞∑
l=1

l∑
ml=−l

(EB
l − ϵl − µ), (3.24)

Ω(T )
g [µ, n0(µ)] =

1

β

∞∑
l=1

l∑
ml=−l

ln(1 − e−βE
B
l ). (3.25)
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In the next sections, we will compute Ω explicitly, but before that, let us calculate
the critical temperature of Bose-Einstein condensation of a interacting Bose gas on
the surface of a sphere.

3.1.2 Critical temperature and condensate fraction

Let us calculate the critical temperature and the condensate fraction in terms of the
bare interaction strength g0. In the next subsection, we will discuss the scattering
theory of a Bose gas on the surface of a sphere, to connect our field-theoretical
description with the experiments.

According to standard thermodynamic relations, we calculate the number density
as

n(µ) = − 1

4πR2

∂Ω[µ, n0(µ)]

∂µ
, (3.26)

where the grand potential is given by Eq. (3.22). To calculate the condensate
fraction n0/n we aim to obtain a perturbative expression of the density as a
function of the condensate density, i. e. n(n0). For this scope, we express the
chemical potential in the previous equation as µ = g0n0 + ... by inverting Eq. (3.20),
and n(n0) reads

n(n0) = n0 + f (0)
g (n0) + f (T )

g (n0), (3.27)

where we define the beyond-mean-field Gaussian contribution to the density at
zero and at finite temperature respectively, as

f (0)
g (n0) =

1

4πR2

1

2

∞∑
l=1

l∑
ml=−l

{
ϵl + g0n0

El[µ(n0), n0]
− 1

}
, (3.28)

f (T )
g (n0) =

1

4πR2

∞∑
l=1

l∑
ml=−l

ϵl + g0n0

El[µ(n0), n0]

1

eβEl[µ(n0),n0] − 1
. (3.29)

In Ref. [54], to obtain an analytical expression of n0/n and motivated by some
applications of variational perturbation theory at the lowest order [118,119], we
made use of the approximation n0 ≈ n in Eqs. (3.28) and (3.29). By doing so,
performing, as in the noninteracting case of the previous chapter, the integral over
l instead of the sum, we get

f (0)
g (n) =

mg0n

4πℏ2
+

1

4πR2

(
1 −

√
1 +

2g0mnR2

ℏ2

)
, (3.30)

f (T )
g (n) =

1

2πR2

√
1 +

2g0mnR2

ℏ2
− mkBT

2πℏ2
ln

(
e

ℏ2
mR2kBT

√
1+

2g0mnR
2

ℏ2 − 1

)
, (3.31)
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Figure 3.2: Condensate fraction of interacting bosons on the surface of a sphere at zero
temperature, plotted as a function of the adimensional interaction strength g0m/ℏ2 and
for different nR2.

and putting all these contributions together into Eq. (3.27), we simply divide by
the density n to calculate the condensate fraction of a Bose gas on the surface of a
sphere. We find

n0

n
=1 − mg0

4πℏ2
− 1

4πR2n

(
1 +

√
1 +

2g0mnR2

ℏ2

)
+
mkBT

2πℏ2n
ln

(
e

ℏ2
mR2kBT

√
1+

2g0mnR
2

ℏ2 − 1

)
,

(3.32)

which is a valid approximation of the condensate fraction for sufficiently low

interactions. At zero temperature, taking into account that x ln(eb/x− 1)
x→0−→ b for

b > 0, the condensate fraction is given by

n0

n
(T = 0) = 1 − mg0

4πℏ2
− 1

4πR2n

(
1 −

√
1 +

2g0mnR2

ℏ2

)
, (3.33)

which is shown in Fig. 3.2, plotted as a function of mg0/ℏ2, for different choices of
the parameter nR2.

In the thermodynamic limit in which N,R → ∞ with n fixed, the quantum
statistical properties of an infinite sphere must be equivalent to those of a flat
two-dimensional system. In that limit (and working at zero temperature) we obtain
n0/n = 1 −mg0/(4πℏ2), a result equivalent to the condensate fraction calculated
by Schick for a 2D Bose gas [120]. When considering a finite radius of the sphere,
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instead, the zero-temperature condensate fraction, at the leading order in the small
interaction parameter mg0/ℏ2, is given by

n0

n
(T = 0) ∼ 1 − nR2

8π

(
mg0
ℏ2

)2

. (3.34)

so that the finite-radius quantum depletion scales quadratically with the interaction
strength.

The critical temperature of the interacting Bose gas on a sphere TBEC can be
calculated imposing that n0/n = 0 into Eq. (3.32), and we obtain

kBTBEC =
2πℏ2n
m

− g0n
2

ℏ2
2mR2kBTBEC

(
1 +

√
1 + 2g0mnR2

ℏ2

)
− ln

(
e

ℏ2
mR2kBTBEC

√
1+

2g0mnR
2

ℏ2 − 1

) .
(3.35)

which is an implicit analytical expression for TBEC. We emphasize that the critical
temperature of the noninteracting case T

(0)
BEC, reported at Eq. (2.29), is reproduced

by putting g0 = 0 in this expression.

In Figs. 3.3 and 3.4, we plot the adimensional critical temperature (red dashed
line) as a function of the adimensional contact interaction strength mg0/ℏ2. Due to
the finite system size, Bose-Einstein condensation occurs at finite temperature and,
due to the peculiar form of the superfluid density, we expect that for small enough
radii, a shell-shaped condensate displays a phase of Bose-Einstein condensation
without superfluidity. The superfluid transition, modeled for Fig. 3.3 in a simplified
way with the Kosterlitz-Nelson criterion [73], will be discussed more in detail in
section 3.4, but these findings are qualitatively unchanged.

3.1.3 Scattering theory on a sphere

In the typical experiments with weakly-interacting Bose-Einstein condensates, there
is a single length that controls the physics of the system, the s-wave scattering
length. This quantity, which can be usually tuned with Feshbach resonances, is
linked to the contact interaction strength with the scattering theory.

In this section, with the goal of discussing the thermodynamics of spherical bubble-
trapped condensates, we analyze the scattering theory of particles confined on a
spherical surface. In particular, we will restrict our discussion to a large sphere
with R ≫ ξ, where ξ is the healing length of the system, which we will later
define precisely. To analyze the scattering of two identical particles on a sphere,
interacting with the interaction operator V̂ , we can consider the motion of a

39



Figure 3.3: Phase diagram of a Bose gas confined on the surface of a sphere, considering
nR2 = 102 in the top panel, and nR2 = 104 in the bottom one. The red dashed
line represents the critical temperature of Eq. (3.35), properly rescaled with physical
constants, under which the condensate fraction of the system is nonzero and the system
is a Bose-Einstein condensate (BEC). Under the black solid line, determined by the
temperature at which the superfluid density satisfies the Kosterlitz-Nelson criterion [54],
the system is also superfluid (SF). Interestingly, our theory suggests that a sufficiently
small sphere displays a superfluid phase in which the system is not condensate due to
BKT physics. This prediction holds also for the more refined modeling of section 3.4.
From Ref. [54].
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Figure 3.4: Phase diagram of a spherical bosonic film for nR2 = 105, which shows the
same quantities with respect to Fig. 3.3. Given the larger value of nR2, which, for a fixed
density n, corresponds to a larger condensate, the phase diagram is more similar to that
of a conventional infinite 2D superfluid. In that case, even if the system is superfluid
below the BKT critical temperature, there is no Bose-Einstein condensation at finite
temperature.

single particle with reduced mass m/2 in the potential V̂ . In the absence of
scattering, the free Hamiltonian of the particle with reduced mass would be given
by Ĥ0 = L̂2/(mR2), with L̂ the angular momentum operator, and the energy
eigenstates read El0 = ℏ2l0(l0 + 1)/(mR2), with l0 a quantized positive integer. The
free eigenfunctions are the spherical harmonics Ymll (θ, φ) = ⟨θ, φ| l,ml⟩, where the
brakets satisfy the following relations

∞∑
l=0

l∑
ml=−l

|l,ml⟩ ⟨l,ml| = 1,

∫ 2π

0

dφ

∫ π

0

dθ sin θ |θ, φ⟩ ⟨θ, φ| = 1. (3.36)

The full Hamiltonian Ĥ0 + V̂ has the eigenstates |Ψl0⟩, which are in principle

unknown, and we define the transition operator T̂ through the relation

T̂ |l,ml⟩ = V̂ |Ψl0⟩ , (3.37)

namely, as the operator whose action on the eigenstates of the free Hamiltonian is
equivalent to the action of the interaction operator on the eigenstates of the full
Hamiltonian. The Schrödinger equation (Ĥ0 + V̂ ) |Ψl0⟩ = El0 |Ψl0⟩ can be formally
solved as

|Ψl0⟩ = |l0,ml0⟩ +
1

El0 − Ĥ0 + iη
V̂ |Ψl0⟩ , (3.38)
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where η → 0+ is a small vanishing parameter included to regularize the calculations,
since the eigenvalues of Ĥ0 coincide with El0 . Acting with V̂ on the left, we find
the Lippmann-Schwinger equation [121,122]

T̂ = V̂ + V̂
1

El0 − Ĥ0 + iη
T̂, (3.39)

where we used the definition of the transition operator.

Considering the contact interaction between bosons V̂ = (g0/R
2) |θ, φ⟩ ⟨θ, φ|, where

g0 is exactly the amplitude introduced in the functional integral calculations, we
calculate the scattering amplitude Tl′,l0 = ⟨l′,m′

l| T̂ |l0,ml0⟩ by averaging Eq. (3.39).
We obtain

Tl′,l0 =
g0

4πR2
δl′l0 δm′

lml0
+

g0
4πR2

∞∑
l=0

l∑
ml=−l

Tl′,l0
El0 − El + iη

δl′l δm′
lml

(3.40)

where we also inserted the identity (3.36) at the right-hand side and integrated
over the angles. The recursive solution of Eq. (3.40) would generate the infinite
Born series of terms at the right-hand side [123] and, to avoid that, we implement
some approximations. We first bring the second term on the right to the left, and
we calculate the sum over all possible l′ and m′

l, finding

∞∑
l′=0

l′∑
m′
l=−l′

[
Tl′,l0 −

g0
4πR2

Tl′,l0
El0 − El′ + iη

]
=

g0
4πR2

. (3.41)

Then, we limit to the regime of low-energy scattering in which the matrix element
Tl′,l0 = ⟨l′,m′

l| V̂ |Ψl0⟩ is nonzero only when the state |l′,m′
l⟩ is near the state |l,ml⟩.

In this case, we can approximate the first term in Eq. (3.41) as

Tl′,l0 ≈ T(El0 + iη) δl′l0 δm′
lml0

, (3.42)

where T(El0 + iη) is the on-shell T matrix described in Ref. [124], and in the second
term in Eq. (3.41) we assume

Tl′,l0 ≈ T(El0 + iη), (3.43)

where the Kronecker deltas are now absent because the factor [El0 − El′ + iη]−1

acts already as a smeared delta function. With these approximations, Eq. (3.41)
leads to

1

T(El0 + iη)
=

4πR2

g0
+

∞∑
l=0

l∑
ml=−l

1

El − El0 − iη
, (3.44)
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which relates the on-shell T matrix with the contact interaction strength g0. Follow-
ing Refs. [125,126], instead of the summation at the right-hand side of the previous
equation, we integrate over l up to an ultraviolet cutoff lc. Thus, calling T(El0 + iη)
as Tlc(El0 + iη) to remind ourselves of the cutoff, we get

Tlc(El0 + iη) = − ℏ2

2mR2

1

−2πℏ2
mg0

+ 1
2

ln
[ l0(l0+1)
lc(lc+1)

]
− iπ

2

, (3.45)

where the limit of η → 0+ is performed after the integration.

Our goal is to find a relation between the contact interaction strength g0, and the
cutoff lc. In particular, we will also include this cutoff in the zero temperature
grand potential and, by using the relation between g0 and lc, we will be able to get
a renormalized cutoff-independent grand potential Ω. For low-energy scattering,
the on-shell T matrix can be thought a renormalized interaction strength, and is
proportional to the s-wave scattering amplitude f(l0), which is given by [127]

f(El0) = −4ℏ2

m

1

cot δ0(El0) − i
, (3.46)

where, differently from Ref. [127], we have multiplied by a factor −
√
i/(8πk) to

get the flat-case scaling of f(El0) at large distances. In the scattering amplitude,
the phase shift δ0(El0) of the partial s-wave reads

cot δ0(El0) = − 2

π
[Ql0(cos θ0) +B−1], (3.47)

where Ql0(cos θ0) is the Legendre associated function of second kind, θ0 is the range
of the potential, and B−1 is a constant which depends on high-energy scattering
properties. As in Ref. [128], the parameter B−1 can be fixed introducing the s-wave
scattering length, and we set B−1 = ln(θ0/θs), with θs the s-wave scattering angle.
Note that we can define as, i. e. the two-dimensional s-wave scattering length on
the sphere, as as = Rθs. For a sufficiently large spherical surface, such that the
potential range θ0 is very small and l0 is much larger than the zero-point motion,
the scattering amplitude can be expanded as [127]

f(El0) = −2πℏ2

m

1

ln
(
l0θseγ

2

)
− iπ

2

. (3.48)

As anticipated, we impose that Tlc(El0 + iη) = f(El0)/(4πR
2) at the leading order

in l0, and thus, from Eqs. (3.45), (3.48), we find the contact interaction strength

g0 = −2πℏ2

m

1

ln[
√
lc(lc + 1) aseγ/(2R)]

, (3.49)
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expressed as a function of the cutoff lc, and of the s-wave scattering length on the
sphere.

Before of concluding the discussion of scattering on a spherical surface, we remark
that the results of Eqs. (3.48) and (3.49) are obtained assuming a large radius of
the sphere. From a quantitative point of view, we thus suppose that the radius is
much larger than the healing length ξ, which can be modeled as

ξ =

√
ℏ2

2mg2Dn
, (3.50)

where we can estimate g2D as the mean-field contact interaction strength in two-
dimensional weakly-interacting condensates, namely

g2D = −4πℏ2

m

1

ln(na2s)
. (3.51)

Strictly speaking, the two-dimensional s-wave scattering length in g2D refers to
a flat two-dimensional system, while the length appearing in Eq. (3.49) refers to
scattering on the spherical surface. These quantities are in principle different, and
the hypothesis of working in the large-radius regime justifies the use of relations
obtained for flat condensates. In particular, it is within this spirit that we assume
for as the value calculated in works on quasi two-dimensional condensates [129],
namely

as = 2

√
π

C
exp

(
−

√
π

2

l⊥
a3D

− γE

)
l⊥, (3.52)

where γE is the Euler-Mascheroni constant, C = 0.915 is calculated solving nu-
merically the two-body problem, l⊥ is the shell thickness, and a3D is the s-wave
scattering length in three-dimensions. We emphasize that all these quantities are
known and, in particular, that l⊥ =

√
ℏ/(mω⊥), with ω⊥ defined in Eq. (3.2) in

terms of the trap frequencies.

3.1.4 Thermodynamics

After discussing the scattering properties of a spherical Bose gas, we are ready to
derive the regularized grand potential. The zero-temperature contributions to the
grand potential of Eq. (3.22) can be expressed as

Ω(0)

4πR2
= − µ2

2g0
+

1

2

∫ lc

1

dl (2l + 1) (EB
l − ϵl − µ), (3.53)
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where we integrate instead of summing, and where we include an ultraviolet cutoff
lc. The integral can be performed analytically, and its logarithmic divergence in
the parameter lc is balanced exactly by the same scaling of the bare interaction g0,
as can be seen in Eq. (3.49). Including also the finite-temperature contribution of
Eq. (3.22), we get

Ω

4πR2
= − mµ2

8πℏ2

{
ln

[
4ℏ2

m(µ+ EB
1 + ϵ1)a2s e

2γ+1

]
+

1

2

}
+
mEB

1

8πℏ2
(EB

1 − ϵ1 − µ)

+
1

4πR2

1

β

∞∑
l=1

l∑
ml=−l

ln(1 − e−βE
B
l ), (3.54)

which is the grand potential per unit of area of a spherically symmetric Bose gas.
Note that EB

1 =
√
ϵ1[ϵ1 + 2µ], with ϵ1 = ℏ2/(mR2), and in the thermodynamic

limit in which R → ∞ we have EB
1 , ϵ1 → 0. In this limit, and at a one-loop level,

our grand potential coincides with the one obtained in Refs. [125,126] where an
infinite and uniform Bose gas is studied.

We calculate the number of atoms in the condensate deriving the grand potential
with respect to the chemical potential µ. We obtain

N

4πR2
=

mµ

4πℏ2
ln

[
4ℏ2

m(µ+ EB
1 + ϵ1) a2s e

2γ+1

]
+

mµ

4πℏ2
EB

1 + ϵ1
µ+ EB

1 + ϵ1

+
1

4πR2

∞∑
l=1

l∑
ml=−l

ϵl
EB
l

1

eβE
B
l − 1

, (3.55)

whose finite-size contributions, as occurs for the grand potential, vanish in the
thermodynamic limit.

