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ABSTRACT

Context. In recent years, stellar intensity interferometry has seen renewed interest from the astronomical community because it can
be efficiently applied to Cherenkov telescope arrays.
Aims. We have investigated the accuracy that can be achieved in reconstructing stellar sizes by fitting the visibility curve measured
on the ground. The large number of expected available astronomical targets, the limited number of nights in a year, and the likely
presence of multiple baselines will require careful planning of the observational strategy to maximise the scientific output.
Methods. We studied the trend of the error on the estimated angular size, considering the uniform disk model, by varying several
parameters related to the observations, such as the total number of measurements, the integration time, the signal-to-noise ratio, and
different positions along the baseline.
Results. We found that measuring the value of the zero-baseline correlation is essential to obtain the best possible results. Systems
that can measure this value directly or for which it is known in advance will have better sensitivity. We also found that to minimise the
integration time, it is sufficient to obtain a second measurement at a baseline half-way between 0 and that corresponding to the first
zero of the visibility function. This function does not have to be measured at multiple positions. Finally, we obtained some analytical
expressions that can be used under specific conditions to determine the accuracy that can be achieved in reconstructing the angular
size of a star in advance. This is useful to optimise the observation schedule.

Key words. instrumentation: high angular resolution – instrumentation: interferometers – techniques: interferometric – stars: funda-
mental parameters – stars: imaging

1. Introduction

The accurate measurement of stellar sizes has always been of
great relevance in astronomy. Accurate knowledge of stellar radii
is of fundamental importance for a comparison with various stel-
lar evolution models that describe their physical properties (Auf-
denberg et al. 2005; Casagrande et al. 2014). Reaching angular
resolutions of milliarcseconds, or even microarcseconds, is cru-
cial to perform accurate measurements for many main-sequence
and post-main-sequence stars and to foster other research areas,
such as the study of fast-rotating stars, the implementation of
accurate models for the limb-darkening effect (important for a
correct derivation of star radii), the study of multiple star sys-
tems, and the investigation of the formation of hot spots on the
surface of stars (Monnier 2003; Labeyrie et al. 2006; Barbieri
et al. 2009; Dravins et al. 2012).

Measurements of stellar radii are obtained by means of
interferometric techniques. The best-known technique is the
(phase) interferometry (e.g. Michelson interferometer, Pease
1931), which measures the first-order spatial correlation of the
radiation emitted by a source. A less well-known technique is
intensity interferometry, which exploits the measurement of
the second-order spatial correlation of the radiation from a star
(Glauber 1963). This technique, referred to as stellar intensity
interferometry (SII), found an astronomical application in the
optical band at the Narrabri Stellar Intensity Interferometer

(NSII) in the 1960s through the pioneering experiments of
Hanbury Brown and Twiss (Brown & Twiss 1954; Hanbury
Brown 1956; Brown & Twiss 1957, 1958; Brown 1974). For
several decades, this technique was almost forgotten and has
come back to life through newly developed technologies and
the combined efforts of a number of collaborations (Naletto
et al. 2016; Zampieri et al. 2016; Tan et al. 2016; Guerin et al.
2017; Weiss et al. 2018; Matthews et al. 2018; Rivet et al. 2020;
Acciari et al. 2020; Abeysekara et al. 2020; Zampieri et al.
2021; Fiori et al. 2021; Horch et al. 2021). The main efforts
today are made in the development of hardware and software
that are suitable for implementing this technique on existing
Cherenkov telescopes (Matthews et al. 2018; Acciari et al. 2020;
Abeysekara et al. 2020) as well as on future arrays (Dravins
et al. 2013; Scuderi 2021; Vercellone et al. 2022). The large
collecting area and the fast optics of this type of telescopes
enable studying stars that are much dimmer than those observed
with the NSII (Rou et al. 2013).

