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Abstract 

In the last decade, the biopharmaceutical industry has been expanding in an impressive fashion, 

and more and more biopharmaceuticals have reached approval every year. More than one half 

of the total yearly approvals of biopharmaceuticals is represented by monoclonal antibodies 

(mAbs), which are an important class of therapeutics used for the treatment of autoimmune, 

oncological, and infectious diseases. Monoclonal antibodies are typically produced by 

genetically modified mammalian cells (specifically Chinese Hamster Ovary cells), which are 

cultivated in large bioreactors. The development of new mAbs is a resource-intensive and time-

consuming procedure, typically lasting several years and costing more than 2 billion dollars 

each. The main steps of mAb development are cell line generation and engineering, cell line 

selection and scale-up, process characterization, and process optimization. Due to the long 

timelines and investments required for the development of new mAbs, biopharmaceutical 

companies are looking for innovative solutions to support and accelerate each of those steps of 

the drug development.  

The objective of this Dissertation is to develop digital models to support and accelerate the 

monoclonal antibody development favoring the transition to the Biopharmaceutical Industry 

4.0. This Dissertation concerns descriptive and diagnostic models, which provide a better 

comprehension of the biopharmaceutical processes and their behavior, but also predictive and 

prescriptive models, which allow to forecast and even improve the performance of the 

biopharmaceutical process. Specifically, in this Dissertation: i) cell line selection is accelerated 

by integrating process and biological information and examining their dynamics; ii) the 

identification of high performing cell lines in scenarios with limited available data is improved 

through in silico data generation; iii) the optimization of the culture feeding schedule is 

accelerated by means of hybrid models; iv) a new constraining method based on deep learning 

is proposed to improve of the metabolic description of genome-scale metabolic models 

(GSMMs); and v) an novel method to identify genetic engineering targets exploiting GSMMs 

is developed by means of latent-variables regression model inversion. 

Furthermore, the models proposed in this Dissertation fulfill some of the regulatory 

requirements for the development of new drugs, such as providing enhanced process 

understanding, managing process variability, reducing the risk of poor-quality product, and 

predicting critical quality attributes (CQAs).  
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Two works deal with the acceleration of cell lines selection by integrating process and 

biological information and examining their dynamics. Since a workflow on the fusion of 

metabolomics and process data for a broad understanding of the relationship between cell 

metabolism and process CQAs, and the exploitation of metabolomic data dynamics to 

accelerate cell line selection are still missing, in the first work, an innovative machine learning 

approach is proposed to integrate time-varying process and biological information (i.e., 

metabolomics), explicitly accounting for their dynamics. The proposed framework is aimed at 

understanding the metabolic state changes occurring along the cultivation process, and how 

they are associated with process performance. Furthermore, product titer is estimated with good 

accuracy (𝑄2 > 40%), providing insights into its relationship with underlying metabolic 

mechanisms and enabling the identification of biomarkers to be further investigated, such as 

propinol adenylate and L-lactic acid. The biological insight obtained through the proposed 

approach provides an in-depth metabolic understanding of the process and allows the early 

identification of high performing cell lines.  

In the second work, a machine learning methodology based on multivariate linear classification, 

explicitly exploiting dynamic metabolomic data, is proposed to accelerate the selection of high 

productive cell lines. Specifically, the information contained in the dynamic biological 

information allows to identify the cell lines with high productivity with 100% accuracy, already 

from the early stages of the culture. Moreover, this allows identifying the biomarkers that are 

most related to high cell productivity, such as Citric acid, Thiamine, and UDP-glucose, and to 

study how the relevant metabolic pathways for the discrimination of cell productivity vary 

along the cultivation. In the exponential growth and stationary phases, the metabolic pathways 

connected to energy production and DNA replication are found to be important for cell 

productivity, while in the decline phase the cell physiological state is totally connected to the 

metabolism of nucleotide and other sugars. Such biological understanding provides at the same 

time insight for the improvement of the host cells. The methodologies developed in these works 

were implemented in a software named ADAM, which is internally used by GlaxoSmithKline 

for the analysis of metabolomic data.  

Concerning the improved identification of high performing cell lines in scenarios with 

limited available data, biopharmaceutical process development is typically characterized by 

the availability of few experiments, especially at large process scales, such as the pilot one, 

because of their high cost and long duration. This limits the use of science-based methods, such 

as multivariate statistical techniques, which demonstrated to be extremely beneficial to support 

various stages of process development. Data augmentation strategies are a viable solution to 

artificially increase the quantity of available data from experiments. However, they are 

underexplored in the biopharmaceutical sector. In this work, an innovative data augmentation 

methodology for in silico data generation is proposed to augment the amount of data available 
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from real (i.e., in vitro) experiments. In silico data generated by two digital models (one based 

on a first principles model, the other on a hybrid model) are used to improve the identification 

of high performing cell lines by means of multivariate models in a simulated biopharmaceutical 

process for the production of mAbs. The simulated process allows better control of both the 

process behavior and the biological diversity in the experiments. The generation of in silico 

data through digital models effectively support the identification of high-productive cell lines 

(i.e., high mAb titer) even when a very low number of real experimental batches (< 6) is 

available, by predicting the mAb titer with errors that are comparable with the experimental 

one (180-220 mg/L). This allows to reduce expenses and timelines of mAbs development, and 

a more effective identification of the process variables with the largest influence on mAb titer.  

Regarding the accelerated optimization of the feeding schedule by means of hybrid models, 

hybrid models proved to be effective for the optimization of the feeding schedule, but a proof 

of their advantages over the state-of-the-art experimental strategies is missing. In this work, a 

novel methodology for in silico experimental campaign through hybrid models is proposed. In 

particular, the in silico experimental campaign on hybrid digital models, trained with 

experiments planned through a Design of Dynamic Experiments is compared with two in vitro 

experimental campaigns with different numbers of planned experiments. The in silico 

experimental campaign identifies better process optimum (in silico: 3222.8 mg/L vs. in vitro: 

3136.3 mg/L), and reduces the number of experiments required to identify the best feeding 

schedule. The proposed methodology is tested on a simulated biopharmaceutical process for 

the production of mAbs; the simulated process allows to know if the in silico experimentation 

captures in a correct way the real relationship between nutrients and antibody titer, and if it is 

able to identify the real optimal feeding strategy.  

With respect to the new constraining method based on deep learning to improve of the 

metabolic description of GSMMs, the complexity of mammalian cell metabolic networks 

limits the accuracy in representing the metabolic state and phenotype of cells. The introduction 

of better methods for constraining the intracellular flux values in GSMMs could provide 

accurate modeling of cell metabolism, but methodologies are either too expensive (i.e., 13C 

labeling experiments) or still not enough accurate (i.e., FBA, pFBA, ccFBA). Furthermore, a 

reliable, accurate, and cheap method based on experimental data to properly define the 

intracellular constrains of GSMMs is missing. In this work, a deep learning method, named 

Next-FLUX, is proposed to estimate the constraints of GSMMs from cheap and easily available 

measurements. Next-FLUX accurately predicts most of the intracellular fluxes (𝑄2 > 65%). 

Furthermore, the constraints to apply in GSMMs are estimated in an innovative way by means 

of the neural network prediction intervals. The estimated constraints allow a GSMM to improve 

the calculation of the intracellular fluxes (Person correlation between GSMM calculated and 

experimental intracellular fluxes: 0.765 vs. 0.343) and the biomass prediction (𝑄2 = 61.6% vs. 
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𝑄2 = 13.3%) with respect to the state-of-the-art methodologies. Accordingly, the more 

accurate predictions of both metabolic state and phenotypes of cells lead to a better description 

of cell metabolism.  

Regarding the novel method to identify genetic engineering targets by means of GSMMs 

and latent variable regression model inversion, targets for genetic engineering are typically 

identified by mean of GSMMs and optimization methods, which are complex to implement, 

computationally demanding and time-consuming, especially for large metabolic networks. The 

application these algorithms to mammalian cells, such as CHO, is limited by the large size of 

the mammalian metabolic network. Furthermore, alternative methods based on simple data-

based mathematical methodologies are missing. In this work, a method based on latent variable 

regression model inversion is proposed to identify genetic modifications that improve the mAb 

productivity of mammalian cells. The proposed methodology suggested genetic modifications 

concerning the metabolism of specific amino acids, such as L-valine and L-tryptophan, and the 

recirculation of mannose in the early stages of mAb glycosylation to improve cell productivity. 

The mAb productivity improvements are verified in synthetic experiments run on the GSMMs, 

which is the first step towards the in vitro testing. Furthermore, the proposed methodology is 

faster and simpler than traditional methods to identify targets for genetic engineering through 

GSMMs which are based on optimization algorithms. 

 



 

 

Riassunto esteso 

Negli ultimi dieci anni, l'industria biofarmaceutica è cresciuta notevolmente e sempre più 

biofarmaci vengono approvati ogni anno. Più di metà delle approvazioni annuali è costituita da 

anticorpi monoclonali (mAbs), una classe di medicinali utilizzati per il trattamento di malattie 

autoimmuni, oncologiche e infettive. A livello industriale, gli anticorpi monoclonali sono 

tipicamente prodotti da cellule di mammifero geneticamente modificate (in particolare cellule 

ovariche di criceto cinese, CHO) coltivate in grandi bioreattori. La fase di sviluppo di nuovi 

anticorpi monoclonali è una procedura dalla lunga durata ed elevato costo, che in generale può 

durare diversi anni e costare più di 2 miliardi di dollari per ogni nuovo farmaco. Le fasi 

principali dello sviluppo di nuovi anticorpi monoclonali sono la generazione e 

l’ingegnerizzazione delle linee cellulari, la selezione delle linee cellulari più promettenti, e la 
caratterizzazione e l’ottimizzazione del processo produttivo. A causa delle lunghe tempistiche 
per lo sviluppo di nuovi anticorpi monoclonali e degli ingenti investimenti richiesti, le aziende 

biofarmaceutiche sono alla ricerca di soluzioni innovative per adiuvare ed accelerare lo 

sviluppo di nuovi farmaci.  

L’obiettivo di questa Dissertazione è lo sviluppo di modelli digitali per adiuvare and accelerare 
le varie fasi dello sviluppo di nuovi anticorpi monoclonali, in modo da favorire la transizione 

verso l’Industria Biofarmaceutica 4.0. Questa Dissertazione tratta di modelli descrittivi e 

diagnostici, che consentono di raggiungere una migliore comprensione del processo produttivo 

e delle sue prestazioni, ma anche di modelli predittivi e prescrittivi, che permettono di prevedere 

e perfino di migliorare le prestazioni dei processi biofarmaceutici. In particolare, in questa 

Dissertazione: i) la selezione di linee cellulari promettenti è stata accelerata attraverso la fusione 

di informazioni biologiche e di processo, anche sfruttando la loro dinamica; ii) l’identificazione 

di linee cellulari ad elevate prestazioni in scenari con disponibilità limitata di dati è stata 

migliorata attraverso la generazione di dati in silico; iii) l’ottimizzazione della strategia di 
alimentazione delle colture cellulari è stata accelerata attraverso modelli ibridi; iv) un nuovo 

metodo per vincolare i flussi metabolici basato su tecniche di deep learning è stato proposto 

per migliorare la capacità descrittiva del metabolismo cellulare da parte di modelli metabolici 

a scala genomica (GSMM); e v) un nuovo metodo per identificare modifiche genetiche 

sfruttando GSMM è stato sviluppato attraverso l’inversione di modelli di regressione a variabili 
latenti.  

Inoltre, i modelli proposti in questa Dissertazione soddisfano alcune richieste degli enti 

regolatori riguardo lo sviluppo di nuovi farmaci, come una profonda conoscenza del processo, 
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la gestione della sua variabilità, la riduzione del rischio di ottenere prodotti di scarsa qualità e 

la predizione di attributi di qualità critici (CQA). 

L’accelerazione della fase di selezione delle linee cellulari più promettenti attraverso 

l’integrazione di informazioni di processo e biologiche sfruttando le loro variazioni 
temporali è stata considerata in due lavori, contenuti nei Capitoli 3 e 4. In questo caso, un 

approccio che combini informazioni biologiche e di processo per una migliore comprensione 

della relazione tra il metabolismo cellulare e i CQA, e l’utilizzo di dati di metabolomica 
variabili nel tempo per velocizzare la selezione di linee cellulari promettenti sono ancora 

mancanti. Nel primo lavoro, viene proposto un approccio innovativo basato sul machine 

learning che combini informazioni biologiche (come dati di metabolomica) e di processo 

variabili nel tempo e sfrutti in modo esplicito la loro dinamica. La metodologia proposta viene 

utilizzata per studiare come il metabolismo cellulare cambia durante il processo di coltivazione 

e come questi cambiamenti siano associati alle prestazioni del processo produttivo. Inoltre, il 

titolo di anticorpi viene stimato con buona accuratezza (𝑄2 > 40%), permettendo di ottenere 

preziose informazioni sui meccanismi metabolici associati alla produzione di anticorpi e 

biomarcatori, come propinol adenylate e L-lactic acid, che dovranno essere analizzati 

approfonditamente in ulteriori studi. Tutte le conoscenze sui fenomeni biologici ottenute 

attraverso la metodologia proposta consentendo l'identificazione precoce delle linee cellulari 

con elevate prestazioni. 

Nel secondo lavoro, viene proposta una metodologia basata sul machine learning che utilizza 

in modo esplicito informazioni biologiche variabili nel tempo per accelerare l’identificazione 
di linee cellulari che presentano una elevata produttività. In particolare, le informazioni 

biologiche variabili nel tempo permettono di identificare già dagli stadi iniziali del processo le 

linee cellulari che presentano una elevata produttività con un’accuratezza del 100%. Inoltre, la 
metodologia proposta permette di identificare i biomarcatori associati ad un’elevata produttività 
cellulare, come Citric acid, Thiamine e UDP-glucose, e di studiare come i percorsi metabolici 

legati alla produttività cellulare cambiano nel tempo lungo la coltura cellulare. Nella fase di 

crescita esponenziale e in quella stazionaria, i percorsi metabolici connessi alla produttività 

riguardano la produzione di energia e la replicazione del DNA, mentre nella fase di declino, i 

percorsi metabolici connessi alla produttività sono principalmente legati al metabolismo degli 

zuccheri e degli zuccheri nucleici. La conoscenza della relazione tra il metabolismo cellulare 

ed un’elevata produttività cellulare fornisce importanti informazioni per migliorare le 
caratteristiche delle cellule utilizzate per la produzione di anticorpi monoclonali. Le 

metodologie sviluppate in questi lavori sono state implementate in un software chiamato 

ADAM, il quale viene utilizzato internamente da GlaxoSmithKline per l’analisi di dati 
metabolomici. 
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Per quanto riguarda la migliore identificazione di linee cellulari più performanti in 

situazioni con limitata disponibilità di dati, lo sviluppo di processi biofarmaceutici è 

tipicamente caratterizzato dalla limitata disponibilità di esperimenti, specialmente alle scale di 

processo più grandi come quella pilota, a causa dell’elevato costo e lunga durata di ogni 
esperimento. Questo limita notevolmente l’uso di tecniche scientifiche, come quelle statistiche 
multivariate, le quali hanno dimostrato di essere particolarmente utili per lo sviluppo di processi 

biofarmaceutici. Strategie di data augmentation sono una soluzione per aumentare il numero di 

dati disponibili dagli esperimenti, ma purtroppo sono poco considerate nel settore 

biofarmaceutico. In questo lavoro viene proposta una metodologia innovativa per la 

generazione di dati in silico in modo da aumentare la quantità dei dati disponibili da esperimenti 

reali, che viene riportata nel Capitolo 5. I dati sono generati in silico attraverso due diversi 

modelli digitali (uno basato su un modello a principi primi e l’altro basato su un modello ibrido) 
e vengono utilizzati per migliorare l’identificazione delle linee cellulari con le migliori 
prestazioni da parte di modelli multivariati in un processo simulato di produzione di anticorpi 

monoclonali. Questo processo simulato permette un migliore controllo del comportamento del 

processo e della diversità biologica tra i vari esperimenti. Utilizzo di dati generati in silico 

attraverso modelli digitali permette di identificare efficacemente linee cellulari molto 

produttive e che raggiungono un titolo di anticorpi elevato, anche quando un numero molto 

ridotto di esperimenti reali è disponibile per l’analisi (< 6), in quanto permettono di predire il 
titolo di anticorpi con errori comparabili a quelli sperimentali (180-220 mg/L). Tutto ciò 

permette di ridurre i costi e le tempistiche di sviluppo degli anticorpi monoclonali assieme ad 

una identificazione più efficace delle variabili di processo che influenzano maggiormente il 

titolo di anticorpi.  

Per quanto riguarda l’accelerazione della strategia di alimentazione delle colture cellulari 
attraverso modelli ibridi, i modelli ibridi hanno dimostrato la loro efficacia nell’ottimizzare 
la strategia di alimentazione, ma i vantaggi del loro utilizzo rispetto a strategie sperimentali non 

sono ancora stati provati. In questo lavoro viene proposta una metodologia innovativa per 

l’esecuzione di una campagna sperimentale in silico utilizzando dei modelli digitali ibridi, che 

viene riportata nel Capitolo 6. In particolare, la campagna sperimentale in silico basata su 

modelli ibridi addestrati a partire da esperimenti pianificati in modo dinamico è stata 

confrontata con due campagne sperimentali in vitro che comprendono un diverso numero di 

esperimenti. La campagna sperimentale in silico identifica un punto di ottimo del processo 

migliore delle campagne puramente sperimentali (in silico: 3222.8 mg/L contro in vitro: 3136.3 

mg/L), e permette di ridurre il numero di esperimenti richiesti per identificare la migliore 

strategia di alimentazione per le colture cellulari. La metodologia proposta è stata testata su un 

processo biofarmaceutico simulato per la produzione di anticorpi monoclonali. Questo processo 

simulato permette di conoscere se la campagna sperimentale in silico cattura in modo corretto 
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la relazione tra nutrienti e titolo di anticorpi e se è anche in grado di identificare il punto di 

ottimo reale del processo.  

Per quanto riguarda il nuovo metodo per vincolare i flussi metabolici basato su tecniche di 

deep learning che migliora la capacità descrittiva del metabolismo cellulare da parte di 

GSMM, la complessità del network metabolico delle cellule di mammifero limita l’accuratezza 
con cui lo stato metabolico e il fenotipo delle cellule viene descritto. L’introduzione di ulteriori 

metodi per vincolare il valore accettabile dei flussi metabolici in GSMM può migliorare 

sensibilmente l’accuratezza con cui il metabolismo cellulare viene descritto. Purtroppo, le 

metodologie disponibili sono troppo costose (come gli esperimenti basati sugli isotopi 13C) o 

non sufficientemente accurate (come FBA, pFBA, ccFBA). Inoltre, un metodo affidabile, 

accurato ed economico basato su dati sperimentali per definire i vincoli sui valori accettabili 

dei flussi metabolici in GSMM non è al momento disponibile. In questo lavoro è stato 

sviluppato un modello di deep learning basato su reti neurali denominato Next-FLUX, riportato 

nel Capitolo 7. Questo modello stima i valori ammissibili dei flussi metabolici (ovvero vincoli 

necessari ai modelli metabolici per essere risolti) a partire da dati economici e facilmente 

ottenibili. Next-FLUX è in grado di predire con grande accuratezza i flussi metabolici 

intracellulari (𝑄2 > 65%). Inoltre, i vincoli sui valori accettabili dei flussi metabolici da 

applicare nei GSMM sono stimati in modo innovativo utilizzando gli intervalli di predizione 

delle reti neurali. I vincoli stimati in questo modo permettono ad un GSMM di calcolare in 

modo più accurato i flussi metabolici (con una correlazione Pearson tra i flussi calcolati dal 

GSMM e quelli sperimentali di 0.765 contro 0.343) e la biomassa prodotta (𝑄2 = 61.6% contro 𝑄2 = 13.3%) rispetto alle metodologie più all’avanguardia. Tutto ciò ha permesso di 

migliorare la capacità dei modelli metabolici di descrivere il metabolismo cellulare.  

Per quanto riguarda il nuovo metodo per indentificare possibili modifiche genetiche 

attraverso modelli metabolici e l’inversione di modelli regressivi a variabili latenti, 

l’identificazione di possibili modifiche genetiche viene tipicamente eseguita attraverso GSMM 
e tecniche di ottimizzazione, le quali risultano complesse da implementare e richiedono elevate 

risorse computazionali e molto tempo, specialmente nel caso di grandi network metabolici. 

L’applicazione di questi algoritmi di ottimizzazione a cellule di mammifero, come ad esempio 
le CHO, è fortemente limitata dalle elevate dimensioni dei network metabolici delle cellule di 

mammifero. Inoltre, metodi alternativi per identificare modifiche genetiche che si basano su 

metodologie basate su dati non sono al momento disponibili. In questo lavoro è stato sviluppato 

un metodo basato sull’inversione di modelli regressivi a variabili latenti per identificare 

modifiche genetiche che migliorino la produttività di anticorpi monoclonali da parte di cellule 

di mammifero. La metodologia proposta ha suggerito delle modifiche genetiche riguardanti il 

metabolismo di specifici aminoacidi, come L-valine e L-tryptophan, e il ricircolo di mannose 

negli stadi iniziali della glicosilazione degli anticorpi. Gli aumenti di produttività sono stati 
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verificati attraverso esperimenti sintetici su GSMM, i quali sono il primo passo prima dei test 

in vitro. Inoltre, la metodologia proposta risulta più semplice e veloce rispetto alle metodiche 

tipicamente utilizzate che si basano sull’utilizzo di modelli metabolici e algoritmi di 

ottimizzazione. 



  

 



  

 

Table of Contents 

FOREWORD ................................................................................................................................... i 

ABSTRACT .................................................................................................................................. iii 

RIASSUNTO ESTESO ................................................................................................................... vii 

TABLE OF CONTENT ................................................................................................................. xiii 

LIST OF SYMBOLS ..................................................................................................................... xxi 

CHAPTER 1 ‒ STATE OF THE ART AND MOTIVATION ........................ 1 

1.1 BIOPHARMACEUTICAL INDUSTRY: AN OVERVIEW .............................................................. 1 

1.2 MONOCLONAL ANTIBODIES ............................................................................................... 3 

1.3 CELL CULTURES ................................................................................................................ 4 

1.3.1 UPSTREAM PROCESS .............................................................................................................. 4 

1.3.2 DOWNSTREAM PROCESS ........................................................................................................ 5 

1.3.3 DATA IN CELL CULTURES ....................................................................................................... 6 

1.3.3.1 Process data .................................................................................................................... 6 

1.3.3.2 Biological data ................................................................................................................ 7 

1.4 BIOPRODUCT DEVELOPMENT ............................................................................................. 8 

1.4.1 PRODUCT DEVELOPMENT ....................................................................................................... 9 

1.4.1 PROCESS DEVELOPMENT ...................................................................................................... 10 

1.4.1.1 Cell generation and engineering ................................................................................... 11 

1.4.1.2 Cell lines selection and scale-up .................................................................................. 12 

1.4.1.3 Process characterization ............................................................................................... 13 

1.4.1.4 Media and feed optimization ........................................................................................ 14 

1.4.1.5 Process optimization .................................................................................................... 15 

1.4.2 REGULATORY ASPECTS OF BIOPROCESS DEVELOPMENT ..................................................... 15 

1.5 MATHEMATICAL MODELING IN BIOPHARMA INDUSTRY 4.0 ............................................. 17 

1.5.1 DATA-DRIVEN MODELLING .................................................................................................. 19 

1.5.1.1 Descriptive activities .................................................................................................... 19 

1.5.1.2 Diagnostic activities ..................................................................................................... 23 



xiv  Table of Contents 

 © 2022 Gianmarco Barberi, University of Padova (Italy)  

1.5.1.3 Predictive activities ...................................................................................................... 25 

1.5.2 HYBRID MODELING .............................................................................................................. 27 

1.5.2.1 Descriptive activities .................................................................................................... 30 

1.5.2.2 Diagnostic activities ..................................................................................................... 31 

1.5.2.3 Predictive activities ...................................................................................................... 31 

1.5.2.4 Prescriptive activities ................................................................................................... 32 

1.5.3 FIRST PRINCIPLES MODELLING OF CELL METABOLISM ........................................................ 34 

1.5.3.1 Descriptive activities .................................................................................................... 37 

1.5.3.2 Predictive activities ...................................................................................................... 40 

1.5.3.3 Prescriptive activities ................................................................................................... 41 

1.6 OBJECTIVE OF THE RESEARCH ......................................................................................... 43 

1.7 DISSERTATION ROADMAP ................................................................................................ 46 

CHAPTER 2 ‒ MATHEMATICAL METHODOLOGIES .......................... 51 

2.1 MULTIVARIATE MODELLING ............................................................................................ 51 

2.1.1 PRINCIPAL COMPONENT ANALYSIS ..................................................................................... 51 

2.1.1.2 Multiblock PCA ........................................................................................................... 53 

2.1.2 PARTIAL LEAST-SQUARES REGRESSION .............................................................................. 53 

2.1.2.1 PLS Discriminant Analysis .......................................................................................... 55 

2.1.3 MULTIWAY MODELING ........................................................................................................ 55 

2.1.4 EVOLVING MODELING .......................................................................................................... 56 

2.2.5 INVERSION OF LATENT VARIABLE MODELS ......................................................................... 56 

2.2 NEURAL NETWORKS ........................................................................................................ 58 

2.2.1 TRAINING OF THE NETWORK ................................................................................................ 59 

2.3 GENOME-SCALE METABOLIC MODELS ............................................................................ 61 

2.3.1 FLUX BALANCE ANALYSIS ................................................................................................... 62 

2.3.2 FLUX SAMPLING ................................................................................................................... 63 

CHAPTER 3 ‒ INTEGRATING METABOLOME DYNAMICS AND 

PROCESS DATA TO GUIDE CELL LINE SELECTION .......................... 65 

3.1 INTRODUCTION ................................................................................................................ 65 

3.2 MATERIALS AND METHODS ............................................................................................. 67 

3.2.1 AVAILABLE DATA ................................................................................................................ 67 

3.2.2 METHODOLOGY TO INTEGRATE PROCESS AND BIOLOGY ..................................................... 68 



Table of Contents  xv 

 
 © 2022 Gianmarco Barberi, University of Padova (Italy)  

3.2.3 MULTIVARIATE STATISTICAL ANALYSIS .............................................................................. 69 

3.3 RESULTS AND DISCUSSION .............................................................................................. 72 

3.3.1 PROCESS UNDERSTANDING .................................................................................................. 72 

3.3.1.1 Metabolic mapping of cell lines according to process performance ............................ 72 

3.3.1.2 Time course similarity in biological phenomena ......................................................... 75 

3.3.2 TIME COURSE CHANGES IN PROCESS AND BIOLOGY ............................................................ 77 

3.3.3 QAS AND CELL PERFORMANCE ESTIMATION AND BIOLOGICAL PHENOMENA IDENTIFICATION

 ...................................................................................................................................................... 80 

3.4 CONCLUSIONS ................................................................................................................. 84 

CHAPTER 4 ‒ METABOLIC TRAITS FOR THE SELECTION OF 

PRODUCTIVE CELL LINES THROUGH METABOLOMIC DYNAMIC 

DATA-DRIVEN MODELING ......................................................................... 87 

4.1 INTRODUCTION ................................................................................................................ 87 

4.2 MATERIALS AND METHODS ............................................................................................. 90 

4.2.1 CELL CULTURE DATA ........................................................................................................... 90 

4.2.2 MULTIWAY AND MULTIVARIATE DATA ANALYSIS .............................................................. 91 

4.2.3 IMPORTANT BIOMARKER AND BIOLOGICAL FUNCTION IDENTIFICATION ............................. 93 

4.2.3.1 Biomarker identification ............................................................................................... 93 

4.2.3.2 Metabolic pathway identification ................................................................................. 94 

4.3 RESULTS AND DISCUSSION .............................................................................................. 95 

4.3.1 DISCRIMINATION ANALYSIS TO STUDY THE CORRELATION BETWEEN CELL PRODUCTIVITY 

AND METABOLOMIC PROFILES DYNAMICS .................................................................................... 95 

4.3.2 ANTICIPATED DISCRIMINATION OF CELL PRODUCTIVITY .................................................... 97 

4.3.3 IDENTIFICATION OF CELL PRODUCTIVITY BIOMARKERS ...................................................... 99 

4.3.4 IDENTIFICATION OF IMPORTANT BIOLOGICAL FUNCTIONS IN THE DISCRIMINATION OF CELL 

PRODUCTIVITY ............................................................................................................................ 103 

4.5 ADAM: APPLICATION FOR THE DIGITAL ANALYSIS OF METABOLITES ......................... 107 

4.4 CONCLUSIONS ............................................................................................................... 107 

CHAPTER 5 ‒ DATA AUGMENTATION TO SUPPORT 

BIOPHARMACEUTICAL PROCESS DEVELOPMENT THROUGH 

DIGITAL MODELS ....................................................................................... 109 

5.1 INTRODUCTION .............................................................................................................. 109 

5.2 MATERIALS AND METHODS ........................................................................................... 111 

5.2.1 METHODOLOGICAL PROCEDURE ........................................................................................ 111 



xvi  Table of Contents 

 © 2022 Gianmarco Barberi, University of Padova (Italy)  

5.2.2 PROCESS FOR THE PRODUCTION OF MONOCLONAL ANTIBODIES ....................................... 113 

5.2.3 MODELING STRATEGY 1: FIRST PRINCIPLES DIGITAL MODEL .......................................... 114 

5.2.3.1 In silico batch generation through First Principles Digital Model ............................. 115 

5.2.4 MODELING STRATEGY 2: HYBRID DIGITAL MODEL .......................................................... 115 

5.2.4.1 In silico batch generation through Hybrid Digital Model .......................................... 118 

5.2.5 MULTIVARIATE PREDICTIVE MODELING ............................................................................ 119 

5.3 RESULTS AND DISCUSSION ............................................................................................ 121 

5.3.1 MONOCLONAL ANTIBODIES TITER ESTIMATION ................................................................ 121 

5.3.1.1 Titer estimation performance and sensitivity to the available number of process 

calibration batches .................................................................................................................. 121 

5.3.1.2 Effect of data augmentation on the estimation performance ...................................... 122 

5.3.2 PROCESS UNDERSTANDING FOR MABS TITER ESTIMATION ............................................... 124 

5.3.2.1 Process understanding with process batches only ...................................................... 124 

5.3.2.2 Process understanding supported by FPDM in silico data augmentation .................. 126 

5.3.2.3 Process understanding supported by HDM in silico data augmentation .................... 127 

5.4 CONCLUSIONS ............................................................................................................... 128 

CHAPTER 6 ‒ BIOPROCESS FEEDING OPTIMIZATION THROUGH IN 

SILICO DYNAMIC EXPERIMENTS AND HYBRID DIGITAL MODELS

 ........................................................................................................................... 131 

6.1 INTRODUCTION .............................................................................................................. 131 

6.2 MATERIALS AND METHODS ........................................................................................... 134 

6.2.1 PROPOSED METHODOLOGY ................................................................................................ 134 

6.2.2 DESIGN OF DYNAMIC EXPERIMENTS ................................................................................. 135 

6.2.3 PROCESS FOR THE PRODUCTION OF MONOCLONAL ANTIBODIES AT 1-L SHAKE FLASKS SCALE

 .................................................................................................................................................... 139 

6.2.4 HYBRID MODEL .................................................................................................................. 140 

6.2.5 FEEDING OPTIMIZATION ..................................................................................................... 142 

6.3 RESULTS ........................................................................................................................ 143 

6.3.1 EXPERIMENTAL CAMPAIGN A FOR FEEDING SCHEDULE OPTIMIZATION ............................ 144 

6.3.2 EXPERIMENTAL CAMPAIGN B FOR FEEDING SCHEDULE OPTIMIZATION ............................ 146 

6.3.3 IN SILICO CELL CULTURE OPTIMIZATION THOUGH HYBRID MODEL ................................... 148 

6.3.4 REAL OPTIMAL FEEDING SCHEDULE .................................................................................. 149 

6.4 DISCUSSION ................................................................................................................... 150 

6.4.1 THE OPTIMAL FEEDING SCHEDULE ..................................................................................... 150 



Table of Contents  xvii 

 
 © 2022 Gianmarco Barberi, University of Padova (Italy)  

6.4.2 COMPARISON OF THE OPTIMAL FEEDING SCHEDULE ......................................................... 151 

6.4.3 THE BEST OPTIMIZATION STRATEGY .................................................................................. 151 

6.5 CONCLUSIONS ............................................................................................................... 156 

CHAPTER 7 ‒ NEXT-FLUX: NEURAL-NET EXTRACELLULAR 

TRAINED FLUX ............................................................................................. 157 

7.1. MATERIALS AND METHODS .......................................................................................... 157 

7.1.1 13C ISOTOPE LABELING DATASET ....................................................................................... 157 

7.1.2 PREDICTION OF INTRACELLULAR FLUXES FROM EXTRACELLULAR METABOLITE UPTAKE 

RATES THROUGH ARTIFICIAL NEURAL NETWORKS ..................................................................... 158 

7.1.2.1 Data management ....................................................................................................... 158 

7.1.2.2 Data-driven modeling strategy ................................................................................... 159 

7.1.2.3 Ensemble prediction interval calculation method ...................................................... 161 

7.1.2.4 Gradient prediction interval calculation method ........................................................ 162 

7.1.3 GENOME-SCALE METABOLIC MODEL ................................................................................ 162 

7.1.3.1 Reaction mapping ....................................................................................................... 163 

7.1.3.2 Maximization of the feasible constraints .................................................................... 163 

7.1.3.3 GSMM solution .......................................................................................................... 163 

7.1.3.4 Performance evaluation .............................................................................................. 163 

7.4 PREDICTION OF INTRACELLULAR FLUXES ...................................................................... 164 

7.2.1 PERFORMANCE OF DIFFERENT PREDICTION INTERVAL CALCULATION METHODS ............. 164 

7.2.2 SENSITIVITY TO DIFFERENT NUMBER OF NETWORK NEURONS .......................................... 170 

7.3 GENOME-SCALE METABOLIC MODEL PREDICTIONS ........................................................ 172 

7.4 DEPLOYMENT OF NEXT-FLUX ...................................................................................... 174 

7.5 CONCLUDING REMARKS AND FUTURE WORK ................................................................. 175 

CHAPTER 8 ‒ DATA-DRIVEN GENETIC ENGINEERING .................. 177 

8.1. MATERIAL AND METHODS ........................................................................................... 177 

8.1.1 AVAILABLE CULTURE DATA .............................................................................................. 177 

8.1.2 PROPOSED STRATEGY ........................................................................................................ 178 

8.1.3 STRAIN SPECIFIC GENOME-SCALE METABOLIC MODEL AND METABOLIC DATA GENERATION

 .................................................................................................................................................... 179 

8.1.4 LATENT VARIABLES REGRESSION MODEL INVERSION ....................................................... 180 

8.1.5 GENETIC MODIFICATIONS IDENTIFICATION ....................................................................... 181 

8.2. PREDICTION OF BIOMASS AND PRODUCTIVITY .............................................................. 186 



xviii  Table of Contents 

 © 2022 Gianmarco Barberi, University of Padova (Italy)  

8.3 IDENTIFICATION OF THE OPTIMAL FLUX DISTRIBUTION .................................................. 188 

8.4 GENETIC MODIFICATIONS .............................................................................................. 190 

8.4.1 METABOLIC GENETIC MODIFICATIONS .............................................................................. 190 

8.4.1.1 Valine metabolism ...................................................................................................... 190 

8.4.1.2 Tryptophan metabolism .............................................................................................. 193 

8.4.2 SECRETORY PATHWAY GENETIC MODIFICATIONS ............................................................. 197 

8.5 CONCLUSIONS ............................................................................................................... 205 

CONCLUSIONS AND FUTURE PERSPECTIVES ................................... 207 

FUTURE PERSPECTIVES ............................................................................................................... 212 

APPENDIX A ‒ MONOCLONAL ANTIBODIES AND CELL CULTURES

 ........................................................................................................................... 215 

A.1 MONOCLONAL ANTIBODIES .......................................................................................... 215 

A.1.1 MONOCLONAL ANTIBODY STRUCTURE AND FUNCTION .................................................... 215 

A.1.2 PRODUCTION OF MONOCLONAL ANTIBODIES .................................................................... 217 

A.2 CELL CULTURES ............................................................................................................ 217 

A.2.1 UPSTREAM PROCESS.......................................................................................................... 217 

A.2.1.1 Operating modes ........................................................................................................ 217 

A.2.1.2 Bioreactor types and operating parameters ............................................................... 218 

A.2.1.3 Elements for cell survival .......................................................................................... 220 

A.2.1.4 Upstream phases ........................................................................................................ 221 

A.2.2 DOWNSTREAM PROCESS .................................................................................................... 221 

A.2.3 FUTURE MANUFACTURING TRENDS: CONTINUOUS PRODUCTION ..................................... 222 

APPENDIX B ‒ ADDITIONAL DETAILS ON THE INTEGRATION OF 

METABOLOME DYNAMICS AND PROCESS DATA ............................ 223 

B.1 MEASUREMENT REPLICATE UNFOLDING ....................................................................... 223 

B.2 MULTIWAY PRINCIPAL COMPONENT ANALYSIS ............................................................. 223 

B.3 SIMILARITY ANALYSIS .................................................................................................. 224 

B.4 MULTI-BLOCK PRINCIPAL COMPONENT ANALYSIS ........................................................ 225 

B.5 MULTIWAY PARTIAL LEAST-SQUARES REGRESSION ...................................................... 225 

B.6 VARIABLE SELECTION ................................................................................................... 225 

B.7 ADDITIONAL INFORMATION ON CULTURE VARIABLE CORRELATION ............................. 227 



Table of Contents  xix 

 
 © 2022 Gianmarco Barberi, University of Padova (Italy)  

APPENDIX C ‒ MATHEMATICAL DETAILS OF FOR THE SELECTION 

OF HIGH PRODUCTIVE CELL LINES .................................................... 229 

C.1 DATA UNFOLDING ......................................................................................................... 229 

C.2 PLS-DA ....................................................................................................................... 230 

C.3 E-MPLS-DA ................................................................................................................ 230 

C.4 VARIABLE SELECTION ................................................................................................... 231 

C.5 VIP BOOTSTRAP ............................................................................................................ 231 

C.6 DISCRIMINATION OF HIGH PRODUCTIVE CELL LINES THROUGH EXTRACELLULAR 

METABOLOMICS DATA ......................................................................................................... 232 

C.7 ANTICIPATED DISCRIMINATION OF HIGH-PRODUCTIVE CELL LINES THROUGH 

EXTRACELLULAR METABOLOMICS DATA ............................................................................. 233 

APPENDIX D ‒ ADDITIONAL DETAIL ON DATA AUGMENTATION

 ........................................................................................................................... 235 

D.1 MODEL OF MAMMALIAN CELL CULTURED PRODUCING MABS ....................................... 235 

D.2 FIRST PRINCIPLES DIGITAL MODEL ................................................................................ 238 

D.3 PARAMETERS FOR IN SILICO DATA GENERATION BY HYBRID DIGITAL MODEL ................ 239 

APPENDIX E ‒ EXPERIMENTAL CAMPAIGNS FOR FEEDING 

SCHEDULE OPTIMIZATION ..................................................................... 241 

E.1 EXPERIMENTAL CAMPAIGNS ......................................................................................... 241 

APPENDIX F ‒ 13C INTRACELLULAR REACTIONS AND 

METABOLITES ............................................................................................. 243 

F.1 INTRACELLULAR REACTIONS ......................................................................................... 243 

F.2 METABOLITES ............................................................................................................... 245 

REFERENCES ................................................................................................ 247 

ACKNOWLEDGMENTS .............................................................................. 275 

 

 



  

 



  

 © 2022 Gianmarco Barberi, University of Padova (Italy)  

List of Symbols 

Acronyms 

ANN = artificial neural networks 

ccFBA = carbon constraining flux balance analysis 

CHO = Chinese Hamster Ovary cell 

CMAs = critical material attributes 

CPPs = critical process parameters 

CQAs = critical quality attributes 

DO = dissolved oxygen 

DoDE = design of dynamic experiments 

DoE = design of experiments 

EMA = European Medicine Agency 

E-PLS-DA = evolving partial least-squares discriminant analysis 

FBA = flux balance analysis 

FDA = U.S. Food and Drug Administration 

GC-MS = gas chromatography - mass spectrometry 

GlcNAc = N-acetylglucosamine 

GPU = graphics processing unit 

GSMM = genome-scale metabolic model 

HEK = human embryonic kidney cell 

ICH = International Council on Harmonization 

Ig = immunoglobulin (i.e., monoclonal antibody) 

LCL = lower confidence limits 

LC-MS = liquid chromatography - mass spectrometry 

LVs = latent variables 

mAbs = monoclonal antibodies  

MAPE = mean absolute prediction error 

MB-MPCA = multi-block multiway principal component analysis 

MB-PCA = multi-block principal component analysis 

MFA = metabolic flux analysis 

MPCA = multiway principal component analysis 

MPLS = multiway partial least-squares 

MSE = mean squared error 



xxii  List of Symbols 

 © 2022 Gianmarco Barberi, University of Padova (Italy)  

MV = multivariate methods 

NIPALS = nonlinear iterative partial least-square algorithm 

NOC = normal operating conditions 

OPLS-DA = orthogonal partial least-squares discriminant analysis 

PAT = process analytical technology 

PCA = principal component analysis 

PCs = principal components 

pFBA = parsimonious enzyme usage flux balance analysis 

PI = prediction interval 

PLS = partial least-squares 

PLS-DA = partial least-squares discriminant analysis 

QAs = quality attributes 

QbD = quality by design 

QTTP = quality target product profile 

RMSE = root mean squared error 

RSM = response surface methodology 

SPE = squared prediction error 

SR = selectivity ratio 

SVM = support vector machine 

TCA = tricarboxylic acid  

VCC = viable cell concentration 

VIP = variable importance in projection index 

Symbols 𝐴 = number of orthogonal principal components of latent variables 𝑎ℎ = activation of the ℎ-th neuron 𝑎ℎ′  = neuron’s output prior the application of the activation function 𝐵 = number of classes 𝐁 = matrix of PLS regression coefficients 𝐜 = vector of concentrations for the culture variables 𝐜∗ = reduced concentration vector 𝑐𝑣 = concentration of the variable 𝑣 𝑐̂𝑣 = predicted concentration of the variable 𝑣 𝐷 = number of metabolites 𝐷𝑉 = culture dilution factor 𝐸 = number of effects in the RSM 𝐄 = residual regressor matrix 



List of Symbols  xxiii 

 
 © 2022 Gianmarco Barberi, University of Padova (Italy)  

𝐞𝑛 = residual vector of the 𝑛-th observation 𝐹in = inlet flow rate of the bioreactor 𝐹out = outlet flow rate of the bioreactor 𝐅 = residual response matrix 𝐟𝑛 = response residual vector of the 𝑛-th observation 𝑓() = activation function or genetic function 𝑓lim = limiting factor 𝐠NEW = gradient vector of the loss function calculated in the new datapoint 𝑔1, 𝑔2, 𝑔3 = constants in PLS model inversion 𝑔𝐷𝐶𝑊 = dry cell weight in grams 𝐻 = number of neurons in a layer 𝐇 = matrix of known kinetic expressions in hybrid models 𝐾 = total number of subfactors 𝐾gln = Monod constant for glutamine 𝐾glc = Monod constant for the growth on glucose 𝐾miss = number of metabolites used for missing data imputation 𝑘reg = scaling coefficient for reaction regulation 𝐉 = matrix of the gradient vectors of the loss function calculated for all 

training experiments 𝑗 = index for nutrients in cell cultures 𝐼 = number of dynamic subfactors 𝐈 = identity matrix 𝑖𝑡 = iteration 𝑖𝑡max = maximum number of iterations 𝐿 = loss function of the ANN ℒ = ANN cost function 𝐋 = diagonal matrix of the square root of the eigenvalues of PCA or PLS 𝑀 = number of response variables 𝑚glc = glucose maintenance constant 𝑁 = number of observations (i.e, samples or experiments) 𝑁models = number of models trained  𝑂 = number of new observations (i.e., samples, experiments, batches) PI = half width prediction interval 𝑃𝑖−1 = shifted Legendre polynomial of degree 𝑖 − 1 𝐏 = PCA or PLS loading matrix 𝑝∗ = factor for prediction interval calculation 𝑄2 = coefficient of determination for new samples 𝑄P = specific mAb productivity 



xxiv  List of Symbols 

 © 2022 Gianmarco Barberi, University of Padova (Italy)  

𝑄glc = specific glucose consumption rate 𝐐 = response loading matrix of PLS 𝑅 = number of measurement replicates 𝑅2 = coefficient of determination 𝑅adj2  = adjusted coefficient of determination 𝐫 = vector of volumetric reaction rates 𝑆 = number of genetically modified reactions 𝑆𝑡′𝑡′′ = similarity index between data at time points 𝑡′ and 𝑡′′ 𝑆𝑃𝐸lim = confidence limit of the 𝑆𝑃𝐸 𝑆𝑆𝐸 = sum of squared error 𝑆𝑆𝑋exp,𝑣 = explained variance of variable 𝑣 𝑆𝑆𝑋res,𝑣 = residual variance of variable 𝑣 𝑆𝑆𝑌𝑎 = amount of the 𝐘 variability explained by the 𝑎-th LV 𝐒 = stoichiometric matrix of GSMMs 𝑠𝑒  = error factor for prediction interval calculation 𝑇 = number of time points 𝑇𝑛2 = Hotelling’s 𝑇2 for the 𝑛-th observation 𝑇lim2  = confidence limit of the Hotelling’s 𝑇2 𝐓 = PCA or PLS score matrix 𝐭𝑛 = score vector of PCA or PLS for the 𝑛-th observation 𝐭NEW = score corresponding to a new observation 𝐭DES = score vector associated with 𝐲DES 𝑈 = number of metabolic reactions 𝐮 = vector of controlled inputs 𝑢𝑗  = nutrient concentration profiles planned with DoDE 𝑢𝑗,max = maximum value of the profile of nutrient 𝑗 𝑢𝑗,min = minimum value of the profile of nutrient 𝑗 𝑉 = number of regressor variables 𝑉c = volume of the cell culture 𝑉E = number of extracellular metabolites 𝑉I = number of intracellular metabolites 𝑉P = number of process variables 𝑉𝐼𝑃𝑣 = VIP of the 𝑣-th variable 𝑉𝐼𝑃LCL = VIP lower confidence limit 𝑉𝐼𝑃R = relative VIP 𝐖 = PLS weight matrix 𝐖∗ = PLS weight star matrix 𝑤𝑣𝑎 = weight of the 𝑣-th regressor variable on the 𝑎-th LV 



List of Symbols  xxv 

 
 © 2022 Gianmarco Barberi, University of Padova (Italy)  

𝑋v = viable cell concentration 𝐗 = matrix of regressors 𝐗𝑡 = regressor matrix a the 𝑡-th time point 𝐗𝑡 = regressor matrix unfolded from time point 1 to the 𝑡-th time point 𝐗 = multidimensional regressor matrix 𝐗new = matrix of new observations 𝐗A = augmented regressor dataset 𝐗train = training regressor dataset 𝐗val = validation regressor dataset 𝐱𝑛 = regressor vector of the 𝑛-th observation 𝐱̂𝑛 = regressor vector of the 𝑛-th observation reconstructed or predicted 𝐱NEW = new observation (i.e., sample or experiment) 𝐱̂NEW = new observation predicted or reconstructed 𝐱lb = lower bounds for the regressors 𝐱ub = upper bounds for the regressors 𝐱opt = optimal subfactors 𝐱art = artificially generated observation (i.e., sample or experiment) 𝐱NEWextra = extracellular part of 𝐱NEW 𝐱NEWintra = intracellular part of 𝐱NEW 𝑥𝑛,𝑣 = value of the 𝑣-th original variable for the 𝑛-th observation 𝑥̂𝑛,𝑣 = value of the 𝑣-th original variable for the 𝑛-th observation reconstructed 

or predicted 𝑥NEWintra = estimated intracellular flux values for a generic intracellular reaction 𝑥NEWextra = estimated intracellular flux values for a generic extracellular exchange 

reaction 𝑥𝑖 = dynamic subfactors 𝑥̅𝑒 = average value of 𝑒-th effect in the RSM 𝑌𝑥,gln = cell yield on glutamine 𝐘 = response matrix 𝐘̂ = predicted response matrix 𝐘A = augmented response dataset 𝐘d = response matrix with dummy variables 𝐲DES = desired response variable in model inversion 𝐲̂DES = desired response variable predicted by the model  𝐲̂E = ensemble of predicted responses 𝐲lb = lower bounds for the response 𝐲𝑚 = vector of the 𝑚-th response variable 𝐲𝑛 = response of the 𝑛-th observation 



xxvi  List of Symbols 

 © 2022 Gianmarco Barberi, University of Padova (Italy)  

𝐲̂𝑛 = predicted response of the 𝑛-th observation 𝐲train = training response vector 𝐲̂train = predicted response vector of the training dataset 𝐲ub = upper bounds for the response 𝐲val = validtion response vector 𝐲̂val = predicted validation response vector 𝑦𝑚,𝑜 = value of the 𝑚-th response variable for the 𝑜-th new observation 𝑦̂𝑚,𝑜 = predicted value of the 𝑚-th response variable for the 𝑜-th new 

observation 𝑦𝑛mAb = original mAb productivity of the 𝑛-th cell line 𝑦𝑛biom = original biomass of the 𝑛-th cell line 𝑦0mAb = productivity bias 𝐳 = stoichiometric vector indicating how different intracellular fluxes are 

combined to form the GSMM objective function 𝑧 = normalized dynamic variable 

Greek letters 𝛼 = confidence level αx = cellular carrying capacity 𝛽𝑘 = first order parameter of the RSM 𝛽̂𝑘 = estimated first order parameter of the RSM  𝛾 = random coefficient for linear combination 𝚪 = matrix of weights for PLS inversion 𝛿𝑚 = weight for intracellular reaction constraints inclusion ∆𝑘,𝑘  = higher order parameter of the RSM ∆̂𝑘,𝑘 = estimated higher order parameter of the RSM η = learning rate λ = eigenvalue of PCA or PLS 𝜆mAb = increase factor from mAbs λreg = regularization coefficient 𝚲−𝟏 = diagonal matrix with the inverse PCA or PLS eigenvalues μ = specific growth rate μmax = maximum specific growth rate 𝜇SPE = average of the 𝑆𝑃𝐸 distribution 𝛍 = specific production/consumption rates 𝛍max = maximum specific rates of production/consumption for each culture 

variable 𝛎 = vector of intracellular reaction rates (i.e., intracellular fluxes) 



List of Symbols  xxvii 

 
 © 2022 Gianmarco Barberi, University of Padova (Italy)  
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transport 𝐾lac = Monod constant for lactate consumption 𝐾RNA = heavy and light chain mRNA decay rate 𝐾𝐼lac = Monod constant for lactate 



xxviii  List of Symbols 

 © 2022 Gianmarco Barberi, University of Padova (Italy)  
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Greek letters α1, α2 = contestants of glutamine maintenance coefficient γ1, γ2 = constants for antibody production 𝜀1 = ER glycosylation efficiency factor ε2 = Golgi apparatus glycosylation efficiency factor μd = specific death rate μd,max = maximum specific death rate ξmAb = molecular weight of mAbs 
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Chapter 1 

State of the art and motivation 

This Chapter provides the background and the motivations of this Dissertation. First, the current 

state of the biopharmaceutical industry is presented. Then, monoclonal antibodies (mAbs), cell 

cultures and their development pipeline are introduced. Furthermore, the state-of-the-art 

mathematical modeling in the biopharmaceutical industry 4.0 is presented and critically 

discussed, focusing on the subdivision between data-driven and knowledge-driven models. 

Finally, the main challenges in the application of mathematical modeling in the 

biopharmaceutical industry are pinpointed to introduce how they have been addressed in this 

Dissertation.  

1.1 Biopharmaceutical industry: an overview 

Biopharmaceuticals (also known as biologicals or biologics) are therapeutics and drugs 

synthetized or extracted from living organisms (such as microbial, animal, or human cells) used 

for the treatment and the prevention of diseases (Hong et al., 2018). The living organisms used 

in the biopharmaceutical industry are genetically modified to specifically produce the desired 

biologicals with therapeutic effects.  

Biologicals, being produced by living cells, have different characteristics with respect to 

traditional pharmaceuticals that are chemically synthetized. In fact, the synthesis from 

biological source allows the production of more complex drugs than traditional pharmaceutics 

(Rader, 2008). For example, a traditional drug may count dozens of atoms, while a typical 

biological may be 100 or 1000 times larger. Furthermore, on the therapeutic side, biologicals 

have more specific targets, thus producing fewer side effects (Kesik‐Brodacka, 2018). 
The main biopharmaceutical products are: 

• vaccines; 

• cells, such as stem cells; 

• biological tissues; 

• recombinant proteins, such as monoclonal antibodies; 

• gene therapy medicinal products. 

In the last decade, the biopharmaceutical industry has considerably grown and nowadays the 

biopharmaceutical market covers the largest portion of the pharmaceutical sector (Tripathi & 
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Shrivastava, 2019). In 2017, the global annual sales of the biopharmaceutical compartment 

were estimated at 188 billion $ (Walsh, 2018), showing a growth of 8.3% per year between 

2010 and 2015 (Smietana et al., 2016). Other authors report estimated global sales for 2019 of 

450 billion $ (Hong et al., 2018) and 227 billion $ (Epifa, 2021), while the estimates for 2021 

are 401 billion $ (MordorIntelligence, 2021). The global sales of the biopharmaceutical 

compartment are forecasted to achieve 534 billion $ in 2027 with an expected yearly growth of 

7.32% (MordorIntelligence, 2021). In terms of biopharmaceutical products, 155 new 

biologicals were approved between 2014 and 2018 (Walsh, 2018), with more than 7000 drugs 

in the development pipeline in 2019 (Hong et al., 2018). 

Table 1.1 The 10 top-selling biopharmaceutical products in 2017. Adapted from 

Walsh (2018). 

Rank Product Type 
Sales 2017 

($ billions) 

Cumulative 

sales, 2014-2017 

($ billions) 

Approval 

year 
Company 

1 Humira  mAb 18.94 62.6 2002 AbbVie, Elsai 

2 Enbrel  
recombinant 
protein 

8.34 35.4 1998 
Amgen, Pfizer, Takeda 
Pharmaceutics 

3 Rituxan mAb 7.78 29.1 1997 Roche, Biogen Idec 

4 Remicade mAb 7.77 35.6 1998 
Johnson & Johnson, 
Merck, Mitsubishi 
Tababe Pharma 

5 Herceptin mAb 7.39 27.1 1998 Roche 
6 Avastin mAb 7.04 27.0 2004 Roche 
7 Lantus insulin 6.72 27.4 2000 Sanofi 

8 Eylea 
recombinant 
protein 

5.93 18.0 2011 Regeneron, Bayer 

9 Opdivo mAb 5.79 11.4 2014 
Bristol-Meyers Squibb, 
Ono Pharmaceuticals 

10 Neulasta 
recombinant 
protein 

4.53 20.1 2002 
Amgen, Kyowa Hakko 
Kirin 

 

In the biopharmaceutical market, monoclonal antibodies (mAbs) are the biggest selling class of 

biologicals (Hong et al., 2018), with 123 billion $ of estimated annual sales in 2017 (Walsh, 

2018). Monoclonal antibodies are a class of anti-viral and anti-cancer biologicals whose sales 

grew by 9.8% per year between 2010 and 2015 (Smietana et al., 2016), and are expected to 

achieve 138.6 billion $ sales by 2024 (O. Yang et al., 2020), favored by the new advancements 

in large-scale recombinant protein production (Tripathi & Shrivastava, 2019). A list of the top 

selling biologicals is reported in Table 1.1. In 2017 mAbs represented 53% of the overall new 

approval in the biopharmaceutical sector (Walsh, 2018), with more than 1500 new mAbs in the 

development pipeline (Hong et al., 2018). Nowadays, the preferred method for recombinant 

protein production is mammalian cell cultures, accounting for 84% of the overall production 

(Walsh, 2018). Among these, the 84% of produced mAbs were synthetized by Chinese Hamster 

Ovary (CHO) cells (Walsh, 2018). Other recently approved mAbs were synthetized by E. Coli 

and Saccharomyces Cerevisiae (Tripathi & Shrivastava, 2019).  



State of the art and motivation  3 

 
 © 2022 Gianmarco Barberi, University of Padova (Italy)  

1.2 Monoclonal antibodies  

Monoclonal antibodies (mAbs) are therapeutic proteins currently utilized for the treatment of 

autoimmune diseases, cancers, and infectious diseases (Kesik‐Brodacka, 2018). The main 

pathologies treated with mAbs are rheumatoid arthritis, Chron’s disease, leukemia, colorectal 
cancer, and metastatic breast cancer, hepatitis A and B viruses, HIV-1 infection, and SARS-

CoV-2 (Castelli et al., 2019).  

Monoclonal antibodies (or immunoglobulins, Ig) are large Y-shaped proteins (Figure 1.1), with 

two identical heavy chains and two identical light chains, connected via disulfide bunds 

(Castelli et al., 2019; Chartrain & Chu, 2008; Chiu et al., 2019).  

 
Figure 1.1 Structure of monoclonal antibodies. Adapted from Chartrain and Chu (2008).  

Monoclonal antibodies are divided in the Fc region and the antibody binding region (Fab) with 

specialized sites, called complementarity determining regions, which dictate the specificity of 

each mAb through their amino acid sequence (Chartrain & Chu, 2008; Gaughan, 2016; Kang 

& Lee, 2021). 

The Fc region is glycosylated with N-linked glycans (i.e., polysaccharides) with two N-

acetylglucosamine residues connected to three bisecting mannose residues (i.e., bi-antennary 

structure) and variable terminal sugar composition, affecting the activity of antibodies (Batra 

& Rathore, 2016; Sha et al., 2016).  

The main role of antibodies in living organisms is to clear the host from invading pathogens 

and external molecules. Antibodies binds to very specific targets, called antigens, forming a 

complex that is recognized and cleared by specialized components or cells of the immune 

system of the host organism (Castelli et al., 2019; Chartrain & Chu, 2008). 

In living organisms, mAbs are mainly produced by secretory B-cells, a component of the cell 

immune system (Gaughan, 2016). The secretion of monoclonal antibodies follows a specific 

mechanism, which involves light and heavy chain translation, folding, and glycosylation in the 
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endoplasmic reticulum and Golgi apparatus (Gutierrez et al., 2020; Kontoravdi et al., 2005, 

2007, 2010). More detail on monoclonal antibodies structure, functions, and production are 

reported in Appendix A.1. 

1.3 Cell cultures 

Cell cultures are the main industrial means used to produce mAbs, which at industrial level are, 

nowadays, organized in two sections (Shukla & Thömmes, 2010): 

• upstream: section in which mAbs are produced by mammalian cells in large bioreactors; 

• downstream: section aimed at the purification of mAbs to reduce product and non-product 

related impurities to acceptable levels.  

Additional details on cell cultures are reported in Appendix A.2. However, an overview of the 

mAb production process helps in better understanding the steps and the data available along the 

mAb development.  

The advent of Industry 4.0 open the era of Big Data, characterized by an extremely easy access 

to massive amounts of data, advanced modeling tools and computational resources (Qin, 2014; 

Sansana et al., 2021). The availability of Big Data can lead to new solutions for problems not 

addressed in the past. The biopharmaceutical filed has started to acknowledge the opportunities 

arising by exploiting the large amount of physical, chemical, and biological data available along 

the development of new biologicals. This is leading to an increasing interest towards the 

transition to the biopharmaceutical industry 4.0 era, which is also favored by the awareness of 

the regulatory agencies of the huge impact of Big Data (Banner et al., 2021; Food and Drug 

Administration, 2022; ICH Harmonised Tripartite Guideline, Guidance for Industry, Q8 

Pharmaceutical Development, 2009; Silva et al., 2020). Furthermore, this transition is largely 

supported by the introduction of high-throughput systems which allow to collect massive 

amounts of data and are at the basis for the advanced modeling of bioprocesses. In mAbs cell 

culture the main available data types are: 

• process information; 

• omics data. 

1.3.1 Upstream process 

In the upstream section of biopharmaceutical processes, biopharmaceuticals are produced in 

bioreactors, where cells responsible for production grow.  

The main bioreactors used for the production of mAbs are stainless steel bioreactors and 

disposable ones (Chartrain & Chu, 2008; Gaughan, 2016; Rodrigues et al., 2009a). Stainless 

steel bioreactors are stirred tanks with volume ranging from 1000 L to 25000 L, while 

disposable bioreactors are polymeric bags with a volume ranging between 50 L and 2000 L and 

some forms of mixing strategy.  
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The cells growing in the bioreactor are highly sensitive to culture conditions, making product 

yield and quality dependent on bioreactor operating parameters (Birch & Racher, 2006; 

Chartrain & Chu, 2008; F. Li et al., 2010; Rodrigues et al., 2009a; Shukla & Thömmes, 2010). 

The most critical parameters for cell health are temperature and pH, which have a direct impact 

on growth and productivity. Dissolved gasses, such as O2 and CO2, are other important 

operating parameters, since O2 is required to produce energy from carbon sources and CO2 to 

maintain pH and regulate cell activities. Other bioreactor operating parameters are osmolarity, 

which affects the duration of the exponential growth phase, and agitation rate, which is strictly 

related to the control of the dissolved gasses.  

In order to survive, grow, and produce, cells require the presence of a culture medium and some 

nutrients (Birch & Racher, 2006; Chartrain & Chu, 2008; Gaughan, 2016; Rodrigues et al., 

2009a; Shukla & Thömmes, 2010). Cell media contain all the growth supporting molecules, 

such as amino acids, vitamins, nucleosides, trace elements, metals, inorganic salts, lipids and 

insulin or insulin-like growth factors. The main cell nutrients are glucose and glutamine, being 

the primary sources of carbon. The metabolism of such nutrients leads to the production of toxic 

by-products, such as lactate and ammonia, which strongly inhibit growth and productivity, and 

reduce product quality, when they accumulate in the culture. For this reason, an appropriate 

feeding strategy to maximize productivity and growth, and to minimize the formation of 

undesirable by-products is required (Chartrain & Chu, 2008).  

In relation to nutrient management, bioreactors can be operated in three modes (Chartrain & 

Chu, 2008; Gaughan, 2016; Rodrigues et al., 2009b; Shukla & Thömmes, 2010): i) batch, ii) 

fed-batch, and iii) perfusion. In batch operating mode, the bioreactor is initially loaded with 

medium, nutrients, and cells, which are allowed to grow with no further nutrient additions or 

withdrawals. In fed-batch mode, nutrients are periodically added with fresh medium to increase 

culture longevity, typically 2 weeks, maintain nutrient sufficiency, and limit the effect of 

nutrient depletion, but without avoiding the accumulation of growth-inhibiting by-products. In 

perfusion bioreactors, fresh medium is continuously added to the culture at very low rate, while 

an equal amount of spent medium with the product is removed from the culture, leading to very 

stable operations lasting for long periods of time, even 35-40 days. 

1.3.2 Downstream process 

In the biopharmaceutical production of mAbs, the downstream process has become widely 

established to purify the product and reduce all the impurities to acceptable levels (Birch & 

Racher, 2006; Gronemeyer et al., 2014; Shukla & Thömmes, 2010). The downstream process 

is mainly divided into three steps: i) protein A affinity chromatography, ii) polishing 

chromatography, and iii) viral filtration. In protein A affinity chromatography antibodies are 

separated from host cell proteins, DNA and other impurities, and in polishing chromatography 
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a further separation of DNA and high-molecular-weight aggregates is performed, while in virus 

filtration viruses are inactivated and removed.  

1.3.3 Data in cell cultures 

During cell cultures a large amount of data is typically collected. Those data are the basis of all 

modeling activities performed in the biopharmaceutical industry. The main data types available 

in mammalian cell cultures are: 

• process data; 

• biological data. 

1.3.3.1 Process data 

Process data provides information on the macroscopic behavior of the cell culture. They are the 

measurements of the main process parameters and chemical properties, typically monitored to 

follow the culture growth and cell metabolism, and identify the root cause of any decline in cell 

health (F. Li et al., 2010; Rodrigues et al., 2009b). 

Measurements of process parameters are categorized according to their type as: i) on-line, and 

ii) off-line. Some process parameters, such as temperature, pH, and dissolved gases, are 

measured on-line, while others, such as osmolarity, viable cell concentration (VCC), product 

and metabolite concentrations, are measured off-line. VCC, being the most critical 

measurement to evaluate culture physiology as response to the culture conditions, is typically 

measured by taking daily samples from the bioreactor. Similarly, metabolite concentrations, 

such as glucose, glutamine, ammonia, lactate, and glutamate, but also amino acids, are routinely 

measured by taking periodic samples from the bioreactor. The typically measured process 

parameters, their measurement type and analytical instrument is reported in Table 1.2.  

Table 1.2 Typically measured process parameters with measurement type and 

analytical instrument.  

Parameters Type Instrument 

temperature on-line thermocouples or resistance temperature devices 

pH 
on-line  
off-line verification for drifts 
and reduced sensibility  

autoclavable probes 

dissolved oxygen 
(DO) 

on-line electrodes (Clark type) 

dissolved CO2 
on-line 
off-line in some cases 

specific sensors and mass-spectrometry 

osmolarity off-line 
commercial analyzers through freezing-point 
depression osmometry 

viable cell 
concentration 

off-line automated analyzers based on image analysis 

metabolite 
concentrations 

off-line high-performance liquid chromatography 

product 
concentration 

off-line 
enzyme-linked immunosorbent assay, Western blot, 
protein A liquid chromatography, or bioassays 
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1.3.3.2 Biological data 

Biological data available in cell cultures regards the internal microscopic characteristics and 

behavior of the living organisms used in bioprocesses. The biological data concerns the flow of 

information (Figure 1.2) that in all living organisms moves from DNA to mRNA, proteins and 

metabolites, finally expressing itself in the cell phenotypes (Reel et al., 2021). Specifically, the 

information encoded in the DNA is transcribed in the mRNA, which contains the information 

that is then translated into proteins. The proteins, in the form of enzymes, catalyze almost all 

metabolic reactions among metabolites. The concentration of metabolites is strictly connected 

to the cell phenotype that can be observed. This informative flow of biological information is 

captured through omics techniques, which can be categorized according to the source of the 

information. The main types of omics techniques are: 

• genomics; 

• transcriptomics; 

• proteomics; 

• metabolomics; 

• fluxomics.  

Genomics concerns the analysis of the biological information of cells at the DNA level (Reuter 

et al., 2015). It provides the data on the actual DNA sequence, on single nucleotide 

polymorphisms, rare variants, and variations in the copy number. Typically, genomics data are 

generated with sequencing methods followed by several post-processing.  

Transcriptomics concerns the analysis of the biological information at the mRNA level (Lowe 

et al., 2017). In this way, all the information that is recorded in the DNA and expressed through 

transcription in the transcriptome, the collection of all the transcribed mRNA, can be collected. 

Transcriptomics provide information on the genes that are expressed and their expression level. 

Measurements are performed with sequencing techniques, microarray, and mass spectrometry.  

Proteomics concerns the analysis of the biological information at the protein level (Aslam et 

al., 2017). It allows to identify and quantify all the proteins that are in a cell, providing 

information on the expressed proteins and their abundance. Proteomics measurements are 

typically performed with mass spectrometry and liquid chromatography - mass spectrometry. 

Metabolomics concerns the analysis of the biological information at the metabolite level (B. 

Zhou et al., 2012). Metabolomics identifies and quantifies all the small molecules involved in 

metabolic reactions of a given system, called metabolites. Accordingly, it provides information 

on the metabolites identified in a system and their abundance. Metabolomic measurements are 

typically carried out through mass spectrometry, liquid chromatography - mass spectrometry 

(LC-MS), gas chromatography - mass spectrometry (GC-MS). 

Fluxomics concerns the analysis of the biological information at the reaction flux level (Winter 

& Krömer, 2013). Fluxomics is the detailed quantification of the intracellular metabolic fluxes 

with 13C isotope labeling experiments. Specifically, isotopically enriched substances are 
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provided to cell cultures, which uses them as carbon sources. Then mass spectrometry or 

nuclear magnetic resonance are used to quantify the carbon enrichment in the target metabolites. 

Finally, specific metabolic models are required to balance those metabolites and obtain an 

estimate of the intracellular fluxes.  

 
Figure 1.2 Flow of biological information from DNA to phenotype. 

This brief explanation elucidates how genomics, transcriptomics and proteomics provide an 

understanding of the biological characteristics of cell, while metabolomics and fluxomics are 

excellent indicators of cell activity and are the closest information to cell phenotype (Reel et 

al., 2021). 

The presented omics techniques are not the only ones. In fact, additional minor omics 

techniques such as lipidomics (i.e., study at the lipid level) and glycomics (i.e., study at the 

glycan level) exist. Details on these techniques can be found in Reel et al. (2021).  

1.4 Bioproduct development 

The development of mAbs is a very intensive and time-consuming process that follows two 

parallel paths: one concerning the development of the product, from the molecule discovery to 
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the drug approval, and the second concerning the development of the production process, from 

the generation of the cell lines to the manufacturing process.  

1.4.1 Product development 

The product development consists in a series of steps required to bring a new drug product from 

its discovery to the market (Figure 1.3). The initial steps of the development pipeline consist of 

all the research activities required for the new product, which are: 

• drug discovery: this step may last up to 6 years and has a very low success rate, typically 

less than 0.01% (Epifa, 2021; IFPMA, 2022). At this stage, the target antigen for the mAb 

must be selected based on the knowledge of the biological processes involved in a specific 

disease. This allows to design the mechanism of action, binding specificity, affinity, kinetics 

and the isoform of the antigen (Mould & Meibohm, 2016). At this stage, the patent 

application for the new drug product is submitted.  