The typical experiments with Bose-Einstein condensates are done with a fixed
number of particles and, therefore, are not compatible with a description in the
grand canonical ensemble: the systems are not exchanging particles with an external
reservoir. It is however simpler to calculate the partition function in this ensemble,
and the spurious fluctuations in the number of atoms do not usually prevent the
correct description of the experiments, provided that the number of particles is
sufficiently large. Despite these considerations, it is formally inconsistent to fix a
temperature-independent value of the chemical potential when, on the contrary, it
is the number of atoms that is kept fixed. The correct procedure is, in this case, to
perform the following Legendre transformation:

F (T, V,N) = µ(T, V,N)N + Ω[T, V, µ(T, V,N)], (3.56)
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Figure 3.5: Thermodynamic functions of a spherically-symmetric bosonic gas plotted as
a function of the temperature T/Tin, where Tin = 35nK. These curves represent: the
specific heat per unit of mass and of atom number c̃v (green dot-dashed), the entropy per
unit of mass and atom number s̃ (black), the ratio κT /κS between the isothermal and
adiabatic compressibilities (orange dashed), the adimensional chemical potential µ/El⊥
(red long-dashed), and the grand potential Ω/El⊥ (blue thick). For this plot, we consider a
spherically-symmetric gas of 87Rb atoms trapped with the external potential of Eq. (3.1),
where we set MF = 1, ωr = 2π× 173Hz, ∆ = 2π× 30 kHz, and Ωr = 2π× 3 kHz [52], and
we have El⊥ = ℏ2/(2ml2⊥), with l⊥ = 0.4µm the shell thickness. Moreover, the scattering
length is modeled as in Eq. (3.52). From [55].

in which F , the free energy of the system that is determined by fixing T , V , N ,
is obtained from the grand potential. For this operation, it is necessary to know
the chemical potential as a function of T , V , N . To obtain it numerically, we
calculate the number of atoms N of Eq. (3.55) for a fixed volume V and on a
grid of values of T and µ. After that, we fit and invert numerically the function
N(T, V, µ), obtaining µ(T, V,N).

Once that the free energy is known, all the other thermodynamic functions can
be derived with the usual thermodynamic identities. We show in Fig. 3.5 some
relevant thermodynamic functions of a spherically-symmetric Bose gas.

3.2 Bare superfluid density

We derive the superfluid density of a two-dimensional spherical superfluid, by
extending the functional integral calculation implemented in section 3.1.1. Inspired
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by Landau, i. e. Ref. [12], we suppose that the trapping potential rotates along a
fixed axis with a constant angular velocity, so that the superfluid part of the fluid
remains unperturbed, while, at the equilibrium, the normal fluid rotates with the
trap.

Thus, when a spherical superfluid is rotating, the angular momentum of the system
is proportional to the nonclassical moment of inertia and, therefore, it is also
proportional to the density of the normal fluid. Given the normal density, it is then
possible to derive the superfluid density as the total density minus the normal one.
To implement quantitatively these concepts, we impose a rotation of the normal
fluid along z, with angular velocity Ωz, by shifting the imaginary time derivative
in Eq. (3.5) as

ℏ∂τ → ℏ∂τ + ΩzL̂z, (3.57)

where L̂z = −iℏ ∂φ. Taking into account this modified term, the steps in section
3.1.1 can be essentially repeated up to the Lagrangian of Eq. (3.11), which is shifted
as Lg → Lg − iℏ η̄(θ, φ, τ) ∂φη(θ, φ, τ). Then, besides including a few additional
terms, all the other calculations can be done in the same formal order, and the
grand potential contribution at Eq. (3.17) reads

Ωg(µ, ψ
2
0) =

1

2β

∑
ωn

∞∑
l=1

l∑
ml=−l

ln{β2[ℏ2ω2
n + ξ2l (µ, ψ

2
0)]}, (3.58)

where ξl(µ, ψ
2
0) = El(µ, ψ

2
0) +mlℏΩz, with El(µ, ψ

2
0) given by Eq. (3.18). As before,

we perform the sum over the Matsubara frequencies with standard techniques (see
Ref. [98]), and the total grand potential becomes

Ω(µ, ψ2
0) =(4πR2)

(
− µψ2

0 +
g0
2
ψ4
0

)
+

1

2

∞∑
l=1

l∑
ml=−l

El(µ, ψ
2
0)

+
1

β

∞∑
l=1

l∑
ml=−l

ln{1 − e−β[El(µ,ψ
2
0)+mlℏΩz ]},

(3.59)

where the zero-temperature counterterms, included in the previous Eq. (3.19), are
inessential for the derivation of the present section.

Given the grand potential of the rotating fluid, and considering the analogy with
a similar calculation done in flat geometries [97], the angular momentum of the
normal fluid can be calculated as

Ln = −∂Ω(µ, ψ2
0)

∂Ωz

⏐⏐⏐⏐
ψ2
0=n0(µ)

Ωz∼0−→ β

∞∑
l=1

l∑
ml=−l

ℏ2m2
l

eβE
B
l

(eβE
B
l − 1)2

Ωz, (3.60)
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where the right-hand side is obtained by expanding the resulting angular momentum
for a small angular velocity Ωz. Taking into account the known identity

l∑
ml=−l

m2
l =

1

3
(2l + 1)(l2 + l), (3.61)

the angular momentum of the normal fluid, which is dragged by the rotating trap,
reads

Ln =
β

3

∞∑
l=1

(2l + 1) ℏ2(l2 + l)
eβE

B
l

(eβE
B
l − 1)2

Ωz, (3.62)

which results from a microscopic calculation. But the angular momentum can also
be expressed as Ln = InΩz, where

In =
2

3
MnR

2 (3.63)

is the moment of inertia of a hollow sphere with mass Mn = mnn(4πR2), and

n
(0)
n is the (bare) number density of the normal fluid. A simple comparison of the

previous relations yields the bare normal density of the spherical superfluid

n(0)
n = β

∞∑
l=1

(2l + 1)

4πR2

ℏ2l(l + 1)

2mR2

eβE
B
l

(eβE
B
l − 1)2

, (3.64)

and, consequently, the bare superfluid density

n(0)
s = n− n(0)

n , (3.65)

which coincides with the result postulated in Ref. [54].

The superfluid density derived in this section is denoted as bare, meaning that
it takes into account only the Bogoliubov excitations of the system and that it
neglects the vortex-antivortex excitations. In two-dimensional systems, including
spherical superfluids, these topological excitations proliferate with the temperature,
renormalizing the superfluid density. In the next sections, we will include in our
theory the physics of vortices, by modeling explicitly their contribution to the
energy of the superfluid.

3.3 Vortices in a spherical superfluid shell

In the calculations of the previous sections we obtained the grand potential Ω of
a spherical bosonic gas as a sum of a mean-field part and of a beyond-mean-field
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part, the latter obtained at a one-loop level. In particular, the beyond-mean-field
terms describe the Bogoliubov excitations of the system on top of the mean-field
condensate state. In ultracold bosonic gases, however, the Bogoliubov quasiparticles
are not the only excitations that the system may possess. Indeed, even at zero
temperature, a superfluid can host quantized vortices, namely, configurations of
the macroscopic field in which the fluid rotates around a single point (the core of
the vortex) with quantized angular momentum.

In this section, we construct an effective model to calculate the energy of a system
of vortices on a spherical superfluid film. For this scope, we suppose that the
superfluid at a finite temperature is described by the order parameter

ψ(θ, φ) =
[
n(0)
s (T )

]1/2
eiΦ(θ,φ), (3.66)

where n
(0)
s is the uniform (bare) superfluid density given by Eq. (3.65), and where

the field Φ(θ, φ) represents the phase field of the bosonic fluid. The bare superfluid
density, which contains only the contribution due to the Bogoliubov excitations
vanishes at a temperature T ∗, and therefore, when this superfluid transition occurs,
the order parameter becomes zero. Actually, it turns out that the vortical configu-
rations of the superfluid can be thermally excited, and renormalize the superfluid
density. Since the present section discusses the calculation of the vortex energy,
the issue of renormalization will be analyzed in detail in the next section.

We calculate the kinetic energy associated to the order parameter ψ(θ, φ) as

E =

∫ 2π

0

dφ

∫ π

0

dθ sin θ R2 ψ∗(θ, φ)

(
L̂2

2mR2

)
ψ(θ, φ), (3.67)

where the energy contributions associated to the radial motion, as in the previous
section, are also not included here. After some simple steps, the kinetic energy can
be rewritten as

E =
1

2
mn(0)

s

∫ 2π

0

dφ

∫ π

0

dθ sin θ v(θ, φ) · v(θ, φ), (3.68)

in which we define the velocity field v(θ, φ) as

v(θ, φ) =
ℏ
mR

∇̃RΦ(θ, φ), (3.69)

where ∇̃R = eθ ∂θ + (sin θ)−1 eφ ∂φ is the dimensionless gradient in spherical coor-
dinates for R fixed, with eθ and eφ the unitary vectors along θ and φ. Due to its
definition, the velocity field is irrotational in all the spatial coordinates where the
phase field is defined, namely

∇× v = 0, (3.70)
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which can be verified calculating the curl in spherical coordinates and considering
that the velocity field has a zero radial component. However, a superfluid can have
some phase defects, namely, point singularities where the phase field is not defined
and the curl of the velocity is nonzero. In general, we can express v(θ, φ) as

v(θ, φ) = v0(θ, φ) + vv(θ, φ), (3.71)

decomposing it in an irrotational part v0(θ, φ) without phase defects, and in a part
with nonzero curl vv(θ, φ) that describes the velocity field of the vortices. For the
vortical part, we write the Feynman-Onsager condition of quantized circulation
[130,131], namely ∮

∂Σ

vv · dl = 2π
ℏ
m

∑
i

qi, (3.72)

where qi are the integer charges of the vortices inside the region Σ, with border ∂Σ.

The fields v0 and vv are orthogonal, and the kinetic energy splits into the sum of
the kinetic energy of the vortical fluid, and of the kinetic energy of the (everywhere)
irrotational fluid. Broadly speaking, the kinetic energy of the part of the fluid
without phase defects can be associated to the grand potential derived previously
in Eq. (3.22). This analogy is motivated by works on two-dimensional superfluid
fermionic systems [132], where the kinetic energy contribution without vortices, in
the form of Eq. (3.68), is obtained from a microscopic calculation analogous to our
Bogoliubov-Popov theory. To analyze, as stated, the energy of the vortical part of
the fluid, here we focus only on the kinetic energy associated to vv(θ, φ), which
reads

E(vor) =
1

2
mn(0)

s

∫ 2π

0

dφ

∫ π

0

dθ sin θ R2 vv(θ, φ) · vv(θ, φ), (3.73)

and, once that the velocity field is known, can be calculated analytically.

To obtain vv(θ, φ), we consider a system of Mv vortices with charges qi, where
i = 1, ...,Mv. Due to topological constraints, the net vortex charge of a spherical
superfluid must be zero. Indeed, a path ∂Σ on the sphere corresponds to two
complementary spherical caps Σ1 and Σ2. If the path ∂Σ is chosen in a such a way
that Σ1 does not contain vortices, and that Σ2 contains all the vortices, one finds
that

Mv∑
i=1

qi = 0 (3.74)

by applying to both caps the condition of quantized circulation of Eq. (3.72).
We now assume that the flow associated to the vortical velocity field vv(θ, φ) is
incompressible, namely, that ∇ · vv = 0. From this condition, it follows that

vv(θ, φ) = 2π
ℏ
mR

er ×
[
∇̃R χ(θ, φ)

]
, (3.75)
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where er is the unitary vector along the radial direction, and where χ(θ, φ) is the
stream function, which is constant along the streamlines of the fluid. For point
vortices, the stream function can be calculated analytically, and the velocity field
is therefore known. Indeed, introducing the vortex charge density

nv(θ, φ) =
Mv∑
i=1

qi

[
δ(cos θ − cos θi) δ(φ− φi) −

1

4π

]
, (3.76)

where the factor 1/(4π) is introduced for regularization purposes by using the
condition of charge neutrality of Eq. (3.74), the stream function is determined by

− L̂2

ℏ2
χ(θ, φ) = nv(θ, φ), (3.77)

where the angular momentum operator is defined as in Eq. (2.25). The general
form of the stream function reads

χ(θ, φ) =
Mv∑
i=1

χi(θ, φ), (3.78)

where we define

χi(θ, φ) =
qi
2π

ln

[
sin

(
γi
2

)]
, (3.79)

and γi is the angular distance between (θ, φ) and (θi, φi). The detailed steps to
solve Eq. (3.77), which is essentially the Green’s function of the Laplace equation
in spherical coordinates, are shown in the Appendix A. We stress that, by using
the bisection formula of the sine and writing explicitly the cosine of the angular
distance, one finds

sin(γi/2) =

√
1 − cos θ cos θi − sin θ sin θi cos(φ− φi)

2
, (3.80)

which allows us to determine the single-vortex stream function χi(θ, φ) once that
the position of its core (θi, φi) is fixed.

For a given configuration of the vortices, the velocity field vv(θ, φ) can be calculated
with Eq. (3.75), and the energy of Eq. (3.73) can be expressed as

E(vor) =
Mv∑
i=1

E
(vor)
i +

Mv∑
i,j=1
i ̸=j

E
(vor)
ij , (3.81)
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where the self-energy contribution reads

E
(vor)
i =

ℏ2n(0)
s

2m

∫ 2π

0

dφ

∫ π

ϵ

dθ sin θ
[
2π (∇̃Rχi)

]2
, (3.82)

with ϵ a small angular cutoff included to regularize the self-energy, and where

E
(vor)
ij =

ℏ2n(0)
s

2m

∫ 2π

0

dφ

∫ π

0

dθ sin θ
[
2π (∇̃Rχi)

]
·
[
2π (∇̃Rχj)

]
(3.83)

is the “interaction”-energy contribution among the vortices. Due to symmetry
considerations, the self-energy integrals can be evaluated for θi = 0, φi = 0 without
loss of generality, leading to

E
(vor)
i =

ℏ2n(0)
s

m
πq2i

{
ln

[
1

sin(ϵ/2)

]
− 1 + cos ϵ

4

}
, (3.84)

where we simply integrated [2π (∂θχi)]
2 = [(qi/2) cot(θ/2)]2 over the spherical

coordinates. The terms E
(vor)
ij can be calculated integrating Eq. (3.83) by parts

and using the property of Eq. (A.1) of the Green’s function, obtaining

E
(vor)
ij = −ℏ2n(0)

s

m
π qiqj

{
ln

[
sin

(
γij
2

)]
+

1

2

}
, (3.85)

where

sin

(
γ12
2

)
=

√
1 − cos θ1 cos θ2 − sin θ1 sin θ2 cos(φ1 − φ2)

2
(3.86)

is the angular distance between the couple of vortices. Putting everything together,
the general expression of E(vor) is given by

E(vor) =
Mv∑
i=1

ℏ2n(0)
s

m
πq2i

(
ln

{
sin[ξ/(2R)]

sin(ϵ/2)

}
+

1 − cos ϵ

4

)

−
Mv∑
i,j=1

ℏ2n(0)
s

m
π qiqj ln

{
sin(γij/2)

sin[ξ/(2R)]

}
,

(3.87)

where we used the conditions of charge neutrality and the properties of the loga-
rithms to include Mv terms of the form of ln{sin[ξ/(2R)]}, where ξ is the healing
length of the superfluid.

The kinetic energy of the vorticous superfluid depends on the cutoff ϵ, which,
in general, is unknown and arbitrary. In particular, the first line of Eq. (3.87)
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represents the energy necessary to create a system of Mv vortices with charges
qi, with i = 1, ...,Mv. We expect that, at least for a sphere with a radius R ≫ ξ,
these self-energy terms coincide with those obtained by Kosterlitz and Thouless
in the flat case [71]. Thus, denoting with 2q2µv the energy necessary to create a
vortex-antivortex dipole with charges ±q at the minimal distance of ϵ ∝ ξ/R, we
assume that the vortex chemical potential µv is given by

µv ≈
ℏ2n(0)

s

m
π ln

[
(ξ/R)

ϵ

]
=

ℏ2n(0)
s

m
π [ln(2

√
2) + γE], (3.88)

where the last expression coincides with the value obtained in Ref. [71]. In conclu-
sion, we obtain the kinetic energy of a spherical vorticous superfluid, namely

E(vor) =
Mv∑
i=1

q2i µv − π
ℏ2n(0)

s

m

Mv∑
i,j=1
i ̸=j

qiqj ln

[
2R sin(γij/2)

ξ

]
, (3.89)

which holds in the large-sphere regime. We emphasize that the energy derived here
reproduces the known result reported in Ref. [133]. At the same time, we stress
that, with this derivation, we can justify the introduction of the chemical potential
µv, on which the calculations of the next section are based.