In this work, we investigate the accuracy that can be
achieved in the measurement of stellar radii by considering
one or more intensity interferometry observations. Our goal
is to derive relations that can describe the error trend on the
final fitted radius and provide simple prescriptions to optimise
the data-taking process. To do this, we studied the trend of
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the error on the estimated angular size by varying several
parameters related to the observations, such as the total number
of measurements, the exposure time, the signal-to-noise ratio,
and different positions along the baseline. We used the uniform
disk model for the radial profile of the stars, which was fitted
to the data using a least-squares method, which provides the
associated error measurement. Despite the simplified approach,
this study is definitely of interest for the proper planning of
SII observations with Cherenkov telescopes. The large number
of available astronomical targets, the limited number of nights
in a year (generally, SII observations will be restricted to
nights around full moon because Cherenkov observations are
not possible during these periods), and the likely presence of
multiple baselines will require careful planning to maximise
the scientific outcome. Deriving a few simple prescriptions,
together with a quick way to determine the integration time
needed to reach a certain accuracy, is very useful to this end.

The paper is structured as follows. In Sect. 2 we briefly de-
scribe the SII background and the method we used to obtain the
information on the errors from the fits. In the following sections,
Sects. 3 and 4, we show the results of our analyses, and in Sect.
5, we show a simulation we conducted to probe the validity of
our results. Finally, in Sect. 6 we briefly summarise our results
and draw the conclusions.

2. Method

Stellar intensity interferometry is based on the fact that the inten-
sities of the signal coming from a thermal source and measured
with two telescopes on the ground are correlated up to a certain
degree. We can define the second-order coherence function g(2)

as follows:

g(2)(τ, d) =
< IA (t, d) · IB (t + τ, d) >
< IA (t) > · < IB (t) >

, (1)

where < > denotes the average over time, and IA (t, d) and
IB (t + τ, d) are the light intensities recorded at a certain distance
d and at a certain time t, accounting for the light travel-time de-
lay τ between the two detectors. For τ = 0, the relation between
the second-order coherence function and the squared visibility
function |γ12 (d)|2, which for a distant observer, is the Fourier
transform of the source brightness distribution of the star, can
be written as follows:

g(2)(0, d) = 1 + N0 |γ12 (d)|2, (2)

where N0 is a normalisation factor that depends on the approach
that is used to measure the correlation (e.g. photon-counting ver-
sus continuous mode) and on the properties of the observation
system. In the continuous mode, which is the original SII method
implemented by Hanbury Brown and Twiss (Brown 1974), the
light intensities at the two detectors are converted into currents
and are continuously recorded by means of acquisition systems
with electronic bandwidth ∆ f (the reciprocal of the sampling
time of the radiation intensities). This bandwidth is generally
much smaller than the optical bandwidth ∆ν (the reciprocal of
the radiation coherence time), and therefore N0 is equal to the
ratio of the two bandwidths,

N0 =
∆ f
∆ν

. (3)

In the case of the photon-counting technique, where the arrival
time of photons at the two detectors is recorded and then cor-
related, we can make a similar argument considering that the

coherence time of light τc is generally much shorter than the
sampling time dt (for more details, see Naletto et al. 2016),

N0 =
τc

dt
. (4)

The visibility function of a star on the ground can be approx-
imated to first order with a uniform disk,

|γ12 |
2 =

∣∣∣∣∣2 J1 (πθd/λ)
πθd/λ

∣∣∣∣∣2 , (5)

where J1 is the Bessel function of the first order, λ is the central
wavelength of the filter used for the observations, d is the sep-
aration between the two telescopes, and θ is the angular size of
the star. For the purpose of this work, that is, to study the trend
of the errors on the estimated stellar sizes, this model is fairly
accurate because our analysis is limited only to the first peak
of |γ12 |

2 where other effects (such as the limb-darkening effect
and/or hot spots on the stellar surface) are less important (Berger
& Segransan 2007). Moreover, a series of correction factors have
been reported that can be used to convert the uniform-disk diam-
eter into a more general limb-darkened diameter considering the
type of the observed star (see e.g. Hanbury Brown et al. 1974).

