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Data assimilation applications in integrated surface-subsurface hydrological

models (ISSHMs) are generally limited to scales ranging from the hillslope to

local or meso-scale catchments. This is because ISSHMs resolve hydrological

processes in detail and in a physics-based fashion and therefore typically

require intensive computational e�orts and rely on ground-based observations

with a small spatial support. At the other end of the spectrum, there is a vast

body of literature on remote sensing data assimilation for land surface models

(LSMs) at the continental or even global scale. In LSMs, some hydrological

processes are usually represented with a coarse resolution and in empirical

ways, especially groundwater lateral flows, which may be very important and

yet often neglected. Starting from the review of some recent progress in data

assimilation for physics-based hydrologicalmodels atmultiple scales, we stress

the need to find a common ground between ISSHMs and LSMs and suggest

possible ways forward to advance the use of data assimilation in integrated

hydrological models.

KEYWORDS
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Introduction

Physics-based hydrological modeling

Physics-based hydrological models are important in earth and environmental

sciences thanks to their inherent capability of being applicable to the widest possible

range of scales and environmental conditions (Fatichi et al., 2016). These models are

increasingly being used to predict future water resources quantity and quality in response

to climate and land use change, to monitor and assess hydroclimatic hazards (such as

floods and droughts), and in general to understand the intertwined dynamics between the

hydrological, atmospheric, and carbon cycles. They are playing an ever-increasing role,

also thanks to their capabilities of considering multiple compartments of the terrestrial

water cycle (Clark et al., 2015). Depending on the scale of interest, we refer here to two

different categories of physics-based hydrological models: local to meso-scale integrated
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surface-subsurface hydrological models (ISSHMs) and

continental to global-scale land surface and hydrological

models (LSMs/GHMs).

Integrated surface-subsurface hydrological models (Furman,

2008; Maxwell et al., 2014; Paniconi and Putti, 2015; Kollet et al.,

2018) typically resolve the Richardson-Richards equation (or

some approximation of it) in the subsurface, coupled with some

form of the shallow water equation for surface flow. Although

their spatial resolution varies widely (from a fewmeter to several

hundred meters), due to their high computational requirements

and need for detailed parameterization, ISSHMs are usually

applied to relatively small spatial domains (i.e., from hillslope to

regional or meso-scale catchments), with a handful of notable

recent exceptions at the continental scale (Keune et al., 2016,

2018; Maxwell and Condon, 2016; Kollet et al., 2018; Condon

and Maxwell, 2019; Condon et al., 2020a,b).

Global hydrological and land surface models (LSM/GHM),

on the other hand, were first developed in the context of earth

system modeling to resolve energy and mass balance processes

at the interface between the land surface and the atmosphere.

Their spatial resolution typically ranges from 10 to 50 km, which

are often inadequate to fully capture the fine-scale variability of

surface and subsurface hydrological processes. As an example,

they typically lack the representation of processes in highly

heterogeneous areas such as mountains and coasts, which are

also amongst the most vulnerable regions to hydro-climatic

hazards (Balica et al., 2012; Elalem and Pal, 2015).

Regardless of the scale of interest, both ISSHMs and

LSM/GHMs rely on accurate representation of the hydrological

physical processes as well as input meteorological forcing

data (e.g., precipitation, air temperature, wind speed, etc.),

and parameters (e.g., land cover, soil type, soil properties,

etc.), all of which can be difficult to obtain and can lead

to large uncertainties in modeled hydrological states and

fluxes (Collier et al., 2018), especially when generalizing a

model to larger spatial domain. These uncertainties (and

errors) inherently affect all estimates of hydrological states

(e.g., water table or soil moisture) obtained through modeling.

However, they can be quantified and limited through data

assimilation approaches.

Data assimilation

Data Assimilation (DA) refers to a suite of statistical

techniques that incorporate observation data into mathematical

models, with the goal of optimizing estimates of the system

state (and possibly parameters). The results of a DA framework

should be a statistically optimal estimate, superior to that from

either the model or observations alone (Evensen et al., 2022).