3.4 Renormalization of the superfluid density

At zero temperature, in a uniform system of weakly-interacting bosons, the super-
fluid density coincides with the density itself. When the temperature is increased,
however, thermal excitations appear spontaneously in the system, decreasing the
portion of the fluid which displays superfluid properties. From a microscopic point
of view, this “normal” fluid component that appears at finite temperature is com-
posed by two kinds of excitations: the Bogoliubov quasiparticles, and the vortices.
Actually, in a nonzero but low temperature regime, the production of free vortices at
large distances from each other requires a large amount free energy, and is therefore
highly unfavored. In this case, one may assume that the Bogoliubov excitations
are the only quasiparticles in the system, and that the Landau superfluid density,
obtained in Eq. (3.65), is a good approximation of the real superfluid density ns.

Concerning its temperature dependence, the Landau superfluid density n
(0)
s goes to

zero smoothly at a temperature T ∗, but, in two-dimensional systems, this simple
behavior does not represent what occurs in the experiments. Indeed, while the
free vortices have a high free-energy cost at low temperatures, at which they can
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only exist as vortex-antivortex dipoles, they actually unbind and exist as thermal
excitations when a critical temperature is reached. At this “BKT” transition, which
is named after Berezinskii, Kosterlitz and Thouless, the vortices proliferate, and
the vortical velocity field disrupts any underlying superfluid flow.

This superfluid transition has been qualitatively and quantitatively analyzed in
Refs. [69,71,72], and the specific analysis for two-dimensional superfluid Helium was
done by Nelson and Kosterlitz in Ref. [73]. In the infinite-size case, Bose-Einstein
condensation cannot occur due to the Hohenberg-Mermin-Wagner theorem [90,91],
but superfluidity, associated to quasi-long-range order and to a power-law decay of
the phase correlations, does occur. It was shown that the bare superfluid density
n
(0)
s is renormalized to ns by the thermal excitation of vortices, and that ns jumps

abruptly to zero at a temperature given by the Kosterlitz-Nelson criterion [73]

ns(T
−
BKT)

TBKT

=
2

π

mkB
ℏ2

, (3.90)

so that the size of the jump is a universal constant which does not depend on the
interatomic interactions. In finite-size two-dimensional superfluids, Bose-Einstein
condensation takes place, and the BKT transition typically occurs as a smooth
nonuniversal crossover, rather than a universal system-independent jump. The main
underlying mechanism is however the same: the unbinding of vortex-antivortex
dipoles and the proliferation of free vortices.

In this section we model the BKT transition in bubble-trapped bosonic superfluids.
In particular, to employ the analytical relations obtained in the previous sections, we
will limit here to the spherically-symmetric case. The Kosterlitz-Thouless analysis
is based on the analogy between a system of electric charges in two dimensions,
whose interaction scales logarithmically with their distance, and the physics of
vortices in a superfluid. In extending this analogy to the spherical case, we consider
a vortex-antivortex dipole with quantized unitary charges, whose energy, due to
Eq. (3.89), reads

βU0(θ) = 2βµv + 2πK0 ln

[
2R

ξ
sin

(
θ

2

)]
, (3.91)

where, without loss of generality, we consider φ1 = φ2 = 0 and θ1 = θ, θ2 = 0. In
the previous equation, we choose the symbol U0 for the bare interaction energy
between the vortices instead of E(vor), and we define the parameter

K0 =
ℏ2n(0)

s

mkBT
, (3.92)

which is essentially the adimensionalized bare superfluid density. Due to the
presence of other vortex-antivortex dipoles in the angular interval θ among the
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charges, the “Coulomb” force is screened as

dU

dθ
=

1

ε(θ)

dU0

dθ
, (3.93)

and U , the renormalized interaction potential of the vortices, reads

βU(θ) =

∫ θ

ξ/R

dθ′
πK(θ′)

tan(θ′/2)
= 2π

∫ ℓ(θ)

ℓ(ξ/R)

K(θ′) d[ℓ(θ′)], (3.94)

where ℓ(θ) = ln[(2R/ξ) sin(θ/2)], and we define the renormalized parameter

K(θ) =
ℏ2

mkBT

n
(0)
s

ε(θ)
, (3.95)

which is essentially the renormalized superfluid density ns = n
(0)
s /ε(θ) in an

adimensional form. Once that the relative dielectric function ε(θ) is known, it is
then possible to calculate the renormalized superfluid density, and the renormalized
interaction U(θ).

Let us develop a perturbative calculation of the dielectric function ε(θ). We
express ε(θ) in terms of the electric susceptibility of the dipoles, i. e. χe(θ), as
ε(θ) = 1 + 4πχe(θ), and we calculate χe(θ) as

χe(θ) =

∫ θ

ξ/R

dθ′ nd(θ′)α(θ′), (3.96)

namely, as the product between the polarizability of the superfluid medium α(θ′)
and the density of dipoles nd(θ′) at a distance θ′, integrated for all θ′ < θ. In this
way, the renormalized superfluid parameter K(θ) can be expressed as

K−1(θ) = K−1
0 + 4πK−1

0

∫ θ

ξ/R

dθ′ nd(θ′)α(θ′), (3.97)

as follows from its definition at Eq. (3.95). We now implement a perturbative
calculation of nd(θ′) and of α(θ′). We express the density of dipoles as [134,135]

nd(θ′) = 2π
R2

ξ4
sin θ′ y20 e

−βU(θ′) + o(y40), (3.98)

namely, as the product between the integral measure 2π sin θ′(R/ξ)2 and the dipole
density along θ, which, at the lowest order in the vortex fugacity y0 = e−βµv , is
proportional to the Boltzmann factor y20 e

−βU(θ′).
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To calculate α(θ′), we consider a vortex-antivortex dipole with an angular distance
θ′ in an external superfluid flow with velocity vext. For small θ′, the external flow
is practically uniform, and it is the analogous of an “electric” field |e| = 2mvext/ℏ
that polarizes the medium between the vortex and the antivortex. At a finite
temperature, the dipole moment of the vortex antivortex dipole is given by

⟨d(θ′)⟩ = ⟨2R sin(θ′/2) cosφ⟩, (3.99)

where we assume that the flow forms and angle φ with the dipole moment, and
where the thermal average is performed with the Boltzmann factor

exp{−[βU0(θ
′′) − πK0 d(θ′′) · e]}, (3.100)

and integrating in the annulus θ′ < θ′′ < θ′ + dθ. The polarizability is then given
by [71,135]

α(θ′) =
∂

∂|e|
⟨2R sin(θ′/2) cosφ⟩

⏐⏐⏐⏐
|e|=0

, (3.101)

from which we find that

α(θ′) = 2πK0R
2 sin2(θ′/2). (3.102)

Putting Eq. (3.98) and (3.102) inside Eq. (3.97), we can write the inverse of the
renormalized superfluid parameter as

K−1(θ) = K−1
0 + 4π3

∫ ℓ(θ)

ℓ(ξ/R)

y2(θ′) d[ℓ(θ′)], (3.103)

where

y2(θ) = y20
sin4(θ/2)

[ξ/(2R)]4
e−βU(θ) (3.104)

is the renormalized fugacity of a spherical superfluid. Considering the different
equivalent forms of the renormalized interaction U(θ) of Eq. (3.94), the renormalized
fugacity can also be written as

y2(θ) = y20 exp

{
4ℓ(θ) − 2π

∫ ℓ(θ)

ℓ(ξ/R)

K(θ′) d[ℓ(θ′)]

}
, (3.105)

where the dependence from the renormalization group scale ℓ(θ), which contains
the vortex-antivortex chordal distance, is made explicit. We emphasize that
Eq. (3.105) leads to an expression of y(θ) in the spherical case which is the
analogous of the flat-case one obtained by Young in 1978, and avoids making
further approximations [136,137]. Finally, we derive Eqs. (3.103) and (3.105) with
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respect to ℓ(θ), to obtain the renormalization group differential equations of a
spherical superfluid, namely

∂K−1(θ)

∂ℓ(θ)
= 4π3y2(θ),

∂y(θ)

∂ℓ(θ)
= [2 − πK(θ)] y(θ),

(3.106)

which allow to calculate the renormalized superfluid parameters using the bare ones
as initial conditions. Note that this two-step renormalization group procedure yields
a renormalized superfluid density which takes into account both the Bogoliubov
quasiparticles and the vortices. The validity of this approach has been carefully
analyzed in Ref. [138], where the critical temperature obtained through the two-step
procedure is found to be in good agreement with that of Quantum Monte Carlo
simulations and of functional renormalization group ones.

The numerical solution of the renormalization group equations (3.106) in the
interval ℓ(θ) ∈ [ℓ(ξ/R), ℓ(π)] yields the solutions {y(π), K(π)} as a function of
temperature and, therefore, allows to calculate the renormalized superfluid density
ns = mkBTK(π)/ℏ2. In particular, as initial condition at ℓ(θ) = ℓ(ξ/R), we
consider the bare values of y0 and of K0. These parameters, which are calculated
numerically according to their definitions, depend on the bare Landau superfluid
density n

(0)
s of Eq. (3.65). In turn, the calculation of n

(0)
s at a fixed temperature,

number of atoms, and area, requires the knowledge of the equation of state, i. e.
of the chemical potential µ(T, V,N) discussed in section 3.1.4. By putting all
these elements together, it is possible to study how the BKT transition occurs in
bubble-trapped superfluids.

Implementing this description for the typical number of atoms, temperature, and
interaction regimes, we analyzed the superfluid BKT transition for experimentally
relevant configurations in Ref. [55]. Due to the finite size of the system, the
renormalization group equations are solved up to the finite scale ℓ(π), which implies
that the superfluid density vanishes smoothly when increasing the temperature.
This behavior can be seen in Fig. 3.6(a), where we plot the superfluid fraction as a
function of temperature.

We identify the typical temperature at which the finite-size BKT transition occurs
with Tin, which is the temperature of the inflection point of ns/n [139]. The width
of the transition is instead identified as the temperature interval corresponding to
the intersection of the tangent in ns(Tin) with the constants ns/n = 0, ns/n = 1.
The other panels show the universal scaling of finite-size BKT physics, depicting
in Fig. 3.6(b) the values of mkBTin/[ℏ2ns(Tin)], and showing in Fig. 3.6(c) how
the finite width of the transition vanishes when increasing the system size. These
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(a)

(b)

(c)

Figure 3.6: Superfluid BKT transition in bubble-trapped condensates. Panel (a) shows
the superfluid fraction as a function of temperature, with Tin being the inflection point.
In panel (b) we plot mkBTin/[ℏ2ns(Tin)] as a function of R/ξ, showing how, for different
values of the two-dimensional density n, all the data collapse on the same line. Panel
(c) highlights the logarithmic scaling of the transition width as ∆T/Tin = 2.1/ ln2(5R/ξ)
(see Refs. [140–142]), which is justified by the correlation length of BKT theory [72]. We
use for this plot the same parameters adopted for Fig. 3.5. From Ref. [55].
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universal, i. e. interaction independent, scalings emerge when the horizontal axis is
rescaled as R/ξ, where the vortex core size ξ is identified with the healing length
of Eq. (3.50).

3.5 Numerical results for ellipsoidal shells

In the previous sections of this chapter, we analyzed the physics of bubble-trapped
condensates, obtaining several analytical results for a spherically-symmetric config-
uration. Relaxing this symmetry constraint, the study of these systems requires
the adoption of numerical techniques, and the phenomenology becomes richer
and more involved. In this section, we provide several tests and predictions for
prolate axially-symmetric shells, using the typical experimental parameters of the
microgravity experiments, illustrated in Refs. [51,52].

3.5.1 Critical condensation temperature and ground state

To calculate the critical temperature of ellipsoidal shells, we use the Hartree-Fock-
Bogoliubov theory developed in Refs. [143,144] limited to the so-called Hartree-Fock
approximation. Referencing to these works, we now introduce the essential details of
this approach. The general idea is to start from the Heisenberg equation for the field
operator ψ̂(r), which evolves under the action of the grand canonical Hamiltonian
Ĥ − µN̂ , with Ĥ given by Eq. (2.32) and N̂ by Eq. (2.33). In particular, the field
operator satisfies the equation

iℏ
∂ψ̂(r, t)

∂t
=

[
− ℏ2∇2

2m
+ U(r) − µ+ g0 ψ̂

†(r, t)ψ̂(r, t)

]
ψ̂(r, t), (3.107)

where we limit ourselves to considering a contact interaction between bosons,
i. e. V (r− r′) = g0 δ

(3)(r− r′). We then decompose the field operator as

ψ̂(r, t) = Φ(r) + η̂(r, t), (3.108)

where Φ(r) = ⟨ψ̂(r)⟩ is the condensate field, with ⟨...⟩ denoting the statistical
average, and η̂(r, t) is the fluctuations operator, which has zero thermal average
⟨η̂(r, t)⟩ = 0. Inserting this decomposition into Eq. (3.107) and calculating the
average, we get [143]{

− ℏ2∇2

2m
+ U(r) − µ+ g0 [nc(r) + 2ñ(r)]

}
Φ(r) + m̃(r)Φ∗(r) = 0, (3.109)
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with nc(r) = |Φ(r)|2, and where we define the noncondensed density ñ(r) =
⟨η̂†(r, t)η̂(r, t)⟩, and the anomalous density m̃(r) = ⟨η̂(r, t)η̂(r, t)⟩. Note that, to
obtain Eq. (3.109), it is necessary to evaluate the average of cubic terms in the
fluctuation field within a mean-field approximation [143].

The equation of motion of the fluctuation operator η̂(r, t) is obtained subtracting
Eq. (3.109) from Eq. (3.107), getting

iℏ
∂η̂(r, t)

∂t
=

{
−ℏ2∇2

2m
+U(r)−µ+2g0 [nc(r)+ñ(r)]

}
η̂(r, t)+g0 [nc(r)+m̃(r)]η̂†(r, t),

(3.110)
whose solution can be implemented with different levels of approximation, the most
convenient being the Popov approximation [143], where the anomalous density
contribution m̃(r) is neglected. We now decompose η̂(r, t) as

η̂(r, t) =
∑
j

[
uj(r)e

−iEjt/ℏ âj + v∗j (r)e
iEjt/ℏ â†j

]
(3.111)

η̂†(r, t) =
∑
j

[
u∗j(r)e

iEjt/ℏ â†j + vj(r)e
−iEjt/ℏ âj

]
, (3.112)

where âj, â
†
j are operators satisfying bosonic commutation rules. The functions

uj(r) and vj(r) satisfy the relation∫
dr

[
u∗j(r)uk(r) − v∗j (r)vk(r)

]
= δjk, (3.113)

which ensures their orthonormalization. Substituting this decomposition into the
previous Eq. (3.110), we get the Bogoliubov-de Gennes equations

L̂uj(r) − g0 [nc(r) + m̃(r)]vj(r) = Ejuj(r), (3.114)

L̂vj(r) − g0 [nc(r) + m̃∗(r)]uj(r) = −Ejvj(r), (3.115)

where we define the differential operator

L̂ = −ℏ2∇2

2m
+ U(r) − µ+ 2g0 [nc(r) + ñ(r)]. (3.116)

The solution of the Bogoliubov-de Gennes equations, for a given external potential
U(r), gives the full set of functions {uj(r), vj(r)}. The total density is then given
by [143]

n(r) = nc(r) + ñ(r) + m̃(r), (3.117)

with the noncondensed density written as

ñ(r) =
∑
j

{[
|uj(r)|2 + |vj(r)|2

]
⟨â†j âj⟩ + |vj(r)|2

}
, (3.118)
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and where the anomalous density reads

m̃(r) = −
∑
j

uj(r)v
∗
j (r)

(
2 ⟨â†j âj⟩ + 1

)
, (3.119)

in which

⟨â†j âj⟩ =
1

eβEj − 1
(3.120)

is the Bose-Einstein distribution.

We now describe how to calculate the critical temperature of an ellipsoidal bubble-
trapped condensate relying on the previous formalism. Within the standard
Popov approximation, we neglect the anomalous density m̃(r) in the previous
relations, and we solve the Bogoliubov-de Gennes equations by considering the
semiclassical approximation ∇ = ik, where k is a continuous wave vector for
which

∑
j →

∫
dk/(2π)3 [145]. In this case, the energies Ej reduce to the simple

Hartree-Fock spectrum

EHF(k, r) =
ℏ2k2

2m
+ U(r) − µ+ 2g0 [nc(r) + ñ(r)], (3.121)

and the functions uj(r), vj(r) are given by u2k(r) = 1, and v2k(r) = 0 [144]. At
the critical temperature of Bose-Einstein condensation, i. e. TBEC, the condensate
density nc(r) is zero and the thermal density ñ(r) coincides with the total density
n(r). In this specific case, the density reads

n(r) =

∫
dk

(2π)3
1

eEHF(k,r)/(kBTBEC) − 1
, (3.122)

where EHF(k, r) is evaluated at nc(r) = 0.