For sake of simplicity, we directly consider the function Γ =
g(2) − 1, without considering the method that was selected to
obtain the measurements. We then focus on the analysis of the
visibility curve, Eq. (5), including the normalisation factor N0

(by means of Eq. 2), that is,

Γ = N0 |γ12 |
2 = N0

∣∣∣∣∣2 J1 (πθd/λ)
πθd/λ

∣∣∣∣∣2 . (6)

In addition, for convenience, hereafter we call the parameter
N0 the zero-baseline correlation (ZBC) value because this is
the value of the visibility curve at a baseline equal to zero.
These equations are valid for both approaches, but in the photon-
counting case, the ZBC value is generally known (or it is possi-
ble to measure it precisely), and Eq. (5) can be directly fitted to
the data (see e.g. Zampieri et al. 2021, where the measured ZBC
value agrees with expectations). To study the errors of the fitted
angular sizes, we generated one or more measurements at differ-
ent baselines and with different uncertainties, following equation
(6) (or (5) for the case with known ZBC). During the generation
of the different models for the different scenarios, random values
were set for the parameters N0 , θ , and λ from a uniform distribu-
tion (N0 ∈ [10−4 : 10−1], θ ∈ [0.4 : 2.0] mas, and λ ∈ [400 : 500]
nm) to avoid any kind of bias and to show that the results are
valid for any value of these parameters. The simulated measure-
ments were then fitted again with the same equation as was used
to generate them, leaving as free parameters θ and N0 (or only θ
in the case with known ZBC). To fit the curves, we used a least-
squares minimisation algorithm that allowed us to estimate the
covariance matrix and extract the errors on the fitted parameters.
We then finally carried out a full simulation to compare the re-
sults with a realistic situation.

In Fig. 1 we show an example of the typical fit in this work,
considering a star with a radius θ = 0.6 mas and a ZBC value
of N0 = 10−2. We generated two measurements of the visibility
curve with a certain error and fitted Eq. (6) on them. From this
fit, we then extracted the error associated with the reconstructed
stellar angular size θ. The baselines in the plot are renormalised
to the value of the baseline d0 , corresponding to the first zero
of the first-order Bessel function J1 (i.e. the baseline of the first
peak of the visibility function goes from 0 to 1). We refer to the
normalised baseline d/d0 throughout when we talk about the
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Fig. 1. Example of the result of the fitting procedure we used to compute
the error on θ in the following sections. We have considered a star with
an angular size θ = 0.6 mas and a ZBC value of N0 = 10−2. The grey
shaded area correspond to the 1σ confidence interval.

measurement positions on the visibility curve.

A widely used parameter to quantify the significance of a
measurement is the signal-to-noise ratio (S/N). Operationally,
the S/N is computed taking a measured value and dividing it by
the associated uncertainty. For the measurements on the visibil-
ity curve |γ12 |

2, the theoretical value of the S/N was computed by
Brown (1974) and is (in the case of unpolarized light)

(S/N)
|γ12 |

2 = Nβ|γ12 |
2
√

T/2 = α|γ12 |
2
√

T , (7)

where N is a term that depends on the source photon rate (and
can be expressed as a count-rate or as a flux density multiplied
by a collection area), β is a term that depends on the system per-
formances (detector quantum efficiency, optical bandwidth, or
coherence time of the light, electronic bandwidth, or sampling
time, etc.), and T is the total integration time. For our purposes,
we can consider the term depending on the source photon rate as
a constant, and we incorporated it together with the other con-
stants in the term α, which were considered equal to 1. We show
at the end, with the full simulation performed in Sect. 5, that the
results are valid for any value of α.

By analogy, we can work in terms of S/N also in the case
of the final measurements of the stellar size. Instead of speaking
of errors on θ, we consider (S/N)

θ
. This is useful to compare

the results in different situations. We show that we can define
some analytical expressions that describe the trends of (S/N)

θ
as

a function of (S/N)
|γ12 |

2 or of the integration time.

3. Simplest case: Known ZBC

We start by considering the simplest case, that is, when the ZBC
value is known. In this situation, we need a single measure-
ment almost anywhere along the visibility curve in order to con-
strain the model (Eq. 5). Therefore, we studied the behaviour
of (S/N)

θ
by changing the (S/N)

|γ12 |
2 or the integration time T of

this single measurement. This analysis was limited to the interval
d/d0 = [0.0, 0.8] because using a measurement at a normalised
baseline larger than 0.8 does not allow us to unambiguously fit
the size of the star (the measurement could belong to either the
first peak or the second peak of the visibility curve) without im-
posing constraints during the fitting procedure. The limit at 0.8
was also kept fixed for all the other analyses in this work.