• pre-clinical trials: this stage is aimed at testing the safety and efficacy of the new drug 

through in vitro and in vivo tests. Initially, mAbs with undesirable properties are excluded 

to identify the ones with specific affinity properties. In vivo tests are typically conducted on 

model animals, which should be appropriately selected to have the closest representation of 

the human effect. These typically include pharmacodynamics and pharmacokinetics test, 

which, unfortunately, are not always predictive of the immunogenicity in humans. Other 

tests concern the toxicity and repeated dose toxicity, which allow to predict the risk of 

adverse events in human and select a safe starting dose (Mould & Meibohm, 2016). These 

pre-clinical trials may last up to 3 years (Epifa, 2021; IFPMA, 2022). 

The initial research for the development of new drugs is resource intensive, and is estimated to 

require ~15.7% of the overall research and development budget (Epifa, 2021).  

Once the pre-clinical trials are completed, the new drug undergoes to a series of clinical trials 

(i.e., in humans). The clinical trials are divided in the three phases, and the new drug must 

subsequently pass all the phases to be approved and launched on the market. The phases are: 

• Phase I: this step is aimed at understanding the efficacy of and safety of drugs on humans. 

Specifically, the suitable mAb dose in humans is determined, together with potential 

interactions with others drugs, that are typically small for mAbs (Mould & Meibohm, 2016). 

This trial involves a small number of healthy volunteers (typically 20-100), with a range of 

success of 57% (IFPMA, 2022). However, sometimes mAbs for cancer treatments are tested 

directly on patients (Mould & Meibohm, 2016). 

• Phase II: this stage is aimed at testing the final dose regime, the efficacy, and the presence 

of side effects in humans. In mAbs their efficacy and safety must be evaluated on the target 

patients in order to get pharmacokinetics and pharmacodynamics data in case of different 

disease severity (Mould & Meibohm, 2016). Phase II typically involves 100-500 volunteers, 
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and has a much smaller rate of success (39%) because inefficacy or toxic effects are usually 

discovered at this stage (IFPMA, 2022).  

• Phase III: this stage is aimed at testing the efficacy of the drug comparing it with other 

available treatments. It involves a larger number of volunteers (1000-5000) and represents 

the most costly and time-consuming phase, but has a high success rate about 68% (IFPMA, 

2022). 

The clinical trials require up to 6-7 years and ~48% of the overall research and development 

budget (Epifa, 2021; IFPMA, 2022).  

Once a drug positively passes all clinical trials, it can be submitted to the regulatory agency for 

the approval. The approval step may last 2 years and requires up to 4% of the overall research 

and development budget (Epifa, 2021; IFPMA, 2022).  

Overall the development of a new mAb may last 12-13 years and has an estimated cost for the 

entire research and development phase of more than 2.55 billion $ (Epifa, 2021). This high 

development and manufacturing cost, together with the typically low amount of produced 

products and the fact that companies have only few remaining years to return the investment 

before patent expiration, which lasts for 20 years from the initial application (Epifa, 2021), 

drastically increases the price of biopharmaceuticals. This has a large impact on the costs that 

patients and national health care systems must sustain to access potentially life-saving drugs.  

 
Figure 1.3 Product development phases. Adapted from Destro and Barolo (2022). 

1.4.1 Process development 

The process development comprises all the activities aimed at the large-scale production of a 

biopharmaceutical product. Process development is resource-intensive and time-consuming, 

and is typically divided into several step (Figure 1.4): host cell generation and engineering (4-

8 months), cell line selection (8-12 months), process characterization (4-8 months), media and 

feed optimization, and process optimization (6-12 months) (Chartrain & Chu, 2008; 

Gronemeyer et al., 2014; Tripathi & Shrivastava, 2019). Furthermore, the process development 

is typically divided into early and late stages. During early stages the process is rapidly 

developed to produce material for Phase I and II clinical trials and toxicology studies. With 
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phase III, the development moves to the late stages in which the best cell lines are selected, the 

process, media and feeding are optimized, together with the bioreactor operating conditions (F. 

Li et al., 2010). This Section will only consider the development of the upstream process, being 

the one requiring the hugest effort.  

 
Figure 1.4 Process development phases. Adapted from Chartrain and Chu (2008). 

The large improvements obtained after years of research in host cell engineering, screening 

methods, medium and feed development, and process engineering allows today’s processes to 
achieve high yield and be economically viable (Wurm, 2004). However, a major aspect for the 

cost effectiveness of the process development relies on reducing the long timelines required for 

a new biopharmaceutical to reach the market (F. Li et al., 2010). For this reason, 

biopharmaceutical companies are looking for innovative science-based solutions to support and 

accelerate the various stages of process development.  

1.4.1.1 Cell generation and engineering 

The first step of the process development is the generation of the cell lines responsible for the 

production of the desired mAb. After the selection of the host cell, transfection is performed to 

make cell lines produce the antibody of interest. In transfection, a plasmid bearing the antibody 

light and heavy chain genes is used to insert the information into the cells. After transfection, 

cell lines are initially screened for the expression of the desired protein with high productivity 

and stability, and desired product quality (Gronemeyer et al., 2014; Tripathi & Shrivastava, 

2019).  

At this stage host cells are genetically engineered to improve or modify product quality, growth, 

productivity, and robustness (F. Li et al., 2010). The main strategy to genetically engineer host 

cells is performed by acting on gene regulation, such as downregulating, upregulation or 

knocking out the expression of specific genes (Lai et al., 2013). Several cellular functions are 

targeted to improve the functions of CHO cells such as apoptosis, autophagy, proliferation, 

regulation of cell cycle, protein folding, protein secretion and metabolites production. However, 

one of the main areas of improvement concerns the cell viability and productivity. For example, 

a combination of anti-apoptosis and secretion genetic engineering led to 60% increased 

antibody titers (Lai et al., 2013).  

Glycosylation control has also received a lot of attention because antibody glycosylation pattern 

has a major impact on the bioactivity of a mAb (Gronemeyer et al., 2014; F. Li et al., 2010). 

Other genetic engineering targets concern metabolic improvements typically aimed at reducing 
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ammonium and lactate accumulation, and the improvement of the therapeutic efficiency, such 

as the antibody dependent cell mediated cytotoxicity (Lai et al., 2013).  

The genetic engineering of host cells can strongly benefit from the advances in the genome-

wide in silico modeling of mammalian system, especially if coupled with advanced omics tools. 

This can lead to the creation of fully optimized mammalian cell lines through multiple genetic 

modifications (Lai et al., 2013).  

1.4.1.2 Cell lines selection and scale-up 

Cell line screening and selection is one of the most important steps in upstream process 

development, because the selection of inappropriate cell lines have major consequences on the 

entire development process. In fact, a change in the production cell lines during late 

development stages is considered a major process change, requiring additional clinical studies. 

Consequently, the production cell line should be identified before Phase III trials, but, 

preferably, even during Phase I (F. Li et al., 2010).  

After cell generation, the obtained pool of candidate cell lines is highly heterogeneous, because 

the random integration of the recombinant gene into the host cell genome produces very 

different expression levels. Typically, highly productive cell lines are rare and they often show 

a low growth rate because a significant portion of the metabolic resources are diverted for 

protein synthesis (Lai et al., 2013; F. Li et al., 2010). For this reason, an extremely large number 

of cell lines (thousands) are screened to isolate the ones with desired characteristics, making 

this cell selection stage very time-consuming (6-12 months) and labor- and capital-intensive.  

 
Figure 1.5 Schematic representation of the cell selection and scale-up phase. Adapted from 

Facco et al. (2020). 

The main criteria for cell lines selection (i.e., critical quality attributes, CQAs) are based on: 

growth, cell specific productivity, stability, glycosylation profiles, aggregate formation, protein 

sequence heterogeneity, robustness, high viability, metabolic characteristics, low lactate and 

ammonium generation (Gronemeyer et al., 2014; F. Li et al., 2010; Wurm, 2004). The 

evaluation of such CQAs is not straightforward, because they are cell line dependent and many 

of them are affected also by the specific processing conditions (F. Li et al., 2010). Since the 

CQAs that can be quantified and the number of cell lines that can be screened are specific for 
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each process scale, cell line selection is performed at different process scales (Figure 1.5). After 

transfection, several hundreds of cell lines are screened at different static deep well plate scales 

(96, 24, 12, and 6) up to 5 mL to assess growth and productivity. More recently, nanofluidic 

technologies (Le et al., 2018), such as the Beacon platform, are utilized to simultaneously screen 

thousands of transfected cell lines at the nanoliter scale. After this initial screening, only the 

cell line meeting the desired CQAs are progressed to shaken scales, such as T25 and shake 

flasks, with larger volumes (25-500 mL). At this stage typically 24-48 cell lines meeting the 

desired CQAs are identified and progressed to high-throughput multi-parallel bioreactors (i.e., 

AMBR15TM and AMBR250TM). These systems have 12-48 single-use parallel bioreactors with 

a working volume of 15-250 mL. The AMBRTM bioreactors are equipped with an internal 

impeller and a gas sparger, allowing them to mimic the larger bioreactors of 3, 5, and 200 L 

(Rameez et al., 2014). The AMBRTM systems together with lab scale bioreactors (1-10 L) allow 

the isolation of 4-6 highly performing cell lines that are further evaluated at pilot scale (F. Li et 

al., 2010). Finally, the last tests on the pilot scale leads to the selection of the production cell 

line which will be used for the entire life-span manufacturing of the mAb.  

Several advancements in the analytical technologies, such as the introduction of high-

throughput systems, allow a faster and a wider screening of cell lines, consistently improving 

the identification of promising cell lines. However, the selection of high performing cell lines 

in a limited time frame is still a major challenge (Lai et al., 2013; F. Li et al., 2010). 

Furthermore, a better understating of cell biology from omics techniques, such as genomics, 

transcriptomics, proteomics, and metabolomics, would definitely improve the selection of 

highly performing cell lines and reduce the overall cost of process development (F. Li et al., 

2010).  

1.4.1.3 Process characterization 

The process characterization is an important step because it is required for the drug approval, 

as part of the biologic license application (ICH Harmonised Tripartite Guideline, Guidance for 

Industry, Q8 Pharmaceutical Development, 2009; F. Li et al., 2010). Process characterization 

usually takes place after the completion of the Phase III trials, when no significant changes are 

introduced in the manufacturing process. However, part of the process characterization is also 

performed early on during the development process, because it provides valuable information 

for the completion of other steps such as process and media optimization (F. Li et al., 2010).  

Process characterization is aimed at understanding the impact of process operating parameters 

(i.e., critical process parameters, CPPs) on the product characteristics (i.e., CQAs), establishing 

the acceptable ranges for operating parameters, and demonstrating process robustness. This is 

necessary to understand how the quality specification required by the regulatory agencies can 

be met and ensured.  
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Process characterization is typically performed through DoE in scale-down models (i.e., 

processes), which allow to accelerate the experimentation and reduce costs (F. Li et al., 2010), 

since process characterization at manufacturing scale is not feasible because of the high costs 

and time requirements for this kind of experimentation. However, to demonstrate the 

consistency of the process performance between the scale-down models and the commercial 

scale, full scale validation is required (F. Li et al., 2010).  

Process characterization in the biopharmaceutical industry is still behind the one in the 

traditional pharmaceutical sector. The main bottleneck in bioprocess characterization is the 

limited combination of high-throughput systems with high-resolution quality analytics, because 

of the long timelines for analyses, cost, and high device complexity. The availability of high-

throughput systems with real time CQA determination would greatly benefit process 

characterization and the entire bioprocess development (Guerra et al., 2019). Furthermore, 

characterization of the relationship between the variability of metabolic states and heterogeneity 

in process behavior is still an open issue and only few publications are focused on that (Guerra 

et al., 2019). Advancements in omics technologies, such as genomics, proteomics, and 

metabolomics, and methodologies to understand how cell biology is affected by process 

conditions and vice versa can lead to a better process characterization, even allowing to adjust 

the process conditions according to biological difference in host cells (F. Li et al., 2010).  

1.4.1.4 Media and feed optimization 

Another important step in upstream process development is the optimization of the media and 

feeding schedule, which is essential to balance cell growth and productivity, and to achieve 

adequate product quality.  

The culture media must be optimized for every cell line, because of their intrinsic behavior 

diversity. The optimized media must consider the differences in cell metabolism, nutrient 

consumption, by-products formation, and the balance between growth and productivity 

(Gronemeyer et al., 2014; Tripathi & Shrivastava, 2019). Typically, media optimization is 

performed through Design of Experiments (DoE), but the recent advent of genome-wide in 

silico modeling will be precious to this purpose (Gronemeyer et al., 2014).  

The optimization of the feeding schedule is extremely important to correctly balance growth, 

productivity, product quality and accumulation of growth-inhibiting by-products. To reduce the 

production of growth-inhibiting by-products, such as lactate and ammonia, the concentration 

of glucose and glutamine is usually maintained at a low level (F. Li et al., 2010). This is 

achieved by feeding cell cultures with frequent boluses, at specific time periods, of glucose and 

glutamine, which are the main carbon sources for mammalian cells. The optimization of the 

feeding schedule deals with the identification of the best way of providing nutrients over time.  

The optimization of the feeding schedule is typically done with high-throughput scale-down 

equipment and statistical DoE (Gronemeyer et al., 2014; F. Li et al., 2010). However, DoE only 
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considers static factors, but can be extended to dynamic ones by assigning a different DoE 

factors to the feeding action at each day (Mora et al., 2019). This rapidly leads to extended 

designs with several dozens of experiments, especially in the case of long and multiple dynamic 

variables to consider. For this reason, strategies to optimize dynamic variables , such as the 

Design of Dynamic Experiments (DoDE; Georgakis, 2013), are required. In this case the 

experiments are specifically designed to deal with time-varying factors while minimizing the 

total number of required experimental runs, in such a way as to obtain the maximum 

information content from the experiments. These characteristics make DoDE a good candidate 

for the optimization of the feeding schedule (Wang & Georgakis, 2017). Unfortunately, even 

in DoDE the number of experimental runs increases with the number of dynamic variables and 

the complexity of the dynamic profiles. Due to the high cost and time required by each 

biopharmaceutical experimental run, the strategies selected for the optimization of the feeding 

should be able to deal with data scarcity without requiring too many experimental runs.  

1.4.1.5 Process optimization 

The optimization of process operating parameters (i.e., CPPs) in another essential step to 

achieve stable and high expression of protein and adequate product quality.  

Temperature, pH, agitation, aeration, dissolved oxygen (DO), CO2, and hydrodynamic shear, 

osmolality, redox potential, and addition of cell culture additives are the CPPs that are typically 

optimized (Gilgunn & Bones, 2018; Gronemeyer et al., 2014; F. Li et al., 2010; Tripathi & 

Shrivastava, 2019). At this stage, optimal temperature and pH shifts are typically determined, 

together with the required gas exchange rate (Tripathi & Shrivastava, 2019).  

This process optimization is typically performed though experimental methodologies, which 

leads to cell cultures with high cell growth, enhanced productivity and better product quality, 

such as a reduced content of host cell proteins (Gilgunn & Bones, 2018; Tripathi & Shrivastava, 

2019). 

Recently, a lot of effort is being made in the optimization of disposable bioreactors. However, 

work is still necessary to optimize the aeration system, develop standardized methods, and solve 

some performance issues. Furthermore, the development of validation strategies for assessing 

the risk of leachables and extractables from the disposable plastic is still an open issue.  

1.4.2 Regulatory aspects of bioprocess development 

The biopharmaceutical process development, as well as the entire biopharmaceutical industry, 

is highly regulated and is subject to the supervision of regulatory agencies, which aim at 

protecting and improving human health. U. S. Food and Drug Administration (FDA) and the 

European Medicine Agency (EMA) are two of the most important regulatory agencies, but other 

regulatory bodies are spread all over the world. Many of these regulatory agencies share an 

aligned position on important regulations for the drug products that are on the market through 
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the International Council on Harmonization (ICH). ICH guidelines define the main 

recommendations that pharmaceutical and biopharmaceutical companies follow. For example, 

the framework of Quality by Design (QbD) was presented by ICH guidelines (ICH Q8, 2009). 

QbD promotes the need of building the quality into the drug product through a systematic, 

scientific and risk-based approach since the early stages of product conception and 

development. Differently from quality by testing, which is oriented to determine the product 

quality in an a-posteriori fashion, QbD promotes an enhanced understanding of the product and 

process, the in-depth analysis of the relationship between raw material and process parameters 

and the CQAs, and all the sources of variability affecting the product quality (Destro & Barolo, 

2022; Rathore, 2014; Rathore & Winkle, 2009). Accordingly, following QbD a product is 

initially formulated to meet the desired clinical performance, while the process is designed to 

consistently deliver a product that meets the necessary quality attributes (Destro & Barolo, 

2022; Rathore & Winkle, 2009).  

The implementation of QbD goes through a sequence of 6 activities: 

1) identification of the quality target product profile (QTPP): identification of the quality 

characteristics and their limits, ranges, and distributions that the drug must achieve to 

ensure the desired safety and efficacy; 

2) product design space: identification of all the in-process, drug substance and drug 

product CQAs to guarantee a product with desired performance.  

3) process design space: identification of the CPPs and critical material attributes (CMAs), 

and their relationship and impact on product CQAs. This activity is typically performed 

through DoE methodologies (Rathore & Winkle, 2009); 

4) definition of the control strategy: definition of the planned set of controls that ensure the 

product quality through risk assessment accounting for process capability. In this step, 

all procedural controls, in-process controls, lot release testing and process monitoring 

procedures are defined; 

5) process validation: evaluation of the process capability to deliver a product with the 

desired QTPP when operated into the design space; 

6) life-cycle management: monitoring of the process to ensure stability of operation within 

the design space, and possible process changes to preserve process consistency.  

The fulfillment of these activity is required because all the information gathered at these stages 

are required for filing the application to the regulatory agencies. In particular, the filing incudes: 

product and process design space description, control strategy plans, validation activities 

performed, and process monitoring equipment.  

An important regulatory initiative to enable the building of quality into the product is Process 

Analytical Technology (PAT; Food and Drug Administration, 2004). To ensure the quality of 

a drug product, PAT encourage the use of methodologies from chemistry, control theory, and 

mathematical and statistical modeling aiming at i) achieving timely measurements, ii) process 
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monitoring and prediction, iii) providing real time understanding, iv) accurate managing of 

process variability, and v) prediction of the final product quality form process parameters 

(Glassey et al., 2011; Maruthamuthu et al., 2020; Rathore, 2014) 

In the biopharmaceutical industry, the application of PAT is still ongoing due to the complexity 

of the bioprocess and the perception that the reward for the manufacturer is not commensurate 

with the risk. For this reason, PAT applications are solely focused on the monitoring of the 

process with no application for process control (Rathore, 2014).  

1.5 Mathematical modeling in Biopharma Industry 4.0 

The novel technologies arising in the bioprocessing field and the increasing availability of data 

can be exploited thanks to digitalization tools, determining the transition to the 

Biopharmaceutical Industry 4.0. One important tools to support digitalization is mathematical 

modeling (Destro & Barolo, 2022; Qin, 2014; Reis & Gins, 2017; Sansana et al., 2021). 

Mathematical modeling can be classified according to three criteria: 

• model type;  

• available data (Section 1.3.3); 

• model scope (i.e., the final purpose of model implementation). 

The model type describes the amount of knowledge embedded within the model. Models can 

be classified as data-driven (also known as black-box), first principles (knowledge driven or 

mechanistic models, also known as white-box), and hybrid (also known as gray-box).  

Data-driven models do not require a-priori knowledge of the physical mechanisms behind the 

system, but rely on parametric equations for prediction, classification, and unsupervised tasks 

based on a given set of data. First principles models, instead, are based on the fundamental 

knowledge of the chemical, physical and biological mechanisms behind the system, which are 

described in mathematical terms by systems of equations (i.e., mass and energy balances). 

Hybrid models take advantage of both first principles models for the accurate description of the 

known physical mechanisms and data-driven models for learning the unknown complex 

variability of the system under study.  

In the biopharmaceutical industry different types of models are used to deal with specific data 

types (Section 1.3.3). In particular, process data are typically analyzed through first principles, 

hybrid, and data-driven models, depending on data complexity and model scope. Biological 

data are typically analyzed with data-driven or first principles models, while the development 

of hybrid models solely based on biological data is still an open issue (Teixeira, Carinhas, et 

al., 2007).  
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Figure 1.6 Modeling activities with their purpose and applications, organized with an 

increasing complexity and business value. 

The model scope describes the purpose of implementation and the application of the models. 

Modeling activities can be divided in four categories based on the purpose of the 

implementation, their complexity, and the respective business value (Figure 1.6): 

• descriptive activities: describing, understanding, and revising what happens into the 

biopharmaceutical process; 

• diagnostic activities: understanding the reason behind chemical, physical, biological 

phenomena happening in the biopharmaceutical process; 

• predictive activities: forecasting the future behavior of the biopharmaceutical process; 

• prescriptive activities: identifying an appropriate management of the biopharmaceutical 

process in order to achieve a desired outcome. 

Within this framework, modeling activities in the biopharmaceutical industry are divided 

according to the specific application (Figure 1.6): 

• process understanding: uncovering the mechanisms behind the process, the relationship 

between CPPs, CMAs and CQAs and their importance through exploratory analysis, 

information mining, variability analysis (Yu et al., 2014); 

• process monitoring: determining whether a process is operating under normal (standard) 

conditions and diagnosing the reasons of any deviation from that (Destro & Barolo, 2022);  

• performance forecasting: predicting the process performance or CQAs from CPPs or 

CMAs, classifying the process outcomes (e.g., in/out of specifications, high/low cell 

productivity), and forecasting the culture status; 
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• process optimization: identifying the best set of CPPs to enhance desired CQAs, defining 

the best culture media and feeding strategy, and proposing genetic improvement of host cell 

performance;  

• process control: developing strategies that automatically adjust process parameters to 

maintain the process output within a desired range (Q13 - Continuous Manufacturing of 

Drug Substances and Drug Products, 2021; Sinner et al., 2020). 

1.5.1 Data-driven modeling 

Data-driven models are widely applied in the biopharmaceutical industry because of their fast 

development and implementation, their capability of handling problems with high complexity 

and dimensionality (Badr & Sugiyama, 2020) and their ability to deal with the high intrinsic 

variability of the living materials.  

1.5.1.1 Descriptive activities 

Process data 

Descriptive activities in biopharmaceutical process development are mainly oriented to process 

understanding. In this context, data-driven models are typically applied to process data for: 

• the identification of the important CPPs, CMAs and their inter-relationship; 

• the understanding of the relationship between CPPs or CMAs and CQAs; 

• the study of process and CQAs variations at different scales. 

Among the data-driven techniques, multivariate (MV) methods, such as Principal Component 

analysis (PCA; Wold et al., 1987) and Partial Least-Squares (PLS; Wold et al., 2001), are the 

preferred strategies for process understanding based on process data mainly due to their 

interpretability and ease of use.  

The main technique to study the inter-relationship in CPPs and CMAs and identify the most 

important ones is PCA. In fact, PCA applied on CPPs averaged over the culture time identified 

the main effect of pH and DO on batch variability (Sokolov et al., 2015), while PCA found how 

amino acid concentrations change with different pH and DO, when used to correlate process 

measurements and amino acid composition data (Green & Glassey, 2015). PCA was even able 

to follow the evolution of CQAs towards the desired optima in experiments performed at 

different scales (Sokolov et al., 2018). 

When dealing with the understanding of the relationship between CPPs or CMAs and CQAs 

both PCA and PLS are typically used. For example, PCA identified the CPPs time evolution 

leading to the desired CQAs and early inferred the CQAs based on score trajectory in an 

evolving fashion (Facco et al., 2020), while when coupled with decision trees was applied 

during process design to select continuous and categorical CPPs and CMAs leading to the 

improvement of multiple CQAs (Sokolov et al., 2017). PLS, instead, is the preferred choice 
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when the study of the relationship between CPPs and CQAs is associated with the identification 

of the important factors for process variability. For example, when applied to 12 CPPs PLS 

identified the large correlation of VCC, glutamate, glutamine and lactate with product titer 

(Sokolov et al., 2015), while in the cell-free production of mAbs PLS identified the CPPs 

affecting the process yield (Duran‐Villalobos et al., 2021). Similarly, PLS combined with a 

genetic algorithm identified i) the impact of media factors on fragments quantity and of process 

variables (i.e., temperature and pH shift, and nitrogen flow) on product titer and glycoforms 

(Sokolov et al., 2017), and ii) studied the relationship between the dynamic changes in process 

variables and CQAs at AMBR15TM scale (Sokolov et al., 2018).  

Finally, the study of process and CQA variation across scales is typically tackled with PCA, 

but also PLS is used with lower frequency. For example, PCA was used to guide the selection 

of clones and media factors in the execution of the experimental campaign at different scales 

(Sokolov et al., 2018), such as deep well plates, AMBR15TM, 3.5L and 300L bioreactors. 

Furthermore, similarity scores based on PCA were used to assess the similarity between 

variables and batches at different static, shaken and stirred process scales, leading to a better 

understanding of how cell lines may respond differently to the scale-up (Facco et al., 2020). In 

the regards of studying the process at different scales, both PLS Discriminant Analysis (PLS-

DA; Barker and Rayens, 2003) and Orthogonal PLS-DA (OPLS-DA; Trygg and Wold, 2002) 

were used to study the similarity of scaled-down models (shake flasks and 3L bioreactor) with 

a 15000L production scale bioreactor, and improved the 3L scaled-down model by acting on 

the aeration rate which caused different behaviors of pH and pCO2 (Ahuja et al., 2015). 

 

Biological data 

In the context of descriptive activities in biopharmaceutical processes, especially process 

understanding, data-driven methods have been typically applied to biological data to: 

• better understand the metabolic state of cells associated with different characteristics, 

culture conditions, and CQAs; 

• identification of cellular features (i.e., biomarkers) associated with cell characteristics and 

CQAs. 

Biological data are typically large, complex, extremely correlated and often characterized by 

nonlinearities. Despite their linearity, MV methods, especially PCA and PLS, are the preferred 

choice for process understanding because their ease of interpretation and capability of 

extracting valuable information.  

When it comes to metabolomic data for a better understanding of the metabolic state of cells, 

PCA is the most commonly used MV methods. For example, PCA on intracellular GC-MS 

metabolomics of mammalian cells differentiated cells based on their age, cell source and reactor 

scale (Chrysanthopoulos et al., 2010), while in CHO cell lines identified a metabolic shift 

moving form growth to production phase (Sumit et al., 2019). PCA also analyzed the 
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intracellular metabolomic profiles change associated with the steady state VCC value in 

perfusion cell cultures, showing that nucleotide sugar donors, coenzyme A, and metabolites 

precursors of phospholipids concentrations varies between VCCs (Karst et al., 2017). In regard 

to the understanding of cell metabolic state, PCA has also been used to better understand the 

impact of different culture media and its time change on cell metabolism. In fact, PCA identified 

differences in the metabolomic profiles of CHO cells cultured in different media and how these 

differences correlate to different growth rates and VCC (Dietmair, Hodson, Quek, Timmins, 

Chrysanthopoulos, et al., 2012). Furthermore, PCA showed that media has a strong impact on 

growth and productivity in CHO cell lines (Mohmad-Saberi et al., 2013), and it was able to 

study the time changes of extracellular metabolites in CHO cultures finding metabolites that 

are accumulating, such as amino acid derivates, and depleting, likely media components 

(William P K Chong et al., 2009). Other applications of PCA on biological data concern the 

study of the different amino acid content in different mammalian cell lines (Selvarasu et al., 

2012), the identification of nutrient supplement enhancing mammalian cell productivity 

(Richardson et al., 2015), and to assess the effect of processing conditions on proteomics data 

(Strasser et al., 2021).  

Despite the metabolomic data are often used for process understanding and correlated to culture 

(i.e., process) conditions, a comprehensive framework to integrate process and biological 

information is still missing, and no precise indications are typically followed.  

The identification of cellular biomarkers is typically performed through PLS, mainly because 

of its capability of identifying features in the biological data associated with desired 

characteristics or CQAs. For example, PLS was used to identify metabolites associated to 

growth rate (Dietmair, Hodson, Quek, Timmins, Chrysanthopoulos, et al., 2012), and with an 

enhancing and inhibiting effect on product titer, allowing to adjust media composition with 

those metabolites achieving enhanced antibody productivity (Morris et al., 2020). Similarly, 

OPLS-DA on LC-MS intracellular metabolomics identified metabolites changing with each 

culture phase, but it did not find process scale specific metabolic states (Vodopivec et al., 2019), 

and identified extracellular metabolites differentiating wildtype and transfected cells in the 

study of mutations that can lead to protein accumulation potentially causing Alzheimer (Chang 

et al., 2015). In this case, the identified metabolites were used to assess the effect of different 

treatments in reducing protein accumulation.  

In this regard, the enhanced understanding achieved through MV modeling of biological data 

is typically used to characterize the process and to improve the design of media and processes. 

The direct exploitation of the wealth of biological information to aid selection of high 

performing cell lines is still missing. Furthermore, as can be noticed, the use of dynamic 

metabolomic data for process understanding is still an open issue. 

When dealing with the identification of biological features associated with cell characteristics 

or CQAs, appropriate strategies, named feature selection methods, must be coupled to data-
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driven models, because biological datasets are often characterized by an extremely large 

number of variables. For example, in metabolomics, data on several thousand metabolites are 

often available and this can be repeated in several time points along the culture, leaving with 

several tens of thousands of metabolites.  

Feature selection strategies change with the selected data-driven method and improve both 

model interpretability and performance. For example, PLS-based feature selection methods are 

divided into three families: i) filter methods, ii) wrapper methods, and iii) embedded methods. 

In filter methods, the outputs of the PLS are directly used to identify the most important 

features, while in wrapper methods the important features identified by filter methods 

iteratively give feedback to re-fit the PLS model. Finally, in embedded methods the feature 

selection is an integrated part of the PLS algorithm. A shortlist of different PLS-based feature 

selection methods is reported in Table 1.3, while a comprehensive explanation of the PLS-based 

feature selection strategy is reported in Mehmood et al. (2012). 

Table 1.3 Applications of PLS-based feature selection methods.  

Reference Strategy Method Application 

Wiklund et al. 
(2008) 

filter  
Covariance + correlation (S-
plot) 

Identification of metabolites differentiating 
transgenic and wild type polar trees 

Bryan et al. 
(2008) 

filter 
variable importance in 
projection (VIP) + 
Pearson’s correlation 

Automated tool for feature selection in 
metabolomic data 

Clarke et al. 
(2011) 

wrapper 
Iterative backward 
elimination of 
uninformative variables 

Identification of genes associated to cell 
productivity from CHO transcriptomic data 
through PLS 

Dietmair et al. 
(2012) 

filter  VIP 
Identification of metabolites associated with 
growth rate in CHO cells 

Chong et al. 
(2012) 

filter  
VIP + Pearson’s correlation 
+  
t-test 

Identification of metabolites characterizing high- 
and low-productive cell lines 

Afanador et al. 
(2013) 

filter VIP bootstrap Tool for robust feature selection 

Pujos-Guillot 
et al. (2013) 

filter  VIP 
Identification of metabolites characterizing 
human intake of citrus fruit for biomedical 
applications  

Chang et al. 
(2015) 

filter  VIP 
Identification of metabolites differentiating cell 
lines with a mutation inducing protein 
accumulation potentially leading to Alzheimer  

Morris et al. 
(2020) 

filter  VIP 
Identification of metabolites enhancing or 
inhibiting product titer 

Zürcher et al. 
(2020) 

filter  VIP 
Identification of metabolites associated to 
product quality in CHO cell cultures 

 

Other feature selection strategies were applied with other data-driven methods, such as elastic-

net (Badsha et al., 2016), univariate filtering (correlation or mutual information criterion) 

coupled with embedded methods in support vector machine (SVM), random forest or ANOVA 

(Grissa et al., 2016), permutation on random forest or gradient boosting (Jr, 2014), and genetic 

algorithm prior MV modeling (Davis et al., 2006). In other cases, a graph based variable 
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selection coupled with random forest and SVM was used to overcome the limitation of multiple 

annotations and missing values in metabolomic data (Cai et al., 2017). 

In many cases, data-driven methods have been applied to biological data thanks to third party 

software which allows less experienced practitioners to perform such analyses but lacks 

customizability. Specifically, SIMCA-P (Sartorius, Goettingen, Germany) was often used to 

build the models and perform feature selection, MetaboAnalyst to perform exploratory analysis, 

classification, feature selection and functional analysis of metabolites (J. Chong et al., 2019), 

and Matlab® (MathWorks, Natick, MA, US) or R libraries, such as: PLS_Toolbox (Eigenvector 

Research Inc, Wenatchee, WA, US) or Classification and Regression Training package. The 

adoption of easy-to-use software, especially in PLS-based analysis, leads to the use of very 

simple filter methods (i.e., VIP) or feature selection which are often less performing than 

wrapper or embedded methods. 

1.5.1.2 Diagnostic activities 

Process data 

Diagnostic activities in biopharmaceutical processes development are mainly oriented to 

process monitoring. In this context, data-driven models are typically applied to process data 

for: 

• fault detection and diagnosis 

• identification of measured variables that can be used for monitoring CQAs. 

In process monitoring for the biopharmaceutical industry, MV methods are the only ones used 

because of the availability of diagnostics which allow to build effective charts for monitoring 

and fault detection with moderate effort.  

Concerning fault detection and diagnosis, both PCA and PLS models, have been used to exploit 

their monitoring charts as hypothesis testing tools. For examples, PCA-based monitoring charts 

have been used with online measurements to monitor in real-time the deviations from the 

Normal Operating Conditions (NOC) and identify the faulty batches in a penicillin fermentation 

process (Goldrick et al., 2019). In a similar process, PCA-based monitoring charts exploited 

online measurements and a hybrid strategy with Extended Kalman Filter (EKF) based on a 

simple first principles model for monitoring and fault detection (Destro et al., 2020). The 

addition of the estimated states and EKF parameters provided meaningful information about 

phenomena involved in the fault and allowed to diagnose its root causes, much better than using 

online measurement alone. In regard to monitoring and fault detection, PLS-based diagnostics 

and monitoring charts allowed the real time monitoring of the final product concentration in a 

fed-batch fermentation from batch-wise unfolded process measurement and the identification 

of faulty batches and their root causes (Gregersen & Jørgensen, 1999). Similarly, Multiway 

PLS (MPLS; Nomikos and MacGregor, 1995) was applied to the production of mAbs in cell-

free environments for the anticipated monitoring of the final yield, allowing also to identify 
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faulty batches with unusual changes in pH and temperature (Duran‐Villalobos et al., 2021). 
However, biopharmaceutical process development is characterized by the availability of few 

process batches, especially at pilot scale where only a handful of experimental runs are available 

due to their high cost and long duration (F. Li et al., 2010). To deal with the problem of data 

scarcity, PLS was coupled with a data augmentation strategy based on high frequency 

resampling and Gaussian Process for fault detection (Tulsyan et al., 2018, 2019). In this case, 

50 in silico batches originated starting from 2 or 3 available process batches were used to build 

a PLS based monitoring strategy, which correctly identified faults in new batches through 

monitoring charts. The use of data augmentation strategies, as in this case, would greatly benefit 

various stages of biopharmaceutical process development, especially the ones involving few 

available runs, to reduce the experimental burden and accelerate the timelines. Unfortunately, 

the application of data augmentation methods, especially model-based ones, in the 

biopharmaceutical industry is still an open issue. 

In regard to the identification of process variable for the monitoring of CQAs, PLS is the main 

technique. In particular, PLS based on DoE data was used to identify the joint importance of 

temperature, pH and pCO2 in monitoring the product quality in mammalian cell cultures 

(Goldrick et al., 2017). 

 

Biological data 

In the context of diagnostic activities in biopharmaceutical processes, biological data are not 

often exploited for process monitoring due to their off-line measurement nature. However, data-

driven methods, especially MV ones, which are the preferred choice also in this case, have been 

applied to: 

• monitor CQAs based on biological features; 

• build soft sensors. 

In the context of monitoring CQA, PCA is the most used method, which has been used with 

metabolomic data to identify indicators of good cell health (such as asparagine) and indicators 

of apoptosis (such as ornithine and lysine) that help to monitor the state of the culture (Mohmad-

Saberi et al., 2013). Furthermore, PCA applied to intracellular metabolomic data identified 

specific metabolic changes with each culture phase and could be used to monitor cell 

physiology and phase transition in perfusion cell cultures (Vernardis et al., 2013).  

In this regard, the exploitation of time-varying biological data in a quasi-real time manner for 

the monitoring of cell behavior and CQAs is still missing and would probably allow to early 

infer any variations or anomalies in cell cultures.  

Concerning the implementation of soft sensors for process monitoring, PLS is the typical used 

methodology. In particular, Raman spectroscopy based soft sensors thorough PLS allowed to 

implement a real time monitoring system for product glycosylation, estimating the 
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concentration of glycosylated and non-glycosylated antibodies (M.-Y. Li et al., 2018), and 

monitor the penicillin yield in a simulated fermentation process (Goldrick et al., 2019). 

1.5.1.3 Predictive activities 

Process data 

Predictive activities in biopharmaceutical processes development are mainly oriented to 

performance forecasting. Data-driven models are typically applied to process data for the 

prediction of CQAs from CPPs.  

In this context, a large variety of data-driven, from MV to deep learning methods, have been 

applied. Data-driven methods are categorized in i) linear, and ii) non-linear. In linear models, 

such as MV ones, inputs are linearly combined with the model parameters to represent the 

output, making the model easily interpretable. In non-linear model, such as neural networks, 

instead, the inputs are combined in a non-linear fashion to represent the output. This allows 

models to represent more complex relationship between inputs and outputs, but strongly limits 

their interpretability. Several applications of data-driven methods in the biopharmaceutical 

industry has been reviewed by Rathore et al. (2022).  

Concerning the prediction of CQAs, PLS regression is the most applied MV method because it 

allows to easily predict multiple responses and identify at the same time the most influential 

factors affecting the prediction among regressors. For example, PLS was used to predict the 

VCC at each process scale and it was compared to a Joint Y-PLS (JY-PLS; Garcıa Munoz et 
al., 2005) that used data from multiple scales to predict the VCC (Facco et al., 2020). In this 

case, PLS and JY-PLS preformed similarly, but JY-PLS outperforms PLS in predicting the 

VCC for scales where only few calibration data are available. Applied to amino acid 

concentrations, PLS accurately predicted CQAs, such as product titer and glycan profile (Green 

& Glassey, 2015). Furthermore, PLS coupled with a genetic algorithm accurately predicted 

CQAs from media composition and the dynamic evolution of process variables and identified 

the media or process variables with the largest influence on prediction (Sokolov et al., 2018). 

Similarly, CQAs, such as product titer and glycoforms, were predicted from media factors and 

process history at AMBR15TM scale using an Evolving PLS (Ramaker et al., 2005) coupled 

with a genetic algorithm (Sokolov et al., 2017). This strategy allowed to identify how CQAs 

predictability changes in time and to understand media and process factors affecting the studied 

CQAs. Finally, PLS, applied to mammalian cell cultures for predicting the time evolution of 

the main process variables (Narayanan et al., 2019), showed lower prediction accuracy than 

more complex hybrid models (which will be covered in Section 1.5.2).  

In recent years, more advanced non-linear machine learning methodologies, such as SVM, and 

deep learning methods, such as artificial neural networks (ANN), have been used for their 

predictive power despite their lack of interpretability. For example, the best model structure to 

predict the mAbs concentration at harvest was identified by means of SVM and five feature 
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selection methods to rank variables (Gangadharan et al., 2021). Furthermore, ANNs predicted 

better than the fully mechanistic model the glycan distribution in CHO cell cultures from the 

nucleotide sugar donors which are calculated by a first principles model of cell metabolism 

(Kotidis & Kontoravdi, 2020). In this case, the glycan distribution was predicted form 

nucleotide sugar donors and enzyme concentration by means of ANN, allowing to study the 

effect of enzyme concentration changes achieved through genetic engineering on the glycan 

distribution. In this regard, the application of SVM and ANN on bioprocesses is still an open 

research topic mainly because of the lower interpretability than MV models, and the reduced 

generalizability with the (relatively limited) amount of data typically available in 

biopharmaceutical development. Here, the introduction of data augmentation techniques can 

strongly support the use of such powerful methodologies, as was done in other fields such as 

image processing.  

 

Biological data 

In the context of predictive activities in biopharmaceutical processes, even when dealing with 

performance forecasting based on biological data, data-driven methods are the preferred choice 

to: 

• predict CQAs from biological features (i.e., metabolism or genotype); 

• discriminate between different cell conditions. 

A large variety of data-driven methods have been applied for performance forecasting, but MV 

methods are preferred because of their simplicity and capability to handle the large, complex 

and correlated nature of biological datasets. 

Considering the prediction of CQAs from biological features, PLS is typically used. For 

example, MPLS on dynamic metabolomic data was used to predict the phenylalanine yield in 

E. Coli cultures, also allowing to understand how the metabolites associated to yield change in 

time by inspecting the PLS regression coefficients (Rubingh et al., 2009). Additionally, 

extracellular metabolites combined with process data allowed to predict the glycan profile in 

CHO cell cultures (Zürcher et al., 2020). In this case, the VIP index allowed to maximize 

validation performance and identify the metabolic features associated to the product quality 

prediction. Furthermore, PLS was the first model built on gene expression data to predict CHO 

specific productivity (Clarke et al., 2011). In this case, the model correctly predicted specific 

productivity in new experiments and identified about 300 genes associated to productivity 

through a multi-loop iterative backward elimination of uninformative variables.  

Moving to the discrimination of different cell conditions, linear discrimination methodologies, 

such as PLS-DA, are typically adopted. They combine both accurate classification performance 

and interpretability of the results. For example, PLS-DA has been used on MS metabolomic 

data collected from deep well plate cultures to discriminate CHO cells according to their 

productivity level measured in 10L bioreactors (Povey et al., 2014). This example showed that 
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the metabolic features are intrinsic characteristics of the host cell and can be predictive of a 

phenotype even at a different process scale, and that this can be done even for cell lines 

producing different antibodies. Similarly, OPLS-DA was also used with CHO LC-MS 

intracellular metabolomic data to discriminate between low and high productive cell lines, 

identifying at the same time the fingerprint of high productive cell lines in increased level of 

electron carriers and nucleotide sugar donors through the combination of VIP, Pearson’s 
correlation and t-test (William Pooi Kat Chong et al., 2012). 

In regard to the prediction of CQAs and the discrimination of cell characteristics, dynamic 

biological data are often available, but, due to their limited number, the dynamics of biological 

information is often disregarded. Considering the dynamics of the biological data would allow 

to study how the biological features associated to prediction (or discrimination) change in time, 

in such a way as to improve the understanding of the system. Furthermore, the exploitation of 

biological data to directly support the selection of promising cell lines is still an open issue and 

it would greatly improve the mAb development process.  

More recently, advanced data-driven methods, such as ANN, have been applied to biological 

data, thanks to the reduced cost of analytical analysis. For example, cell phenotype was 

predicted from genotype in E. Coli cultures by means of ANN (Guo et al., 2017). In this three-

layer ANN, each layer corresponded to a biological level (genotype, proteins, phenotype) and 

the connection between neurons reflected the known gene-proteins and proteins-phenotype 

relationships. A two-step training was used, consisting in an unsupervised training with an 

autoencoder to reconstruct the transcriptomic data, followed by a fine-training using genotype-

phenotype data. The results showed that transcriptomic data predicted cell phenotype in an 

accurate manner, even without any biological knowledge embedded into the network 

connections; however, an initial unsupervised training was necessary to learn robust features 

and weights. 

In this regard, application of advanced data-driven methods, such as ANN, is still limited in the 

biopharmaceutical sector mainly because of the fact that the very high number of biological 

variables is typically coupled with a limited number of experiments, which limits the 

generalizability of the models.  

1.5.2 Hybrid modeling 

Hybrid models combine first principles and data-driven models and take advantage of both 

modeling strategies, providing good generalization capabilities, learning complex relationships, 

and generally performing better than first principles or data-driven models alone. For example, 

in a polymethyl methacrylate polymerization reactor hybrid models described the complex 

kinetics resulting more accurate than the first principles model (Ghosh et al., 2019). In 

mammalian cell cultures, hybrid models achieved better prediction performance than a data-

driven PLS model, even providing better extrapolation capability (Narayanan et al., 2019).  
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In hybrid models, the most commonly used first principles models are material and energy 

balances, thermodynamics and kinetic equations. First principles models are very robust and 

can be generalized very well, because they are based on a detailed description of the physical 

and chemical phenomena taking place into the system. However, they require long time to be 

developed. Furthermore, in complex systems the mechanistic knowledge is not always that 

accurate or available (S. Yang et al., 2020). Note that the first principles models typically used 

in hybrid modeling are not similar to the first principles models of cell metabolism explained 

in this Dissertation (Section 1.5.3). 

The data-driven part of hybrid models compensates for the lack of mechanistic knowledge, 

since it learns the complex and unknown relationships from data, effectively managing the wide 

variability which is typical of the biopharmaceutical applications. The main data-driven 

methods used in hybrid models are artificial neural networks (Narayanan et al., 2019; Oliveira, 

2004; Psichogios & Ungar, 1992), recurrent neural networks (Smiatek et al., 2021), PLS 

(Carvalho et al., 2022), SVM, and extended Kalman filter (Destro et al., 2020; Ghosh et al., 

2019).  

Hybrid models have been extensively reviewed in previous works (Sansana et al., 2021; von 

Stosch et al., 2014; S. Yang et al., 2020). Here, we summarize some details on their most 

important features, such as model structure, training procedure, and degree of hybridization.  

Hybrid models can have two types of structure (Figure 1.7; Sansana et al., 2021; von Stosch et 

al., 2014; S. Yang et al., 2020):  

• parallel (Figure 1.7a): when a sufficiently good first principles model is available, the data-

driven model is used to correct the outputs and to improve estimation of the first principles 

model by combining the outputs of the two models. In this case, the data-driven part 

receives the same inputs as the first principles model and describes the mismatch between 

the first principles model and the experimental data; 

• serial: when the first principles model describes the conservation laws, the data-driven part 

can be used to represent the underlying kinetic and transport terms, which are sometimes 

unknown or extremely complex. In this case, the data-driven part receives the input from 

the environment and feeds its output to the first principles model which calculates the final 

outputs of the system (Figure 1.7b, serial structure). The inverse structure can be found as 

well (Figure 1.7c, serial structure). 

Some attempts have been made to compare the performance of the different model structures, 

but the outcomes result to be case dependent. In fact, it was observed that the structure 

minimizing the validation error for pharmaceutical unit operations such as feeder and blender 

is the parallel one, while the serial is more appropriate in the case of a CSTR reactor with 

complex kinetics (Y. Chen & Ierapetritou, 2020). Therefore, the appropriate structure must be 

selected according to the characteristics of: the problem under study, the available data, and the 

available first principles model. However, it must be considered that, especially when applied 
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to mammalian cell cultures, the parallel structure seems to be more accurate, but the serial one 

is easier to build (Vande Wouwer et al., 2004). 

 
Figure 1.7 Hybrid model structures. 

Due to the combination of fist principles and data-driven models, the training of hybrid model 

is not always straightforward, and appropriate techniques are required. Two main strategies are 

used to train the data-driven part of the hybrid model (Sansana et al., 2021; von Stosch et al., 

2014; S. Yang et al., 2020): 

• direct approach; 

• indirect approach. 

In the direct approach, the standard training of the data-driven methods (e.g., Section 2.2.1 for 

ANN) is performed using the known inputs-outputs pairs from experimental data. This 

approach can be used either in the parallel structure, where the mismatch between the first 

principles model and the experimental data can be easily calculated, or in the serial structure, 

by calculating the data-driven outputs from the experimental data using the first principles 

model. In the latter, the calculated outputs might be biased or imprecise and can pass this bias 

to the data-driven model (von Stosch et al., 2014).  

In the indirect approach, the data-driven model is trained indirectly through the first principles 

one using the experimental data. In this case, the sensitivity equation method (Galvanauskas & 

Simutis, 2007; Oliveira, 2004) is used to backpropagate the effect that the data-driven part has 

on the hybrid model outputs. In indirect training any imprecision or bias is absorbed by the 

data-driven outputs to maximize the representation of the experimental data (von Stosch et al., 

2014). Finally, if the first principles model contains parameters to be estimated from 

experimental data, a multi-step procedure has been proposed to reliably estimate the parameters 

of both model compartments (A. Yang et al., 2011). 

One last aspect to consider in serial hybrid models is the degree of hybridization (Narayanan, 

Luna, et al., 2021), which accounts for the amount of information that is described by the first 

principles model. Accordingly, a fully data-driven model will have a 0% degree of 

hybridization, while a pure first principles model will have a 100% degree of hybridization. 

Increasing the degree of hybridization improves the prediction performance and the 

extrapolation capability of the model, but high degrees of hybridization are not always 
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beneficial for model performance. This is mainly due to the complexity of the model which 

requires a large number of training experiments to achieve robust performance. Accordingly, a 

tradeoff between the model complexity and the number of experiments for model training is 

required. However, a structured procedure to understand the optimal degree of hybridization is 

still missing (Narayanan, Luna, et al., 2021).  

In biopharmaceutical processes, the interest in hybrid models started in the ‘90s, with the first 
hybrid model for a fed-batch bioreactor developed in 1992, combining a first principles model 

and an ANN (Psichogios & Ungar, 1992). Other examples follow shortly after, with a hybrid 

model to simulate the production of a recombinant protein (Dors et al., 1996).  

In the last two decades, applications of hybrid models to the biopharmaceutical industry have 

considerably grown in number, and field of applications, such as bacteria and yeast 

fermentations (Ferreira et al., 2014; Oliveira, 2004) , mammalian cell cultures (Smiatek et al., 

2021; Vande Wouwer et al., 2004), and even in the downstream processing (Narayanan, Seidler, 

et al., 2021). However, research on this topic has to progress to allow a consistent applicability 

of this technology in the biopharmaceutical industry.  

In this context, hybrid models are typically applied to process data, but there is a growing 

interest in hybrid models combining process and biological data (Teixeira, Carinhas, et al., 

2007), which is still an open problem. The main applications of hybrid models concern process 

optimization, such as the optimization of the media and feeding schedule, but they can still be 

used for process understanding and monitoring, performance forecasting, and process control.  

1.5.2.1 Descriptive activities 

Descriptive activities in biopharmaceutical processes mainly concern the understanding of the 

process in the operating region, while limiting the number of exploratory experiments required 

to achieve a good understanding as much as possible. In this context, hybrid models have been 

mainly used to assess their applicability for process understanding compared to traditional 

experimental methods and DoE strategies.  

In this regard, the advantages of hybrid models rely on a faster, cheaper and better 

understanding than the traditional methodologies used in the field. For example, a hybrid model 

trained on DoE experiments from a E. Coli fermentation process was able to correctly 

characterize biomass and product formation at different processing conditions of temperature, 

feed rate, and pH, allowing to assess the effect of temporal variations in the processing 

condition on CQAs (von Stosch et al., 2016). In a similar context, hybrid models achieved a 

better process characterization than the traditional DoE-based response surface methodology 

(RSM), providing better characterization of product and biomass concentration and better 

representation of the process variables time profiles (Bayer, Stosch, et al., 2020). Hybrid models 
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trained on intensified DoE1 data (5 experimental runs) well described the entire region spanned 

by a full factorial DoE experimental campaign (9 experimental runs), showing that accurate 

process understanding is achieved using a smaller number of experiments (von Stosch et al., 

2016). Furthermore, a hybrid model trained on intensified DoE experiments achieved prediction 

performance which are similar to those of a model trained on a full-factorial DoE, providing a 

66% reduction in the required number of experiments, thus accelerating bioprocess 

characterization (Bayer, Striedner, et al., 2020).  

In regards of bioprocess understanding, research is still needed for a consistent applicability of 

hybrid models, especially to determine the appropriate degree of hybridization. Furthermore, 

the application of hybrid model for mammalian cell culture understanding is still an open issue.  

1.5.2.2 Diagnostic activities 

For what concerns the diagnostic activities in the biopharmaceutical industry, data-driven 

models are sometimes not sufficient in modeling the temporal evolution of noisy data due to 

the lack of mechanistic knowledge, while process data alone are often not sufficient to establish 

accurate process monitoring. Hybrid models can represent a viable alternative for: 

• soft sensing;  

• fault detection and diagnosis. 

In regard to the implementation of soft sensors, hybrid models combined with an Extended 

Kalman Filter were used as a soft sensors for the online monitoring of the glucose concentration 

(Narayanan et al., 2020). In this case, the good prediction performance of the hybrid model and 

the noise rejection capability of the Kalman filter allowed to correctly assess the glucose 

addition requirements of the cell culture to avoid CHO cell starvation.  

For fault detection and diagnosis, a hybrid model based on Extended Kalman filter was used in 

a penicillin fermentation process (Destro et al., 2020). This demonstrated that hybrid models 

which acquire online data and work in combination with multivariate statistical methods 

improved the identification of faulty batches and their root causes than using solely online data. 

Research in bioprocess monitoring through hybrid models is still ongoing, and applications in 

mammalian cell cultures are very limited mainly due to the scarce availability of online data. 

1.5.2.3 Predictive activities 

In the context of predictive activities, accurate methodologies to forecast process performance 

are welcomed to further support various stages of bioprocess development and manufacturing. 

Hybrid models are a viable alternative to purely data-driven ones for the prediction of CQAs, 

such as biomass or product concentration, and the temporal profiles of process variables. 

 
1 In intensified DoE the factors are varied according to a classical DoE in a fixed number of stages during each experiment, to 

reduce the total number of required experiments. 
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In this regard, hybrid models trained on DoE and intensified DoE experiments were used in E. 

Coli fermentation processes to predict: 

• biomass and product concentration (Bayer, Stosch, et al., 2020; Bayer, Striedner, et al., 

2020; von Stosch & Willis, 2017); 

• time profiles of process variables (Simutis & Lübbert, 2017; von Stosch et al., 2016).  

In CHO cultures, instead, hybrid models were used to predict i) VCC and antibody titer, 

providing better prediction accuracy than a traditional data-driven approach (Narayanan et al., 

2020), ii) the temporal evolution of nutrients (Narayanan et al., 2020), such as glucose, and 

even iii) all culture variables (Narayanan et al., 2019). In other cases, VCC, glucose, and 

antibody concentration were accurately predicted from data on medium composition through a 

parallel hybrid model combining a first principles model and PLS, which performed better that 

the first principles model alone and could be used for media optimization (Carvalho et al., 

2022). 

Regarding performance forecasting, the main researches focused on proving the superior 

performance of hybrid models than purely first principles or data-driven models, while the 

application of these predictions to solve important bioprocess problems is still underexplored.  

1.5.2.4 Prescriptive activities 

Prescriptive activities in biopharmaceutical processes are mainly oriented to process 

optimization, such as the identification of the best feeding schedule, while bioprocess control 

is still underexplored. In this regard, prescriptive activities are typically based on 

experimentation. However, strategies to perform these tasks in a virtual fashion could be 

extremely beneficial to accelerate the experimentation and reduce experimental burden.  

Hybrid models can be used as virtual copies of the real process to perform iterative techniques 

aimed at finding the media or feeding strategy that maximize a desired CQA (Dors et al., 1996). 

For example, a batch-to-batch optimization strategy was used to identify the feeding strategy 

giving improved production (Ferreira et al., 2014; Teixeira et al., 2006). In Pichia Pastoris 

fermentation, a hybrid model trained on an initial set of 5 exploratory experiments was used to 

optimize the feeding strategy. Then, the optimal experiment is iteratively executed on the 

process and used to retrain the hybrid model, until convergence between the predicted and 

measured protein concentration. In this case, 5 iterations were needed to identify the optimal 

feeding strategy (Ferreira et al., 2014). Batch-to-batch optimization was also used in three 

different fermentation processes, where after a single initial experiment the feeding schedule 

was optimized in 5 iterations (Teixeira et al., 2006). A similar strategy was used in E. Coli 

fermentation processes, to identify the optimal CPPs with the smallest number of experimental 

runs (Bayer et al., 2021). Here, a preliminary fractional-factorial DoE for planning 5 

exploratory runs allowed to identify the process optimum with only 4 additional sequential 

experimental runs, while the exploratory runs planned through an intensified DoE did not allow 
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the hybrid model to identify the process optimum even with a large number of additional 

experiments. In other cases, a bootstrap aggregated method was used to improve the prediction 

of the hybrid model, allowing to optimize the CPPs by correctly representing the response 

surface of the system (J. Pinto et al., 2019). In this method, hybrid models were trained with 

different splitting of the same training dataset, and the predictions of all these models were 

averaged to improve the robustness and the accuracy of predicted profiles. This strategy showed 

better accuracy that a single hybrid model in 3 datasets simulated running different DoE 

campaigns. 

In E. Coli fermentations, complex dynamic metabolic models (explained in Section 1.5.3) were 

substituted by hybrid models, making them as a viable alternative for bioprocess optimization 

(Setoodeh et al., 2012). In this work, the data-driven section of the hybrid model was trained 

on data obtained from a Genome-scale Metabolic Model (GSMM) to estimate growth rate and 

product exchanges, which were then fed to material balances of the extracellular species. The 

hybrid model achieved comparable performance with the fully first principles GSMM model 

and was used to consistently accelerate the process optimization.  

Even in mammalian cell cultures, the best feeding strategy was identified through hybrid 

models. For example, different hybrid model structure were compared and the best one was 

used to identify the optimal profile of glucose and glutamine for the mammalian cell culture 

(Teixeira et al., 2005). Interestingly, a first attempt to consider the metabolic network of 

mammalian cell lines into hybrid models was made through the use of Elementary flux Modes 

(Teixeira, Alves, et al., 2007). These elementary flux modes represent a pathway into the cell 

metabolism that connects an input (i.e., nutrient) to one or more outputs (i.e., byproducts). In 

this case, the nutrient profile was optimized and used to assess how the fluxes within the cell 

changed along the culture. In the last example, the concept of prediction risk was introduced 

(Teixeira et al., 2005; Teixeira, Alves, et al., 2007), as well. Specifically, it was possible to 

quantify the risk of using the model for predictions in a defined region of the experimental 

space, according to the distance to the training experiments.  

Regarding the optimization of the feeding schedule, a lot of research focused on demonstrating 

the applicability of hybrid models for process optimization and proposed different strategies to 

perform this task. However, proof of their advantages over traditional experimental methods to 

support bioprocess development is still an open issue.  

In biopharmaceutical upstream processes, control applications based on hybrid models are still 

underexplored, mainly due to limited availability of online data and sensors, which hinder the 

capability of hybrid model in establishing online process control strategies.  

However, an early attempt of model based control through an hybrid model on a yeast fed-batch 

fermentation was found (Schubert et al., 1994). In this case, a controller based on an ANN 

trained on data generated by the hybrid model controlled the ethanol concentration allowing to 

keep a desired biomass profile. Furthermore, the ANN-based controller outperformed a 
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traditional PID controller since it captured the complex nonlinear relationship between ethanol 

and biomass concentration. Accordingly, additional research is required to consolidate the 

application of hybrid model for bioprocess control.  

1.5.3 First principles modeling of cell metabolism 

The first principles modeling of cell metabolism, one of the main research areas of systems 

biology, is a complex task. Cell metabolism is typically modelled through: 

• kinetic modeling; 

• stoichiometric modeling. 

Kinetic models of cell metabolism describe several metabolic mechanisms, such as 

thermodynamics, kinetics, enzyme regulation, and reaction stoichiometry. This is achieved 

through ordinary differential equations which express the metabolic flux as function of 

metabolite concentration, enzyme concentration and enzyme kinetic parameters (Hendry et al., 

2020). To build these models, a significant amount of data carrying information on 

metabolomics and fluxomics is required to correctly estimate model parameters; this strongly 

limits the applicability of kinetic metabolic models for the description of complex organisms, 

such as mammalian cells. Despite that, some attempts have been made to use kinetic metabolic 

models in CHO cell cultures (Robitaille et al., 2015). In this work, the central pathways (i.e., 

glycolysis, tricarboxylic acid (TCA) cycle and pentose phosphate pathway), energy production 

and amino acid metabolism were modeled through material balances and Michaelis-Menten 

kinetic expressions for a better understanding of the host cells. In particular, it was found that 

a single model accurately describes cells in different phases and cultured in different media. 

Furthermore, in the studied cells the TCA cycle was mainly fed by amino acids instead of 

glucose, leading to the formation of undesired metabolites (i.e., ammonia) from the amino acid 

decomposition, while glucose was mainly converted in lactate. The accumulation of lactate and 

ammonia provided a considerable inhibition of cell growth.  

Stoichiometric models rely on stoichiometric information to describe the mass balance of each 

metabolite at steady state through a system of linear equations. These models are based on a 

pseudo-steady state assumption, which assume no accumulation of metabolites through the 

metabolic network considering the very low velocity of biological reactions during batch and 

fed-batch cultures (Quek et al., 2010). Accordingly, these models are much simpler than kinetic 

metabolic models, but cannot capture metabolite concentrations, enzyme saturation and gene 

regulatory effects.  

GSMMs are stoichiometric models that collect all metabolic reactions for a given organism, 

containing information on stoichiometry, directionality, gene-protein-reaction association of all 

known metabolic reactions, as well as biomass and product composition information. Gene-

protein-reaction associations contain information about the relationship between a reaction, the 

enzyme required to catalyze that reaction, and the gene/genes that encode for a given enzyme. 
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An important information embedded into GSMMs is the composition of the biomass for a given 

organism, accounting for all the biological components required to produce biomass.  

In biopharmaceutical processes, GSMMs of prokaryotic organisms, such as bacteria and yeasts, 

have been available for some years, while GSMMs for mammalian cell cultures have been 

developed recently, despite stoichiometric modeling of mammalian cells started while before. 

In fact, Hefzi et al. (2016) developed the first complete reconstruction of the CHO cell GSMM 

with a simplified product secretion in 2016, while the accurate description of antibody secretion 

mechanism and its energy cost have been released very recently (Gutierrez et al., 2020) and the 

first application to CHO industrial culture just one year prior (Calmels et al., 2019). Despite 

that, practical applications of GSMMs to mammalian cell cultures are still limited because of 

the large complexity of these models and research is needed to allow a wider applicability 

(Richelle et al., 2020). 

In order to apply and analyze GSMMs, appropriate computational methods are required, such 

as flux balance analysis (FBA; Maranas and Zomorrodi, 2016). In FBA, the system of equations 

describing the material balances of all metabolites contained in the model is solved. To be 

solved, this system of equation requires the knowledge of all cell inputs and outputs, which are 

usually the rates at which cell carbon substrates, biomass precursors and by-products are 

absorbed or secreted from the extracellular environment. Despite that, the number of measured 

extracellular fluxes (i.e., which can be some dozens) and the total number of metabolites (i.e., 

which can be thousands) is smaller than the number of model reactions (i.e., which can be 

several thousands), making the system of material balances underdetermined. Because of that, 

the solution of the material balances is performed through an optimization, which requires the 

definition of an appropriate objective function which is typically maximized. The most common 

objective function involves the biomass production and assumes that the cell metabolic fluxes 

are distributed to maximize the production of biomass and cell growth, accordingly. This is 

typically verified in the exponential growth phase, but this is not always true since sometimes 

cells allocate resources for several different tasks (Gutierrez et al., 2020). For this reason, other 

objective function can be found, such as the minimization of enzyme cost, the minimization of 

Gibbs energy dissipation, the minimization of the reactive oxygen species, and the 

minimization of nicotinamide adenine dinucleotide (NADH) regeneration (S.-M. Schinn et al., 

2021).  

Despite the complexity of the formulation of the optimization problem, an infinite number of 

flux vectors can satisfy the steady-state material balances, which requires to define additional 

constraints to reduce the possible solution space. This is usually achieved by defining lower 

and upper bounds for the fluxes of each reaction. The values of these boundaries are typically 

defined through biological and thermodynamic considerations (Feist et al., 2007), and enzyme 

activity and turnover (Maranas & Zomorrodi, 2016). Other strategies to set additional 

constraints and reduce the solution space exist (Figure 1.8), such as parsimonious enzyme usage 



36  Chapter 1 

 © 2022 Gianmarco Barberi, University of Padova (Italy)  

FBA (pFBA) and carbon constraining FBA (ccFBA). In pFBA (Lewis et al., 2010), the main 

assumption is that cells use the minimum amount of resource (i.e., enzymes) to maximize the 

given objective. This translates in finding the maximum value of the objective function while 

minimizing the total sum of intracellular fluxes. In ccFBA (Lularevic et al., 2019), the 

intracellular fluxes are limited by the total amount of carbon that is taken by cells from the 

extracellular environment, thus limiting the total number of carbon atoms that are circling 

within the cell. A comparison between these methods in the prediction of biomass showed that 

FBA and pFBA typically achieve very similar performance, but overpredict biomass with 

respect to the experimental measurement, while ccFBA strongly limits the availability of 

resources for growth causing the underprediction of biomass (Antonakoudis et al., 2021). In 

this study, a nitrogen-constrained FBA was also proposed in which, similarly to ccFBA, the 

total amount of nitrogen flowing in the cell is limited by its uptake, but it performed similarly 

to ccFBA. In this regard, constraining methods are typically based on assumption rather than 

on experimental data. Hence, the development of constraining methodologies for GSMM based 

on experimental data, especially cheap and easily available one, is still an open problem.  

 
Figure 1.8 GSMM constraining strategies. 

In order to apply GSMMs, several model elements must be selected for a good representation 

of the intracellular metabolic state. The main model elements describe the cell dry weight (i.e., 

which is required to calculate the cell fluxes) and its dynamic change along the culture, the 

biomass composition, the objective function, the cell death rate, the cost for protein secretion 

and amino acid catabolism. It was observed (in different reactor conditions, for several genetic 

traits and different types of mAbs) that the objective function, the biomass composition, and 

the dynamic changes of cell dry weight have a major impact on GSMMs prediction (S.-M. 

Schinn et al., 2021). Accordingly, accurate selection of these elements is required.  

Some attempts were made to use GSMMs in a dynamic fashion by coupling them with dynamic 

material balances. In one case, the GSMM was used to estimate the uptake and secretion rates 
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of extracellular metabolites which were fed to material balances (Setoodeh et al., 2012). In 

another cases, the pseudo-steady state assumption was removed and the dynamic material 

balances for all species were solved by reducing it to a single optimization problem (Martínez 

et al., 2015). This model suggested that the temperature shift in CHO cell improves productivity 

because it allows a prolonged cell growth and higher viability.  

1.5.3.1 Descriptive activities 

In the context of descriptive activities in biopharmaceutical processes, an accurate 

understanding of the cell metabolism in response to different stimuli has a great impact on cell 

culture design and management, and host improvement. Stoichiometric models and GSMMs 

are a valuable tool to achieve a better understanding of cell metabolism. In fact, they have been 

applied in the biopharmaceutical industry for (Gopalakrishnan et al., 2020): 

• the understanding of the relationship between cell metabolism and phenotype, even in the 

presence of genetic perturbation; 

• the understanding of the relationship between cell metabolism and culture conditions; 

• the understanding of the relationship between cell metabolism and medium composition; 

• the generation of context specific models.  

The understanding of cell metabolism is typically achieved by i) exploiting GSMMs alone, or 

ii) integrating GSMMs with biological data.  

 

GSMMs for metabolic understanding 

In regard to the study of the relationship between cell metabolism and phenotypes, many studies 

focused on the relationship between cell behavior in response to mAbs production. For 

example, cell lines expressing variable amounts of mAbs in different growth phases when 

subject to a specific treatment were studied thanks to a CHO metabolic model describing the 

central and amino acid metabolism, extracellular transport and biomass synthesis generated 

from nuclear magnetic resonance data (Carinhas et al., 2013). The model showed that the 

treatment produces a more sustained nutrient consumption especially during stationary phase 

resulting in a more pronounced mAbs production. Other studies focused on understanding the 

metabolic differences between high and low productive cell lines through GSMMs (Huang & 

Yoon, 2020b; Popp et al., 2016). High productive cell lines are characterized by upregulated 

oxidative phosphorylation, TCA cycle, and amino and nucleotide sugars metabolism, while low 

productive cell lines showed downregulation of the TCA cycle and pentose phosphate pathway 

(Huang & Yoon, 2020b). Similarly, cells with variable levels of productivity showed a 

significant difference in the metabolism of amino acids, such as glutamate, aspartate and 

glutamine, resulting in high productive cells that consume or produce few lactate, and low 

productive cells that produce a substantial amount of lactate (Popp et al., 2016). Recently, the 

integration of the secretory pathway into the GSMM and related cost of protein production 
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allowed to understand that CHO cells expressing mAbs reduce the production of other non-

essential complex host cell proteins (Gutierrez et al., 2020). 

In the same context, the cell metabolic state during growth and non-growth phases was also 

characterized by means of GSMMs. For example, a metabolic model was curated using CHO 

DNA to improve reactions, mAb and biomass composition, and supported a metabolomics 

analysis in finding that lower amount of glycerophospholipids, the main components of cellular 

membranes, is associated with limited growth (Selvarasu et al., 2012).  

Concerning the understanding of cell metabolic behavior in different culture conditions, the 

metabolic changes during the shift between lactate producing and lactate consuming phases 

were studied through a metabolic model of CHO cells describing the central pathways and 

amino acid metabolism (Martínez et al., 2013). In this case, similar fluxes through the lower 

part of the TCA cycle were observed, but lactate-consuming cells showed a much higher energy 

efficiency, with a 6 times greater amount of ATP produced per mole of carbon substrate.  

In regard to the understanding of the relationship between cell metabolism and culture media, 

GSMM can really help the design tailored media to enhance desired host characteristics. In fact, 

the different metabolic states of cell cultured in different media were studied thanks to a reduced 

stoichiometric model describing central pathways, amino acid metabolism and biomass 

formation using the elementary flux mode (Hagrot et al., 2017). In other cases, the strong impact 

of leucine and valine concentration in the media on cell productivity was highlighted by 

GSMMs (Huang et al., 2020).  

Finally, a better understanding of specific cellular strains can be achieved through the 

generation of context specific GSMMs by means of transcriptomic data. In this regard, the 

transcription levels are used to identify available genes and clean the GSMM of unavailable 

reactions (Gutierrez et al., 2020; Hefzi et al., 2016; Huang & Yoon, 2020a). These context-

specific GSMMs are typically generated through the GIMME algorithm (Becker & Palsson, 

2008). Unfortunately, the deactivation of a gene which is not present in the transcriptomic data 

is not always correct, because it can lead to delete reactions that are not captured in the 

transcriptome for lack of analytical sensitivity (Hyduke et al., 2013). 