In Fig. 3.7, top panel, we plot the critical temperature of bubble-trapped ellipsoidal
condensates as a function of the total number of particles, which is fixed by the
chemical potential. For this plot, we consider the external potential of Eq. (3.1)
where ωx/(2π) = 30 Hz, ωy/(2π) = ωy/(2π) = 100 Hz, and Ωr/(2π) = 5 kHz.
We emphasize that, in order to consider valid the results of the semiclassical
approximation, it is necessary to analyze temperature regimes where the thermal
energy kBT is larger than the typical spacing between the quantum levels. As
the bottom panel of Fig. 3.7 shows, the critical temperature decreases during the
adiabatic expansion of a harmonic trap into a shell-shaped condensate. Since the
gas cools down in this process, an initial condensate does not necessarily become a
thermal cloud. Nonetheless, the typical temperatures that is necessary to reach in
these systems to observe Bose-Einstein condensation are quite low [51,60]. As a
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Figure 3.7: Critical temperature of Bose-Einstein condensation in ellipsoidal bubble-
trapped condensates. Top: critical temperature as a function of the atom number N ,
obtained solving Eq. (3.122) self-consistently. For the same number of atoms, the critical
temperature is much smaller for bubble-trapped condensates than for harmonically-
trapped ones. Bottom: as the detuning ∆ is increased, the harmonic trap (corresponding
to ∆ = 0) becomes a hollow bubble-trapped condensate, and the critical temperature
drops quickly. From Ref. [56].
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consequence, the theoretical investigation of the finite-temperature properties is
particularly relevant for the experiments.

At zero temperature, within the degree of approximation adopted here, all the
particles occupy the condensate state. In this case, the condensate density nc(r) =
|Φ(r)|2 can be calculated by solving numerically the Gross-Pitaevskii equation
[81,82]

µΦ(r) =

[
− ℏ2∇2

2m
+ U(r) + g0|Φ(r)|2

]
Φ(r), (3.123)

where the chemical potential µ determines the total number of particles in the
system. In the top panel of Fig. 3.8 we plot the condensate density in the xz plane
of a system of N = 57100 atoms confined in a trap with the same parameters
of Fig. 3.7 and with ∆/(2π) = 30 kHz. A relevant difference with respect to the
spherical case is that the condensate density is not uniform along the shell, but the
atoms tend to concentrate on the lobes. This distribution is the consequence of
a nonuniform local harmonic trapping, since the external potential can be locally
approximated as a harmonic trap with an effective trapping frequency that varies
across the shell. Thus, in the lobes of the ellipsoid at x ∼ ±100µm, the effective
frequency is lower than in the region near x ∼ 0, and the trap accommodates less
atoms in the latter region.

In the bottom panel of Fig. 3.8 we compare the density along the main ellipsoidal
axes at zero and at the critical temperature. While the zero-temperature condensate
is not uniform, the thermal cloud has a constant density across the whole shell. In
the first experiments with Bose-Einstein condensates, which were held in harmonic
traps, this different density distribution of the thermal and of the condensate
components was also observed, and it was actually considered a proof of the
phenomenon of condensation. From the opposite perspective, the uniformity of the
density distribution can be used experimentally to estimate the temperature of the
shell-shaped condensate.

3.5.2 Free expansion

The total energy a gas of ultracold bosonic atoms can be thought as the sum of
three contributions: kinetic, potential, and interaction ones. In single-component
quantum gases, usually, the density distribution corresponds to the optimal con-
figuration in which the attractive potential energy is balanced by the repulsive
kinetic and interaction contributions. In the absence of any confinement, thus, the
system expands freely in space due to the diffusion and to the repulsive interactions
between bosons.
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Figure 3.8: Density distribution of a shell-shaped condensate. Top: atomic density at
zero temperature, where the colorbox unit is µm−3. Bottom: cuts of the condensate
density at T = 0, in comparison with the thermal density at TBEC. From Ref. [56].

Connected to these concepts, let us briefly analyze one of the most common
destructive experimental techniques: absorption imaging. The basic idea of the
technique is to suddenly turn off the external potential and, after some time of
free expansion, to flash the gas with a resonant laser light. The projection of
the atomic cloud is then recorded on a CCD camera, which yields a larger signal
for the low-density regions and a lower signal for denser ones. Thus, a precise
quantitative understanding of how a trapped quantum gas expands is fundamental
for the comparison with the experiments.

In this section, we analyze theoretically how a bubble-trapped gas freely expands
and self-interferes after the sudden turning off of the trapping potential. For this
scope, we solve numerically the time-dependent version of the Gross-Pitaevskii
equation of Eq. (3.123), namely

iℏ
∂Φ(r, t)

∂t
=

[
− ℏ2∇2

2m
+ U(r) + g0|Φ(r, t)|2

]
Φ(r, t), (3.124)

which models the dynamics of the macroscopic wave function. Strictly speaking,
since bubble-traps confine the atoms in a dressed state that results from the
superposition of different hyperfine states |F,mF ⟩, it would be necessary to solve
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Figure 3.9: Contour plot of the condensate density distribution n0(x, 0, z, t), cut along the
xz plane, of an ellipsoidal shell-shaped condensate. We plot the expansion at increasing
times: {0, 4.5, 9, 18} ms. The colorbox is in units of µm−3. From Ref. [56].

2mF + 1 coupled Gross-Pitaevskii equations. However, the experiments with shell-
shaped condensates are carried on with 87Rb atoms, in which the scattering lengths
between the atoms in the different hyperfine states are almost equal, i. e. ∼ 100 a0,
with a0 the Bohr radius. Thus, it is a good approximation to solve a single
Gross-Pitaevskii equation.

The theoretical modeling of the free expansion follows these steps: first, we solve
the Gross-Pitaevskii equation of Eq. (3.123) in imaginary time, which leads to the
ground-state solution for the potential U(r), which we have discussed in the previous
section. Then, by using this ground state distribution as the initial condition, we
solve numerically Eq. (3.124) in which, during the dynamics, we set U(r) = 0. In
Fig. 3.9 we show how the condensate density n0(r, t) = |Φ(r, t)|2 evolves during
the free expansion. From left to right and from top to bottom, the simulation
times, measured in ms, are given by: 0, 4.5, 9, 18. Due to the hollow shape of
the condensate, the cloud expands both inwards and outwards, self-interfering at
the center of the trap. We also emphasize that the direct comparison of these
simulations with the experiments would actually require the integration of the
condensate density n0(x, y, z, t) along the direction of the imaging axis y.
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4

Hydrodynamic excitations of
atomic superfluids

Hydrodynamic excitations, i. e. long-wavelength excitations of a quantum liquid
at zero and at finite temperature, constitute one of the main probes of superfluid
hydrodynamics in atomic condensates. In these systems, modeled as a mixture of
a normal part and of a superfluid part, two branches of hydrodynamic excitations
can coexist. In flat superfluids, these excitations propagate as sound waves, with a
linear relation between the wave vector and the frequency. In spherically-symmetric
superfluids, the hydrodynamic excitations are complex surface modes that can be
decomposed in the basis of the spherical harmonics. We will analyze these setups
in detail in the next sections.

4.1 Sound propagation in 2D Fermi gases

In this section, we analyze sound propagation in systems of uniform two-dimensional
fermions. In particular we calculate the velocities of first and second sound by
implementing the Landau two-fluid model, which is a general phenomenological
description of a quantum fluid, independent of the underlying quantum statistics.
In particular, following Ref. [146], we will derive the thermodynamics of two-
dimensional uniform fermions across the BCS-BEC crossover and, calculating also
the superfluid density, we will obtain the sound speeds and compare them with a
recent experiment [77].
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4.1.1 Thermodynamics along the 2D BCS-BEC crossover

To obtain the thermodynamics of the system, we need to calculate first the grand
canonical partition function Z. Our starting point is Eq. (2.48), in which Z is
expressed as a functional integral over two fields: the fermionic Grassmann field
ψσ(r, τ), and the bosonic pairing field ∆(r, τ). At a mean-field level, the gap can
be assumed to be uniform and constant, namely

∆(r, τ) = ∆0, (4.1)

and, substituting this expression into Eq. (2.48), we need to perform the functional
integration over the fermionic field only. Explicitly, to diagonalize the fermionic
inverse propagator, and to calculate the Gaussian integral, we first need to expand
the fermionic field in the basis of plane waves, labelled by the two-dimensional
wave vector k = (2π/L)(nx, ny), with nx, ny ∈ Z. After doing so, we calculate the
grand canonical partition function at the mean-field level Zmf (see Ref. [147] for
additional details), which immediately yields the mean-field grand potential, given
by

Ωmf = −L2∆2
0

g
−

∑
k

(Esp
k − ξk) −

2

β

∑
k

ln(1 + e−βE
sp
k ), (4.2)

where we define the single particle excitation spectrum Esp
k as

Esp
k =

√
ξ2k + ∆2

0, (4.3)

and where ξk = ℏ2k2/(2m) − µ. Note that, to obtain the thermodynamic potential,
we have also performed the sum over the fermionic Matsubara frequencies [147].
The mean-field grand potential can be calculated analytically in the regime of zero
temperature, in which the third term at the right-hand side of Eq. (4.2) is zero. In
particular, we regularize the divergent sum through the equation [117]

− 1

g
=

1

2L2

∑
k

1

ℏ2k2/(2m) + ϵB/2
, (4.4)

where ϵB is the binding energy, and, performing the sum as an integral, we obtain

Ωmf(T = 0)

L2
= − m

4πℏ2

[
∆2

0

2
+ µ2 + µ

√
µ2 + ∆2

0 + ∆2
0 ln

(√
µ2 + ∆2

0 − µ

ϵB

)]
, (4.5)

which is the mean-field zero-temperature grand potential per unit of area.

To implement a beyond-mean-field Gaussian description, we include higher order
terms in the expansion of the pairing field around the uniform configuration, by
writing

∆(r, τ) = ∆0 + η(r, τ), (4.6)
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where η(r, τ) represents the small fluctuation of the pairing gap with respect to its
uniform configuration. Substituting this expansion into Eq. (2.48), we neglect the
terms in the field η whose order is higher than quadratic, and again, we move to
Fourier space and we integrate the fermionic field. While the lowest-order terms
reproduce the previous results obtained with the simple mean-field approximation,
the beyond-mean-field terms can be rearranged to write the partition function as

Z = Zmf

∫
D[η̄, η] e−

Sg(η̄,η)

ℏ , (4.7)

where the Gaussian action is written as

Sg(η, η̄) =
1

2

∑
Ωn

∑
q

[
η(Ωn,q) η̄(−Ωn,−q)

]
M(Ωn,q)

[
η(Ωn,q)

η̄(−Ωn,−q)

]
, (4.8)

where q is the bosonic wave vector, and Ωn are the bosonic Matsubara frequencies
of the pairing fluctuation field. The elements of the matrix M(Ωn,q) have involved
expressions that are reported in detail in Refs. [103,148]. Here we simply show the
final results for the grand potential at a beyond-mean-field level, which is given by

Ω(µ, T, L2,∆0) = Ωmf(µ, T, L
2,∆0) + Ωg(µ, T, L

2,∆0) (4.9)

where Ωmf is defined in Eq. (4.2), while

Ωg =
1

2β

∑
Ωn

∑
q

ln detM(Ωn,q) (4.10)

is the beyond-mean-field contribution to the grand potential. Clearly, the explicit
evaluation of the last term requires the determination of the spectrum of the bosonic
collective excitations,

Ecol
q = ℏωcol

q , (4.11)

where the frequencies ωcol
q correspond to the poles of the inverse of the bosonic

propagator, and are determined by the equation detM(ω,q) = 0 for the variable
ω.

Since we are considering a uniform system, the grand potential of Eq. (4.9) is an
extensive quantity and, thus, scales linearly with the area L2. Therefore, neglecting
any finite-size correction, the grand potential per unit of area reads

Ω

L2
=

Ωmf(T = 0)

L2
− 2

β

∫
dk

(2π)2
ln(1 + e−βE

sp
k ) +

1

2β

∑
Ωn

∫
dq

(2π)2
ln detM(Ωn,q),

(4.12)

69



where we have substituted the summations over the wave vectors with integrals,
and where the right-hand side is a function of intensive thermodynamics quantities
only: µ, T , and ∆0. But to compare the theoretical results with the experiments, µ
and ∆0 should be expressed as functions of controllable parameters as the number
density n and the temperature T . This is achieved by solving simultaneously the
number equation

n = − 1

L2

(
∂Ω

∂µ

)
T

, (4.13)

and the gap equation (
∂Ωmf

∂∆0

)
µ,T

= 0. (4.14)

At zero temperature, the gap equation yields a simple analytical result:

∆0 =
√
ϵ2B + 2µϵB, (4.15)

which can be verified by deriving the mean-field grand potential Ωmf of Eq. (4.5).
Concerning the number equation, the situation is more complicated. The results
of this section rely on Ref. [149], where Eqs. (4.13) and (4.14) were solved at zero
temperature and at a beyond-mean-field level, obtaining µ/ϵF and ∆0/ϵF as a
function of the crossover parameter ln(ϵB/ϵF), where ϵF = ℏ2πn/m is the Fermi
energy. Given these functions, the single-particle excitation spectrum Esp

k can be
immediately calculated as a function of ln(ϵB/ϵF), and also the zero-temperature
spectrum of the bosonic excitations Ecol

q was determined in Ref. [149]. This modeling
provides, therefore, the knowledge of the beyond-mean-field grand potential at zero
temperature as a function of the crossover parameter ln(ϵB/ϵF). The extension at
finite-temperature is not trivial, as it requires the evaluation and the regularization
of multiple wave vector and Matsubara frequency summations for solving the gap
and the number equations. Since the temperature dependence of µ and of ∆0

is expected to be weak, we now develop a calculation which includes the finite-
temperature effects only through the factor β. This simplified description works
well and is justified in the cases in which the equation of state depends marginally
on temperature.

We calculate the effective low-temperature free energy of the system, which includes
both fermionic single-particle excitations and bosonic collective ones, as [150]

F = µN + Ωmf(T = 0) − 2

β

∑
k

ln(1 + e−βE
sp
k ) +

1

β

∑
q

ln(1 − e−βE
col
q ), (4.16)

where Ωmf(T = 0) is given by Eq. (4.5). This formulation is particularly convenient
since the ratio F/ϵF depends only on the reduced temperature T/TF, where TF =
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Figure 4.1: Dimensionless entropy, S/(NkB), and dimensionless specific heat at constant
volume, cV /(NkB), of a two-dimensional Fermi gas along the BCS-BEC crossover. From
Ref. [146].

ϵF/kB is the Fermi temperature [150]. Given F , we then evaluate numerically all
the other thermodynamic functions. For instance, in Fig. 4.1, we plot the entropy
and the specific heat calculated within our theory, which we rescale with NkB, and
which are shown as a function of the crossover parameter ln(ϵB/ϵF). We also derive
the pressure and the derivatives of the pressure with respect to density, both at
constant temperature, and, at constant entropy, using the relation [151](

∂P

∂ρ

)
S

=

(
∂P

∂ρ

)
T

+
mNT

ρ2cV

[(
∂P

∂T

)
ρ

]2
, (4.17)

which completes the set of thermodynamic functions needed to calculate the
velocities of the first and second sound.

4.1.2 Sound modes and comparison with the experiments

To calculate the sound modes, we need two different theoretical inputs: on the
one hand the thermodynamic functions that we have obtained, as the entropy, the
specific heat, and the derivatives of the pressure; on the other hand the superfluid
density of the system. In a two-dimensional Fermi gas, the Berezinskii-Kosterlitz-
Thouless transition drives the superfluid density to zero at the BKT temperature
TBKT, over which the proliferation of vortices is energetically convenient. Thus,
before discussing sound propagation, we briefly model this transition, adopting the
same procedure developed in bubble-trapped condensates. Specifically, we calculate
the renormalized superfluid density by solving the renormalization group equations,
whose initial conditions are expressed in terms of the bare superfluid density

n(0)
s = n− β

∫
dk

(2π)2
ℏ2k2

m

eβE
sp
k

(eβE
sp
k + 1)2

− β

2

∫
dq

(2π)2
ℏ2q2

m

eβE
col
q

(eβE
col
q − 1)2

, (4.18)
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which can be derived from the momentum current of the elementary excitations,
following the classic Landau argument [12]. The Kosterlitz-Nelson renormalization
group equations, written in terms of the adimensional parameters K(ℓ) and y(ℓ),
read

dK−1(ℓ)

dℓ
= −4π3y(ℓ)2,

dy(ℓ)

dℓ
= [2 − πK(ℓ)] y(ℓ),

(4.19)

where, in the context of two-dimensional superfluid fermions, we define

K(ℓ) =
ℏ2ns

4mkBT
, (4.20)

with ns the renormalized superfluid density we aim to calculate, while y(ℓ) is the
renormalized fugacity. As initial conditions of Eq. (4.19), we adopt here

K(ℓ = 0) =
ℏ2n(0)

s

4mkBT
, y(ℓ = 0) = e−βµv , (4.21)

and, as the chemical potential of the vortices, we choose the value [152]

µv =
π2

4

ℏ2n(0)
s

4mkBT
, (4.22)

which is the best estimate for modeling correctly BKT physics in superconductors.