Fig. 2. Trend of (S/N)
θ

as a function of (S/N)
|γ12 |

2 (upper panel) and
of the integration time (lower panel) inferred from the simulations for
measurements at different normalised baselines (differently coloured
curves).

In Fig. 2 we show the trend of (S/N)
θ

as a function of
(S/N)

|γ12 |
2 (upper panel) or of the integration time T (lower

panel) for different baselines (differently coloured curves). The
curves were obtained by extracting the error associated with the
reconstructed angular size, as discussed above, from a series of
fits in which we changed the parameters. We infer a linear rela-
tion between (S/N)

θ
and (S/N)

|γ12 |
2 and a square-root relation be-

tween (S/N)
θ

and T (similarly to (S/N)
|γ12 |

2 ∝
√

T ).In this simple
situation, Eq. (8a) might appear to be redundant because we can
directly expect (S/N)

θ
∝ (S/N)

|γ12 |
2 ∝
√

T . However, later in this
work, this relation is no longer valid, and it will be useful to have
explicitly found an expression for η1p . This suggests that we can
write the two following equations,

(S/N)
θ

= η1p (S/N)
|γ12 |

2 , (8a)

(S/N)
θ

= ε1p

√
T , (8b)

where we introduced the proportionality parameters η1p and ε1p .
In this simple situation, Eq. (8a) might appear to be redundant
because we can directly expect (S/N)

θ
∝ (S/N)

|γ12 |
2 ∝

√
T .

However, later in this work, this relation is no longer valid, and
it will be useful to have explicitly found an expression for η1p .
The top panel of Fig. 2 shows that by increasing (S/N)

|γ12 |
2 ,

(S/N)
θ

always increases linearly, and that the larger the base-
line of the measurement, the higher the (S/N)

θ
value. The lower
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Fig. 3. Trends of η1p (upper panel) and ε1p (lower panel) coefficients as
functions of the baseline of the measurement.

panel shows that (S/N)
θ

grows proportionally to the square root
of the integration time, and as the baseline of the measurement
increases, the (S/N)

θ
value (for a given T ) increases up to a cer-

tain baseline (∼ 0.5). For baselines larger than 0.5–0.6, the S/N
tends to decrease. This fact can be explained by considering that
at longer normalised baselines, (S/N)

θ
improves (as shown in the

upper panel) and the integration time needed to achieve a certain
(S/N)

|γ12 |
2 always increases as the normalised baseline increases.

At a given point, the integration time is no longer sufficient to
compensate for the reduction of the S/N caused by the decrease
in |γ12 |

2 as the normalised baseline increase. Figure 3 shows a dif-
ferent representation of this behaviour: η1p (upper panel) grows
monotonically with the baseline, while ε1p (lower panel) grows
up to a maximum value and then decreases. It is possible to pro-
vide analytical expressions of the parameters η1p and ε1p . From
the error propagation of Eq. (5), assuming that d and λ are per-
fectly known (or that the associated errors are much smaller than
the error on the stellar size θ), we obtain

σ2
|γ12 |

2
=

(∂|γ12 |
2

∂θ

)2
σ2

θ
, (9)

where σ
|γ12 |

2 is the error associated with the measurement on the

visibility curve (|γ12 |
2) and σ

θ
is the error associated with the

angular size of the star. Inverting Eq. (8a), we find

σ
θ

=
θ

|γ12 |
2

σ
|γ12 |

2

η1p

, (10)

where we considered (S/N)
θ

= θ/σ
θ

and (S/N)
|γ12 |

2 =

|γ12 |
2/σ

|γ12 |
2 . Computing the derivative of Eq. (5) for θ, we find

∂|γ12 |
2

∂θ
= −

8J1 (πθd/λ)J2 (πθd/λ)
πθ2d/λ

, (11)

and inserting this equation, together with Eq. (10), in Eq. (9) we
obtain

η1p =

∣∣∣∣∣2J2 (πθd/λ)
J1 (πθd/λ)

(πθd/λ)
∣∣∣∣∣. (12)

We can do a similar exercise for ε1p . In this case, we consider
Eq. (8b) and (7) (with α = 1) to find

σ
θ

=
θ

ε1p

1
√

T
, (13a)

σ
|γ12 |

2 =
1
√

T
, (13b)

and, inserting them in Eq. (9), we obtain

ε1p =

∣∣∣∣∣8J1 (πθd/λ)J2 (πθd/λ)
(πθd/λ)

∣∣∣∣∣. (14)

As expected from eqs. (7), (8a) and (8b), we find that ε1p =

|γ12 |
2η1p . From this analytical solution for ε1p , we find that the

maximum (S/N)
θ

is reached at a normalised baseline d/d0 '

0.527. This same value can also easily be found numerically.
This means that in this scenario, this is the best position along
the visibility curve to maximise (S/N)

θ
.