DA was pioneered by meteorologists and has been used to

improve operational weather forecasts for decades. The first

application of data assimilation in ISSHMs dates to the early

2000s (Paniconi et al., 2003). Since then, much progress has been

made, also thanks to the widespread diffusion of ensemble-based

assimilation methods such as the ensemble Kalman filter and

its variants (Evensen, 2003). Data assimilation for LSM/GHMs

has a similar history, with significant advancements over the

past decade for estimating hydrological land surface variables

(Reichle et al., 2002; de Rosnay et al., 2014).

In general, LSM/GHM DA previous developments involve

univariate data assimilation, i.e., assimilation of one observation

to adjust model states (e.g., soil moisture) or parameters such

as precipitation scaling factors (e.g., Liu and Margulis, 2019;

Girotto et al., 2021), albedo (Navari et al., 2018), and vegetation

properties (Smith et al., 2020). More recently, the scientific

community started to target multi-observational approaches.

The simultaneous assimilation of multiple observation data

strongly improves model predictions compared with single

observation and/or state estimation alone (e.g., Girotto et al.,

2019; Kumar et al., 2019; Khaki et al., 2020). Data assimilation

applications in ISSHMs typically involve the assimilation of

multiple measurements in both the surface (soil moisture,

streamflow) and subsurface compartments (pressure head, water

table depth) with or without the update of model parameters

(e.g., Camporese et al., 2009a,b; Pasetto et al., 2012; Rasmussen

et al., 2015, 2016; Zhang et al., 2015, 2016; Ridler et al., 2018;

Gebler et al., 2019; He et al., 2019).

While promising in overcoming models and observations

uncertainties, current literature in data assimilation for

physically based hydrological studies agree that: (i) it is very

challenging to improve model estimates in one compartment

assimilating measurements from another (Camporese et al.,

2009b; Zhang et al., 2016; Botto et al., 2018); (ii) the joint

update of system states and model parameters usually leads

to better results (Botto et al., 2018; Gebler et al., 2019); (iii)

data assimilation applications in integrated surface-subsurface

hydrological models are generally limited to scales that go from

the hillslope (Botto et al., 2018; Gebler et al., 2019) to local-

scale (He et al., 2019) or meso-scale catchments (Rasmussen

et al., 2016; Ridler et al., 2018), mainly due to computational

constraints; (iv) the robustness of the assimilation application

depends upon the accurate characterization of the combined

modeling and observation uncertainties, a task that can be

particularly challenging especially for large spatial domains

(Kumar et al., 2017).

Statement of the problem: The scale gap

From the analysis of recent literature in hydrological data

assimilation, a distinct scale gap emerges. Ground observations

can have a high time resolution but are typically characterized by

a very small spatial support, making them ideal for assimilation

in local catchment-scale or hillslope models, where the size

of the computational cell/element can be of the same order
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of magnitude of the measurement volume. However, they

are expensive with respect to the (limited) spatial coverage

they offer. At the other end of the spectrum, satellite-based

observations are under continuous development to reduce their

uncertainties and provide additional information, thanks to

their large spatial coverage; for this reason, they are commonly

assimilated in LSMs/GHMs. However, their use with ISSHMs

have been hindered by their typically coarse resolution, which is

not consistent with scale requirements of ISSHMs (Samaniego

et al., 2010; Or et al., 2015; Or, 2020). In addition, hyper-

resolution modeling at continental to global scales with ISSHMs

still requires prohibitive computational efforts for them to be

used in ensemble-based data assimilation frameworks. Themain

goal of this mini-review is to discuss possible new directions for

hydrological modeling, observations, and DA methodologies,

which could lead to advances in data assimilation for larger

spatial domains or to unlock the potential of remote sensing data

for assimilation in physics-based hydrological models.

Bridging the gaps between spatial
scales

In the following, we discuss recent developments,

outstanding challenges, and possible research directions in

physics-based hydrological modeling (Section Recent advances

and outstanding challenges in physically based hydrological

modeling), relevant observations (Section Recent advances and

outstanding challenges in observation data), and assimilation

systems (Section Data assimilation for non-gaussian systems).