We are now ready to calculate and analyze the sound modes. First, we obtain the
thermodynamics of the system, by finding numerically the necessary derivatives
(with respect to temperature, volume, density) of Eq. (4.16), and then, we solve
Eq. (4.19) to get the renormalized superfluid density. Given these quantities as a
function of the crossover parameter ln(ϵB/ϵF), we calculate the first and second
sound velocities through their general expression of Eq. (2.74). Our results for the
sound modes across the whole BCS-BEC crossover are shown in Fig. 4.2, and are
obtained at the fixed temperature of T/TF = 0.01. The green diamonds represent
the experimental measurements of Ref. [77], where a single sound wave was observed
by exciting the Fermi gas with a density perturbation. In the following, we justify
why these data points can be identified with the first sound, and we note, indeed,
that as Fig. 4.2 shows, there is a good agreement between the experiment and our
result for c1.

A density perturbation δρ(r, t), induced in the experiment via a phase shift in a
fermionic Josephson junction [153], can excite both sound velocities, and can be
expressed as [154]

δρ(r, t) = W1 δρ1(r± c1t, t) +W2 δρ2(r± c2t, t), (4.23)
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Figure 4.2: Velocities of the first sound c1 and of the second sound c2, rescaled with the
Fermi velocity vF =

√
2ϵF/m, and plotted as a function of ln(ϵB/ϵF ), which parametrizes

the crossover from the BCS regime (ln(ϵB/ϵF ) ≪ 0) to the BEC regime (ln(ϵB/ϵF ) ≫ 0).
In this plot, we fix the temperature at T/TF = 0.01 and, since the first sound has a very
weak temperature dependence (see the left inset), we can compare our results with the
first-sound measurements of Ref. [77], obtained at T/TF ≲ 0.1. From Ref. [146].

where W1 weights the density response of the first sound wavepacket, δρ1(r± c1t, t),
and W2 weights the response of the second one δρ2(r± c2t, t). These amplitudes
are actually related to the velocities themselves, since [155,156]

W1

W1 +W2

=
(c21 − v2L) c22
(c21 − c22) v

2
L

,
W2

W1 +W2

=
(v2L − c22)u

2
1

(c21 − c22) v
2
L

(4.24)

are their relative weights. In the temperature and interaction regimes considered
in Fig. 4.2, we find that c2 ≈ vL (see also Fig. 4.3), and that, therefore, the density
perturbation adopted in Ref. [77] excites mainly the first sound. This consideration
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vL/vF

-6 -4 -2 0 2 4 6
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ln(ϵB/ϵF)

c
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F

Figure 4.3: Adiabatic velocity vA, isothermal one vT , and Landau velocity vL as a function
of the crossover parameter at a fixed temperature of T/TF = 0.01. From Ref. [146].
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finds a clear quantitative verification in the right panel of Fig. 4.2, where we plot
the relative weights of the first and second sound. Conversely, we expect that a
heat perturbation excites mainly the second sound [157], which is still unobserved
in uniform 2D Fermi gases.

While the temperature influences weakly the behavior of the first sound, the second
sound must show a discontinuity at the BKT transition temperature and across
the whole BCS-BEC crossover. Indeed, we analyze the temperature behavior of
the sound modes in detail in Fig. 4.4, which highlights the stronger temperature
dependence of the second sound velocity with respect to the first one. In particular,
we predict the jump of the second sound velocity to be an excellent probe of the
superfluid BKT transition in uniform 2D Fermi gases. We also evaluate the weights
W1,2, and, in a similar way with respect to what happens at low temperatures, we
find that W1 ≫ W2, besides in the deep BEC regime and near TBKT. As before,
this observation confirms that a slight heating of the superfluid will mainly excite
the second sound.

4.2 Sound propagation in 2D Bose gases

Let us analyze the propagation of sound waves in uniform two-dimensional Bose
gases, by following and contextualizing the results obtained in Ref. [158]. As in the
previous section, we need on the one hand to derive the thermodynamics of the
system, on the other hand to describe the superfluid BKT transition. This analysis
will be carried on in the next subsections.

4.2.1 Thermodynamics of box-trapped 2D bosons

To analyze the thermodynamics of the system, we implement a beyond-mean-field
Gaussian calculation of the grand canonical partition function, see Eq. (2.35). We
suppose, in particular, that the bosons are confined in a square box of size L, and
interact with the contact interaction V (r− r′) = g0 δ

(2)(r− r′).

We shift the bosonic field as ψ(r, τ) = ψ0 + η(r, τ), where ψ0 is the uniform
mean-field configuration of Bose gas, and η(r, τ) is the complex fluctuation field
around ψ0. Substituting this decomposition into the Lagrangian of Eq. (2.37), and
neglecting the terms of third and fourth order in η, the partition function can be
calculated as a Gaussian functional integral in the fluctuation field η. Since we
are describing a box-trapped gas, confined by repulsive walls into a square of side
L, we impose reflecting boundary conditions on η(r, τ), expanding it in a series of
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Figure 4.4: First and second sound velocities shown, for fixed values of the crossover
parameter, as a function of the adimensional temperature T/TF. From Ref. [146].
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cosines as

η(r, τ) =
2

L

∑
ωn

∑
kx,y>0

e−iωnτ cos(kxx) cos(kyy) η(k, ωn), (4.25)

and similarly for its complex conjugate η̄(r, τ). Due to the boundary conditions,
the two-dimensional wave vector can assume only the discrete values k = (kx, ky) =
(π/L)(nx, ny), with nx,y positive integers. Also note that the basis of cosines is
orthonormal, so that

δnxn′
x

=
2

L

∫ L

0

dx cos

(
nxπx

L

)
cos

(
n′
xπx

L

)
, (4.26)

and similarly for δnyn′
y
. Expanding the fluctuation field as in Eq. (4.25), the action

of Eq. (2.36) can be written, at a Gaussian level, as

S = S0 +
βℏ
2

∑
ωn

∑
kx,y>0

[
η̄(k, ωn) η(k,−ωn)

]
M

[
η(k, ωn)
η̄(k,−ωn)

]
(4.27)

where the mean-field action reads S0 = βℏLD(−µψ2
0 + gψ4

0/2), and where the
matrix elements of M are given by

Mjj =(−1)j iℏωn + ϵk − µ+ 2g0ψ
2
0,

M12 =M21 = g0ψ
2
0,

(4.28)

with ϵk = ℏ2k2/(2m). Performing the Gaussian functional integral and calculating
the sum over the Matsubara frequencies [98], we obtain, in analogy to previous
calculations done in this thesis, the grand canonical partition function and the
grand potential Ω. In particular, we get

Ω(µ, ψ2
0) = L2

(
− µψ2

0 + g0ψ
4
0/2

)
+

1

2

∑
kx,y>0

[Ek(µ, ψ
2
0) − ϵk − µ]

+
1

β

∑
kx,y>0

ln
[
1 − e−βEk(µ,ψ

2
0)
]
,

(4.29)

where the counterterm −ϵk−µ in the zero point energy appears with the convergence
factor regularization [117], and where we define the quasiparticle energies as

Ek(µ, ψ
2
0) =

√
(ϵk − µ+ 2g0ψ2

0)2 − (g0ψ2
0)2. (4.30)

As in section 3.1.1, we impose the saddle-point condition, i. e. ∂Ω/∂ψ0 = 0, which
determines the condensate density ψ2

0 = n0(µ), and substituting it into the grand
potential, we write

Ω[µ, n0(µ)] = −L2 µ
2

2g0
+

1

2

∑
kx,y>0

(EB
k − ϵk − µ) +

1

β

∑
kx,y>0

ln(1 − e−βE
B
k ), (4.31)
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where we obtain perturbatively the Bogoliubov-Popov excitation spectrum

EB
k =

√
ϵk(ϵk + 2µ), (4.32)

and where the Gaussian corrections in n0(µ) are treated as perturbations with
respect to the mean-field term.

The zero-point energy in the grand potential of Eq. (4.31) is ultraviolet divergent,
and needs to be regularized. We follow the same procedure implemented in section
3.1.3, by including a momentum cutoff Λ in the second sum of Eq. (4.31), which we
calculate as an integral over wave vectors. Then, we express the contact interaction
strength as a function of Λ and of the two-dimensional s-wave scattering length
a2D as [125]

g0 = −2πℏ2

m

1

ln
(
a2D Λ eγ/2

) , (4.33)

whose logarithmic divergence in Λ balances the opposite and equal contribution in
the zero-point energy. As a final result, we obtain

Ω

L2
= −mµ2

8πℏ2
ln

[
ℏ2

mµa22De
2γ+1

]
+

1

β

∫
dk

(2π)2
ln(1 − e−βE

B
k ), (4.34)

where we have neglected the finite-size corrections which appear due to the lower
bound of the integrals over the wave vectors. These finite-size effects in Ω are
actually important for small condensates in weakly-interacting regimes, but are
not quantitatively relevant for the following analysis.

We emphasize that the grand potential obtained in Eq. (4.34) is a function of µ,
T , and L2, and that the description of a system with a fixed number of particles
is more convenient in terms of the Helmholtz free energy F . The latter quantity
is obtained from Ω with a Legendre transformation, i. e. F = µN + Ω, and
requires the determination of the function µ = µ(T, L2, N). In Ref. [158], we have
actually calculated µ(T, L2, N) numerically to describe precisely the superfluid
properties of the system, while the thermodynamics is obtained from an effective
simplified calculation of the free energy F . Thus, to avoid implementing a heavy
numerical calculation of the thermodynamics, and to obtain analytical results in
the low-temperature regime, we have considered the following expression of the
free energy

F

L2
=

1

2
g0n

2 − mµ2

8πℏ2
ln

[
ℏ2

mg0n a22De
2γ+1

]
+

1

β

∫
dk

(2π)2
ln(1 − e−βEk), (4.35)

where Ek =
√
ϵk(ϵk + 2g0n), and which can be obtained from the microscopic

expression of the grand potential by setting µ = g0n. For a fixed area L2, for

77



a fixed number of particles in the system N , and of the scattering length a2D,
the free energy is a known function of the temperature. Given F , implementing
basic thermodynamic relations, see for instance the end of section 2.1, one can
calculate numerically the wave vector integrals and obtain all the inputs for the
determination of the sound velocities of Eq. (2.74).

4.2.2 Sound modes and comparison with the experiments

In parallel with the analysis implemented in the fermionic case, we briefly describe
our calculation of the renormalized superfluid density of a box-trapped bosonic gas,
and we then obtain the sound velocities.

Implementing in two dimensions a standard result of Landau [12], we calculate the
bare superfluid density as

n(0)
s = n− β

∫
dk

(2π)2
ℏ2k2

2m

eβE
B
k

(eβE
B
k − 1)2

, (4.36)

where the Bogoliubov spectrum is given by Eq. (4.32). We then solve the Kosterlitz-
Nelson renormalization group equations, which are formally the same of those
at Eq. (4.19), in the interval [0, ℓmax] of the renormalization group scale ℓ. As
the initial conditions at the scale ℓ = 0, we consider the bare parameters K0 =
K(ℓ = 0) = ℏ2n(0)

s /(mkBT ), and y0 = y(ℓ = 0) = exp(−βµv), with the chemical
potential of the vortices given by βµv = (π2/2)K0 [100]. The cutoff ℓmax, at
which we interrupt the flow of the renormalization group equations, is given by
ℓmax = ln(L2/ξ2), with ξ =

√
ℏ2/(mg0n) the healing length of the superfluid. The

renormalized superfluid density ns is then calculated as ns = (mkBT/ℏ2)K(ℓmax),
since K(ℓ) = ℏ2ns(ℓ)/(mkBT ).

In Fig. 4.5, we compare our results for the superfluid fraction ns/n with the
experimental data of Refs. [76,159]. Our theory, which is crucially based on the
calculation of the Bogoliubov-Popov excitation spectrum of Eq. (4.32), agrees
with all the experimental data points. This suggests that, concerning at least the
determination of the superfluid properties, the Bogoliubov-Popov scheme provides
a reliable description of the superfluid density up to the critical temperature of the
BKT transition. Note that, to implement the calculation of the bare superfluid
density, we have determined the equation of state µ(T, L2, N) numerically by
deriving the grand potential of Eq. (4.34). In particular, we model the two-
dimensional scattering length as a2D = 2.092 l⊥ ln[−

√
π/2 (l⊥/a3D)] [160], with

a3D the three-dimensional s-wave scattering length, and l⊥ =
√
ℏ/(mω⊥) the

characteristic length of the transverse harmonic confinement of frequency ω⊥.
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Figure 4.5: Superfluid density of a box-trapped two-dimensional Bose gas, obtained by
solving the renormalization group Eqs. (4.19). For their solution, we use in input the bare
superfluid density of Eq. (4.36), and consider the following parameters of the experiment
in Ref. [76]: density n = 3µm−2, area L2 ≈ 33× 22µm2, scattering length a3D = 522a0,
with a0 the Bohr radius, frequency of the transverse confinement ω⊥ = 2π × 5500Hz.
Here Tc denotes the Berezinskii-Kosterlitz-Thouless critical temperature.

Figure 4.6: Sound velocities of box-trapped uniform bosons across the Berezinskii-
Kosterlitz-Thouless transition. Our results, plotted as continuous lines, show a good
agreement between our theory and the experimental data. The dashed lines represent
the sound velocities obtained from the scale-invariant theory of Ref. [161], which works
around the superfluid transition. From Ref. [158].
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Let us compare our predictions for the sound velocities, obtained from the solutions
of Eq. (2.74) of the Landau biquadratic equation, with the experimental results of
Ref. [76]. As can be seen from Fig. 4.6, there is a good qualitative agreement between
our theory and the experimental results. To assess the origin of the quantitative
differences, we first remark that our theoretical scheme yields a solid estimate of the
superfluid fraction, which is obtained in Ref. [159] from the measurements of the
sound velocities and from the thermodynamics based on the theory of Ref. [161].
This agreement suggests that, within the experimental error, the superfluid density
is not strongly sensitive to the specific finite-temperature behavior of the equation of
state. Thus, we can mainly attribute the quantitative discrepancies to a simplified
dependence on the temperature, density, and interactions of our thermodynamic
functions. In the transition region, indeed, the sound modes are very sensitive to the
values of the grand potential and of its derivatives, and their precise determination,
beyond the effective calculation based on Eq. (4.35), can lead to a better quantitative
agreement.

4.3 Hydrodynamic excitations in 2D superfluid

shells

We briefly discuss, in this section, how the two-fluid model can be extended to
describe a two-dimensional shell-shaped spherical superfluid. Actually, most of the
equations of section 2.4 can be rederived in a straightforward manner, and their
analysis will elucidate how the hydrodynamic modes propagate in a spherically
symmetric superfluid. The linearized Eqs. (2.55)-(2.58) of a flat two-fluid system
can be written in the spherical case as

∂ρ

∂t
+ ∇R · j = 0, (4.37)

∂ρs̃

∂t
+ ρs̃∇R · vn = 0, (4.38)

∂j

∂t
+ ∇RP = 0, (4.39)

∂vs
∂t

+ ∇R

(
G0

M

)
= 0, (4.40)

where we define
∇R =

eθ
R
∂θ +

eφ
R sin θ

∂φ (4.41)

as the gradient in spherical coordinates for a system with a radius R fixed. With
this expression of ∇R, we are supposing that the vectorial quantities of the model
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do not have a radial component, and thus, that the dynamics is constrained to
occur only along the surface of the sphere.

Starting from Eqs. (4.37)-(4.40), we perform the same calculations that we have
implemented in the flat case, see in particular Eqs. (2.59)-(2.64). In this context,
we obtain the following “wave” equations

∂2ρ

∂t2
= − L̂2

ℏ2R2
P, (4.42)

∂2s̃

∂t2
= −s̃2 ns

nn

L̂2

ℏ2R2
T, (4.43)

where the Laplacian is simply substituted by the angular momentum operator in
spherical coordinates, i. e. L̂2. As in section 2.4.1, it is possible to expand the
thermodynamic functions around their equilibrium configuration and to express
the density and entropy fluctuations in terms of temperature and pressure ones [see
Eqs. (2.65), (2.66)]. However, in the spherical geometry, the standard sound waves
are not the correct basis to analyze Eqs. (4.42) and (4.43), which are instead solved
in the basis of spherical harmonics. Therefore, we expand the fluctuation fields as

P ′(t, θ, φ) =

∫ +∞

−∞
dω

∞∑
l=1

l∑
ml

eiωt Ymll (θ, φ)P (ω, l,ml), (4.44)

T ′(t, θ, φ) =

∫ +∞

−∞
dω

∞∑
l=1

l∑
ml

eiωt Ymll (θ, φ)T (ω, l,ml), (4.45)

where ω is the frequency of these hydrodynamic low-energy modes and l, ml are
their quantum numbers. With the same previous steps, we obtain

ω4 − ω2

[(
∂P

∂ρ

)
s̃

+
T s̃2ρs
c̃V ρn

][
l(l + 1)

R2

]
+
ρsT s̃

2

ρnc̃V

(
∂P

∂ρ

)
T

[
l(l + 1)

R2

]2
= 0, (4.46)

which is the Landau biquadratic equation extended to a spherical superfluid. As
this equation shows, there is not a linear relation between the frequency of the
wave and the quantum number l which labels the different excitations. Therefore,
we cannot actually define and calculate a sound speed, but only the frequencies
ω of the hydrodynamic excitations for a given quantum number l. We also stress
that the flat-case velocity is obtained only in the limit of a very large radius R, in
which l(l + 1)/R2 ≈ l2/R2 and a sound velocity can be approximately defined as
c ≈ Rω/l.