4. General case: Unknown ZBC

In a more general scenario, the ZBC value is not known in ad-
vance and needs to be fitted together with the visibility curve
using Eq. (6). To obtain a measurement of the stellar size, we
need at least two measurements on the visibility curve.

In these conditions, the analysis is slightly more elaborate, as
we can have two or more different S/Ns or two or more different
integration times for the measurements on the visibility curve.
We first consider the case in which there are only two measure-
ments with the same S/N or the same integration time because
these two conditions are not unlikely. For example, many fu-
ture SII Cherenkov telescopes will be able to carry out obser-
vations simultaneously on both long and short baselines (ZBC
value), so that in the end, the integration time will always be the
same. Even the case in which the S/Ns are similar is not unlikely
because observational strategies might be designed in this way.
However, we also discuss how the results change when the S/N
or the integration time are different and what happens when an
additional measurement is added to the analysis.

4.1. Two measurements with the same S/N or integration
time

In this configuration, the results are similar to those seen in the
previous section. Results are shown in Fig. 4, where we show the
trend of (S/N)

θ
as a function of (S/N)

|γ12 |
2 in the upper plot and

as a function of the integration time in the lower plot. The trend
of (S/N)

θ
as a function of (S/N)

|γ12 |
2 is linear, while (S/N)

θ
varies

with the square root of the integration time. The main difference
with the previous case is that we always find a value for (S/N)

θ

lower than that for the case where the ZBC is known (because
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Fig. 4. Trend of (S/N)
θ

as a function of (S/N)
|γ12 |

2 (upper panel) and
of the integration time (lower panel). Solid curves correspond to the
cases in which the normalised baseline of the first measurement is at
d1/d0 = 0.0, and dashed curves correspond to the cases in which the
baseline of the first measurement is at d1/d0 = 0.3 (value chosen to
ensure a clear separation between the dashed and continuous curves).
The differently coloured curves depend on the normalised baseline of
the second measurement.

now there is an additional parameter in the fitting procedure). It
is now useful to note that as the position of the lower baseline
measurement increases, the maximum value of (S/N)

θ
tends to

decrease. The lower plot also shows that by increasing the posi-
tion of the first measurement, the maximum values of (S/N)

θ
are

obtained for longer normalised baselines of the second measure-
ment.

We can thus again define two parametrical coefficients, η2p

and ε2p , that link (S/N)
θ

with (S/N)
|γ12 |

2 and T , as done in the
previous section,

(S/N)
θ

= η2p (S/N)
|γ12 |

2 , (15a)

(S/N)
θ

= ε2p

√
T . (15b)

The trends of the two coefficients as function of the baselines of
the measurements are shown in Fig. 5 (upper panel for η2p and
lower panel for ε2p ). In the plots we also show the curves of η1p

and ε1p (dashed black lines) computed above. The shapes of the
curves are similar to the shape of the curve for the known ZBC
scenario, but the maximum value continually decreases (as the
baseline of the first measurement is increased).

The similarity of these curves with those in the known ZBC
scenario suggests that we can find an analytical expression for

Fig. 5. Trend of η2p (upper panel) and ε2p (lower panel) coefficients as
function of the baselines of the first measurement (differently coloured
curves) and of the second measurement (x-axis). We show as dashed
black curves the trends of η1p and ε1p (already shown in Fig. 3) for com-
parison. The redder curves in the plots correspond to the trends of ηZBC
and εZBC , when the ZBC value is directly measured.