Recent advances and outstanding
challenges in physically based
hydrological modeling

In many cases, the breadth of differences in the data

generated from in-situ and remote sensing observations raises

significant questions on how to best use these data in modeling

development and testing. Land surface and groundwater have

intertwined processes, yet their scientific modeling fields are

still disconnected.

Over the past decade, the LSM/GHM modeling community

has been embracing hyper-resolution (∼1-km or finer)

integrated surface-subsurface hydrological modeling (Wood

et al., 2011; Bierkens et al., 2015; Condon et al., 2021),

therefore providing the opportunity for the two modeling

categories (ISSHMs and LSM/GHMs) to start meeting in the

middle while resolving regional to continental scale surface-

subsurface hydrological processes. Moving LSM/GHMs to

higher resolutions and/or ISSHMs to larger scales is posing huge

challenges, mainly represented by uncertainties due to the lack

of fine scale model processes and parameters knowledge (Beven

and Cloke, 2012). Some of these challenges are listed as follows.

First, while meso-scale natural processes, such as

precipitation-induced runoff or evaporation, are included

in most LSM/GHMs, more local anthropogenic processes, such

as irrigation, are rarely modeled, especially in LSMs (Bierkens

et al., 2015). Human driven processes can directly control the

groundwater (GW) table, for instance, by lowering the GW

table through pumping and by increasing recharge via flood

irrigation. To date, representing human-induced impacts in

continental to global scale hydrological models remains a major

challenge, mostly due to the lack of accurate global irrigation

information (Wada et al., 2017).

Second, despite advancements in land surface model

complexity, most LSM/GHMs route moisture in the vertical

dimension only, and allow no lateral communication between

vertical soil columns, i.e., they do not represent GW dynamics.

Such an assumption implies that controls of GWon land-surface

interactions, and consequently hydro-climatic hazards, may be

overlooked (Keune et al., 2016; Maxwell and Condon, 2016).

Subsurface flow can also be crucial for a series of applications

including (and not limited to) drought monitoring, flood

predictions, and water resources management. Only recently,

the land surface community started to recognize that lateral

groundwater flow significantly interacts with surface processes

such as vegetation dynamics (Gochis et al., 2018; Zeng et al.,

2018; Forrester and Maxwell, 2020; Rummler et al., 2022),

hydro-climatic hazards (Felsberg et al., 2021), and atmospheric

forecasting (Getirana et al., 2020) and consequently to put efforts

in representing this process (e.g., Batelis et al., 2020).

Third, although the number of high-resolution datasets

such as topography, land use, geology, and soil properties

are increasing, these data are also the products of remote

sensing, land surface models, statistical downscaling techniques,

or combinations thereof and thus affected by inaccuracies

and uncertainties.

Finally, executing physically based models at high spatial

resolution, while resolving surface and subsurface water

dynamics in a coupled way and over large regions is

computationally demanding, both in terms of CPU time and

storage requirements (Kollet et al., 2010; Maxwell, 2013).

These challenges suggest the need to develop new modeling

approaches at continental and global scales that can properly

simulate hydrological processes (especially lateral subsurface

flows) at resolutions compatible with remote sensing data

(i.e., resolutions used in the LSM/GHM community). To

this end, machine learning and deep learning techniques are

recently being explored to emulate complex subsurface physical

processes (Radmanesh et al., 2020; Tran et al., 2021) and also to

link modeled estimates with indirect measurements of the state

variables (e.g., to link moisture states to radiances observations,

Section Earth observations).
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Recent advances and outstanding
challenges in observation data

Earth observations

Earth observation data (aka satellite or remote sensing) is

essential to monitor hydrologic variables such as soil moisture

and groundwater table because it provides a bird’s-eye view of

the Earth’s dynamics. In the last several decades, the number

of spaceborne sensors has rapidly increased. These observing

systems can detect subsurface hydrologic states such as the

soil moisture at various spatial and temporal resolutions (e.g.,

from ∼1 to 40 km resolutions, Entekhabi et al., 2010; Fang

et al., 2021). Despite this apparent wealth of new data, there

are lingering methodological challenges to translate these types

of observations into water table depth. In fact, the basic

remote sensing principle involves the direct interaction between

an incident radiation (e.g., natural solar radiation or active

radiation sent from a sensor) and the targets of interest.