The previous considerations do not prevent to express, at least formally, the
frequencies of the hydrodynamic modes in terms of the adiabatic, isothermal and
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Figure 4.7: Frequencies of the hydrodynamic excitations rescaled with the Bogoliubov
frequency ωB =

√
µ/(mR2), and where l is the main quantum number of the angular

momentum. The gray region, where the hydrodynamic modes are non monotonic, is
where the BKT transition occurs. For this figure, we use the same parameters adopted
to calculate the thermodynamic functions and the renormalized superfluid density in the
previous chapter. From Ref. [55].

Landau velocities defined in Eq. (2.72). In this way, we write the solutions of
Eq. (4.46) as

ω2
1,2 =

[
l(l + 1)

R2

][
v2A + v2L

2
±

√(
v2A + v2L

2

)2

− v2Lv
2
T

]
, (4.47)

which are the frequencies of the “first” and “second” hydrodynamic excitations
of a spherical superfluid. We plot the hydrodynamic frequencies of a spherical
bubble-trapped gas in Fig. 4.7, showing their behavior as a function of temperature
at a fixed number of particles and for fixed interactions and trap parameters. To
calculate ω1,2, we have adopted the thermodynamic description and BKT analysis
for shell-shaped condensates developed in chapter 3. It is important to highlight that
measuring ω1,2, and in particular their discontinuity as a function of temperature,
would prove that the BKT transition occurs also in bubble-trapped superfluids.
Indeed, considering that other curved and compact surfaces, as cylinders and large
tori, could not display BKT physics [162], the experimental investigation of this
phenomenon is of fundamental importance.
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5

Static and dynamic properties of
one-dimensional atomic gases

The high degree of tunability of ultracold atoms offers countless possibilities to
probe and explore the properties of one-dimensional quantum systems. Remarkably,
the low spatial dimensionality does not reduce the relevant physical phenomena
to a subset of those occurring in three-dimensional systems, but it leads to the
emergence of new physics. In this chapter, we will focus on two specific one-
dimensional configurations: Bose-Bose mixtures in one dimension, and a couple of
parallel tunneling quasicondensates made of bosonic atoms.

5.1 Bright solitons in 1D Bose-Bose mixtures

In this section, we analyze the static and dynamic properties of bright solitons in
a one-dimensional mixture of bosonic atoms. Before discussing our new results
explicitly, which have been published in Ref. [163], we briefly review the main
properties of Bose-Bose mixtures.

5.1.1 An overview of Bose-Bose mixtures

Ultracold quantum gases are typically studied by confining specific hyperfine states
of ultracold atomic gases in optical or magnetic traps. In the absence of degeneracy,
atoms in different hyperfine states are distinguishable, and cannot be considered as
identical particles. An ensemble of atoms in different hyperfine states is usually
called “quantum mixture”. In these systems, as shown by D. S. Petrov a few years
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ago [83, 84], the beyond-mean-field effects do not represent simply perturbative
corrections to the mean-field picture, but play a fundamental role in the stabilization
of the atomic cloud.

Let us consider, for instance, a mixture of bosonic atoms in two different hyperfine
states, or species, and let us suppose that the atoms interact with intra-species
contact interactions g11, g22, while the inter-species contact interaction is g12. In
the absence of inter-species interactions, i. e. for g12 = 0, the system is stable
and uniform if g11 > 0, g22 > 0. These conditions ensure that, in this case, the
bosonic species are individually stable against the collapse that occurs for attractive
intra-species interactions. Then, in the presence of inter-species interactions, i. e. for
g12 ≠ 0, the mean-field theory imposes a more general condition to have a uniform
system in which both species coexist, namely [164]

g12 <
√
g11g22, (5.1)

since, in the opposite case of g12 >
√
g11g22, the system forms a phase-separated

configuration. Actually, imposing also that the uniform system does not develop
density fluctuations, one obtains a stricter condition [164]:

|g12| <
√
g11g22, (5.2)

which ensures that the mean-field configuration is dynamically stable. In the
following, considering weakly-attractive intraspecies interactions, i. e. g12 < 0, we
define the parameter

δg = g12 +
√
g11g22, (5.3)

and note that, from a mean-field point of view, the system is stable if δg > 0, while
it is unstable for δg < 0.

At a beyond-mean-field level, the stability condition becomes more complicated
than the simple criterion δg > 0, and the many-body phases displayed by the
system must be analyzed more carefully. Interestingly, while the mean-field picture
is valid in any spatial dimension, the beyond-mean-field analysis yields different
results in different dimensions.

In three-dimensional quantum mixtures, as shown in Ref. [83], the beyond-mean-
field energy contributions are responsible for the stabilization of the “unstable”
(from a mean-field point of view) regime in which δg < 0, with |δg| ≪ √

g11g22.
In this case, even in the absence of a trapping potential, the collapse is therefore
avoided by the Lee-Huang-Yang pressure term, which scales with a higher power of
the density with respect to the mean-field term. Thus, a liquid droplet, whose name
is due to the fact that the internal density is constant, forms spontaneously [165,166].
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We now analyze low-dimensional quantum mixtures, by briefly discussing the dif-
ferent results pertaining the two- and the one-dimensional case. In two dimensions,
the liquid phase of the system occurs whenever the interspecies interaction is weakly
attractive and the intraspecies interactions are repulsive. Thus, while the obser-
vation of the liquid phase requires δg < 0 in three dimensions, which corresponds
to an inter-species attraction higher than a critical value, in two-dimensions the
system is liquid even for weak inter-species interactions [84]. Finally, the configu-
ration which will be analyzed in detail in this section: one-dimensional quantum
mixtures. In this case, for interaction regimes such that 0 < δg ≪ √

g11g22, the
beyond-mean-field energy contribution is attractive, and it is responsible for the
self-trapping of the system into a droplet. Thus, in the absence of an external
potential (besides the confinement in the transverse direction) the system forms
self-bound states rather than expanding as a gas in the longitudinal direction.

5.1.2 Quantum bright solitons: static properties

To analyze the physics of bright solitons in one-dimensional ultracold mixtures,
we limit ourselves to considering homonuclear mixtures in which the intra-species
scattering lengths are coincident, namely, g11 = g22 = g > 0. In the uniform case,
the energy of the system at a beyond-mean-field level is given by [84]

E1D(n1, n2) =
g

2
(n1 − n2)

2 +
δg

4
(n1 + n2)

2 − 2
√
m

3πℏ
g3/2(n1 + n2)

3/2, (5.4)

where n1 and n2 are the uniform densities. In the spirit of the density functional
theory, we substitute n1 and n2 with the local density of the bosonic species
given, respectively, by the macroscopic fields |ψ1|2 and |ψ2|2. We thus construct
an effective field-theory description of the Bose-Bose mixture at zero temperature,
considering the Lagrangian density

L1D =
∑
j=1,2

iℏ
2

(ψ∗
j∂tψj − ψj∂tψ

∗
j ) −

{
E1D(|ψ1|2, |ψ2|2)

+
∑
j=1,2

[
ℏ2

2m
|∂xψj|2 − (−1)jiγψ∗

j∂xψj − Γψ∗
jψ3−j

]}
,

(5.5)

and the effective action of the system is simply given by

S =

∫
dt

∫
dx L1D. (5.6)

Note that we included in L1D a kinetic energy contribution of the mixture, and
two additional energy terms which describe the tunneling with energy Γ among
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the species and an artificial spin-orbit coupling with strength γ. These additional
couplings can be engineered by dressing the bare hyperfine states with a couple of
lasers with equal Rashba and Dresselhaus strengths [167,168].

The functional minimization of the action of Eq. (5.6) leads to the Euler-Lagrange
equations of L1D, which are the following coupled Gross-Pitaevskii equations

iℏ
∂ψj
∂t

=

[
− ℏ2

2m
∂2x +

δg

2
(|ψ1|2 + |ψ2|2) − (−1)jg(|ψ1|2 − |ψ2|2)

−
√
m

πℏ
g3/2(|ψ1|2 + |ψ2|2)1/2 − (−1)jiγ∂x

]
ψj − Γψ3−j,

(5.7)

where j = 1, 2 labels the species. The general solution of these equations is not
known analytically, and it is necessary to implement a numerical method for the
solution of partial differential equations. Before entering into the discussion of
the numerical solution, we consider the simplified problem discussed in Ref. [163],
which can be solved analytically. We initially consider the case in which Γ = 0 and
γ = 0 and we note that, in the absence of Rabi coupling between the species, the
number of bosons N1 and N2 are separately conserved. Moreover, we set to zero
the interaction strength δg = 0 and, having considered the homonuclear symmetric
case in which g11 = g22 = g, it is meaningful to suppose that

ψ1(x, t) = e−i
µt
ℏ
√
Nϕ(x), ψ2(x, t) = e−i

µt
ℏ
√
Nϕ∗(x), (5.8)

where N is the number of atoms in each species. We thus obtain a single Gross-
Pitaevskii equation for ϕ, which reads

µϕ =

(
− ℏ2

2m
∂2x −

√
2m

πℏ
g3/2N1/2|ϕ|

)
ϕ, (5.9)

where µ is the chemical potential that fixes the number of atoms in each species.
Note that the assumption of having the same N for both species is meaningful due
to δg = 0, and since we are now interested in finding the ground-state solution.

To solve Eq. (5.9), we note that it can be formally rewritten as

ϕ̈ = −∂W
∂ϕ

, (5.10)

namely, as the Newton equation of a particle with “coordinate” ϕ and “time” x,
moving in the external potential

W (ϕ) = −αϕ2 + β ϕ3, (5.11)
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where we define the coefficients

α =
1

2

(
2m

ℏ2

)
|µ|, β =

1

3

(
2m

ℏ2

)√
2m

πℏ
g3/2N1/2 . (5.12)

The Newton equation has the constant of motion

K(ϕ) =
(ϕ̇)2

2
+W (ϕ), (5.13)

which, imposing the vanishing boundary conditions ϕ(∞) = 0 and ϕ̇(∞) = 0 is
actually equal to the constant value K(ϕ) = 0 at any “time” x of the dynamics.
As a consequence, we get

dϕ

dx
=

√
−2W (ϕ), (5.14)

which can be integrated by separation of variables. Specifically, we search for a
solution with ϕ̇(0) = 0, which fixes the value of the wave function in x = 0 to
ϕ(0) = α/β and, integrating the previous equation between 0 and x, we find that

ϕ(x) =
α

β
sech2

(√
α

2
x

)
, (5.15)

which is the analytical form of a fully-quantum bright soliton in a Bose-Bose
mixture. Note that, imposing that the wave function is normalized to 1, one
obtains the chemical potential of the solution, namely,

µ =

(
2

9π4

)1/3
mg2

ℏ2
N2/3, (5.16)

in terms of the interaction strength and of the total number of atoms. We also
emphasize that our solution of Eq. (5.9), which contains a quadratic nonlinearity, is
the classical Korteweg-de Vries soliton [169], proportional to sech2. The analogous
equation with a cubic nonlinearity, which would be obtained by considering mean-
field terms only, gives a solution ∝ sech [170].

Moving to the discussion of the general case, the ground-state solution for nonzero
spin-orbit and Rabi couplings is obtained evolving numerically the Eq. (5.7) in
imaginary time. In particular, due to the nonzero Γ, only the total number of
bosons N = N1 +N2 is fixed by a single chemical potential µ. Moreover, for the
numerical solution we rescale the equation in terms of the characteristic length l⊥
of the transverse harmonic confinement with frequency ω⊥ and energy E⊥ = ℏω⊥.
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Figure 5.1: Ground-state solution of a 1D Bose-Bose mixture. In the absence of spin-orbit
γ and Rabi Γ couplings (top-left plot), the analytical ground state is given by Eq. (5.15).
In the other cases, the numerical solution of Eqs. (5.7), rescaled as Eq. (5.17), shows
that the components coincide and have either a single-peak shape (top-right plot), or a
striped solution (bottom plots). From Ref. [163].

Thus, we solve the following coupled equations for the fields ψ̃j/
√
N :

µ̃
ψ̃j√
N

=

[
− ∂2x̃ − (−1)j(g̃N)

(
|ψ̃1|2

N
− |ψ̃2|2

N

)
− g̃3/2N1/2

π

(
|ψ̃1|2

N
+

|ψ̃2|2

N

)1/2

− (−1)jiγ̃∂x̃

]
ψ̃j√
N

− Γ̃
ψ̃3−j√
N
,

(5.17)

where we define the rescaled quantities

x̃ =
x

l⊥
, ψ̃j = ψj l

1/2
⊥ , µ̃ =

µ

E⊥
, g̃ =

g

E⊥l⊥
, Γ̃ =

Γ

E⊥
, γ̃ =

γ

E⊥l⊥
. (5.18)

We show some representative solutions of these coupled equations in Fig. 5.1, where
the red-dashed and the black lines represent the (everywhere coincident) density
of the species. In these plots, we fix the parameter g̃N1/3 = 1 and we change the
values of γ and Γ, finding both single-peak wave functions and multi-peak striped
solitonic solutions.

Then, repeating our simulations for a fine mesh of the parameters γ and Γ, we
plot in Fig. 5.2 a diagram showing the ground-state solutions of the system. This
quantum phase transition, in which the ground state of the system develops a
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Figure 5.2: Phase diagram of the two possible ground-state solutions, illustrated in
Fig. 5.1, of a Bose-Bose mixture with zero mean-field interaction, i. e. δg = 0. These
solutions of Eq. (5.7) are analyzed for the fixed interaction strength g̃N1/3 = 1, and
changing the spin-orbit and Rabi couplings. From Ref. [163].

density modulation, is driven only by the interplay of the spin-orbit coupling and
of beyond-mean-field effects.

We finally emphasize that the Gross-Pitaevskii equations of the Bose-Bose mixture
depend separately on N and on g̃, and it should not be possible to simply fix
the parameter g̃N1/3. However, since the densities of the two species are always
coincident due to the mean-field term ∼ (n1 − n2), the only relevant dependence in
Eq. (5.17) is the one of the beyond-mean-field term, scaling exactly as (g̃N1/3)3/2.

5.1.3 Quantum bright solitons: dynamic properties

We now analyze the dynamics of bright solitons with spin-orbit coupling. Specifically,
we want to calculate analytically and numerically the breathing-mode frequency ωb

of the condensate, namely, the frequency of the lowest-energy mode that is excited
by a small perturbation of the ground-state configuration. As for study of the
static properties, we will focus our analysis on describing a fully-quantum soliton,
i. e. δg = 0, for which the dynamics of the bosonic species with equal intra-species
interactions is expected to be coincident. Moreover, the analytical calculation of
ωb can be done only in the case of γ = 0 and Γ = 0, which is the case that we will
initially analyze.

To calculate the breathing-mode frequency, we implement a time-dependent Gaus-
sian variational ansatz for the wave functions of the system. Thus, we consider the
following variational expressions [171–173]

ψ1(x, t) = ψ2(x, t) =
N1/2

π1/4σ1/2(t)
exp

[
− x2

2σ2(t)
+ ib(t)x2

]
, (5.19)
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where σ(t) and b(t) are time-dependent parameters whose dynamics is determined
by a variational principle. Indeed, we substitute these equations in the Lagrangian
density of Eq. (5.5). Then, we integrate over the spatial coordinate x, obtaining,
for γ = Γ = 0, the Lagrangian

L1D

N
= − ℏ2

2mσ2
− ℏσ2ḃ− 2

ℏ2

m
σ2b2 +

8

33/2π5/4

√
m

ℏ
g3/2N1/2

σ1/2
, (5.20)

which depends only on the variational parameters. A simple analytical solution
for ωb can be found writing the Euler-Lagrange equation for the time-dependent
parameter b(t), which reads b = mσ̇/(2ℏσ), and substituting it into the Lagrangian,
we get

L1D

N
= − ℏ2

2mσ2
+
m

2
σ̇2 +

8

33/2π5/4

√
m

ℏ
g3/2N1/2

σ1/2
, (5.21)

which is the effective Lagrangian for the width of the wave function. The Euler-
Lagrange equation for σ reads

σ̈ =
ℏ2

m2σ3
− 4

33/2π5/4

1√
mℏ

g3/2N1/2

σ3/2
, (5.22)

whose general solution is in the form of

σ(t) = σst + A cos(ωbt+ ϕ0), (5.23)

where

σst =
3π5/6ℏ2

24/3mgN1/3
(5.24)

is the stationary solution, and where

ωb =
213/6

33/2π5/3

m

ℏ3
g2N2/3 (5.25)

is the frequency of the breathing-mode oscillations around σst, with amplitude A
and initial phase ϕ0.