η2p and ε2p . This is definitely true at least for the case where the
shortest baseline measurement is at d/d0 = 0, when we mea-
sure the ZBC value directly. We start from the error propaga-
tion formula for Γ (Eq. 6) to obtain the expressions for ηZBC and
εZBC (which are particular cases of η2p and ε2p when the shortest
measurement directly provides the ZBC). The error propagation
formula is slightly more complex now because there are two pa-
rameters that can also be correlated,

σ2
Γ

=

(
∂Γ

∂θ

)2
σ2

θ
+

(
∂Γ

∂N0

)2
σ2

N0
+ 2

(
∂Γ

∂θ

)(
∂Γ

∂N0

)
σ

θ
σN0

ρ
θN0
, (16)

where ρ
θN0

is the correlation coefficient between θ and N0 . Mak-
ing the derivatives of Γ with respect to θ and N0 , we obtain

∂Γ

∂θ
= −N0

8J1 (πθd/λ)J2 (πθd/λ)
πθ2d/λ

, (17a)

∂Γ

∂N0

=

∣∣∣∣∣2 J1 (πθd/λ)
πθd/λ

∣∣∣∣∣2 =
Γ

N0

. (17b)

In order to find ηZBC , we can simplify some terms. First of all, we
can consider the case in which the two measurements have the
same (S/N)

|γ12 |
2 and the error on the measurement at d/d0 = 0

Article number, page 5 of 10
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corresponds to the error on the ZBC value1,

σN0
=

N0

Γ
σ

Γ
. (18)

Then we again consider Eq. (10), replacing η1p with ηZBC . Insert-
ing these equations in Eq. (16), after some algebra, we obtain

ηZBC =

∣∣∣∣∣2J2 (πθd2/λ)
J1 (πθd2/λ)

(πθd2/λ)
∣∣∣∣∣ 1
2ρ

θN0

, (19)

where we have made explicit that the results depend on the base-
line of the second point. Comparing Eq. (19) with Eq. (12), we
can see that ηZBC = η1p/(2ρθN0

). The value of ρ
θN0

can then be cal-
culated from the numerical values of η1p and ηZBC computed from
the simulations (the black dashed curve and the redder continu-
ous curve in the upper panel of Fig. 5). We find that

ρ
θN0

=

√
2

2
, (20)

meaning a fairly high correlation between the two parameters.
The final expression for ηZBC is

ηZBC =

∣∣∣∣∣
√

2J2 (πθd2/λ)
J1 (πθd2/λ)

(πθd2/λ)
∣∣∣∣∣. (21)

Similarly, to determine εZBC , we simplified further. We used
eq. (13a) (replacing εZBC with ε1p ) and considered that the error
of the two measurements is the same2,

σN0
= σ

Γ
=

1
√

T
. (22)

From Eq. (16) now we derive

εZBC = N2
0

∣∣∣∣∣8J1 (πθd2/λ)J2 (πθd2/λ)
(πθd2/λ)

∣∣∣∣∣ρθN0
Γ ±

√
N2

0
+ Γ2(ρ2

θN0
− 1)

Γ2 − N2
0

.

(23)

As before, we can compare Eq. (23) with Eq. (14) and see that

εZBC = ε1p N2
0

ρ
θN0

Γ ±
√

N2
0

+ Γ2(ρ2
θN0
− 1)

Γ2 − N2
0

. (24)

In this case, the value of ρ
θN0

can be calculated from the numer-
ical values of ε1p and εZBC computed from the simulations (the
black dashed curve and the redder continuous curve in the lower
panel of Fig. 5). We find that

ρ
θN0

=
Γ

N0

1√
1 + (Γ/N0 )2

, (25)

which leads to a final expression for εZBC ,

εZBC =

∣∣∣∣∣8J1 (πθd2/λ)J2 (πθd2/λ)
(πθd2/λ)

∣∣∣∣∣ 1√
1 + (Γ/N0 )2

. (26)

1 Meaning that Γ1/σΓ1
= Γ2/σΓ2

(where the subscripts 1 stands for the
lower baseline measurement and 2 for the higher ones) and that N0 ≡ Γ1
and σN0

≡ σ
Γ1

.
2 Since (S/N)

Γi
≡ Γi/σΓi

= Γi
√

T with equal exposure time for the
two measurements.