Despite the number of applications of GSMMs on CHO cells, the research on this topic is still 

at the beginning with respect to the metabolic modeling of bacterial species, mainly because of 

the complex mammalian metabolic network. Furthermore, one big limitation is given by the 

difficulty to assess the goodness of model metabolic representation.  

 

GSMMs and biological data for metabolic understanding 

Attempts to overcome the problem of assessing the quality of the model metabolic 

representation were made by integrating GSMMs with omics data, such as transcriptomic, 

proteomics, metabolomics and fluxomics, to compare model predictions and identify points of 

similarity or discord with the reality (Hyduke et al., 2013). For example, transcriptomic were 
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used to confirm the high fluxes of certain reactions found in the GSMM by assuming that high 

transcription levels are associated to high enzyme activity and high fluxes (Huang et al., 2020; 

Huang & Yoon, 2020a).  

Fluxomics represents one of the best solutions to obtain representative stoichiometric models 

from experimental data. In fluxomics, stoichiometric models are necessary to calculate the 

metabolic fluxes from 13C isotope labelling metabolite concentration and extracellular uptakes 

data through a procedure called metabolic flux analysis (MFA; Quek et al., 2009). Fluxomics 

and labelling experiments allow studying the metabolic state of cells through the direct 

measurement of intracellular fluxes in response to different conditions.  

In regard to the understanding of the relationship between cell metabolism and phenotypes, 

non-expressing and high productive apoptosis-resistant cells were compared by means of 13C 

labelling data showing that high productive cells typically consume lactate and have high fluxes 

in TCA cycle and enhanced oxidative metabolism (Templeton, Smith, et al., 2017). Similarly, 

the difference between cells with non-induced and induced protein synthesis highlighted a more 

efficient utilization of glucose which leads to larger flux of pyruvate into the TCA cycle 

(Sheikholeslami et al., 2013), while high-growing and high-producer cell were characterized 

by a more efficient replenishment of TCA cycle with metabolites from glucose at later culture 

stages, and a more robust oxidative phosphorylation (Dean & Reddy, 2013). Furthermore, 13C 

labelling data showed that high growth was correlated with low TCA cycling and lactate 

consumption during peak production, while antibody production is associated to high flux in 

the pentose phosphate pathway and high energy production from oxidative phosphorylation 

(Templeton et al., 2013).  

Concerning the understanding of the cell behavior in different conditions, 13C labelling 

experiments showed that higher lactate uptake during the lactate consuming phase led to higher 

cell growth and viability in CHO cells with overexpressed anti-apoptotic proteins (Templeton 

et al., 2014). Furthermore, metabolic difference in cells cultured in fed-batch and perfusion 

mode was highlighted as a higher gross cell growth associated with higher cell death rate in 

perfusion cultures, and a larger productivity in fed-batch cultures (Templeton, Xu, et al., 2017). 

Regarding the better understanding of the metabolic response of cells to different media and 

feed composition, 13C labelling experiments are valuable assets. In fact, they highlighted that 

the adjustment of glutamine, aspartate, glutamate, and serine concentrations can reduce 

ammonia production, improving cell growth without alter bioenergetic fluxes (McAtee Pereira 

et al., 2018). Furthermore, the use of low glutamine feeding favor the glycolytic flux and a 

higher percentage of pyruvate directed towards the TCA cycle rather than to lactate production, 

resulting in lower cell concentration but higher specific productivity (Sheikholeslami et al., 

2014). 

The use of fluxomics and 13C isotope labelling experiments allow to achieve by means of 

stoichiometric models an accurate understanding of cell metabolism as response of various 
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stimuli. However, 13C isotope labelling experiments are very expensive strongly limiting the 

number of research on this field. Furthermore, simplified metabolic network are often used to 

deal with the limited number of metabolites monitored in these experiments. Accordingly, 

strategies to use the complete GSMMs in an accurate fashion would be beneficial for a more 

consistent application of GSMMs in host understanding during bioprocess development.  

1.5.3.2 Predictive activities 

In the context of predictive activities in the biopharmaceutical industry, one of the main 

interests is the prediction of phenotype when cells are subjected to different stimuli. GSMMs 

represents a solution to associate culture conditions, intracellular fluxes, and cell phenotypes. 

In fact, they have been often used to predict the main cell phenotypes, such as growth rate and 

productivity. For example, growth rate (Calmels et al., 2019; Feist et al., 2007; Gutierrez et al., 

2020; Hefzi et al., 2016) and productivity (Calmels et al., 2019; Gutierrez et al., 2020) were 

predicted with good agreement with experimental data thanks to GSMMs. Furthermore, the 

growth rate, predicted by means of context specific GSMMs generated with time varying 

transcriptomic data, showed that gene dynamics does not perturb growth rate predictions, even 

when different set of reactions are excluded as unavailable in the cells (Huang & Yoon, 2020a). 

Other phenotypes were predicted through GSMMs, such as amino acid consumptions, essential 

genes for cell survival (Feist et al., 2007), and the metabolic features with large impact on 

protein secretion (Gutierrez et al., 2020).  

GSMM prediction are not often completely accurate and a certain mismatch with experimental 

data is typically observed, especially with large and complex models (Calmels et al., 2019). 

This can be mainly due to inconsistencies in the metabolic network, due to unknown reaction 

routes, and the constraining method. General constraints are often loose, allowing an excessive 

freedom of the intracellular fluxes which reduces prediction accuracy. Other methods, such as 

pFBA and ccFBA, improve the constraining, but are still not enough representative of the real 

situation, while 13C isotope labeling experiments are typically too expensive to be utilized as 

standard constraining method. Hence, the improvement of the constraining methods, such as 

the introduction of data-based solutions for GSMM constraining, would be extremely valuable 

to improve the prediction accuracy.  

In the recent years, GSMMs have been coupled with machine learning methods to improve the 

prediction capability of the metabolic models. Applications combining GSMMs and machine 

learning have been recently reviewed by many authors (Antonakoudis et al., 2020; Khaleghi et 

al., 2021; Zampieri et al., 2019). In particular, the main applications concerned the prediction 

of growth rate, amino acids concentration and product quality. In fact, the intracellular fluxes 

from an E. Coli GSMM were fed to a LASSO regularized multinomial logistic regression to 

predict growth conditions, leading to increased accuracy in the predictions and the identification 

of the essential biological reactions related to the growth rate (Sridhara et al., 2014). Other 
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linear regression models were used to predict the time-course variations in amino acid 

concentrations from VCC, product titer and the uptakes of main nutrients and by-products in 

CHO cell cultures (S. Schinn et al., 2021). In this case, the synergism between GSMMs and 

linear regression techniques allowed to improve the predictions with respect to the ones 

provided by the GSMM alone.  

Even complex, non-linear deep-learning methods (i.e., ANN) were coupled to GSMMs. For 

example, the N-glycosylation of proteins in CHO cells was estimated from the flux of 

nucleotide sugars donors provided by a GSMM by means of an ANN (Antonakoudis et al., 

2021). This work showed that the combination of these techniques produced very accurate 

predictions of the glycan distribution, allowing to substitute and simplify a complex section of 

the model. Other studies tried different methods to integrate GSMM fluxes and transcriptomic 

data to predict experimental cell growth in yeast fermentations (Culley et al., 2020). In this 

case, a multiview ANN, which combines features extracted from multiple inputs, showed the 

best prediction performance and was positively validated with samples having a different 

knockout pattern in their transcriptome than the training dataset. Finally, 29 intracellular fluxes 

measured in 13C labelling experiments were predicted from 16 extracellular uptakes and other 

categorical features through SVM (Wu et al., 2016). In this work, 13C data from 120 paper on 

different species and cultivation methods were used to train the machine learning models, 

whose prediction were adjusted using some stoichiometric constraints to satisfy material 

balances.  

Despite the many applications are available in the Literature, research on consistent ways of 

combining machine learning and GSMMs is still ongoing. 

1.5.3.3 Prescriptive activities 

The optimization of both the culture environment and the host cell is one of the main tasks 

during bioprocess development. In this regard, GSMMs have been mainly used to:  

• optimize media and feed composition; 

• suggest genetic modification strategies leading to the overproduction of a desired chemical 

compound. 

 

Optimization of media and feed composition 

The optimization of the media composition through GSMMs is typically not automated and 

relies on the use of GSMMs to preliminary test the cell response to changes in the composition 

of the medium. In fact, through the knowledge of the metabolic impact of media components, 

it is possible to adjust the medium composition in order to drive the metabolism to obtain a 

desired objective. For example, the understanding of metabolic differences between CHO cells 

cultured in different media through GSMMs integrated with transcriptomic data led to the 

improvement of specific productivity (Huang et al., 2020). Specifically, the addition of valine 
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and leucine in the medium showed to improve cell productivity both in the GSMM and in 

validatory cultures. Similarly, the behavior of CHO cells in different media was studied through 

stoichiometric models and 13C labelling experiments leading to the identification of essential 

and non-essential amino acids and the design of an optimized media (Deshpande et al., 2009).  

Furthermore, in CHO cell cultures the feed composition was optimized to enhance the desired 

metabolic characteristics by means of GSMMs. For example, the accumulation of reactive 

oxygen species in high seed density CHO cultures was identified as cause of reduced viability 

through GSMMs. (Brunner et al., 2021). In this case, the reformulation of the feed through the 

addition of lactate and cysteine showed a reduction in the reactive oxygen species formation 

leading to enhanced viability and 47% increase in antibody titer.  

In this regard, the optimization of media and feeding composition relies on accurate predictions 

of the cell phenotype to achieve a good culture design, which is often limited by the available 

constraining methods. Hence, the development of constraining method resulting in more 

accurate prediction would be beneficial for a better culture design.  

 

Genetic engineering of host cells 

GSMMs coupled with optimization techniques are able to suggest gene regulation that enhance 

the expression of a desired biopharmaceutical target. These techniques aim at identifying 

multiple gene regulations, either upregulation, downregulation, or knockout, that maximally 

couple the cellular objective (i.e., cellular growth) with an industrially imposed production 

target, for example, in terms of product secretion. This is typically achieved with a bilevel 

optimization through Mixed-Integer Linear Programming algorithms, in which the inner level 

maximizes the cellular objective (e.g., through FBA) given the genetic regulations that allows 

to maximize the desired production target at the outer level. Examples of these techniques are 

OptKnock (Burgard et al., 2003), which identifies optimal genes deletion, OptReg (Pharkya & 

Maranas, 2006), which identifies optimal genes activation, inhibitions and deletions, and 

OptForce (Ranganathan et al., 2010), which identifies the intracellular flux deviation from the 

wild-type that allows overproduction. Many other algorithms, which slightly modify these 

ideas, can be found in the Literature and have been reviewed in Antonakoudis et al. (2020). 

These algorithms have been used to genetically modify the metabolism of several host cells to 

enhance a desired production objective. For example, in yeast and bacterial fermentations the 

production of aromatic amino acids as polymer precursors (Suástegui et al., 2017), octanoic 

acid from renewable feedstocks (Tan et al., 2018), and sugar precursors for glycan production 

(Wayman et al., 2019) were enhanced by means of these optimization algorithms. Similarly, in 

Pichia Pastoris cultures for the production of recombinant proteins, single gene knockouts that 

led to improved production while also minimizing the intracellular flux deviations from the 

wild-type were identified through GSMMs and optimization algorithms (Saitua et al., 2017). In 
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this case the knockout of genes led to increased formation of cysteine and tryptophan resulting 

in increased productivity.  

In CHO cell cultures, GSMMs have been used to heuristically support the genetic engineering 

of CHO cells. For example, the partial knockout of a gene was virtually simulated by means of 

GSMMs, which predicted a 24% productivity increase with the total knockout of the gene 

(Gutierrez et al., 2020). In this case, the experimental evidence showed a 14% productivity 

increase in real cell cultures. In another case, regulation of multiple genes to reduce the 

production of host cell proteins, a process related impurity during therapeutic recombinant 

protein production, was assisted by GSMMs (Kol et al., 2020). In this case, the energetic cost 

of host cell protein production was simulated and determined through GSMMs, leading to a 

reduction in host cell proteins by 40-70% and an increase productivity and cell growth. 

In this regard, optimization methods for genetic engineering purposes are complex to 

implement (i.e., requiring a bilevel optimization) and extremely time-consuming, especially in 

large and complex metabolic networks. For this reason, the GSMM-based genetic engineering 

of mammalian cells, characterized by extremely large metabolic networks, is still an open issue. 

In this context, the introduction of faster and simpler methods to suggest genetic modification 

would be extremely beneficial to support the development of better and optimized cells.  

1.6 Objective of the research 

Despite the wide application of mathematical modeling in the context of Biopharmaceutical 

Industry 4.0, several limitations have been found in the current Literature. Accordingly, 

research in those areas can provide valuable improvement to the biopharmaceutical sector, and 

specifically to the development of monoclonal antibodies. The main challenges can be 

summarized into: 

• a wide portion of the analyzed literature is focused on the exploitation of data to improve 

process understanding as fulfillment of the regulatory requirements of QbD. In particular, 

biological data, such as metabolomics, have often been used for process host understanding. 

However, an integrated workflow for the metabolomics analysis and the fusion of 

metabolomics and process data for a broad understanding of the relationship between 

metabolism and process CQAs is still missing. This is particularly emphasized when 

considering industrial data: process data and metabolomic data are rarely available at the 

same time. Furthermore, due to the batch nature of the process, those data are intrinsically 

dynamic, while process and metabolic dynamics are often disregarded.  

• A large part of the presented Literature is focused on the exploitation of data and modeling 

methodologies to accelerate decision making in such a way as to reduce development times 

and costs. This is often achieved through the forecasting of process performance. In the case 

of mAbs, there is a lack of new types of data and innovative modeling strategies to 
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accelerate the development process. In particular, the exploitation of metabolomic data 

dynamics to accelerate cell lines selection is missing.  

• The development of mAbs is typically characterized by the reduced availability of data (i.e., 

a handful of experiments), especially at large process scales, such as the pilot one, because 

of their high cost and long duration. In fact, a single experiment can cost tens of thousands 

$ and last several weeks. Multivariate statistical methods can be beneficial in studying data 

from bioprocesses, but they cannot reliably capture the main correlations when the number 

of data is limited, due to sample underrepresentation and large biological variability. This 

leads to the use of univariate methods to model an intrinsically multivariate one, which can 

lead to misleading conclusions. In this context, the use of science-based methodologies that 

can handle the multivariate nature of the process can be supported by data augmentation 

strategies, which are often used in other sectors in scenario with limited available data. 

However, in the biopharmaceutical field, application of data augmentation methods, 

especially model-based ones, is still an open issue. 

• New modeling strategies, such as hybrid models, have been developed for mAb cell cultures 

and applied for various activities. Despite the ferment of the research community about this 

topic, the proposal of innovative hybrid methodologies is typically limited to the consistent 

application of hybrid model for process understanding and monitoring. For what concerns 

process optimization, the use of hybrid models has been proved to be effective for the 

identification of optimal feeding schedule. However, a proof of the advantages of using 

hybrid model for feeding schedule optimization over traditional experimental strategies is 

missing.  

• GSMMs have been widely used in bacterial fermentations, but their application on 

mammalian cells is still limited and at its early stages. This is mainly due to the high 

complexity of mammalian cells and the inaccuracies that are still present in the metabolic 

models. Such high complexity leads to an accuracy of the model which is not fully 

satisfactory and strongly limits the applicability of GSMMs on mammalian cells. 

Specifically, a reliable, accurate and cheap method based on experimental data to properly 

define the intracellular constrains for accurate modeling of cell metabolism is missing. The 

available methodologies are either too expensive (i.e., 13C labeling experiments) or not 

enough accurate (i.e., FBA, pFBA, ccFBA). 

• GSMMs have been widely applied in fermentation process to identify targets for the genetic 

improvement of the host cells. However, this still relies on optimization methods that are 

complex to implement and computationally demanding and time-consuming. This limits 

the application of such optimization algorithms for the genetic improvement of CHO cell 

lines, which are typically characterized by large metabolic networks. Accordingly, an 

alternative method based on simple data-based mathematical methodology to exploit 

GSMMs for the identification of genetic engineering target is missing and would be 
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extremely beneficial for the genetic improvement of the mammalian cell in mAb 

development.  

In view of the above, the objective of this Dissertation is to develop digital models (data-driven, 

hybrid, and first principles) to support and accelerate the monoclonal antibody development 

process.  

The innovative contributions that can be found in this Dissertation are: 

• Integration of process and biological information to aid the selection of performing 

cell lines. Metabolomics is typically related to a single CQA or process parameter, and the 

association with multiple ones is missing. In this Dissertation a framework for the 

integration of multiple dynamic information from process and metabolomics will be 

presented. This correlates the changes in cell metabolic states to the dynamic process 

behaviors, allowing to better understand and manage the cultivation process, and increase 

the confidence in the selection of performing cell lines.  

• Understanding of the metabolic changes occurring over the cultivation process and 

their influence on cell phenotype from the explicit exploitation of the dynamic 

evolution of metabolomic data. The dynamic evolution of untargeted metabolomics is 

typically not considered explicitly, especially in machine learning applications. Part of this 

Dissertation is focused on the explicit exploitation of dynamic metabolomic data to support 

and accelerate cell lines selection during mAbs development. This can be exploited to: i) 

understand of the sequence of metabolic changes occurring over the cultivation process; ii) 

study the influence of cell metabolic and physiological changes on cell phenotype.  

• Identification of high performing cell lines in scenarios with limited available data 

through in silico data augmentation. In biopharmaceutical processes, which are 

characterized by a limited number of experiments, especially at pilot scale, the use of in 

silico data augmentation methods is typically underexplored. This would allow the use of 

science-based solutions, based on multivariate latent variable regression methods, to 

support various stages of mAb development. In this Dissertation, a proof of the applicability 

of model-based in silico data generation is given to improve the identification of high 

performing cell lines through multivariate methods in scenarios with limited available data, 

typical of the biopharmaceutical sector.  

• Feeding schedule optimization through hybrid models, with particular focus on 

demonstrating the advantages of applying hybrid models over DoE methodologies. Despite 

hybrid models have been applied to mammalian cell cultures with different purposes, a 

proof of their applicability to accelerate process optimization is missing. Part of the research 

effort in this Dissertation is focused on proving that the optimization of the feeding schedule 

through hybrid models can be accelerated with respect to experimental strategies. This can 

be exploited to conduct in silico experimental campaign for the optimization of the feeding 
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schedule, providing a substantial reduction in the experimental effort and time required 

during process development.  

• Prediction of GSMMs intracellular constraints from cheap and easily available data 

through deep learning models. Typical GSMM constraining methods (i.e., pFBA and 

ccFBA) provide only wide constrains often resulting in inaccurate predictions, while 

experimental measurement of intracellular fluxes with 13C labelling experiments are 

expensive and time-consuming. Part of this Dissertation is aimed at developing a deep 

learning model to estimate GSMMs constraints from cheap, fast, and routinely available 

measurements. This can be exploited to decrease the width of intracellular bounds providing 

more accurate predictions of both metabolic state and phenotypes of cells, which lead to a 

better description of cell metabolism.  

• Identification of genetic engineering targets to improve CHO cell productivity through 

latent variable regression model inversion and GSMMs. Integration of machine learning 

methods and GSMMs focusing on the genetic engineering of cells are still missing, as well 

as applications to mammalian cell cultures. Part of this Dissertation aims at developing 

machine learning models to identify optimal sets of genetic modifications (i.e., gene 

regulations) for the improvement of CHO cell productivity. In particular, the inversion of 

latent variable models on metabolic flux data from GSMMs directly identifies the metabolic 

state of the improved cells, which will lead to the identification of several complementary 

scenarios with mAb overproduction. Furthermore, the method can be easily specialized to 

different organisms, cells, and processing conditions, and is able to identify the optimal set 

of genetic modifications for each specific host organism.  

Industrial and simulated case studies will be presented throughout this Dissertation to prove the 

effectiveness of the proposed methodologies.  

1.7 Dissertation roadmap 

This Dissertation is organized following the six innovative contributions presented in the 

previous section. A schematic roadmap of the Dissertation is shown in Figure 1.9. In this 

Dissertation, descriptive, diagnostic, predictive, and prescriptive activities are performed to 

support various stages of the mAb development pipeline. In the first part, industrial case studies, 

performed in collaboration with the multinational pharmaceutical company GSK, are presented, 

while the second part focused on the simulated case studies, which allow to know the real 

behavior of the system under investigation and prove the effectiveness of the proposed 

methodologies by a direct comparison with the system under investigation.  

This Dissertation is organized as follows. 

Chapter 2 describes the bases of the main mathematical methodologies used in this Dissertation.  
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Chapter 3 mainly comprises descriptive and diagnostic activities. In particular, it focuses on the 

integration of dynamic information from process and metabolomic data to accelerate cell line 

selection during bioprocess development. In this case, a framework for the integration of 

industrial data from process and biology is presented. This is exploited to understanding the 

metabolic state changes occurring along the cultivation process, and how they are associated 

with process performance. In this case, the use of multivariate techniques allows to understand 

the metabolic differences along the culture, perform a quasi-real time monitoring of cell 

metabolic state and correlate the metabolic changes to the time evolution of several process 

variables, providing information on metabolites that can be exploited for the monitoring of 

desired process performance.  

Chapter 4 mainly comprises predictive and diagnostic activities. It is focused on the 

identification of high productive cell lines from the dynamic evolution of the metabolomic data 

to accelerate cell lines selection in an industrial case study. In this case, the dynamic evolution 

of the metabolomic data is exploited for the early identification of high productive cell lines 

during the culture course, obtaining with very high accuracy through multivariate modeling and 

specifically proposed variable selection methodologies. The interpretation of the models allows 

to identify metabolites that are associated to cell productivity, which can be exploited for the 

anticipated identification of high productive cells. Furthermore, the metabolic functions 

associated to cell productivity change along the culture are identified, providing insights for the 

enhancement of cell productivity through genetic engineering.  

Chapter 5 comprises diagnostic and predictive activities. It is focused on proving that the 

application of in silico data generation is helpful in the identification of high performing cell 

lines in scenarios with a limited data availability, typical of large-scale biopharmaceutical 

processes. In this case, in silico data generated by means digital models improves the accuracy 

of multivariate models in predicting the antibody titer when few process batches are available 

with respect to modeling only the available process batches. This leads to the improved 

identification of high performing cell lines even in scenarios with limited available process data.  

Chapter 6 mainly comprises prescriptive activities. It is focused on comparing an in silico 

experimental campaign for the optimization of the feeding schedule in the development of 

biopharmaceutical processes through hybrid semi-parametric models with an experimental 

campaign on the process. This to evaluate if the in silico experimental campaign can accelerate 

the experimentation and reduce the experimental burden in the process development. In study 

the feeding schedule is optimized through Design of Dynamic Experiments methodologies 

examining the sensitivity to the number of experiments. The results of the experimental 

campaigns are then compared with the in silico optimization performed with the hybrid model 

and eventually comparted with the theoretical process optimum. The in silico experimental 

campaign identifies better process optimum, closer to the real process one, even reducing the 

number of experiments required to identify the best feeding schedule.  
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In Chapter 5 and 6, a simulated process for the production of mAbs is considered. Hence, these 

works represent a proof of concept for the application of the proposed methodologies.  

Chapter 7 mainly comprises predictive activities. It is focused on the development of a deep 

learning model to predict intracellular flux constraints for GSMMs from cheap and easily 

available measurements. In this work, several tested model configurations accurately predicted 

the metabolic intracellular fluxes, allowing to determine flux constraints to apply on GSMMs. 

The application of the predicted constraints is briefly presented to show the application of the 

proposed methodology, despite they have been performed by collaborators at Imperial College 

London (UK).  

Finally, Chapter 8 mainly comprises prescriptive and diagnostic activities. It is focused on 

developing a machine learning strategy exploiting GSMMs to identify genetic modifications 

that improve the productivity of CHO cells. The proposed methodology results faster and 

simpler than traditional model-based genetic engineering techniques relying on optimization. 

Furthermore, it suggests genetic modification concerning the metabolism of specific amino 

acids and mAb glycosylation to improve cell productivity.   

The works presented in this Dissertation fulfill some of the regulatory requirements of QbD 

(Food and Drug Administration, 2004; ICH Harmonised Tripartite Guideline, Guidance for 

Industry, Q8 Pharmaceutical Development, 2009), such as the enhanced process understanding, 

the management of process variability, risk mitigation, and monitoring and prediction of CQAs 

(Figure 1.10). The enhanced process understanding is achieved by knowing the impact and the 

functional relationship among process factors and CQAs, while the risk mitigation consists in 

the in-depth understanding of the factors with the largest impact on CQAs, in such a way as to 

reduce the probability of poor-quality products. Regulatory agencies require also to identify, 

understand, and control all the sources of variability with an impact on the CQAs, and to 

monitor and predict CQAs from other information over the entire design space.  

In this Dissertation, the enhanced process understanding and high level of scientific knowledge 

by collecting and analyzing process and biological data is achieved by i) the integration of 

process and biological information (Chapter 3), ii) the identification of relevant process 

parameters with few available process batches (Chapter 5), and iii) the improved description of 

cell metabolism (Chapter 7). The identification and explanation of some critical sources of 

variability observed along the process is achieved by i) the identification of the cellular 

functions associated with cell productivity (Chapter 4), and ii) the improved description of cell 

metabolism (Chapter 7), the variability of the host cells and process is partially managed by 

developing of methodologies for genetic engineering of cells (Chapter 8), which allows to 

generate pools of cell lines with generally higher and less variable mAb productivity. 

Furthermore, the risk of obtaining a product with poor quality is reduced by i) early identifying 

of high productive cell lines (Chapter 4), ii) optimizing feeding schedule (Chapter 6), leading 

to a less probable selection of poorly productive cell lines and a feeding schedule ensuring high 
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performance, and iii) identifying genetic engineering target to improve productivity (Chapter 

8), which guarantees high product quality since cell generation Finally, the monitoring and 

prediction of CQAs or process endpoints is achieved by i) estimating the product titer time 

profile (Chapter 3), ii) developing the software for metabolomics analysis (Chapter 4), and iii) 

identifying high performing cell lines (Chapter 5). A better process understanding, management 

of the process variability, prediction, and risk management allow a higher degree of flexibility 

to improve the process and to discover potential weaknesses of the product and process.  

Appendix A contains additional information on mAbs and industrial cell cultures. Appendix B, 

C, and D, E, and F comprise additional material associated with Chapter 3, 4, and 5, 6, and 7, 

respectively.  

 
Figure 1.9 Dissertation roadmap. 
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Figure 1.10 Roadmap of the regulatory requirement addressed in this Dissertation. 
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Chapter 2 

Mathematical methodologies 

In this Chapter, the theory behind the mathematical methodologies used in this Dissertation is 

presented. In particular, multivariate models, such as Principal Component Analysis (PCA) and 

Partial Least-Squares (PLS), are initially explained, followed by Artificial Neural Networks 

(ANN). The theoretical basis of Genome-Scale Metabolic Models (GSMMs) is finally 

presented.  

2.1 Multivariate modeling 

Multivariate models are statistical models that are used for dimensionality reduction, data 

interpretation and visualization, correlation analysis, and regression/classification.  

The dataset analyzed by multivariate models are typically preprocessed to remove scale and 

biases from the data: dataset are mean-centered (i.e., by removing the column-wise mean value) 

or autoscaled (i.e., by removing the column-wise mean value and scaling for the column-wise 

standard deviation), but other types of scaling exist (Eriksson et al., 2006). 

2.1.1 Principal Component Analysis 

Principal Component Analysis (PCA; Jolliffe, 2002) is a multivariate technique used for 

dimensionality reduction and information extraction. PCA decomposes a scaled dataset 𝐗 [𝑁 × 𝑉], of 𝑁 samples or observations and 𝑉 variables, in 𝐴 independent (i.e., orthogonal) 

principal components (PCs), which describe the direction of maximum variability in 𝐗 and 

capture the correlation between the 𝑉 variables. PCA decomposes the dataset as: 𝐗 = 𝐓𝐏T + 𝐄   , (2.1) 

where 𝐓 [𝑁 × 𝐴] is the score matrix, 𝐏 [𝑉 × 𝐴] is the loading matrix, the superscript T indicates 

the transpose, and 𝐄 [𝑁 × 𝑉] is the residual matrix, which is minimized in the least-squares 

sense. The scores represent the projection of observations in the PC space and describe the 

relationship between the 𝑁 observations, while loadings describe the correlation structure 

between the 𝑉 variables.  

The computation of model scores and loadings (i.e., calibration) can be performed through a single 

value decomposition or through the Nonlinear Iterative Partial Least-Square algorithm (NIPALS; 

Geladi and Kowalski, 1986).  
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The number of PCs (i.e., the dimension of the reduced space) is typically selected through: i) 

scree test, ii) eigenvalues, and iii) cross-validation. In the scree test (Jackson, 1991), the number 

of PCs is set at the value where the variance explained by PCs stabilizes to an almost constant 

value, which indicates that any additional PC describes noise. According to the eigenvalue 

method (Mardia et al., 1979), PCs are discarded when the associate eigenvalue is smaller than 

one. This relies on a rule of thumb for which the eigenvalue roughly represents the number of 

original variables whose variability is captured by a PC. In cross-validation (Svante Wold, 

1978), the number of PCs is selected as the one minimizing the reconstruction error, typically 

in terms of root mean squared error (RMSE) in a bootstrapping/jackknifing procedure. This 

method is the most robust.  

The main model diagnostics to assess the performance of the model are the RMSE and the 

coefficient of determination 𝑅2. The RMSE is defined as: 𝑅𝑀𝑆𝐸 = √∑ (𝐱𝑛−𝐱̂𝑛)2𝑁𝑛=1 𝑁    , (2.2) 

where 𝐱𝑛 is the 𝑛-th sample, and 𝐱̂𝑛 is the 𝑛-th sample reconstructed by the PCA model. The 

coefficient of determination quantifies the amount of variability of the original data 𝐗 captured 

by the model, and it is defined as: 𝑅2 = 1 − ∑ ∑ (𝑥𝑛,𝑣−𝑥̂𝑛,𝑣)2𝑁𝑛=1𝑉𝑣=1∑ ∑ (𝑥𝑛,𝑣−𝑥̅𝑣)2𝑁𝑛=1𝑉𝑣=1    ,  (2.3) 

where 𝑥𝑛,𝑣 is the value of the 𝑣-th original variable for the 𝑛-th sample, 𝑥̂𝑛,𝑣 is the value of the 𝑣-th original variable for the 𝑛-th sample reconstructed by the PCA model, and 𝑥̅𝑣 is the average 

value of the 𝑣-th original variable. The coefficient of determination calculated over new 

samples is typically referred as 2. 

Once a PCA model is calibrated, a new observation 𝐱NEW [1 × 𝑉] can be projected into the 

PCA model to study its relationship with the calibration observations and assess whether 𝐱NEW 

conform to them. The projection is performed as: 𝐭NEW =  𝐱NEW𝐏   , (2.4) 

where 𝐭NEW [1 × 𝐴] is the score vector of the new observation.  

Sample diagnostics, namely Hotelling’s 𝑇2 and squared prediction error (𝑆𝑃𝐸), can be 

calculated to assess how well an observation is described by the model, identify potential 

outliers, and assess the influence of an observation on the overall model.  

The Hotelling’s 𝑇2 quantifies the distance between the projection of an observation and the 

origin of the reduced space. It is typically used to quantify the deviation of a given sample from 

the average conditions of the calibration dataset. The Hotelling’s 𝑇2 for a given observation 𝑛 

is defined as: 𝑇𝑛2 = 𝐭𝑛𝚲−𝟏𝐭𝑛T   , (2.5) 
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where 𝐭𝑛 is the score vector of the 𝑛-th observation, and 𝚲−𝟏 [𝐴 × 𝐴] is a diagonal matrix 

collecting the inverse eigenvalues.  

The 𝑆𝑃𝐸 quantifies the mismatch between an observation and its reconstruction through the 

PCA model. It is used to identify observations with a correlation structure different than the 

others. The 𝑆𝑃𝐸 for a given observation 𝑛 is defined as: 𝑆𝑃𝐸𝑛 = 𝐞𝑛𝐞𝑛T   , (2.6) 

where 𝐞𝑛 = 𝐱𝑛 − 𝐱̂𝑛 is the residual vector of the 𝑛-th observation 𝐱𝑛, and 𝐱̂𝑛 = 𝐭𝑛𝐏T is the 

reconstructed observation by the PCA model.  

Confidence limits can be set for both Hotelling’s 𝑇2 and 𝑆𝑃𝐸 (Nomikos & MacGregor, 1995a) 

to identify possible outlier values. The calculations of these statistics are based on the 

assumption that data used to build the model are independent and identically distributed, which 

leads to multi-normally distributed scores, and white-noise residuals.  

The confidence limit on the Hotelling’s 𝑇2, 𝑇lim2 , is calculated as: 𝑇lim2 = 𝐴(𝑁−1)𝑁−𝐴 𝐹𝐴,𝑁−A,𝛼   , (2.7) 

where 𝐹𝐴,𝑁−A,𝛼 is the critical value of a 𝐹-distribution with 𝐴 and 𝑁 − 𝐴 degrees of freedom at 

the significance level 𝛼. 

The confidence limit on the 𝑆𝑃𝐸, 𝑆𝑃𝐸lim, is calculated as: 𝑆𝑃𝐸lim = 𝜎SPE22𝜇SPE 𝜒2𝜇SPE2 𝜎SPE2⁄ ,𝛼2    , (2.8) 

where 𝜒2𝜇SPE2 𝜎SPE2⁄ ,𝛼2  is the critical value of a 𝜒2-distribution with 2𝜇SPE2 𝜎SPE2⁄  degrees of 

freedom at the significance level 𝛼, 𝜇SPE is the average, and 𝜎SPE2  is the variance of the 𝑆𝑃𝐸 

distribution.  

2.1.1.2 Multiblock PCA 

Multi-Block PCA (MB-PCA; Westerhuis et al., 1998) is an unsupervised multi-block method 

which relates different blocks of variables. MB-PCA correlates different blocks of variables 

measured for the same observation 𝑛 by finding a common latent space. This methodology is 

particularly useful to improve interpretability of multivariate models and to correlate data from 

different sources.  

MB-PCA can be performed through a standard PCA. The available data blocks are horizontally 

concatenated, placing the same observation along a row, prior the decomposition through a 

standard PCA (Eq. 2.1). The data blocks can be appropriately scale after the concatenation. 

2.1.2 Partial Least-Squares regression 

Partial Least-Squares regression (PLS; Wold et al., 2001, 1993) is a linear multivariate 

regression technique that is used to explain the joint correlation between a regressor matrix and 
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a response one, and predict a new response given a set of new regressors. PLS identifies the 

direction of maximum covariance between a scaled regressor matrix 𝐗 [𝑁 × 𝑉] and a scaled 

matrix 𝐘 [𝑁 × 𝑀] of 𝑀 responses. PLS projects both 𝐗 and 𝐘 in a reduced space of 𝐴 latent 

variables (LVs) accoring to  𝐗 = 𝐓𝐏T + 𝐄      (2.9) 𝐘 = 𝐓𝐐T + 𝐅    (2.10) 𝐓 = 𝐗𝐖(𝐏T𝐖)−1   , (2.11) 

where 𝐏 [𝑁 × 𝐴] and 𝐐 [𝑀 × 𝐴] are the loading matrices, 𝐓 [𝑁 × 𝐴] is the score matrix, 𝐄 [𝑁 × 𝑉] and 𝐅 [𝑁 × 𝑀] are the residual matrices of 𝐗 and 𝐘, respectively (minimized in a 

least-square sense), and 𝐖 [𝑁 × 𝐴] is the weight matrix used for the calculation of the scores. 

The weights are required to preserve the orthogonality among LV scores and identify the 

direction of maximum correlation among the scaled versions of 𝐗 and 𝐘. The terms 𝐖(𝐏T𝐖)−1 

in Eq. (2.11) is often defined as 𝐖∗ (Svante Wold et al., 2001), which is typically used for 

prediction. It is worth noting that the scores 𝐓 and loadings 𝐏 of a PLS model do not coincide 

with the ones of a PCA model. However, this notation is kept consistent with the general 

Literature on the topic. 

The calculation of model scores, loadings, and weights (i.e., calibration) is typically done 

through iterative methods. The most common ones are the NIPALS algorithm (Svante Wold et 

al., 2001) and the SIMPLS algorithm (S. De Jong, 1993).  

PLS can be used for predicting a response variable 𝐲̂ [1 × 𝑀] from a set of new predictors 𝐱NEW [1 × 𝑉] according to: 𝐲̂ = 𝐱NEW𝐖∗𝐐T   . (2.10) 

The number of LVs can be selected similarly to PCA (Section 2.1.1) with the scree test, 

eigenvalue method, and cross-validation. The cross-validation is the one ensuring to construct 

the best possible model for the desired use.  

In PLS, the importance of each predictor variable (i.e., in 𝐗) for the prediction of 𝐘 can be 

quantified through the variable importance in projection (VIP; Wold et al., 1993) index, which 

is defined for a variable 𝑣 as: 𝑉𝐼𝑃𝑣 = √𝑉 ∑ 𝑤𝑣𝑎2 𝑆𝑆𝑌𝑎𝐴𝑎=1∑ 𝑆𝑆𝑌𝑎𝐴𝑎=1    , (2.11) 

where 𝑤𝑣𝑎 is the weight of the 𝑣-th regressor variable on the 𝑎-th LV, and 𝑆𝑆𝑌𝑎 = 𝐪𝑎2𝐭𝑎T𝐭𝑎 is 

the amount of the 𝐘 variability explained by the 𝑎-th LV, 𝐪𝑎  and 𝐭𝑎 are the column vectors 

referred to the 𝑎-th LV of 𝐐 and 𝐓, respectively. The VIP value is proportional to the influence 

of a variable in the prediction of 𝐘. Typically, a variable with a VIP𝑣 greater than one is 

considered as valuable predictor for the response 𝐘 (i.e., important variable). 
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2.1.2.1 PLS Discriminant Analysis 

PLS Discriminant Analysis (PLS-DA; Barker and Rayens, 2003) is a classification technique, 

used to classify observation in different classes according to the regressors. Similarly to PLS, 

PLS-DA identifies the direction of maximum covariance (i.e., 𝐴 orthogonal LVs) between the 

regressors 𝐗 [𝑁 × 𝑉] and matrix 𝐘d [𝑁 × 𝐵], which defines the attributions to 𝐵 classes through 𝐵 dummy variables, where a 0 is attributed to column 𝑏 in row 𝑛 if the sample 𝑛 does not 

belong to the 𝑏-th class, while a 1 is attributed if the sample 𝑛 belongs to the 𝑏-th class.  

PLS-DA is performed over 𝐗  and 𝐘d through a standard PLS (Section 2.1.2). Hence, it outputs 

a real number, which can be used to determine the class attribution probability. A cumulative 

density function is fit based on the 𝐘d of the calibration dataset to identify the probability of 

belonging to a specific class (Fawcett, 2006). This density function is then used on new 

observations to calculate their attribution probability.  

2.1.3 Multiway modeling 

Multiway multivariate modeling (Nomikos & MacGregor, 1994, 1995b) is used to deal with 

multidimensional matrices, where one dimension is usually associated with time (i.e., data has 

a time variability).  

Multiway modeling consists in properly unfolding the multidimensional data 𝐗 [𝑁 × 𝑉 × 𝑇] 
(where 𝑇 is the number of time instants in which 𝑉 variables are collected for 𝑁 batches) 

followed by the decomposition with a standard multivariate model. The data unfolding 

procedure is schematically shown in Figure 2.1. Data collected at different time instants (e.g., 𝐗𝑡 [𝑁 × 𝑉] with 𝑡 = 1, 2, … , 𝑇) are horizontally concatenated to generate a matrix 𝐗 [𝑁 × 𝑉 ∙ 𝑇] = [𝐗1 𝐗2 ⋯ 𝐗𝑇], which is the batch-wise unfolded version of 𝐗.  

In multiway multivariate modeling, the loadings describe the correlation structure between 𝐗 

variables at different time instants, allowing to understand how the dynamics of different 

variables are cross correlated.  

In this Dissertation, the multiway version of PCA (MPCA) and PLS (MPLS) have been used. 

In this case, the unfolding is followed by a standard PCA modeling, for MPCA, and a standard 

PLS modeling, for MPLS. 

 
Figure 2.1 Batch-wise unfolding procedure for multiway multivariate modeling. 
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2.1.4 Evolving modeling 

Evolving multivariate modeling (Ramaker et al., 2005) is a multi-model strategy that exploits 

partial dynamic information of time-varying data to accomplish the modeling. Evolving 

methodologies retain enlarging information on the past history of a dynamic observation to 

accomplish the multivariate modeling. Specifically, at each time instant 𝑡 (with 𝑡 = 1, 2, … , 𝑇) 

a multivariate model is built on the batch-wise unfolded data considering the first 𝑡 time instant, 

namely, the time instant from the beginning and the considered one 𝑡, 𝐗𝑡 = [𝐗1 𝐗2 ⋯ 𝐗𝑡]. The matrix 𝐗𝑡 is progressively enlarged as time progresses 𝑡 = 1, 2, … , 𝑇 

and a new multivariate model is built, until the entire dynamics of available data is considered 

in the modeling. A schematic representation of the evolving strategy is shown in Figure 2.2. 

The evolving version of the main multivariate modeling techniques (i.e., PCA and PLS) exists: 

in this Dissertation an evolving PLS-DA (PLS-DA; Barker & Rayens, 2003; Ramaker et al., 

2005) was used.  

 
Figure 2.2 Multi-model evolving strategy. 

2.2.5 Inversion of latent variable models 

Multivariate model inversion (Jaeckle & MacGregor, 2000) is typically used for prescriptive 

and optimization purposes in product formulation and process design. Multivariate regression 

models (e.g., PLS) can be inverted to estimate a new set of inputs 𝐱NEW [1 × 𝑉] corresponding 

to a desired response variables 𝐲DES [1 × 𝑀] according to the learned correlations. The 

inversion of PLS models consists of the following steps (Tomba et al., 2012): 

1. building a multivariate model between preprocessed regressors 𝐗 and responses 𝐘 

(Section 2.1.2); 

2. determining the desired response variable 𝐲DES, which should be assigned as a 

predefined value (i.e., equality constraints) or as a one- or two-sided constraints (i.e., 

inequality constraints);  
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3. determining constraints for the new set of inputs 𝐱NEW according to physical bounds 

and the nature of the problem. Constraints can be given as equality or inequality 

constraints;  

4. if 𝐲DES has only equality constraints, the model can be inverted only if it is valid for the 

desired 𝐲DES. To assess that, 𝐲DES is projected into the latent space, calculating its 𝑆𝑃𝐸𝐲DES  according to Eq. (2.6) by substituting 𝐞𝑛 with 𝐟𝐲DES = 𝐲DES − 𝐲̂DES, and 

comparing it with the 𝑆𝑃𝐸 of historical observations through the 95% confidence limit 

(Eq. 2.8). If the 𝑆𝑃𝐸𝐲DES is largely different from the one of the historical observations 

or greater than the 95% confidence limit is not recommended to perform the inversion; 

5. inverting the PLS model through the appropriate formulation defined according to the 

selected constraints at step 2 and 3.  

The formulation of the PLS inversion problem depends on the constraints that are set on the 

desired response and acceptable regressors. In the most generic frameworks 4 different 

scenarios are defined (Tomba et al., 2012), but in this Dissertation only two scenarios are 

considered: i) unconstrained regressors and only equality constraints on 𝐲DES, and ii) 

constrained regressors and some inequality constraints on 𝐲DES.  

In Scenario 1, when the regressors are unconstrained and only equality constraints are set for 𝐲DES, the model inversion can be directly solved by calculating the score associated with 𝐲DES 

as:  𝐭DES = (𝐐T𝐐)−1𝐐T𝐲DEST    . (2.12) 

This score is then used to calculate the estimated new input as: 𝐱̂NEW = 𝐭DES𝐏T   , (2.13) 

where 𝐱̂NEW is the reconstructed version of 𝐱NEW and belongs to the model space.  

In Scenario 2, when the regressors are constrained and some inequality constraints are set for 𝐲DES, the model inversion is solved through an optimization problem, which is formulated as: min𝐱NEW[(𝐲̂NEW − 𝐲DES)𝚪(𝐲̂NEW − 𝐲DES)T  +  𝑔1𝑇2  +  𝑔2𝑆𝑃𝐸𝐱NEW]   , (2.14) 

subject to  𝐲̂NEW = 𝐭𝐐T   , (2.15) 𝐱̂NEW = 𝐭𝐏T   , (2.16) 𝐭 =  𝐱NEW𝐖∗   ,. (2.17) 𝑆𝑃𝐸𝐱NEW = (𝐱̂NEW − 𝐱NEW)(𝐱̂NEW − 𝐱NEW)T ≤ 𝑔3𝑆𝑃𝐸lim,𝐱    , (2.18) 𝐱NEW ∈ [𝐱lb, 𝐱ub]   ,. (2.19) 𝐲NEW ∈ [𝐲lb, 𝐲ub]   ,. (2.20) 
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where 𝐲̂NEW is the predicted response by the PLS model, 𝐭 the associated score vector, 𝑆𝑃𝐸𝐱NEW  

is the SPE calculated for 𝐱NEW, 𝑆𝑃𝐸lim,𝐱  is the SPE 95% confidence limit calculated for the 

regressors, 𝐱lb and 𝐱ub are the vectors of lower and upper bounds set for the regressors (note 

that they may also be equality constraints), 𝐲lb and 𝐲ub are the vectors of lower and upper 

bounds set for the desired response, and 𝑔1, 𝑔2, and 𝑔3 are some corrective constants. 𝚪 is a matrix that defines through its diagonal elements the weight given to meet the specified 𝐲DES constrains. Large weight may be given to important variables for the specific studies, 

otherwise the fraction of each response variable 𝑚 variability explained by the model can be 

used as weight.  

2.2 Neural Networks 

Neural networks are a machine learning method inspired to the structure of human brains, where 

neurons are connected to each other and exchange information. Artificial neural networks are 

a class of neural networks mainly used for regression based on a set of predictor variables.  

Artificial neural networks (ANN; Rosenblatt, 1958) learns the relationship between inputs 𝐗 [𝑁 × 𝑉] and outputs 𝐘 [𝑁 × 𝑀] from examples. This relationship learned during the training 

step is used to predict a new output given the inputs, through the mathematical interaction of 

interconnected neurons.  

An ANN is composed by several layers of interconnected neurons (Figure 2.3), which are the 

fundamental units of the neural networks (Goodfellow et al., 2016). Typically, the ANN 

architecture has an input layer, several hidden layers, and an output layer. The input layer 

receives the input information and pass it to the first hidden layer for processing. It has the same 

number of neurons of the input data 𝐱𝑛 [1 × 𝑉]. The hidden layers receive information from 

the previous layer and process it, before passing it to the following layer. The output layer 

receives information from the last hidden layer and provides the neural networks outputs. It has 

the same number of neurons of the output data 𝐲𝑛 [1 × 𝑀]. 

 
Figure 2.3 General architecture of an ANN. 
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Neurons are mathematical entities which receive information from other neurons and process 

it before passing to the other neurons. Considering the first hidden layer, it receives 𝑉 input 

variables 𝐱𝑛 = [𝑥1, 𝑥2, … , 𝑥𝑉] from the input layer and performs linear and non-linear 

transformations on them to obtain the neuron’s output 𝑎ℎ (i.e., activation), where ℎ = 1, 2, … , 𝐻 

is the number of the neuron in the layer. The mathematical transformation performed by the 

neurons is (Goodfellow et al., 2016): 𝑎ℎ =  𝑓(𝜔ℎ0 + ∑ 𝑥𝑣𝜔ℎ,𝑣𝑉𝑣=1 )   , (2.21) 

where 𝜔ℎ0 is the bias of the ℎ-th neuron, 𝑥𝑣 is the 𝑣-th input variable, 𝜔ℎ,𝑣 in the weight of the ℎ neurons associated to the 𝑣-th input variable, and 𝑓() is the non-linear activation function. 

Several activation functions, such as hyperbolic tangent, sigmoid, and rectified linear unit 

(ReLU; Fukushima, 1975), can be used. The reLu activation function is defined as: 𝑓() = max(0, 𝑎ℎ′ )   , (2.22) 

while the hyperbolic tangent activation function is defined as: 𝑓() = 𝑒𝑎ℎ′ −𝑒−𝑎ℎ′𝑒𝑎ℎ′ +𝑒−𝑎ℎ′ , (2.23) 

where 𝑎ℎ′  is the output of the ℎ-th neuron prior the application of the activation function. 

The development of an ANN follows three phases: the selection of the ANN architecture, the 

training, and the testing. The architecture of the ANN should be selected accordingly to the 

specific application to maximize performance. Some rules of thumb indicates that 1 or 2 layers 

are sufficient for regression purposes. The training (Section 2.2.1) is the most time-consuming 

phase, in which weights are adjusted to match the input-output pattern of the training data. 

Finally, in the testing phase the ANN is presented with data not seen during training to assess 

its performance.  

2.2.1 Training of the neural networks 

The training of the neural networks is required to represent the mapping between the inputs and 

outputs coherently with the training data, by adjusting the values of the weights to maximize 

the neural network performance. Performance is typically evaluated through the minimization 

of a cost function, for example, the mean squared error (MSE) for ANN, defined as: ℒ(𝛚) = 1𝑁 ∑ 𝐿(𝐲𝑛, 𝐲̂𝑛)𝑁𝑛=1 = 1𝑁 ∑ (𝐲𝑛 − 𝐲̂𝑛)2𝑁𝑛=1    , (2.24) 

where 𝛚 the matrix collects all the ANN weights, 𝐿 is a loss function, and 𝐲̂𝑛 is the output 

predicted by the neural networks for the 𝑛-th sample. Several loss function can be used 

according to the specific application, but the most common ones are the mean squared error 

(Eq. 2.24), for regression tasks, and the categorical cross-entropy, for classification tasks 

(Gentiluomo et al., 2019; Krizhevsky et al., 2017).  
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The optimal weights are the ones minimizing the cost function ℒ(𝛚). Any numerical 

optimization algorithm can be used to calculate the optimal weights, but gradient-based ones 

are typically used in neural networks because provide the best results. In gradient-based 

optimization algorithms, the weights are updated according to: 𝛚(𝑖𝑡+1) ← 𝛚(𝑖𝑡) − η 𝜕ℒ(𝛚)∂𝛚 |𝑖𝑡   , (2.25) 

where 𝛚(𝑖𝑡) are the ANN weights at the 𝑖𝑡-th training iteration, η is the learning rate, and 𝜕ℒ(𝛚) ∂𝛚⁄ |𝑖𝑡 is the gradient of the cost function with respect the weight calculated at the 𝑖𝑡-th 

iteration, which needs to be calculated. The learning rate defines the velocity at which the 

weights are updated and is typically reduced along the training to aid convergence. The initial 

learning rate is typically selected according to the specific application.  

Several optimization algorithms are available, which use a more complex formulation of Eq. 

(2.25). Nowadays, the most common and reliable algorithm for neural networks training is the 

ADAM algorithm (Kingma & Ba, 2015).  

The gradient of the cost function is calculated through backpropagation, consisting of the 

propagation of the errors from the output to the inputs (Baughman & Liu, 1995; Goodfellow et 

al., 2016). In backpropagation, the chain rule is used to propagate the errors backward through 

the network for each weight. Considering a very simple neural networks with one hidden neuron 

(Figure 2.4) the gradient of the cost function can be calculated as: 𝜕ℒ(𝛚)𝜕ω1 = 𝜕ℒ(𝛚)𝜕𝑦̂ 𝜕𝑦̂𝜕a1 𝜕a1𝜕ω1   and (2.26) 

𝜕ℒ(𝛚)𝜕ω2 = 𝜕ℒ(𝛚)𝜕𝑦̂ 𝜕𝑦̂𝜕ω2   , (2.27) 

where ω1 and ω2 are the weights of the hidden and output neurons, 𝑦̂ is the predicted output of 

this simplified neural networks, and a1 is the activation (i.e., output) of the hidden neuron. 

 
Figure 2.4 Schematic representation of a simple ANN with one hidden layer. 

The training of the neural networks is composed by several steps: 

1. initialization of the neural network weights; 

2. prediction of the neural network outputs 𝐘̂ [𝑁 × 𝑀] from the available data 𝐗 [𝑁 × 𝑉]; 
3. calculation of the cost function ℒ(𝛚) (Eq. 2.24) and its gradient through 

backpropagation; 

4. updating of the weights according to the selected optimization algorithm, similarly to 

Eq. (2.25); 

5. iteration to step 2 until convergence.  
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Several methods can be used to initialize the weights in step 1, such as from a random normal 

distribution, with a variance that can be arbitrarily low or defined according to the number of 

neurons of the layers (Glorot & Bengio, 2010; He et al., 2015).  

A validation dataset is typically used to stop the training and to avoid overfitting, ensuring the 

generalizability of the neural network predictions.  

The training of the neural networks often requires long time, especially for deep neural 

networks (i.e., large number of hidden layers). However, the introduction of graphics 

processing unit (GPU) computations is helping to speed up the training. Furthermore, large 

datasets are required for a good learning process, because the reliability of results is not 

guaranteed with limited training data, in which the learning might be biased by local minima of 

the cost function (Goodfellow et al., 2016).  

2.3 Genome-scale Metabolic Models 

Genome-scale metabolic models are at the basis of the mathematical modeling of cell 

metabolism (Maranas & Zomorrodi, 2016). GSMMs are stoichiometric-based models, in which 

the pseudo-steady state assumption is exploited to describe the mass conservation of each 

metabolite through a system of equations. The pseudo-steady state assumption holds true since 

the time constants of metabolic reactions are typically much smaller than the other cellular 

process, such as transcriptional regulation and cellular growth. According to that, the model 

can be expressed in the form of: 𝐒 ∙ 𝛎 = 0   , (2.28) 

where 𝐒 [𝐷 × 𝑈] is the model stoichiometric matrix for 𝐷 metabolites and 𝑈 intracellular 

reactions, and 𝛎 = [ν1 ν2 … ν𝑈] is the vector of 𝑈 intracellular reaction rates (i.e., 

intracellular fluxes). Large mammalian cell GSMMs typically contain a couple of thousand 

metabolites and several thousands of reactions. The stoichiometric matrix 𝐒 links metabolites 

to the respective metabolic reactions providing all the structural information of the metabolic 

network. GSMMs typically contain the link between metabolic reactions and the associated 

genes, since reactions are introduced in the GSMM if the enzyme catalyzing the reaction is 

encoded in the genome of the studied organism. The stoichiometric matrix 𝐒 contains a 

fictitious biomass reaction inventorying and draining all the biomass precursors (amino acids, 

lipids, carbohydrates, and energy as ATP) in an appropriate ratio. The rate of this biomass 

reaction νbiomass is indicative of the growth rate per amount of resources taken from the 

extracellular environment. Furthermore, the stoichiometric matrix 𝐒 also encodes the cell inputs 

(e.g., carbon sources, oxygen, etc.) and outputs (e.g., CO2, ammonia, acetic acid, etc.) through 

artificial reactions carrying metabolites through the system’s boundaries, named exchange 
reactions (Figure 2.5).  
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Figure 2.5 Schematic representation of a GSMM with intracellular and exchange reactions. 

2.3.1 Flux balance analysis 

Flux Balance Analysis (FBA; Duarte et al., 2007), a constraint-based analysis and 

reconstruction method, is the most widely applied method for the analysis and the solution of 

GSMMs. In FBA the GSMM model is solved, consisting in solving Eq. (2.28). Unfortunately, 

the number of metabolites 𝐷 is smaller than the number of reactions (𝐷 < 𝑈), because most 

metabolites participate in several metabolic reactions. For this reason, the system of equation 

(Eq. 2.28) is underdetermined, and an infinite number of flux vectors 𝛎, which are in the null 

space of 𝐒, satisfy the steady state mass conservation.  

To reduce the solution space to physiologically plausible metabolic states only, constraints are 

typically imposed on the intracellular flux vector 𝛎 as: ν𝑢min ≤ ν𝑢 ≤ ν𝑢max   , (2.29) 

where ν𝑢 is the intracellular flux value of the 𝑢-th metabolic reaction from 𝛎, ν𝑢min and ν𝑢max 

are the lower and upper bounds set for the 𝑢-th metabolic reaction, respectively. Flux 

constraints contain information on reaction reversibility (i.e., reversible or irreversible), which 

is typically determined from Gibbs free energy data or literature sources. In particular, if ν𝑢min =0 or ν𝑢max = 0 the reaction is irreversible in the forward or backward direction, respectively, 

while if ν𝑢min < 0 and ν𝑢max > 0 the reaction is reversible. Constraints of exchange reactions 

depends on the metabolites available in the culture medium and are typically derived from 

measurement of the extracellular metabolite uptake and secretion rates. For intracellular 

reactions, the upper bound is typically set to a large value (e.g., 1000 or -1000 according to 

reaction directionality and reversibility), but constraints can also be derived based on enzyme 

activity and turnover, or very complex 13C isotope labelling experiments (Maranas & 

Zomorrodi, 2016).  

Despite the constraining, an infinite number of intracellular flux vectors satisfy the material 

balance under the given system conditions (Eq. 2.28 and the given constraints). To overcome 
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this issue, in FBA it is assumed that the most plausible metabolic state of this system is given 

when an objective function, which defines the aim of the organism, is maximized or minimized. 

In this way, the solution of the material balance of Eq. (2.28) can be formulated as an 

optimization problem as: max𝛎 𝐳T𝛎    (2.30) 

subject to the model equations (Eq. 2.28) and the defined constraints (Eq. 2.29), where 𝐳 is a 

stoichiometric vector indicating how different intracellular fluxes are combined to form the 

objective function. Biomass is the most typical objective function, since it assumes that 

organisms evolved to efficiently convert resources into components and energy supporting 

cellular growth. Other objective function can be used, which are reported in Section 1.5.3 and 

in the cited Literature.  

Parsimonious enzyme usage FBA (pFBA; Lewis et al., 2010) is an extension of FBA, which 

assumes the maximum stoichiometric efficiency of metabolic pathways, achieved by producing 

the maximum amount of biomass per unit of flux. Accordingly in pFBA, the solution of the 

material balances (Eq. 2.28) is computed by maximizing biomass (Eq. 2.30), while minimizing 

the sum of all intracellular reaction fluxes at the same time, as: min𝛎 ∑ ν𝑢𝑈𝑢=1    , (2.31) 

2.3.2 Flux sampling 

FBA provides a flux vector 𝛎 within the feasible solution space that satisfies the optimality, but 

this optimal vector is not always predictive for the actual intracellular fluxes. Flux sampling is 

a possible solution to overcome this problem and obtain the probability distribution of the 

attainable fluxes for each metabolic reaction in the given conditions. In flux sampling (Bordel 

et al., 2010) random samples are drown from the feasible solution space of the model, providing 

a population of likely flux values within the given conditions defined by the constraints. Flux 

sampling only requires defining the model constraints, while no objective function has to be 

used, making the solution free form the assumption of a cellular objective.  

The algorithms used for flux sampling (Megchelenbrink et al., 2014) typically follow a hit-and-

run logic, where solution points are selected within the solution space in a sequential manner 

by slightly moving in an arbitrary direction defined by the solution space boundaries.   
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Chapter 3 

Integrating metabolome dynamics and 

process data to guide cell line selection* 

This Chapter studies the industrial development of monoclonal antibodies at micro-bioreactor 

scale (AMBR15TM) and aims at accelerating the selection of the better performing cell lines. 

To that end, we apply a machine learning approach to integrate time-varying process and 

biological information (i.e., metabolomics), explicitly exploiting their dynamics.  

Strikingly, cell line performance during the cultivation can be predicted from early process 

timepoints by exploiting the gradual temporal evolution of metabolic phenotypes. Furthermore, 

product titer is estimated with good accuracy at late process timepoints, providing insights into 

its relationship with underlying metabolic mechanisms and enabling the identification of 

biomarkers to be further investigated. The biological insights obtained through the proposed 

machine learning approach provide data driven metabolic understanding allowing early 

identification of high performing cell lines. Additionally, this analysis offers the opportunity to 

identify key metabolites which could be used as biomarkers for industrially relevant phenotypes 

and onward fit into our commercial manufacturing platforms. 

3.1 Introduction 

In the recent years, the pharmaceutical industry has invested heavily in the research, 

development and manufacturing of biopharmaceutical products to face the issues of increasing 

cost of traditional drug development, patent expiration, and market erosion through generic 

drugs. Recombinant proteins, such as monoclonal antibodies (mAbs), are the highest selling 

class of biotechnological medicines (Hong et al., 2018) with over 1500 new drugs in the 

development pipeline in 2016 expecting $138 billion global sales by 2024 (O. Yang et al., 

2020). 

Chinese Hamster Ovary (CHO) cell cultures are nowadays the preferred host platform to 

produce mAbs. The development of a successful biopharmaceutical molecule starts with the 

selection of high performing cell lines, which are scaled-up from the laboratory to the 

 
* Barberi, G., Benedetti, A., Diaz-Fernandez, P., Sévin, D. C., Vappiani, J., Finka, G., Bezzo, F., Barolo, M., Facco, P. (2022). 

Integrating metabolome dynamics and process data to guide cell line selection in biopharmaceutical process development. 

Metabolic Engineering, 72, 353-364. 
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manufacturing scale. Since scale-up is a multi-stage, expensive, resource-intensive and time-

consuming process, pharmaceutical companies are looking at effective solutions to accelerate 

the development of mAbs, while preserving the desired product quality (Le et al., 2018). In fact, 

the reduction of time to market through an early identification of commercial cell lines that can 

be rapidly progressed to commercial-scale production has a major impact on the economics of 

biopharmaceutical drug development (Rameez et al., 2014). 

Selection of commercial cell lines is performed through the screening of thousands different 

cell lines because the biological difference between cell lines usually has a major impact on the 

final product quality attributes (QAs) and process performance. Accordingly, developing a 

science-based strategy to identify the most productive and stable cell lines is a critical aspect of 

bioprocess development, which is usually carried out using a limited number of QAs (Facco et 

al., 2020). Cell growth, specific productivity, cell stability, and product titer are among the most 

important QAs that determine the quality target product profile in mAbs, and they have to be 

optimized along the development process (F. Li et al., 2010). However, only limited biological 

information on a handful of extracellular metabolites (Facco et al., 2020; Sokolov et al., 2017) 

are usually exploited for this purpose. The cell selection, as well as the in-depth process 

understanding and the optimization of the cultivation process could benefit from the extraction 

of the wealth of information retained in the biological profiling, such as in metabolomics, which 

identifies the intracellular or extracellular metabolites related to cell metabolism through liquid 

chromatography–mass spectrometry (B. Zhou et al., 2012).  

The integration of data from the cultivation process and the biological profiling can effectively 

relate cell physiological state to industrially relevant phenotypes. In fact, data analytics and 

machine learning on metabolomics and culture information are widely used to relate cell 

physiological state to culture information or QAs. For instance, they have been demonstrated 

to provide valuable insight into the physiological difference between the cell lines producing 

the protein of interest and the parental ones (Dietmair, Hodson, Quek, Timmins, Gray, et al., 

2012), the discrimination between cultures with different cell densities (Karst et al., 2017), and 

the characterization of the basal physiological state of cells during fed-batch operation at 

different bioreactor scales (Vodopivec et al., 2019). Furthermore, metabolomics has been linked 

to CHO process performance indicators and QAs to attain a better process understanding and 

for prediction purposes. Specifically, metabolomics has been used to discriminate CHO cell 

productivity and study the metabolic differences between high and low producing cells 

(William Pooi Kat Chong et al., 2012), to predict the glycan profile using a limited number of 

experiments (Zürcher et al., 2020), and to forecast product titer in such a way as to identify 

metabolites promoting or inhibiting the product titer (Morris et al., 2020). However, two main 

limitations are identified in the present literature, whose exploration would bring great 

advantages to bioprocess development. In the first place, the dynamics of untargeted 

metabolomics is often unconsidered explicitly, especially in machine learning applications to 
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mAbs production and development. Examining the dynamics of metabolomics can provide a 

better understanding of the sequence of metabolic changes occurring over the cultivation 

process, allowing to determine the point along the culture time course providing the largest 

information for the identification of industrially relevant phenotypes. Secondly, metabolomics 

is typically related to a single QA or process parameter, but the integrated analysis of process 

(i.e., culture) variables and biological data (i.e., metabolomics) is typically not considered. This 

would provide greater insight into the cultivation process, also permitting a better management 

of the process. Furthermore, the study of the correlation between the specific cell physiological 

state and process behavior allows to improve the host cell lines through metabolic engineering 

and to develop a more informed and robust cell selection strategy. Accordingly, this study is 

aimed at integrating process and biological information from CHO cultivation explicitly 

exploiting the dynamics of the available process and biological data to accelerate cell line 

selection during biopharmaceutical process development. An industrial case study concerning 

development of mAbs and cell selection at micro-bioreactor scale (AMBR15TM) is considered 

in this work. The proposed methodology will allow to deeply understand the cell lines behavior 

at the early development stages, to identify how the biological phenomena occurring in the 

culture change during the time course, and to predict the culture QAs, identifying at the same 

time the most important biomarkers associated to the observed cellular behavior. 

3.2 Materials and methods 

In this Section the data and the mathematical methodologies used in this Chapter will be briefly 

presented.  

3.2.1 Available data 

Data of two experimental runs performed in the AMBR15TM miniature bioreactor system 

(Sartorius Stedim Biotech, Sartorius AG, Goettingen, Germany) are available from the 

cultivation process. These data refer to 𝑁 = 96 CHO clonal cell lines expressing the same 

therapeutic antibody that are cultured for 15 days in the 48 parallel 15 mL bioreactors of 

AMBR15TM (i.e., experimental batches). All production runs in both experiments were run 

using the GSK proprietary platform process. This process is performed in fed-batch using 

glucose as the main carbon source. Process conditions such as bolus feeding addition, pH and 

temperature were the same for all microbioreactors. 

To allow for a larger number of clones to be screened in parallel, no biological replicates were 

performed in these experiments.  

A total of 𝑉P = 7 variables were measured in 𝑇 = 7 time instants during the experimental batch 

(𝑡 = 1, 2, … , 𝑇, namely 0, 3, 5, 8, 10, 13 and 15 days): viable cell concentration (VCC), product 

titer, and nutrients and byproducts such as extracellular glucose, glutamine, glutamate, lactate 
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and ammonium. The process variables were arranged in a three-dimensional array 𝐗P[𝑁 × 𝑉P × 𝑇] = [96 cell lines × 7 process variables × 7 time instants], which is thereafter 

defined as process dataset.  

Metabolomic data referring to the same experimental runs performed in the AMBR15TM for the 

same CHO cell lines are available, as well. Metabolites were harvested from both cell pellets 

and culture supernatants (intra- and extracellular, respectively) and analyzed by flow injection 

liquid chromatography–mass spectrometry (LC-MS; Fuhrer et al., 2011). LC-MS 

measurements were performed in negative ionization mode with a scan range of mass over 

charge (m/z) 50-1000. Raw LC-MS data were preprocessed through an in-house pipeline prior 

to the statistical analysis (Frederick et al., 2020; Perrin et al., 2020). Of note, detected ions are 

tentatively annotated as metabolites solely based on accurate mass, with the inherent limitation 

that isomers or metabolites with masses within the annotation tolerance cannot be distinguished 

and some ions are ambiguously annotated as multiple tentative metabolites. 

Metabolomic profiling was performed in 𝑅 = 2 replicates in the same 𝑇 time instants as in the 

culture analysis. Note that the intracellular metabolomic profiles are missing at time instant 𝑡 =2, because the number of cells in the cultures was insufficient to perform the analytical testing 

at that stage of the culture growth. In the following, the dynamic evolution of the metabolomic 

profiles will be referred as to metabolomic profiles dynamics. The preprocessed intra- and 

extra-cellular metabolomic profiles, consisting in intensities of 𝑉I = 4587 and 𝑉E = 4489 ions, 

respectively, were arranged in two four-dimensional arrays 𝐗ic [𝑁 × 𝑉I × (𝑇 − 1) × 𝑅] and 𝐗ec  [𝑁 × 𝑉E × 𝑇 × 𝑅] = [96 cell lines × no. of ions × 7 time instants × 2 replicates]. The ions 

with more than 20% of missing intensities were excluded from the analysis, while the remaining 

missing data were imputed with a missing data replacement technique (Troyanskaya et al., 

2001). This method assigns missing values as the weighted average intensity of the 𝐾miss 

metabolites with the intensity profiles that are more similar to the metabolite of interest. This 

method was selected because it showed robust imputation performance in a high-dimension 

dataset even with large percentages of missing data. In this study, 𝐾miss =15 metabolites were 

used to minimize the imputation error. Metabolites highlighted in this work were checked to 

ensure that the amount of missing data was largely below the 20% threshold to avoid any 

artifacts produced by data replacement technique.  

3.2.2 Methodology to integrate process and biology 

In this work, the integration of process and biological dynamic data is exploited for: i) process 

understanding, ii) studying the time course changes in process and biology, and iii) QAs and 

cell performance estimation and metabolic phenotypes identification. To systematize the 

integration of process and biological data through data-driven techniques, a multistep procedure 

(Figure 3.1) is used to conduct any analysis based on the application of data-driven techniques. 

First of all, some preliminary steps are required to correctly set up the analysis. Specifically, 
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the aim of the analysis and the possible industrial advantages have to be defined (step 1), the 

available process and biological data have to be identified and prepared for the analysis (step 

2), and finally the most appropriate (multivariate) mathematical/statistical technique has to be 

selected (step 3, Section 3.2.3). Once the preliminary steps are completed, the statistical model 

is built (step 4) and its performance is evaluated to understand the goodness of data 

representation (step 5). The last step consists in the interpretation of the model outcomes (step 

6), which comprises the in-depth understanding of the samples and their relationships, the 

identification of the relevant process and biological behaviors, and a joint study of them. 