Since the ground-state solution is not Gaussian, but it is proportional to the square
of the hyperbolic secant [see Eq. (5.15)], we perform the previous calculations
considering also the following variational ansatz:

ψ1(x, t) = ψ2(x, t) ∝ sech2

(√
α

2
x

)
eib(t)x

2

, (5.26)

whose prefactor is determined by imposing the normalization of the wave functions
to N . We obtain the breathing-mode frequency ω′

b, where

ω′
b = c ωb, c =

311/6 π1/3

25/6 51/2 (π2 − 6)1/2
≈ 1.4, (5.27)
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Figure 5.3: Breathing-mode frequency as a function of the parameter g̃N1/3, for a quantum
bright soliton, i. e. for δg = 0, with γ̃ = Γ̃ = 0. The frequencies are obtained either
analytically in Eqs. (5.25) and (5.27) with a variational ansatz [171–173], or numerically,
by analyzing the time evolution of the average width ⟨x2⟩ after a small change of
the ground state norm. Even if the solution has the hyperbolic secant dependence of
Eq. (5.15), the Gaussian ansatz provides a better agreement with the simulation. From
Ref. [163].

with ωb given by Eq. (5.25).

In Fig. 5.3, we plot the breathing-mode frequency of the quantum bright soliton as
a function of g̃N1/3. In particular, we compare the numerical results, obtained by
solving Eqs. (5.7), with those given by the analytical expressions derived with the
Gaussian and sech variational ansätze. Note that, even if the ground-state solution
is in the form of a sech2, the Gaussian variational ansatz leads to a better prediction
for the breathing-mode frequency, showing that the Gaussian wave function is able
to capture more efficiently the dynamics of the system.

We also performed the numerical calculation of the breathing-mode frequency for
nonzero spin-orbit and Rabi couplings. Our results are shown in Fig. 5.4, where
we fix different values of Γ and we plot ωb as a function of γ. First of all, we note
that for Γ = 0 the breathing-mode frequency is not sensitive to the value of γ and
coincides with the prediction of Fig. 5.3. We also note that, for a nonzero value of
Γ, the breathing-mode frequency displays a peak around the values of γ at which
the transition from a striped soliton to a single-peak soliton occurs. Indeed, this
consideration can be readily verified from the phase diagram in Fig. 5.2.

To conclude, we analyze the dynamical evolution of a quantum bright soliton
following a kick of momentum k̃ = 2π/60. Numerically, the kick is imposed
via a phase shift of the ground-state solutions, which become eikxψ1 and eikxψ2,
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Figure 5.4: Breathing-mode frequency of a quantum bright soliton, obtained through the
numerical solution of Eqs. (5.7), and shown as a function of the parameter γ̃. As can be
seen comparing this plot with the phase diagram of Fig. 5.2, the frequency peak occurs
at the transition between the single-peak and the striped soliton. From Ref. [163].

and then performing their time evolution. As shown in Fig. 5.5, the single-peak
solution preserves its shape during the propagation. On the contrary, the striped
“soliton” changes its shape during the propagation. This dynamical phenomenon
is a consequence of the absence of Galilean invariance in spin-orbit coupled Bose-
Einstein condensates in the striped phase.

5.2 Phase dynamics of tunneling condensates

The quantum mechanical description of nature, including the emerging equilibrium
and nonequilibrium properties of quantum many-body systems, is based on the
wave-particle duality. As a broad consequence, quantum mechanics is formulated
in terms of complex mathematical entities which, both in operatorial and in field-
theory formulations, can be expressed in terms of a phase and of an amplitude.
On one hand, the theoretical understanding of the phase properties of a quantum
many-body system is a fundamental physical problem: Bose-Einstein condensation,
superfluidity, and the Josephson effect [174] are, for instance, emerging phenomena
of a macroscopic phase-coherent system. On the other hand, controlling and pre-
serving the phase coherence in quantum technologies and devices is fundamental for
technological applications [175]. From this perspective, even if quantum mechanics
is an established paradigm, there is still room to make fundamental discoveries and
to build new points of view on the old concepts.

A paradigmatic one-dimensional system, whose study led to many fundamental
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Figure 5.5: Propagation of a quantum bright soliton, either in the striped phase (top
panel), or in the single-peak phase (bottom panel), due to a momentum kick of wave
vector k̃ = 2π/60. From Ref. [163].

advances, is the matter-wave interferometer consisting of two coupled quasiconden-
sates [176]. Experiments on this configuration allowed to study the dephasing of
split condensates [177], their rephasing dynamics [178], the prethermalization [179],
and several other applications. Inspired by this line of research, we studied in
Ref. [85] the time evolution of a system of two parallel quasicondensates, analyzing
how their coherence evolves after a rapid quench of their tunneling amplitude. Let
us now consider a system of parallel bosonic tubes, either in a side-by-side configu-
ration, see Fig. 5.6a, or in a head-to-tail configuration, see Fig. 5.6b. Specifically,
we develop a semiclassical effective description of the relative phase which allows
us to calculate the time evolution of the coherence factor.

5.2.1 Effective description of the relative phase

We model a system of two one-dimensional parallel quasicondensates of length L
with the Lagrangian

L =

∫ L

0

dxL, L = Ltun +
∑
j=1,2

L0,j, (5.28)

where the Lagrangian density L is expressed as the sum of two contributions. In
particular,

L0,j = iℏψ∗
j∂tψj −

ℏ2

2m
|∂xψj|2 −

g

2
|ψj|4 (5.29)
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Figure 5.6: We analyze two one-dimensional parallel quasicondensates, either split in
the longitudinal direction (side-by-side configuration), or in the midpoint (head-to-tail
configuration). These configurations are obtained by engineering the external potential
U(r) to trap the atoms in radiofrequency-induced adiabatic potentials (see also Ref. [108]),
which are analogous to those on which bubble traps are based [43]. From Ref. [85].

is the Lagrangian density of the parallel tubes, where g represents in this section
the one-dimensional contact interaction strength, while we model the tunneling
Lagrangian density as

Ltun =
J

2
(ψ∗

1ψ2 + ψ∗
2ψ1), (5.30)

where J is the tunneling amplitude. Within this formalism, we are able to describe
in a unified way both side-by-side and head-to-tail condensates. In the former
case we will consider J = J⊥, since the tunneling occurs along the whole length of
the system, while the latter case is represented by J = 2J∥L δ(x), since tunneling
occurs only in the origin of the system.

To implement an effective description of the relative phase of the quasicondensates,
we first introduce a phase-amplitude parametrization by rewriting the bosonic fields
ψj(x, t) as

ψj(x, t) = [ρj(x, t)]
1/2 eiϕj(x,t), (5.31)

where ρj(x, t) is the (number) density field, while ϕj(x, t) is the phase field. In this
way, the Lagrangian density of Eq. (5.28) can be expressed as

L =
∑
j=1,2

[
− ℏρj ϕ̇j −

ℏ2ρj
2m

(∂xϕj)
2 − ℏ2

8mρj
(∂xρj)

2 − g

2
ρ2j
]

+ J
√
ρ1ρ2 cos (ϕ1 − ϕ2) , (5.32)

which does not require any additional approximation of the initial equations. Then,
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we introduce the following fields:

ϕ̄ = ϕ1 + ϕ2, ϕ = ϕ1 − ϕ2, (5.33)

ρ̄ =
ρ1 + ρ2

2
, ζ =

ρ1 − ρ2
2 ρ̄

, (5.34)

which are, respectively, the total and relative phase, the total density, and the
imbalance. Substituting these fields into Eq. (5.32), the resulting Lagrangian
density can be rewritten as a sum of three contributions. Before writing them
explicitly, we shift the total density as

ρ̄→ ρ̄+ δρ, (5.35)

where we assume that ρ̄ is the uniform mean density around which the total density
fluctuates with (space and time dependent) amplitude δρ. The first contribution
to the Lagrangian density contains only the total fields, and reads

Ltot = −ℏ δρ ζ ˙̄ϕ− ℏ2(ρ̄+ δρ)

4m
(∂xϕ̄)2 − g δρ2 − 2gρ̄ δρ, (5.36)

while the second one contains the relative fields

Lrel = − ℏρ̄ ζϕ̇− ℏ2ρ̄
4m

(∂xϕ)2 − ℏ2ρ̄
4m

(∂xζ)2

1 − ζ2
− gρ̄2ζ2

+ J ρ̄
√

1 − ζ2 cosϕ ,

(5.37)

and the final contribution includes all the coupling terms:

Lcoupl = − ℏρ̄ ζ ˙̄ϕ− ℏ δρ ζϕ̇− ℏ2δρ
4m

(∂xϕ)2 − ℏ2(ρ̄+ δρ)

2m
(∂xϕ̄)(∂xϕ)

− ℏ2δρ
4m

(∂xζ)2

1 − ζ2
− ℏ2

4m(ρ̄+ δρ)

(∂xζ)2

(1 − ζ)2
− ℏ2

2m

(∂xδρ)(∂xζ)

1 + ζ

− g δρ2ζ2 − 2g ρ̄ δρ ζ2 + J δρ
√

1 − ζ2 cosϕ ,

(5.38)

so that, in full generality, L = Ltot + Lrel + Lcoupl.

The previous Lagrangian densities determine the full time evolution of the tunneling
quasicondensates at zero temperature. Two different issues, however, emerge at
this point. On the one hand, any experiment is performed at a finite temperature
T , which sets a typical time τ = ℏ/(kBT ) over which the dynamics of the system is
not governed by quantum effects, but by thermal ones. This implies that our model
is capable of predicting the dynamics of the system at times t < τ , to which we
limit our next results, and after which thermal decoherence occurs. On the other

95



hand, even the zero-temperature solution is impossible to get analytically, and we
must simplify the problem. For this goal, we neglect the spatial dependence of the
total fields by assuming δρ = 0 and ϕ̄ = const, under the implicit hypothesis that
the interaction energy gρ̄ is sufficiently high and that the quantum fluctuations are
suppressed. In this case, the coupling Lagrangian density can be neglected and the
motion of the total and relative degrees of freedom is decoupled. Therefore, we
focus on the dynamics of the relative modes, which is governed by the Lagrangian

Lrel =

∫ L

0

dxLrel, (5.39)

and we ignore the dynamics of the center-of-mass degrees of freedom.

The Euler-Lagrange equations of the relative variables are given by

ℏϕ̇ = −J ζ√
1 − ζ2

cosϕ− 2gρ̄ ζ +
ℏ2

2m

[
∂2xζ

1 − ζ2
+

ζ (∂xζ)2

(1 − ζ2)2

]
, (5.40)

ℏζ̇ = J
√

1 − ζ2 sinϕ− ℏ2

2m
∂2xϕ , (5.41)

and extend those of Refs. [174,180] to a nonuniform system in which the relative
phase and the imbalance, as well as the tunneling amplitude, depend on space.

Side-by-side parallel quasicondensates

We consider side-by-side parallel quasicondensates and set J = J⊥. Imposing
reflecting boundary conditions at the system boundaries, we decompose the relative
fields in the basis of cosines as

ϕ(x, t) =

√
2

L

∑
k≥0

ϕk(t) cos (kx), ϕk(t) = αk

∫ L

0

dxϕ(x, t) cos (kx), (5.42)

ζ(x, t) =

√
2

L

∑
k≥0

ζk(t) cos (kx), ζk(t) = αk

∫ L

0

dx ζ(x, t) cos (kx), (5.43)

where k = πn/L is the wave vector, with n integer, and where we set α0 = 1/
√

2 and
αk =

√
2 for k > 0. Substituting this decomposition into the relative Lagrangian

of Eq. (5.39), the resulting expression will depend both on ϕk and on ζk. To get
an effective description of the phase degrees of freedom, we calculate the Euler-
Lagrange equation for ζ and we substitute it in the Lagrangian. As a final step, we
perform a Legendre transformation, obtaining

H =
∑
k

[
p2k

2Mk

+
Mk

2
ω2
kϕ

2
k

]
, (5.44)
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which is the Hamiltonian of a system of harmonic oscillators, with pk = Mkϕ̇k.
These oscillators represent the noninteracting modes in which we have decomposed
the dynamics of the relative degrees of freedom of the parallel condensates. In
particular, the mass of the oscillators is given by

Mk =
ℏ2ρ̄
L

1

(J⊥ + 2gρ̄) + ℏ2k2/(2m)
, (5.45)

while the excitations spectrum reads

ℏωk =

√
J⊥(J⊥ + 2gρ̄) +

ℏ2k2
2m

[
ℏ2k2
2m

+ 2(J⊥ + gρ̄)

]
, (5.46)

and is in the form of a gapped Bogoliubov-like spectrum.

Head-to-tail parallel quasicondensates

To study the head-to-tail configuration, we consider in this section the tunneling
energy J(x) = 2J∥Lδ(x). To tackle the problem analytically, we limit ourselves to
the analysis of the following Lagrangian density

Lrel = −ℏρ̄ ζϕ̇− ℏ2ρ̄
4m

(∂xϕ)2 − ℏ2ρ̄
4m

(∂xζ)2 − (2gρ̄2 + Jρ̄)

2
ζ2 − Jρ̄

2
ϕ2, (5.47)

which is the linearized version of the Lagrangian density that appears in Eq. (5.39).
As a further approximation, we also neglect the term ∝ (∂xζ)2, which requires us
to work in the Josephson regime of gρ̄≫ J∥ that is pertinent to most experiments
[181, 182]. As before, we proceed with substituting into Eq. (5.47) the Euler-
Lagrange equation for ϕ, considering the effective phase-only Lagrangian

Lrel =
ℏ2

4g
ϕ̇2 − ℏ2ρ̄

4m
(∂xϕ)2 − J∥ρ̄ Lδ(x)ϕ2, (5.48)

and, by writing the relative phase field as

ϕ(x, t) =
1√
L

∑
n

qn(t) ϕn(x) , (5.49)

we calculate the Hamiltonian H =
∑

n Pnq̇n − Lrel, where Pn = Mq̇n are the
momenta, obtaining

H =
∑
n

[
P 2
n

2M
+
M

2
Ω2
nϕ

2
n

]
, (5.50)
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which is the Hamiltonian of the quasiparticles in the system of mass M = ℏ2/(2gL).

To diagonalize the Hamiltonian into the previous form and, therefore, to calculate
the eigenfunctions ϕn and the oscillator energies ℏΩn, it is necessary to solve the
following eigenproblem[

− ℏ2

2m
∂2x + 2J∥Lδ(x)

]
ϕn(x) = ϵn ϕn(x), (5.51)

where we impose, as in the side-by-side case, reflecting conditions at the system
boundaries. Note in particular that, once the eigenenergies ϵn are known, the
oscillator energies are given by Ωn = (2gρ̄ ϵn/ℏ2)1/2. The eigenenergies we aim to
determine can be equivalently obtained from the numerical solution of the following
equation [183] √

2mL2ϵn
ℏ2

tan

(√
2mL2ϵn

ℏ2

)
=

2mL2J∥
ℏ2

, (5.52)

which admits some analytical approximations in the different regimes of n and
J∥. In the regime where the tunneling energy J∥ is very small, the eigenenergies
read [85]

ϵn =
1

4

(√
4J∥ +

ℏ2π2n2

2mL2
+

√
ℏ2π2n2

2mL2

)2

, (5.53)

and the oscillator energies are, therefore, given by

ℏΩk =

√
2gρ̄ J∥ +

gρ̄

2

ℏ2k2
2m

+

√
gρ̄

2

ℏ2k2
2m

, (5.54)

where we introduce the wave vector k = πn/L. For other analytical approximations
of Eq. (5.52), valid in other regimes, we refer to Ref. [85].

5.2.2 Dynamics of the coherence factor

We now model theoretically the dynamics of the relative-phase correlators after a
quenching procedure. In particular, we consider here the following preparation of
the initial state: we suppose that a single bosonic tube is quickly split in half, either
in the side-by-side configuration, or in the head-to-tail one. Then, we suppose that
the tunneling amplitude is restored and we discuss how the phase coherence evolves
at short times after the quench. Let us then model this procedure, analyzing the
typical times, and justifying our choice for the initial state of the parallel tubes.