Fig. 6. Trend of (S/N)
θ

as a function of (S/N)
|γ12 |

2
,2

. The baselines of

the first and second measurements are fixed to 0.0 and 0.8. The solid
coloured curves correspond to different values of (S/N)

|γ12 |
2
,1

. The black

line shows the trend in case of equal S/N for the two measurements, the
dashed black line the trend for the single measurement scenario (Sect.
3), and the horizontal dotted lines represent the maximum limit of each
of the corresponding coloured curves. The scenario in which we fix the
second measurement is not shown because it is completely symmetric.

It is worth nothing that ηZBC and εZBC are independent of the value
of the ZBC (we recall that Γ = N0 |γ12 |

2).
From Eq. (25) we calculate that when the position of the sec-

ond measurement tends to 0 (Γ → N0 ), ρ
θN0

tends to
√

2/2 as in
Eq. (20). This reflects the fact that when the position of the sec-
ond measurement tends to the position of the first measurement,
the two S/Ns tend to the same value and we return to the previ-
ous scenario. On the other hand, when the position of the second
measurement tends to 1, ρ

θN0
will tend to 0, breaking the corre-

lation between the two parameters. As before, we can calculate
the baseline of the second measurement needed to maximise the
S/N: d2/d0 ' 0.550 (slightly higher than in the case of known
ZBC).

4.2. Two measurements with different S/N or different
integration time

With the obtained results, we can now try to investigate the more
general case of two different S/Ns or two different integration
times. The previous results are very helpful to describe the gen-
eral behaviour.

Fig. 6 shows (S/N)
θ

as a function of (S/N)
|γ12 |

2
,2

(the S/N of

the longest baseline measurement). The different colour curves
correspond to different values of (S/N)

|γ12 |
2
,1

(the S/N of the

shorter baseline measurement). In this situation, we can make a
direct comparison with the results obtained in the previous sec-
tions. The trend is no longer linear with (S/N)

|γ12 |
2
,2

. On the other

hand, the coloured measurements, corresponding to (S/N)
|γ12 |

2
,1

=

(S/N)
|γ12 |

2
,2

, follow the linear trend resulting from Eq. (15a) (con-

tinuous black line). When (S/N)
|γ12 |

2
,2
� (S/N)

|γ12 |
2
,1

, the curves

asymptotically tend to the relation found for the scenario with
the known ZBC, with (S/N)

θ
= η1p (S/N)

|γ12 |
2
,2

(dashed black line).

This means that for high values of (S/N)
|γ12 |

2
,1

and much lower

values of (S/N)
|γ12 |

2
,2

, it is possible to approximate the trend
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Fig. 7. Trend of (S/N)
θ

as function of the integration time, with T1 fixed
(upper panel) and with T2 fixed (lower panel). The dashed black curves
show the trend in case of equal integration times, and the horizontal dot-
ted lines show the maximum limit of each of the corresponding coloured
curves.

of (S/N)
θ

with the relations that are valid for the known ZBC
scenario. When (S/N)

|γ12 |
2
,2
� (S/N)

|γ12 |
2
,1

, the curves asymptoti-

cally tend to the relation found for the scenario with the known
ZBC, with (S/N)

θ
= η1p (S/N)

|γ12 |
2
,1

(dotted coloured lines). This

means that for high values of (S/N)
|γ12 |

2
,2

and much lower values

of (S/N)
|γ12 |

2
,1

, it is possible to approximate the trend of (S/N)
θ

with the relations that are valid for the known ZBC scenario.
However, in this case, the measurement known with the highest
accuracy is that at larger baselines. We thus observe that these
results are symmetric. Swapping the S/N of the two measure-
ments yields the same final (S/N)

θ
, which essentially depends

on the measurement with the lower S/N. These results clearly
show that the best strategy to optimise the S/N ratio of the obser-
vations is to have two measurements with similar S/N. It is not
useful to increase one over the other indefinitely.

The same behaviour as d1/d0 = 0.0 is found also for d1/d0 >
0.0 (and for any value of d2/d0 ): an oblique and a horizontal
asymptote are always present in plots like the one shown in Fig.
6, which means that the same prescriptions will still be valid.