Groundwater is a hidden resource and therefore cannot be

directly observed and measured from space. Ground-based

water table depth monitoring and reporting are scarce and

variable across the globe, and frequently limited to developed
regions. For this reason, little is still known about the global

patterns of the water table depth and its interactions with the

land, urban and natural ecosystems, hindering our capabilities

to fully exploit the potential of water table information in data

assimilation for global-scale integrated hydrological modeling.
Possible ways forward are offered by the fact that

groundwater can be indirectly observed through other

quantities, for example evaporation fluxes (Miralles et al.,

2011) and total terrestrial water storage (TWS) (Famiglietti and

Rodell, 2013).

Water table dynamics are linked to the atmosphere
through evapotranspiration and recharge. From a water
budget perspective, the accurate account of water losses

via evapotranspiration and runoff should lead to improved

estimates of recharge fluxes, and thus water table depth.

Recent studies have shown that assimilation of remotely sensed

evapotranspiration estimates can inform the groundwater table

dynamics (Gelsinari et al., 2020).

Since 2002, TWS estimates have been derived from the

Gravity Recovery and Climate Experiment (GRACE) and

its follow-on mission (GRACE-FO). These missions provide

valuable information on groundwater conditions beyond what

can be seen at the surface (Li et al., 2012; Scanlon et al.,

2018) because it measures the water storage changes in the

entire terrestrial water storage (i.e., including snow, vegetation

biomass, surface soil moisture, root-zone soil moisture, and

GW). However, limitations still exist for using GRACE data

in operational groundwater dynamics monitoring. The major

limitations are related to (i) the data delivery latency; (ii)

the relatively coarse spatial and temporal resolutions of

GRACE observations; and (iii) the fact that TWS is an

aggregated observation of multiple water storage components.

The assimilation of GRACE data in an LSM allows us to

downscale the TWS observations spatially and temporally into

its various water storage components such as surface and root

zone soil moisture and groundwater table (Girotto et al., 2016;

Kumar et al., 2016).

Another interesting opportunity is given by processes

linking changes in GW level to deformation of the Earth’s crust

and thus vertical land motion (Erban et al., 2014; Darvishi

et al., 2021). As opposed to tectonic and sediment compaction,

the vertical land motion associated with surface water or

groundwater table changes can be visible at sub-annual temporal

scales. Some GW systems are more susceptible to compaction

compared to others. In some cases, depletion and recharge of

aquifers can cause vertical land motion with rates up to ∼10

cm/year (Carlson et al., 2020). Elastic deformation typically

results in small-magnitude recoverable displacements (on the

mm to cm scale) of the land surface (Shirzaei et al., 2020). When

the effective stress exceeds a stress threshold, the deformation

is inelastic and results in permanent (irreversible) subsidence.

Recent studies have quantified the elastic contributions to

vertical land motion and related it to GW (Chaussard and

Farr, 2019; Smith and Knight, 2019; Hsu et al., 2020; Lu

et al., 2020; Ojha et al., 2020; Tangdamrongsub and Šprlák,

2021). Deriving accurate global soil compaction parameters and

modules to be coupled to hydrological models can be complex,

if not impossible. For data assimilation, this limitation can be

addressed with the development of an artificial intelligence (i.e.,

neural network) forward model to link vertical deformation

to changes in the variable of interest (i.e., groundwater table)

(Smith and Majumdar, 2020; Naghibi et al., 2022).

In addition to improved estimates of the driving forces,

as detailed above, an accurate, detailed and spatio-temporal

assessment of groundwater fluxes requires also a reliable

estimate of soil and aquifer parameters, to avoid errors in

parameters leading to over- or underestimation of fluxes.

Starting from prior parameter distributions that can be extracted

from globally available datasets (e.g., Batjes, 1997; Hengl et al.,

2017), data assimilation allows for their dynamic update, which

can lead to improved model predictions (e.g., Hung et al., 2022).