 
Figure 3.1 Procedure to carry out data-driven activities aimed at integrating process and 

biological dynamic information. 

3.2.3 Multivariate statistical analysis 

Prior to statistical analysis, data were unfolded to account for measurement replicate variability 

(Appendix B.1). Process data were autoscaled to zero mean and unit variance to account for 

differences in measurements units, while metabolomic data were pareto scaled (Eriksson et al., 

2006), dividing each ion’s intensity by the square root of its standard deviation, to avoid 
amplification of noisy measurements.  

The most appropriate mathematical methodology is selected according to the objective of the 

work. This paper is primarily aimed at better understanding the relationship between QA or 

process performance and biological data. Furthermore, it is intended to provide a more 

confident cell selection through the understanding of the biological function (e.g., metabolic 

pathways) occurring during the culture course. Accordingly, we adopted multivariate statistical 
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techniques. Despite being linear models, they allow an in-depth understanding of the high 

variability and the correlation structures among the variables of the system under study allowing 

a straightforward interpretation of the results. Furthermore, they permit to effectively monitor 

cell line performance (R. C. Pinto, 2017). All these tasks can be performed even when the 

amount of explained data variability is small (Kjeldahl & Bro, 2010). In fact, multivariate 

statistical techniques are consolidated methodologies in metabolomics studies (Paul & de Boves 

Harrington, 2021; Worley & Powers, 2013) because of their capability of producing robust and 

reliable models while handling highly dimensional, noisy and collinear data often comprised 

by a small number of samples (Trygg et al., 2007). In fact, the multivariate approach allows 

identifying the metabolic features that are common to all cell lines with desired culture 

behavior, accounting for the variability provided by the entire available dataset. Finally, 

multivariate statistical techniques can handle dynamic data and capture the time-course 

correlations in variables (Boccard & Rudaz, 2014; Smilde et al., 2010). Specifically in this 

paper, we adopted multiway principal component analysis to map the metabolomics profile 

dynamics in relation to process variables and to anticipately infer the process behavior of cell 

lines from the changes in their metabolomic profiles. Similarity analysis was utilized to study 

the changes in the metabolomic profiles along the culture time course through a straightforward 

metric. Multi-block multiway principal component analysis was considered to correlate the 

dynamics of metabolomic profiles and process variables and to understand how the time course 

variation in specific metabolites correlates to the desired process behaviors. Multiway partial 

least-squares regression was utilized to correlate directly metabolomic profiles dynamics and 

QAs by estimating their time course trajectory. 

Multiway principal component analysis (MPCA; Nomikos and MacGregor, 1994) is a 

dimensionality reduction technique dealing with data dynamics (Appendix B.2), in which 

properly unfolded data (e.g., as 𝐗I [𝑁 ∙ 𝑅 × 𝑉I ∙ (𝑇 − 1)] or 𝐗E [𝑁 ∙ 𝑅 × 𝑉E ∙ 𝑇]) are 

decomposed in principal components (PCs). MPCA loadings capture the correlation between 

original variables (e.g., metabolites) and how variables are auto-correlated in time and cross-

correlated with the dynamics of other variables. Furthermore, MPCA allows the real time 

mapping of observations by iteratively decomposing the data up to each instant 𝑡 (with 𝑡 =1, 2, … , 𝑇) and completing the missing measurements for the remaining part of the experimental 

batch (from 𝑡 + 1 to 𝑡 = 7) with the respective average values calculated over the calibration 

data used to build the model (Ramaker et al., 2005). 

The similarity factors (Facco et al., 2020; Krzanowski, 1979) compare the direction of 

maximum variability of two datasets, namely the metabolomic profiles at different time 

instants, allowing to assess the similarity in their major driving forces (Appendix B.3). The 

similarity factor is bounded between 0 and 1, indicating 0 the absence of similarity in the data 

driving forces and 1 the same dataset driving forces. This similarity factor provides a metric to 

assess the similarity among the metabolomics profiles of all cell lines at different time instants. 
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Multi-block principal component analysis (MB-PCA; Westerhuis et al., 1998) is a 

dimensionality reduction multi-block technique dealing with different types of data organized 

in separated blocks, such as process and metabolomic data (Appendix B.4). MB-PCA captures 

in the loadings the correlation between variables in the same blocks and the cross-correlation 

between variables in different blocks. Since dynamic data are available in this study, MPCA 

and MB-PCA are combined in multi-block multiway principal component analysis (MB-

MPCA) to consider the correlation in time between variables which pertain to different data 

blocks. MP-MPCA was performed by horizontally concatenating process and metabolomic data 

and performing a standard MPCA. Process data were autoscaled and metabolomic data ware 

Pareto scaled; no block scaling was performed to avoid underestimating the importance of the 

metabolomics block which comprises a large number of variables (Westerhuis et al., 1998).  

Multiway partial least-squares (MPLS; Nomikos and MacGregor, 1995a) is a multivariate 

statistical regression technique which deals with data dynamics and can be used for estimation, 

prediction and classification. MPLS identifies the direction of maximum covariance between 

properly unfolded regressors (e.g., 𝐗E [𝑁 ∙ 𝑅 × 𝑉E ∙ 𝑇]) and a matrix 𝐘 [𝑁 ∙ 𝑅 × 𝑀] of 𝑀 

responses (e.g., any vertical slice of 𝐗P), and decomposes 𝐗E and 𝐘 into a reduced space of 𝐴 

latent variables LVs (Appendix B.5). Model performance was evaluated through a 250-

iterations Monte Carlo cross-validation, in which samples are randomly split in calibration and 

validation sets (88% of samples is for calibration). External validation cell lines were randomly 

selected from the initial dataset (12 cell lines) and were used to assess model robustness and 

generalization performances. 

Relevant metabolites for the regression models were identified through a bootstrap procedure 

(Afanador et al., 2013) on the Variable Importance in Projection index (VIP; Eriksson et al., 

2006) (Appendix B.6). Through bootstrap over the VIP, the lower 90% confidence limit 

(𝑉𝐼𝑃LCL) of each ion at a time instant was calculated and the top 5% of ranked variables were 

selected. This threshold was selected based on a sensitivity analysis in such a way as to 

guarantee a good compromise between the prediction performance, namely the amount of 

explained 𝐘 variability, and the selection of a reduced number of ions, which permits the model 

interpretability. A new PLS model was built after the variable selection, showing improved 

prediction performance, whose variables with a 𝑉𝐼𝑃LCL > 1 are largely important for the 𝐘 

response estimation. 

All software were implemented in Matlab® 2019b (MathWorks, Natick, Massachusetts, USA) 

using in-house developed codes and the PLS Toolbox (Eigenvector Research Inc, Wenatchee 

WA, U.S.A.).  
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3.3 Results and Discussion 

3.3.1 Process understanding 

In this Section, the integration of process and biological data is presented for a deeper process 

understanding. For this purpose, the metabolome dynamics of cell lines will be mapped 

according to process performance and the time course similarity in biological phenomena will 

be studied.  

      
(a) (b) 

      
(c) (d) 

Figure 3.2 Score space of PC1 and PC2 for the MPCA model on 𝑿𝐼: (a) mapping of high 

end-point titer cell lines; (b) mapping of high peak VCC cell lines; (c) quasi-real-time 

mapping of a high end-point titer high peak VCC cell line; (d) quasi-real-time mapping of a 

low end-point titer and low peak VCC cell line. The numbers in Figure (c) and (d) refer to 

the time instant 𝑡 (𝑡 = 1, 3, …, 7) at which the real-time mapping is performed. 

3.3.1.1 Metabolic mapping of cell lines according to process performance 

A better comprehension of the correlations in metabolomics profile dynamics and their relations 

with process variables and QAs can provide insights on the underlying biological differences 
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between cells in the production of different mAbs and enhance confidence in cell selection. For 

this reason, in this Section process and biological information are integrated by mapping the 

metabolomic dynamics of the cell lines in relation to the process variables for the purpose of 

an in-depth process understanding, process monitoring and early cell line screening. MPCA 

Appendix B.2; Nomikos and MacGregor, 1994) on intracellular metabolomic data 𝐗I is adopted 

to map cell lines performance according to end-point product titer and peak VCC to observe if 

a clear fingerprint of the end-point product titer and peak VCC is left on the intracellular 

metabolism. This methodology also allows the quasi-real-time quality monitoring of the 

culture.  

The MPCA model captures about 40% of the metabolomic profile dynamics variability with 9 

PCs, the first PC explaining 12% of the total variability. The relatively low captured variability 

indicates that metabolomic data dynamics is influenced by a complex series of independent 

chemical/biological phenomena. However, the low explained variability is not a concern since 

it does not imply a more accurate and descriptive model, while the use of more complex and 

non-linear modeling strategies does not necessarily guarantee to obtain more descriptive and 

interpretable models (Kjeldahl & Bro, 2010). 

The score plot of PC1 and PC2 of Figures 3.2a and 3.2b shows the mapping of cell lines 

according to end-point product titer and peak VCC, respectively, where each point summarizes 

the dynamic evolution of cell metabolomic profiles along the entire culture. Accordingly, the 

distance between points is a metric of the differences between the dynamics of cell metabolomic 

profiles. In particular, Figure 3.2a shows that a certain degree of separation is evident between 

cell lines with either high or low end-point product titer. In fact, cell lines resulting in high end-

point product titer have higher density in the space of positive PC1. On the other side, negative 

values of PC1 identify a space in which low end-point product titer cell lines have higher 

density. Accordingly, cell lines with high or low end-point product titer are characterized by 

different dynamics of metabolomic profiles. 

Similarly, the PC1 vs. PC2 score space effectively maps the cell lines according to peak VCC 

(Figure 3.2b), where high peak VCC cell lines are typically located in the space of positive PC1.  

According to these results, the metabolomic profiles dynamics contains useful information that 

is strongly related to the cell lines performance during cultivation process and the QAs. 
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(a) (b) 

Figure 3.3 Loadings time trajectory of ions form the MPCA model on 𝑿𝐼: (a) PC1; and (b) 

PC2. Ions are reported with the m/z value and a tentatively annotated metabolite. 

The dynamics of metabolomic profiles which are typical of cell lines showing industrially 

relevant phenotypes can be easily tracked and understood by inspecting the loadings of the 

MPCA model. Figure 3.3 shows the loadings time trajectory of ions captured by the MPCA 

model. Cell lines located in the part of the score space with positive PC1 (Figure 3.3a) are 

characterized by low amounts along the entire experimental batch of ion m/z 90.0281 

(tentatively annotated to L-lactic acid), ion m/z 132.0310 (tentatively annotated to L-aspartic 

acid), ion m/z 165.0748 (tentatively annotated to L-phenylalanine), and ion m/z 131.0905 

(tentatively annotated to L-isoleucine), and large amounts along the entire experimental batch 

of ion m/z 171.0282 (tentatively annotated to thiamine monophosphate) and ion m/z 181.0671 

(tentatively annotated to D-glucose). Positive values of PC1 also describes cell lines showing 

in the first half of the experimental batch large amounts of ion m/z 565.0479 (tentatively 

annotated to UDP-glucose) and ion m/z 743.0707 (tentatively annotated to NADP). Differently, 

cell lines located in the part of the score space with positive PC2 (Figure 3.3b) are characterized 

by large amounts of ion m/z 302.5342 (tentatively annotated to UDP-GlcNAc), ion m/z 

563.0679 (tentatively annotated to dTDP-D-glucose), and ion m/z 606.0748 (tentatively 

annotated to GDP-glucose) in the first half of the experimental batch, and ion m/z 201.0379 

(tentatively annotated to propinol adenylte) for the entire experimental batch. Accordingly, cell 

lines with high peak VCC and end-point titer show high consumption or low availability of L-

aspartic acid, L-phenylalanine, and L-isoleucine, and low production of L-lactic acid, while 

higher concentration of D-glucose, UDP-glucose, and NADP are maintained especially in the 

first half of the experimental batch. These results highlight the importance of understanding the 

impact of key amino acids, such as L-aspartic acid, L-phenylalanine, and L-isoleucine, which 

influence both cell growth and productivity and applying appropriate feeding strategies. 

Previous studies suggested careful monitoring of L-phenylalanine and L-isoleucine due to their 
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high consumption rates (Ritacco et al., 2018) while appropriate feeding to find the right balance 

of D-glucose and L-lactic acid concentrations, has a strong correlation with cell performance. 

Furthermore, most of the cell lines assessed in this study (i.e., the ones located in the first 

quadrant) show a sustained presence of UDP-GlcNAc, dTDP-D-glucose, GDP-glucose, and 

propinol adenylte which is correlated to protein production. 

Since good mapping of cell lines according to process performance is achieved, the score space 

can be effectively used to track in real-time the cell line trajectories to monitor their 

performance while being processed. For this purpose, the previously developed MPCA model 

is used to real-time map 19 validation cell lines randomly excluded from the training dataset. 

Each validation cell line is projected onto the model space at each time instant 𝑡 (𝑡 = 1, 3, …, 
7), replacing the future missing measurement from time 𝑡 + 1 to the end of the culture with the 

average values of the respective calibration dataset (Appendix B.2). Figures 3.2c and 3.2d show 

the projection on the score space of two validation cell lines as the experimental batch 

progresses. The validation cell line shown in Figure 3.2c evolves toward the part of the score 

space with positive PC1 where cell lines resulting in high end-point titer and peak VCC lie. 

Differently, Figure 3.2d shows the case of a cell line evolving toward negative values of PC1, 

the zone of the score space where low end-point titer and peak VCC cell lines are located. Note 

that, in both cases, the culture status can be correctly inferred already at time instant 𝑡 = 4, 

namely after approximately one half of the entire experimental batch length, providing an 

anticipated indication of cells with desired performance and additional confidence for their 

selection. This result shows that the length of experimentation in the AMBR15TM equipment 

can be potentially reduced without losing information on cell line performance and screening 

capabilities. 

Furthermore, the time course changes of metabolomic profiles can be identified by the “shift” 
of the respective score point trajectory. For example, in Figure 3.2c since cell line shows small 

shifts in score space, the evolution during culture of the metabolomic profile is characterized 

by limited metabolic changes. On the contrary, in Figure 3.2d the cell line shows large shifts, 

meaning that the metabolomic profile changes significantly in different time instants during the 

experimental batch. 

The analysis performed on extracellular metabolomic data 𝐗E through MPCA provides similar 

mapping of cell lines.  

3.3.1.2 Time course similarity in biological phenomena 

In this Section, the similarity between metabolomic profiles at different time instants is 

analyzed to understand when the main changes in the cell physiological state occur and to 

identify the metabolic phenomena characterizing each cell growth phase Such information is 

crucial to pinpoint at what stage the cell metabolism is stable during the experimental batch 

time course and could provide a better characterization of process performance and QAs. This 
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can be a valuable information to reduce the analytical burden required to perform metabolomic 

measurements. For this purpose, the similarity factors (Facco et al., 2020) are used to compare 

the main biological driving forces in the intracellular metabolomic profiles in 𝐗I at different 

time instants (Appendix B.3). To calculate the similarity factors, PCA models are built at each 

time instant 𝑡 (𝑡 = 1, 3, …, 7), each one capturing ~50% of the metabolomic profiles variability 
with 6 PCs at each time instant 𝑡. It is worth noting that these PCA models capture a larger 

portion of variability with less PCs than the model presented in Section 3.3.1.1, because they 

are built on the metabolomic profiles at each time instant rather than on the entire metabolomic 

profiles dynamics.  

 
Figure 3.4 Similarity pattern between metabolomic profiles at different time instant during 

cell culture: intracellular data. Data at time instant 𝑡=2 are missing. 

The similarity factors between metabolomic profiles at different time points are shown in the 

heatmap of Figure 3.4. Each row reports the similarity between metabolomic profiles at one 

time instant and all other time instants. Metabolomic profiles at time instant 𝑡 = 1 show low 

similarity with later time instants (𝑆𝑡′𝑡′′ < 0.42). From time instant 𝑡 ≥ 3 metabolomic profiles 

show larger similarity (𝑆𝑡′𝑡′′ > 0.6) with the contiguous time instants. Furthermore, all 

metabolomic profiles from time instant 𝑡 = 5 to the end of the culture (i.e., time instant 𝑡 = 7) 

show high similarity (𝑆𝑡′𝑡′′ > 0.7). Since the major driving forces (i.e., the main variability 

directions into the data) are similar in each cell growth phase, the main biological phenomena 

underlying the metabolomic data remain the same in each growth phase while change in the 

subsequent phases. Specifically, the cell physiological states vary moving from the exponential 

growth phase (time instant 𝑡 = 1) to the stationary phase (time instant 𝑡 = 3), while remain 

quite stable along the stationary phase (time instants 𝑡 = 3 and 𝑡 = 4). Similarly, changes are 

detected in the decline phase (time instant 𝑡 = 5 to 𝑡 = 7), while higher metabolic stability is 

detected throughout the entire decline phase.  
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The biological phenomena (i.e., metabolic pathways) preserving high importance in the 

metabolomic profiles of each phase are identified according to the ions responsible for the 

similarity across different time instants (Appendix B.3). The metabolic phenomena with high 

importance in each culture phase are reported in Table 3.1. It is worth noticing that important 

pathways are obtained from the tentatively annotated metabolites; hence, further investigation 

is required to confirm their identity. 

Similar results are observed for the extracellular metabolomic data 𝐗E.  

Table 3.1 Metabolic phenomena (i.e., metabolic pathways) with high importance in each 

culture phase identified though the similarity analysis. These important pathways are 

obtained from the tentatively annotated metabolites.  

Culture phase Key metabolic pathways 

Exponential growth phase 
(time instant 𝑡=1) 

Pyrimidine metabolism [cge00240] 
Tryptophan metabolism [cge00380] 
 

Stationary phase 
(time instant 𝑡= 3, 4)  

Alanine, aspartate and glutamate metabolism [cge00250] 
Ascorbate and aldarate metabolism [cge00053] 
Cysteine and methionine metabolism [cge00270] 
Tyrosine metabolism [cge00350] 
Vitamin B6 metabolism [cge00750] 
Pyrimidine metabolism [cge00240] 
Tryptophan metabolism [cge00380] 
 

Decline phase 
(time instant 𝑡=5, 6, 7) 

Amino sugar and nucleotide sugar metabolism [cge00520] 
Cysteine and methionine metabolism [cge00270] 
Glutathione metabolism [cge00480] 
Phenylalanine metabolism [cge00360] 
Purine metabolism [cge00230] 

 

As a result, we have shown that the physiological state of cells does not change significantly in 

the second half of the experimental batches and specifically in the decline phase. Accordingly, 

this stability can be exploited to infer the process performance at the beginning of the decline 

phase (i.e., time instant 𝑡 = 5) for anticipating the selection of promising cell lines. 

3.3.2 Time course changes in process and biology 

In this Section, the time trajectories of process data and the dynamics of metabolomic data are 

integrated to gain a better process understanding on how time course changes in process and 

biological data are related. The understanding of the relation between biological phenomena 

and process variables and QAs accelerates the bioprocess scale-up allowing an anticipated and 

more informed cell selection, by generating insight into the relation of metabolites with 

industrially relevant phenotypes. For this purpose, a MB-MPCA (Appendix B.4) is built on 

intracellular metabolomic data (𝐗I) and batch-wise unfolded process data 𝐗P (as 𝐗P [𝑁 ∙ 𝑅 × 𝑉P ∙ 𝑇]) and captures 39.1% of data variability with 9 PCs. The limited captured 

variability is due to the vast number of available variables and several correlations that are 

simultaneously taken into consideration (i.e., process-metabolomics correlation, block variable 
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correlation, correlation in time, and biological and measurement variability). MB-MPCA 

allows studying correlations at two levels: 1) correlation between variables inside each block; 

2) correlation between variables of different blocks. 

 
Figure 3.5 MB-MPCA model on 𝑿𝐼: loadings plot showing the correlation between process 

variables time trajectories. The numbers refer to the time instant. 

At the first level, the correlation structure between the main culture variables is described by 

the MB-MPCA loadings of the process block in Figure 3.5. The model captures the 

anticorrelation of product titer and VCC with lactate and glutamate, which represents 12.6% 

of the total data variability on the first PC, and the time course trajectory of process variables 

such as product titer, glutamate and lactate, which represents 6.4% of the total variability on 

the second PC. Product titer and VCC evolve similarly from the first to the fourth quadrant in 

the first half of the culture (i.e., 𝑡 ≤4), indicating that the evolution of these variables is strictly 

connected and related to similar metabolites (and accordingly to similar metabolic reactions). 

In the second half of the culture, product titer and VCC remain located in the fourth quadrant 

with a different time evolution, indicating a variation in the cell behavior. This fact is probably 

due to cells entering the decline phase, in which the product titer continues to increase while 

the VCC starts to decrease. Lactate evolution in time is located in the second quadrant, resulting 

anticorrelated to product titer and VCC for the entire cell culture. This indicates that batches 

with a low lactate concentration usually exhibit higher product titer and VCCs. Similarly, at 

the end of the culture glutamate evolves mainly in the second quadrant and is anticorrelated to 

product titer and VCC from 𝑡 = 4 on. This confirms that cell lines showing low concentration 

of glutamate are usually the ones exhibiting higher titers and VCCs. This relation is expected 

as high concentration of glutamate enhance its metabolism which produces ammonium a known 

inhibitor of cell growth (Ozturk et al., 1992). However, at 𝑡 = 2 glutamate is positively 

correlated with product titer, indicating that cell cultures with high glutamate at this time instant 

exhibit in general higher product titers. As can be noticed, moving from positive to negative 

values of PC2 product titer, VCC and lactate generally increase together during culture, while 
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glutamate usually decreases along the culture. This is a reasonable outcome, because mAbs and 

lactate are secreted by the cells while glutamate is fed to the culture and is consumed by cells.  

The same loading plot identifies that glucose is correlated with titer and VCC at time instants 𝑡 < 3 and anticorrelated thereafter, while glutamine is anticorrelated to glutamate in the second 

half of the culture (Appendix B.7; Figure B.1). Accordingly, cells with high glucose 

concentration in the initial part of the experimental batches and consuming more glucose are 

likely to exhibit higher product titer and VCC. The relation between glutamine and glutamate 

as cells convert the glutamate into glutamine during their metabolism. 

      
(a) (b) 

Figure 3.6 MB-PCA on 𝑿𝐼  loadings plot reporting the correlation between process variables 

and intracellular metabolites: (a) ion anti-correlated with product titer, and (b) ion 

correlated with lactate. The numbers refer to the time instant. Ions are reported with the m/z 

value and a tentatively annotated metabolite. 

At the second level of analysis, the joint inspection of the blocks loadings relates the time course 

evolution of process variables to the metabolomics profiles dynamics. In particular, the 

metabolite dynamics mostly impacting the variability of the main process variables are shown 

in Figure 3.6, where some MB-MPCA loadings of the metabolomics and process blocks are 

reported. 

Figure 3.6a shows the negative correlation between the ion m/z 201.0379, tentatively annotated 

as propinol adenylate (propanoate metabolism [cge00640]) or 4'-phosphopantothenoyl-L-

cysteine (pantothenate and CoA biosynthesis [cge00770]) with product titer. The dynamic 

trajectory of this metabolite is located in the second quadrant, indicating that it is anticorrelated 

to product titer, especially in the central part of the batch (𝑡 = 3, 𝑡 = 4 and 𝑡 = 6). Propinol 

adenylate is an intermediate in the production of propanoyl-CoA from propanoate, while 4'-

phosphopantothenoyl-L-cysteine is an intermediate in the CoA production form L-cysteine. 

Accordingly, cell cultures showing low amount of this ion (especially in the central part of the 

batch), probably due to low production of propanoyl-CoA, whose accumulation is known to 

produce several metabolic disfunction in humans (Wongkittichote et al., 2017), or more a 
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sustained production CoA, an essential cofactor involved in several metabolic reactions, 

generally exhibit high product titers (Figure 3.7a). 

      
(a) (b) 

Figure 3.7 Normalized log10 transformed ions intensity time profiles of all available cell 

lines: (a) ion m/z 201.0379 (tentatively annotated to propinol adenylate), and (b) ion m/z 

90.0248 (tentatively annotated to L-lactic acid). 

Figure 3.6b shows a large correlation between the ion m/z 90.0248 tentatively annotated as L-

lactic acid or its isomer 3-hydroxypropionic acid (propanoate metabolism [cge00640]) and 

culture lactate. In the central part of the experimental batches the correlation is maximum, 

indicating that high intensity of L-lactic acid is generally found in cultures exhibiting high 

lactate and low product titers (Figure 3.7b). According to these correlations, this inspected ion 

is with high probability originated from L-lactic acid, which is the intracellular molecule that 

is excreted by cells as lactate.  

Similar correlations between culture variables are observed for extracellular data. 

This analysis demonstrates to be important for both the process understanding and the 

identification of metabolic characteristics of cell with desired phenotypes, which can be 

exploited for a more informed cell selection. However, despite being general and applicable to 

all type of biological data, the adopted unsupervised technique might be difficult to interpret. 

Hence, an easier understanding or the relation between process and metabolomics can be 

achieved through supervised methods, such as partial least-squares regression.  

3.3.3 QAs and cell performance estimation and biological phenomena 

identification 

In this Section, we integrate the process and biological information by estimating a QA from 

metabolomic dynamic data to achieve a better understanding of the metabolic behavior of cells 

showing promising performance and linking relevant cell phenotypes to several metabolites 

(i.e., biomarkers). This would provide precious insights for the improvement of the host cell 

1 2 3 4 5 6 7
0.4

0.5

0.6

0.7

0.8

0.9

1.0

n
o
rm

a
liz

e
d
 l
o
g
1
0
-t

ra
n
s
fo

rm
e
d
 i
n
te

n
s
it
y

time instant

 low product titer at t=7

 high product titer at t=7

1 2 3 4 5 6 7
0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00
 high lactate t=4

 low lactate t=4

n
o

rm
a

liz
e
d

 l
o

g
1
0

-t
ra

n
s
fo

rm
e

d
 i
n

te
n

s
it
y

time instant



Integrating metabolome dynamics and process data to guide cell line selection 81 

 
 © 2022 Gianmarco Barberi, University of Padova (Italy)  

through metabolic engineering and for a more informed and robust cell line selection, which 

can even be anticipated by extracting identified biomarkers through targeted metabolomic 

analysis at earlier development stages. For this purpose, a MPLS (Appendix B.5) is built to 

predict the product titer time trajectory 𝐘 [𝑁 ∙ 𝑅 × 1 ∙ 𝑇] (obtained from 𝐗P) from the 

intracellular metabolomic profiles dynamics (𝐗I). Since a large number of ions in time are 

available, the less informative ones are eliminated through VIP bootstrap (Appendix B.6) to 

reduce the number of regressors and improve model performance. 

 
Figure 3.8 MPLS model for the estimation of product titer time trajectory: coefficient of 

determination in cross-validation (cyan squares) and external validation (orange circles). 

The coefficient of determination in cross-validation (𝑄2) of the developed two-LVs MPLS 

model (capturing 51.9% of 𝐘 variability with 37.3 % of 𝐗I variability) is shown in Figure 3.8 

as cyan squares. Product titer estimation is acceptable in the second half of the experimental 

batch (time instant 𝑡 > 3), in which 𝑄2 > 40% is observed, while in the initial days of culture, 

namely time instants 𝑡 = 1 and 𝑡 = 2, titer is poorly estimated (𝑄2 < 40%). The estimation 

performance suggests that information regarding the product titer at time instants 𝑡 = 1 and 𝑡 = 2 is hidden by nonsystematic variability due to measurement noise or other biological 

phenomena.  

External validation cell lines (orange circles in Figure 3.8) are estimated with 𝑄2 > 30% at all 

time instants. Specifically, low 𝑄2 (~30%) is observed at time instant 𝑡 ≤ 4, while 𝑄2 > 60% 

is observed in the second half of the experimental batch, namely at 𝑡 ≥5. Accordingly, the 

model is sufficiently robust to provide a good description of the product titer in the final part 

of the experimental batches, while it provides a limited explanation of the product titer in the 

initial day of culture. In fact, since during the exponential growth phase (time instants 𝑡=1 and 𝑡=2) cell lines metabolism promotes growth, rather that protein production, the changes in the 

metabolic state (i.e., variations in ions intensities) of cells are more related to cell growth than 

to protein production. This leads to a poor performance in product titer estimation. Conversely, 
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during the stationary and decline phases, cells shift their metabolic behavior to protein 

production, allowing for an accurate estimation of the product titer.  

The response loadings of the first two LVs of the MPLS model (which explain the largest part 

of the product titer variability, Figure 3.9a) report the autocorrelation in the product titer along 

culture time course and allows to connect product titer with metabolomics profile dynamics. 

      
(a) (b) 

 
(c) 

Figure 3.9 MPLS model on 𝑿𝐼  for the estimation of product titer time profile: (a) response 

loadings, (b) score space, and (c) product titer time trajectory of three external validation 

cell lines (normalized between 0 and 1). 

Two main independent phenomena are identified in the product titer time trajectory, which are 

related to the ions captured by each LV. A positive autocorrelation in the product titer time 

trajectory, especially in the second half of the batch (after time instants 𝑡 ≥3, blue bars) explains 

the cell lines whose product titer remains high for positive values of PC1 (or low for negative 

values of PC1) for the entire experimental batch. Secondly, a positive autocorrelation in product 

titer time trajectory at time instants 𝑡 ≤3 and a negative one at the time instant 𝑡 ≥5 captures 

cell lines changing behavior between the first and second half of the experimental batch, 
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meaning that they exhibit low product titer in the initial part of the batch, but high product titer 

in the final (or vice versa). 

The MPLS score space (Figure 3.9b) relates the cell lines to product titer time trajectory and 

metabolomic profile dynamics. According to the response loading, high product titer cell lines 

for the entire experimental batch are located in the first quadrant, while cell lines with low titer 

in the initial part of the batch, but high titer in the final part, are located in the fourth quadrant. 

The second and fourth quadrant describes cell lines with low final titer despite the titer in the 

initial part of the culture is high or low.  

External validation cell lines are correctly mapped into the score space according to product 

titer time trajectory behavior. In fact, a cell line with product titer above the average for the 

entire experimental batch is correctly mapped in the first quadrant (green circle), while cell 

lines with product titer below the average in the initial part of the culture are correctly 

characterized by negative values of LV2. This correct mapping is proved by the normalized 

product titer time trajectory of these validation cell lines (Figure 3.9c). 

 
Figure 3.10 MPLS model on 𝑿𝐼  for the estimation of product titer time profile: 𝑉𝐼𝑃𝐿𝐶𝐿  score 

of relevant ions. No ion at 𝑡=1 is found relevant by the model. White - ions not retained 

during the variable selection procedure; gray – ions with 𝑉𝐼𝑃𝐿𝐶𝐿  < 1. Ions are reported with 

the m/z value and a tentatively annotated metabolite. 

The 𝑉𝐼𝑃LCL identifies the ions with high importance for estimating the product titer time 

trajectory. Figure 3.10 shows the time course changes of 𝑉𝐼𝑃LCL for some important ions. The 

ions m/z 201.0379 tentatively annotated to propinol adenylate (propanoate metabolism 

[cge00640]) or 4'-Phosphopantothenoyl-L-cysteine (pantothenate and CoA biosynthesis 

[cge00770]) is important for the prediction of product titer time profile, showing a 𝑉𝐼𝑃LCL >1.6 in the central part of the experimental batches. This result is in full accordance with what 

was observed through the MB-PCA model (Section 3.3.2). The ion m/z 90.0281 tentatively 

annotated to L-lactic acid (Glycolysis/Gluconeogenesis [cge00640]) or 3-hydroxypropionic 

3 4 5 6 7

m/z 89.0248 - L-Lactic acid

m/z 90.0281 - L-Lactic acid

m/z 91.0290 - Vanylglycol

m/z 145.0145 - Oxoglutaric acid

m/z 201.0379 - Propinol adenylate

m/z 225.0960

m/z 230.0650

m/z 251.0774 - Deoxyinosine

m/z 270.0917

m/z 271.1278

m/z 284.0892 - Guanosine

m/z 387.1901

time instant

1.0

1.2

1.4

1.6

1.8

2.0
VIP



84  Chapter 3 

 © 2022 Gianmarco Barberi, University of Padova (Italy)  

acid (propanoate metabolism [cge00640]) shows mild importance throughout the culture for 

the prediction of the product titer time profile, with peak importance at 𝑡 = 4, 𝑡 = 5 (𝑉𝐼𝑃LCL >1.2). Furthermore, another ion m/z 89.0248 tentatively annotated to L-Lactic acid or 3-

hydroxypropionic acid shows a similar importance profile during culture confirming a strict 

relation between these two ions. This result agrees with the MB-MPCA model, in which a 

negative correlation with product titer is found. Accordingly, this study confirmed from a 

metabolomic prospective the well-known relation between lactate and product titer (Facco et 

al., 2020; Sokolov et al., 2015). Furthermore, the possible presence of 3-hydroxypropionic acid 

with propinol adenylate might indicate a strict relation between product titer and propanoate 

metabolism [cge00640]. 

Similar performance is achieved in the estimation of product titer time trajectory from the 

extracellular metabolomic profiles dynamics 𝐗E.  

The developed methodology is general and could be applied to relate other QAs or process 

performance indicators to metabolomic dynamics, even with the possibility of correlating more 

QAs and process variables at the same time. Supervised techniques, such as MPLS, identify a 

more direct relation between biological data and QAs and important biomarkers can be easier 

identified with respect to unsupervised techniques, such as MPCA and MB-PCA. Additionally, 

the variables selection method applied to metabolomics ensures statistical robustness, because 

only statistically relevant ions which demonstrates to be predictive for several different splitting 

of the dataset are retained. 

3.4 Conclusions  

In this study, process and biological time-varying (i.e., dynamic) data were integrated through 

data-driven techniques to accelerate cell line selection during biopharmaceutical process 

development. Both unsupervised and supervised multivariate models were used to improve 

process understanding on the relation between changes in cell physiological state and 

cultivation process behavior, to monitor the culture time course and to provide insights into 

biomarkers related to QAs which can be monitored at specific times along cell culture. 

We showed how the dynamics of metabolomic profiles relate to cell culture performance, 

providing the identification of cell lines with relevant phenotypes in the first half of AMBR15TM 

runs. We also discussed ways to understand how metabolomic profiles changes during time and 

how the dynamics of certain metabolites relates to the dynamics of QAs and culture variables. 

Furthermore, we presented how the product titer time trajectory can be estimated from 

metabolomic data, and how this relation provides insights into the cell physiological state useful 

for a more informed cell selection. A statistically robust variable selection methods, introduced 

to metabolomic data, gives insights on possible biomarkers of product titer which should be 

investigated further. However, since product titer is strictly related to viable cell concentration, 
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in this study primarily focused on methodology we cannot obtain insights on biological 

phenomena strictly and solely related to antibody production. To glean further biological 

insights on antibody production, the relation between dynamic biological data and cell specific 

productivity will be explored in further publications.  

From an industrial perspective, the proposed methodology provides a deeper understanding of 

the biological pathways and metabolites correlated with commercially relevant phenotypes. 

This methodology could be applied to smarter data driven cell line selection and commercial 

manufacturing platform fit to reduce onward development timelines and resources. 

Furthermore, the proposed methodology can be extended to different biopharmaceutical 

products and may benefit from the integration of other data types, such as transcriptomics and 

proteomics. 
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Chapter 4 

Metabolic traits for the selection of 

productive cell lines through metabolomic 

dynamic data-driven modeling* 

In this Chapter, we propose multiway and multivariate statistical techniques exploiting dynamic 

metabolomic data from the AMBR15TM scale to assist the selection of high productive cell lines 

during bioprocess development and scale-up. The wealth of information contained in the 

metabolomic profiles dynamics allows to identify the cell lines with high productivity, already 

from the early stages of experimentation. Moreover, the developed models allow to identify the 

biomarkers that are mostly related to cell productivity and to study how the important metabolic 

pathways for the discrimination of cell productivity vary along the cultivation. Specifically, 

tricarboxylic acid (TCA) cycle related pathways demonstrate to be predominant in the early 

stages of the cultivation process, while amino and nucleotide sugar pathways are impactful in 

the late stage of the culture.  

4.1 Introduction 

Recently the development of monoclonal antibodies (mAbs) has gained a central role either 

against infectious diseases, such as SARS-CoV-2 (Taylor et al., 2021), or human 

immunological and oncological diseases. Monoclonal antibodies are a class of recombinant 

proteins which are typically produced in mammalian cell cultures, because they require 

enzymatic post-translational modifications, such as glycosylation, for correct activity and safety 

in humans (Sha et al., 2016). Nowadays, Chinese Hamster Ovary (CHO) cells are the most 

common expression host for mAbs, accounting for 84% of approved mAb products (Tripathi 

and Shrivastava, 2019).  

A major challenge during the development of mammalian cell cultures is the selection of cell 

lines with the desired characteristics of productivity and stability because performance is 

strongly dependent on the cell line selected (Facco et al., 2020). Accordingly, product quality, 

 
* Barberi, G., Benedetti, A., Diaz-Fernandez, P., Sévin, D. C., Vappiani, J., Finka, G., Bezzo, F., Facco, P. (2022). Identification 

of CHO platform metabolic traits for the selection of productive cell lines in biopharmaceutical process development through 

metabolomic dynamic data-driven modeling. Submitted to Metabolic Engineering 
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productivity and stability are the main cell line attributes considered for cell line selection, and 

should be optimized from the early stages of the bioprocess development (Li et al., 2010). In 

particular, cell specific productivity (𝑄P) sharply varies in a population of transfected CHO 

cells, partially as an effect of the mAb heavy and light chain gene copies ratio and their 

chromosomal insertion sites (Jiang et al., 2006). For this reason, the development of new 

mammalian cell cultures and the selection of the best performing cell lines requires extensive 

experimentation and multiple stages, with great expenditure of time and resources. 

Biopharmaceutical companies are therefore trying to develop effective solutions for selecting 

the best performing cell lines in order to accelerate the development of mAbs and to reduce the 

drug time to market (Rameez et al., 2014). 

Metabolomics, the comprehensive analysis of all the metabolites in a biological system 

typically performed with liquid chromatography coupled with mass spectrometry (Zhou et al., 

2012), is gaining interest in mammalian cell cultures for the in-depth understanding of the 

physiological processes within the host platform. Data analytics has proved to be a precious 

tool to mine the vast amount information generated by metabolomic studies (Gorrochategui et 

al., 2016). Data analytics, in fact, can be effectively applied on metabolomics to deeply 

understand the cell physiological state along the cultivation process and to gain insight into the 

relationship between the cell physiological characteristics and the phenotypes searched during 

cell line selection. Specifically, metabolomics studies revealed through data analytics the 

metabolic differences between parental and transfected cell lines (Dietmair et al., 2012b), 

between cultivations at different cell densities (Karst et al., 2017) and cell age 

(Chrysanthopoulos et al., 2010), identified specific inhibitors of cell growth (Alden et al., 2020) 

and understanding of the physiological state of cell lines cultured at 10, 100 and 1000 L 

bioreactor scales (Vodopivec et al., 2019). Furthermore, data analytics were used to identify the 

main metabolites and metabolic characteristics of high productive cell lines (Chong et al., 

2012), and provided insight on specific biomarkers of the desired glycan profile (Zürcher et al., 

2020) and metabolites promoting or inhibiting product titer (Morris et al., 2020). In these 

studies, metabolomic measurements repeated along the cultivation are often available; 

however, the content of information deriving from their dynamic evolution is not explicitly 

exploited. To our knowledge, the work by Rubingh et al. (2009) was the only one exploiting 

dynamic metabolomic data to predict bacterial productivity in phenylalanine-producing E. Coli 

cultures, and to identify the changes in the prediction importance of metabolites. However, an 

extensive study on the impact of the cell metabolic and physiological state changes on cell 

phenotype for mammalian cell cultures, and on the use of dynamic metabolomic data to support 

cell line selection is still missing. 

This work aims at bridging this gap, demonstrating how dynamic metabolomic data can be 

exploited through data analytics to support and accelerate the selection of high producing cell 

lines during bioprocess development and scale-up. The exploitation of dynamic metabolomic 
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data allows to identify specific metabolites characterizing the desired phenotype (e.g., cell 

productivity) during the course of the culture process, and provides insights to engineer the host 

cell lines for enhancing a desired phenotype. The monitoring of metabolites characterizing 

cellular phenotypes can provide valuable information for a more informed selection of the best 

performing cell lines, and at the same time a significant reduction in time and resources required 

for the analytical testing. Furthermore, in this work we analyzed industrial data from the 

development of a therapeutic monoclonal antibody, comprising a large number of cell lines. 

This aspect can be advantageous for the bioprocessing field because the main scientific works 

on this topic lack the use of industrial data and are often based on lab-scale experiments, which 

comprise a limited number of experimental runs covering a limited portion of the possible cell 

metabolic states. Instead, the analysis of a large number of cell lines allows to have a broader 

overview of many possible different physiological states that cell lines can express along the 

cultivation process.  

In this work, we specifically use (Figure 4.1) the dynamics of metabolomic profiles to 

discriminate between low productive and high productive cell lines through multivariate 

statistical techniques (Barker and Rayens, 2003; Nomikos and MacGregor, 1995), even 

anticipating this identification at the early culture stages. Performance and interpretability of 

the developed models are improved through variable selection, by excluding uninformative 

metabolites (Fernández Pierna et al., 2009). Then, the outcomes of the developed models are 

used for biological understanding through different state-of-the-art methodologies (Conesa et 

al., 2008; Goel et al., 2014; Goeman et al., 2004; Subramanian et al., 2005; Wiklund et al., 

2008) to improve the robustness of the interpretation. In this way we identify how the dynamic 

changes in metabolites and cell functions (i.e., metabolic pathways) are related to cell 

productivity.  

This Chapter is structured as follow: in Section 2 we will present the available data and briefly 

discuss the data analytics methods applied, and in Section 3 we will discuss the main results of 

the identification of high productive cell lines, how it can be anticipated to early culture stages, 

and the biological understanding. 
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Figure 4.1 Detailed procedure of the methodologies utilized to accelerate cell selection and 

biological understanding. 

4.2 Materials and methods 

In this Section the data and the mathematical methodologies used in this Chapter are briefly 

presented.  

4.2.1 Cell culture data 

A total of 𝑁 = 96 CHO clonal cell lines were cultured for 15 days in the AMBR15TM miniature 

bioreactor system (Sartorius Stedim Biotech, Sartorius AG, Goettingen, Germany) to produce 

a therapeutic mAb. All production runs were performed using the GSK proprietary platform 

process. The process is run in fed-batch mode using glucose as main carbon source, while 

process conditions (i.e., bolus feeding addition, pH and temperature) were kept constant for all 

microbioreactors. No biological replicates were performed to allow for a larger number of cell 

lines to be screened in parallel. 

Viable cell concentration (VCC) and product titer were measured at 𝑇 = 7 time instants along 

each experimental batch (𝑡 with 𝑡 = 1, 2, … , 𝑇, namely 0, 3, 6, 8, 10, 13 and 15 days): VCC (in 

cells/L) was measured with ViCell Cell Viability Analyzer (Beckman Coulter Inc., Brea, 

California, US); product titer (in mg/L) was measured with IgG Cedex Bio HT analyzer (Roche 

Diagnostic Corporation, Indianapolis, US).  
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Specific cell productivity (𝑄P) is the target quality attribute and was calculated as the ratio 

between the titer at harvest 𝑡𝑖𝑡𝑒𝑟|𝑡=7 and the integral of VCC over the entire experimental batch:  𝑄P = 𝑡𝑖𝑡𝑒𝑟|t=7∫ 𝑉𝐶𝐶 𝑑𝑡𝑡=70      . (4.1) 

Metabolomic data, available from both cell pellets and culture supernatant (i.e., intracellular 

and extracellular metabolites, respectively), were analyzed by flow injection liquid 

chromatography-mass spectrometry (LC-MS) at the same 7 time instants 𝑡 (with 𝑡 = 1, 2, … , 𝑇) 

in 𝑅 = 2 replicates. Missing data were present in the dataset: metabolomics measurements of 

intracellular cytoplasm at 𝑡 = 2 are missing because the number of cells in the culture was 

insufficient to perform the analytical testing. LC-MS analysis was performed in negative 

ionization mode under a scan range of mass over charge (m/z) 50-1000 (Fuhrer et al., 

2011): 𝑉I = 4587 ions were collected from the cell pellets and 𝑉E = 4489 ions were collected 

from the culture supernatant, characterized by their m/z and intensity values. LC-MS analytical 

measurements were pre-processed following an in-house pipeline (Frederick et al., 2020; Perrin 

et al., 2020) consisting of peak detection, global alignment of scans, and metabolite annotation. 

Detected ions were tentatively annotated as metabolites based on accurate mass, with the 

limitation that isomers of metabolites with masses within the annotation tolerance cannot be 

distinguished and some ions are ambiguously annotated as multiple tentative metabolites.  

Intracellular and extracellular metabolomic data were then organized into two 4-dimensional 

arrays 𝐗I [𝑁 × 𝑉I × 𝑇 × 𝑅] and 𝐗E [𝑁 × 𝑉E × 𝑇 × 𝑅], respectively.  

Two productivity classes were also defined as a class indicator 𝐘: i) low productive cell lines 

(𝑄P ≤ 15 pg/(cell ∙ day)), and ii) high productive cell lines (𝑄P >  15 pg/(cell ∙ day)). The 

class indicator 𝐘 [𝑁 × 2] has the form of a dummy variable.  

4.2.2 Multiway and multivariate data analysis 

Prior to analysis, metabolomic data were mean centered and Pareto scaled (Eriksson et al., 

2006) (i.e., each ion intensity is divided by the square root of its standard deviation). Noisy ions 

with a relative standard deviation > 0.25 and ions with more than 20% of missing data were 

excluded from the analysis. The remaining missing data were imputed with a missing data 

replacement technique (Troyanskaya et al., 2001), which assigns missing values as the weighted 

average of the 𝐾miss metabolites with intensity profiles that are more similar to the metabolite 

of interest. In this study, 𝐾miss =15 was proved to minimize the imputation error. Metabolites 

highlighted in this work were checked to ensure that the amount of missing data were largely 

below the 20% threshold to avoid any artifacts produced by data replacement technique. 

Multiway partial least squares discriminant analysis (MPLS-DA) (Barker & Rayens, 2003; 

Nomikos & MacGregor, 1995b) was used to discriminate cell lines according to their specific 

productivity level. MPLS-DA is a multivariate latent-variable (LV) classification method which 
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was adopted to discriminate the cell lines according to productivity from dynamic metabolomic 

data. In MPLS-DA the datasets are unfolded in such a way to deal with the multidimensional 

(i.e., multi-way) data structure (Nomikos & MacGregor, 1994), resulting in the matrices 𝐗I [𝑁 ∙ 𝑅 × 𝑉I ∙ 𝑇]  and 𝐗E [𝑁 ∙ 𝑅 × 𝑉E ∙ 𝑇] for intracellular and extracellular metabolomic data, 

respectively. 𝐗I and 𝐗E are thereafter defined as metabolomic profiles dynamics. Then, a PLS-

DA model is built on the unfolded dataset. The PLS-DA (Barker & Rayens, 2003) model 

reduces the 𝑉E ∙ 𝑇-dimensional space of the metabolomic profiles dynamics to a smaller space 𝐴 orthogonal LVs, which captures in this case the dynamics of metabolites mostly related to 

the discrimination of cell productivity. In MPLS-DA, the model scores are used to describe the 

relationship between cell lines according to their metabolomic profile dynamics, while the 

loadings are used to describe how the dynamics of metabolites and their correlations are related 

to the discrimination of the cell productivity.  

Evolving MPLS-DA (E-MPLS-DA) (Barker & Rayens, 2003; Ramaker et al., 2005) was used 

to discriminate cell lines according to their specific productivity level early during the culture. 

In this case, a single MPLS-DA model is built at each time instant 𝑡 with 𝑡 = 1, 2, … , 𝑇, 

considering the metabolomic profiles dynamics up to 𝑡 (namely, from instant 1 to instant 𝑡). 

This method retains information on the entire past history of the experimental batch to 

accomplish the classification in each time instant in which metabolomic data are available along 

the culture time course. 

For both modeling strategies, the dataset was randomly split into a calibration set (90 cell lines) 

and an external validation set (6 cell lines). The number of LVs was selected through a 8-

venetian blinds cross-validation (Geladi & Kowalski, 1986b) over the calibration set, while 

calibration performance were evaluated through 250-iteration Monte Carlo cross-validation, 

which consists of randomly splitting of the calibration dataset in 79 cell lines for building the 

model and 11 for validation. In any splitting of the data, measurement replicates were included 

in the same set. 

An iterative variable selection technique was used to retain only meaningful predictors (i.e., 

ions) and improve model performance. The most important ions for productivity discrimination 

were then selected through a robust and computationally intensive backward iterative 

uninformative variable elimination procedure (Fernández Pierna et al., 2009; Mehmood et al., 

2012), where three importance metrics are used to identify the uninformative variables: i) 

Variable importance in Projection index (VIP) (S Wold et al., 1993), ii) selectivity ratio (SR) 

(Kvalheim & Karstang, 1989), and iii) regression coefficients. A MPLS-DA or E-MPLS-DA 

model was then built with the retained ions, showing improved classification performance.  

Additional information on the multivariate methodologies used in this work are reported in 

Appendix C. 
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4.2.3 Important biomarker and biological function identification 

The developed models were used to improve the biological understanding of selected host cell 

and to identify the metabolic characteristics of high productive cell lines. Specifically, a multi-

step procedure was used to identify tentative metabolites to consider as productivity biomarkers 

and to assess how they change along the culture process, while multivariate and enrichment 

analysis methods were used to identify how metabolic pathways for productivity discrimination 

change along the experimental batch.  

4.2.3.1 Biomarker identification 

Tentative productivity biomarkers were identified with three methods sequentially applied to 

improve the robustness of the selection and to exploit the advantages of the different techniques.  

A bootstrap procedure (Afanador et al., 2013) was used on the model developed in Section 4.2.2 

to identify only the most robust ions for productivity discrimination. Only ions whose VIP score 

remains high independently of the available subset of samples in a cross-validation were 

retained. In particular, the results of the 𝑖𝑡max = 250 iterations Monte Carlo cross-validation 

(Section 2.2) were used to calculate lower VIP 90% confidence limit 𝑉𝐼𝑃LCL as: 𝑉𝐼𝑃LCL = 𝑉𝐼𝑃̅̅ ̅̅ 𝑣̅ − 𝜎̂𝑉𝐼𝑃𝑣𝑡1−𝛼 2⁄ ,𝑖𝑡max−1   , (4.2) 

where 𝑉𝐼𝑃̅̅ ̅̅ 𝑣̅ and 𝜎̂𝑉𝐼𝑃𝑣 are the average value and the standard deviation of the VIP score of the 

ion 𝑣 over the 𝑖𝑡max iterations, and 𝑡1−𝛼 2⁄ ,𝑖𝑡max−1 identifies the lowest 5% confidence threshold 

of a t-distribution with (𝑖𝑡max − 1) degrees of freedom. Additional details on this bootstrap 

procedure are reported in the Appendix C.5. 

Among the ions with 𝑉𝐼𝑃LCL>1, a S-plot (Wiklund et al., 2008) was used to identify the ones 

with large covariance and correlation with the LV1 of the E-MPLS-DA model, which captures 

the main differences between the two productivity classes. This method was used because the 

specific information on covariance and correlation cannot be retrieved directly from the VIP 

score. Only ions largely covariant and correlated with the cell specific productivity were 

retained.  

Finally, a Student’s t-test over the ion intensities was used to assess if statistically meaningful 

variations are present between the two productivity classes. Specifically, the Student’s t-test 

was applied to each ion to prove the null hypothesis that the two classes of cell productivity 

have intensity coming from distribution with equal mean and variance. A Bonferroni correction 

for multiple hypothesis testing was used to control the family-wise error rate at a confidence 

level < 0.05. Only ions with statistically meaningful variations between the classes are retained.  

This procedure allows to identify robust biomarkers with high importance for the discrimination 

of the cell productivity, highly covariant and correlated with it, which have also statistically 

significant variations in their intensities between the two productivity classes.  
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4.2.3.2 Metabolic pathway identification 

The metabolic pathways highly important for the discrimination of the cell productivity were 

identified from the outcome of the 250-iteration Monte Carlo cross-validation through an 

importance index named 𝑉𝐼𝑃R which quantifies the importance of each metabolic pathway. The 𝑉𝐼𝑃R is obtained as the ratio between the 𝑉𝐼𝑃LCL averaged over the ions belonging to a 

metabolic pathway and the 𝑉𝐼𝑃LCL averaged over all the other available ions. Accordingly, 𝑉𝐼𝑃R 

marks metabolic pathways with ions showing an average importance greater than the average 

importance of all other ions. 

Additionally, to confirm the importance of metabolic pathways the outcomes of five 

independent methods were combined into a single p-value through the Z-scores (Zaykin, 2011) 

In this way, we improve the robustness of the identified pathways and mitigate the 

disadvantages of each method. The methods considered in this work are: 

i) metabolite set enrichment analysis (A. Subramanian et al., 2005), which is based on 

correlation with the desired phenotype and is particularly suitable when metabolites in 

a pathway are strongly cross-correlated, but loses performance with pathways 

containing a small number of metabolites; 

ii) enrichment analysis based on hypergeometric test, which strongly relies on the method 

to select metabolites from the background distribution (i.e., ions selected by the 

multivariate models in this case) and does not explicitly consider the correlation with a 

desired phenotype;  

iii) global test (Goeman et al., 2004), which assesses the predictive effect of the metabolites 

in a pathway on the desired phenotype through a random effects model without 

considering the possible interactions with metabolites in other pathways;  

iv) multivariate projection method (Conesa et al., 2008), which assesses if the variability 

of metabolites in each pathway is predictive of the desired phenotype through 

multivariate methods. However, this relationship might be hidden in small portion of 

the variability of the metabolites in a pathway, that is not always captured by this method 

which focuses on the largest sources of variability in a pathway; 

v) multivariate inference of pathway activity (Goel et al., 2014), which employs 

multivariate methods and five different metrics to assess the magnitude and the 

significance of the pathway activity. However, nothing ensures that the multivariate 

method identifies as primary sources of variability the ones mostly related to the desired 

phenotype. 

Metabolic pathways with a 𝑉𝐼𝑃R > 1 and a composed p-value < 0.05 were considered 

significantly important for productivity discrimination and highly related to it.  

The CHO metabolic pathway network was visualized with Cytoscape 3.8.2 (Shannon et al., 

2003). 
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4.3 Results and Discussion 

4.3.1 Discrimination analysis to study the correlation between cell 

productivity and metabolomic profiles dynamics 

In this Section we study the correlation between the cell productivity and the metabolomic 

profiles dynamics to understand the relation between the cell physiology changes along the 

culture and the cell line productivity. The identification of strong correlations allows to analyze 

how changes in specific metabolites intensity and variations in the cellular functions (i.e., 

metabolic pathways) characterize cell productivity. To this purpose, cell productivity is 

discriminated from the entire metabolomic profiles dynamics through a MPLS-DA. 

Furthermore, backward elimination of uninformative variables is used to discard metabolites 

poorly related to cell productivity and improve the classification performance of the models. 

      
(a) (b) 

 
(c) 

Figure 4.2 Score space of the MPLS-DA model built on the intracellular metabolomic data 

for the discrimination of cell productivity: (a) calibration samples, (b) low productive 

external validation cell lines, and (c) high productive external validation cell lines. 
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The model built on 𝐗I with 2 LVs reaches 99.4% overall classification accuracy in cross-

validation with 14.6% of the metabolomics variability (meaning that a lot of redundancy is 

present in metabolomics dynamics and a large amount of the metabolomic data is not related to 

cell productivity). To our knowledge, this good classification performance is not due to an 

obvious surrogate for titer or productivity present in the metabolomic profiles, because LC-MS 

being performed up to m/z=1000 is not able to directly measure antibody concentration. 

Additionally, similarly good discrimination performance from intracellular metabolomic data 

has been reported in previous studies (William Pooi Kat Chong et al., 2012). Accordingly, a 

good correlation between the cell productivity and the metabolomic profiles dynamics exists, 

meaning that changes of metabolomic profiles during the experimental batches contain 

systematic information for the discrimination of cell productivity.  

A better understanding of the relation among cell lines and of the amount of information related 

to productivity discrimination is achieved through the interpretation of the model scores. Figure 

4.2a shows the score space of the model built on 𝐗I, in which each point summarizes the 

behavior of the 542 ions retained from the entire metabolomic profiles dynamics (i.e., the entire 

duration of an experimental batch). The model explains 89.9% of the productivity class 

difference through 14.6% of 𝐗I variability: the main difference between productivity classes is 

explained along LV1 that retains 10.0% of 𝐗I variability (i.e., the content of information of 

approximatively 50 ions). A good separation between low and high productive cell lines is 

found despite productivity being a continuous variable. This is due to the variable selection that 

retains only the ions that are most effective at discrimination. A permutation test performed on 

the class labels showed a clear reduction in the model discrimination performance, thus 

demonstrating that the observed good separation and model performance are not due to 

overfitting. 

Specifically, in Figure 4.2a, low productive cell lines (red squares) are located in the first and 

fourth quadrants (positive LV1), while high productive cell lines (green triangles) are mainly 

located in the third quadrant (negative LV1 and LV2, jointly). Accordingly, cell lines showing 

higher intensities of the ions defined by LV1 are likely to be low productive, while cell lines 

showing lower intensities of the ions defined by both LVs are likely to be high productive.  

The external validation cell lines are used to assess the robustness of the captured correlation 

and the generalizability of the ions retained form the metabolic profiles dynamics by the 

backward elimination procedure. All external validation cell lines, which are producing the 

same therapeutic antibody and were randomly sampled from the available data prior the 

analysis, are correctly classified. Hence, the model captures a robust correlation between 

metabolomic profiles dynamics and cell productivity, which is generalizable to unknown cell 

lines producing a specific product. Figure 4.2b and 4.2c, in particular, show the projection onto 

the score space of the low productive external validation cell lines and the high productive ones, 

respectively. The model correctly maps the cell lines into specific subspace characterizing each 
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productivity class. In fact, low productive cell lines are mapped into the fourth quadrant (Figure 

4.2b), while high productive ones are correctly mapped mainly in the third quadrant (Figure 

4.2c).  

The model on 𝐗𝐄 achieves with 3 LVs a comparable cross-validated classification accuracy 

(97.8%), capturing 21.0% variability of the 2005 ions retained from the entire metabolomics 

profiles dynamics by the backward elimination of uninformative variables, indicating that many 

ions of the extracellular metabolism are necessary to achieve a correct discrimination of cell 

productivity. This model achieves 83.3% validation accuracy in the classification of external 

validation cell lines; this lower classification performance in external validation indicates that 

the correlation between cell productivity and extracellular metabolomic profiles dynamics is 

weaker and not as fully generalizable as for intracellular data, because the retained ions do not 

discriminate cell productivity of all cell lines producing the same product. Similarly, the score 

space of the model built on 𝐗E (Appendix C; Figure C.3) shows a reduced separation between 

low and high productive cell lines, despite only the most discriminant ions were retained in the 

model. This reduced separation further proves that extracellular ions are less correlated to 

differences in the productivity level, and further supports the usage of intracellular 

metabolomics. 

The lower discrimination capability of extracellular metabolomics is probably due to the fact 

that it contains only information on the substances that are unused or excreted by the cells, 

while intracellular metabolomics provides a comprehensive view of all the substances available 

inside the cells, thus, resulting richer of information. Similar observations have been already 

reported in previous studies (Dietmair, Hodson, Quek, Timmins, Chrysanthopoulos, et al., 

2012). 

The abovementioned results highlight that a deep and well-established correlation between the 

dynamics of both extracellular and intracellular metabolomic profiles and cell productivity 

exists. However, the intracellular metabolomics profiles dynamics provides better and more 

robust information for the characterization of CHO cell productivity. Furthermore, the adopted 

multivariate modeling and variable selection strategies prove to be useful to correlate the cell 

physiological state to its phenotype, allowing a better understanding of this relation.  

4.3.2 Anticipated discrimination of cell productivity 

In this Section we study if it is possible to anticipate the discrimination of cell productivity at 

the early stages of cultures exploiting the information stored into the metabolomic profiles 

dynamics. To this purpose an E-MPLS-DA model is built to discriminate cell productivity by 

subsequently enlarging the section of the metabolomic profiles dynamics used for 

classification. Furthermore, model classification performance is improved retaining only highly 

explanatory ions through backward elimination of uninformative variables. 
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The performance for the anticipated discrimination of cell productivity using the retained ions 

from the intracellular metabolomics 𝐗I is reported in Table 4.1. The model captures at all the 

time instants a large portion of the productivity variability (≥77%), and achieves high 

classification accuracy (>93%) at all time instants, retaining a reduced number of ions. In 

particular, the model achieves very high classification accuracy (~99%) in the second half of 

the experimental batches, namely form 𝑡 = 4, indicating that from that time instant the 

metabolomic profiles contain information for an accurate discrimination of cell productivity. 

The model at these time instants misclassifies only samples with a productivity which is very 

close to the threshold between the classes. In the first part of the experimental batches, a lower, 

but still high, classification accuracy is observed (~93%), indicating that the metabolomic 

profiles in the first days of the culture contain less, but still enough information for an accurate 

discrimination of cell productivity. Accordingly, in most of the cases the cell productivity is 

clearly characterized by cell physiological states in the first part of the experimental batches.  

Table 4.1 Performance of the E-MPLS-DA multi-model in the anticipated 

discrimination of cell productivity from intracellular metabolomic data: the number 

of LVs, the explained response variance (𝑅𝑦2), the number of retained ions and the 

accuracy in cross validation and external validation are reported for the model built 

at each time instant. 

time 

instant 

selected 

number of LVs 
𝑹𝒚𝟐 

[%] 

number of 

selected ions 

accuracy in cross-

validation [%] 

external validation 

accuracy [%] 

1 2 77.0 110 93.4 75 
3 2 76.8 292 93.6 100 
4 2 85.6 150 98.7 100 
5 2 88.1 239 99.1 100 
6 2 89.4 307 99.3 100 
7 2 89.9 542 99.4 100 

 

External validation cell lines are then used to verify the robustness of the correlation found by 

the model and the generalizability of the retained ions for the discrimination of cell productivity. 

All validation samples are correctly classified at time instants𝑡 ≥ 3, namely at all the time 

instants apart from 𝑡 = 1 in which the classification accuracy is 75%. Accordingly, a robust 

correlation between intracellular metabolomics profiles and cell productivity can be found 

already at time instant 𝑡 = 3, meaning that the subsets of retained ions are explanatory of cell 

productivity and contains its fingerprint. Furthermore, since external validation cell lines are 

correctly discriminated, these subsets of retained ions are generalizable to cell lines producing 

the same product. Differently, at time instant 𝑡 = 1 the correlation is not completely 

generalizable, because the subset of retained ions does not correctly discriminate the 

productivity of all the external validation cell lines. This fact could be due to differences in the 

physiological state of some cell lines at the beginning of the culture, and that cell lines require 

some time to stabilize their behavior, and accordingly their metabolism, after seeding. 
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The model built on 𝐗𝐄 achieves > 97% cross-validation accuracy at all time instants, while the 

external validation cell lines are classified with lower accuracy (< 84%) especially in the first 

half of the experimental batches in which validation accuracy is < 70% (Appendix C; Table 

C.1). As previously observed, the correlation between intracellular metabolomics profiles and 

cell productivity is not robust as for intracellular data. Furthermore, metabolomics profiles at 

early culture stages contain less generalizable information related to cell productivity.  

In this section, we showed that models on both intra- and extra-cellular data discriminate with 

high accuracy the cell productivity at all time points, being the model on intracellular data more 

generalizable and accurate especially in the first half of the culture. Accordingly, the model on 

intracellular data can be integrated in the cell selection process, since it identifies the optimal 

cell lines to further process already in the first days the experimental batches. For this reason, 

the developed model can be used for risk management, because it reduces the risk of excluding 

potentially high performing cell lines during the selection process. Furthermore, the early 

identification of the high productive cell lines allows to speed up the bioprocess development 

process, because high performing cell lines can be early scaled-up before the end of the 

experiment at AMBR15TM scale.  

4.3.3 Identification of cell productivity biomarkers 

The aim of this Section is the identification of ions that, at each time instant, are highly 

important for the discrimination of cell productivity (i.e., productivity biomarkers). The 

identification of few metabolites well characterizing cell productivity allows to improve the cell 

selection procedure, providing more confidence for the selection of optimal cell lines and 

anticipating it at the early culture stages. Furthermore, few biomarkers can be measured without 

running the entire metabolomics analysis and easily interpreted, providing the capability of 

making timely decision during process development. 

To this purpose, the outcomes of the E-MPLS-DA model presented in Section 4.3.2 are utilized 

for the identification of the most important ions for the discrimination of cell productivity 

through the procedure explained in Section 4.2.2. An example of the S-plot utilized for this 

analysis is reported in Figure 4.3. The S-plot is built at each time instant on the ions with a 𝑉𝐼𝑃LCL > 1. This screening excludes in general the largest part of the ions (e.g., as shown in 

Figure 4.3 in which the ions retained are identified by triangles). Through the S-plot, the ions 

highly covariant and correlated with the LV1 of the E-MPLS-DA LV are selected having an 

absolute covariance > 0.05 and, at the same time, an absolute correlation > 0.6 (e.g., colored 

triangles in Figure 4.3). A Student’s t-test is then applied to these retained ions to prove the null 

hypothesis that the two classes of cell productivity have intensity coming from distribution with 

equal mean and variance. In general, all the ions identified through the S-plot as highly 

covariant and correlated with the cell productivity show significantly different intensities 

between the two productivity classes.  
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Figure 4.3 S-plot used for the identification of ions highly covariant and correlated with cell 

productivity from the model at time instant 𝑡 = 7. Ions with absolute covariance > 0.05 and 

absolute correlation > 0.6 are selected and a Student’s t-test is used to calculate the reported 

p-value. Ions m/z value and the tentatively annotated metabolites are reported. 

Table 4.2 summarizes the results of the abovementioned analysis performed for each time 

instant 𝑡 of the E-MPLS-DA model. For each of them, the most important ions for cell 

productivity are reported with the respective m/z value, the tentatively annotated metabolite, 

the ion measurement time instant, the 𝑉𝐼𝑃LCL, the S-plot covariance, the S-plot correlation and 

the Student’s t-test p-value.  

Results show that up to 𝑡 = 4 the ions measured in the first time instant of the experimental 

batches (𝑡 = 1) are relevant for the discrimination of cell productivity, indicating that the 

intracellular metabolic state at the beginning of the culture is an important indicator of cell 

productivity. In particular, in the model the ions m/z 191.0197 and 192.0231 tentatively 

annotated to Citric acid (TCA cycle and alanine, aspartate and glutamate metabolism) are 

identified as biomarkers of cell productivity at 𝑡 = 1 and 𝑡 = 3. Citric acid results an important 

indicator of productivity (𝑉𝐼𝑃LCL > 1.31) and negatively correlated to cell productivity (i.e., 

positively correlated to LV1), indicating that high concentrations of Citric acid are typical of 

low productive cell lines. Accumulation of intracellular Citric acid suggests that cell lines with 

reduced activity of the TCA cycle in the early batch stages are likely to show lower productivity, 

probably due to reduced ATP availability for antibody synthesis. This result is in accordance 

with previous studies, in which Citric acid was highlighted as determinant for both growth and 

productivity in CHO cells (Dickson, 2014), and TCA cycle was found downregulated in low-

productive CHO cells through transcriptomic analysis (Huang & Yoon, 2020b). Furthermore, 

since Citrate could be present in the bioreactor also as a media or feed component, this result 

proves the importance of feeding optimization for the enhancement of cell productivity. Other 
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ions m/z 145.0873 and 471.2891 (possibly related to sterol lipids or fatty acids) with no tentative 

annotation are identified as productivity biomarkers in the first half of the experimental batches. 

Additional studies are required to identify the possible metabolites originating these ions.  

In the second half of the experimental batches, namely from 𝑡 = 4 to 𝑡 = 6, a shift in the 

physiological state of cells is observed and different ions are identified to be highly important 

for the discrimination of cell productivity. Ions measured at 𝑡 = 5 and 𝑡 = 6 are preferentially 

identified as productivity biomarkers, meaning that the intracellular metabolic state in these 

instants is an important indicator of the cell productivity. That is probably related to the fact 

that at these time instants the largest production rate is usually observed, indicating that the 

metabolomic profiles in the production phase are extremely informative of the productivity 

level. Furthermore, it seems reasonable that the most informative part of the culture is found 

from the mid cell stationary phase. 