We suppose that the single condensate tube is split in half in a time τs ≪ ξ/cs,
where ξ = (ℏ2/mgρ̄)1/2 is the healing length, and cs is the sound velocity in the
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system. Dividing the system in L/ξ independent grains of length ξ and assuming a
symmetric splitting, we consider the imbalance ζi in the ith grain of the system.
Due to the fast splitting, we assume that the probability distribution is given by

|Ψi(ζi)|2 ∝ exp

(
− ζ2i
ρ̄ξ

)
(5.55)

and is therefore a Gaussian with zero average (due to the symmetric splitting) and
with variance equal to the number of atoms in the grain ρ̄ξ. Since the relative
phase ϕi is canonically conjugated to the imbalance ζi, its probability is1

|Ψi(ϕi)|2 ∝ exp(−ρ̄ξ ϕ2
i ), (5.56)

namely, it is also Gaussian but with the inverse of the variance. Since the grains
are statistically independent, the probability of splitting the quasicondensates with
the series of initial relative phases ϕ1, ..., ϕL/ξ is the product of factors in the form
of Eq. (5.56), for i = 1, ..., L/ξ. Considering a continuum notation, the sum over i
in the exponentials can be performed as an integral, and the probability amplitude
of having an initial relative phase ϕ(x) is given by the wave function

Ψ[ϕ(x), t = 0] ∝ exp

[
− ρ̄

2

∫ L

0

dxϕ(x)2
]
, (5.57)

which represents the state of the system at the time t = 0 of the splitting procedure.
Fixing the normalization, and working in the Fourier space, we can rewrite it as

Ψ[{ϕk}, t = 0] ≃
∏
k

Ψk(ϕk, t = 0), (5.58)

where we define the wave function of the single Fourier mode as

Ψk(ϕk, t = 0) =
1

π1/4σ1/2
e−

ϕ2k
2σ2 , (5.59)

where σ2 = L/ρ̄ is the new variance.

The time evolution of the initial Gaussian state is given by the Hamiltonian of
the quasiparticles of the system at the Eqs. (5.44) (5.50). In this case, each of the
oscillators evolve independently according to the Schrödinger equation, and the
probability of each oscillator at time t reads [184]

|Ψk(ϕk, t)|2 =
1

π1/2σk(t)
e
− ϕ2k
σ2
k
(t) , (5.60)

1To understand the factors in the exponentials, consider the Fourier transform of a Gaussian
wave function, and its associated probability.
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namely, it remain Gaussian, but with a time-dependent variance given by

σ2
k(t) = σ2 cos2(ωkt) +

(
ℏ2

M2
kω

2
kσ

2

)
sin2(ωkt), (5.61)

which depends on the oscillator frequency ωk and on the mass Mk.

Given the previous knowledge, we calculate the coherence factor C(t) = ⟨cos(ϕ)⟩t,
defined as the average of the cosine of the relative phase [177, 185]. After some
simple steps, the coherence factor can be expressed as [177]

C(t) = e−
1

4L2

∑
k σ

2
k(t), (5.62)

which is completely determined by the variance at Eq. (5.61) and, therefore, by
the excitation spectra ωk and by the oscillator masses Mk previously derived. In
the remaining part of this chapter, through the calculation of C(t), which is an
observable quantity, we discuss the dynamics of the system in which, considering
the initial state (5.58), the tunneling energy is quickly quenched to the nonzero
value J .

Side-by-side parallel quasicondensates

We analyze the time evolution of the coherence factor of Eq. (5.62), considering
side-by-side quasicondensates with the excitation spectrum of Eq. (5.46) and mass
of the oscillators given by Eq. (5.45).

In Fig. 5.7 we show the coherence factor as a function of time, implementing the
sum in Eq. (5.62) for the realistic experimental values of the system length, density
and interactions [181, 186] described in the figure caption. The coherence factor
C(t) performs time oscillations during its dynamics which, since C(t) models the
overall time evolution of the relative phase, testifies the dephasing and rephasing
of the noninteracting quasiparticles. This peculiar behavior is crucially due to the
nonzero tunneling amplitude between the parallel quasicondensates, which opens a
gap in the quasiparticle energy, see Eq. (5.46). In this configuration, the system
is essentially performing Josephson oscillations, and the inclusion of the spatial
degrees of freedom in the relative phase field ϕ(x) produces quantitative changes
in the dynamics.

The crucial role of the nonzero tunneling energy J⊥ is testified by Fig. 5.8, where we
plot the adimensional variance σ2

k(t)/σ
2 of the oscillators as a function of time. We

first note that the oscillation period is practically determined by the lowest-energy
oscillator, σ2

0(t)/σ2, while the higher-energy modes constitute higher harmonics
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Figure 5.7: Dynamics of the coherence factor after the sudden splitting of two parallel
quasicondensates in a side-by-side configuration. In the absence of tunneling, i. e. for J⊥ =
0, the two subsystems dephase [177] (orange dashed line), while for J⊥/ℏ = 5/(2π)Hz,
the system dephases and rephases periodically. For a tube of length L = 100µm (red
dashed line), the coherence factor acquires a higher value with respect to a shorter tube,
with length L = 50µm (blue solid line). In this plot, we consider 87Rb atoms with
density ρ̄ = 50µm−1, and interaction strength g = 2(ℏ2/m)(as/l⊥), where as = 5nm,
and l⊥ = 0.24µm is the thickness of the tubes. From Ref. [85].
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Figure 5.8: Evolution of the quasiparticle widths of Eq. (5.63) for different values of
the wave vector k, where, to simplify the notation in the figure, k = {0, 1, 2, ...} denotes
actually k = (π/L){0, 1, 2, ...}. While, in the absence of tunneling, the k = 0 mode grows
quadratically (orange dashed line), for nonzero J⊥ the widths oscillate in time (blue solid
lines). In this plot, we use the same parameters of the blue curve in Fig. 5.7. From
Ref. [85].

that are responsible for the small bumps in Fig. 5.7. Thus, we focus on the low
wave vector limit of the oscillator variance Eq. (5.61), which reads

σ(t)2 ∼ σ2 cos2(ω0t) + lim
k→0

(
ℏ2

M2
kω

2
kσ

2

)
sin2(ωkt). (5.63)

If the excitation spectrum is gapped, so that ω0 is finite, σ(t)2 oscillates in time
as the sum of sines and cosines with different weights. However, in the case of a
gapped excitation spectrum for which ω0 = 0, the previous equation goes as

σ(t)2 ∼ σ2 +
ℏ2

M2
0σ

2
t2, (5.64)

and, therefore, grows quadratically in time and leads the coherence factor C(t) of
Eq. (5.62) to decay exponentially.

Head-to-tail parallel quasicondensates

In the regimes considered here, pertinent to most experiments, the mechanism
of dephasing and rephasing of the coherence factor occurs also in head-to-tail
parallel quasicondensates. Indeed, this behavior is a general consequence of the
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nonzero gap in the excitation spectrum derived in Eq. (5.54). Thus, by repeating
the steps implemented in side-by-side quasicondensates also in the configuration of
head-to-tail ones, we plot the coherence factor C(t) as a function of time in Fig. 5.9.
As before, the coherence factor oscillates in time with a period which is essentially
determined by the lowest-energy mode.
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Figure 5.9: Time evolution of the coherence factor of two parallel head-to-tail quasicon-
dendensates. The different rephasing times are controlled by the tunneling amplitude,
either J∥/ℏ = 8/(2π)Hz (blue solid line), or J∥/ℏ = 2/(2π)Hz (red dashed line). We use
in this plot the same parameters of Fig. 5.6, except for ρ̄ = 30µm−1, and L = 30µm.
From Ref. [85].

It is important to stress that the initial Gaussian state can be engineered in
the head-to-tail quasicondensates by splitting a single tube into two side-by-side
quasicondensates that tunnel only in the origin. Indeed, our formalism does not
model the actual spatial position and the angle between the tubes, and this is the
most practical way to ensure the desired initial condition.
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6

Conclusions and outlook

The study of ultracold atomic gases in reduced dimensionalities and, particularly,
the analysis of novel geometries, has often led to new discoveries and applications.
In this thesis, we have focused our attention on discussing the physics of one-
and two-dimensional systems, analyzing thoroughly the case of two-dimensional
bubble-trapped condensates in spherical and in ellipsoidal configurations.

Shell-shaped condensates are an experimentally-relevant prototype of a curved quan-
tum gas, and display rich equilibrium and nonequilibrium properties. Throughout
their study, we have analyzed how finite size and curvature influence the transition
of Bose-Einstein condensation, and we have derived a renormalization group descrip-
tion of the Berezinskii-Kosterlitz-Thouless transition in the spherical case. In this
specific configuration, our results on the interplay of Bose-Einstein condensation
and superfluidity, and the study of finite-temperature hydrodynamic modes, will
offer analytical insight to benchmark future and ongoing experiments. Most of our
findings are tailored on the specific conditions of microgravity research facilities,
but can also be extended to model other experimental realizations of shell-shaped
condensates that may be developed in the future.

Another major research direction of the present work is the study of sound propa-
gation in two-dimensional uniform superfluids. To consider the Landau two-fluid
model a valid description of a weakly-interacting gas, it is necessary to detect
experimentally both sound modes, which should agree with the predictions of the
model. This proof has been recently obtained in two-dimensional box-trapped
bosons, but, in two-dimensional uniform fermions, the second sound velocity and its
vanishing at the BKT transition is still undetected. This evidence, for a textbook
configuration as that of a quantum gas in a box, would demonstrate the validity of
the two-fluid picture in fermions across the whole BCS-BEC crossover. We also
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hope to trigger future experimental investigations for observing the hybridization
of first and second sound in box-trapped bosons. Our works, in particular, offer
new theoretical predictions for the hybridization temperature in three- and two-
dimensional weakly-interacting bosons, and for the behavior of the sound modes at
low temperatures, where other theories do not apply.

In the last ten years, the field of ultracold quantum gases has also been stimulated
by the experimental implementation of new interatomic interactions and by the
engineering of artificial gauge fields. Actually, most of the results of the present
thesis, concerning both shell-shaped condensates and other configurations, are
obtained for zero-range interatomic interactions. Including in our theories long-
range (i. e. dipolar) or higher-order effective interactions, could lead to a richer
phenomenology.

In bubble-trapped condensates, new physics could stem from the complex interplay
of fluctuations, interactions, temperature, topology, and curvature. Curvature, in
particular, deserves further refined investigations. Most theoretical discoveries in
the physico-mathematical context can be usually reframed as a direct consequence
of the assumptions of the problem: this consideration, instead of proving worthless
the analysis of the right postulates, implies that researching new results coincides,
in a broad sense, with the precise identification of the correct initial definitions. In
this sense, we believe that a better understanding of the concept of curvature of a
quantum gas can lead to exciting developments in the field of ultracold atoms.

106



Acknowledgments

It may happen, and in my case it often occurred, that the continuous flow of
conferences, discussions, peer reviews and publications prevents from acknowledging
properly collaborators and friends. It is thus the right moment, at the end of a
long path, to think about all the interactions that occurred in the past years and
that determined my personal growth.

I want to thank my supervisor Luca Salasnich, who guided and animated my
scientific interests, allowing me to grow as a scientist. Despite spending most of
my PhD time confined due to the Covid-19 pandemic, he helped me to lead a
productive and healthy activity. Another important guide in the last years has
been Axel Pelster, whose scientific and personal advices were always supportive
and complemented those of my supervisor.

I also gratefully acknowledge Fabio Cinti, Dmitry Petrov, Flavio Toigo, Yueming
Wang, and Sandro Wimberger for productive and interesting collaborations. In
addition, the possibility to talk informally about research and personal issues
with close colleagues as Giacomo Bighin and Alberto Cappellaro, has always been
fruitful.

It is also important, I believe, to thank the physicists to whom I sent emails during
these years, and who replied carefully and with useful information that allowed me
to solve difficult research issues.

Moving towards my peer group, I am happy that I could spend the (pre-lockdown)
first year of the PhD with my colleagues: Timo Felser, Stefano Garlaschi, Alfredo
Guarrera, Jay Kalinani, Sarah Libanore, Luca Mattiazzi, Leonardo Pacciani Mori,
Giorgio Nicoletti, Dario Partipilo, Giovanni Verza. Their physical presence, their
jokes and the casual discussions made working long hours in the office fun and
productive.

My deep gratitude and some apologies are for my parents, my relatives, and my
friend Giorgio: they have not seen me much in the last years, as I spent most of
the time carrying on my studies in Padova. I dedicate this thesis to Federica.



108



Appendix A

Laplace equation in spherical
coordinates

In this appendix, we derive the Green’s function of Laplace equation in spherical
coordinates. The Green’s function G(θ, φ, θ′, φ′) satisfies the following Poisson
equation

− L̂2

ℏ2
G(θ, φ, θ′, φ′) = q

[
δ(cos θ − cos θ′) δ(φ− φ′) − 1

4π

]
, (A.1)

where L̂2 is the angular momentum operator in spherical coordinates, and where
the additional term −1/(4π) eliminates the divergences in the following steps. We
expand G(θ, φ, θ′, φ′) and the delta functions in a basis of spherical harmonics as

G(θ, φ, θ′, φ′) =
∞∑
l=0

l∑
ml=−l

glml(θ
′, φ′)Ymll (θ, φ), (A.2)

δ(cos θ − cos θ′) δ(φ− φ′) =
∞∑
l=0

l∑
ml=−l

Ymll
∗(θ′, φ′)Ymll (θ, φ). (A.3)

where glml(θ
′, φ′) are unknown coefficients. To determine them, we substitute these

decompositions in Eq. (A.1), and using the properties of the spherical harmonics,
we find that

glml(θ
′, φ′) =

q

l(l + 1)
Ymll

∗(θ′, φ′). (A.4)

Then, substituting glml(θ
′, φ′) into the Green’s function of Eq. (A.2), and summing

over ml, we find

G(θ, φ, θ′, φ′) =
q

4π

[ ∞∑
l=1

1

l
Pl(cos γ) +

∞∑
l=1

1

l + 1
Pl(cos γ)

]
, (A.5)
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with Pl(cos γ) the Legendre polynomia, and cos γ = cos θ cos θ′ + sin θ sin θ′ cos(φ−
φ′). The sums in Eq. (A.5) can be performed analytically, see for instance Ref. [187],
obtaining the Green’s function as

G(θ, φ, θ′, φ′) =
q

4π
+

q

2π
ln

(√
1 − cos γ

2

)
,

which allows to determine the stream function of a spherical superfluid film, as
discussed in section 3.3.
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[63] K. Padavić, K. Sun, C. Lannert, and S. Vishveshwara, Physics of hollow
Bose-Einstein condensates, EPL 120, 20004 (2018).

[64] P. C. Diniz, E. A. B. Oliveira, A. R. P. Lima, and E. A. L. Henn, Ground
state and collective excitations of a dipolar Bose-Einstein condensate in a
bubble trap, Sci. Rep. 10, 4831 (2020).

[65] M. Arazo, R. Mayol, and M. Guilleumas, Shell-shaped condensates with
gravitational sag: contact and dipolar interactions, arXiv:2107.04577.



[66] S. Prestipino and P. V. Giaquinta, Ground state of weakly repulsive soft-core
bosons on a sphere, Phys. Rev. A 99, 063619 (2019).
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[155] P. Noziéres and D. Pines, The Theory of Quantum Liquids II: Superfluid
Bose Liquids (Westview Press, Boulder, 1999).

[156] T. Ozawa and S. Stringari, Discontinuities in the First and Second Sound
Velocities at the Berezinskii-Kosterlitz-Thouless Transition, Phys. Rev. Lett.
112, 025302 (2014).

[157] L. A. Sidorenkov, M. Tey, R. Grimm, Y.-H. Hou, L. Pitaevskii, and S.
Stringari, Second sound and the superfluid fraction in a Fermi gas with
resonant interactions, Nature 498, 78 (2013).

[158] K. Furutani, A. Tononi, and L. Salasnich, Sound modes in collisional super-
fluid Bose gases, New J. Phys. 23, 043043 (2021).

[159] S. Stringari, Second sound seen, Nat. Phys. 17, 770 (2021).

[160] J. Dalibard, Fluides quantiques de basse dimension et transition de Kosterlitz-
Thouless, (Collège de France Lecture Notes, 2016)

[161] N. Prokof’ev and B. Svistunov, Two-dimensional weakly interacting Bose gas
in the fluctuation region, Phys. Rev. A 66, 043608 (2002).

[162] J. Machta and R. Guyer, Superfluid films on a cylindrical surface, J. Low
Temp. Phys. 74, 231 (1989).

[163] A. Tononi, Y. Wang, and L. Salasnich, Quantum Solitons in Spin-Orbit
Coupled Bose-Bose Mixtures, Phys. Rev. A 99, 063618 (2019).

[164] S. Stringari and L. P. Pitaevskii, Bose-Einstein Condensation and Superflu-
idity, 2nd edition (Oxford Univ. Press, 2016).

[165] C. R. Cabrera, L. Tanzi, J. Sanz, B. Naylor, P. Thomas, P. Cheiney, and L.
Tarruell, Quantum liquid droplets in a mixture of Bose-Einstein condensates,
Science 359, 301 (2018).

[166] G. Semeghini, G. Ferioli, L. Masi, C. Mazzinghi, L. Wolswijk, F. Minardi, M.
Modugno, G. Modugno, M. Inguscio, and M. Fattori, Self-Bound Quantum



Droplets of Atomic Mixtures in Free Space, Phys. Rev. Lett. 120, 235301
(2018).
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