Intermediate-Scale sensing technologies

One possible way forward to expand the capabilities of DA

for integrated hydrological modeling is offered by novel sensing

technologies at intermediate scales that go beyond the local

support scale typical of ground observations. While traditional

soil moisture, water table, and pressure head observations have

a support volume of a few cubic centimeters or decimeters,

fiber optics sensing (FOS), airborne electro-magnetic methods

(AEMs), cosmic ray neutron sensing (CRNS), and unmanned

aerial vehicles (UAVs) represent relatively cheap (compared

to the possible extent of the surveys) options to collect
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FIGURE 1

Data assimilation combines the strengths of modeled and observed hydrological estimates. Integrated surface-subsurface hydrological models

(ISSHMs) typically operate within spatial scales ranging from hillslope to local-scale or meso-scale catchments and its data assimilation

techniques primarily incorporate local ground-based observations. Land Surface (LSMs) and Global Hydrological models (GHMs) operate within

continental and global spatial scales and their data assimilation applications utilize remotely sensed observations. This mini review discusses

possible new directions for data assimilation technologies which could potentially bridge the scale gaps between the ISSHM and LSM/GHM

scientific communities.

hydrologically relevant data at scales ranging from tens of meters

to hundreds of kilometers.

Fiber optic sensing can be used to measure, among other

variables, strain, displacement, pressure, and temperature with

high spatial resolution for distances of several kilometers (Leone,

2022). Fiber optic distributed temperature sensing (FO-DTS),

in particular, represents a promising technique to measure

soil water at high spatial resolutions (<1m), thanks to the

relationship between soil thermal properties and soil moisture

content (Sayde et al., 2010, 2014; Steele-Dunne et al., 2010;

Striegl and Loheide, 2012; Dong et al., 2017; Vidana Gamage

et al., 2018). However, to the best of our knowledge, FOS data

have never been used for DA studies in integrated hydrological

modeling and still represent an underexploited opportunity.

Much progress has been made in the past decade

to assimilate hydrogeophysical observations in hydrological

models. In particular, Electrical Resistivity (ER) data, thanks to

their sensitivity to soil moisture and salinity, have demonstrated

their usefulness in parameterizing subsurface systems (e.g.,

Camporese et al., 2015; Crestani et al., 2015; Manoli et al., 2015;

Tso et al., 2020). However, all these studies have focused on local-

scale systems, while hydrogeophysics now offers the opportunity

to survey large extensions of land with AEM methods. They

potentially allows for the estimation of key groundwater

parameters, such as hydraulic conductivity, with remotely

sensed geophysical data collected over thousands of square

kilometers, while still being able to capture heterogeneities

at scales of interest for physics-based hydrological models

(∼101 m) (e.g., Christensen et al., 2017; Knight et al., 2018;

Vittecoq et al., 2019). So far, AEM surveys have been typically

conducted to get a static picture of the subsurface structure and

parameters. However, if repeated over time (despite their costs),

these surveys might provide valuable datasets to be used in data

assimilation studies for integrated hydrological modeling, such

as variations of groundwater levels over large areas, which could

complement information provided by GRACE.

Cosmic ray neutron probes are used in several fields of

hydrology as they offer the possibility of estimating average

snow water equivalent (Schattan et al., 2017) and soil moisture

over areas of 130–240m of radius and to depths of ∼15–

80 cm, depending on the soil moisture itself (Köhli et al.,

2015). Using an Ensemble Adjustment Kalman Filter, Patil et al.

(2021) assimilated neutron counts for a 655 km2 catchment into

the Noah-MP land surface model, showing that incorporating

information from CRNS can improve parameter and soil

moisture estimates and paving the way for future applications

also in ISSHMs.

The increasing use of UAVs in all science disciplines,

whereby multiple types of sensors can be easily deployed

over relatively large areas, also provides us with plenty of

opportunities to assimilate high-resolution data at intermediate

scales. Assimilation of UAV-collected data is becoming common

in weather modeling (Sun et al., 2020; Jensen et al., 2021) and

crop modeling (Yu et al., 2019; Peng et al., 2021). However,

incorporation of UAV data in physics-based hydrological

modeling is still largely unexplored. Tang et al. (2018) used

river bathymetry data collected through UAV surveys, in

conjunction with measurements of hydraulic head assimilated
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via EnKF, to improve model predictions and parameters with

HydroGeoSphere (Brunner and Simmons, 2012), an ISSHM, for

a river catchment in Switzerland. Given the capabilities of UAV-

mounted sensors to measure a wide range of hydrological (e.g.,

soil moisture) and vegetation (e.g., leaf area index) variables, we

see much room for DA studies in physics-based hydrological

modeling in the next few years.