Table 4.2 Intracellular ions retained by the E-MPLS-DA model at different time instants 

showing a significant relation with cell productivity. These ions show a 𝑉𝐼𝑃𝐿𝐶𝐿  > 1, high 

covariance and correlation with cell productivity and a significantly different intensity 

values for each productivity class. The time instant column refers to the time instant in 

which the ion was measured with LC-MS. 

m/z Metabolite name 
Measurement 

time point 
VIPLCL covariance correlation p-value 𝑡 = 1 

145.0873  1 1.39 -0.112 -0.668 3.0∙10−7 
191.0197 Citric acid 1 1.37 0.121 0.672 1.1∙ 10−7 
192.0231 Citric acid 1 1.31 0.118 0.612 4.1∙ 10−6 
471.2891  1 1.66 -0.171 -0.704 2.6∙ 10−7 𝑡 = 3 
145.0873  1 1.45 -0.073 -0.679 3.0∙ 10−7 
191.0197 Citric acid 1 1.39 0.072 0.620 1.1∙ 10−7 
471.2891  1 1.71 -0.106 -0.679 2.6∙ 10−7 𝑡 = 4 
471.2891  1 1.53 -0.127 -0.616 2.6∙ 10−7 𝑡 = 5 
438.9425  5 1.73 -0.102 -0.663 1.2∙ 10−8 
628.9785  5 1.89 -0.121 -0.683 8.5∙ 10−10 𝑡 = 6 
226.0354  6 1.65 0.102 0.612 3.2∙ 10−12 
253.0315  6 2.11 0.164 0.638 6.4∙ 10−10 
265.1083 Thiamine 6 1.43 0.074 0.641 2.1∙ 10−10 
438.9425  5 1.28 -0.060 -0.605 1.2∙ 10−8 
545.1770  6 2.16 -0.133 -0.812 7.7∙ 10−14 
565.0479 UDP-glucose, UDP-galactose 6 1.86 -0.101 -0.788 3.9∙ 10−19 
567.0509 UDP-glucose, UDP-galactose 6 1.47 -0.062 -0.771 6.3∙ 10−16 
641.2334  6 1.48 0.069 0.676 2.4∙ 10−10 𝑡 = 7 
226.0354  6 1.87 0.088 0.610 3.2∙ 10−12 
253.0315  6 2.35 0.137 0.616 6.4∙ 10−10 
265.1083 Thiamine 6 1.64 0.065 0.653 2.1∙ 10−10 
545.1770  6 2.40 -0.111 -0.783 7.7∙ 10−14 
565.0479 UDP-glucose, UDP-galactose 6 2.07 -0.084 -0.753 3.9∙ 10−19 
567.0509 UDP-glucose, UDP-galactose 6 1.64 -0.052 -0.742 6.3∙ 10−16 
641.2334  6 1.67 0.057 0.650 2.4∙ 10−10 
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The identified productivity biomarkers in the second half of the experimental batches are the 

ions m/z 565.0479, 566.0508, and 567.0509 tentatively annotated to UDP-glucose (UDP-Glc) 

or UDP-galactose (UDP-Gal) and the ion m/z 265.1083 tentatively annotated to thiamine 

(thiamine metabolism) measured at 𝑡 = 6. UDP-Glc/UDP-Gal results highly relevant for the 

discrimination (𝑉𝐼𝑃LCL > 1.4) and positively correlated to cell productivity (i.e., being 

negatively correlated to LV1); this indicates that high levels of UDP-Glc/UDP-Gal are 

typically found in high productive cell lines. High levels of UDP-Glc/UDP-Gal have been 

previously observed in high productive cell lines (William Pooi Kat Chong et al., 2012). 

Furthermore, this result seems reasonable also because UDP sugars are key component in the 

glycosylation of mAbs (Kochanowski et al., 2006), and in CHO cells the nucleotide sugar 

donors (which UDP sugars belong to) allocated for mAbs glycosylation outweigh the ones 

allocated for host cell proteins glycosylation (Jimenez del Val, Polizzi, et al., 2016). However, 

our result points out that UDP-Glc/UDP-Gal is an important productivity indicator only at the 

end of the stationary phase (corresponding to 𝑡 = 6), when cell lines are mainly focused on 

protein production, and not along the entire culture. Thiamine results negatively correlated to 

cell productivity (i.e., being correlated to LV1), indicating that high levels are typically found 

in low productive cell lines. Accumulation of thiamine in the second half of the experimental 

batches might be originated from a disfunction in its metabolism in the early stages of 

experimental batches, this indicates that a correct consumption of thiamine in the initial part of 

the culture is a key aspect for high-productive cell lines. In fact, a the addition of vitamins to 

CHO cell cultures has shown to improve the mAbs productivity (D. Y. Kim et al., 2005; Ritacco 

et al., 2018). 

A similar analysis is performed over the model built on extracellular metabolomic data. No 

common ions with intracellular result are found. However, the ions identified as relevant for 

productivity discrimination are the ion m/z 145.0622 tentatively annotated to L/D-glutamine in 

the initial part of the experimental batches, the ions m/z 96.9700 and 132.0304 tentatively 

annotated to phosphoric acid and L/D-aspartic acid, respectively, in the final part of the 

experimental batches, and the ion m/z 611.1422 tentatively annotated to oxidized glutathione 

for almost the entire culture. The observed higher level of L/D-glutamine in high productive 

cell lines is probably related to a more efficient production of glutamine from glutamate, which 

results in a higher consumption of ammonia required for this reaction. Similarly, the observed 

higher level L/D-aspartic acid, which is involved in the glutamate-glutamine conversion, in 

high productive cell lines is probably related to similar phenomena and supports the fact that 

L/D-aspartic acid starvation results in low mAbs production (Ritacco et al., 2018). The 

observed lower level of oxidized glutathione in high productive cell lines indicates that 

enhanced productivity is related to a reduced accumulation of glutathione in the culture media, 

which has been observed as growth-limiting factor in previous studies (William P K Chong et 

al., 2009; Vodopivec et al., 2019).  



Metabolic traits for the selection of productive cell lines through metabolomic dynamic data-driven modeling 103 

 
 © 2022 Gianmarco Barberi, University of Padova (Italy)  

This analysis highlights how the in-depth interpretation of multivariate models can improve the 

understanding of the important biological phenomena that characterize the cell phenotypes 

(productivity in this case). However, an approach focused on metabolic pathways rather than 

the single metabolites, could provide a better understanding of the cellular function mostly 

related to cell productivity. 

4.3.4 Identification of important biological functions in the discrimination 

of cell productivity 

The aim of this Section is the identification of the cellular functions (i.e., metabolic pathways) 

which are mostly related to the discrimination of cell productivity and the study on how they 

change along the culture. This is intended to understand when a cell function is important for 

the studied phenotype, providing a better understanding of the host cell. Furthermore, this 

analysis provides a robust basis for cell selection and insights into possible targets to improve 

cell performance through host engineering. To this purpose, the 𝑉𝐼𝑃R is calculated for each 

pathway from the outcomes of the E-MPLS-DA, and the five additional tests (Section 4.2.3) 

are applied to confirm and integrate the obtained results (Section 4.2.3.2). To note, this analysis 

is based on ions that are tentatively annotated to metabolites (as explained in Section 4.2.1) and 

similarly tentatively associated to a metabolic pathway. Accordingly, further testing is required 

to confirm the accurate identity of the identified ions and metabolic pathways.  

The heatmap of Figure 4.4 shows the evolution during culture of pathway importance in term 

of 𝑉𝐼𝑃R for metabolic pathways significantly related to productivity (i.e., with a composed p-

value of the five selected methodologies < 0.05). A sharp change in the cell physiological state 

is visible at 𝑡 = 5, in which the metabolic pathways with high importance for the discrimination 

of cell productivity changes. This behavior is probably due to the cell reaching the decline 

phase, as shown by the VCC reaching its peak, and focusing on protein production rather than 

replication. In the first part of the culture, the metabolic pathways with large importance for 

productivity discrimination are alanine, aspartate and glutamate metabolism (cge00250), TCA 

cycle (cge00020), glyoxylate and dicarboxylate metabolism (cge00630), and purine metabolism 

(cge00230), while at 𝑡 = 5 the important pathways shift to amino sugar and nucleotide sugar 

metabolism (cge00520), pyrimidine metabolism (cge002400), oxidative phosphorylation 

(cge00190), tryptophan metabolism (cge00380). Two metabolic pathways, such as ascorbate 

and aldarate metabolism (cge00053) and pentose and glucuronate interconversions (cge00040) 

are very important for cell productivity discrimination along the entire culture. 
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Figure 4.4 𝑉𝐼𝑃𝑅 value during culture for pathways significantly related to cell productivity. 

White – pathway is not significant at that time instant; gray – pathway is significant but 𝑉𝐼𝑃𝑅  

< 1. 

In exponential growth and subsequent stationary phase (i.e., from 𝑡 = 1 to 𝑡 = 5), metabolic 

pathways connected to energy production and DNA replication are found to be important for 

cell productivity. This seems reasonable, because cells are generally consuming energy both 

for replication and for protein production. Similarly, the metabolism of amino acids, such as 

alanine, aspartate and glutamate metabolism, is dominant until the end of the stationary phase. 

In fact, high flux of alanine, aspartate and glutamate pathway (as well as other amino acids) is 

usually observed in the initial part of the culture until the complete depletion of those amino 

acids during the stationary phase (Sellick et al., 2011). Furthermore, alanine, aspartate and 

glutamate metabolism was found to be upregulated in low-productive cell lines (Huang & 

Yoon, 2020b), confirming our finding.  

A better understanding of the inter-relationships between different cellular functions and cell 

productivity is achieved by inspecting the CHO metabolic network. The network of important 

metabolic pathways in the exponential growth phase, namely at 𝑡 = 3 is shown in Figure 4.5a. 

The physiological state at 𝑡 = 3 is very similar to the one at 𝑡 = 1, showing that all the 

considerable pathways are primarily connected to TCA cycle and also to alanine, aspartate and 

glutamate metabolism. At the end of the stationary phase, namely at 𝑡 = 5, a similar pattern in 
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the cell physiological state is found (Figure 4.5b). However, in this phase nucleotide 

metabolisms are gaining relevance, as well as fructose and mannose metabolism, which were 

found upregulated in high-productive cell lines (Huang & Yoon, 2020b). In the decline phase 

(i.e., from 𝑡 = 6) the cell physiological state is totally connected to the metabolism of 

nucleotide and other sugars (Figure 4.5c). Enhanced nucleotide sugar metabolism in the decline 

phase seems reasonable since nucleotide sugars were also found of primarily importance for 

protein glycosylation and productivity (William Pooi Kat Chong et al., 2012). Similarly to the 

result of Figure 4.5c, amino sugar and nucleotide sugar metabolism, galactose metabolism, 

starch and sucrose metabolism, and glycerolipid metabolism were found upregulated in high-

productive cell lines, while oxidative phosphorylation was found downregulated (Huang & 

Yoon, 2020b). 

 
(a) (b) 

 
(c) 

Figure 4.5 Network of metabolic pathways significantly associated to CHO cell productivity 

at different time instants during culture: (a) 𝑡 = 3, (b) 𝑡 = 5, and (c) 𝑡 = 7. 

Extracellular data does not show the physiological shift in the decline phase. Pathway as 

arginine biosynthesis, glutathione metabolism, pantothenate and CoA biosynthesis, and vitamin 

B6 metabolism are important for the entire duration of the experimental batches. Differently, 
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glyoxylate and dicarboxylate metabolism is important in the initial part of the culture, while 

beta-alanine metabolism and oxidative phosphorylation are important in the final part of the 

experimental batches. These results highlight the importance of arginine and vitamins (Ritacco 

et al., 2018), and glutathione (Orellana et al., 2015; Pereira et al., 2018) for a sustained 

productivity.  

This analysis highlights how a multivariate statistical analysis provides a better understanding 

on the biological functions related to CHO cell productivity. However, since this analysis is 

based on a priori knowledge of the metabolic network, no new hypothesis on relations between 

metabolites or reaction routes can be generated. Only a network approach could provide 

additional insights on the metabolic reactions mostly relevant for cell productivity.  

 
(a) 

 
(b) 

Figure 4.6 View of ADAM user interface: (a) phenotype classification window, and (b) 

biomarker identification window. 
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4.5 ADAM: Application for the Digital Analysis of Metabolites 

The work presented in this Chapter resulted in the development of a software: ADAM - 

Application for the Digital Analysis of Metabolites, that will be used by GlaxoSmithKline 

(U.K.) to perform metabolomics analysis in the context of biopharmaceutical process 

development. ADAM reproduces the work presented in this Chapter in a simple, intuitive, and 

automated manner, making metabolomics analysis available to large group of practitioners. 

ADAM allows to: 

• perform exploratory analysis of metabolomic data in order to understand how the dynamics 

of metabolites is associated to a desired phenotype or process behavior (as Section 3.3.1.1); 

• classify samples according to their phenotype from the dynamics of metabolites (as Section 

4.3.1 and 4.3.2); 

• identify the biomarkers mostly associated with the studied phenotype through the three 

steps procedure presented in this Chapter (as Section 4.3.3). 

A view of the user interface is reported in Figure 4.6.  

4.4 Conclusions 

In this study, dynamic metabolomics at the AMBR15TM scale of a monoclonal antibody 

production process development was analyzed through data analytics to identify high 

productive cell lines to progress in the process scale-up, to examine the most important 

biomarkers and to find cellular functions for the characterization of cell productivity along the 

experimental batch evolution. Specifically, multivariate classification provided an accurate 

discrimination of cell productivity (98.7% calibration and 100% external validation accuracy) 

in the early stages of the experimental batches (approximately 8 days over 2 weeks of culture). 

Furthermore, the multivariate model outcome allowed to identify that the metabolic 

characteristics of optimal cell lines are related to TCA cycle and alanine, aspartate and 

glutamate metabolism until the stationary growth phase, and to the metabolism of nucleotide 

and other sugars in the decline phase. 

These developed models identify the cell lines with the desired phenotype in the early culture 

stages, allowing to accelerate bioprocess development by progressing those cell lines to larger 

scales.  

Moreover, the identification of few productivity biomarkers, which can be easily analyzed and 

interpreted in real-time without running an entire metabolomic study, allows to make timely 

decisions on process development. All the acquired knowledge could be exploited for the 

implementation of a more robust and confident cell selection protocol and to mitigate the risk 

of progressing to larger scale poorly performing cell lines. Furthermore, the identified relevant 

cellular functions provide insight on targets that can be manipulated though host engineering 

or process optimization to increase the frequency of obtaining high productive cell lines.  
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The result reported in this work are specific to the analyzed cell lines and product. The 

generalization of these results across different therapeutic antibodies will be object of further 

studies. However, the adopted modeling strategy is general and could be applied to any other 

bioprocess in which dynamic biological information is available.  

As future direction of this study, a network level approach could provide insights into new 

routes in the metabolic network which might better characterize a desired phenotype. 
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Chapter 5 

Data augmentation to support 

Biopharmaceutical process development 

through Digital Models* 

In this Chapter, we propose the use of digital models to generate in silico data and augment the 

amount of data available from real (i.e., in vitro) experimental runs, accordingly. In particular, 

we propose two strategies for in silico data generation to estimate the endpoint antibody titer in 

mAbs manufacturing: one based on a first principles model and one on a hybrid semi-parametric 

model. As a proof of concept, the effect of in silico data generation is investigated on a 

simulated biopharmaceutical process for the production of mAbs. We obtained very promising 

results: the digital model effectively supports the identification of high-productive cell lines 

(i.e., high mAb titer) even when a very low number of real experimental batches (two or three) 

is available. 

5.1 Introduction 

Monoclonal antibodies (mAbs) are a class of recombinant proteins utilized against human 

immunological and oncological diseases, which are typically produced at the industrial level in 

fed-batch cultures of mammalian cells, engineered to secrete the protein of interest (Tripathi & 

Shrivastava, 2019). In the last few years, mAbs are gaining a lot of interest: they comprise over 

one-half of the biopharmaceutical approvals by regulatory agencies, and their market passed 

the threshold of 120 billion $ in annual sales (Walsh, 2018) expecting to reach 140 billion $ in 

2024 (O. Yang et al., 2020). However, the development of new monoclonal antibodies is a time-

consuming and resource-intensive procedure (F. Li et al., 2010; Tripathi & Shrivastava, 2019), 

which usually requires many years and large investments from biopharmaceutical companies 

(Epifa, 2021; Farid et al., 2020). In fact, experiments on mammalian cells may last several 

weeks and cost tens of thousands of dollars each. For this reason, the number of performed 

experimental runs is often limited. Furthermore, while scaling up the process, the number of 

experiments gradually decreases because the cost of a single experimental run increases with 

 
* Botton, A., Barberi, G., Facco, P. (2022). Data augmentation to support biopharmaceutical process development through 

digital models—A proof of concept. Processes, 10, 1796 



110  Chapter 5 

 © 2022 Gianmarco Barberi, University of Padova (Italy)  

the process volume. Hence, the number of experimental runs decreases from several dozens, if 

not hundreds, at the milliliter scales to 12–24 at a shake-flask scale, while a couple of runs only 

are typically performed at the pilot scale (F. Li et al., 2010). 

Following the wave of digitalization in Industry 4.0, large amounts of data (e.g., culture 

variables from high throughput technologies (Rameez et al., 2014), and omics data such as 

transcriptomics (Clarke et al., 2011) or metabolomics (Barberi et al., 2022)) are usually 

collected from all the stages of the scale-up. The wealth of information contained in the 

experimental data can be extracted to support the mAbs development through machine learning 

(Barberi et al., 2022; Facco et al., 2020). In particular, different data-driven techniques 

demonstrated to be effective to: (i) understand the similarity among bioreactors at different 

scales and improve the similarity between scales in the scaled-down models (Ahuja et al., 

2015); (ii) predict the mAbs concentration at harvest allowing to identify the parameters that 

promote or suppress production (Goldrick et al., 2017); (iii) estimate the mAbs quality and 

interpret the relationship between process and product when coupled with genetic algorithms 

(Sokolov et al., 2017); and (iv) capture very complex biological relationships through neural 

networks coupled with first principles models of the culture environment and accurately predict 

the mAbs quality attributes (Kotidis & Kontoravdi, 2020). Despite their efficacy, data-driven 

methods suffer when the number of available data is limited (Kjeldahl & Bro, 2010). In this 

case, the main driving forces and correlations in the data cannot be reliably captured due to 

sample underrepresentation and the large biological variability. Furthermore, the estimation 

performance of data-driven models degrades with few data, and models become prone to 

overfitting and sensitive to outliers (Tulsyan et al., 2019). For this reason, the industrial practice 

is to switch to univariate modeling (Tulsyan et al., 2019). Since biopharmaceutical processes 

are intrinsically multivariate, univariate techniques provide only a poor representation of the 

system under investigation and may fail to understand the complex correlation among critical 

process parameters (CPPs) and critical quality attributes (CQAs) (Mercier et al., 2014). For this 

reason, elaborating alternative strategies to overcome the limitation of a restricted amount of 

data from few experiments is of paramount importance to accelerate the process/product 

development without increasing the experimental burden. 

In this respect, the generation of in silico data is a possible solution to the limited data problem. 

For example, data augmentation was successfully applied in the fields of artificial intelligence 

and image processing (Maharana et al., 2022; Shorten & Khoshgoftaar, 2019), and to industrial 

microelectronic and chemical processes (Z.-S. Chen et al., 2017; Rato et al., 2020). In silico 

data may be generated artificially either by perturbing the available data points or by combining 

them if no prior knowledge of the process is available. The data augmentation by means of 

perturbation can be performed simply by adding Gaussian noise to the available data points 

(Lee, 2000; Xie et al., 2020). Furthermore, the available data can be linearly combined to 

generate new artificial samples (Chawla et al., 2002). As an alternative, prior process 
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knowledge can be exploited for the purpose of data augmentation and in silico batch generation 

by building a digital version of the process. For example, a hybrid mechanistic–empirical model 

was built to explore different settings and scenarios for a large-scale fed-batch mammalian cell 

culture producing a therapeutic antibody (O’Brien et al., 2021). A Gaussian process state-space 

model coupled with a resampling from the high-frequency acquisition system was used to 

generate in silico samples and improve the multivariate monitoring of biopharmaceutical batch 

processes (Tulsyan et al., 2018). Moreover, generative adversarial neural networks were used 

to generate in silico single-cell RNA sequence data for biomedical research (Marouf et al., 

2020). 

Despite considerable effort being made to solve the problem of limited data availability, the 

research and application of in silico model-based data generation in the biopharmaceutical 

industry is still an open issue. In this field, overcoming the limited availability of data in a 

digital manner can significantly reduce the experimental burden and development timelines, 

allowing for a reduction in the cost of life-saving drugs and making them available to patients 

earlier. 

In this work, we show how, in the development of monoclonal antibodies, the application of 

different strategies for in silico batch generation can improve the identification of cell lines with 

the desired CQA (i.e., high mAb titer) in the scenario of limited available data. Specifically, we 

propose the use of two approaches based on the following digital models: a first principles 

model (Jimenez del Val, Fan, et al., 2016), and a hybrid semi-parametric model (Narayanan et 

al., 2019). The proposed methods for data augmentation will be applied to the case study of a 

simulated process for mammalian cell culture (Kontoravdi et al., 2010) for the purpose of 

improving the estimation of mAb titer. 

The rest of the Chapter is organized as follows: Section 5.2 describes the general framework of 

the proposed procedure for in silico data generation, the (simulated) process, the digital models 

used for in silico batch generation, and the multivariate modeling used for the estimation of 

mAb titer at harvest; Section 5.3 reports the mAb titer estimation performance in a data-poor 

scenario and the capability of understanding the process evaluated for both in silico data 

generation strategies; and Section 5.4 contains the final remarks and future perspectives of this 

study. 

5.2 Materials and Methods 

5.2.1 Methodological procedure 

The methodological procedure for the in silico data augmentation with digital models (Figure 

5.1) goes through the following steps: 
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• Step 1 ‒ Experimental campaign on the mAbs production process: batch data are obtained 

from experiments performed on the development scale of the process under study according 

to the availability of resources. In this work, we consider a simulated process for the 

production of mAbs at the shake-flask scale (Section 5.2.2); 

• Step 2 ‒ In silico batch generation from a digital model: data on real batches are utilized 

through digital models of the process to drive the generation of in silico batches with a wider 

variety of behaviors. In particular, two alternative modeling strategies are adopted in this 

work: a first principles digital model (Section 5.2.3) and a hybrid digital model (Section 

5.2.4); 

• Step 3 ‒ Multivariate data-based modeling: all the available data (both the ones from the 

process and the ones generated in silico) are fed to a data-based model to support the process 

development and scale-up. In this work, process and in silico generated batches are 

regressed to estimate a CQA (i.e., mAb titer at harvest) through multivariate latent variable 

modeling (Section 5.2.5). In this way, the multivariate models exploit the data of a few 

process batches and the additional process knowledge extracted from the in silico generated 

batches, to make estimations of cell behavior for new samples from the culture variable 

time trajectories. Such estimations, especially in the presence of biological variability in the 

batches, are not feasible with the digital models of the process, which can only estimate the 

culture variable trajectories when the inputs (i.e., process initial conditions, feed 

composition, and scheduling) are manipulated given the biological characteristics already 

hardcoded in the digital model parameters. 

 
Figure 5.1 Methodological procedure for in silico data augmentation from digital models.  
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5.2.2 Process for the production of monoclonal antibodies 

We consider a simulated cell culture process for the production of mAbs in fed-batch mode at 

a shake-flask scale. The process is based on the well-established human embryonic kidney 

(HEK) cell first principles model (Kontoravdi et al., 2010). The available culture variables are: 

viable cell concentration (VCC); nutrients (i.e., glucose and glutamine); by-products 

concentrations (i.e., lactate and ammonia); and mAbs titer (i.e., antibody concentration). 

The variability among batches lies in the different cultured cell lines, which are simulated to 

display different specific productivity, 𝑄P = 𝑐mAb(𝑇) ∫ 𝑋vd𝑡𝑡=𝑇0⁄ , where 𝑐mAb(𝑇) is the mAbs 

titer at harvest and 𝑋v is the viable cell concentration along the batch (cell/L). For this purpose, 

the HEK model parameters are sampled from normal distributions with mean and standard 

deviation reported in Appendix D.1 Table D.1. These values are adjusted from the reference 

parameters found in the HEK model reference (Kontoravdi et al., 2010) in such a way as to 

obtain a variability of the batch time trajectories that mimic the dynamic behavior of real 

experimental batches at that scale. Furthermore, measurement error is simulated by adding ~6% 

white noise to the culture variables’ profiles, accounting for the typical measurement 

uncertainty of analytical equipment. 

An experimental campaign is carried out in 0.2 L cultures with an inoculation seed density of 2 ∙ 108 cell/L. The initial media composition is set to 25.1 mM of glucose and 5.1 mM of 

glutamine. Feeding is performed every 20 h starting from 10 h after cell seeding by feeding 

0.00875 L in 10 min. The feed composition is set to 50 mM of glucose and 10 mM of glutamine. 

The measurement sampling is performed prior to the feeding through a 0.0015 L withdrawal 

from the culture in 10 min, resulting in 10 measurement sampling points during the batch. 

All the considered experimental batches satisfy the following conditions: (i) the final mAbs 

titer is below 5000 mg/L; (ii) the peak of VCC is reached after 50 h; and (iii) the specific 

productivity is in the range 0–20 pg/(cell∙day). 
The available data are concerned with 100 batches, which are organized in: matrix 𝐗PC = [100 

batches×5 variables×10 time points] that contains the time profiles of all the culture variables; 

and vector 𝐲PC = [100 × 1] that contains the mAbs titer at harvest (time point 10). These data 

are used in different ways to calibrate digital and multivariate models. Similarly, 10 validation 

batches are available and organized in the matrix 𝐗PV = [10 × 5 × 10] for process data and 

vector 𝐲PV = [10 × 1] for mAbs titer. These validation batches are used to test the estimation 

performance of the multivariate models. 

In this study, a simulated process is selected, not only because it reduces the time and cost of 

the experimental campaign, but also because it allows a full knowledge of the relationship 

between CPPs and CQAs, and better control of both the process behavior and the biological 

diversity in the experiments. 
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5.2.3 Modeling strategy 1: First Principles Digital Model 

The first principles digital model (FPDM) is a modified version of the simplified mathematical 

model proposed by Jimenez del Val et al. (2016) describing a fed-batch mAbs production 

process (Jimenez del Val, Fan, et al., 2016). The culture variables described by the FPDM are 

VCC, glucose, lactate, and mAbs titer. The FPDM is modified with respect to the original model 

to better resemble the process. In fact, in the original model (Jimenez del Val, Fan, et al., 2016) 

cells grow until glucose is available in the culture and this causes a substantial difference 

between the behavior of the model and the process. This makes the original model unusable for 

the generation of batches that conform to the ones of the process. Accordingly, we added a 

simplified material balance for glutamine, and introduced growth limitation at low glutamine 

concentration and glucose consumption limitation at reduced cell growth. 

The simplified material balance for glutamine is defined as: d(𝑉c𝑐gln)d𝑡 = −( μ𝑌𝑥,gln)𝑋v𝑉c   , (5.1) 

where 𝑉c is the liquid volume in the culture (L), 𝑐gln is the glutamine concentration (mM), μ is 

the specific growth rate (h-1), and 𝑌𝑥,gln is the cell yield on glutamine (cell/mmol). 

In order to account for the effect of glutamine on cell growth, a limiting factor 𝑓lim is added to 

the specific growth rate expression: μ = μmax ( 𝑐glc𝐾glc+𝑐glc) − 𝑋vαx 𝑓lim   , (5.2) 

where μmax is the maximum specific growth rate (h-1), 𝐾glc is the Monod constant for the growth 

on glucose (mM), αx is the cellular carrying capacity (cell/mmol), and 𝑐glc is the glucose 

concentration (mM). The limiting factor 𝑓lim is defined as: 𝑓lim = 𝑐gln𝑐gln+𝐾gln   , (5.3) 

where 𝐾gln is the Monod constant for glutamine (mM). The limiting factor 𝑓lim decreases with 

the glutamine concentration, reducing cell growth when the glutamine decreases. 

To limit the glucose consumption with reduced cell growth, the glucose material balance is 

modified as: d(𝑉c𝑐glc)d𝑡 = 𝐹in𝑐glc,in − 𝐹out𝑐glc − 𝑄glc𝑋v𝑉c(𝑓lim + 𝑚glc)   , (5.4) 

where 𝑐glc,in is the glucose concentration in the feeding stream, 𝐹in and 𝐹out are the inlet and 

outlet flow rates of the bioreactor (L/h), respectively, 𝑄glc is the specific glucose consumption 

rate (mmol/(cell∙h)) and 𝑚glc (-) is the glucose maintenance constant. The complete FPDM 

used for the generation of in silico batches is reported in Appendix D.2. 
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5.2.3.1 In silico batch generation through First Principles Digital Model 

The FPDM is used for in silico batch generation. The reference parameters for FPDM are 

estimated from the reference process batch (i.e., obtained using the reference process 

parameters from Kontoravdi et al. 2010). In silico batches are generated by sampling the 

parameter values from a normal distribution with mean and standard deviation reported in 

Appendix D.2 Table D.2. These distributional parameters are heuristically determined to 

generate batches with a variability slightly larger than the one observed in the process batches. 

An example of in silico generated batches is reported in Figure 5.2: Figure 5.2a shows the time 

profile along the entire batch duration for viable cells concentration, and Figure 5.2b shows the 

time profile along the entire batch duration for mAbs titer. 

This strategy is used to generate 100 in silico batches. The generated variables profiles are 

subsampled in the same 10 time points in which the process measurements are available. The 

resulting data are organized in matrix 𝐗FPDM = [100 × 4 × 10], which contains the time 

profiles of the culture variables, and vector 𝐲FPDM = [100 × 1], which contains the mAbs titer 

at harvest. 

    
(a)                                                                                           (b) 

Figure 5.2 Example of batches generated in silico through the FPDM: (a) VCC profiles and 

(b) mAbs titer profiles for 100 batches. The thick red continuous lines represent the reference 

batch estimated from the process while the grey dashed lines represent the simulated ones. 

5.2.4 Modeling strategy 2: Hybrid Digital Model 

The hybrid digital model (HDM) is a hybrid semi-parametric model (Narayanan et al., 2019; 

Oliveira, 2004; Teixeira et al., 2005; von Stosch et al., 2014), whose considered culture 

variables are VCC, glucose, glutamine, lactate, ammonia, and mAbs titer. 

The HDM has the serial structure (Sansana et al., 2021; S. Yang et al., 2020) reported in Figure 

5.3, with a mechanistic section describing the material balances of the chemical species and an 
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artificial neural networks (ANN; Rosenblatt, 1958) to estimate the complex and unknown 

kinetic expressions from cell culture experimental data. 

 
Figure 5.3 Structure of the hybrid digital model to generate in silico batches.  

The HDM comprises the material balances for the culture variables of interest 𝐜 [𝑉 × 1] =[𝑋v 𝑐glc 𝑐gln 𝑐lac 𝑐amm 𝑐mAb] as: 

dd𝑡 [  
   𝑋v𝑐glc𝑐gln𝑐lac𝑐amm𝑐mAb]  

   = 𝛍max [  
   
𝑋v 0 0 0 0 00 −𝑋v 0 0 0 00 0 −𝑋v 0 0 00 0 0 𝑋v 0 00 0 0 0 𝑋v 00 0 0 0 0 𝑋v]  

   
[  
   

μ𝑋vμglcμglnμlacμammμmAb]  
   = 𝛍max𝐇(𝐜)𝛍(𝐜∗, 𝛚)   , (5.5) 

where 𝛍max (Teixeira, Alves, et al., 2007) is the vector of the maximum specific rates of 

production/consumption for each culture variable (reported in Appendix D.3 Table D.3), 𝛍(𝐜∗, 𝛚) = [μ𝑋v μglc μgln μlac μamm μmAb] is the vector of the specific 

production/consumption rates estimated by the ANN, 𝐇(𝐜) = [𝑉 × 𝑉] contains the known 

kinetic expressions, and 𝐜∗ = [𝑋v 𝑐glc 𝑐gln 𝑐lac 𝑐amm] is the reduced concentration 

vector used as input for the ANN. 

The matrix 𝐇(𝐜) contains all the known mechanistic information for the calculation of the 

reaction rates in Equation (5.5). In this work, the known mechanistic part of the reaction rates, 𝐇(𝐜), has no fitted parameters. 𝐇(𝐜) accounts for the dependence of the reaction rates on the 

cell concentration 𝑋v and the apparent stoichiometric coefficient, which indicates if a 

metabolite is produced or consumed. The maximum specific rates of production/consumption 𝛍max are constant parameters heuristically set in preliminary studies to appropriately scale the 

ANN outputs in the desired experimental ranges. 

The vector of specific production/consumption rates is modeled through an artificial neural 

network. In particular, a two-layer ANN is used to estimate the specific production and 

consumption rates from the reduced concentration vector 𝐜∗. The selected ANN has a 10-

neurons hidden layer with a hyperbolic-tangent activation function and a linear output layer 
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with 6 neurons (i.e., given by the dimension of 𝛍). The mathematical expression of the ANN 

is: 𝛍(𝐜∗, 𝛚) = 𝛚(2) tanh(𝛚(1)𝐜∗ + 𝛚0(1)) + 𝛚0(2)
   , (5.6) 

where 𝛚 is the weight vector, 𝛚0 is the bias vector and the superscript (1) and (2) refer to the 

hidden and output layer, respectively. In this case, it is assumed that the specific 

production/consumption rates do not depend on the mAbs titer while depending on the number 

of cells, nutrients, and by-products in the culture. 

The hybrid model identification is performed through the sensitivity method (Oliveira, 2004; 

Sansana et al., 2021), by backpropagating the errors in the concentration space through the 

model. In this work, the normalized sum of squared errors (𝑆𝑆𝐸) between the measured 

concentrations 𝑐𝑣 and the ones calculated by the HDM, 𝑐̂𝑣, is directly minimized as: argmin(𝑆𝑆𝐸) = argmin (∑ ∑ (𝑐𝑣̂(𝑡)−𝑐𝑣(𝑡))2𝜎𝑣𝑉𝑣=1𝑇𝑡=1 + λreg‖𝛍‖)   , (5.7) 

where 𝜎𝑣 is the standard deviation of the 𝑣-th process variable calculated over the training data, 𝑐𝑣(𝑡) is the measured concentration of the 𝑣-th culture variable at the 𝑡-th time instant, 𝑐̂𝑣(𝑡) is 

the calculated concentration of the 𝑣-th culture variable at the 𝑡-th time instant, and λreg = 0.05 

is a regularization term (A. Yang et al., 2011), which is added to aid training convergence. In 

this work, the error backpropagation is performed by calculating the gradient of the 

concentration errors (i.e., 𝑆𝑆𝐸) with respect to the ANN weights, because the hybrid model 

does not contain any mechanistic parameter to be fitted and the only adjustable parameters are 

the ANN weights. The gradient of the concentration errors (i.e., 𝑆𝑆𝐸) with respect to the ANN 

weights is calculated as: 𝜕𝑆𝑆𝐸𝜕𝛚 = ∑ ∑ (𝑐̂𝑣(𝑡) − 𝑐𝑣(𝑡))2 (𝜕𝐜𝜕𝛚)𝑡𝑉𝑣=1𝑇𝑡=1    , (5.8) 

where (𝜕𝐜 𝜕𝛚⁄ )𝑡 is the gradient of the concentrations with respect to the ANN weights, 

calculated with the sensitivity method (Oliveira, 2004). 

An Adam optimizer (Kingma & Ba, 2015) is then used to adjust the ANN parameters according 

to the calculated gradient, because it is nowadays one of the most effective algorithm to train 

ANNs. The hybrid model is trained for 400 iterations with a learning rate η = 10−3, and 

subsequent 300 iterations with a learning rate η = 10−4. Prior to the training, the ANN weights 

are initialized by sampling from a normal distribution 𝑁(0, 𝜎) where 𝜎 = 0.01. 

The integration of the HDM is performed stepwise between the feeding time points. A bolus 

feeding of glucose and glutamine (consistent with the training batches) is simulated by updating 

the initial concentration after the feeding according to (Narayanan et al., 2019): 𝑐𝑗(𝑡+) = 𝑐𝑗(𝑡−) + ∆𝑐𝑗(𝑡)   , (5.9) 
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where 𝑐𝑗(𝑡+) is the concentration of nutrient 𝑗 after the feeding, 𝑐𝑗(𝑡−) is the concentration of 

the nutrient 𝑗 before the feeding and ∆𝑐𝑗(𝑡) is the change in concentration of the nutrient 𝑗 (i.e., glc or gln) due to the feeding at time instant 𝑡. 

5.2.4.1 In silico batch generation through Hybrid Digital Model 

The HDM is used for in silico batch generation as an alternative to FPDM. First, the HDM is 

trained on 10 batches (Narayanan, Luna, et al., 2021), which are selected from 𝐗PC to cover a 

sufficient range of process variability. Then, in silico batches are generated by changing the 

maximum specific rate of production/consumption 𝛍max, which is kept constant during 

training. 

The values of 𝛍max are sampled from a normal distribution with mean and standard deviation 

reported in Appendix D.3 Table D.3. These values are heuristically selected, based on 

preliminary tests, to cover a sufficiently large variability around the process batch profiles, 

while preserving similarity with them. An example of the batches generated by the HDM is 

shown in Figure 5.4. 

 
Figure 5.4 Example of batches generated through HDM: mAbs titer profiles. In this example, 

10 batches are generated from 3 training batches taken from the process. The thick red 

continuous lines represent the training batches while the grey dashed lines represent the 

simulated ones. 

This strategy is used to generate 100 in silico batches, 10 from each batch used to train the 

HDM. The generated variables profiles are subsampled in the same 10 time points in which the 

process measurements are available. The resulting data are organized in 𝐗HDM =[100 × 5 × 10], which contains the time profiles of the culture variables, and vector 𝐲HDM =[100 × 1], which contains the mAbs titer at harvest. 
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5.2.5 Multivariate predictive modeling 

In this study, multi-way partial least squares regression (MPLS; Nomikos and MacGregor, 

1995) is used to estimate the CQA, namely, the mAbs titer at harvest, from the multi-

dimensional datasets of the correlated culture variables (both real and generated in silico) time 

trajectories. 

MPLS consists of a proper unfolding of the data followed by standard PLS modeling. 

Batch-wise unfolding is performed in this study to capture the correlation between the culture 

variables' time profiles and the response together with the cross-correlation between culture 

variables at different time points. In batch-wise unfolding, the two-dimensional slices at each 

time point 𝑡 = 1, 2. , … , 𝑇 of the matrix 𝐗 = [𝑁 × 𝑉 × 𝑇], 𝐗𝑡 = [𝑁 × 𝑉], where 𝑁 is the 

number of batches and 𝑉 is the number of variables, are horizontally concatenated, resulting in 

two-dimensional matrix 𝐗 = [𝑁 × 𝑉 ∙ 𝑇] = [𝐗1, 𝐗2, … , 𝐗𝑡, … , 𝐗𝑇]. Accordingly, the matrices 𝐗PC, 𝐗PV, 𝐗FPDM, and 𝐗HDM are unfolded in the bidimensional matrices: 𝐗PC = [100 × 5 ∙ 10], 𝐗PV = [10 × 5 ∙ 10], 𝐗FPDM = [100 × 4 ∙ 10], and 𝐗HDM = [100 × 5 ∙ 10]. 
Partial least squares regression (PLS) (Svante Wold et al., 2001) is a multivariate statistical 

linear regression technique that identifies the directions of maximum covariance between a 

regressor matrix 𝐗 = [𝑁 × 𝑉 ∙ 𝑇] and a response matrix 𝐘 = [𝑁 × 𝑀], where 𝑀 is the number 

of response variables. PLS decomposes both the regressor and response matrices into a common 

latent space of orthogonal latent variables (LVs). In this study, 𝐗 and 𝐘 are auto-scaled to zero 

mean and unit variance (i.e., by subtracting to each column its mean value and dividing each 

column by its standard deviation). PLS decomposes the auto-scaled matrices 𝐗 and 𝐘 as: 𝐗 = 𝐓𝐏T + 𝐄   , (5.10) 

and 𝐘 = 𝐓𝐐T + 𝐅   , (5.11) 

with 𝐓 = 𝐗𝐖∗   , (5.12) 

where 𝐓 = [𝑁 × 𝐴] is the scores matrix that captures the relationships among batches according 

to the features of the covariance between 𝐗 and 𝐘; 𝐏 = [𝑉 ∙ 𝑇 × 𝐴] and 𝐐 = [𝑀 × 𝐴] are the 

loadings matrices which capture the relationships among the variables’ dynamics in 𝐗 and 

variables in 𝐘, respectively; 𝐄 = [𝑁 × 𝑉 ∙ 𝑇] and 𝐅 = [𝑁 × 𝑀] are the residual matrices for 𝐗 

and 𝐘, respectively, which contain the information that is not described by the model; 𝐖∗ is the 

weights matrix, which directs the scores to be the most predictive for the response 𝐘; 𝐴 is the 

number of selected LVs; and the superscript T represents the transpose operation. In this work, 

the selected number of latent variables is 𝐴 = 2 which minimizes the estimation error of the 

responses in cross-validation (Valle et al., 1999). 
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PLS is used to estimate the response variable 𝐘̂ for a set of 𝑂 new batches, whose predictors 𝐗new = [𝑂 × 𝑉 ∙ 𝑇] are known, from: 𝐘̂ = 𝐗new𝐖∗ T   , (5.13) 

To improve PLS estimations, variable selection (Barberi et al., 2022; Mehmood et al., 2012) is 

used, in such a way as to identify and retain in the model only the variables with the largest 

information content on the mAbs titer and exclude the other variables. Variable importance is 

assessed through the variable importance in projection (VIP; Eriksson et al., 2006) index: 

𝑉𝐼𝑃𝑣 = √𝑉∙𝑇∙∑ 𝑅Y,𝑎2 𝑤𝑣𝑎2𝐴𝑎=1√∑ 𝑅Y,𝑎2𝐴𝑎=1    , (5.14) 

where 𝑅Y,𝑎2  is the 𝐘 variance captured by the 𝑎-th latent variable and 𝑤𝑣𝑎 is the weight 

corresponding to the 𝑎-th LV and 𝑣-th 𝐗 variable. In this work, the selection of variables with 𝑉𝐼𝑃 > 1 is performed over a 100-iteration Monte Carlo cross-validation; only variables with 

high selection frequency (i.e., 80% of the iterations with 𝑉𝐼𝑃 > 1) are considered informative 

for the estimation and used to recalibrate the model. 

The mAbs titer estimation performances are evaluated through the mean absolute prediction 

error (MAPE): 𝑀𝐴𝑃𝐸𝑚 = ∑ |𝑦𝑚,𝑜−𝑦̂𝑚,𝑜|𝑂𝑜=1 𝑂    , (5.15) 

where 𝑦̂𝑚,𝑜 is the estimation of the 𝑚-th response variable for the 𝑜-th batch and 𝑦𝑚,𝑜 is the 

measured value. 

When process data only are utilized for the titer estimation, the model calibration matrices 𝐗 

and 𝐘 are obtained from 𝐗PC and 𝐲PC. As an alternative, when few data are available from 

process and in silico generated batches are used in PLS modeling to augment the calibration 

dataset, data from the digital model 𝐗FPDM and 𝐲FPDM (or 𝐗HDM and 𝐲HDM) are vertically 

concatenated to the available process data in 𝐗PC and 𝐲PC to create augmented matrices 𝐗 and 𝐘. Hence, the number of batches that is used for the model calibration is much larger than the 

number of batches available from the process. Autoscaling is applied as a data normalization 

preprocessing directly on the augmented matrices 𝐗 and 𝐘. Note that in this study the process 

and the digital models have very similar statistical characteristics and separate preprocessing 

did not improve model performance. However, if in silico generated data showed different 

statistical characteristics with respect to process data, separate and specific preprocessing would 

be required. 
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5.3 Results and Discussion 

The results are organized as follows. First of all, the mAbs titer at harvest estimation 

performance is presented when only the process batches are available and then compared to the 

performance when the in silico generated batches are present. Furthermore, the ability to 

identify the most influential CPPs for mAbs productivity is discussed critically for both the 

model on the process batches and the improved models with augmented data. 

5.3.1 Monoclonal antibodies titer estimation 

In this section, we analyze the performance of an MPLS that estimates the mAbs titer at harvest 

when only the process batches are used (i.e., base case). Then, this model is compared to the 

one in which process data are augmented with the in silico batch data generated through the 

digital models. 

5.3.1.1 Titer estimation performance and sensitivity to the available number of process 

calibration batches 

Here, we analyze the estimation performance of the MPLS model and assess the sensitivity of 

its estimation performance to the number of process batches available for calibration. 

For this purpose, we iteratively increase the number of calibration batches from 3 to 50, by 

randomly extracting them from 𝐗PC and 𝐲PC. This extraction is repeated 20 times for each 

number of calibration batches. At each step, a 2 LVs MPLS model is built with the available 

calibration batches and validated with 𝐗PV and 𝐲PV. The titer estimation performance for the 

validation dataset and its sensitivity to the number of calibration batches are examined in terms 

of MAPE (averaged over the 20 iterations) as a function of the number of batches used to 

calibrate the MPLS model (Figure 5.5). As expected, MAPE (black dashed line in Figure 5.5) 

decreases with an increasing number of calibration batches. In particular, with more than 20–
25 calibration batches, the MAPE average stabilizes around 210 mg/L, which is a good 

estimation performance, because it is comparable to the measurement error of ~150 mg/L. The 

MAPE increases when less than 20 batches are used for calibration and reaches large values 

when the number of batches is lower than 10 (MAPE > 230 mg/L). Note that a substantial 

increase of the estimation error is observed exactly in the range of experimental runs typically 

performed at the shake-flask scale, which spans between 12 and 24. Due to these inaccurate 

estimations, the identification of cell lines meeting the target mAb titer to be progressed in the 

scale-up becomes much more difficult, especially when the number of available experimental 

runs approaches 10. Furthermore, it should be highlighted that with less than 10 batches the 

model performance is inaccurate. 

Furthermore, the MAPE variability (in terms of the 95% confidence region of the Gaussian 

MAPE distribution over different iterations, grey shaded area in Figure 5.5) increases with a 
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low number of available batches. This indicates that the lower the number of calibration 

batches, the more the estimation performances are erratic and depend on the batches included 

in the model. In fact, if the model is calibrated on a small number of batches, the limited portion 

of the wide process variability captured by the model is insufficient to correctly describe new 

batches whose operating conditions may be far from the ones of a limited calibration dataset. 

 
Figure 5.5 MPLS performance sensitivity to the available process calibration batches in the 

estimation of mAbs titer at harvest. Black dashed line—average validation MAPE (averaged 

over the 20 random selections of the calibration batches from the set of process batches) as 

a function of the number of calibration batches; grey area—95% confidence area of the 

distributions.  

For this reason, the generation of in silico batches could be valuable to widen the variability in 

calibration data and cover new portions of variability which cannot be included in a limited set 

of calibration batches. This will eventually improve the estimation performance, providing an 

invaluable benefit to the selection of high productive cell lines, especially when the number of 

available batches is lower than 10. Since this case is often encountered in the biopharmaceutical 

industry at the scales of shake flasks and stirred bioreactors, where the typical number of 

available batches ranges between 1 and 8, in the following, we will focus on this range of 

batches available from the process. 

5.3.1.2 Effect of data augmentation on the estimation performance 

In this section, we assess the sensitivity of the MPLS estimation performance to the number of 

calibration process batches when data are augmented through in silico batches. 

For this purpose, we iteratively increase the number of process calibration batches from 1 to 8, 

randomly extracted from a subset of 10 batches contained in 𝐗PC and 𝐲PC (the same 10 batches 

used for the training of the HDM, Section 2.4.1) to inspect the range of available process 

batches in which unsatisfactory performances were observed in the base case (Section 3.1.1). 

The extraction is repeated 20 times for each number of process batches. At each step, a 2 LVs 

MPLS model is built with the available process batches concatenated either: (i) with 30 FPDM 



Data augmentation to support Biopharmaceutical process development through Digital Models 123 

 
 © 2022 Gianmarco Barberi, University of Padova (Italy)  

in silico generated batches randomly extracted from 𝐗FPDM and 𝐲FPDM; or (ii) with the 10 HDM 

in silico batches from 𝐗HDM corresponding to each process batch used in MPLS calibration. 

The number of in silico batches is selected to increase the variability in batch behavior without 

overwhelming the information provided by process data. At each repetition, the MPLS models 

are then validated with 𝐗PV and 𝐲PV. In all the cases, only the most important variables for the 

estimation are included in the models. Details about the selected variables will be given in the 

next section. 

We compare the MAPE distributions in the estimation of the mAbs titer at harvest obtained 

through MPLS models built on: (i) process batches; (ii) process batches plus FPDM in silico 

generated batches; and (iii) process batches plus HDM in silico generated batches. 

The MAPE distributions in the 20 repetitions are reported in Figure 5.6 as a function of the 

number of calibration process batches through boxplots. The boxes represent the 25° and 75° 

percentile with the median value; the dots represent the mean value of the MAPE; the error bars 

represent the 95% confidence intervals; and the diamonds represent errors outside the 95% 

confidence intervals. In Figure 5.6, green boxes represent the error distribution of the base case; 

red boxes represent the error distribution of the FPDM data augmentation strategy; and blue 

boxes represent the error distribution of the HDM data augmentation strategy. 

In the base case, MAPE decreases with the number of available process batches, reaching ~180 

mg/L when 8 process batches are used for model calibration (note that this value differs from 

Section 5.3.1.1 because the variable selection is applied here, indicating that variable selection 

improves the estimation performance). 

When more than 5 process batches are available, both data augmentation strategies show similar 

performance (170 < MAPE < 200 mg/L), even if the lowest average error values are obtained 

in the process base case (down to ~150 mg/L). The addition of in silico batches considerably 

reduces the variability of the estimation error with respect to the process base case, 

independently of the augmentation strategy. This indicates that the augmented number of 

batches helps to increase the estimation robustness and reduces the sensitivity of the 

performance to the specific calibration batches. However, the average estimation error slightly 

increases because the in silico batches present some differences from the process and add 

variability to the dataset. 

By contrast, when 4 or 5 process batches are available, the addition of the simulated batches is 

highly beneficial. In fact, both FPDM and HDM augmentation strategies improve the 

estimation performance and reduce error variability (170 < MAPE < 220 vs. 150 < MAPE < 

300 mg/L). In this case, the FPDM augmentation strategy provides the largest improvement. 

When even less than 4 process batches are available, the FPDM augmentation strategy is very 

helpful for the mAbs titer estimation, because it allows better performances than both the base 

case and the HDM generation strategy. Good models can even be built when a very reduced 

number of process batches is available, namely fewer than 3 (190 < MAPE < 250 mg/L). In this 
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case, the HDM augmentation strategy does not improve the estimation performance (results not 

shown) and provides errors that are similar to the ones of the base case (300 < MAPE < 500 

mg/L). This is due to the high similarity between the process batches and the ones generated in 

silico through HDM. 

These results show that the FPDM generation strategy allows to properly mimic the behavior 

of the process batches and identify the batches with high mAb titer to be progressed in the scale-

up. This is because it improves the multivariate regression model estimation performance and 

increases the captured variability independently on process batches availability. The HDM 

augmentation strategy provides very good estimation performance when more than 4 or 5 

process batches are available and allows to represent the behavior of the process batches more 

accurately than the FPDM, which makes the HDM unhelpful when the number of calibration 

batches is extremely small. 

 
Figure 5.6 Validation estimation performance comparison: MAPE distribution profiles from 

a 20-repetitions validation in the estimation of mAbs titer at harvest through MPLS. Green 

boxes—process base case; red boxes—FPDM data augmentation strategy; blue boxes—
HDM data augmentation strategy. The boxes represent the 25° and 75° percentile and the 

median value, the dots represent the mean value of the MAPE, the error bars represent the 

95% confidence intervals, and the diamonds are errors outside the 95% confidence intervals.  

5.3.2 Process understanding for mAbs titer estimation 

In this section, we analyze the most important CPPs (i.e., culture variables) for the estimation 

of mAbs titer at harvest when the data from the process are used alone and when they are 

combined with the batches generated through the digital models. 

5.3.2.1 Process understanding with process batches only 

In this section, we compare the identification of the most important culture variables for the 

estimation of mAbs titer at harvest in two scenarios: Scenario 1, rich in available data from the 
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process (i.e., a high number of available batches, 𝑁P = 80 batches), and Scenario 2 with only 

limited data (i.e., number of available batches 𝑁P = 80). 

For this purpose, two MPLS models are built on 2 LVs to estimate the mAbs titer at harvest, 

one for each scenario. The models are built 100 times using batches randomly extracted from 𝐗PC and 𝐲PC. At each iteration, the 𝑉𝐼𝑃 index is calculated for the model variables, and the 

importance of each culture variable is assessed by selection absolute frequency, namely the 

number of iterations in which a variable has 𝑉𝐼𝑃 > 1. 

The importance of the culture variables at each time point is shown in Figure 5.7 through a 

heatmap of the selection absolute frequency: the green color represents variables that are 

important with high frequency (>75–80) for the estimation of the mAbs titer at harvest, while 

the red one represents variables which are important only in few iterations (<20–25). 

 
(a) 

 

(b) 

Figure 5.7 Process understanding for mAbs titer estimation through MPLS variable 

importance at each time point: selection frequency for a) MPLS model calibrated with 80 

process batches, and b) MPLS model calibrated with 8 process batches, randomly extracted 

from 𝑿𝑃𝐶 and 𝒚𝑃𝐶. 

In Scenario 1, when MPLS is calibrated with 𝑁 = 𝑁P = 80 batches (Figure 5.7a), glucose, 

VCC, and lactate show high importance for mAbs titer estimation in the second half of the batch 
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(70 to 170 h), while glutamine shows high importance in the first half (10 to 50 h). Other 

variables at other time points have a very low selection frequency, except for ammonia on the 

second and third day of culture. As expected, the most important factors for the estimation are 

the concentration of viable cells (VCC) at later culture stages, which represents the number of 

cells that can produce mAbs, and the available glucose, which represents the available nutrient 

for growth and mAbs production. Similarly, glutamine, which is the limiting nutrient in the 

initial part of the batch and remains constant after the initial few days, is identified as 

particularly important within the first 50 h of the experimental batches. Lactate, instead, 

significantly limits cell growth only above a certain concentration, confirming its importance 

only in the second half of the batch. Moreover, a high concentration of ammonia in the initial 

part of the batch increases cell death causing a reduction in the number of producing cells, hence 

limiting mAbs production. Accordingly, ammonia shows moderate importance only in the first 

few days of culture. 

The variable importance obtained in Scenario 2, the model calibrated with 8 batches (Figure 

5.7b), indicates that glucose and VCC are important in the second half of the batch, while 

glutamine is important in the first half. However, this model fails in the identification of the 

importance of lactate and ammonia. In fact, their importance is not always significant as in the 

previous case. Furthermore, the model identifies as mildly important variables that were 

completely uninfluential in the previous case (see ammonia, glutamine, and VCC). 

According to these results, the limited availability of batches does not allow completely reliable 

identification of the CCPs that are most related to the CQAs. This spoils the process 

understanding that can be achieved through the multivariate latent variable model. For this 

reason, the generation of in silico batches could be a valuable strategy to improve process 

understanding and performance. 

5.3.2.2 Process understanding supported by FPDM in silico data augmentation 

Here, we study the impact that the number of available batches has on the identification of the 

most important process factors for the estimation of the mAbs titer at harvest when in silico 

batch generation is performed by means of the FPDM. 

The procedure utilized here is similar to the one used in Section 3.2.1. We build a 2 LVs MPLS 

with 𝑁P = 8 process batches plus 𝑁FP = 80 FPDM generated in silico to estimate the mAbs 

titer at harvest. The model building is repeated 100 times randomly selecting the process 

calibration batches from a subset of 10 batches contained in 𝐗PC and the FPDM calibration 

batches from 𝐗FPDM. The importance of each culture variable is assessed similarly to Section 

5.3.2.1. In this case, it is worth noticing that, since the ammonia is not modeled by the FPDM, 

it is not present in this MPLS model. 

The importance of the culture variables at each time point is shown in Figure 5.8 in terms of 

selection frequency. VCC, glucose, and lactate are important for the estimation of mAbs titer 
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from the second day of culture. This is coherent with important variables identified in Scenario 

1, when a large number of process batches are available. Differently from the previous case, 

the importance of the glutamine in the first half of the batch is not identified. This is due to the 

simplified nature of the glutamine balance, which has not a relevant impact on the first 

principles model. 

 
Figure 5.8 Process understanding for mAbs titer estimation through MPLS variable 

importance at each time point: selection frequency for MPLS model calibrated with 8 process 

batches, randomly extracted from a subset of 10 batches contained in 𝑿𝑃𝐶 and 𝒚𝑃𝐶, and 80 

FPDM in silico generated batches from 𝑿𝐹𝑃𝐷𝑀  and 𝒚𝐹𝑃𝐷𝑀.  

This result shows that the generation of in silico batches through the FPDM model provides an 

improved identification of the important variables, even if a limited number of process batches 

is available. In fact, the addition of in silico batches allows identifying more clearly the 

variables that are important for the estimation than process Scenario 2 (Section 5.3.2.1), having 

the same availability of process batches. However, this improved understanding strongly relies 

on the effectiveness of the model used for batch generation. In fact, the in silico batches do not 

allow correct identification of the glutamine importance, due to the simplified nature of its 

equations. Despite that, in absence of additional process information, the FPDM in silico batch 

generation is helpful to improve process understanding, even when a simplified model is 

available. 

5.3.2.3 Process understanding supported by HDM in silico data augmentation 

In this section, we study the impact of the HDM in silico batch generation on the identification 

of the most predictive variables for the mAb titer at harvest. The procedure is analogous to the 

one presented in the previous section, but here HDM in silico batches are combined with 

process ones. The 10 HDM batches corresponding to each training process batch are used for 

the augmentation. 

The importance of the culture variables for the titer estimation at each time point is shown in 

Figure 5.9. VCC, glucose, and lactate in the second half of the batch (70–170 h) are identified 

to be the most important variables for mAbs titer estimation. This result is in accordance with 
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the important variables identified in Scenario 1, when a large number of process batches are 

available. However, lactate shows an average selection frequency (~60), meaning that the 

identified relationship between lactate and mAbs titer is not as strong as it appears from the 

process batches. Furthermore, similarly to Scenario 1, glutamine is correctly identified as 

important in the first half of the batch (10–50 h) and irrelevant in the second half, while 

ammonia as mildly important only in the first half of the batch. However, glutamine at 10 h has 

a relatively low selection frequency (~40), indicating that its importance is not correctly 

identified. Finally, several variables that result to be uninfluential from the process data 

(Scenario 1) show an average selection frequency (~50). 

This result shows that HDM in silico batch generation does not identify the important process 

factors which are completely faithful to the one provided by process batches. In fact, the 

identification performance is not better than process Scenario 2 when only the reduced number 

of process batches is used. This is probably due to the high representation accuracy of the HDM, 

resulting in in silico batches very similar to the training ones. For this reason, the HDM does 

not increase the amount of information contained in the augmented data, providing less accurate 

identification of the important factors. 

 
Figure 5.9 Process understanding for mAbs titer estimation through MPLS variable 

importance at each time point: selection frequency for MPLS model calibrated with 8 process 

batches, randomly extracted from a subset of 10 batches contained in 𝑿𝑃𝐶 and 𝒚𝑃𝐶, and 80 

HDM in silico generated batches extracted from 𝑿𝐻𝐷𝑀 and 𝒚𝐻𝐷𝑀, 10 for each of the 

corresponding calibration batches.  

5.4 Conclusions 

In this work, we investigated the utility of in silico data augmentation through digital models 

to support the development of monoclonal antibodies in scenarios when only a few experiments 

can be carried out at a given scale. In particular, we investigated two strategies for in silico data 

generation: a first principles digital model and a hybrid digital model. We applied these 
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strategies to increase the number of available data used in multivariate regression models to 

estimate the antibody titer at harvest in a simulated process for the production of monoclonal 

antibodies on a shake-flask scale. 

Both in silico data generation strategies demonstrated to be very effective. In particular, the first 

principles digital model augmentation strategy allowed a significant improvement in the 

estimation performance especially when the number of available process batches is extremely 

limited (1-5), providing a low estimation error of the antibody titer at harvest, comparable with 

the typical measurement errors (~150–200 mg/L). Furthermore, the first principles digital 

model improved process understanding. In fact, it allowed to clearly provide process 

understanding and identify the most important CPPs for the CQA (namely, the mAbs titer at 

harvest), even when the availability of process batches is limited (<10). The hybrid digital 

model generation strategy, instead, did not allow an equivalent identification of the important 

CPPs. Nonetheless, it improved the estimation performance when the number of available 

process batches is greater than 4. It should be highlighted that the success of in silico data 

generation relies on the quality of the digital model and its representativeness of the process. 

In silico data generation could provide great advantages at different scales of the product and 

process development, especially at the stirred bioreactor scales, where the number of available 

batches is typically between 2 and 10. 

This study is a proof of concept for the use of in silico data generation in the biopharmaceutical 

field and further studies will be oriented to adapt the investigated strategies to in vitro 

applications. Specifically, different ways of combining and pre-processing process and in silico 

data will be studied. Furthermore, strategies to estimate the parameters for in silico data 

generation from the experimental batches will be developed. 

 



 

 



 

 

Chapter 6 

Bioprocess feeding optimization through 

in silico dynamic experiments and hybrid 

digital models* 

In this Chapter, we compare the feeding schedule optimization of mammalian cell cultures 

performed by means of an in silico experimental campaign on a hybrid digital model and an 

experimental campaign on the process. This to show if the in silico experimental campaign 

permits to accelerate the experimentation and to reduce the experimental burden. As a proof of 

concept, the proposed methodology is applied on a simulated process for the production process 

of monoclonal antibodies at 1-L shake flask scale. Design of Dynamic Experiments (DoDE) is 

used to design optimal experiments that are then utilized to train a hybrid semi-parametric 

digital model. Despite the hybrid digital model requires only a very limited number of 

experiments to be accurately trained (i.e., 9), it outperforms the results obtained by the 

experimental campaigns planned with DoDE on a much larger number of experiments (i.e., 31), 

achieving a 2.8% higher antibody titer than the DoDE campaigns and a 34.9% improvement in 

the antibody titer with respect to the experimental campaign used to train the hybrid model  

6.1 Introduction 

Monoclonal antibodies (mAbs) are biological drugs which are gaining great interest for the 

treatment of autoimmune, oncological and infectious diseases (Castelli et al., 2019): in 2018 

they represented 53% of the overall biopharmaceutical approvals by the regulatory agencies 

and 65.6 % of the entire biopharmaceutical sales (Walsh, 2018). At the industrial scale, mAbs 

are produced in fed-batch cultures of mammalian cells, which are appositely generated to 

secrete the desired product (O’Flaherty et al., 2020; Wurm, 2004).  
The development of mAbs is multi-step process which requires a lot of resources in terms of 

time and capital investments, because it usually lasts several years and costs billions of dollars 

(Epifa, 2021; Farid et al., 2020). The upstream development of mAbs starts with cell line 

generation, screening and selection, and process characterization. At this stages, a large pool of 

 
* Barberi, G., Giacopuzzi, C., Facco, P. Bioprocess feeding optimization through in silico dynamic experiments and hybrid 

digital models - A proof of concept. In preparation 
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producing cell lines is generated and tested at different process scales (Barberi et al., 2022; 

Facco et al., 2020) to identify the ones meeting the desired performance in terms of growth, 

productivity and product quality (Gronemeyer et al., 2014; Tripathi & Shrivastava, 2019). 

Furthermore, the relationship between critical process parameters (CPP) and critical quality 

attributes (CQA) is studied for regulatory compliance and for the following process 

optimization phase. During process optimization, the bioreactor operating parameters, in terms 

of temperature, pH, agitation, dissolved oxygen, etc., are adapted to the specific host system to 

enhance cell growth and specific productivity (Gronemeyer et al., 2014; F. Li et al., 2010; 

Tripathi & Shrivastava, 2019). Similarly, an appropriate optimization of the medium and 

feeding strategy is required to balance cell growth, productivity and product quality (S. H. Kim 

& Lee, 2009; Ling et al., 2015; Tripathi & Shrivastava, 2019).  

High-throughput scaled-down equipment and statistical Design of Experiments (DoE) are the 

most common methodologies to optimize media and feeding strategy in a systematic way (F. 

Li et al., 2010; Mora et al., 2019; W. Zhou et al., 1997). Typically, cell cultures are fed with 

frequent boluses of glucose and glutamine to maintain a low concentration, which minimize the 

production of by-products, such as lactate and ammonia (F. Li et al., 2010). Hence, the 

optimization of the feeding strategy requires to determine the best way of providing feed 

boluses over time. However, DoE only deals with “static” factors. To deal with the batch 

process dynamics, DoE can be exploited by assigning a different DoE factor to the feeding 

action at each day (Mora et al., 2019), but this results in a design with too many factors that 

requires several dozens of experiments. An appropriate solution to this issue is the adoption of 

Design of Dynamic Experiments (DoDE), which guarantees to optimize time-varying factors 

while minimizing the number of experimental runs (Georgakis, 2013). In fact, DoDE utilizes 

dynamic subfactors to code the time-varying factors’ profiles, and then build a Response 
Surface Model (RSM) to correlate the factors’ dynamic profile to the CQA. Research on DoDE 
application in the bioprocessing field is still ongoing, but some applications on in silico 

fermentation processes (Klebanov & Georgakis, 2016) and simulated mammalian cell cultures 

(Wang & Georgakis, 2017) are available in the Literature.  

However, despite being designed to maximize the content of information obtained by the 

experiments while minimizing the number experimental runs, the number of experiments 

designed by DoDE rapidly increases with the number of dynamic variables and the complexity 

of their dynamic profiles, leading to high numbers of required experimental runs. Since each 

experimental run can last for several weeks and cost tens of thousands of dollars, the duration 

and cost of large experimental campaigns limits the applicability of DoDE in the 

biopharmaceutical industry. Accordingly, strategies to limit the allocation of resources for the 

experimental campaigns are of paramount importance.  

Hybrid semi-parametric digital models represent an innovative solution to reduce experimental 

requirements. They combine mechanistic knowledge of the system under investigation with 
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data-driven methods, which learn complex and possibly unknown relationship among the 

system variables from experimental data (Sansana et al., 2021; von Stosch et al., 2014; S. Yang 

et al., 2020).  

Hybrid semi-parametric models were widely applied to the bioprocess development for tasks 

such as prediction, process understanding, and process and quality monitoring. For example, 

an improved understanding of the relationship of biomass and productivity with the process 

parameters in microbial cell culture was achieved through hybrid semi-parametric models (von 

Stosch et al., 2016), while good prediction accuracy was attained by hybrid models trained on 

intensified DoE data (von Stosch & Willis, 2017), allowing to accelerate upstream process 

characterization (Bayer, Striedner, et al., 2020). In mammalian cell cultures, the prediction 

performance of hybrid models were tested in interpolation and extrapolation scenarios 

(Narayanan, Luna, et al., 2021), while compared to purely multivariate techniques the 

prediction of the main culture variables through hybrid models resulted more accurate 

(Narayanan et al., 2019). In the same context, hybrid semi-parametric models coupled with 

Extended Kalman Filter was used to monitor the glucose concentration in bioreactors, 

suggesting the appropriate timing for the feeding action to avoid cell starvation (Narayanan et 

al., 2020).  

Hybrid semi-parametric models were also used for bioprocess optimization. For example, the 

optimal processing conditions (Ferreira et al., 2014) and glucose feeding strategy (Teixeira et 

al., 2006) for microbial cell cultures were identified through an iterative batch-to-batch strategy 

based on hybrid models: the optimal condition identified by the hybrid model at each step was 

used to retrain the model for further optimizations. A similar strategy identified static process 

parameters improving the product yield in E. Coli cultures by means of 9 experimental runs, 

only, 5 from the initial exploratory campaign, and 4 suggested in the batch-to-batch 

optimization (Bayer et al., 2021). Furthermore, the feeding schedule of mammalian cell culture 

was optimized by means of hybrid semi-parametric models (Teixeira et al., 2005; Teixeira, 

Alves, et al., 2007), showing the applicability of these new methodologies in mammalian cell 

culture optimization.  

Despite hybrid models were applied for the bioprocess optimization, and their added value on 

the optimization of mammalian feeding schedule was proven, the advantages of using hybrid 

semi-parametric models in feeding schedule optimization during bioprocess development are 

underexplored, and research is still needed to allow a consistent applicability of hybrid models 

in bioprocess optimization.  

This study compares an in silico experimental campaign for the optimization of the feeding 

schedule in mammalian cell cultures through hybrid digital models with an experimental 

campaign on the process to evaluate if the in silico experimental campaign can accelerate the 

experimentation and reduce the experimental burden in the process development. In particular, 

we use a hybrid semi-parametric model calibrated on the experiments designed through DoDE 
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in such a way as to identify the time profiles of fed glucose and glutamine which maximize the 

antibody titer. The proposed methodology is tested on a well-established simulated process for 

the production of mAbs at a shake flask scale.  

6.2 Materials and methods 

In this Section, the mathematical methodologies used in this Chapter are presented. 

6.2.1 Proposed methodology 

In this work, an in silico experimental campaign (Strategy #1) for the optimization of the 

feeding schedule of mammalian cell cultures is proposed (Figure 6.1a). The adopted procedure 

comprises five steps: 

1. DoDE experiments planning: initially, experiments are planned according to a DoDE 

(Section 6.2.2) on 2 dynamic factors, namely, the time profiles of glucose and glutamine 

concentrations, and a response, namely, the antibody titer at harvest; 

2. experiments execution: planned experiments are executed on a simulated process 

(Section 6.2.3). In this study, we used a simulated process because it allows to know 

exactly the relationship between nutrients and antibody titer which can be exploited for 

identifying the optimal feeding schedule, which is the reference to evaluate the 

performance of the proposed optimization strategy. Furthermore, it allows to follow in 

real-time the entire time profiles of the culture variables, whose measurements in a real 

case are available only at a much lower frequency (every few hours); 

3. training of the hybrid model: a hybrid semi-parametric model (Section 6.2.4) is trained 

on the experiments executed at step 2; 

4. optimization: a genetic algorithm (Section 6.2.5) is used to identify the feeding schedule 

maximizing the antibody titer at harvest. This algorithm exploits the hybrid model to 

simulate in silico experiments and predict the resulting antibody titer given the profiles 

of glucose and glutamine. In this work, genetic algorithm was used to avoid the complex 

calculation of the objective function gradients and accelerate the optimization step by 

requiring only the evaluation of the objective function; 

5. execution of the confirmatory experiment at the optimal conditions: once the optimal 

nutrient profiles (i.e., feeding schedule) are identified, they are executed on the process 

to assess the antibody titer that the process can achieve and the reliability of the 

predicted values. 

Optimization Strategy #1 is compared with optimization Strategy #2 (Figure 6.1b), namely, a 

standard experimental campaign for the optimization of the feeding schedule carried out 

directly on the process. The experimental campaign has the same steps 1 and 2 as the ones of 

Strategy #1, but continues with step 3-5 as follows: 
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3. response surface modeling: a RSM is built with the experiments executed at step 2 

according to the DoDE theory. The model is used to predict the antibody titer at harvest 

from the DoDE dynamic subfactors, after being updated by excluding the effects with 

low influence on the response (Section 6.2.2);  

4. optimization: in this case, the genetic algorithm exploits the RSM to predict the antibody 

titer given the profiles of glucose and glutamine;  

5. execution of the confirmatory experiment at the optimal conditions: similar to Strategy 

#1. 