Data assimilation for non-gaussian
systems

A common approach in data assimilation is the ensemble

Kalman filter (EnKF; Evensen, 2003) that dynamically and

sequentially updates model error covariance information by

producing an ensemble of model predictions, which are

individual model realizations perturbed by the assumed model

error (Reichle et al., 2002). EnKF systems have been targeted

by both ISSHMs (e.g., Camporese et al., 2009b; Pasetto et al.,

2012) and LSM/GHMs (de Rosnay et al., 2014; Kumar et al.,

2016; Girotto et al., 2019). Some common challenges include

the need of spatially localizing EnKF covariances to remove

spurious correlations, and most importantly its assumption of

multi-gaussianity, which must be met for both system states

and observations. If this assumption is not satisfied, the EnKF

only gives sub-optimal results or, in the worst cases, fails to

give an adequate representation of the variables of interest.

Other, arguably more sophisticated methods, include particle

filter (PF) techniques (e.g., Crisan, 2001) or combinations of

EnKF and PF (e.g., Stordal et al., 2011). Like the EnKF, the PF

is a sequential Monte Carlo approach, but it does not depend

on the assumption of Gaussian distributions, in principle being

able to accommodate every probability distribution functions,

including multimodal ones. However, PF techniques typically

require larger ensembles to characterize the full probability

distribution of the state variables and consequently their

uncertainties via resampling sets of state variables. Due to

this disadvantage, PF applications in physics-based hydrological

models have been limited to a few cases (Pasetto et al., 2012;

Zhang et al., 2017).

Interesting new developments for non-Gaussian DA

applications in physics-based hydrological modeling could

derive from applications of the transport theory (Villani,

2009). Ning et al., 2014 showed how transportation metrics

in the framework of optimal mass transport can be used with

variational data assimilation to obtain optimal estimates of

the system state in the presence of systematic model errors or

bias, for which no prior knowledge is available. More recently,

Ramgraber et al. (2021) introduced their work on non-linear

smoothing, whereby transport methods are applied as a pathway

for non-linear/non-Gaussian generalization of two different

ensemble Kalman-type smoothers.

Compared to traditional EnKF implementations, DA

algorithms based on PF or transport methods require additional

computational effort. However, due to the increased availability

of ever more powerful computers, we expect this is going to be

less of an issue in the near future.

Conclusions

Physics-based integrated hydrological modeling have been

declined in different ways by two scientific communities. On

one hand, integrated surface-subsurface hydrological models

(ISSHMs), solving flow and transport processes in detail,

are typically applied to local to meso-scale catchments. On

the other hand, land surface and global hydrological models

(LSMs/GHMs) focus on continental to global scale applications,

paying more attention to hydrological processes at the land-

atmosphere interface and representing subsurface processes

with simplified approaches. Accordingly, data assimilation has

long been used by the two communities in different ways,

exploiting data types consistent with their respective scales, i.e.,

ground-based measurements for ISSHMs and remote sensing

observations for LSMs/GHMs.

In this mini review, we advocate for the two communities

to find common ground for advancing data assimilation

at intermediate scales (Figure 1). This can be done by

pursuing new hydrological modeling approaches that can result

in less computational requirements for ISSHMs and more

accurate process representation for LSMs/GHMs. Also, we gave

an overview of opportunities for exploiting state-of-the-art

technologies providing data types at intermediate scales that

can be of interest for assimilation in both categories of models.

Finally, as non-gaussianity is a common issue in hydrological

models andmakes themost usedDA algorithms sub-optimal, we

suggest exploring alternative and innovative DA methods that

can lead to a more plausible representation of parameter and

process spatial variability.

Ultimately, these developments can contribute to bridge

the gap between the two DA and modeling communities, with

obvious benefits for both.
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