The confirmatory experiments obtained at step 5 of both optimization Strategies are then 

compared with the process optimum, which is known in this study because the process is 

simulated. In the next Sections, details on the DoDE, the process, the hybrid model, and the 

techniques used for the experimentation and the optimization are presented. 

                                        
(a)                                                                                           (b) 

Figure 6.1 Proposed methodology: (a) optimization Strategy #1 (in silico), and (b) 

optimization Strategy #2 (experimental).  

6.2.2 Design of Dynamic Experiments 

Design of Dynamic Experiments (Georgakis, 2013) is used in this work to plan the experimental 

campaign for the optimization of the glucose and glutamine profile in the cell culture. In DoDE, 

the time-varying factors (i.e., manipulated variables) are expressed as normalized dynamic 

variables 𝑧(𝜏), which varies between -1 and 1. Normalized dynamic variables are the sum of 

orthogonal time-varying profiles weighted by dynamic subfactors 𝑥𝑖, which are equivalent to 

the Design of Experiment factors. The normalized dynamic variables are defined as: 
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𝑧(𝜏) =  ∑ 𝑥𝑖𝑃𝑖−1(𝜏)𝐼𝑖=1    , (6.1) 

where 𝑃𝑖−1(𝜏) is a shifted Legendre polynomial of degree 𝑖 − 1, and 𝜏 = 𝑡 𝑡𝑏⁄  is the 

dimensionless culture time (i.e., the % of experimental batch completion), with 𝑡𝑏 being the 

culture duration. Details on the expression of the Legendre polynomials can be found in the 

original reference by Georgakis (2013).The number of subfactors defines the maximum degree 

of the 𝑧(𝜏) profile. In this work, to have independent profiles for each nutrient with second 

degree curvature, and avoid an excessive number of factors, 𝐼 = 3 dynamic subfactors are used 

for each nutrient, summing up to a total of 𝐾 = 6 dynamic subfactors: specifically, subfactors 𝑥1glc, 𝑥2glc, 𝑥3glc refer to the glucose profile and 𝑥1gln, 𝑥2gln, 𝑥3gln to the glutamine one. 

Independently on the specific nutrient, 𝑥1 (Figure 6.2a) controls the initial value of the profile 

(e.g., 1 correspond to the top of the interval, while -1 to the bottom), 𝑥2 (Figure 6.2b) controls 

the overall increasing or decreasing tendency of the profile (e.g., 1 correspond to fully 

increasing profiles, while -1 to fully decreasing), and 𝑥3 (Figure 6.2c) controls the concavity of 

the profile (e.g., 1 upward and -1 downward).  

   
 (a)  (b) (c) 

Figure 6.2 Effect of the dynamic subfactors on the normalized dynamic variable z(τ) for a 3 
subfactors design: (a) 𝑥1, (b) 𝑥2, and (c) 𝑥3. The red arrows indicate the direction of 

increasing subfactors. 

To ensure that −1 ≤ 𝑧(𝜏) ≤ 1, the dynamic subfactors must satisfy the following constraints: −1 ≤ 𝑥1glc ± 𝑥2glc ± 𝑥3glc ≤ 1   , (6.2) −1 ≤ 𝑥1gln ± 𝑥2gln ± 𝑥3gln ≤ 1   , (6.3) 

and the value of each subfactor must be bounded, as well: −1 ≤ 𝑥𝑖 ≤ 1   .  (6.4) 

The glucose and glutamine concentration profiles planned through the DoDE can be determined 

from the respective 𝑧(𝜏) according to the relation: 𝑢𝑗(𝜏) =  𝑢𝑗,0 + 𝑧𝑗(𝜏)∆𝑢𝑗   with 𝑗 =  glc or gln,  (6.5) 

where:  
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𝑢𝑗,0 =  𝑢𝑗,max+𝑢𝑗,min2    and (6.6) ∆𝑢𝑗 = 𝑢𝑗,max−𝑢𝑗,min2    , (6.7) 

being 𝑢𝑗,max and 𝑢𝑗,min the maximum and minimum values in which the profile of each nutrient 𝑗 is allowed to vary. In this work, glucose and glutamine are assumed to vary in the ranges [20, 50] mM and [2, 10] mM, respectively. These values are selected to remain in proximity of 

the concentration at which the process operates (Kontoravdi et al., 2010). 

 
Figure 6.3 Schematic representation of (a) glutamine and (b) glucose profiles (blue lines) 

with the profile determined by the DoDE (black line), the 110/90% control band (black 

dashed lines), and the 100 hours limit for glucose feeding (red dotted line). 

Since the nutrients are both manipulated and observed, their concentrations vary because of 

both the cell consumption and the feeding. In this work, we simulate to have only off-line 

measurements, because advanced monitoring strategies, such as on-line monitoring and control 

systems, are not standard in industrial mammalian cell cultures yet. Furthermore, the 

measurements and feeding actions are performed once every 24 hours. For these reasons, the 

nutrients profile cannot precisely follow the one proposed by DoDE. To deal with this issue, 

we introduce a specific procedure replicate the profiles indicated by the DoDE during the 

experiments, which is schematically represented in Figure 6.3. The proposed procedure consists 

of: 

• defining a 10% band around the DoDE profile which is intended to control the feeding 

actions (Figure 6.3a, black dashed lines); 

2 performing the feeding of the nutrients only if their concentration in the culture < 90% of 

the concentration defined by the designed experiment (Figure 6.3a, lower black dashed 

line); 

• the feeding is performed using a predefined amount of fresh medium with a nutrient 

concentration allowing to achieve 110% of the concentration defined by the designed 

experiment (Figure 6.3a, upper black dashed line). 
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The feeding is visible in the nutrient profiles (Figure 6.3a) as the vertical jumps in the blue line 

where the nutrient concentration is brought to the 110% the one defined by the designed 

experiment. Furthermore, since the glucose consumption is slow and hardly decreases in the 

final part of the batch, the glucose cannot follow sharply decreasing profiles, hence it is 

controlled (and the feeding performed, accordingly) only in the first 100 hours of the batch 

(Figure 6.3b, red dotted line). After this point the glucose is fed only to compensate for any 

dilution effect due to glutamine addition. This is shown in Figure 6.3b, where after 100 hours 

(red dotted line) the feeding is not performed, and nutrient concentration decreases because of 

cell consumption. Accordingly, the glucose profile after 100 hours has no controllable effect 

on the antibody titer; hence, the glucose profile in the final part of the culture is not taken in 

consideration in the analysis.  

In this work, the DoDE nutrient profiles are designed by means of a D-optimal design of 

experiment (de Aguiar et al., 1995) applied to the 𝐾 = 6 subfactors. Once the experiments are 

executed on the process, a RSM (Montgomery, 2007) is fitted on the experimental data obtained 

from the designed experimental campaign through multiple linear regression. A second-order 

RSM (typically used for optimization) is defined to predict the antibody titer at harvest from 

the dynamic subfactors:  

𝑦̂ =  𝛽0 + [𝛽1 𝛽2 ⋯ 𝛽𝐾]𝐱 + 𝐱T [  
 ∆1,1 ∆1,2 ⋯ ∆1,𝐾∆2,1 ∆2,2 ⋯ ∆2,𝐾⋮∆𝐾,1 ⋮∆𝐾,2 ⋱⋯ ⋮∆𝐾,𝐾]  

 𝐱   ,  (6.8) 

where 𝑦̂ is the predicted antibody titer, 𝐱 = [𝑥1𝑔𝑙𝑐 𝑥2𝑔𝑙𝑐 𝑥3𝑔𝑙𝑐 𝑥1𝑔𝑙𝑛 𝑥2𝑔𝑙𝑛 𝑥3𝑔𝑙𝑛] is the 

column vector of the dynamic subfactors for a single experiment, 𝛽𝑘 and ∆𝑘,𝑘 are the first order 

and higher order parameters of the RSM, respectively. The model parameters are estimated 

minimizing the residual error in a least-square manner. Each addend of in the Equation (6.8) 

defines an effect, namely, the way in which each subfactor determines the variability of the 

response.  

The RSM is affected by uncertainty. The uncertainty of the estimated parameter 𝛽̂𝑒 (i.e., 𝛽̂𝑘 or ∆̂𝑘,𝑘) for the effect 𝑒 is determined through the parameter confidence intervals:  

𝛽̂𝑒 ± 𝑡1−𝛼 2⁄ ,𝑁−𝐸√ 1𝑁−𝐸∑ (𝑦𝑛−𝑦̂𝑛)2𝑁𝑛=∑ (𝑥𝑛,𝑒−𝐱̅𝑒)2𝑁𝑛=1     (6.9) 

where 𝑦𝑛 is the measured response of the 𝑛-th experiment, 𝑦̂𝑛 is the response of the 𝑛-th 

experiment predicted by Eq. (6.8), 𝑥𝑛,𝑒 is the value of 𝑒-th effect for the 𝑛-the experiment, 𝑥̅𝑒 

is the average value of 𝑒-th effect, 𝑁 is the total number of experiments, 𝐸 is the total number 

of effects, and 𝑡1−𝛼 2⁄ ,𝑁−𝐸 is the critical value of Student’s 𝑡 distribution with 𝑁 − 𝐸 degrees of 

freedom calculated at the confidence level 𝛼 = 0.05. The effects whose confidence interval 

crosses the 0 are affected by too high uncertainty and, accordingly, removed from the model.  
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The uncertainty on the parameter determines also uncertainty in the predictions, which, for a 

validatory experiment with subfactors 𝐱NEW is assessed through the 95% prediction interval 

(Wang & Georgakis, 2019): 𝑃𝐼 = 𝑡1−𝛼 2⁄ ,𝑁−𝐸  √𝑠𝑒2(1 + 𝐱NEWT (𝐗T𝐗)−1𝐱NEW)   ,  (6.10) 

where 𝑠𝑒2 = 𝑆𝑆𝐸 (𝑁 − 𝐸)⁄  and 𝑆𝑆𝐸 is the sum squared error of the model, and 𝐗 is the matrix 

containing the subfactors vectors for all the 𝑁 designed DoDE experiments placed along the 

rows, and 𝑡1−𝛼 2⁄ ,𝑁−𝐸 is the critical value of Student’s 𝑡 distribution with 𝑁 − 𝐸 degrees of 

freedom calculated at the confidence level 𝛼 = 0.05. The real response 𝑦 of a confirmatory 

experiment is expected to lie in the interval 𝑦̂ − 𝑃𝐼 ≤ 𝑦 ≤  𝑦̂ + 𝑃𝐼 with a confidence of 95%.  

To assess the extent of process improvement that can be achieved planning a different number 

of experiments, DoDE is adopted to design two alternative experimental campaigns: 

experimental campaign A and B. Experimental campaign A is a complete campaign for process 

optimization, used to assess the process improvement that can be achieved with an extended 

experimental campaign. A second-order with pairwise interaction RSM (as Eq. 6.8) is fitted 

with data from 31 experiments planned by assigning the values of the dynamic subfactors 

through a D-optimal Design of Experiment (Appendix E.1, Table E.1). Among the 31 

experiments, 28 are required to fit a the RSM for the 6 dynamic subfactors, while the 3 

remaining experiments are used to estimate the model lack-of-fit (Georgakis, 2013). 

Experimental campaign B is used to assess the process improvement that can be achieved with 

a small number of experiments. Data from 9 experiments planned by assigning the values of 

the dynamic subfactors through a D-optimal Design of Experiment (Appendix E.1, Table E.2) 

are used to fit a first-order RSM: 𝑦̂ =  𝛽0 + [𝛽1 𝛽2 ⋯ 𝛽𝐾]𝐱   . (6.11) 

Among the 9 experimental runs, 7 are used to fit the RSM for the 6 dynamic subfactors, while 

the 2 remaining experiments are used to estimate the model lack-of-fit (Georgakis, 2013). 

6.2.3 Process for the production of monoclonal antibodies at 1-L shake 

flasks scale 

A simulated process for the production of monoclonal antibodies at 1-L shake flasks scale 

(Kontoravdi et al., 2010) is considered in this work. It models the dynamic behavior of the 

Viable Cell Density (VCD, 𝑋𝑣), and the concentration of the main nutrients and by-products, 

such as glucose (𝑐glc), glutamine (𝑐gln), lactate (𝑐lac), and ammonia (𝑐amm). Additionally, RNA, 

and light and heavy chain balances in the cytosol and Golgi apparatus are considered to simulate 

protein synthesis and model the dynamic behavior of antibody titer (𝑐mAb). Details on the model 

and the respective parameters can be found in the work by Kontoravdi et al. (2010).  
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The total duration of a batch is 𝑡𝑏 = 168 hours, with an initial volume of 200 mL and 

inoculation cell density of 0.2 ∙ 106 cell/mL (Kontoravdi et al., 2010). Measurement sampling 

was simulated every 24 hours through the withdrawn of 2.5 mL from the culture. Feed of 

glucose and/or glutamine is performed after the sampling through the addition of 20 mL of 

concentrated medium in 10 minutes, to simulate a bolus addition without causing a too severe 

concentration change. The concentration of glucose and glutamine is determined at any feeding 

addition in such a way as to reach the nutrient concentration profiles planned by DoDE. The 

model is integrated between each sampling time instant through a variable-step variable-order 

solver with a maximum order of 5. A 6% white noise is added as measurement error.  

6.2.4 Hybrid model 

A serial hybrid semi-parametric model is used (Oliveira, 2004; Teixeira et al., 2005; von Stosch 

et al., 2014) to capture the behavior of mammalian cell cultures producing mAbs. This digital 

model combines a mechanistic model, which embeds the knowledge of the system, and an 

artificial neural networks (ANN), which accounts for the unknown dependences in the system 

under study. 

The mechanistic knowledge of the cell culture is described by the concentration balances for 

the main culture variables, organized in the column vector 𝐜 =[𝑋v 𝑐glc 𝑐gln 𝑐lac 𝑐amm 𝑐mAb] :  𝑑𝐜(𝑡)𝑑𝑡 = 𝐫(𝐜∗(𝑡),𝛚) − 𝐷𝑉𝐜(t) + 𝐮   ,  (6.12) 

where 𝐫(𝐜∗(𝑡),𝛚) [𝑉 × 1] = [6 × 1] is the vector of volumetric reaction rates for the 𝑉 culture 

variables, 𝐜∗ = [𝑋v 𝑐glc 𝑐gln 𝑐lac 𝑐amm] is the column vector of culture variables with 

the exclusion of the antibody titer, 𝛚  is the vector of  the ANN parameters (weights and biases), 𝐷𝑉 is the dilution factor, and 𝐮 [6 × 1] is the vector of controlled inputs. The volumetric 

reaction rates can be expressed as combination of the specific production/consumption rate and 

the viable cell concentration 𝑋v: 𝐫(𝐜∗(𝑡),𝛚) = 𝐒 𝑋v 𝛍(𝐜∗(𝑡),𝛚)   , (6.13) 

where 𝐒 is the stoichiometric matrix with -1 and 1 on the diagonal for consumed and produced 

components, respectively, and 𝛍(𝐜∗(𝑡),𝛚) [6 × 1] is the vector of the specific 

production/consumption rates. Here, we assume that the production/consumption rates do not 

depend on antibody titer, because it is expected to have no impact on other culture variables 

(Narayanan, Luna, et al., 2021). 

The relationship between specific production/consumption rates and culture variables is 

typically very complex and accurate mechanistic expressions are not typically available. This 

lack of knowledge is compensated with a data-driven model which captures the relationship 𝑓 

between specific production/consumption rates and culture variables, 𝛍 = 𝑓(𝐜∗(𝑡),𝛚), 
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learning it from experimental data. A single hidden layer ANN with 5 neurons and hyperbolic 

tangent activation functions are used in this work to capture the nonlinear relationship between 

culture variables and specific production/consumption rates: 𝛍(𝐜∗(𝑡),𝛚) = 𝛍max  ○  𝛚(2,1)tanh(𝛚(1,1)𝐜∗(𝑡)  +  𝛚(1,2)) + 𝛚(2,2)   , (6.14) 

where 𝛚(1,1) and 𝛚(2,1) are the weights, and 𝛚(1,2) and 𝛚(2,2) are the biases of the hidden and 

output layer, respectively, 𝛍max [6 × 1] is the vector of the maximum production/consumption 

rates, and ○ represents the Hadamard product. The vector of maximum production/consumption 

rates, 𝛍max, is used to scale the output of the ANN at different magnitudes (Teixeira, Alves, et 

al., 2007) and is heuristically determined in preliminary tests. The number of hidden neurons 

was selected as the one maximizing the Bayesian Information Criterion (BIC; Schwarz, 1978; 

von Stosch and Willis, 2017). 

The model is integrated between each feeding action, which is simulated by appropriately 

changing the controlled input vector 𝐮. Similarly to the process, 20 mL of fresh medium with 

the nutrients is added in 10 minutes 

The model parameters 𝛚 are estimated from experimental data, containing the measured culture 

variable and the values of the controlled inputs required to follow the nutrient profiles planned 

by DoDE (as explained in Section 6.2.2). The hybrid model is trained with the 9 experiments 

of experimental campaign B (Section 6.2.2) with a stepwise decreasing learning rate (from 

0.005 to 0.0001). The same 9 experiments with the addition of 2.5% white noise are used as 

internal validation experiments to stop the training procedure and make the model robust to 

noise. The model parameters 𝛚 are estimated through the Adam optimization algorithm 

(Kingma & Ba, 2015). Adam algorithm was used as one of the best gradient-based algorithms, 

which are the standard and most effective ways to train ANNs. A norm-two regularized (A. 

Yang et al., 2011) weighted sum of squared error is used as objective function: ℒ =  ∑ ∑ ∑ (𝑐𝑛,𝑣(𝑡) − 𝑐𝑛̂,𝑣(𝑡))2𝜎𝑣2(𝑡)𝑉𝑣=1𝑁𝑛=1𝑡𝑏𝑡=0 + λreg ∑ ‖𝛍(𝑡)‖2𝑡𝑏𝑡=0    , (6.15) 

where 𝑐𝑛,𝑣(𝑡) and 𝑐̂𝑛,𝑣(𝑡) are the measured and predicted 𝑣-th culture variable for the 𝑛-th 

experiment at the time instant 𝑡, respectively, 𝜎𝑣2(𝑡) is the variance of the 𝑣-th measured culture 

variable at time instant 𝑡, and λreg is the regularization coefficient. In this work, λreg was 

heuristically set to 0.05. The gradients of the objective function with respect to the ANN 

parameters required by the Adam algorithm are calculated as: 𝜕ℒ𝜕𝛚 = (𝜕ℒ𝜕𝐜)𝑡 (𝜕𝐜𝜕𝛚)𝑡   , (6.16) 

where the matrix (𝜕𝐜 𝜕𝛚⁄ )𝑡 is calculated through the sensitivity equations (Oliveira, 2004). The 

sensitivity equations are integrated together with the model equations Eq. (6.12) starting from 

the initial condition (𝜕𝐜 𝜕𝛚⁄ )𝑡=0 = 0. To avoid local minima, 𝑁models = 20 hybrid models are 

trained starting from initial parameters randomly initialized with values form a normal 
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distribution with variance 𝜎02, randomly selected in the interval [0.05, 0.001]. The model 

showing the smallest sum of squared error over the internal validation experiments is selected 

and used for the analysis.  

The uncertainty of hybrid model prediction is calculated from the 𝑁models = 20 trained models 

by exploiting the prediction intervals determined by means of the population of predicted 

antibody titer values for the training experiments. The half width of the prediction interval is 

calculated as: 𝑃𝐼𝐻 = 𝑡1−𝛼 2⁄ ,𝑁∙𝑁models  √𝜎𝐻2 (1 + 1𝑁∙𝑁models)   , (6.17) 

where 𝜎𝐻2 is the standard deviation of the hybrid models errors in predicting the antibody titer 

of the training experiments, 𝑁 ∙ 𝑁models is the total number of predicted values, and 𝑡1−𝛼 2⁄ ,𝑁∙𝑁models is the critical value of Student’s 𝑡 distribution with 𝑁 ∙ 𝑁models degrees of 

freedom calculated at the confidence level 𝛼 = 0.05.  

The hybrid model is used to perform an in silico experimental campaign. It receives as input 

both the initial viable cell concentration and the culture volume, which are required to simulate 

the entire experimental run. Feeding is simulated by adjusting the appropriate value of the 

controlled input vector 𝐮. In the in silico experimental campaign, we use a DoDE approach to 

define the feeding schedule. In particular, the hybrid model is controlled to follow the DoDE 

profiles, defined by the values of the dynamic subfactors, in the same way as in the optimization 

Strategy #2 (Section 6.2.2). 

6.2.5 Feeding optimization 

The optimal profile for glucose and glutamine is determined as the one maximizing the antibody 

titer at harvest through an optimization problem. Since the shape of the nutrient profiles is 

defined by the value of the dynamic subfactors according to Eq. (6.1), the optimization problem 

is formulated considering the DoDE dynamic subfactors 𝑥𝑖 as: max𝑥𝑖 𝑦̂(𝑥𝑖)   ,  (6.18) 

subject to the constraints of Eq. (6.2-6.4).  

The antibody titer at harvest 𝑦̂(𝑥𝑖) is predicted either by the RSM in optimization Strategy #2, 

or directly by the hybrid model in optimization Strategy #1. The optimization problem of Eq. 

(6.2-6.4, 6.18) is solved through a genetic algorithm (Sivanandam & Deepa, 2008) with a 

starting population of 200 individuals 

All the simulations described in this work are performed in Matlab® 2020b, through the 

optimization toolbox and in house developed routines.  
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6.3 Results 

The results of the optimization Strategy #2 on the experimental campaigns A and B, followed 

by the optimization Strategy #1 are presented here. These results are then compared with the 

process optimum, which is known because a simulated process is considered in this work. 

 
(a) 

 
(b) 

Figure 6.4 RSM regression coefficient with respective 95% confidence interval (𝑅2 =0.999): (a) complete, and (b) updated. For a given nutrient 𝑗, 𝑥𝑖𝑗 is the effect of the subfactor, 𝑥𝑖′𝑗′𝑥𝑖′′𝑗′′
 is the effect of the pairwise interaction between subfactors, and 𝑥𝑖𝑗𝑥𝑖𝑗 is the effect of 

second-order interaction.  
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6.3.1 Experimental campaign A for feeding schedule optimization 

This section is aimed at identifying the optimal nutrient profile that maximizes the antibody 

titer at harvest through the application of DoDE by performing an experimental campaign 

directly on the process under study and state-of-the-art response surface modeling. 

To this purpose, the experimental campaign A with 31 experiments planned through DoDE is 

used. The values of the dynamic subfactors 𝑥1glc, 𝑥2glc, 𝑥3glc and 𝑥1gln, 𝑥2gln, 𝑥3gln for glucose and 

glutamine, respectively, and the antibody titer at harvest obtained by experimental campaign A 

are used to fit a second-order RSM. The values of the dynamic subfactors affect the DoDE 

nutrient profiles as explained in Section 6.2.2.  

The RSM shows a very high coefficient of determination 𝑅2 = 0.999 (where the adjusted 

coefficient of determination is 𝑅adj2 = 0.999), indicating the that the model provides an optimal 

fitting of the data. Figure 6.4a shows the RSM regression coefficient with their 95% confidence 

interval related to the uncertainty for all the dynamic subfactor 𝑥𝑖𝑗 , their interactions 𝑥𝑖′𝑗′𝑥𝑖′′𝑗′′
, 

and second-order terms 𝑥𝑖′𝑗 𝑥𝑖′𝑗 , where 𝑖′ and 𝑖′′ are the factor number and 𝑗, 𝑗′, or 𝑗′′ = glc, gln 

is the nutrient. The effects showing high uncertainty (namely, the ones whose error bars cross 

0 in Figure 6.4) are considered uninfluential for the model and excluded from the updated RSM. 

The updated RSM (Figure 6.4b) shows optimal fitting of the data as well, with 𝑅2 = 0.997 

(𝑅adj2 = 0.997). 

Recalling that the subfactors define the shape of the nutrient profile, and specifically 𝑥1 defines 

the position of the initial value, 𝑥2 defines the increasing or decreasing tendency of the profile, 

and 𝑥3 defines the concavity of the profile, the glucose profile results to have a very limited 

influence on the antibody concentration at harvest. In fact, the effects of all first-order and 

second-order glucose terms have confidence interval crossing zero and are not included in the 

updated RSM (Figure 6.4b). Furthermore, the profile of the two nutrients do not determine any 

interaction. In fact, the effects of all interactions between nutrients 𝑥𝑖′glc𝑥𝑖′′gln are affected by large 

uncertainty and are not included in the updated RSM (Figure 6.4b). Differently, the glutamine 

profile has a large and strongly nonlinear effect on the antibody titer at harvest, since all 

glutamine first and second order terms are significant for the model and are included in the 

updated RSM (Figure 6.4b). Specifically, 𝑥1gln and 𝑥3gln show negative values, while 𝑥2gln and 

all second order terms show positive values. Accordingly, antibody titer is expected to be higher 

when the glutamine profile has a small initial value and shows an increasing tendency with a 

downward (negative) concavity. However, the initial glutamine value and shape of the profile 

are not independent and must be carefully tuned, since the effects of the interaction terms 𝑥1gln𝑥2gln and 𝑥1gln𝑥3gln are significant for the model and included in the updated RSM (Figure 

6.4b). The negative effect of the interaction 𝑥1gln𝑥2gln means that low initial value of glutamine 

should be associated with a profile having an increasing tendency to induce and increase of the 

antibody titer at harvest, while the positive effect of the interaction 𝑥1gln𝑥3gln means that high 



Next-FLUX: Neural-net extracellular trained flux  145 

 
 © 2022 Gianmarco Barberi, University of Padova (Italy)  

initial value of glutamine should be associated with a positive (upward) concavity to increase 

the final titer.  

According to these results, the antibody titer will not change much as response of different 

glucose profiles which can be arbitrarily set within the factor ranges. The glutamine profile, 

instead, is extremely important to achieve high antibody titer and must be carefully optimized. 

    
(a)                                                                                           (b) 

Figure 6.5 Confirmatory experiment - optimal nutrient profile, determined from the DoDE 

experimental campaign A with 31 experiments, executed on the process: (a) glucose, and (b) 

glutamine. Red dots – process measurements; black line – optimal nutrient profile; black 

dashed line – control band; blue line – continuous measurement. 

The RSM is then used for process optimization to determine the nutrient profile providing the 

highest possible antibody titer at harvest. A genetic algorithm (Section 6.2.5) is adopted for the 

optimization. The optimal nutrient profiles (black line) and the profiles of the confirmatory 

experiment at the optimal conditions executed on the process (red points – process 

measurements) are shown in Figure 6.5. In the Figure the continuous measurement (blue line) 

of the nutrient profile is also reported. Considered that at shake flask scale this measurement is 

typically not available in real time; in this case is available since the process is simulated. In 

general: i) the optimal glucose profile (Figure 6.5a) starts at around half of its possible range 

(33.6 mM) and follows a decreasing profile with a very small downward concavity; ii) the 

optimal glutamine profile (Figure 6.5b) starts at the minimum value of its possible range (2 

mM) and follow an almost constant profile for the entire culture. The optimal values of the 

glucose and glutamine subfactors are 𝐱Aopt =[−0.439 −0.385 −0.04 −0.999 −0.0006 −0.0002]. As expected, the continuous 

measured profiles of glucose and glutamine (blue lines) cannot adhere perfectly to the 

respective optimal profiles, because nutrients are continuously consumed by cells, while 

nutrients are fed in boluses once a day as typically done at industrial level. Since the nutrients 

are fed only when the measured value (the red dot) goes below the control band (black dashed 

line), a sawtooth time profile of the variables is generated. However, this behavior is common 
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to all experimental runs, and can be seen natural experimental variability. Furthermore, the lack 

of feeding in the final part of the batch does not produce negative effects on antibody titer 

because in this phase the viable cell concentration decreases and the available glucose, which 

is usually high, is sufficient to avoid cell starvation.  

In experimental campaign A, with the abovementioned optimal nutrients profiles the RSM 

predicts a very high antibody titer at harvest of 𝑦̂A = 3530.0 ± 54.6 mg/L, while the 

confirmatory experiment at the optimal conditions executed on the process results in an 

antibody titer at harvest of 𝑦A = 3118.2 mg/L. The experimental antibody is outside the 

prediction interval and the RSM shows an error of 13.2%, meaning that it has a limited 

predictive capability, despite describing very well the calibration data (𝑅2 = 0.997). This is 

due to the highly nonlinear nature of the relationship between the subfactor values (i.e., the 

shape of the nutrient profiles) and the product titer at harvest, which cannot be captured by the 

second-order model.  

Based on this result, we will introduce additional methods, such as hybrid models, to describe 

the relationship between the nutrient profiles and the antibody titer at harvest.  

6.3.2 Experimental campaign B for feeding schedule optimization 

This Section is aimed at identifying the optimal nutrient profile that maximizes the antibody 

titer at harvest using only a limited set of experiments planned through the DoDE. This is 

intended to describe how the optimal nutrient profiles identified through the DoDE change 

when the number of performed experimental runs is low. 

To this purpose, the experimental campaign B with 9 experiments planned through the DoDE 

is used. The values of the dynamic subfactors 𝑥1glc, 𝑥2glc, 𝑥3glc and 𝑥1gln, 𝑥2gln, 𝑥3gln for glucose and 

glutamine, respectively, and the antibody titer at harvest is then used to fit a first-order RSM. 

The RSM fitted on the process data shows a coefficient of determination 𝑅2 = 0.999 (𝑅adj2 =0.998), indicating the that calibration data are well captured by the model. Similarly, the 

updated RSM describe the calibration data very well, with 𝑅2 = 0.996 (𝑅adj2 = 0.994), The 

model coefficients are similar to the linear terms shown in Figure 6.4a, hence, they are not 

shown for sake of conciseness. In this case, the initial glucose value results to have a small 

positive impact, indicating that only the initial glucose concentration slightly influences 

antibody titer, while the shape of the profile has no relevant effect. Glutamine, instead, shows 

a strong effect, having negative 𝑥1gln and 𝑥3gln, and positive 𝑥2gln. Accordingly, as previously 

observed, the antibody titer increases with glutamine profile having low initial value and an 

increasing profile with downward (negative) concavity. 

The RSM is then used for process optimization to determine the nutrient profile giving the 

highest possible antibody titer at harvest by means of a genetic algorithm.  
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(a)                                                                                           (b) 

Figure 6.6 Confirmatory experiment - optimal nutrient profile, determined from the DoDE 

experimental campaign B with 9 experiments, executed on the process: (a) glucose, and (b) 

glutamine. Red dots – process measurements; black line – optimal nutrient profile; black 

dashed line – control band; blue line – continuous measurement. 

The resulting optimal nutrient profiles (black lines) and the profiles of the confirmatory 

experiment at the optimal conditions executed on the process (red points – process 

measurements) are shown in Figure 6.6, with the continuous measurement (blue lines). The 

optimal glucose profile (Figure 6.6a) starts at around half of its possible range and follow a 

linearly increasing profile with almost no concavity. The optimal glutamine profile (Figure 

6.6b), instead, shows a constant profile along the culture at the minimum value of its possible 

range. The optimal values of the glucose and glutamine subfactors are 𝐱Bopt =[−0.476 −0.433 −0.002 −0.978 0.015 0.002]. 
Through the optimal nutrient profiles, the RSM predicts an antibody titer at harvest of 𝑦̂B =3021.8 ± 112.6 mg/L, which is lower that the value predicted by the second-order RSM built 

in experimental campaign A on 31 experiments. The confirmation experiment executed on the 

process with the optimal feeding strategy shows an antibody titer at harvest of 𝑦B = 3136.3 

mg/L. The experimental antibody is slightly outside the prediction interval and the RSM shows 

an error of 3.8%. In this case, the error between predicted and experimental value is lower than 

in the case of the second-order RSM (Section 6.3.1) built on a large number of experiments, 

indicating that the second-order model slightly overfit the calibration data providing worse 

prediction than a first-order one, which demonstrates better generalization capabilities. Despite 

the better prediction performance, the predicted value is still outside the prediction intervals, 

probably due to the highly nonlinear relationship between nutrient profiles and antibody titer, 

which cannot be captured by a first-order model.  
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6.3.3 In silico cell culture optimization though hybrid model 

This Section shows the optimization of the nutrient profiles by performing an in silico 

experimental campaign through a hybrid model. This will serve as proof of concept to 

understand the applicability and the advantage of conducting virtual experimental campaigns 

for the optimization of cell culture quality attributes through hybrid models.  

To this purpose, a hybrid model (Section 6.2.4) is trained data collected during experimental 

campaign B planned through the DoDE (Section 6.3.2), which consists of 9 experiments. The 

hybrid model is exploited to perform an in silico experimental campaign following a DoDE 

strategy (Section 6.2.4). In the in silico experimental campaign a genetic algorithm guides the 

experiments to execute by suggesting the values of the dynamic subfactors defining the nutrient 

profiles.  

The optimal nutrient profiles (black lines), the simulated ones though the hybrid model (green 

dashed lines), and the profiles of the confirmation experiment at the optimal conditions 

executed on the process (blue lines) are reported in Figure 6.7. The initial value of optimal 

glucose profile (Figure 6.7a) is close to the upper bound of the glucose range (47.7 mM) and 

follow a monotonically decreasing profile with slight downward concavity. Instead, the initial 

value of the optimal glutamine profile (Figure 6.7b) starts at the lower bound of its span range 

and follows an increasing profile with small slope and almost no concavity. The optimal values 

of the glucose and glutamine subfactors are 𝐱HMopt =[0.146 −0.772 −0.074 −0.880 0.118 0.001]. The glucose predicted by the hybrid 

model (Figure 6.7a, green dashed line) matches the simulated process profile before the first 

feeding action, while overestimates the process profile in the final part of the batch. This 

suggests that the addition of the glucose bolo drives the culture state to a region only partially 

explored by the training samples resulting in an underestimation of the glucose consumption 

rate and a reduction in the prediction performance. Instead, the overall glutamine profile (Figure 

6.7b) is better predicted throughout the entire culture, showing however a slight 

underestimation of the glutamine consumption.  

Through the optimal nutrient profiles, the hybrid model predicts a maximum antibody titer at 

harvest of 𝑦̂1 = 2624.6 ± 353.9 mg/L, while a confirmatory experimental run at the optimal 

conditions performed on the process provided an antibody titer at harvest of 𝑦1 = 3222.8 mg/L, 

which is outside the prediction intervals. The wide prediction interval is mainly due to the 

variability of the parameters estimated during the different hybrid model trainings, which 

derives from the typical drawback of the neural networks used in the hybrid model. According 

to these results, the hybrid model underpredicts the antibody titer by 18.6%, confirming that the 

hybrid model does not accurately predict the correct numerical value of the antibody titer. 

Despite that, the antibody titer predicted by the hybrid model is higher than the ones observed 

in the experiments used to train the hybrid model (experimental campaign B), indicating that 

the model correctly captures the correlation between nutrients and antibody titer and identifies 
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the region of experimental domain with the highest antibody titer. However, it cannot accurately 

predict the antibody titer value because it is trained on data which are far from that region.  

    
 (a)  (b) 

Figure 6.7 Confirmatory experiment - optimal nutrient profile, determined from the in silico 

experimental campaign through the hybrid model trained with the 9 experiments of 

experimental campaign B: (a) glucose, and (b) glutamine. Green dashed line – hybrid model 

simulation; black line – optimal nutrient profile; black dashed line – control band; blue line 

– process continuous measurement. 

6.3.4 Real optimal feeding schedule 

In this Section, the real optimum of the process is presented to understand how well the 

investigated methodologies can identify the optimal feeding schedule for the cultures. The 

optimum of the process is known because a simulated process is considered, this information 

would not be available in a real scenario. The genetic algorithm (presented in Section 6.2.5) is 

applied directly on the process to find the optimal feeding conditions.  

The optimal nutrient profiles of the process are reported in Figure 6.8 (black lines – target 

profile; blue line – continuous process measurement; red dots –measurements). The initial value 

of the glucose profile is in the middle if its possible range and monotonically grows with an 

upward concavity (Figure 6.8b). The initial value of the glutamine profile (Figure 6.8c) is at the 

lower bound of its range and it follows a slightly increasing profile with a small downward 

concavity.  

The optimal nutrient profiles allow the process to achieve an antibody titer 𝑦P = 3228.8 mg/L. 
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(a)                                                                                           (b) 

Figure 6.8 Optimal nutrient profile of the process: (a) glucose, and (b) glutamine. Blue line 

– continuous process measurement; red dots – process measurements; black line – optimal 

profile; black dashed line – control band. 

6.4 Discussion 

In this Section, the optimal feeding schedule of the process is compared with the ones obtained 

through the optimization Strategies #1 and #2. At the end, the antibody titer obtained in the 

confirmatory experiment at the optimal conditions are used to identify the best optimization 

strategy.  

6.4.1 The optimal feeding schedule 

The optimal feeding schedule of the process is characterized by an initial glucose concentration 

at approximately the average value in the range of possible concentrations, which allows a 

sustained cell growth in the initial part of the culture, and an increasing profile, which maintains 

high the cell growth even at high viable cell concentration. The low initial glutamine 

concentration provides enough nutrient for a sustained growth and at the same time determines 

a reduced formation of ammonia, which is detrimental because it limits cell growth and favors 

cell death. Furthermore, the downward concavity of the glutamine profile is coherent with the 

necessity of providing more glutamine when the viable cell concentration is higher (i.e., in the 

central part of the culture) while limiting ammonia formation at the same time. These results 

are coherent with previous studies (Teixeira et al., 2005), which recommended to limit the 

availability of glutamine in the initial growth phase and increase it later on in the culture. For 

what concern glucose, differently from our work previous studies recommended a low 

concentration of glucose along the entire culture, possibly decreasing it later in the culture 

(Teixeira, Alves, et al., 2007). Even if low glucose concentration is reasonable to limit lactate 

production, it should be highlighted that feeding enough glucose (i.e., as in our case) is of 
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paramount importance to avoid cell starvation which negatively affects cell growth, 

productivity, and product quality (Fan et al., 2015; Narayanan et al., 2020).  

6.4.2 Comparison of the optimal feeding schedule 

In the optimization Strategy #2 (i.e., experimental campaigns planned through DoDE), the need 

of low level of glutamine (required to limit ammonia production) throughout the entire duration 

of the culture is identified in both experimental campaign A and B. However, the slight 

increasing amount required in the central part of the culture to compensate for the increased 

viable cell concentration is not identified by both approaches (i.e., experimental campaigns A, 

with 31 experiments, and B, with 9 experiments). Regarding the glucose, only in experimental 

campaign B (with 9 experiments) a profile similar to the process optimum is identified, showing 

no overfeeding at the beginning of the culture and an increasing glucose concentration at higher 

viable cell concentration. In experimental campaign A, instead, a glucose profile with high 

initial concentration and a decreasing profile is identified, that leads to a more sustained 

production of lactate especially in the initial part of the culture. 

In optimization Strategy #1 (in silico experimental campaign), a correct behavior of the 

glutamine concentration, which starts at low level and increase along the culture, is identified. 

The optimal glucose profile instead has a high initial concentration and decreases along the 

culture, showing some similarity with experimental campaign A of the optimization Strategy 

#2.  

These differences in the optimal glucose profiles are due to the small influence that glucose has 

on the antibody titer in the process. In fact, if glucose is not limiting, the growth rate (which 

also determines the productivity) is only controlled by the glutamine level and by the produced 

ammonia, which leads glucose to have only a minor role in cell productivity. For this reason, 

both modeling strategies capture the glucose behavior in a limited way. In particular, the 

second-order RSM is not affected by glucose and does not capture the relationship between 

glucose, lactate and reduced cell growth. Similarly, the hybrid model underestimates the impact 

that lactate has on cell growth. This leads both modeling strategies to suggest high levels of 

glucose at the beginning of the culture.  

6.4.3 The best optimization strategy 

The predicted antibody titer of the abovementioned strategies is compared to the one achieved 

in the optimal experiment executed on the process and results are summarized in Table 1. In 

the Table, the titer column reports the antibody titer achieved in the confirmatory experiment 

executed on the process at the optimal conditions identified by each strategy, while the 

predicted titer column reports the antibody titer predicted by the RSM (for experimental 

campaign A and B) and the hybrid model (for the in silico experimental campaign). 
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RSM and the planning of experiments through DoDE demonstrated to be applicable in 

mammalian cell cultures to optimize the feeding schedule, providing a simple and roust science-

based strategy to improve the yield in antibody. In fact, in optimization Strategy #2, 

experimental campaign A (3118.2 mg/L) and B (3136.3 mg/L) both achieved an improved yield 

of antibody when the optimal feeding schedule is carried out on the process. In particular, 

experimental campaign B achieved with only 9 experiments a higher yield than experimental 

campaign A with 31 experiments, showing a 31.2% improved antibody titer with respect to the 

initial experiments executed during experimental campaign B. However, optimization Strategy 

#2 achieved antibody titer consistently lower than the real process optimum 𝑦P (3228.8 mg/L). 

Despite the good yield improvement, the predictions of the antibody titer performed by the two 

RSMs of optimization Strategy #2 are inaccurate. The second-order RSM fitted on the 31 

experiments from experimental campaign A shows a 13.2% prediction error, much greater than 

the 3.8% error shown by the first-order RSM trained on the 9 experiments of campaign B. These 

results suggest that the RSM does not completely capture the complex relationship between 

nutrients and product titer independently on model complexity. Furthermore, since the first-

order RSM (used in experimental campaign B) allows the identification of a better feeding 

schedule than experimental campaign A, the use of a large number of samples (such as in 

experimental campaign A) is not always beneficial. For this reason, the planning of a large 

number of experiments must be coupled with models that effectively handle such information. 

However, the first-order RSM can only capture a linear relationship between nutrients and 

antibody titer. Furthermore, the robustness and generalizability of the models should be 

carefully tested though validation experiments in order to avoid overfitting issues. 

Table 6.1 Optimal nutrient profiles obtained with different strategies: subfactors 

value, simulated experimental antibody titer, predicted antibody titer and 95% 

confidence interval of the predicted antibody titer.  

Strategy Campaign 
# of 

experiments 
Titer [mg/L] 

Predicted titer 

[mg/L] 

CI 

[mg/L] 

 process - 3228.8   
1 in silico 9 3222.8 2624.6 353.9 
2 A 31 3118.2 3530.0 54.6 
2 B 9 3136.3 3021.8 112.6 

 

Hybrid semi-parametric models are powerful tools which allow performing in silico 

experimental campaigns, since they provide a good representation of the system even when 

built on a reduced number of runs. In fact, the optimal feeding schedule identified by 

optimization Strategy #1 applied on the process achieved a very high antibody titer (3222.8 

mg/L), which results very close to the real process optimum 𝑦P (3228.8 mg/L). Optimization 

Strategy #1 improved the antibody titer by 34.9% with respect to the experiments of campaign 

B and provided a 2.8% increase in antibody titer with respect optimal antibody obtained through 

the experimental campaign B of optimization Strategy #2 (3222.8 mg/L vs. 3136.3 mg/L). 
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However, the antibody titer 𝑦1 predicted in optimization Strategy #1 (2624.6 mg/L) is the 

lowest observed value, showing the largest prediction error (18.6%). This can be easily 

observed in the response surface of Figure 6.9, which shows the maximum antibody titer at 

harvest achieved with a certain glutamine concentration at a specific time, when the glucose 

subfactors are fixed at [0.256 0.349 0.195], which are the real optimal glucose subfactor 

values. Note that the color scale in Figure 6.9a, b, and c is not the same to highlight differences 

in the shape of the profiles rather than the actual antibody titer value. The hybrid model in 

optimization Strategy #1 (Figure 6.9c) underpredicts the real antibody titer (Figure 6.9a) 

especially in the region at low glutamine and high antibody titer, while the RSM fitted in 

experimental campaign A (Figure 6.9b) overpredicts the antibody titer but shows a lower 

prediction error. Despite the lower prediction accuracy, the hybrid model better resembles the 

real relationship between the glutamine profiles and the antibody titer, than the RSM. In fact, 

the hybrid model identifies the positive effect that an increasing glutamine profile along the 

culture duration has on the antibody titer (compare the slope of the region with low glutamine 

after 100 hours in Figure 6.9). Furthermore, the hybrid model captures the effect that a 

downward concavity has on the antibody titer, predicting the right sharpe increase of titer in the 

region with glutamine ~5 mM and 50-120 hours, as shown in Figure 6.9. Differently, the RSM 

predicts a lower antibody titer when increasing the glutamine along the culture, and captures a 

lower positive effect of a curved glutamine profile. Accordingly, the hybrid model captures a 

relationship between nutrients and antibody titer which is more similar to the real one than the 

RSM, succeeding in the identification of region of experimental domain with highest antibody 

titer. However, since the region with low glutamine during the entire culture is not well 

represented in the calibration data, the hybrid model cannot accurately predict the antibody titer 

value. Despite that, these results indicate that hybrid models are powerful methods for in silico 

experimental campaign and can be used to virtually simulates the execution of experiments 

because of their underling mechanistic knowledge, but the predicted values are not completely 

representative because hybrid models are not always accurate in extrapolation, which is the 

typical drawback of data-driven models. 

It is extremely important to point out that optimization Strategy #1 guarantees that the antibody 

titer obtained in the confirmatory experiment at the optimal conditions identified through the 

hybrid model is close to the one of the real optimal feeding schedule. Furthermore, the optimal 

feeding is identified by performing only 9 experiments (i.e., used to train the hybrid model) on 

the process. Accordingly, the hybrid model correctly learns and generalizes the relationship 

between nutrients and antibody titer and captures the cross-correlation between them, even if it 

is trained from a limited number of experiments. This is somehow expected because hybrid 

models combine the knowledge of the biological phenomena involved in cell cultures with the 

capability of learning complex relationship of the data-driven models.  
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It is also interesting to notice that, as previously proven, the selected hybrid model structure is 

the best in terms of number of samples required for training and extrapolation with different 

feeding scheduling (Narayanan, Luna, et al., 2021). In fact, the improvement of the model 

structure by introducing additional mechanistic knowledge, improves the description of the 

system, but requires a larger number of training samples to achieve comparable prediction 

performance. Accordingly, a tradeoff is required between model effectiveness and the model 

complexity (which requires a higher number of training samples).  
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(a) 

 
(b) 

 
(c) 

Figure 6.9 Maximum antibody titer at harvest with a certain value of glutamine in time: (a) 

achieved in the process, (b) predicted by the RSM fit in experimental campaign A, and (c) 

predicted by the hybrid model. The glucose subfactors are fixed at [0.256 0.349 0.195].  
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6.5 Conclusions 

In this work we compared an in silico experimental campaign to optimize the feeding schedule 

of a mammalian cell culture with an experimental campaign on the process in such a way as to 

assess if the in silico experimentation can accelerate the process development and reduce the 

experimental burden. To conduct the in silico experimentation, we used a combination of 

Design of Dynamics Experiments (DoDE) and a hybrid semi-parametric model to identify the 

optimal time profile of glucose and glutamine profile in a virtual manner. The optimal nutrient 

profiles were compared with the ones obtained through two experimental campaigns planned 

with DoDE: experimental campaign A (31 experiments) and experimental campaign B (9 

experiments).  

The optimal antibody titer achieved through experimental campaign B (3136.3 mg/L) is 31.2% 

higher than the titer observed in the experiments executed during the experimental campaign. 

Experimental campaign A done with 31 experiments provided a lower optimal antibody titer 

(3118.2 mg/L) than experimental campaign B done with 9 experiments. Despite being able to 

improve the antibody titer, the experimental campaigns planned with DoDE could not achieve 

values similar to the real optimum of the process.  

The in silico experimental campaign, which required only 9 experimental runs to train the 

hybrid digital model, provided a 34.9% overall improvement in the antibody titer with respect 

to the experiments used to train the model, a 2.8% improvement with respect to experimental 

campaign A and B, and reached a titer very close to the process optimum. The hybrid model 

accurately captures the relationship between nutrient profiles and antibody titer, but 

underpredicts the numerical value of the antibody titer. Accordingly, hybrid semi-parametric 

models are promising tools and can be used to conduct in silico experimental campaigns, 

providing high representation performance, and reducing the experimental burden and time 

required to perform the feeding schedule optimization in biopharmaceutical process 

development.  

The testing of the proposed framework on a real process must be carried out to confirm our 

findings.  
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Chapter 7 

Next-FLUX: Neural-net extracellular 

trained flux* 

In this Chapter, a deep learning strategy for constraining genome-scale metabolic models from 

easily available and cheap data is proposed. A brief introduction to the available data and model 

implementation is first given. Then, the constraints prediction capability of the machine 

learning model in different configurations is presented. The results of the application of the 

predicted constraints on the genome-scale metabolic model will conclude the Chapter.  

7.1. Materials and Methods 

In this Section, the data and the main mathematical methodologies used in the development of 

the deep learning strategy for constraining GSMMs are presented. In particular, the available 

data, the structure of the deep learning model predicting the constraints, and the procedure to 

apply the predicted constraints on the GSMM are explained.  

7.1.1 13C isotope labeling dataset 

A 13C isotope labelling dataset of CHO cells assembled from 8 different publicly available 

sources is used in this work. The dataset contains 31 different experiments (i.e., cell line) for 

which 3 sets of measurements are available, corresponding to the upper, lower, and median 

values of experimentally observed intracellular fluxes in central carbon metabolism. 

Specifically, each set comprises the measurements of 24 extracellular metabolite uptake rates, 

and 59 intracellular reaction rates, calculated from the measured 13C isotope concentrations 

(Nomikos & MacGregor, 1995c). The available intracellular reactions, whose fluxes are 

available in the 13C isotope labeling dataset, are reported in Appendix F. The experimental 

datasets span a wide variety of CHO cell types, phases, and processing conditions, which are 

reported in Table 7.1. In this work, the 13C labeling fluxes and extracellular metabolite uptake 

rates are converted into the units of 𝑚𝑚𝑜𝑙 𝑔𝐷𝐶𝑊ℎ⁄ , through the dry cell weight experimentally 

measured for each cell line, to comply with the typical fluxomics unit of measure.  

 
* This work is a collaboration with Imperial College London (UK). Please refer to the foreword for the complete disclosure 

statement.  
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The resulting dataset, comprising 93 experimental datapoints, is organized in the matrix 𝐗 [𝑁 × 𝑉] = [93 × 24], which contains the extracellular metabolite uptake rates, and 𝐘 [93 × 59], which contains the intracellular reaction rates. In the rest of this Chapter, the 

intracellular reaction rates will be referred to as intracellular fluxes.  

Table 7.1 13C isotope labeling data sources and data conditions.  

Source Cell type # of experiments Culture phase Names 

Templeton et al. 
(2013) 

CHO-S producer 4 
Early exponential, late 
exponential, stationary, 

and decline 

early, late, stat, 
decline 

Sheikholeslami 
et al. (2013) 

CHO-Cum2 
producer 

2 Late exponential ind, nonind 

Templeton et al. 
(2014) 

CHO-S non-
producer 

6 
Early and late 
exponential 

CLP, LELP, HELP, 
CLC, LELC, HELC 

Sheikholeslami 
et al. (2014) 

CHO-Cum2 
producer 

2 Late exponential lowgln, highgln 

Nicolae et al. 
(2014) 

CHO-K1 non-
producer 

1 Late exponential nicolae 

Templeton et al. 
(2017a) 

CHO-S producer 
and non-producer 

11 Stationary 

SV, SVGS, SVM1, 
SVM2, SVM3, 
SVM4, BCL2, 

BCL2-M1, BCL2-
M2, BCL2-M3, 

BCL2-M4 
Templeton et al. 

(2017b) 
CHO-S producer 2 

Perfusion and 
stationary 

fed-batch, perfusion 

McAtee Pereira 
et al. (2018) 

CHO-S producer 3 Late exponential CM, LA, LAplus 

 

7.1.2 Prediction of intracellular fluxes from extracellular metabolite 

uptake rates through artificial neural networks 

7.1.2.1 Data management 

The available 13C isotope labeling data are incomplete, since certain intracellular fluxes are not 

available in some data sources. Because of that, only the intracellular reactions with at least 

75% of measurements are considered in this work. Accordingly, the matrix of intracellular 

fluxes considered in the rest of this Chapter is 𝐘 [𝑁 × 𝑀] = [93 × 47]. The remaining missing 

data are not artificially imputed to avoid the introduction of additional artifacts in the data. 

Accordingly, only the available measurements of each intracellular reaction are considered to 

construct the artificial neural networks (ANN) model.  

To mitigate overfitting issues and improve the robustness of the ANN parameters due to the 

reduced number of available datapoints, the SMOTE method and gaussian noise addition are 

used to artificially increase the number of training observations. In SMOTE (Chawla et al., 

2002) a new artificial datapoint is generated as linear combination of two experimental 

datapoints. For each experimental datapoint 𝐱𝑛, one among the 10 nearest neighbor 
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experimental points 𝐱𝑛′ is randomly selected and used to generate the artificial datapoint 𝐱art. 
Then, the two selected experimental datapoints 𝐱𝑛 and 𝐱𝑛′ are linearly combined through a 

random coefficient, 𝛾, as  𝐱art = 𝐱𝑛 +  𝛾(𝐱𝑛′ − 𝐱𝑛)   . (7.1) 

Both extracellular metabolite uptake rates 𝐗 and intracellular fluxes 𝐘 were augmented through 

Equation (7.1) using the same 𝛾 value and selected neighbor. Through this procedure, three 

artificial datapoints are generated from each experimental datapoint in 𝐗 and 𝐘 by randomly 

selecting a different neighbor and 𝛾 value, resulting in 3 ∙ 𝑁 artificial datapoints. Once 

generated, all the artificial datapoints 𝐱art are vertically concatenated to the original datasets 𝐗 

and 𝐘 to form the augmented matrices 𝐗SMOTE and 𝐘SMOTE.  

Gaussian noise addition is used to further increase the number of training experiments and 

improve the robustness of the ANN model. Five new artificial datapoints are generated for each 

datapoint in 𝐗SMOTE and 𝐘SMOTE, adding 3% white noise to 𝐗SMOTE and 1% white noise to 𝐘SMOTE. This noise is selected as a tradeoff between a low distortion of the original values and 

improved prediction performance of the ANN evaluated in preliminary studies (not shown here 

for the sake of conciseness). Once generated the new artificial datapoints are vertically 

concatenated to 𝐗SMOTE and 𝐘SMOTE, to produce the final matrices for ANN training 𝐗A  and 𝐘A. 

7.1.2.2 Data-driven modeling strategy  

Artificial neural networks (Section 2.2) are used to predict intracellular fluxes from 

extracellular metabolite uptake rates. The ANN is selected since it outperformed other 

regression methodologies in preliminary studies (not shown here for sake of conciseness). One 

ANN is built for each intracellular reaction 𝑚, to predict its reaction rate 𝐲𝑚 (a vertical slice of 𝐘) from all extracellular metabolite uptake rates 𝐗. Prior to ANN modeling, all data are scaled 

to 0 mean and unit variance by autoscaling.  

The structure of the ANN comprised one input, one output layers, and two fully connected 

hidden layers. The activation function is selected for each intracellular reaction between reLu 

and tanh as the one maximizing validation accuracy in preliminary studies. The ANN is trained 

with an Adam algorithm (Kingma & Ba, 2015) using the mean squared error (MSE) as loss 

function. The Adam algorithm is nowadays one of the most effective algorithms for the training 

of ANN.  

Because of the relatively small number of available datapoints, instead of splitting the data in 

training and validation subsets, a 15-fold cross-validation is coupled with a grid search to 

determine the optimal number of neurons for each hidden layer and the learning rate. The 

hyperparameters are selected as the ones minimizing the MSE in cross-validation. Similarly, 

the number of training epochs is determined through a 100-iteration Monte Carlo cross-
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validation as the average of the training epochs observed over the cross-validation iterations. In 

this case, 5% of the datapoints are randomly extracted and used as internal validation set, while 

the remaining 95% are used from model training. This internal validation set is used to stop the 

ANN training when the validation MSE starts to increase, thus determining the best number of 

training epochs. In all cross-validation operations, the measurements corresponding to the same 

experiment and all the augmented data generated from them are place together either in the 

training or the internal validation set.  

 
Figure 7.1 Neural networks leave-one-out validation procedure.  

The ANN models were validated through a leave-one-out procedure to assess in the best 

possible way the prediction performance given the small number of available experimental 

measurements. The leave-one-out validation procedure is organized as follows (Figure 7.1): 

1. Reaction selection: initially, the intracellular reaction 𝑚 to consider is selected and its 

reaction rates 𝐲𝑚 [93 × 1] are extracted from 𝐘. All the following steps are performed 

separately for each intracellular reaction. 

2. Leave-one-out validation sample selection: at this step the leave-one-out validation 

experiment 𝑛 is selected, and its three sets of measurements are extracted from 𝐲𝑚 and 𝐗, generating the training dataset 𝐗train [90 × 24] and 𝐲train [90 × 1], and the 

validation one 𝐗val [3 × 24] and 𝐲val [3 × 1]. The validation dataset 𝐗val and 𝐲val are 

kept aside until the validation step (step 6). All the following steps are repeated for all 

the available experiments.  

3. Data augmentation: once the leave-one-out validation sample is extracted, data 

augmentation (Section 7.1.2.1) is performed on the training experiments 𝐗train and 𝐲train to generate the training matrices 𝐗trainA  [1350 × 24] and 𝐲trainA  [1350 × 1]. 
4. Hyperparameter optimization: the learning rate and the number of neurons of the two 

hidden layers are determined through 15-fold cross-validation as previously explained. 
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5. Internal cross-validation: at this step, the training number of epochs are determined 

through a Monte Carlo cross-validation as previously explained. 

6. Reaction rate prediction and prediction interval calculation: at this step, the ANN is 

trained on augmented training experiments 𝐗trainA  and 𝐲trainA . Then, the intracellular 

fluxes of the left-out experiment are predicted (𝐲̂val) from 𝐗val and the prediction 

interval is calculated with two different methods: the ensemble method (explained in 

Section 7.1.2.3) and the gradient method (explained in Section 7.1.2.4). After this step, 

the procedure is concluded, and another leave-one-out validation sample should be 

selected at step 2. 

The prediction performance of the model is evaluated through the MSE and the coefficient of 

determination 𝑄2 in validation, which is calculated at the end of the leave-one-out validation 

joining all predicted values 𝐲̂val together to have a comprehensive metric for the effectiveness 

of the model.  

In this work, we proposed an innovative strategy to constrain the GSMMs. Specifically, we 

used the prediction intervals of intracellular fluxes (whose calculation methods are available in 

the Literature and reported in Section 7.1.2.3 and Section 7.1.2.4) estimated through the ANN 

to constrain intracellular reactions in GSMMs.  

7.1.2.3 Ensemble prediction interval calculation method 

The ensemble method is one of the most straightforward methods for the calculation of the 

prediction intervals. In the ensemble method (Lakshminarayanan et al., 2017) the ANN model 

is trained multiple times in parallel with different randomly initialized weights on randomly 

shuffled training data 𝐗trainA . The model ensemble is used for prediction, providing a population 

of predicted values 𝐲̂E, whose differences is only due to the uncertainty in network weight 

estimation.  

The ensemble predicted value is defined as the mean value of the population of predictions 𝐲̂E. 

The uncertainty prediction interval is calculated as the 95% confidence interval of a Student’s 
t distribution build on the population 𝐲̂E: PI = 𝜎𝐲̂E  𝑡1−𝛼 2⁄ ,𝑁models−1    , (7.2) 

where PI is the half width prediction interval, 𝜎𝐲̂E is the standard deviation of the population of 

ensemble predictions 𝐲̂E, and 𝑡1−𝛼 2⁄ ,𝑁models−1  identifies the confidence threshold of a t-

distribution with 𝑁models − 1 degrees of freedom calculated with 𝛼 = 0.05, and 𝑁models is the 

total number of trained models. In this work, 𝑁models = 25 models are trained in parallel for 

the estimation of the prediction intervals.  
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7.1.2.4 Gradient prediction interval calculation method 

The gradient method directly exploits the gradient through the ANN calculated with 

backpropagation to estimate the prediction intervals. In this case, the prediction interval for a 

new datapoint 𝐱NEW is calculated exploiting the trained ANN (De Veaux et al., 1998; Khosravi 

et al., 2011) as: PI = 𝑠𝑒 𝑡1−𝛼 2⁄ ,𝑁−𝑝∗ √1 + 𝐠NEWT  𝚽(𝐉T𝐉)𝚽𝐠NEW , (7.3) 

where 𝑡1−𝛼 2⁄ ,N−𝑝∗  identifies the confidence threshold of a t-distribution with 𝑁 − 𝑝∗  degrees 

of freedom calculated with 𝛼 = 0.05, 𝑁 is the total number of training experiments, 𝑝∗ is 

defined in the following, 𝐠NEW = 𝜕𝐿(𝐱NEW) 𝜕𝞈⁄  is the gradient vector of the loss function 

calculated in the new datapoint, 𝐿(𝐱NEW), over the ANN weights 𝞈, 𝐉 = 𝜕𝐿(𝐗trainA ) 𝜕𝞈⁄  is the 

matrix of the gradient vectors of the loss function calculated for all training experiments 𝐗trainA  

over the network weights, and T indicates the transpose operation. The matrix 𝚽 is defined as: 𝚽 = (𝐉T𝐉 + λreg𝐈)−1
   , (7.4) 

where λreg is a regularization coefficient and 𝐈 is the identity matrix. In this work, a 

regularization coefficient λreg = 0.05 is used. The 𝑠𝑒 factor is calculated as: 𝑠𝑒 = (𝐲trainA −𝐲̂trainA )T(𝐲trainA −𝐲̂trainA )𝑁−𝑝∗    , (7.5) 

where 𝐲̂trainA  are the ANN predicted values of the training dataset, 𝑝∗ = tr(2𝚿 − 𝚿2), where tr defines the trace, and the matrix 𝚿 is calculated as: 𝚿 =  𝐉𝚽𝐉T   . (7.6) 

7.1.3 Genome-scale Metabolic model2 

The proposed methodology was tested on a comprehensive CHO cell GSMM, iCHO2441, that 

couples the protein secretory pathway of iCHO2048 (Gutierrez et al., 2020) to the recently 

updated iCHO2291 (Yeo et al., 2020). To our knowledge, this is the most complete CHO 

GSMM to date, with the highest number of annotated genes and gene per reaction ratio. The 

GSMM comprises 𝐷 = 4174 metabolites, 𝑈 = 6337 metabolic reactions, and 2441 genes.  

The constraining of the GSMM with the bounds predicted by the ANN is not straightforward 

and comprises four steps: 

1. Constraining of the GSMM with the extracellular uptake rates form the 13C labelling 

experiments (Section 7.1.1); 

2. Reaction mapping; 

3. Maximization of the feasible constraints; 

 
2 The GSMM and the methodology to apply the ANN predicted constrains on the GSMM has been developed by the research 

group of Prof. Cleo Kontoravdi at Imperial College London (U.K.).  
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4. GSMM solution. 

7.1.3.1 Reaction mapping 

The intracellular reactions predicted by the ANN, because available from the 13C labelling data, 

lump several GSMM reactions, making a one-to-one mapping impossible. For this reason, the 

reactions predicted by the ANN must be mapped to the ones in the GSMM. This is achieved by 

considering the GSMM reactions as an electric circuit, with parallel and serial connections. The 

fluxes of parallel reactions were summed and subsequently treated as single serial reaction. For 

serial reactions, the overall flux is determined as the minimum of all reaction in series.  

7.1.3.2 Maximization of the feasible constraints 

GSMM reactions are constrained with the bounds predicted by the ANN (i.e., prediction 

intervals) following the mapping determined in Section 7.1.3.1. However, due to over 

constraining issues, the constraining of certain combinations of mapped reactions is not 

feasible. To ensure model feasibility, the optimum set of reaction to constraint is found through 

a Mixed Integer Linear Programming problem before the actual constraining of the GSMM. 

The GSMM is iteratively solved with the objective of finding the feasible combination of 

intracellular flux constraints that maximizes the number of included ANN predicted bounds. 

The optimization problem is defined as:  max∑ 𝛿𝑚𝑀𝑚=1    , (7.7) 

subject to the solution of the GSMM through FBA (Section 2.3.1), the ANN predicted 

constraints, and the extracellular metabolites uptakes rates form 13C labeling data; where 𝛿𝑚 =1 if the 𝑚-th reaction is constrained with the ANN predicted bounds, and 𝛿𝑚 = 0 if the 𝑚-th 

reaction is not constrained with the ANN predicted bounds. 

7.1.3.3 GSMM solution 

The GSMM is solved though flux sampling. In flux sampling, intracellular fluxes are calculated 

by averaging 5 million possible flux solutions within the GSMM solution space (Section 2.3.2). 

The prediction of cell phenotypes, such as biomass, are performed by maximizing biomass 

through FBA.  

7.1.3.4 Performance evaluation 

The performance of the GSMM constrained with the ANN predicted bounds are compared with 

the base case, which is typical state-of-the-art method for GSMM solution. In the base case, the 

GSMM is only constrained with the extracellular uptake rates form the 13C labelling 

experiments, while the constraints of intracellular reactions are left as the default ones (0 – 1000 

or -1000 – 1000 according to reaction reversibility).  
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Intracellular flux estimation performance is evaluated through the Pearson correlation 

coefficient between the 13C labelling experimentally measured and GSMM calculated 

intracellular fluxes. Note that the same mapping presented in Section 7.1.3.1 is used to associate 
13C labeling and GSMM reactions. The Pearson correlation is calculated for each available 

intracellular reaction in the 13C labelling experiments over all available experiments as: 𝜌𝑚 = ∑ (ν𝑛,𝑚−ν̅𝑚)(𝑦𝑛,𝑚−𝑦̅𝑚)𝑛√∑ (ν𝑛,𝑚−ν̅𝑚)2 ∑ (𝑦𝑛,𝑚−𝑦̅𝑚)2𝑛𝑛    , (7.8) 

where ν𝑛,𝑚 is the 𝑚-th calculated intracellular flux for the 𝑛-th experiment through the GSMM, ν̅𝑚 is the average value of the 𝑚-th intracellular flux calculated through the GSMM, 𝑦𝑛,𝑚 is the 𝑚-th 13C intracellular flux for the 𝑛-th experiment from 𝐲𝑚, and 𝑦̅𝑚 is the average value of the 𝑚-th intracellular flux 𝐲𝑚. The Pearson correlation coefficient was analyzed based on its 

distribution over all available intracellular reactions 𝑀. 

All the codes used to obtain the results of this Chapter are developed in Python 3.10, using 

Tensorflow 2.8 (Abadi et al., 2016) and COBRApy (Ebrahim et al., 2013). 

7.4 Prediction of intracellular fluxes 

In this Section, the intracellular flux prediction performance of the developed ANN is presented 

for the proposed methods for the calculation of the prediction interval and for different 

dimensions of the grid search for optimal number of neurons.  

7.2.1 Performance of different prediction interval calculation methods 

This Section is aimed at assessing the differences in the ANN prediction performance between 

the two prediction interval calculation methods tested in this study. This examines how different 

methods predict the actual value of intracellular fluxes and the respective prediction intervals 

(i.e., which will be further used to constrain the GSMM). To this purpose the 𝑄2 in the internal 

cross-validation and in the leave-one-out validation is inspected, because it gives a better idea 

of the overall prediction performance of the models than absolute or relative metrics (e.g., root 

mean squared error, mean absolute error, percentage error, etc.).  

The distribution of 𝑄2 in cross-validation is reported in Figure 7.2 through a box plot because 

a single value, such as the mean, would not give complete information on the model behavior. 

Note that in this box plot, the percentiles of the model performance in cross-validation are 

reported, these are not the prediction intervals used in the following Section for GSMM 

constraining. The cross-validated 𝑄2 quantifies the robustness of the model to different splitting 

of the dataset. Specifically, a low 𝑄2 median value3 indicates that the predictions are generally 

 
3 In this case, the median value is more meaningful than the average, because it gives indication of the trends in the prediction 

performance without being affected by outliers (i.e., low 𝑄2 values, which are unbounded in the negative direction). 
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inaccurate independent on the calibration-validation splitting, while high 𝑄2 median value 

indicates accurate prediction performance; furthermore, a wide 𝑄2 distribution means that the 

prediction performance are strongly dependent on the specific internal calibration-validation 

splitting, while a small dispersion 𝑄2 distribution means that the prediction performance are 

repeatable.  

 
(a) 

 
(b) 

Figure 7.2 Neural network 𝑄2 in cross-validation for different prediction intervals 

calculation methods: (a) ensemble and (b) gradient.  
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Very similar trends in 𝑄2 can be observed for both prediction interval calculation methods. The 

main metabolic reactions involved in energy production, belonging to glycolysis and TCA 

cycle, have a very high median 𝑄2 with very narrow distribution, apart for reactions PGI and 

PFK, which are located in proximity of the bifurcation between glycolysis and pentose 

phosphate pathway (PPP). This indicates that the prediction of the flux through these energy 

producing reactions is very robust, and accurate predictions are always performed 

independently on the calibration-validation splitting. Differently, PPP reactions, which are 

parallel to glycolysis and involved in the production of reducing agents, and nucleotide and 

aromatic amino acid precursors, show a median 𝑄2 slightly above 70% with a wider distribution 

even reaching negative values. Accordingly, prediction of PPP fluxes, which alternative way to 

metabolize glucose, is less robust and slightly less accurate than the primary route of glucose, 

glycolysis and TCA cycle, but a satisfactory accuracy is still achieved. Furthermore, PPP flux 

predictions are more sensitive to the specific internal calibration-validation splitting, and their 

performance are likely to be experiment dependent. Differently, the metabolism of amino acids 

shows very variable performance. Reactions, such as SBCAD, IVD, TTA and AASS, which 

involve metabolites participating in many metabolic reactions, such as AcCoA, aKG.c, and 

Glu.c, show low median 𝑄2 and very wide distributions, whereas other reactions involving the 

conversion of amino acids into other metabolites, such as GS, ASNS, GCS, PCC, TDO and 

AKD, show high median 𝑄2 and narrow distribution. Other reactions concerning the amino acid 

metabolism show intermediate, but still satisfactory performance, with an average influence of 

the specific internal calibration-validation set.  

With respect to the 𝑄2 in cross-validation, the only difference between the two prediction 

interval calculation methods relies on slight variations in the median, average and percentile 

values of the predicted fluxes. Only PPP reactions, G6PDH, TAL and TKT2, and the glycolysis 

reaction in proximity of the PPP bifurcation, PGI, show a large variation in the 5/95 percentile 

values, indicating a different sensitivity of the predictions to the specific internal calibration-

validation set. 

The 𝑄2 in leave-one-out validation for the entire available metabolic network is reported in 

Figure 7.3 and 7.4. The 𝑄2 in validation gives information on the overall performance of the 

ANN in predicting new and totally unknown samples, providing the best way to evaluate the 

ANN. Also in this case, the 𝑄2 is used, because other absolute and relative metrics would be 

more difficult to interpret in a comprehensive fashion.  

Very similar trends in the 𝑄2 in leave-one-out validation can be observed for both prediction 

interval calculation methods. The main carbon route for energy production, involving 

glycolysis and TCA cycle, is predicted with high accuracy showing a 𝑄2 near 90%, apart for 

the reactions located in proximity of the bifurcation between glycolysis and PPP, PGI and PFK. 

Fluxes of the parallel route for metabolizing glucose, PPP, are predicted with lower accuracy 

than the primary glucose route, glycolysis and TCA cycle, whereas amino acid metabolism 
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show very variable performance coherent with was previously observed. In this case, fluxes of 

some reactions in different regions of the metabolism, such as PC, ARGS, TTA, PAH, and AASS 

are predicted with low accuracy showing 𝑄2 < 30% in both prediction interval calculation 

methods.  

 
Figure 7.3 Neural networks 𝑄2 in leave-one-out validation for the ensemble prediction 

intervals calculation method.  

Interestingly, low prediction performance is observed mainly in parallel/alternative reactions 

and reactions involving metabolites participating in many metabolic reactions. Specifically, the 

entire PPP is an alternative route to metabolize glucose and show lower prediction accuracy 

than the main route. Additionally, a deeper observation highlights that the reactions sharing 

metabolites between glycolysis and PPP (i.e., involving the metabolites GAP and F6P) show 

low 𝑄2. Similarly, almost all reaction involving AcCoA, aKG.c and Glu.c, which participate in 
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many metabolic reactions, show low 𝑄2 in validation. This localized inaccuracy to specific 

reactions can be due to inconsistency in the available 13C labelling data. In particular, the 

intracellular fluxes used for the training of the ANN are not directly measured experimentally 

but are calculated through a simplified metabolic model from the measured concentrations of 

the 13C isotopes. This may lead to the introduction of inconsistency that are typical of metabolic 

models, such as in the case of parallel/alternative reactions, where fluxes are split in a somehow 

random way. This inconsistencies in the flux calculation might result in highly variable and 

badly distributed data that break the general relationship between inputs (extracellular 

metabolite uptake rates) and the intracellular flux value, leading to the inaccurate predictions 

of the neural networks.  

 
Figure 7.4 Neural networks 𝑄2 in leave-one-out validation for the gradient prediction 

intervals calculation method.  
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Further comparing the two prediction interval calculation methods (Figure 7.3 and 7.4), 

different prediction performance for some specific reactions can be observed. Reactions in the 

PPP, such as TKT1, TAL and TKT2, show higher 𝑄2 in the ensemble method, whereas 

glycolysis fluxes of reactions sharing metabolites with the PPP, such as PGI and PFK, are better 

predicted by the gradient method. Furthermore, reactions involving pyruvate (Pyr), such as ME, 

PC, and PGHDH, and the CDO reaction show higher 𝑄2 in the gradient method, while ALT, 

AASS, and SBCAD reactions show higher 𝑄2 in the ensemble method.  

Despite these small differences, both prediction interval calculation methods show good overall 

prediction performance, and no method outperforms the other. For this reason, both methods 

will be used to predict intracellular flux constraints and tested in the GSMM.  

The constraints for intracellular reactions are estimated through the prediction intervals 

calculated with the ensemble and gradient methods. In both methods, the width of the prediction 

interval (PI) depends on the amount of uncertainty that characterize the prediction of a specific 

intracellular flux. Accordingly, a prediction affected by low uncertainty will show narrow PI, 

while a prediction affected by uncertainty will show wide PI. This prediction uncertainty is 

associated to each single experiment and depends on how the extracellular uptake rate values 

are positioned within the space generated by the uptakes of the training dataset.  

An example of the PI estimated by the two methods is reported in Figure 7.5 for two different 

experiments, showing with the dots the estimated flux with their PIs (i.e., error bars) and the 

true 13C flux with red dashed line. In both examples, the gradient method predicts the 

intracellular flux with high accuracy, as shown by the dot being closer to the red line. 

Furthermore, the estimated PIs change between samples and between PI calculation methods. 

An experiment with prediction affected by low uncertainty denoted by narrow PI is shown in 

Figure 7.5a, while an experiment with prediction affected by high uncertainty denoted by wide 

PI is shown in Figure 7.5b. In the case of low uncertainty, the ensemble method estimates very 

narrow PI, which are almost half in width of the one estimated by the gradient method. In the 

case of prediction affected by uncertainty, the ensemble method estimates very wide PI, almost 

double of the gradient method. The results shown in this example are generally valid for all 

experiments and intracellular reactions. Specifically, the ensemble method is more confident 

than the gradient method with predictions that result in low uncertainty, while being less 

confident in prediction characterized by high uncertainty. This results in narrower PIs for 

prediction with low uncertainty and wider PIs for prediction with uncertainty.  

In general, predictions are required to be as accurate as possible, and the PIs as narrow as 

possible. This is true also in the specific application discussed here. However, currently it is not 

clear either if, in further constraining of the GSMM, PIs should be narrow or if wider constraints 

may be beneficial. For this reason, both PI methods will be tested on the GSMM in the 

following section. 
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(a)                                                                                           (b) 

Figure 7.5 Predicted intracellular flux of the ENO reaction with PI (error bars) for different 

experiments: (a) BCL2-M1 (prediction with low uncertainty), and (b) BCL2-M2 (prediction 

with uncertainty). 

7.2.2 Sensitivity to different number of network neurons 

This Section is aimed at studying the sensitivity of the ANN prediction performance for 

different dimensions of the grid search for the optimal number of neurons. This is intended to 

better understand the impact that the number of neurons has on the predictions and how this 

reflects on the GSMM, allowing to select the best possible network.  

To this purpose, the ANN was retrained multiple times selecting a different dimension of the 

grid search for optimizing the number of neurons. The tested grid search dimensions are: i) 0 

to 25 (small size), ii) 0 to 50 (medium size), and iii) 0 to 100 (large size). The sensitivity on the 

different grid search dimensions is shown only for the gradient method, because it provides 

better performance on the GSMM (Section 7.3).  

The 𝑄2 in leave-one-out validation for the three different grid search dimensions is reported in 

Figure 7.6. In general, medium and large size searches show slightly higher 𝑄2 that the small 

size search. In particular, fluxes of glycolysis and amino acid metabolism are predicted with 

similar accuracy in the three grid searches, the PPP fluxes are generally better predicted in the 

medium size search, while the TCA cycle fluxes are predicted with higher accuracy in the 

medium and large size searches. This indicates that low number of neurons is typically not 

enough to capture the general relationship between extracellular metabolite uptake rates and 

intracellular fluxes. Fluxes of some intracellular reactions, such as aKG.m, PC, AST, and ARGS, 

are badly predicted (𝑄2 < 0) in the low size search, while medium and large size searches show 

higher accuracy and positive 𝑄2. However, fluxes of reactions PGI, TPI, HK, PPI, TDH, and 

SBCAD are predicted with the highest 𝑄2 in the small size search, indicating that in some cases 

the relationship between uptakes and intracellular fluxes is simple enough to be generalized by 

a small neural network. 
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Medium and large size searches show similar 𝑄2 values, with medium size search being slightly 

better. In fact, the prediction of the reactions G6PDH, TKT1, TAL, TKT2, FUS, IDH, ACL, ALT, 

IVD, TTA, and AASS are substantially better in the medium size search.  

 
Figure 7.6 Neural networks 𝑄2 in leave-one-out validation for the gradient PI calculation 

method using different grid search dimensions in the optimization of the number of neurons. 
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In ANN, the use of a lower number of neurons is generally preferred to reduce overfitting and 

achieve a more robust weight estimation with the available training experiments. In this case, 

since the medium size search achieves similar and even slightly better prediction performance 

using a smaller number of neurons, this configuration is to be preferred with respect to the 

others. However, the constraints predicted by all three configurations will be tested on the 

GSMM to assess the best possible model structure.  

7.3 Genome-scale metabolic model predictions 

In this Section, the prediction performance of the GSMM when it is constrained with the neural 

network predicted bounds is analyzed to identify the best neural network configuration and 

understand the performance of the proposed methods with respect to the state-of-the-art.  

To this purpose, the GSMM is constrained with the extracellular metabolite uptake rates 𝐗 used 

by the ANN for prediction and the estimated PI are used as lower and upper bound to constrain 

intracellular reactions. In the base case (Section 7.1.3.4), the GSMM is constrained with the 

extracellular metabolite uptake rates, while intracellular reactions have default upper and lower 

flux bounds. In both cases, the flux sampling method is used to calculate the distribution of 

intracellular fluxes.  

 
Figure 7.7 Pearson correlation distributions of GSMM calculated intracellular fluxes for 

base case and the proposed ANN in different configurations.  
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The performance of the GSMM in calculating intracellular fluxes is reported in terms of Pearson 

correlation (Section 7.1.3.4) in Figure 7.7. The represented distributions consider the Pearson 

correlation over all leave-one-out validation experiments and all experimentally available 

intracellular fluxes.  

The proposed methodology of constraining the flux of intracellular reactions with the ANN 

prediction intervals outperforms the base case independently on the specific ANN 

configuration, showing higher mean, median, and 25/75 percentiles of the Pearson correlation 

distribution, and, in many cases, an overall narrower distribution. Accordingly, the proposed 

method largely improves the GSMM capability of calculating intracellular fluxes, making 

GSMM a reliable methodology to improve the description of cell metabolism. The proposed 

methodology outperforms also other state-of-the-art methods, such as pFBA and ccFBA. 

However, these results are excluded from this Dissertation, because they are related to the 

partner work.  

When comparing different configuration of the proposed ANN models, all gradient methods 

show higher Pearson correlation than the ensemble method, i.e., higher prediction accuracy. 

This is not true for the small size search which shows a lower mean and median Pearson 

correlation than the ensemble method (median 0.677 vs. 0.698; mean: 0.546 vs. 0.557).  

Consequently, the generally wider PIs of the gradient method, together with the narrower ones 

for prediction affected by uncertainty, determine that gradient method outperforms the 

ensemble one. This is probably due to the fact that the wider bounds (of predictions not affected 

by large uncertainty) allow a sufficient freedom in adjusting the overall fluxes across the 

metabolic network, while the narrower ones (of predictions affected by uncertainty) avoid an 

excessive freedom which drives the calculated flux away from the experimental value.  

Among different method configurations for the gradient PI calculation, the medium size search 

shows the highest median value (0.765), but a slightly lower mean that the large size search 

(0.525 vs. 0.591). Furthermore, the medium size search shows wider 25/75 percentiles than the 

large size one. This denotes that the majority of the intracellular fluxes have higher Pearson 

correlation (i.e., higher accuracy) than the large size search case, but in some cases the 

correlation can be lower (i.e., lower accuracy). These metrics indicate that the ANN in the 

medium and large size search configurations allows the best calculation of the intracellular 

fluxes in the GSMM, with the medium size configuration being slightly better. As previously 

explained, the medium size search configuration is to be preferred, because it results more 

robust and less prone to overfit new datapoints due to the lower number of neurons and allows 

GSMMs to achieve good performance in intracellular flux calculation. 

The GSMM is also used to estimate the cell growth rate by maximizing the produced biomass 

through FBA. The proposed methodology (large size search configuration) outperforms the 

base case method in the prediction of the growth rate, with a 𝑄2 = 61.6% evaluated on the 

leave-one-out validation experiments against a 𝑄2 = 13.3% of the base case.  
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7.4 Deployment of Next-FLUX 

The methodology proposed in this Chapter resulted in the deployment of Next-FLUX (Neural-

net EXtracellular Trained flux) software. This software is used to predict intracellular fluxes 

and their PIs to constrain GSMMs starting from commonly available extracellular metabolite 

uptake rates.  

 
Figure 7.8 Deployed software procedural steps.  

The software has the sequential structure of Figure 7.8. The ANN inputs are extracellular 

metabolite uptake rates (Section 7.1.3), which are required to predict intracellular fluxes. Next-

FLUX has four sequential steps: 

1. Data organization: initially, the provided uptakes are compared with ones required by 

the ANN and organized accordingly. Unnecessary uptakes are discarded, while any 

missing required uptake is recorded and will be treated in step 2. 

2. Missing data imputation: scattered missing data and entirely missing uptakes are 

imputed at this step. The imputation is performed based on a PCA model calibrated on 

the available 13C labelling dataset used for ANN training through the procedure 

proposed by Muñoz et al. (2004). In this method, the known data are used to estimate 

the score of the PCA model through the respective loadings. From the score, the 

unknown uptakes values are estimated using the respective loadings. This procedure is 

iterated until convergence of the score value, whose final converged value gives the 

imputed missing uptakes.  

3. Similarity check: at this stage the similarity of the input datapoints with the training 

experiments is assessed through a PCA model. The same PCA model of step 2 is used 

to calculate the 𝑇2and 𝑆𝑃𝐸 diagnostics (Section 2.1). Based on these diagnostics the 

new datapoints are categorized as similar or different from the training experiments. 

Different rationales based on PCA diagnostics can be selected by the user to define 

similarity: i) inside confidence limits of both diagnostics, and ii) inside the confidence 

limit of a single diagnostic index. The user is informed of the new datapoints passing 

the similarity check, and only the similar datapoints are progressed to step 4. The user 

can force the software to progress all new datapoints to step 4 independently on the 

similarity check results.  

4. Bounds prediction: at this step, the intracellular fluxes and their PIs are predicted for all 

the available intracellular reactions and datapoints provided by step 3. An ANN trained 

on all available 13C labelling experiments is used for the prediction. The ANN is trained 

following the same procedure explained in Section 7.1.3 without excluding any 

experiment for validation. 
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The predicted PIs can be then transferred to a GSMM and used as constraints for intracellular 

reaction.  

7.5 Concluding remarks and future work 

In this Chapter, a deep learning strategy to predict GSMM intracellular constraints from easily 

available and cheap experimental data was proposed. The proposed strategy exploits an 

artificial neural networks, trained on 13C isotope labeling experimental data, to predict the main 

intracellular fluxes from extracellular metabolite uptake rates and provide an estimation of the 

lower and upper flux bounds for the GSMM through the calculation of prediction intervals. 

In a leave-one-out validation, the artificial neural networks accurately predicted with 𝑄2 >65% most of the intracellular fluxes from the extracellular metabolite uptake rates, mainly 

reactions in glycolysis, TCA cycle, and some reactions in the amino acid metabolism, such as 

GS, ASNS, SHMT, GCS, MAT, TDO, AKD, IBD. However, slightly lower performance (𝑄2 <35%), probably due to small inconsistency in the training data, was observed in parallel and 

alternative reactions, such as PPP ones, and reactions with metabolites participating in many 

metabolic reactions, such as PC, ARGS, TTA, and AASS. Two prediction interval calculation 

methods were compared, which showed similar prediction performance, but estimated 

prediction intervals with slightly different widths.  

A GSMM constrained with the predicted bounds showed better performance in calculating 

intracellular fluxes than the base case and other state-of-the-art methods, and more accurate 

biomass predictions. The gradient prediction interval calculation method showed better 

performance in the GSMM, because of the estimated bounds show smaller width variability.  

This work resulted in the deployment of an automated software for the prediction of GSMM 

intracellular constraints, named Next-FLUX, Neural-net EXtracellular Trained FLUX. This 

software automatically checks the consistency of the provided data with the historical ones and 

provided estimations of GSMM intracellular constraints.  

In the future, Next-FLUX will form an integrated platform for GSMM analysis, embedding the 

application of data-driven constraints and the solution of the GSMM. Furthermore, Next-FLUX 

will be validated on independent 13C isotope labelling datasets to assess its general applicability 

and robustness.  

 



 

 



 

 

Chapter 8 

Data-driven genetic engineering* 

In this Chapter, a machine learning strategy to identify targets for the genetic engineering of 

host cells exploiting genome-scale metabolic models (GSMMs) is proposed. Initially, the 

machine learning strategy based on latent variable model inversion and the generation of the 

strain specific GSMMs is explained. Then, the outcomes of the machine learning model used 

for genetic engineering are presented and the identified genetic modifications are analyzed and 

discussed.  

8.1. Material and Methods 

In this Section, the data and the main mathematical methodologies used in this work are 

presented. Specifically, the available culture data, the GSMM used in this work and the 

generation of metabolic data is initially presented. Then, the machine learning strategy to 

identify the genetic modifications is detailed.  

8.1.1 Available culture data 

A CHO cell culture dataset assembled from 4 different publicly available sources is used in this 

work. The dataset contains experimental measurements of 24 extracellular metabolite uptake 

rates for 𝑁 = 23 different cell lines. For each cell line, the upper, lower, and median value of 

the observed metabolite uptake rates are available. The experimental datasets span a wide 

variety of CHO cell types, phases, and processing conditions, which are reported in Table 8.1 

with the name given to each cell line. Note that in the following cell lines will be referred with 

their specific names.  

In this work the extracellular metabolite uptake rates are converted into units of 𝑚𝑚𝑜𝑙 𝑔𝐷𝐶𝑊ℎ⁄ , 

through the dry cell weight experimentally measured for each cell line, to be used in the GSMM.  
  

 
* This work is a collaboration with Imperial College London (UK). 
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Table 8.1 Experimental data sources and detail on cell line conditions.  

Source Cell type # of experiments Culture phase Cell line names 

Templeton et al. 
(2013) 

CHO-S producer 4 
Early exponential, late 
exponential, stationary, 

and decline 

early, late, stat, 
decline 

Templeton et al. 
(2014) 

CHO-S non-
producer 

6 
Early and late 
exponential 

CLP, LELP, HELP, 
CLC, LELC, HELC 

Templeton et al. 
(2017a) 

CHO-S producer 
and non-producer 

11 Stationary 

SV, SVGS, SVM1, 
SVM2, SVM3, 
SVM4, BCL2, 

BCL2-M1, BCL2-
M2, BCL2-M3, 

BCL2-M4 
Templeton et al. 

(2017b) 
CHO-S producer 2 

Perfusion and 
stationary 

fed-batch, perfusion 

 

8.1.2 Proposed strategy 

In this Chapter, a strategy for the identification of genetic engineering targets (i.e., genetic 

modifications) that improve mAb productivity in GSMMs is proposed. The proposed strategy 

comprises four steps (Figure 8.1), which are presented in the following. 

1. Metabolic data generation: a dataset of intracellular reaction rates (i.e., intracellular 

fluxes) and phenotypes (i.e., productivity and biomass) is generated through a GSMM 

(Section 8.1.3). This dataset is used as base to identify genetic modifications leading to 

an improved phenotype by calibrating a latent variables regression model.  

2. Latent variable model inversion: a latent variable regression model is trained on the 

dataset generated in step 1. Despite the large number of metabolic reactions, this model 

retains all available intracellular fluxes because we are interested in correlating the 

entire intracellular flux distribution with cell phenotypes. The latent variables model is 

then inverted to estimate the intracellular flux distribution associated with desired and 

improved cell phenotypes.  

3. Identification of genetic modifications: a specifically developed algorithm exploits a 

GSMM to identify a small set of genetic modifications that produce the desired 

phenotypes. Based on the intracellular flux distribution calculated in step 2, the 

algorithm identifies key metabolic reactions and associated genes to genetically modify.  

4. Test on the GSMM: the rate of the metabolic reactions identified in step 3 is adjusted in 

the GSMM according to the intracellular flux distribution estimated in step 2. The 

solution of the GSMM tests if the identified genetic modification improves cell 

phenotypes and allows to understand the metabolic reasons behind the improved 

performance. 
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Figure 8.1 Proposed strategy for the identification of genetic engineering targets that 

improve mAb productivity. 

8.1.3 Strain specific Genome-scale Metabolic Model and metabolic data 

generation 

A comprehensive CHO cell GSMM4, iCHO2441, is used in this work. The GSMM couples the 

current CHO cell metabolic information of iCHO2291 (Yeo et al., 2020) to the entire protein 

secretory pathway of iCHO2048 (Gutierrez et al., 2020). To our knowledge, this is the most 

complete CHO GSMM to date, with the highest number of annotated genes and gene per 

reaction ratio. 

This GSMM is used as base to generate a strain-specific CHO-S metabolic model using publicly 

available RNA-Seq data (Hefzi et al., 2016). The expression levels of 26795 genes are available 

at 10 time points throughout the culture and averaged in time. The procedure suggested by Hart 

et al. (2013) is used to identify the cut-off expression value for unexpressed genes. The Gene 

Inactivity Moderated by Metabolism and Expression (GIMME) algorithm (Becker & Palsson, 

2008) is used to generate the strain specific model from the expression levels and the previously 

determined cut-off value. Strain specific models are created per cell line by constraining the 

GSMM with the extracellular metabolite uptake rates and using biomass as objective function 

with an optimality threshold of 0.9. The final CHO-S model used in this work is generated by 

joining all reactions retained in the strain specific models reconstructed for each cell line. The 

generated CHO-S GSMM comprises 𝐷 = 4069 metabolites, 𝑈 = 5624 metabolic reactions, 

and 2111 genes. 

The CHO-S GSMM is initially used to generate a synthetic dataset to calibrate latent variable 

regression models. To generate data, the GSMM is constrained with the available upper and 

lower bounds of extracellular metabolite uptake rates (Section 8.1.1) and is solved by 

maximizing biomass through pFBA (Section 2.3.1).  

The intracellular reaction rates (i.e., intracellular fluxes) calculated by the GSMM for all 

available experiments are organized in the matrix 𝐗 [𝑁 × 𝑉], where 𝑉 is the number of 

intracellular reactions/fluxes considered in latent variable modeling. The direct secretory 

reactions, from protein translation to secretion, are excluded from the dataset, since their flux 

is almost equal to the produced mAbs, and we are not interested in genetic modification 

concerning the direct secretory pathway. Furthermore, reactions with zero flux in all 𝑁 cell 

 
4 The GSMM used in this work has been developed Benjamin Strain, Ph.D. student at Imperial College London (U.K.). 
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lines, are excluded from the dataset. The resulting dataset of intracellular fluxes is 𝐗 [23 × 721].  
The 𝑀 cell phenotypes predicted by the GSMM for all available cell lines are organized in the 

matrix 𝐘 [𝑁 × 𝑀] = [23 × 2], containing cell specific mAb productivity and biomass (i.e., 

growth rate).  

8.1.4 Latent variables regression model inversion  

A PLS model (Section 2.1.2) is built to correlate the intracellular fluxes 𝐗 to the cell phenotype 𝐘. The number of LVs is selected through a leave-one-out cross-validation as the one 

minimizing the root mean squared error (RMSECV). The same cross-validation is used to 

assess the prediction performance of the model, since an external validation dataset is absent, 

and all the available experiment are needed for model calibration. Cross-validation performance 

is measured in terms of RMSECV and coefficient of determination (𝑄2).  

In this model variable selection is not applied despite the imbalance in 𝐗 between the number 

of cell lines (i.e., observations) and metabolic reactions. This because we are interested in 

correlating the entire intracellular flux distribution with cell phenotypes for the further 

identification of genetic modifications among all possible metabolic reactions. 

Furthermore, a physical constraint on the predicted productivity is imposed in the PLS model, 

which sets the predicted productivity to 0 in case of a negative predicted value.  

The inversion of PLS models (Section 2.2.5) consists in the estimation of the new set of 

intracellular fluxes 𝐱NEW corresponding to the desired phenotype 𝐲DES, while: i) minimizing 

the Hotelling’s 𝑇2, ii) minimizing the reconstruction error SPE and ensuring it smaller that its 

95% confidence limit SPElim, iii) satisfying the PLS model equations, iv) and satisfying the 

constraints on 𝐱NEW and 𝐲DES. In this case, given that there are no equality constraints on 𝐲DES 

the general formulation of the PLS inversion (Equation 2.14) can be simplified as:  min𝐱NEW[𝑔1𝑇2 + 𝑔2𝑆𝑃𝐸]   ,  (8.1) 

subject to the PLS model and SPE constraints:  𝐲̂DES = 𝐭DES𝐐T   , (8.2) 𝐱̂NEW = 𝐭DES𝐏T   , (8.3) 𝐭DES = 𝐱NEW𝐖∗   , and  (8.4) 𝑆𝑃𝐸 = (𝐱̂NEW − 𝐱NEW)(𝐱̂NEW − 𝐱NEW)T  ≤  𝑔3𝑆𝑃𝐸lim   , (8.5) 

and to the constraints on 𝐱NEW (Eq. 8.6-8.7) and 𝐲DES (Eq. 8.8-8.9), where 𝐲̂DES =[𝑦̂mAb 𝑦̂biom] is the PLS predicted phenotype, 𝐭DES is the PLS score vector related to 𝐱NEW, 𝐐 is the response loading matrix, 𝐱̂NEW is the PLS reconstruction of 𝐱NEW, 𝐏 is the PLS loading 
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matrix, 𝐖∗ is the PLS weight matrix, 𝑔1, 𝑔2, and 𝑔3 are corrective constants, and T denotes the 

transpose operation. In this work all corrective constants are set to 1.  

The constraints, set for the estimated intracellular fluxes 𝐱NEW = [𝐱NEWextra, 𝐱NEWintra], require 

satisfying both the generic intracellular constraints of the GSMM and the extracellular 

constraints (i.e., measured extracellular metabolite uptake rates) of the experiment for which 

the intracellular fluxes are estimated, as:  𝜈MINintra ≤ 𝑥NEWintra ≤ 𝜈MAXintra   and (8.6) 𝜈MIN,𝑛extra ≤ 𝑥NEWextra ≤ 𝜈MAX,𝑛extra    , (8.7) 

where 𝑥NEWintra and 𝑥NEWextra are the estimated intracellular flux values for a generic intracellular and 

extracellular exchange reaction respectively, 𝜈MINintra and 𝜈MAXintra are genetic intracellular flux 

bounds given by the GSMM, and 𝜈MIN,𝑛extra  and 𝜈MAX,𝑛extra  are generic flux bounds for extracellular 

exchange reactions given by the extracellular metabolite uptake rates of the 𝑛-th cell line 

(Section 8.1.1). In constraining 𝐱NEW within the measured extracellular metabolite uptake rate 

bounds, it is assumed that the culture conditions and overall extracellular behavior of cells are 

the same even after the genetic modification.  

The inversion of the PLS model is performed for each available cell line, meaning that the 

measured extracellular metabolite uptake rates of each experiment are used to set the constraints 

on 𝐱NEW (Eq. 8.6 and 8.7) and specific constraints are set for the desired phenotype 𝐲DES = [𝑦DESmAb 𝑦DESbiom]. Specifically, the intracellular fluxes 𝐱NEW will be estimated for each one of 

the 𝑁 available cell lines from the corresponding 𝐲DES. For each cell line, the desired phenotype 

is an increased mAb specific productivity, while allowing a reduction in biomass to compensate 

for resource reallocation and sustain increased mAb production. This translates in the 

imposition of inequality constraints on the 𝐲DES as: 𝑦DESmAb  ≥  𝜆mAb 𝑦𝑛mAb + 𝑦0mAb     and (8.8) 𝑦DESbiom  ≥ 0.9 𝑦𝑛biom   , (8.9) 

where 𝑦𝑛mAb and 𝑦𝑛biom are the original biomass and productivity of the 𝑛-th cell line, 𝑦0mAb is 

a productivity bias used to set a positive productivity value in non-productive experiments (i.e., 

when 𝑦𝑛mAb = 0), and 𝜆mAb is an increase factor, which was set between 1.5 and 2 to adjust the 

productivity requirement according to the specificity of each experiment. These values are 

arbitrarily set to induce a significant productivity increase in the further application on the 

GSMM.  

8.1.5 Genetic modifications identification 

The intracellular fluxes 𝐱NEW (i.e., intracellular flux distribution) estimated by the PLS model 

inversion are applied to the GSMM for testing in silico the mAb productivity that can be 
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achieved by the new flux distribution. This simulates in silico the cell phenotype change 

resulting from the variation of certain metabolic reaction rates. To induce metabolic reaction 

rate variations in cells, the expression of the gene or genes associated to the specific metabolic 

reactions under consideration must be regulated. Gene expression can be:  

• upregulated: induces an increased flux in the associated reaction;  

• downregulated: induces a decreased flux in the associated reaction;  

• knocked out: stops the flux through the associated reaction. 

In GSMMs, gene regulation is simulated by directly acting on the flux through the associated 

metabolic reactions. These intracellular flux changes are achieved by acting on the constraints 

of metabolic reactions (i.e., upper and lower bounds of the flux value), which are set according 

to the intracellular flux values 𝐱NEW estimated by PLS inversion. For each metabolic reaction 𝑣 and a generic cell line, the intracellular constraints are adjusted according to type of regulation 

as: 𝑘reg 𝒙NEW,𝑣 ≤ 𝜈𝑣 ≤ 𝜈MAX,𝑣   if   𝒙NEW,𝑣 > 𝑥𝑣   (upregulation),  (8.10) 𝜈MIN,𝑣 ≤ 𝜈𝑣 ≤ 𝑘reg 𝒙NEW,𝑣   if   𝒙NEW,𝑣 < 𝑥𝑣   (downregulation), and (8.11) 0 ≤ 𝜈𝑣 ≤ 0   if   𝒙NEW,𝑣 = 0   (knockout),  (8.12) 

where 𝒙NEW,𝑣 is the estimated flux of reaction 𝑣 in the PLS inversion, 𝜈𝑣 is the flux of the 𝑣-th 

intracellular reaction, 𝜈MAX,𝑣 is the flux upper bound for reaction 𝑣 given by the GSMM, 𝜈MIN,𝑣 

is the flux lower bound for reaction 𝑣 given by the GSMM, 𝑥𝑣 is the intracellular flux of the 𝑣-

th reaction for a generic cell line from the generated dataset 𝐗 (Section 8.1.3), and 𝑘reg is a 

scaling coefficient. Note that the constraints of exchange reactions are not modified, since 𝑥NEWextra from the PLS inversion is within the measured extracellular metabolite uptake rates as 

set by the related inversion constraints (Eq. 8.7).  

In PLS inversion, the estimated intracellular fluxes for a generic cell line 𝐱NEW are varied with 

respect to the original ones (i.e., from 𝐗) in a multivariate fashion according to the correlations 

captured by the PLS model, meaning that the intracellular flux values of all the 𝑉 metabolic 

reactions are varied together to achieve the desired increase in mAb productivity, requiring the 

execution of 𝑉 genetic modifications. However, in in vitro applications it is not practical to 

perform a large number of genetic modifications, nor it is typically necessary to achieve 

improved phenotypes. Similarly, in GSMMs, a small set of constraint changes (i.e., simulated 

genetic modifications) is typically sufficient to achieve the desired intracellular fluxes and 

induce increased productivity. 

Hence, an algorithm that identifies the minimum set of reactions to modify in such a way as to 

determine an increased productivity in GSMMs is developed. The proposed algorithm (Figure 

8.2) comprises the following steps: 
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• Step #1 – Randomize the order in which reactions are considered: the order, in which the 

genetic modification of each metabolic reaction is tested, is randomized. Extracellular 

exchange reactions 𝐱NEWextra are not considered since they are constrained by the experimental 

metabolite uptake rates. 

• Step #2 – Select a reaction 𝑣 to genetically modify: a reaction whose flux should be 

modified, 𝑣, is selected according to the randomized order determined in step #1. 

• Step #3 – Test the genetic modification of reaction 𝑣: the intracellular flux change suggested 

by the PLS inversion is applied to the selected reaction 𝑣. The constraints are changed 

according to Eq. 8.10, 8.11, or 8.12 if either an increased, a decreased, or a zero intracellular 

flux is required, respectively. Then, the GSMM is solved with pFBA (Section 2.3.1). 

• Step #4 – Check feasibility of the genetic modification: if the GSMM is infeasible or 

produces a negative biomass or productivity the genetic modification of reaction 𝑣 is not 

accepted and its constraints are set to the original values, otherwise the genetic modification 

of reaction 𝑣 is accepted, and the new constraints set in step #3 are kept.  

• Step #5 – Test genetic modification of all 𝑉 reactions: a new reaction 𝑣 is selected until the 

genetic modification of all 𝑉 intracellular reactions is tested.  

• Step #6 – GSMM with all feasible genetic modifications: once the genetic modification of 

all 𝑉 intracellular reactions is tested (step #5), the estimated intracellular fluxes 𝐱NEW are 

applied to the GSMM by constraining all feasible reactions among the 𝑉 ones, producing a 

multivariate set of genetically modified reactions 𝑆. 

• Step #7 – Exclusion of genetic modifications: the genetic modification unnecessary to 

achieve an increased productivity in the GSMM are excluded in the next section of the 

algorithm. A counter 𝑖𝑡 defines the number of times that this exclusion procedure is 

performed.  

• Step #8 – Select a genetic modification 𝑠 to exclude: one genetically modified reaction 𝑠 ∈𝑆 is selected according to the initial randomized order (step #1). 

• Step #9 – Test the exclusion of the genetic modification 𝑠: the constraints of the reaction 𝑠 

are set to the original value. The GSMM includes all genetic modifications that are kept 

during this exclusion section (step #10), while at the beginning of the exclusion section the 

GSMM with 𝑆 genetic modifications (step #6). The GSMM is solved with pFBA.  

• Step #10 – Check essentiality of the 𝑠 genetic modification: if the solution of the GSMM 

shows positive and increased productivity (i.e., than the previously observed one), the 

genetic modification of reaction 𝑠 is not necessary to achieve the improved productivity. 

Hence, the constraints of reaction 𝑠 are kept to the original values as set in step #9. 

Otherwise, the genetic modification of reaction 𝑠 is essential to achieve the improved 

productivity and must be kept. Hence, the constraints of reaction 𝑠 are set again to the value 

estimated by the PLS inversion (set at step #3).  
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• Step #11 – Test exclusion of all 𝑆 genetic modifications: a new genetically modified 

reaction 𝑠 is selected until the exclusion of all 𝑆 genetic modifications is tested.  

• Step #12 – Iterate the exclusion of genetic modifications: once all 𝑆 genetic modifications 

is tested, the counter 𝑖𝑡 is updated 𝑖𝑡 = 𝑖𝑡 + 1 and the exclusion of genetic modification 

(steps #8-11) is performed again. This is done to obtain the smallest set of essential genetic 

modifications to achieve the improved mAb productivity. The exclusion section is 

performed until 𝑖𝑡 <  𝑖𝑡max. 

• Step #13 – Final set of genetic modifications: one the exclusion section is terminated, the 

smallest set of genetically modified metabolic reactions that allow to achieve improved 

productivity is obtained.  

The set of metabolic reactions to genetically modify is tested for reaction essentiality through 

a sensitivity analysis. In this case, one reaction at a time is considered and its constraints are set 

to the original value. If a productivity reduction greater than 20% is observed, the genetic 

modification of a reaction is considered essential and must be kept, otherwise it is not essential 

to achieve improved productivity.  

A complete run of the proposed algorithm produces a genetic engineering scenario, with the 

smallest set of essential reaction to modify to obtain an increased productivity in the considered 

experiment. In this work, 30 different scenarios are run, each one with a different order for 

testing the reactions (step #1) and scaling coefficient 𝑘reg between 1 and 1.3 (Eq. 8.10 and 

8.11).  

Each genetic engineering scenario is then applied on a GSMM to quantify in silico the new 

improved mAb productivity, study the intracellular flux distribution and understand the reason 

behind the increased mAb production.  

All codes used in this Chapter were developed in Python 3.10, using COBRApy (Ebrahim et 

al., 2013), PyPhi (https://github.com/salvadorgarciamunoz/pyphi), and Pyomo (W. E. Hart et 

al., 2011). All the metabolic reactions and genes mentioned in this Chapter can be found at 

http://bigg.ucsd.edu. 

https://github.com/salvadorgarciamunoz/pyphi
http://bigg.ucsd.edu/
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Figure 8.2 Algorithm for the identification of the essential intracellular reactions to modify 

to achieve the desired flux distribution. 
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8.2. Prediction of biomass and productivity 

In this Section the outcomes of the prediction of specific mAb productivity and biomass growth 

rate from the intracellular fluxes are presented and critically discussed. This identifies the 

association between the phenotypes (i.e., specific productivity and biomass) and the flux value 

of each intracellular reaction and is used in the following Section to identify the required 

intracellular flux values that provide the desired phenotypes.  

To this purpose, a PLS model is bult to predict biomass and productivity 𝐘 from the intracellular 

fluxes 𝐗. The reactions involved in the direct pathway from protein translation to mAb secretion 

are not included in 𝐗, as previously explained, because the fluxes are almost the same as the 

productivity and genetic modifications in this pathway are obvious ways to improve the 

productivity in GSMM, while this might not be possible in real cells.  

A PLS model with 3 LVs describes 94.5% of 𝐘 variability through 67.1% of 𝐗 variability. 

Describing a high percentage of 𝐗 variability is essential for the further inversion, because it 

increases the accuracy in the estimation of the intracellular fluxes 𝐱NEW associated with the 

desired phenotype. In this case, the amount of 𝐗 variability captured by the 3 LVs is considered 

enough for the model inversion. The addition of further LVs only increases the explained 𝐗 

variability by few percentage points but causes a substantial reduction in the prediction 

performance and robustness of the model, making it unsuitable for inversion.  

      
(a) (b) 

Figure 8.3 PLS cross-validation parity plot: (a) productivity, and (b) biomass. 

The model is cross validated to assess its performance and robustness through a leave-one-out 

cross-validation procedure. In cross-validation, the model achieves a 𝑄2 = 70.9% for 

productivity and 𝑄2 = 82.7% for biomass, showing a slightly lower accuracy in the specific 

productivity prediction probably due to the complex correlations between the highly 

interconnected metabolic network and mAb productivity. This prediction performance is 

satisfactory despite the much larger number of variables in 𝐗 (i.e., intracellular fluxes) than 
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observations (i.e., cell lines). For this reason and to show the model that will be further inverted, 

variable selection is not applied in this work to improve performance nor interpretability.  

In the leave-one-out cross-validation, the predictions for the early cell line (Table 8.1) are 

extremely inaccurate and much greater than the real value. This is due to diversity of early 

intracellular fluxes with respect to all other cell lines, resulting in diagnostics (i.e., 𝑇2 and 𝑆𝑃𝐸) 

largely outside the confidence limits. This indicates that the early cell line is badly predicted 

because its specific conditions are underrepresented in the dataset making it unpredictable when 

it is left out.  

The parity plot in cross-validation is reported in Figure 8.3 for productivity and biomass. In this 

plot, the closer a sample is to the diagonal (the dashed line) the higher the prediction accuracy 

since predicted and real values approach each other. For productivity (Figure 8.3a), cell lines 

are scattered around the diagonal with someone closer than others. However, for non-

productive cell lines (i.e., with zero productivity) the predictions are rather scattered around 0, 

as results of the linear relationship captured by the PLS model. For biomass (Figure 8.3b) 

instead, cell lines are scattered very close to the diagonal, indicating that predicted values are 

very close to the observed ones in most of the experiments. In this case, the biomass of CLP 

cell line (Table 8.1) is overpredicted, indicating that CLP has a degree of specificity in its 

intracellular fluxes that differentiate it from other cell lines making it difficult to predict. 

Specifically, CLP cell line has an unusually high flux of the reaction PYK7 (i.e., pyruvate 

kinase), probably due to the high growth rate.  

These results show that the model captures the relationship between intracellular fluxes and the 

studied phenotypes, resulting, in most cases, in reasonably accurate predictions for unknown 

samples. For this reason, the PLS model can be interpreted and, furthermore, inverted to identify 

the intracellular flux values required to obtain a cell with the desired phenotype. 

      
(a) (b) 

Figure 8.4 PLS model interpretation: (a) response explained variance and (b) response 

weighted loadings.  
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The relevant parameters for PLS model interpretation, such as the response explained variance 

and the weighted loadings, are reported in Figure 8.4. According to the response explained 

variance (Figure 8.4a), the first LV captures almost the entire variability of the biomass and 

less than 20% of productivity variability. The second LV, instead, capture more than 60% of 

productivity variability and very small portion of biomass variability. Finally, the third LV 

captures ~12% of productivity variability and a negligible amount of biomass variability. 

Accordingly, the first LV captures most of the biomass behavior and the associated productivity 

one, while the second and third LVs capture the independent behavior of productivity.  

The response loadings (Figure 8.4b) describe the correlation structure between the two 

phenotypes captured by the PLS model. In particular, the first LV captures the anticorrelation 

between biomass and productivity, meaning that cells with high productivity tend to have a 

lower growth rate. This is reasonable because part of the cell resources is diverted from biomass 

to protein production. The second and third LVs capture the independent variation of cell 

productivity with respect to biomass production. The inspection of the 𝐗 weights associated to 

each LV (i.e., the intracellular fluxes that are most related to both productivity and biomass) 

can give information of the intracellular fluxes mostly related to these phenomena. This will be 

exploited in the model inversion phase to appropriately manipulate the intracellular fluxes to 

obtain the desired phenotypes.  

8.3 Identification of the optimal flux distribution 

In this Section, the results of the PLS model inversion are presented. This determines the 

productivity and biomass that can be achieved through genetic modification according to the 

correlation structure between fluxes and cell productivity and biomass explained by the PLS 

model. The PLS model built in Section 8.2 is inverted as explained in Section 8.1.4. In order to 

obtain the flux distribution associated with the desired specific productivity and biomass (i.e., 

optimal flux distribution) for each cell lines, the inversion of the PLS model is repeated 

considering the extracellular metabolite uptake rates of each single cell line. These uptakes set 

the extracellular constraints in the inversion as explained in Section 8.1.4.  

The optimal biomass and productivity are compared with the original ones in Table 8.2. Here, 

the values are reported for each available cell line. The PLS inversion provided increased 

productivity in all cell lines, as can be easily observed in Table 8.2. For non-producer samples, 

a minimum productivity of 1.99 ∙ 10−5  𝑚𝑚𝑜𝑙 (𝑔𝐷𝐶𝑊 ℎ)⁄  is required during the inversion. In a 

real case, non-producer cells are not equipped for mAb production, making production 

impossible without transfection. However, in this synthetic analysis, we consider the non-

producer case in such a way as to observe the genetic modifications that increase productivity 

in the corresponding producer cell with similar metabolic and extracellular characteristics.  
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Table 8.2 Base biomass and productivity and ones obtained through the inversion of 

PLS model.  

Sample 
Biomass 

[𝟏 𝒉⁄ ] 

Optimal biomass 

[𝟏 𝒉⁄ ] 

Productivity 

[𝒎𝒎𝒐𝒍 (𝒈𝑫𝑪𝑾 𝒉)⁄ ] 

Optimal 

productivity 

[𝒎𝒎𝒐𝒍 (𝒈𝑫𝑪𝑾 𝒉)⁄ ] 

SV 0.0102 0.0116 0 1.99 ∙ 10−5 

SVGS 0.0129 0.0159 0 1.99 ∙ 10−5 

SVM1 0.0107 0.0143 2.95 ∙ 10−5 4.42 ∙ 10−5 

SVM2 0.0070 0.0122 1.84 ∙ 10−5 3.67 ∙ 10−5 

SVM3 0.0095 0.0188 4.49 ∙ 10−5 6.73 ∙ 10−5 

SVM4 0.0233 0.0211 2.26 ∙ 10−5 4.53 ∙ 10−5 

BCL2 0.0386 0.0347 0 1.99 ∙ 10−5 

BCL2-

M1 
0.0162 0.0245 5.87 ∙ 10−5 8.80 ∙ 10−5 

BCL2-

M2 
0.0160 0.0146 0.89 ∙ 10−5 2.81 ∙ 10−5 

BCL2-

M3 
0.0181 0.0239 6.29 ∙ 10−5 9.43 ∙ 10−5 

BCL2-

M4 
0.0188 0.0195 3.79 ∙ 10−5 5.69 ∙ 10−5 

fed-batch 0.0033 0.0194 3.07 ∙ 10−5 4.61 ∙ 10−5 

perfusion 0.0057 0.0098 1.57 ∙ 10−5 3.13 ∙ 10−5 

early 0.0221 0.0207 1.50 ∙ 10−5 3.00 ∙ 10−5 

late 0.0310 0.0279 2.59 ∙ 10−5 3.89 ∙ 10−5 

stat 0.0082 0.0152 3.94 ∙ 10−5 5.91 ∙ 10−5 

decline 0.0050 0.0121 2.17 ∙ 10−5 4.35 ∙ 10−5 

CLP 0.0648 0.0583 0 1.99 ∙ 10−5 

LELP 0.0681 0.0613 0 1.99 ∙ 10−5 

HELP 0.0517 0.0465 0 1.99 ∙ 10−5 

CLC 0.0054 0.0077 0 1.99 ∙ 10−5 

LELC 0.0050 0.0075 0 1.99 ∙ 10−5 

HELC 0.0035 0.0073 0 1.99 ∙ 10−5 

 

The biomass estimated in PLS inversion (Table 8.2) increases for some cell lines, such as SV, 

SVGS, SVM1 to M3, BCL2-M1 to M4, fed-batch, perfusion, stat, decline, CLC, LELC, and 

HELC, and decreases in others, such as SVM4, BCL2, early, late, CLP, LELP, and HELP. This 

estimated biomass increase is not likely to happen in the GSMM and in a real cell, because cells 

need to divert resources from growth to other functions to improve their productivity. In this 

case, the biomass increase is due to the specific culture condition of each cell line (i.e., 

extracellular metabolite uptake rates) and the insufficiently strong anticorrelation between 

productivity and biomass captured by the PLS model in the available experiments. However, 

the recalibration of the PLS model introducing genetically engineered cell lines in the 

calibration data would improve the goodness and generalizability of the model. In this way, the 

model will lean the strongest anticorrelation between productivity and biomass.  
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The PLS inversion provides the new intracellular fluxes 𝐱NEW that are required to obtain an 

increased productivity in each cell line. This information will be further used to identify the 

smallest set of genetic modifications that will improve mAb productivity in GSMMs.  

8.4 Genetic modifications 

In this Section, the genetic modifications suggested by the proposed machine learning approach 

are presented and analyzed. The suggested genetic modifications are categorized as i) metabolic 

modifications, and ii) secretory modifications. 

To this purpose, the sets of intracellular fluxes 𝐱NEW (Section 8.3) are fed to the developed 

algorithm to identify the smallest set of genetic modifications required to improve mAb 

productivity (Section 8.1.5). For each experiment, 30 scenarios are obtained by running the 

developed algorithm multiple times with a different order for testing the reactions and scaling 

coefficient 𝑘reg.  

8.4.1 Metabolic genetic modifications 

In this Section genetic modifications that improve mAb productivity through the regulation of 

cell metabolism are presented and discussed, indicating the genes that should be regulated and 

the mechanism behind the increased mAb productivity.  

The developed algorithm suggests 30 different genetic modification scenarios for each cell line, 

one for each run of the algorithm, containing repetitions and slight variation of the same main 

modifications. Hence, only the most common and potentially applicable genetic modifications 

are presented in this Section.  

This analysis highlights that the regulation of amino acid metabolism, specifically of L-valine 

and L-tryptophan, which are building blocks of proteins and mAbs, increases cell productivity. 

The metabolism of some amino acids, such as L-leucine and L-valine, has been previously 

observed to be related to cell productivity, as their metabolism is typically downregulated in 

high productive cells (Huang & Yoon, 2020b).  

8.4.1.1 Valine metabolism 

The proposed machine learning strategy suggests that the metabolism of L-valine is associated 

with mAb productivity, and the regulation of this metabolism is a possible way to increase mAb 

productivity.  

The L-valine related genetic modifications are suggested for the CLP cell line (Table 8.1). The 

phenotypes observed in both the base case and the genetically engineered one are reported in 

Table 8.3a. The genetic modifications allow a non-producer cell to achieve a substantial 

production, even larger than the one predicted by the PLS model inversion (Table 8.2). It is 
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worth noticing that in the non-producer case, we are observing the impact of genetic 

modifications on a normally productive cell with similar metabolic conditions.  

Table 8.3 Genetic modification scenario for CLP cell line: (a) comparison of biomass 

and productivity achieved by the base case and the genetically engineered cell; (b) 

list of genetic modifications improving the mAb productivity. 

(a) 

Condition 
Biomass 

[𝟏 𝒉⁄ ] 

Productivity 

[𝒎𝒎𝒐𝒍 (𝒈𝑫𝑪𝑾 𝒉)⁄ ] 

Base case 0.0648 0 

Genetically engineered 0.0151 7.41 ∙ 10−5 

(b) 

Reaction Short name Regulation Regulation coefficient 

valine transaminase VALTA_f downregulate 0.73 

glutaryl-CoA 

dehydrogenase 
GLUTCOADHm upregulate 1.01 

2-aminomuconate 

reductase 
AMCOXO downregulate 0.68 

 

The suggested reactions, their regulations and regulation coefficients are reported in Table 8.3b. 

The reaction VALTA_f is directly related to protein secretion, while the other reactions (i.e., 

GLUTCOADHm and AMCOXO) reduce cell growth allowing the reallocation of metabolic 

resources. In fact, GLUTCOADHm and AMCOXO reactions produce a ~50% reduction in the 

biomass when regulated alone, while VALTA_f produces only a 1% biomass reduction when 

regulated alone. 

A section of the relevant metabolic network of the genetically engineered cell is shown in 

Figure 8.5 and 8.6. The downregulation of VALTA_f decreases the amount L-valine (val_L[c]) 

metabolized to L-glutamate (glu_L[c]), thus increasing the availability of L-valine for protein 

translation (ICproduct_TRANSLATION_protein). The increased availability of L-valine results 

in larger protein translation and mAbs synthesis when coupled with a reduction in the growth 

rate. The upregulation of GLUTCOADHm (Figure 8.6) increases the amount of CoA (coa[m]) 

diverted to GLCOASYNT and reduces the flux through PDHbr. Finally, the downregulation of 

AMCOXO reduces the overall flux through the pathway, which is connected to 2-Oxoglutarate 

(akg[c]), an important link between the TCA cycle and the metabolism of amino acids.  

The suggested genetic modifications can be achieved by regulating the expression of the genes 

associated with the identified reactions. In particular, VALTA_f is associated to the Bcat1 gene 

and GLUTCOADHm to the Gcdh gene, while AMCOXO has no known associated gene. 

Fortunately, the downregulation of an upstream reaction PCLAD, associated to the Acmsd gene, 

produces the same increased productivity as the regulation of AMCOXO.  
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The suggested genes are not identified as essential in previous studies (Xiong et al., 2021) and 

an essentiality analysis5 run on the GSMM. For this reason, this suggested genetic modification 

of the L-valine metabolism should be feasible in a real cell.  

 
Figure 8.5 Metabolic network section of CLP cell line related to reaction VALTA_f. Size and 

color of the arrows is connected to the intracellular flux value, which is indicated after the 

reaction name. Large orange circles refer to primary metabolite, while small orange circles 

refer to secondary metabolites. 

 
5 In essentiality analysis, the GSMM is used to assess if the knockout of a gene does not prevent cell growth. Specifically, a 

gene in essential if its knockout prevent cell growth, while a gene is not essential if its knockout does not prevent cell growth.  
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Figure 8.6 Metabolic network section of CLP cell line related to reaction GLUTCOADHm 

and AMCOXO. Size and color of the arrows is connected to the intracellular flux value, 

which is indicated after the reaction name. Large orange circles refer to primary metabolite, 

while small orange circles refer to secondary metabolites. 

8.4.1.2 Tryptophan metabolism 

The proposed machine learning strategy suggests that the metabolism of L-tryptophan is 

associated with mAb productivity, and the regulation of this metabolism is a possible way to 

increase mAb productivity.  

The L-tryptophan related genetic modifications are suggested for the BCL2-M4 cell line (Table 

8.1). The phenotypes observed in both the base case and the genetically engineered one are 

reported in Table 8.4a. The suggested genetic modifications almost double mAb productivity 

at the price of reducing by half the cell growth rate. In this case, the flux regulations suggested 
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by the PLS model inversion produce a substantially larger productivity in the GSMM than the 

predicted one (7.24 ∙ 10−5 vs. 5.69 ∙ 10−5  𝑚𝑚𝑜𝑙 (𝑔𝐷𝐶𝑊 ℎ)⁄ ). The large difference between the 

PLS predicted and GSMM observed productivity is probably due to underrepresentation of such 

highly productive cells in the calibration dataset. For this reason, the recalibration of the PLS 

model including genetically modified sample should improve the accuracy of the phenotype 

prediction during PLS inversion.  

The suggested reactions, their regulations and regulation coefficients are reported in Table 8.4b. 

The downregulation of TRPO2 alone produces an increase in cell productivity and a reduction 

in the growth rate. 

Table 8.4 Genetic modification scenario for BCL2-M4 cell line: (a) comparison of 

biomass and productivity achieved by the base case and the genetically engineered 

cell; (b) list of genetic modifications improving the mAb productivity. 

(a) 

Condition 
Biomass 

[𝟏 𝒉⁄ ] 

Productivity 

[𝒎𝒎𝒐𝒍 (𝒈𝑫𝑪𝑾 𝒉)⁄ ] 

Base case 0.0188 3.79 ∙ 10−5 

Genetically engineered 0.0089 7.24 ∙ 10−5 

(b) 

Reaction Short name Regulation Regulation coefficient 

L-Tryptophanoxygen 

2,3-oxidoreductase 

decyclizing 

TRPO2 downregulate 0.79 

 

The relevant metabolic network of the base case and genetically engineered cell is shown in 

Figure 8.7 and 8.8. Specifically, the downregulation of TRPO2 (Figure 8.7) reduces the amount 

of L-tryptophan that is converted to L-kynurenine (Lkynr[c]), thus increasing the availability of 

L-tryptophan for protein translation. The increased availability of L-tryptophan results in larger 

protein translation and mAbs synthesis. This specific modification also decreases the flux 

through the reaction TRPTRS, which reduces the growth rate by limiting the production of a 

biomass component (prot_prod[c]). This can be observed by comparing the genetically 

engineered cell (Figure 8.7) and the base case (Figure 8.8). Finally, to achieve production, the 

increased availability of L-tryptophan is additionally supported by an increase uptake of L-

tryptophan from the culture media. Accordingly, this genetic modification must be associated 

with an appropriate formulation of the culture medium.  
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Figure 8.7 Metabolic network section of BCL2-M4 cell related to reaction TRPO2: genetically engineered cell. Size and color of the arrows is 

connected to the intracellular flux value, which is indicated after the reaction name. Large orange circles refer to primary metabolite, while small 

orange circles refer to secondary metabolites. 
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Figure 8.8 Metabolic network section of BCL2-M4 cell related to reaction TRPO2: original cell. Size and color of the arrows is connected to the 

intracellular flux value, which is indicated after the reaction name. Large orange circles refer to primary metabolite, while small orange circles refer 

to secondary metabolites. 
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The suggested genetic modifications can be achieved by regulating the expression of the genes 

associated with the identified reactions. In particular, TRPO2 is associated with one or multiple 

genes among Ido1, Ido2, and Tdo2. Because of that, the genetic modification of the reaction 

TRPO2 is complex and it unlikely to be feasible in the real cell. However, the two downstream 

reactions FKYNH and KYN3OX produce, when downregulated, the same effect as the TRPO2 

modification and are associated to single genes. Specifically, FKYNH is associated with gene 

Afmid, and KYN3OX with gene Kmo.  

The genes associated to the suggested genetic modification are marked as essential by the 

essentiality analysis run on the GSMM, but they have not been identified as essential in previous 

in vitro studies (Xiong et al., 2021). Despite the fact that these reactions might be essential, the 

downregulation required to achieve increased production is small and it would not produce any 

negative effects on cells.  

8.4.2 Secretory pathway genetic modifications 

In this Section genetic modifications that improve mAb productivity through the regulation of 

the cell secretory pathway are presented and discussed, indicating the genes whose expression 

should be regulated and the mechanism behind the increased mAb productivity.  

Similarly to the metabolic modifications, these sets of genetic modifications stem from the 30 

scenarios obtained for each cell line. Only the most common and potentially applicable genetic 

modifications are presented in this Section. 

The proposed machine learning strategy suggests that the pathway of mannose recirculation 

during early glycosylation is associated with mAb productivity, and the regulation of this 

pathway is a possible way to increase mAb productivity. These genetic modifications are 

suggested multiple times for almost all the available experiments. The modification suggested 

for the BLC2-M1 cell line (Table 8.1) is presented here as a general explanation. The 

phenotypes observed in the base case and genetically engineered one are reported in Table 8.5a. 

Table 8.5 Genetic modification scenario for BCL2-M1 cell line: (a) comparison of 

biomass and productivity achieved by the base case and the genetically engineered 

cell; (b) list of genetic modifications improving the mAb productivity. 

(a) 

Condition 
Biomass 

[𝟏 𝒉⁄ ] 

Productivity 

[𝒎𝒎𝒐𝒍 (𝒈𝑫𝑪𝑾 𝒉)⁄ ] 

Base case 0.0162 5.87 ∙ 10−5 

Genetically engineered 0.0042 9.84 ∙ 10−5 

(b) 

Reaction Short name Regulation Regulation coefficient 

Mannose efflux from 

Golgi apparatus 
MANtg upregulate 1.68 
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Figure 8.9 Metabolic network section of the genetically engineered BCL2-M1cell related to reaction MANtg. Size and color of the arrows is connected 

to the intracellular flux value, which is indicated after the reaction name. Large orange circles refer to primary metabolite, while small orange circles 

refer to secondary metabolites. 
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In this case, the suggested genetic modification increases cell productivity by 68%, being the 

strategy providing the highest mAb productivity among all experiments. Unfortunately, this is 

achieved with a considerable reduction in the growth rate (74%) due to resource reallocation.  

The suggested reactions, their regulations and regulation coefficients are reported in Table 8.5b. 

Specifically, the machine learning strategy suggests upregulating the MANtg reaction, which 

involves the transport of mannose from the Golgi apparatus to the cell cytoplasm after mannose 

groups are detached before the last step of glycosylation from the high mannose glycans 

produced in the early stages of glycosylation (Sha et al., 2016). The relevant metabolic network 

of the base case and genetically engineered cell is shown in Figure 8.9. As said, the upregulation 

of MANtg increase the flux of mannose moving from Golgi apparatus to the cytoplasm, which 

results in an increased synthesis mannose 6-phosphate (man6p[c]), which leads to higher 

availability of this metabolite. Mannose 6-phosphate is required for the synthesis of high 

mannose glycans during the early stages of glycosylation in the Endoplasmic Reticulum; hence, 

its higher availability triggers a higher rate of glycan synthesis, which results in higher 

productivity. The increased productivity associated with the genetic modification of the MANtg 

reaction indicates that the cotranslational addition of the N-glycan block in the Endoplasmic 

Reticulum (ICproduct_ERNG) is a bottleneck for glycoprotein (such as mAbs) synthesis and 

secretion.  

The MANtg reaction is involved not only in mAbs production, but also in the synthesis of all 

glycosylated proteins, which is not described by the GSMM. For this reason, the upregulation 

of MANtg would probably increase the overall protein production.  

The increased productivity after MANtg upregulation could be the results of a mathematical 

artifact due to metabolic network inconsistencies (Sonnenschein et al., 2012). In fact, 

alternative routes, which might divert back the increased flux to the cell without leading in 

increased productivity, might still miss in the early glycosylation pathway involved in the 

MANtg genetic modification. In fact, the mannose 6-phosphate has no alternative route to be 

diverted back to cell metabolism, being either progressed to glycan production or lost in a 

demand reaction. Furthermore, glycosylation is assumed to be linearly correlated with mAb 

synthesis in the GSMM, which might not completely be true in real cells. Additional studies 

are required to better understand the relationship between this section of glycosylation and cell 

productivity.  
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(a) (b) 

Figure 8.10 Metabolic network section of BCL2-M1 cell related to reaction MANtg: (a) genetically engineered cell, and (b) original cell. Size and 

color of the arrows is connected to the intracellular flux value, which is indicated after the reaction name. Large orange circles refer to primary 

metabolite, while small orange circles refer to secondary metabolites. 
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The upregulation of MANtg causes alone the diversion of cell resources from growth to 

production. One of the main effects is shown in Figure 8.10, where genetically engineered 

(Figure 8.10a) and original (Figure 8.10b) cells are compared. The genetically engineered cell 

shows a significantly larger glycolytic flux (PGI_f and PFK2 reactions) than the original cell. 

In fact, reaction PGI_f and PFK2 show a flux of 0.218 and 0.216 𝑚𝑚𝑜𝑙 (𝑔DCW ∙ ℎ)⁄ , 

respectively, in the genetic engineered cell, while they show a flux of 0.0743 and 0.0720 𝑚𝑚𝑜𝑙 (𝑔DCW ∙ ℎ)⁄ , respectively, in the original cell. Furthermore, despite the higher 

recirculation of mannose, a higher conversion rate of fructose 6-phosphate (f6p[c]) to mannose 

6-phosphate (0.00059 vs. 0.000352 𝑚𝑚𝑜𝑙 (𝑔𝐷𝐶𝑊 ∙ ℎ)⁄ ) is required to sustain the increased 

glycosylation rate in the Endoplasmic Reticulum.  

A possible explanation for the reduced growth rate is connected to the increased ATP 

consumption for mAb synthesis and the increased flux through reaction consuming ATP, which 

reduce the energy available for cell growth.  

Unfortunately, the suggested modification cannot be implemented since no known gene is 

associated with MANtg. For this reason, additional strategies to achieve the same objective must 

be found. 

Many other reactions involved in the mannose recirculation pathway are suggested in several 

experiments. Among these, the upregulation of the reaction G13MT provides very similar 

phenotypes as the MANtg modification (biomass 0.0026 1 ℎ⁄  and productivity 9.20 ∙ 10−5 𝑚𝑚𝑜𝑙 (𝑔𝐷𝐶𝑊 ℎ)⁄ ). As can be observed, both growth rate and productivity are slightly lower 

than the previous case but are still satisfactory. The suggested reactions, their regulations and 

regulation coefficients are reported in Table 8.6. 

Table 8.6 List of genetic modifications improving the specific productivity in BCL2-

M1 cell. 

Reaction Short name Regulation Regulation coefficient 

Alpha-1,3-

mannosyltransferase 
G13MT upregulate 2.75 

Carbamoyl-phosphate 

synthase (glutamine-

hydrolysing) 

CBPS downregulate 0.16 

 

In this case, the regulation of a single reaction in the mannose recirculation pathway does not 

induce increased production because it is not able to consistently divert resources from growth 

to protein secretion. In fact, the reaction G13MT only achieves a 19% biomass reduction and 

no productivity when upregulated alone. Hence, it must be coupled with a growth-inhibiting 

reaction. In particular, the CBPS reaction is required to reduce growth, being able to reduce 

growth by 95% when downregulated. 
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Figure 8.11 Metabolic network section of the genetically engineered BCL2-M1 cell related to reaction GMT13. Size and color of the arrows is 

connected to the intracellular flux value, which is indicated after the reaction name. Large orange circles refer to primary metabolite, while small 

orange circles refer to secondary metabolites. 
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Figure 8.12 Metabolic network section of BCL2-M1 cell related to reaction CBPS: genetically engineered cell. Size and color of the arrows is connected 

to the intracellular flux value, which is indicated after the reaction name. Large orange circles refer to primary metabolite, while small orange circles 

refer to secondary metabolites. 
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(b) 

Figure 8.13 Metabolic network section of BCL2-M1 cell related to reaction CBPS: original cell. Size and color of the arrows is connected to the 

intracellular flux value, which is indicated after the reaction name. Large orange circles refer to primary metabolite, while small orange circles refer 

to secondary metabolites. 



 

 

The relevant metabolic network of both the base case and the genetically engineered cell is 

shown in Figure 8.11. The upregulation of G13MT works generate the same outcome than 

MANtg by increasing the glycosylation rate in the Endoplasmic Reticulum. 

Differently form the upregulation of MANtg, the upregulation of G13MT does induce reduction 

in the glycolytic flux, with the reaction PFK2 carrying no flux (comparing Figure 8.12 and 

8.13), but requires the modification of other reactions to divert resources to mAb synthesis. The 

downregulation of CBPS reduces the conversion of L-glutamine to L-glutamate (Figure 8.11). 

This results in a different distribution of L-glutamate in the metabolic network, reducing the 

flux through GLUTRS, which limits the production of a biomass component and reduces cell 

growth.  

The suggested genetic modification can be achieved by regulating the expression of the gene 

Alg2 associated to G13MT, and the gene Cad associated to CBPS. These genes have been 

identified as essential by previous in vitro studies (Xiong et al., 2021), while only Cad is 

identified as essential by the essentiality analysis run on the GSMM. Because of that, the 

downregulation of the Cad should be done carefully to avoid negative effects on the cell, or the 

modification of other growth-inhibiting reactions might be associated to G13MT.  

As previously mentioned, the regulation of other reactions in the mannose recirculation 

pathway is suggested in several experiments. The main ones are: HEX4, DOLPMT4_er, 

G12MT1, and HEX16. In order to achieve increased productivity, reactions in the mannose 

recirculation pathway are always coupled with other growth-inhibiting reaction, such as IMPD, 

PRPPS, CGTPtn, RNDR1, RNDR4, NDPK7, TRDR, MI3PS_f, TMDS, ACCOAC, ADSS, 

G3PD1_b, CHOCK, ETHAK, AIRCr_f, and ACGAMK.  

8.5 Conclusions  

In this Chapter, a machine learning strategy suggesting genetic modifications to increase 

monoclonal antibody productivity is presented. The proposed strategy exploits genome-scale 

metabolic models and the inversion of latent variable regression models to suggest the set of 

genetic modifications that improve the phenotype in a desired way through the knowledge of 

the relationship between intracellular reaction rates and cell phenotype.  

In the proposed strategy, a latent variable regression model, which predicted both mAb specific 

productivity and biomass from the intracellular fluxes, was inverted to find how intracellular 

fluxes should be varied to obtain a desired phenotype (i.e., higher productivity). An algorithm 

exploited the suggested changes in the intracellular fluxes and a GSMM to identify sets of few 

genetic modifications that increase mAb specific productivity on the GSMM. 

Genetic modifications involving the cell metabolism and the secretory pathway were identified 

by the proposed methodology.  
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Concerning the metabolic modifications, the genetic regulation of L-valine and L-tryptophan 

related reactions allowed to increase mAb productivity when coupled with growth-inhibiting 

reactions.  

Concerning the secretory modifications, the regulation of reactions involved in the mannose 

recirculation in the early stages of glycosylation provided a substantial increase of mAb 

productivity in GSMM. These genetic modifications are theoretically feasible in real cells, but, 

since they are involved in the synthesis of all proteins, they are likely to increase the overall 

production of cell glycosylated proteins.  

This study provided a novel and faster methodology than state-of-the-art methods to identify 

genetic modifications improving a desired phenotype in GSMMs. Furthermore, this 

demonstrated to be able to give valuable insights on cellular reactions and genes that can be 

targeted to improve the performance of cells. However, the suggested modification should be 

tested on real cell to assess their actual effectiveness. In the case of this study, the suggested 

genetic regulation of the mannose recirculation in the early stages of glycosylation will be 

analyzed in in vitro experiments at Imperial College London.  

 



 

 

Conclusions and future perspectives 

Monoclonal antibodies (mAbs) are biopharmaceutical drugs used for the treatment of 

autoimmune, oncological, and infectious diseases, which are typically produced in cultures of 

genetically modified mammalian cells. The development of new mAbs is a multi-step process, 

requiring large investments from biopharmaceutical companies and several years of research 

and testing. Typically, the entire development of a new drug requires more than 10 years and 

costs more than 2 billion dollars. The long timelines and large investments required for the 

development of new mAbs are pushing biopharmaceutical companies at looking for innovative 

and science-based solutions to support and accelerate the development of new drugs in all its 

phases: cell line generation, cell line selection, process characterization, and process 

optimization. 

In this Dissertation, digital models were developed to support and accelerate all the phases of 

monoclonal antibody development process. Specifically, the contributions presented in this 

Dissertation were: 

• supporting cell lines selection by integrating process and biological information; 

• accelerating cell lines selection by exploiting dynamic biological information; 

• identifying high performing cell lines in scenarios with limited available data through data-

based models and in silico data augmentation; 

• accelerating feeding schedule optimization through hybrid models; 

• prediction of intracellular constraints of genome-scale metabolic models (GSMMs) from 

cheap and easily available data through deep learning models; 

• identification of genetic engineering targets to improve CHO cell productivity exploiting 

GSMMs and latent variable model inversion. 

Supporting cell lines selection by integrating process and biological information 

The first study was aimed at integrating dynamic process and biological information from CHO 

cultivation to support cell line selection during biopharmaceutical process development, 

exploiting industrial data concerning development of mAbs provided by the multinational 

pharmaceutical GlaxoSmithKline. The main results of the work are listed in the following. 

• The dynamics of metabolomic data allowed cell lines to be mapped according to process 

performance (e.g., viable cell concentration and antibody titer). This demonstrated to be an 

effective tool: i) to provide valuable information on the variations of metabolites associated 
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with process behaviors; and ii) to infer the performance of new cell lines before the end of 

the experiment through a quasi-real time monitoring.  

• The time course changes in biological phenomena were correlated to the process behavior 

by means of multiblock multivariate methods, allowing to identify how the time evolution 

of specific metabolites correlates to the process. In particular, a metabolite, propinol 

adenylate, was found to be anticorrelated to the antibody titer, while the metabolite, L-lactic 

acid, was found to be highly correlated with the lactate concentration, a typical by-product 

that reduce cell growth and productivity. 

• The antibody titer time profile was estimated from dynamic metabolomic data by means of 

multivariate regression methods. A good estimation accuracy was achieved in cross-

validation (𝑄2 > 40%) and external validation (𝑄2 > 60%) especially in the second half 

of the experimental batch. The model allowed also to identify the metabolites highly 

associated with the antibody titer over time. Specifically, propinol adenylate and L-lactic 

acid were shown to be associated to antibody titer especially in the central part of the 

experimental batch. 

These results provided a deeper understanding of the metabolic states (i.e., biological pathways 

and metabolites) correlated with commercially relevant phenotypes. This methodology could 

be applied to increase the confidence in the selection of the most performing cell lines, allowing 

to reduce onward development timelines and resources. This work also fulfilled some of the 

regulatory requirements of Quality by Design, such as enhanced process understanding, and the 

monitoring and prediction of CQAs.  

Accelerating cell lines selection by exploiting dynamic biological information 

This work was aimed at demonstrating how dynamic metabolomic data can be exploited 

through data analytics to support and accelerate the selection of high productive cell lines during 

industrial bioprocess development. In this work, data from cell selection process at AMBR15TM 

scale provided by the multinational pharmaceutical GlaxoSmithKline was used. The main 

results of the work are listed in the following. 

• High productive cell lines were identified by means of evolving multivariate multi-model 

strategies in the early stages of the cultivation process. In particular, both high and low 

productive cell lines could be discriminated with 100% accuracy in validation with 6 new 

cell lines.  

• The metabolites associated with cell productivity were identified by means of a three-step 

method proposed in this work. Specifically, the metabolites associated with cell 

productivity were identified as citric acid in the initial part of the culture, and UDP-glucose 

and thiamine in the final part of the culture, which are associated with energy production, 

metabolism regulation, and protein glycosylation. 
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• The model allowed to identify the biological functions (i.e., metabolic pathways) associated 

with cell productivity over time. In exponential growth and stationary phases, the biological 

functions associated with productivity were related to energy production and DNA 

replication, whereas in the decline phase the biological functions associated with 

productivity were related to the metabolism of nucleotide and other sugars. 

The developed models identified the cell lines with the desired phenotype in the early culture 

stages, allowing to accelerate bioprocess development by progressing those cell lines to larger 

scales. Moreover, the identification of few productivity biomarkers, which can be easily 

analyzed and interpreted in real-time without running an entire metabolomic study, allowed to 

make timely decisions on process development. All the acquired knowledge could be exploited 

for the implementation of a more robust and confident cell selection protocol and to mitigate 

the risk of progressing to larger scale poorly performing cell lines. Furthermore, the identified 

cellular functions provided insight on targets that can be manipulated though host engineering 

or process optimization to increase the frequency of obtaining high productive cell lines. This 

work also fulfilled some regulatory requirements of Quality by Design, such as the management 

of process variability, which is typically very large in biopharmaceutical applications, the 

monitoring and prediction of CQAs, and the mitigation of the risk of poor-quality products. The 

methodologies developed in this work were implemented in a software named ADAM, which 

is internally used by GlaxoSmithKline for the analysis of metabolomic data. 

Identifying high performing cell lines in scenario with limited available data through 

data-driven models and in silico data augmentation 

This work was aimed at applying different strategies for in silico batch generation to improve 

the identification of cell lines with the desired critical quality attributes (CQAs) (i.e., high mAb 

titer) by means of multivariate methods in scenarios of limited available data. The proposed 

method was tested in a simulated process for the production of mAbs to have a full knowledge 

of the relationship between process parameters and CQAs, and a better control of both the 

process behavior and the biological diversity in the experiments. Specifically, two approaches 

for in silico data generation were proposed: a first principles digital model, and a hybrid semi-

parametric digital model. The main results of the work are listed in the following. 

• A multivariate model to estimate the antibody titer was built on different numbers of process 

batches. The model accuracy sharply decreased when less than 10 process batches were 

used for model calibration (error ≫ 230 mg/L). 

• A new model to estimate the antibody titer was built on different numbers of available 

process batches with the addition of the in silico data generated using the two proposed data 

augmentation strategies. In silico generated batches reduced the error variability with 

respect to process batches alone when 6-8 process batches are available, whereas improves 

the model accuracy when < 6 process batches are available. In fact, the model errors (170-
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230 mg/L) were comparable with the measurement uncertainty (~150 mg/L). Furthermore, 

the first principles digital model improves the estimation accuracy even when the number 

of available batches is ≤ 3. 

• The addition of the in silico generated batches from the first principle digital model allowed 

the correct identification of the important process parameters even when less than 10 

process batches are available, which was not possible with only the process batches.  

The use of in silico generated batches allowed the identification of high performing cell lines 

through data-based multivariate regression models even in scenarios where the number of 

available process data is limited, which is a typical situation encountered in mAbs development. 

Specifically, this could provide great advantages at different scales of the product and process 

development, especially at the stirred bioreactor scales, where the number of available batches 

is typically between 2 and 10. This improved identification of high performing cell lines 

reduced the experimental burden together with cost and timelines for process development. 

This work also fulfilled the regulatory requirements of Quality by Design concerned with the 

enhanced process understanding, and the monitoring and prediction of CQAs.  

Accelerating feeding schedule optimization through hybrid models 

This work compared an in silico experimental campaigns for the optimization of the feeding 

schedule in mammalian cell cultures through hybrid digital models with an experimental 

campaign on the process. This was intended to evaluate if the in silico experimental campaign 

can accelerate the experimentation and reduce the experimental burden in the process 

development. The proposed method was tested in a simulated process for the production of 

mAbs, which allowed knowing the exact relationship between nutrients and antibody titer and 

identifying the optimal feeding schedule of the process. The main results of the work are: 

• Two experimental campaigns were planned by means of Design of Dynamic Experiments 

(DoDE): campaign A with 31 experiments and campaign B with 9 experiments. A response 

surface model, based on multiple linear regression, was built on the experiments to identify 

the feeding schedule maximizing the antibody titer at harvest. Experimental campaign A 

achieved an antibody titer of 3118.2 mg/L and campaign B 3136.3 mg/L, which did not 

approach the optimal antibody titer of the process of 3228.8 mg/L. Furthermore, the models 

predicted the antibody titer with limited accuracy, showing an error between 3.8% to 13.2%. 

• The hybrid model trained on the 9 experiments of campaign B was used to conduct an in 

silico experimental campaign. This identified the feeding schedule maximizing the antibody 

titer at harvest. In particular, the in silico campaign achieved an antibody titer of 3222.8 

mg/L, which approached the process optimum of 3228.8 mg/L. The hybrid model captured 

the trend of the relationship between nutrients and antibody titer better than the response 

surface models, even if the prediction of the actual antibody titer showed a relatively large 

error.  
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The in silico experimental campaign on a hybrid digital model achieved a better optimum than 

experimental campaigns designed through DoDE, providing an increase of 2.8% of the optimal 

antibody titer. Furthermore, the in silico experimental campaign reduced the experiments 

requirement to optimize the feeding schedule, because only 9 experiments were necessary for 

the hybrid model training. These results suggested that in silico experimental campaign can be 

powerful tools to reduce the experimental burden and timelines for process optimization. This 

work also fulfilled some regulatory requirements of Quality by Design, such as the mitigation 

of the risk of poor-quality products.  

Prediction of intracellular constraints of GSMMs from cheap and easily available data 

through deep learning models 

A deep learning strategy was developed to predict the constraints of GSMMs from easily 

available and cheap data in order to improve how GSMMs describe the metabolism of CHO 

cell lines. This work was a collaboration with Imperial College London (U.K.). The main results 

of the work are reported in the following. 

• An artificial neural networks (ANN) was developed to predict intracellular fluxes from 

extracellular metabolite uptake rates, which are routinely measured in cell cultures. A 2 

hidden layer ANN was used to predict one intracellular flux (among 47 total) from 24 

extracellular metabolite uptake rates. Data augmentation based on SMOTE and gaussian 

noise addition was used to increase the number of training experiments and improve the 

robustness of the model. 

• The ANN predicted with good accuracy (𝑄2 > 65%) most of the intracellular fluxes, 

especially reactions in glycolysis, TCA cycle, and some reactions in the amino acid 

metabolism, such as GS, ASNS, SHMT, GCS, MAT, TDO, AKD, IBD. The ANN predicted 

the fluxes of some reactions with lower performance (𝑄2 < 35%), mainly parallel and 

alternative reactions, such as PPP ones, and reactions involving metabolites that participate 

in many metabolic reactions, such as PC, ARGS, TTA, and AASS. The inaccurate predictions 

are probably due to inconsistencies in the available 13C labeling data.  

• The ANN estimated for each intracellular fluxes the 95% prediction interval. We proposed 

to use these prediction intervals to set lower and upper bounds of reactions in the GSMM. 

• The GSMM constrained with the predicted bounds showed higher accuracy in calculating 

intracellular fluxes (Person correlation between GSMM calculated and experimental 

intracellular fluxes: 0.765 vs. 0.343) and predicting biomass (𝑄2 = 61.6% vs. 𝑄2 =13.3%) than the base case and other state-of-the-art methods. 

These results allowed a more effective use of GSMM to describe the metabolism of mammalian 

cells, providing a more accurate representation, better biological understanding, and an 

improved capability of culture design and optimization. This work also fulfilled some 
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regulatory requirements of Quality by Design, such as enhanced understanding of the system, 

and the management of variability sources. 

Identification of genetic engineering targets to improve CHO cell productivity exploiting 

GSMMs and latent variable model inversion 

An innovative and efficient latent variable regression model inversion strategy was proposed 

to identify genetic engineering targets that improve mAb productivity by exploiting GSMMs. 

The proposed method was applied to CHO cells lines to improve mAb productivity. The main 

results are: 

• A multivariate latent variable regression model was built to predict cell productivity and 

growth rate from the intracellular fluxes calculated by means of a GSMM. The model 

predicted with good accuracy (𝑄2 > 70%) both productivity and growth rate.  

• The latent variable model was inverted to identify the intracellular fluxes associated to a 

desired and increased mAb productivity. In this specific case, a 50-100% increased 

productivity was desired. An algorithm exploiting GSMMs and the calculated intracellular 

fluxes was specifically developed to identify, among all the possible solutions, few 

reactions that must be genetically modified to obtain the desired productivity improvement.  

• The strategy suggested that the downregulation of reactions involved in the metabolism of 

L-valine (VALTA_f) and L-tryptophan (TRPO2) improved the productivity of mammalian 

cells in GSMMs. The modification of these reactions must be associated with other growth-

inhibiting modifications to divert resources from growth to mAbs production. The proposed 

genetic modifications were tested on a GSMMs and provided almost doubled productivity.  

• The strategy suggested that the upregulation of reactions involved in the mannose 

recirculation pathways in the early glycosylation of mAbs improved cell productivity in 

GSMMs. The proposed genetic modifications, tested on a GSMMs, provided a productivity 

of 9.84 ∙ 10−5 against the initial 5.87 ∙ 10−5 a 𝑚𝑚𝑜𝑙 (𝑔𝐷𝐶𝑊 ℎ)⁄ . 
This study provided a novel and faster methodology than state-of-the-art methods to identify 

genetic modifications improving a desired phenotype in GSMMs. Furthermore, it demonstrated 

to be able to give valuable insights on cellular reactions and genes that can be targeted to 

improve the performance of cells. However, since these genetic modifications were observed 

in the GSMMs, the suggested genetic modifications should be tested in vitro to assess their 

actual effectiveness. This work also fulfilled some regulatory requirements of Quality by 

Design, such as the management of the variability sources, and the reduction of the risk of 

poorly productive cell lines, by guaranteeing high quality since cell generation.  

Future perspectives 

In view of the above conclusions, some possible ways to expand and improve the current work 

can be identified. Some future perspectives for this work are listed below.  
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• In Chapter 3 and 4, the use dynamic biological and process information was proven 

effective to support and accelerate the cell selection process. However, in the work only 

some critical quality attributes (CQAs) that are relevant form mAbs were considered. In 

future extensions of the work the methodology will study the relationship between 

biological information and antibody quality, such as glycan profile, in order to provide 

additional information for cell selection and eventually improve the understanding of the 

relationship between metabolic state and antibody quality.  

• In Chapter 5, it was proven that the use of in silico data generation supports the 

identification of high productive cell lines even in the typical biopharmaceutical 

development scenario, where less than 10 experimental runs are available. However, this 

was proven on a simulated process. Hence, the proposed methodology will be tested on a 

real process. Furthermore, different modeling strategies and different solutions can be found 

to generate in silico data with a better balance between similarity with the original data and 

increased coverage of process variability.  

• In Chapter 6, an in silico experimental campaign on a hybrid digital model was effectively 

used to optimize the feeding schedule of mammalian cells, achieving a higher antibody titer 

than experimental campaigns requiring a lower number of experiments. However, this was 

tested on a simulated process. For this reason, the proposed methodology will be tested on 

a real scenario, to assess the appropriate number of experiments for hybrid model training 

and improvement that can be achieved. Furthermore, different machine learning strategies 

could be exploited for the optimization of the feeding schedule exploiting the capability of 

hybrid models to simulate in silico an entire experimental campaign.  

• In Chapter 7, Next-FLUX was proposed to predict the intracellular flux constraints of 

GSMMs form cheap and easily available measurements in order to make GSMM more 

accurate in describing the cell metabolism. The Next-FLUX was tested on the available 13C 

isotope labeling dataset. For this reason, the proposed method will be further validated on 

new and independent 13C isotope labeling data to assess its applicability in general and 

industrial scenarios. Furthermore, a software embedding the prediction of the intracellular 

constraints, their application on the GSMM, and its solution will be developed and released.  

• In Chapter 8, a novel strategy to identify target genetic modifications exploiting GSMM 

and latent variable model inversion was proposed to enhance the cell lines productivity. The 

method identified meaningful genetic modifications that improved the productivity of 

mammalian cells in the GSMM. For this reason, the suggested genetic modifications will 

be tested on CHO cells at Imperial College London, to assess if the suggested modifications 

are able to improve cell productivity in a real scenario.  

 



 

 



 

 

Appendix A 

Monoclonal antibodies and cell cultures 

In this Appendix, details on monoclonal antibodies structure, action, and production are 

presented. Furthermore, cell culture types, operations, and future trends will be explained.  

A.1 Monoclonal antibodies 

Monoclonal antibodies (mAbs) are therapeutic proteins commonly utilized for the treatment of 

autoimmune diseases, cancers, and infectious diseases (Kesik‐Brodacka, 2018).  
In the treatment of autoimmune diseases, mAbs targets different components of the immune 

system to suppress the acute responses typical of these diseases. For example, antibodies have 

been used for the treatment of rheumatoid arthritis, psoriatic arthritis, Chron’s disease, 
ulcerative colitis, psoriasis and ankylosis spondylitis (Castelli et al., 2019). 

Monoclonal antibodies have also been used for the treatment of both hematologic and solid 

tumors, such as leukemia, colorectal cancer, and metastatic breast cancer. In the treatment of 

the oncological diseases, mAbs act by: i) targeting some tumor antigens, such as growth factor 

receptors or hematopoietic differentiation antigens, to kill cancer cells, ii) delivering some 

radioisotopes to cancer cells in a selective way, and iii) targeting immune cells to enhance 

antitumor immune responses (Castelli et al., 2019). 

In infectious diseases, mAbs have been used as prophylaxis and/or treatment, through the 

inhibition of viral replication. Monoclonal antibodies are available for several infectious 

diseases, but their development is slower in comparison to the treatments for oncological and 

autoimmune diseases. However, mAbs are available for the treatment of cytomegalovirus, 

hepatitis A and B viruses, HIV-1 infection, and SARS-CoV-2, while mAbs for the treatment of 

Ebola virus, hepatitis C and herpes simplex virus are under development (Castelli et al., 2019). 

Apart from these common applications, mAbs have been also utilized in therapies for 

cardiovascular diseases, organ transplantations, respiratory diseases, and ophthalmologic 

diseases (Kesik‐Brodacka, 2018). 

A.1.1 Monoclonal antibody structure and function 

Monoclonal antibodies (or immunoglobulins, Ig) are large Y-shaped proteins (Chapter 1; 

Figure 1.1), whose structure has been extensively reviewed in Chiu et al. (2019). They are 
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composed of two identical heavy chains (~50 kDa each) and two identical light chains (~25 

kDa each) with a molecular weight of ~150 kDa (Castelli et al., 2019). Heavy and light chains 

are connected and folded via intra and inter-chain disulfide bounds (Chartrain & Chu, 2008). 

The light chain is composed of one variable and one constant domain. The heavy chain, instead, 

is composed of one variable and 3 constant domains. The constant region, which defines the 

antibody class (i.e., IgM, IgG, IgD, IgA and IgE), has a nearly identical amino acid sequence 

in all antibodies of the same class (Kang & Lee, 2021). Currently, only IgGs are used as 

therapeutic mAbs because of their large circulating half-life and ease of production (Castelli et 

al., 2019). The variable region, instead, is the same for all the mAbs produced by a single cell 

clone.  

The variable region of each heavy and light chain has three specialized sites, called 

complementarity determining regions, which dictate the specificity of each mAb through their 

amino acid sequence (Chartrain & Chu, 2008; Kang & Lee, 2021).  

Monoclonal antibodies are divided in the antibody binding region (Fab) and the Fc region. The 

Fab region is composed of the two light and two heavy chains. The Fc region, instead, is 

composed of two heavy chains and binds to various receptors on effector cells of the immune 

system (Gaughan, 2016), which is the main action mechanism of mAbs. The Fc region is 

glycosylated at ASN-297 with N-linked glycans (i.e., polysaccharides) with a bi-antennary 

structure (Chartrain & Chu, 2008; Kang & Lee, 2021). This glycans have two N-

acetylglucosamine (GlcNAc) residues connected to three bisecting mannose residues and can 

have a broad variety of terminal sugar composition, which greatly affect the activity of 

antibodies in terms of their inactivation. Additional details on antibody glycosylation, glycan 

composition and structure can be found in the Literature (Batra & Rathore, 2016; Sha et al., 

2016).  

The main role of antibodies in living organisms is to clear the host from invading pathogens 

and external molecules. Antibodies have very specific targets, called antigens, and are able to 

recognize them and bind exclusively to a small region (epitope) of a given antigen. The mAb 

uses the complementarity determining regions on the Fab to bind to the epitope on the antigen 

(Chartrain & Chu, 2008). The mAb binds to an antigen forming a complex that is recognized 

and cleared by specialized components or cells of the immune system of the host organism 

(Castelli et al., 2019; Chartrain & Chu, 2008). This is done in two main ways: 

• antibody dependent cell-mediated cytotoxicity; 

• complement-dependent cell cytotoxicity. 

In antibody dependent cell-mediated cytotoxicity, killer cells (NK and NKC cells) recognize 

the mAb-target cell complexes and trigger the lysis and destruction of the pathogenic cells. In 

complement-dependent cell cytotoxicity, a protein complex binds to the mAb Fc region leading 

to lysis of the target cell.  
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A.1.2 Production of monoclonal antibodies 

In living organisms, immunoglobulins are mainly produced by secretory B-cells, a component 

of the cell immune system (Gaughan, 2016). The secretion of monoclonal antibodies follows a 

specific mechanism (Gutierrez et al., 2020; Kontoravdi et al., 2005, 2007, 2010):  

• DNA transcription: in the nucleus, the DNA genes encoding for the mAb light and heavy 

chains are transcribed into mRNA, which is responsible to carry the genetic information in 

the site of process synthesis; 

• light and heavy chains translation: in the ribosomes, each nucleotide triplet in the mRNA, 

called codon, encodes for an amino acid and are translated into proteins thanks to a set of 

small RNA molecules called transfer RNA (tRNA); 

• travel in the endoplasmic reticulum (ER): the light and heavy chains travel to the ER and 

two copies of each light and heavy chain are folded and combined to form the mAb. A 

control step is also performed in the ER in which cells try to correct protein misfolding and 

eventually degrade the mAb if the misfolded state is sustained for too long. Traveling 

through the ER the mAb is further glycosylated with N-glycans; 

• travel in the Golgi apparatus: the mAb travel through the Golgi apparatus where it is further 

glycosylated through the bounding of N- and O-glycans.  

• secretion: the complete mAb is secreted into the extracellular space through vesicles. 

In the travel through the ER and Golgi, some glycosylation errors might happen leading to the 

secretion of mAbs that are not fully glycosylated with a degraded structural conformation. This 

undermines the bioactivity of mAb which may not be completely functional.  

A.2 Cell cultures 

A.2.1 Upstream process 

In the context of the upstream section of biopharmaceutical processes, the operating modes, the 

bioreactor types, the operating parameters, the required elements for cell survival (i.e., medium 

and nutrients), and the upstream phases have to be considered.  

A.2.1.1 Operating modes 

Cell cultures for mAbs have three main operating modes (Chartrain & Chu, 2008; Gaughan, 

2016; Rodrigues et al., 2009b): 

• batch; 

• fed-batch; 

• perfusion. 
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Batch cultures are the simplest possible model of bioreactor operation, being often used in the 

past decade for many industrial applications (Rodrigues et al., 2009b). In batch operating mode, 

the bioreactor is initially loaded with medium and nutrients, then, cells are inoculated. The cells 

are allowed to grow until a determined cell density and product concentration with no further 

nutrient additions or withdrawals. Because of that, the nutrient concentration in the culture 

gradually decreases while product and by-products accumulate in the culture further limiting 

cell growth, allowing to reach a maximum viable cell concentration of ~106 cells/mL 

(Rodrigues et al., 2009b). A balance between the amount of nutrient to reduce growth limitation 

and the acceptable level of toxic by-products must be found for the correct operation of batch 

bioreactors.  

Fed-batch cultures are nowadays the preferred choice for the production of mAbs. After the 

startup of the bioreactor, nutrients are periodically fed with fresh media to increase culture 

longevity, maintain nutrient sufficiency and limit the effect of nutrient depletion. However, the 

accumulation of growth-inhibiting by-products is not avoided. Furthermore, a frequent feeding 

allows to better control the growth rate of cells through the flow rate of feed and medium. In 

this way, fed-batch operations allow to reach cell specific productivity of over 20 pg/cell/day, 

antibody titers up to 10 g/L and viable cell concentration over 20 ∙ 106 cells/mL (Gaughan, 

2016). The product is harvested only at the end, when the viability of cells drops below a target 

value, typically after 2 weeks.  

In perfusion bioreactors, fresh medium is continuously added to the culture at a very low rate, 

while an equal amount of spent medium with the product is removed from the culture (Birch & 

Racher, 2006). Each perfusion reactor is typically connected to a filtration or centrifugation unit 

for the separation of viable cells (Gaughan, 2016). In some cases, even viable cells are extracted 

from the bioreactor to avoid sterility issues over long periods of time (Shukla & Thömmes, 

2010). Perfusion bioreactors provide very stable operations, with constant glucose/lactate 

concentration, pH and DO, lasting for long periods of time, even 35-40 days. Furthermore, by-

products are constantly removed from the culture, increasing viable cell concentrations (~107 

cells/mL) and specific productivity (Rodrigues et al., 2009b), generally requiring smaller 

cultivation vessels and smaller factories than fed-batch reactors and, accordingly, less space for 

the production of a similar amount of mAbs (Gaughan, 2016).  

A.2.1.2 Bioreactor types and operating parameters 

Bioreactors are the main equipment used in upstream processes, in which cells grow and 

produce mAbs. Several types of bioreactors are used for the production of mAbs; details on all 

the possible choices of bioreactor types can be found in Rodrigues et al. (2010). However, the 

main types currently used are two (Chartrain & Chu, 2008; Gaughan, 2016; Rodrigues et al., 

2009a): 

• stainless steel bioreactors;  
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• disposable bioreactors.  

Stainless steel bioreactors are stirred tanks with baffles and impellers and a volume ranging 

from 1000 L to 25000 L. They allow high and flexible operating volumes and modes, high 

mass/gas transfer coefficients, applicability to several cell and product types, making them the 

preferred choice in the past decades. Disposable bioreactors are polymeric bags that can be 

placed on rocking plates for convection mixing or have their own internal impeller, usually with 

a volume ranging between 50 L and 2000 L. Recently, disposable, single-use bioreactors are 

the preferred choice in the biopharmaceutical industry because they have substantially 

decreased preparation times, eliminating at the same time all the issues of cleaning, sterilization 

and cross-contamination risks. Furthermore, they provide a significant reduction in the capital 

investments associated with stainless steel reactors. 

To achieve high product yield and acceptable product quality the bioreactor operation must be 

optimized. The main bioreactor operating parameters for process optimization are (Birch & 

Racher, 2006; Chartrain & Chu, 2008; F. Li et al., 2010; Rodrigues et al., 2009a; Shukla & 

Thömmes, 2010): 

• temperature: temperature is the most critical variable for healthy cultures. Cells are typically 

cultivated at 37 °C to favor cell growth. However, this temperature is not the most favorable 

for mAbs production, hence, once a desired viable cell concentration is reached the 

temperature is set to 30-35°C. This temperature shift allows the cells to redirect their 

metabolism away from growth toward mAb production, allowing higher specific 

productivity.  

• pH: pH is another critical variable for mammalian culture, having an impact on cell growth, 

productivity, cell metabolism and protein glycosylation even with small variations. Cells 

are typically cultured with pH near 7.4, but, after reaching a desired viable cell 

concentration, pH is usually reduced to 6.7-7.0 to limit cell growth and increase specific 

productivity. Commonly, pH is controlled by the addition of CO2 to the culture headspace 

or the addition of bicarbonate base.  

• O2: mammalian cells require oxygen to produce energy from carbon sources. However, the 

dissolved oxygen (DO) does not negatively affect cell growth and productivity while in 

physiological ranges, but can have an effect on protein glycosylation (Rodrigues et al., 

2009b). DO is typically set between 30% and 60% of air saturation.  

• CO2: in mammalian cells, CO2 should be kept at physiological levels because it is required 

to maintain the pH and to regulate many cellular activities while an excessive accumulation 

can have inhibitory effects. Partial pressures of CO2 (pCO2) are typically set at 120-150 

mmHg. 

• osmolarity: osmolarity has an influence on mAbs production, cell growth and death, and 

the duration of the exponential growth. In fact, high osmolarity, triggered by the addition 
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of base, glucose or concentrated medium, causes decreased growth rates and viable cell 

concentrations. The osmolarity is typically set and controlled at 270-330 mOsm/kg. 

• agitation rate: the agitation rate provides mixing of cells and together with the gas flow rate 

is used to control the DO and the pCO2. 

A.2.1.3 Elements for cell survival 

Apart from the bioreactor operating parameters, medium and nutrients are other two main 

parameters to be controlled for cell survival (Birch & Racher, 2006; Chartrain & Chu, 2008; 

Gaughan, 2016; Rodrigues et al., 2009a; Shukla & Thömmes, 2010).  

The media for the cultivation of mammalian cells are highly complex, contain several 

components and cost more than 20$ per liter (Chartrain & Chu, 2008). These media contain all 

the growth supporting molecules, such as amino acids, vitamins, nucleosides, trace elements, 

metals, inorganic salts, lipids and insulin or insulin-like growth factors. In the past, bovine 

serum was the standard, but recently companies are avoiding animal ingredients in 

biopharmaceutical production to avoid the introduction of adventitious agents. As a 

consequence, fully chemically defined media have been developed using hydrolysates from 

yeast or plant sources which allow to effectively replace the use of serum. Media can be 

purchased by vendors, but many companies are starting to produce their own media to avoid 

shortage problems and to specifically design it for each purpose.  

In mammalian cell cultures, glucose and glutamine are the most limiting nutrients, being the 

main carbon sources. The metabolism of such nutrients leads to the production of by-products, 

such as lactate and ammonia, whose accumulation in the culture can inhibit cell growth and 

mAb productivity, affecting also mAb glycosylation (Rodrigues et al., 2009b). For this reason, 

the feeding strategy should be optimized to maximize productivity and growth and minimize 

the formation of undesirable by-products (Chartrain & Chu, 2008). In order to achieve that it is 

extremely important to have quantitative understanding of cells nutritional requirements (Birch 

& Racher, 2006). 

 
Figure A.1 Monoclonal antibody industrial production: upstream process phases. Adapted 

from Shukla and Thömmes (2010).  
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A.2.1.4 Upstream phases 

The upstream process is mainly divided into three phases (Figure A.1): 

• seeding; 

• culture; 

• primary recovery. 

Selected cells for the production of a specific biopharmaceutical are typically stored in two cell 

banks, called Master Cell Bank and Working Cell Bank, which ensure a long term supply of 

cells for the entire expected life of a biopharmaceutical product (Chartrain & Chu, 2008). 

The seeding step aims at generating enough cells to inoculate the final production bioreactor by 

serial expansions (Birch & Racher, 2006). Frozen vials, extracted from the Working Cell Bank, 

are initially expanded in shake flasks or spinner flasks, which progressively increase in volume 

(Shukla & Thömmes, 2010). The cells are inoculated into a series of seeding bioreactors, which 

are typically operated for many months. A procedure known as rolling seed train is used to 

speed up the expansion phase, which can span over more than one month due to the low average 

doubling time of mammalian cells (i.e., about one day). In this procedure, a substantial volume 

is drained from the bioreactor every few days and used to seed the production bioreactor. An 

equal volume of fresh medium is added to the bioreactor to preserve its operation and allow the 

cells to double again. 

In the culture phase, cells are inoculated in the production bioreactor and grow (typically in fed-

batch mode) until the desired conditions are met, leading to 2 weeks typical culture lengths 

(Birch & Racher, 2006).  

After harvesting, the culture media with products and cells goes to the primary recovery, in 

which cells and cell debris are removed through a centrifuge and membrane filters prior being 

purified in the downstream process (Birch & Racher, 2006; Shukla & Thömmes, 2010) 

A.2.2 Downstream process 

In the biopharmaceutical production of mAbs, the downstream process has become widely 

established to purify the product and reduce all the impurities to acceptable levels (Shukla & 

Thömmes, 2010). Nowadays, growing attention is given to the downstream process because it 

has become the limiting step for process throughput (Birch & Racher, 2006). The downstream 

process is mainly divided into three steps: 

• protein A affinity chromatography: protein A affinity chromatography is the antibody 

capturing step and is based on the specific binding activity between the Fc region of mAbs 

and a so-called protein A ligand. It has a capacity ranging from 15–100 g mAb/L and an 

extremely high selectivity towards IgG which allows host cell proteins, DNA and other 

impurities to be separated, achieving > 95% purity in one step (Birch & Racher, 2006; 

Gronemeyer et al., 2014; Shukla & Thömmes, 2010).  
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• polishing chromatography: up to three polishing chromatographic separations are used to 

further reduce impurities, such as host cell proteins, DNA and high-molecular-weight 

aggregates, to acceptable levels. To this purpose, ion exchange chromatography is typically 

used (Birch & Racher, 2006; Gronemeyer et al., 2014).  

• viral filtration: at least two steps are used to remove and inactivate viruses. These are 

typically based on filtration, low pH treatments and solvents. After that, the process is 

typically terminated with ultrafiltration/diafiltration operation to reduce storage volume 

(Birch & Racher, 2006; Shukla & Thömmes, 2010) 

A.2.3 Future manufacturing trends: continuous production 

In the recent years, a large demand of biopharmaceutical products is emerging, making the 

typical fed-batch processes currently used often insufficient to fulfill the product demand. 

Continuous manufacturing is a promising methodology to overcome this problem, because it 

shortens the production cycle, increases the equipment utilization, and enables constant product 

quality, providing a reduction in the overall costs (Schofield, 2018). Furthermore, regulatory 

agencies are promoting the transition to continuous manufacturing through guidelines (Q13 - 

Continuous Manufacturing of Drug Substances and Drug Products, 2021). However, guidelines 

with a framework for continuous manufacturing is not available yet (Manser & Glenz, 2022). 

The transition to continuous manufacturing started with the development of perfusion 

bioreactors, which substantially increased productivity and mAb titers, making the downstream 

process, especially the protein A affinity chromatography, which is intrinsically batch, the main 

bottleneck in biopharmaceutical processes (Birch & Racher, 2006; Gerstweiler et al., 2021). 

The main solution is to use the perfusion reactors to prepare highly concentrated solution for 

the further purification steps. However, further steps must be undertaken to examine ways to 

integrate individual continuous unit operations for developing a fully integrated process 

(Gerstweiler et al., 2021). Recently, several progresses have been made in this context, 

especially on the substitution of chromatographic processes with crystallization, precipitation, 

and membrane technologies, and on the automated control of the entire downstream process 

(Thakur et al., 2022). However, the development of fully continuous processes for the 

production of mAbs is still an open issue.  

 



 

 

Appendix B 

Additional details on the integration of 

metabolome dynamics and process data 

This Appendix collects additional mathematical details and results of the paper Barberi et al. 

(2022) that is at the basis of Chapter 3.  

B.1 Measurement replicate unfolding 

To account for measurement replicates variability, data are replicate-wise unfolded by 

vertically concatenating the 𝑅 measurement replicates, producing the matrices 𝐗I [𝑁 ∙𝑅 × 𝑉I × (𝑇 − 1)] and 𝐗E  [𝑁 ∙ 𝑅 × 𝑉E × 𝑇]. Two copies of process data 𝐗p are vertically 

concatenated to account for 𝑅 measurement replicates in 𝐗P [𝑁 ∙ 𝑅 × 𝑉P × 𝑇], which are not 

available for process data. In any further splitting of the data, measurement replicates are 

considered as a single sample and extracted together.  

B.2 Multiway principal component analysis 

Multiway principal component analysis (MPCA; Nomikos and MacGregor, 1994) is used for 

the exploration of data in the case of multidimensional matrices, when usually one of the 

dimensions is related to data variability in time (i.e., data dynamics). MPCA consists in a PCA 

(Wold et al., 1987) on properly unfolded multiway data. In particular, data collected at different 

time instants (e.g., 𝐗I𝑡 [𝑁 ∙ 𝑅 × 𝑉I] with 𝑡 = 1, 3, … , 𝑇) are horizontally concatenated to 

generate 𝐗I [𝑁 ∙ 𝑅 × 𝑉I ∙ (𝑇 − 1)], which is the cell-wise unfolded version of 𝐗I. The 

extracellular data 𝐗E are unfolded in the same way in 𝐗E [𝑁 ∙ 𝑅 × 𝑉E ∙ 𝑇]. When required, also 

the process data 𝐗P are cell-wise unfolded in 𝐗P [𝑁 ∙ 𝑅 × 𝑉P ∙ 𝑇]. 
PCA is a multivariate statistical technique which decomposes a dataset (e.g., pareto scaled 𝐗E [𝑁 ∙ 𝑅 × 𝑉E ∙ 𝑇]) of 𝑁 ∙ 𝑅 observations on 𝑉E ∙ 𝑇 variables into 𝐴 independent principal 

components (PCs), which describe the direction of maximum variability of 𝐗E and capture the 

correlation structure between the 𝑉E ∙ 𝑇 original variables. This decomposition is performed 

according to: 𝐗E = 𝐓𝐏T + 𝐄   , (B.1) 
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where 𝐓 [𝑁 ∙ 𝑅 × 𝐴] is the score matrix, 𝐏 [𝑉E ∙ 𝑇 × 𝐴] is the loading matrix, the superscript T 

indicates the transpose, and 𝐄 [𝑁 ∙ 𝑅 × 𝑉E ∙ 𝑇] is the residual matrix, which is minimized in the 

least-square sense. The loadings describe not only the correlation structure among original 

variables (e.g., metabolites), but also how variables are auto-correlated in time and cross-

correlated with the dynamics of other variables (when the data are cell-wise unfolded). Scores 

represent the projection of observations in the subspace of PCs and describe the relation 

between different observations according to the patterns of the time profiles of the considered 

variables. 

A new observation 𝐱NEW [1 × 𝑉E ∙ 𝑇] can be projected onto a PCA model space through: 𝐭NEW = 𝐱NEW𝐏   , (B.2) 

where 𝐭NEW [1 × 𝐴] is the score vector of the new observation. The projection of a new 

observation is used to assess whether a new observation is similar or conform to the ones used 

to build the PCA model.  

The real-time mapping of a new observation is performed similarly by projecting an observation 

at each time instant 𝑡 (with 𝑡 = 1, 2, … , 𝑇) and completing the missing measurements (from 𝑡+1 

to 𝑡=7) with the respective average values calculated over the calibration data used to build the 

model (Ramaker et al., 2005). 

B.3 Similarity analysis 

The similarity factor (Facco et al., 2020; Krzanowski, 1979) compares the correlation structure 

captured by two PCA models built on matrices 𝐗I𝑡′  [𝑁 ∙ 𝑅 × 𝑉I] and 𝐗I𝑡′′  [𝑁 ∙ 𝑅 × 𝑉I] (for 

example), the slices of the three-dimensional matrix 𝐗I at time instants 𝑡′ and 𝑡′′, using the 

same number of PCs. It compares the direction of maximum variability in the two datasets, 

therefore their major driving forces. The similarity factor 𝑆𝑡′𝑡′′ is defined as: 𝑆𝑡′𝑡′′ = 𝑡𝑟𝑎𝑐𝑒(𝐏𝑡′∗T𝐏𝑡′′∗ 𝐏𝑡′′∗T𝐏𝑡′∗ )∑ λ𝑡′,𝑎λ𝑡′′,𝑎𝐴𝑎=1    , (B.3) 

where 𝜆𝑡′,𝑎 is the eigenvalue of the PCA model built on 𝐗I𝑡′
 for the 𝑎-th PC, and 𝐏𝑡′∗ = 𝐏𝑡′𝐋𝑡′, 

where 𝐏𝑡′ is the loading matrix of the model built on 𝐗I𝑡′
 and 𝐋𝑡′  [𝐴 × 𝐴] is the diagonal matrix 

of the square root of λ𝑡′,𝑎. The notation for 𝐗I𝑡′′
 is similar.  

The similarity analysis gives a quantitative information on how much the driving metabolic 

phenomena change along the culture time course. Specifically, high values of the similarity 

factor (values close to 1) between metabolomic data at different time instants indicate that a 

significant portion of the ions shows similar variation across all the samples. Accordingly, the 

metabolic phenomena driving these variations are likely to be the same. Conversely, low values 

of the similarity factor (values close to 0) between metabolomic data at different time instants 
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indicates that a significant portion of the ions show very different variation across all the 

samples. Hence, the driving metabolic phenomena are likely to be different.  

The variables mostly responsible for the similarity are identified as the ones having high and 

similar loading values (within 5% difference) in 𝐏𝑡′ and 𝐏𝑡′′. 
B.4 Multi-block principal component analysis 

Multi-block PCA (MB-PCA; Westerhuis et al., 1998) is an unsupervised multi-block method 

which relates different blocks of variables (e.g., process and biological data). In MB-PCA, the 

available data blocks (with the same observations on the rows) are horizontally concatenated, 

prior the decomposition through a standard MPCA (Appendix B.2). Process data were 

autoscaled to zero mean and unit variance, while metabolomic data were pareto scaled 

(Eriksson et al., 2006). No additional block scaling was performed to avoid reducing the 

importance of the metabolomics block which comprises a large number of variables. In this 

study, since culture and metabolomic dynamic data are available, a multi-block-multiway-PCA 

(MB-MPCA) was applied to relate the dynamic variations of metabolomic profiles and process 

variables. 

B.5 Multiway partial least-squares regression 

Multiway partial least-squares (MPLS; Nomikos and MacGregor, 1995) consists in a batch-

wise unfolding followed by partial least-squares (PLS; Wold et al., 2001) modeling. PLS is a 

linear multivariate regression technique which identifies the direction of maximum covariance 

between regressors (e.g., pareto scaled 𝐗E [𝑁 ∙ 𝑅 × 𝑉E ∙ 𝑇]) and an autoscaled matrix 𝐘 [𝑁 ∙ 𝑅 × 𝑀] of 𝑀 responses (e.g., a slice of 𝐗P). PLS projects 𝐗E and 𝐘 into a reduced space 

of 𝐴 latent variables LVs as explained in Section 2.1.2. The selection of the appropriate number 

of LVs is performed through a 9-fold cross-validation (Geladi & Kowalski, 1986b). 

Model performance is evaluated through a 250-iterations Monte Carlo cross-validation, in 

which samples are randomly split in calibration ad validation sets (88% of samples is for 

calibration). External validation cell lines are randomly selected from the initial dataset (12 cell 

lines) and are used to assess model robustness and generalization performances. 

B.6 Variable selection 

The selection of the relevant variables is performed through a bootstrap procedure (Afanador 

et al., 2013) on the variable importance in projection (VIP; Eriksson et al., 2006) index. The 

VIP score of a generic ion at a specific time instant, 𝑣𝑡 = 1,2, … , 𝑉 ∙ 𝑇, is defined as:  
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𝑉𝐼𝑃𝑣𝑡 = √𝑉∙𝑇 ∑ 𝑅𝑌,𝑎2𝐴𝑎=1 𝑤𝑣𝑡,𝑎2
√∑ 𝑅𝑌,𝑎2𝐴𝑎=1    , (B.7) 

where 𝑅𝑌,𝑎2  is the variance of the response explained by the 𝑎-th LV of the model, and 𝑤𝑣𝑡,𝑎 is 

the weight of the 𝑣𝑡-th ion in the cell-wise unfolded version of the data and 𝑎-th LV.  

The bootstrap procedure selects the most influential variables for the prediction of the PLS 

response 𝐘, because it retains only ions whose VIP index remain high independently from the 

subset of sample selected for validation in the specific iteration. The variable selection is 

performed on 𝑖𝑡max = 250 Monte Carlo iterations following three steps: 

1. calculation of the VIP index standard deviation over the 𝑖𝑡max iterations for each ion, 𝜎̂VIP𝑣𝑡  (Afanador et al., 2013);  

2. calculation of the 90% confidence interval of the VIP index distribution for each ion, 

under the assumption that the VIPs are distributed according to a Student’s t 
distribution. The confidence interval is calculated through: 𝜎̂VIP𝑣𝑡𝑡1−𝛼 2⁄ ,𝑖𝑡max−1, where 𝑡1−𝛼 2⁄ ,𝑖𝑡max−1 identifies the confidence threshold of a t-distribution with (𝑖𝑡max − 1) 

degrees of freedom calculated with 𝛼 = 0.1;  

3. selection of the top-ranked 5% variables that guarantee the largest values of the lower 

90% confidence limit (LCL). The selection of the 5% of variables provides good model 

performance allowing an easier interpretation of the model outcomes.  

This method guarantees that only variables having a VIP > 1 with a 95% confidence are selected 

as important for the estimation of the response variable 𝐘. After the variable selection a new 

PLS model is built, showing improved prediction performance. In the new PLS model the 

variables with 𝑉𝐼𝑃LCL > 1 are considered highly related and predictive for the response 𝐘. 
  



Additional details on the integration of metabolome dynamics and process data 227 

 
 © 2022 Gianmarco Barberi, University of Padova (Italy)  

B.7 Additional information on culture variable correlation 

Details on Figure B.1 are briefly discussed in Section 3.3.2.  

 
Figure B.1 MB-MPCA model on 𝑿𝐼: loadings plot showing the correlation between 

additional process variables dynamics. 
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Appendix C 

Mathematical details of for the selection 

of high productive cell lines 

This Appendix collects additional mathematical information and results of Chapter 4.  

C.1 Data unfolding 

MPLS-DA (Barker & Rayens, 2003; Nomikos & MacGregor, 1995b) requires a proper data 

unfolding to deal with multidimensional data (i.e., with dynamic information and measurement 

replicates). The data unfolding procedure is schematically shown in Figure C.1. The multiway 

dataset 𝐗I [𝑁 × 𝑉I × 𝑇 × 𝑅] (for example) is firstly unfolded ion-wise to average the effect of 

different measurement replicates and then cell line-wise unfolded to take into consideration the 

dynamics of metabolomic data. The data collected at different time instants 𝐗I𝑡 [𝑁 × 𝑉I × 𝑅] 
with 𝑡 = 1, 2, … , 𝑇 are isolated (Figure C.1a) and ion-wise unfolded by vertically concatenating 

the measurement replicates (Figure C.1b) to generate 𝐗I𝒕 [𝑁 ∙ 𝑅 × 𝑉I]. Then, the data collected 

at different time instants 𝐗I𝒕 are by horizontally concatenated (i.e., cell line-wise unfolded) to 

generate the matrix 𝐗I [𝑁 ∙ 𝑅 × 𝑉I ∙ 𝑇] (Figure C.1c).  

 
Figure C.1 Schematic representation of the data unfolding procedure. 
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C.2 PLS-DA 

The PLS-DA model (Barker & Rayens, 2003) reduces the 𝑉𝐼 ∙ 𝑇-dimensional space of the 

metabolomic profiles dynamics to a smaller space 𝐴 orthogonal LVs, which captures, in this 

case, the dynamics of metabolites mostly related to the discrimination of cell productivity. The 

PLS-DA model is built on the unfolded dataset (Appendix C.1) as: 𝐗I = 𝐓𝐏T + 𝐄   , (C.1) 𝐘 = 𝐓𝐐T + 𝐅   , (C.2) 𝐓 = 𝐗I𝐖(𝐏T𝐖)−1   , (C.3) 

where 𝐏 [𝑉𝐼 ∙ 𝑇 × 𝐴] and 𝐐 [2 × 𝐴] are the loading matrices, 𝐓 [𝑁 ∙ 𝑅 × 𝐴] is the score matrix, 𝐄 [𝑁 ∙ 𝑅 × 𝑉𝐼 ∙ 𝑇] and 𝐅 [𝑁 ∙ 𝑅 × 2] are the residual matrices of 𝐗I and 𝐘, respectively 

(minimized in a least-square sense), and 𝐖 [𝑉𝐼 ∙ 𝐾 × 𝐴] is the weight matrix. The model scores 

describe the relationship between cell lines according to their metabolomic profile dynamics, 

while the loadings and the weights describe how the dynamics of metabolites and their 

correlations are related to the discrimination of the cell productivity. 

C.3 E-MPLS-DA 

E-MPLS-DA (Barker & Rayens, 2003; Ramaker et al., 2005) is a multi-model strategy that 

exploits partial dynamic information for classification. Specifically, this method retains 

information on the entire past history of the experimental batch to accomplish the classification 

in each time instant in which data are available along the culture course. At each time instant 𝑡 

with 𝑡 = 1, 2, … , 𝑇 a MPLS-DA model (Section 4.2.2) is built on the matrix 𝐗I,𝑡 [𝑁 ∙ 𝑅 × 𝑉𝐼 ∙𝑡] =  [𝐗I1, 𝐗I2, … , 𝐗I𝑡] which contains the ion-wise unfolded metabolomic data up to the time 

instant 𝑡. The matrix 𝐗I,𝑡 is progressively enlarged, while new MPLS-DA models are built, until 

the entire available dynamics of data is considered. A schematic representation of the E-MPLS-

DA model is shown in Figure C.2. 

 
Figure C.2 E-MPLS-DA multi-model building procedure. 
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C.4 Variable selection 

The most important ions for productivity discrimination are selected through a robust and 

computationally-intensive backward iterative elimination of the uninformative variables 

(Fernández Pierna et al., 2009; Mehmood et al., 2012), where three importance metrics are used 

to identify the uninformative variables:  

i) Variable importance in Projection index (VIP) (S Wold et al., 1993) defined for the 𝑣-

th ion as:  𝑉𝐼𝑃𝑣 = √𝑣 ∑ 𝑤𝑣𝑎2 𝑆𝑆𝑌𝑎𝐴𝑎=1∑ 𝑆𝑆𝑌𝑎𝐴𝑎=1    , (C.4) 

where 𝑆𝑆𝑌𝑎 is the sum of squares of 𝐘 explained by the 𝑎-th LV, 𝑤𝑣𝑎 is the weight of 

the 𝑣-th ion and 𝑎-th LV, 𝑉 is the total number of ions and 𝐴 the total number of LVs. 

ii) selectivity ratio (SR) (Kvalheim & Karstang, 1989) defined for the 𝑣-th ion as: 𝑆𝑅𝑣 = 𝑆𝑆𝑋exp,𝑣𝑆𝑆𝑋res,𝑣    , (C.5) 

where 𝑆𝑆𝑋exp,𝑣 is the explained variance, and 𝑆𝑆𝑋res,𝑣 is the residual variance for ion 𝑣. 

iii) regression coefficients defined as: 𝐁 =  𝐖(𝐏T𝐖)−1𝐐T   , (C.6) 

where 𝐁 [𝑉𝐼 ∙ 𝑇 × 2] is the matrix of regression coefficients. 

A MPLS-DA or E-MPLS-DA model is then built with the retained ions, showing improved 

classification performance.  

C.5 VIP bootstrap 

A bootstrap procedure (Afanador et al., 2013) is used on the model developed in Section 4.2.2 

to identify the most robust ions for productivity discrimination. Only ions whose VIP score 

remains high independently of the available subset of samples available in a cross-validation 

are retained. In particular, the results of the 𝑖𝑡max = 250 iterations Monte Carlo cross-

validation (Section 4.2.2.1) are used for: 

1. calculation of the VIP standard deviation of each ion 𝑣 over the 𝑖𝑡max iterations, 𝜎̂𝑉𝐼𝑃𝑣; 

2. calculation of the VIP 90% confidence limit for each ion, under the assumption that the 

VIPs are distributed according to a Student’s t distribution. The 90% confidence limit 

(𝛼 = 0.1) is calculated as: 𝜎̂𝑉𝐼𝑃𝑣𝑡1−𝛼 2⁄ ,𝑖𝑡max−1, where 𝑡1−𝛼 2⁄ ,𝑖𝑡max−1 identifies the 

lowest 5% confidence threshold of a t-distribution with (𝑖𝑡max − 1) degrees of freedom; 

3. ions with the lowest VIP 90% confidence limit (𝑉𝐼𝑃LCL) > 1 are retained. The 𝑉𝐼𝑃LCL is 

calculated as: 𝑉𝐼𝑃̅̅ ̅̅ 𝑣̅ − 𝜎̂𝑉𝐼𝑃𝑣𝑡1−𝛼 2⁄ ,𝑖𝑡max−1, where 𝑉𝐼𝑃̅̅ ̅̅ 𝑣̅ defines the average value of the 

VIP score of the ion 𝑣 over the 𝑖𝑡max iterations. 
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C.6 Discrimination of high productive cell lines through extracellular 

metabolomic data 

      
(a) (b) 

 
(c) 

Figure C.3 Score space of the MPLS-DA model built on the extracellular metabolomic data 

for the discrimination of cell productivity: (a) calibration samples, (b) low productive 

external validation cell lines, and (c) high productive external validation cell lines. 
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C.7 Anticipated discrimination of high-productive cell lines through 

extracellular metabolomic data 

Table C.1. Performance of the E-MPLS-DA multi-model in the anticipated discrimination of 

cell productivity from extracellular data: the number of LVs, the explained response variance 

(𝑹𝒚𝟐), the number of retained ions and the accuracy in cross validation and external validation 

are reported for the model built at each time instant. 

time 

instant 

number of 

selected LVs 
𝑹𝒚𝟐 

[%] 

number of 

selected ions 

accuracy in cross-

validation [%] 

validation 

accuracy [%] 

1 3 94.6 184 98.0 66.7 
2 2 94.0 224 97.9 58.3 
3 2 95.3 357 99.6 50.0 
4 3 94.6 588 99.4 66.7 
5 3 93.5 684 98.5 75.0 
6 3 92.0 2188 97.3 83.3 
7 3 93.6 2005 97.8 83.3 

 

 



 

 



 

 

Appendix D 

Additional detail on data augmentation 

D.1 Model of mammalian cell cultured producing mAbs 

The HEK model (Kontoravdi et al., 2010) used in this work is a first principles mathematical 

model which simulates batches for the production of mAbs. It is composed of 3 main parts: cell 

growth and death, cell metabolism, and mAbs synthesis and secretion which are described by 

28 equations and 31 parameters in total. 

The overall culture material balance is given by: d𝑉cd𝑡 = 𝐹in − 𝐹out   , (D.1) 

The growth and death of the cells part models the life of the cells influenced by nutrients (i.e., 

glucose and glutamine) and by-products (i.e., lactate and ammonia). It is described by: d(𝑉c𝑋v)d𝑡 = μ𝑉c𝑋v − μd𝑉c𝑋v − 𝐹out𝑋v   , (D.2) 

d(𝑉c𝑋t)d𝑡 = μ𝑉c𝑋v − 𝐹out𝑋t   , (D.3) μ = μmax𝑓lim𝑓inh   , (D.4) 𝑓lim = ( 𝑐glc𝐾glc+𝑐glc) ( 𝑐gln𝐾gln+𝑐gln)   , (D.5) 

𝑓inh = ( 𝐾𝐼lac𝐾𝐼lac+𝑐lac) ( 𝐾𝐼amm𝐾𝐼amm+𝑐amm)   , (D.6) μd = μd,max1+(𝐾d,amm 𝑐amm⁄ )𝑎d   with 𝑎d > 1, (D.7) 

The cell metabolism part models the consumption of nutrients and their conversion into by-

products. It is described by: d(𝑉c𝑐glc)d𝑡 = −𝑄glc𝑉c𝑋v + 𝐹in𝑐glc,in − 𝐹out𝑐glc   , (D.8) 𝑄glc = μ𝑌𝑥,glc + 𝑚glc   , (D.9) 

d(𝑉c𝑐gln)d𝑡 = −𝑄gln𝑉c𝑋v − 𝐾d,gln𝑉c𝑐gln + 𝐹in𝑐gln,in − 𝐹out𝑐gln   , (D.10) 
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𝑄gln = μ𝑌𝑥,gln + 𝑚gln   , (D.11) 

𝑚gln = α1𝑐glnα2+𝑐gln   , (D.12) 

d(𝑉c𝑐lac)d𝑡 = 𝑄lac𝑉c𝑋v − 𝐹out𝑐lac   , (D.13) 𝑄lac = 𝑌lac,glc𝑄glc   , (D.14) 

d(𝑉c𝑐amm)d𝑡 = −𝑄amm𝑉c𝑋v + 𝐾d,gln𝑉c𝑐gln − 𝐹out𝑐amm   , (D.15) 𝑄amm = 𝑌amm,gln𝑄gln   , (D.16) 

Finally, the synthesis and secretion of mAbs part is a structured one that models the kinetics of 

the amino acid chains assembly to create mAbs. It is described by: d𝑚Hd𝑡 = 𝑁H𝑆H − 𝐾RNA𝑚H   , (D.17) 

d𝑚Ld𝑡 = 𝑁L𝑆L − 𝐾RNA𝑚L   , (D.18) 

d𝑐Hd𝑡 = 𝑇H𝑚H − 𝑅H   , (D.19) 

d𝑐Ld𝑡 = 𝑇L𝑚L − 𝑅L   , (D.20) 𝑅H = 23 𝐾A𝑐H2    , (D.21) 𝑅L = 2𝐾A𝑐H2𝑐L + 𝐾A𝑐H2L𝑐L   , (D.22) 

d𝑐H2d𝑡 = 13 𝐾A𝑐H2 − 2𝐾A𝑐H2𝑐L   , (D.23) 

d𝑐H2Ld𝑡 = 2𝐾A𝑐H2𝑐L − 𝐾A𝑐H2L𝑐L   , (D.24) 

d𝑐H2L2ERd𝑡 = 𝐾A𝑐H2L𝑐L − 𝐾ER𝑐H2L2ER    , (D.25) 

d𝑐H2L2Gd𝑡 = 𝜀1𝐾ER𝑐H2L2ER − 𝐾G𝑐H2L2G    , (D.26) 

d(𝑉c𝑐mAb)d𝑡 = (γ2 − γ1μ)𝑄mAb𝑉c𝑋v − 𝐹out𝑐mAb   , (D.27) 𝑄mAb = ε2ξmAb𝐾G𝑐H2L2G    . (D.28) 
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Table D.1 reports the list of the parameters with the corresponding mean and standard 

deviations used for process batch generation. 

Table D.1 Mean (reference) and standard deviation values of the parameters used in 

process batch generation. Missing standard deviations represent that the parameter 

is kept constant at the reference value.  

Parameter Kontoravdi et al. (2010) [mean] Standard deviation μmax (h-1) 0.058 0.0068 μd,max (h-1) 0.03 0.0025 𝐾glc (mM) 0.75 - 𝐾gln (mM) 0.075 - 𝐾𝐼lac (mM) 171.76 - 𝐾𝐼amm (mM) 28.48 - 𝐾d,amm (mM) 1.76 0.4253 𝑎d (-) 2 - 𝑌𝑥,glc (cell/mmol) 2.6×108 3.1×107 𝑚glc (mmol/(cell h)) 4.9×10-14 - 𝑌𝑥,gln (cell/mmol) 8.0×108 1.6×108 α1 (mmol L/(cell h)) 3.4×10-13 - α2 (mM) 4.0 - 𝑌lac,glc (mmol/mmol) 2.0 - 𝑌amm,gln (mmol/mmol) 0.45 0.0825 𝐾d,gln (h-1) 9.6×10-3 0.003 𝑁H (gene/cell) 100.0 - 𝑆H (mRNA/(gene h)) 3000.0 - 𝐾RNA (h-1) 0.1 - 𝑁L (gene/cell) 100.0 - 𝑆L (mRNA/(gene h)) 4500.0 - 𝐾A (cell/(molecule L)) 1.0×10-6 - 𝑇H (chain/(mRNA h)) 17.0 - 𝑇L (chain/(mRNA h)) 11.5 - 𝐾ER (h-1) 0.69 - 𝜀1 (-) 0.995 0.1492 𝐾G (h-1) 0.14 - γ1 (-) 0.10 - γ2 (h) 2.0 0.333 ε2 (-) 1.0 0.15 ξmAb (g/mol) 2.5×10-16 - 
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D.2 First principles digital model 

The FPDM model used in Chapter 5 to generate in silico batches is reported in the following. 

It is a modified version of the simplified mathematical model describing a fed-batch mAbs 

production process (Jimenez del Val, Fan, et al., 2016). d𝑉cd𝑡 = 𝐹in − 𝐹out   , (D.29) 

The growth and death of the cells part models the life of the cells influenced by nutrients (i.e., 

glucose and glutamine) and by-products (i.e., lactate and ammonia). It is described by: d(𝑉c𝑋v)d𝑡 = μ𝑉c𝑋v − μd𝑉c𝑋v − 𝐹out𝑋v   , (D.30) 

μ = μmax ( 𝑐glc𝐾glc+𝑐glc) − 𝑋vαx 𝑓lim   , (D.31) 

𝑓lim = 𝑐gln𝑐gln+𝐾gln   , (D.32) 

μd = μd,max ( 𝐾d𝐾d+μ)   , (D.33) 

The cell metabolism part models the consumption of nutrients and their conversion into by-

products. It is described by: d(𝑉c𝑐glc)d𝑡 = 𝐹in𝑐glc,in − 𝐹out𝑐glc − 𝑄glc𝑋v𝑉c(𝑓lim + 𝑚glc)   , (D.34) 

𝑄glc = μ𝑌𝑥,glc ( 𝑐glc𝐾glc+𝑐glc)   , (D.35) 

d(𝑉c𝑐gln)d𝑡 = −( μ𝑌𝑥,gln)𝑋v𝑉c   , (D.36) 

d(𝑉c𝑐lac)d𝑡 = 𝑄lac𝑉c𝑋v − 𝑄lac,cons𝑉c𝑋v − 𝐹out𝑐lac   , (D.37) 𝑄lac = 𝑌lac,glc𝑄glc   , (D.38) 𝑄lac,cons = 1𝑌x,lac ( 𝑐lac𝐾lac+𝑐lac)   , (D.39) 

Finally, the synthesis of mAbs is described by: d(𝑉c𝑐mAb)d𝑡 = 𝑄mAb𝑉c𝑋v − 𝐹out𝑐mAb   , (D.40) 𝑄mAb = 𝑌mAb,glc𝑄glc   . (D.41) 

The lists of the parameters for in silico batch generation in the first principles digital model are 

shown in Table D.2. 
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Table D.2 Reference, minimum and maximum values of the parameters used for first 

principles in silico batches generation. Missing ranges represent that the parameter 

is kept constant at the reference value.  

Parameter Reference Minimum Maximum μmax (h-1) 0.073 0.058 0.09 𝐾glc (mM) 0.01 - - αx (105 cell/mmol) 44704 - - μd,max (h-1) 0.02 0.015 0.041 𝐾d (h-1) 0.635 - - 𝑌x,glc (105 cell/mmol) 65341 47700 80700 𝑌lac,glc (mmol/mmol) 1.7 - - 𝑌x,lac (105 cell/mmol) 182050 - - 𝐾lac (mM) 3.908 - - 𝑌mAb,glc (105 cell/mmol) 150.0 100 180 𝐾gln (mM) 0.02 0.02 0.05 𝑌x,gln (105 cell/mmol) 8000 7000 11000 𝑚glc (-) 0.2 -  

 

D.3 Parameters for in silico data generation by hybrid digital model 

The lists of the parameters for in silico batch generation in the hybrid digital model are shown 

in Table D.3. 

Table D.3 Mean (training) and standard deviation values of the parameters used for 

hybrid in silico batches generation.  

Parameter Training (Mean) Standard deviation μmax,Xv  2.0 0.13 μmax,glc 8.0 0.27 μmax,gln 3.0 0.10 μmax,lac 8.0 0.53 μmax,amm 2.0 0.13 μmax,mAb 2.0 0.13 

 

 



 

 



 

 

Appendix E 

Experimental campaigns for feeding 

schedule optimization 

E.1 Experimental campaigns 

The values of the dynamic subfactors of the planned experiments in the experimental campaign 

A and B are reported in Table E.1 and E.2, respectively.  

Table E.1 Dynamic subfactor values of the experiments planned in experimental 

campaign A. 

Experiment 𝒙𝟏𝒈𝒍𝒄
 𝒙𝟐𝒈𝒍𝒄

 𝒙𝟑𝒈𝒍𝒄
 𝒙𝟏𝒈𝒍𝒏

 𝒙𝟐𝒈𝒍𝒏
 𝒙𝟑𝒈𝒍𝒏

 

1 0.394 0.131 0.475 0.010 -0.475 0.515 
2 -0.131 -0.636 -0.232 -0.253 -0.717 -0.030 
3 0.212 -0.596 -0.192 0.152 -0.273 0.576 
4 -0.131 -0.657 0.212 0.596 0.394 -0.010 
5 0.434 0.556 0.010 -0.495 0.293 0.212 
6 -0.596 0.374 -0.030 0.293 -0.556 -0.152 
7 -0.051 0.273 -0.677 -0.192 -0.212 0.5956 
8 -0.030 -0.677 -0.293 -0.313 0.657 0.030 
9 -0.919 -0.051 -0.030 0.374 -0.192 0.434 
10 0.7171 0.071 -0.212 0.596 -0.394 0.010 
11 -0.697 -0.051 0.253 -0.091 -0.010 -0.899 
12 -0.576 0.313 -0.111 -0.616 -0.253 0.131 
13 -0.333 0.455 0.212 -0.051 0.636 -0.313 
14 0.152 0.616 0.232 -0.192 -0.596 -0.212 
15 0.636 -0.253 -0.111 -0.616 -0.293 0.091 
16 0.091 0.313 0.596 0.7171 -0.212 -0.071 
17 0.616 -0.273 0.111 0.172 0.818 0.010 
18 -0.576 -0.111 0.313 -0.051 0.010 -0.111 
19 -0.253 -0.576 0.172 -0.071 0.859 -0.07 
20 0.232 -0.677 -0.091 -0.192 0.030 -0.778 
21 -0.677 0.030 0.293 -0.030 -0.798 0.172 
22 -0.091 0.010 -0.111 0.374 0.071 0.556 
23 -0.030 -0.838 0.131 -0.455 0.091 0.455 
24 0.152 0.778 -0.071 0.374 0.495 0.131 
25 -0.051 -0.010 -0.939 0.596 0.232 -0.172 
26 0.576 0.394 -0.030 0.051 0.313 -0.636 
27 -0.172 0.232 0.596 -0.010 0.434 0.556 



242  Appendix E 

 © 2022 Gianmarco Barberi, University of Padova (Italy)  

28 0.051 -0.657 0.293 0.030 -0.737 -0.232 
29 0.051 0.232 -0.717 -0.657 0.071 -0.273 
30 -0.717 0.273 -0.010 -0.010 0.717 0.273 
31 0.172 -0.273 0.556 -0.697 0.273 -0.030 

 

Table E.2 Dynamic subfactor values of the experiments planned in experimental 

campaign B. 

Experiment 𝒙𝟏𝒈𝒍𝒄
 𝒙𝟐𝒈𝒍𝒄

 𝒙𝟑𝒈𝒍𝒄
 𝒙𝟏𝒈𝒍𝒏

 𝒙𝟐𝒈𝒍𝒏
 𝒙𝟑𝒈𝒍𝒏

 

1 -0.495 0.455 0.0505 -0.152 -0.131 -0.717 
2 0.697 -0.293 -0.010 -0.212 0.071 -0.717 
3 0.737 0.152 -0.111 0.394 -0.333 0.273 
4 -0.677 -0.293 0.030 -0.111 -0.434 -0.455 
5 -0.333 -0.192 0.475 0.677 -0.111 -0.212 
6 -0.576 -0.293 -0.131 -0.051 -0.434 0.515 
7 0.354 -0.071 0.576 -0.010 0.758 0.232 
8 0.374 0.293 0.333 -0.071 -0.535 0.394 
9 -0.535 0.071 -0.394 0.192 0.717 0.091 

 

 



 

 

Appendix F 

13C intracellular reactions and metabolites 

F.1 Intracellular reactions 

The intracellular reactions available in the 13C isotope labeling dataset are listed in Table F.1. 

Table F.1 Metabolic reaction available in the 13C labeling dataset: (a) glycolysis, (b) 

TCA cycle, (c) pentose phosphate pathway, (d) amino acid metabolism, and (e) other 

metabolic reactions. 

(a) 
Reaction Formula 

HK Glc → G6P 
PGI G6P ↔ F6P 
PFK F6P → DHAP + GAP 
TPI DHAP ↔ GAP 

GAPDH GAP ↔ 3PG 
ENO 3PG ↔ PEP 
PK PEP → Pyr 

(b) 

Reaction Formula 

PDH Pyr → AcCoA + CO2 
SDH Suc ↔ Fum 
FUS Fum ↔ Mal 
MDH Mal ↔ OAA 

CS OAA + AcCoA → Cit 
ADH aKG.m → Suc + CO2 
IDH Cit ↔ aKG.m + CO2 

(c) 

Reaction Formula 

G6PDH G6P → Ru5P + CO2 
PPE Ru5P ↔ X5P 
PPI Ru5P ↔ R5P 

TKT1 X5P + R5P ↔ GAP + S7P 
TAL S7P + GAP ↔ E4P + F6P 

TKT2 X5P + E4P ↔ GAP + F6P 
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(d) 
Reaction Formula 

GS Gln ↔ Glu.m 
ASNS Asp ↔ Asn 
SHMT Ser ↔ Gly + MEETHF 
GCS CO2 + MEETHF → Gly 
MAT Met + Ser → Cys + Suc 
PAH Phe → Tyr 
TDH Thr → Pyr + CO2 
HAL His → Glu.c 
PCC PropCoA + CO2 → Suc 
TDO Trp → 2 CO2 + Ala + aKA 
AKD aKA → 2 CO2 + 2 AcCoA 
GDH aKG.m ↔ Glu.m 
ALT Ala + aKG.c ↔ Pyr + Glu.c 

SBCAD 
Ile + aKG.c → AcCoA + CO2 + PropCoA 

+ Glu.c 

IVD 
Leu + aKG.c + CO2 → CO2 + 3 AcCoA + 

Glu.c 

TTA 
Tyr + aKG.c → CO2 + Mal + 2 AcCoA + 

Glu.c 
IBD Val + aKG.c → Glu.c + 2 CO2 + PropCoA 

AASS Lys + 2 aKG.c → 2 Glu.c + aKA 
AST OAA + Glu.c ↔ Asp + aKG.c 

ARGS Arg + aKG.c → 2 Glu.c + Urea  
PGHDH 3PG + Glu.c → Ser + aKG.c 

CDO Cys + aKG.c → Pyr + Glu.c 

(e) 
Reaction Formula 

LDH Lac↔ Pyr 
aKG.m aKG.m → aKG.c 

ME Mal → Pyr + CO2 
PC Pyr + CO2 → OAA 

ACL Cit → AcCoA + Mal 
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F.2 Metabolites 

The metabolites available in the metabolic network used in the 13C labeling experiments are 

listed in Table F.2.  

Table F.2 Metabolites available in the 13C labeling dataset.  

Symbol Name 

3PG 3-Phosphoglyceric acid 
AcCoA acetyl coenzyme A 

aKA α-Ketoisocaproic acid 
aKG.c α-ketoglutarate in cytosol 
aKG.m α-ketoglutarate in mitochondria 

Ala Alanine 
Arg Arginine 
Asn Asparagine 
Asp Aspartic acid 
Cit Citric acid 
Cys Cysteine 

DHAP Dihydroxyacetone phosphate 
E4P Erythrose 4-phosphate 
F6P Fructose 6-phosphate 
Fum Fumarate 
G6P Glucosio-6-fosfato 
GAP Glyceraldehyde 3-phosphate 
Glc Glucose 
Gln Glutamine 

Glu.c Glutamic acid in cytosol 
Glu.m Glutamic acid in mitochondria 

Gly Glycine 
His Histidine 
Ile Isoleucine 
Lac Lactate 
Leu Leucine 
Lys Lysine 
Mal Maltate 
Met  Methionine 

MEETHF 5,10-methylene-H4folate 
OAA Oxaloacetic acid 
PEP Phosphoenolpyruvic acid 
Phe Phenylalanine 

PropCoA Propionyl coenzyme A 
Pyr Pyruvate 

Ru5P Ribulose 5-Phosphate 
R5P Ribose 5-phosphate 
S7P sedoheptulose 7-phosphate 
Ser Serine 
Suc Succinic acid 
Thr Threonine 
Trp Tryptophan 
Tyr Tyrosine 

Urea Urea 
Val Valine 
X5P Xylulose 5-phosphate 
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