We considered then the scenario with two different inte-
gration times, again showing as an example the results in the
case where the normalised baseline of the first measurement is
d1/d0 = 0.0 and that of the second measurement is d2/d0 = 0.8.
In the top panel of Fig. 7 we report the results where the integra-
tion time T1 of the first measurement is fixed (different coloured
curves), while in the bottom panel we report the case where the

integration time T2 of the second measurement is fixed (differ-
ently coloured curves). Making a comparison with the previous
results, we can say first that the different cases are no longer
symmetric. The reason clearly is that different integration times
are needed to obtain a similar S/N for the two measurements.
Second, the general trend is no longer the square root of the inte-
gration time. Fixing T1 , we find a situation analogous to the case
shown in Fig. 6. Furthermore, for T2 ≤ T1 , the curves tend to fol-
low the relation (S/N)

θ
' εZBC

√
T2 quite well, while for T2 ≥ T1 ,

the curves grow slowly until they tend to a constant value that is
defined by η1p

√
T1 . Fixing T2 , we find that (S/N)

θ
quickly rises

at the beginning and then suddenly changes slope around a value
close to εZBC

√
T1 . After this time, (S/N)

θ
tends asymptotically

to ε1p

√
T2 . Thus, a higher (S/N)

θ
could be reached by increas-

ing the exposure time T2 of the second measurement, rather than
increasing the exposure time T1 . This can be easily seen from
the fact that in the lower plot, all the curves for T1 < T2 have a
higher (S/N)

θ
than in the relation for equal exposure times of the

two measurements (dashed black curve). We can therefore claim
that when it is not possible to increase the exposure times of the
two measurements, it is preferred to increase the exposure time
of the measurement at larger baseline. This is opposite to what
we showed before, where it was possible to improve the fit at
the same level by increasing the S/N of one of the two measure-
ments. However, it is worth nothing that there is no limit to the
maximum (S/N)

θ
if it is possible to increase the two integration

times.

4.3. Three measurements

When another measurement is added to the visibility curve, the
final accuracy of the fit might be improve. The placement of this
additional measurement is to be determined. In the following we
show the results of two simple analyses we made considering
different integration times.

In the first analysis, we compared the results we obtained
in the three measurements scenario with the two-measurement
scenario, with the same integration times for all the measure-
ments. As before, we refer to the special case in which we di-
rectly measure the ZBC value (d1/d0 = 0.0). We assumed that
the first measurement is at zero baseline, the second measure-
ment at the largest baseline, and the third point at an intermediate
baseline. We find again that the (S/N)

θ
follows a square-root re-

lation as a function of T . In analogy with the previous analyses,
we can therefore write a relation of this type: (S/N)

θ
= ε3p

√
T .

ε3p can be fitted directly to the curves and then be related to εZBC

in the two-measurement scenario. In Fig. 8 we show the ratio
of the two coefficients as a function of the baseline of the third
measurement. The ratio of the two coefficients basically shows
the improvement of (S/N)

θ
compared to the two-measurement

case. As before, we find that the best results are achieved with
at least one of the three measurements at a normalised baseline
d/d0 ∼ 0.5 − 0.6. While the point with the longest normalised
baseline is at 0.8, having another measurement at 0.5 − 0.6 will
improve the results by more than a factor 2. In general, adding
a measurement will always improve the final results because the
statistics are increased.

On the basis of this result, the best strategy for optimising the
available integration time might appear be to have one measure-
ment at 0.5 − 0.6 and one at 0.8. However, although in Fig. 8 we
compare coefficients computed considering measurements with
equal integration times, the total integration time TT (the sum
of the integration times of all measurements) is different. In the
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Fig. 8. Ratio of ε3p and εZBC as a function of the baseline of the third
measurement. The baseline of the first measurement is kept fixed to
d1/d0 = 0.0. The differently coloured curves correspond to different
baselines of the second measurement. Results with a different baseline
for the first measurement are similar to this case (with lower maximum
values).

Fig. 9. Trend of (S/N)
θ

as a function of the total integration time TT (the
sum of the integration times of the measurements). The integration time
for the first measurement is kept fixed to 10 ks. In this way, we compare
results with the same total integration time (for the three-measurement
scenario, the integration time TT−T1 is split equally into the two remain-
ing measurements). The blue curve correspond to the case in which we
measure three measurements with baselines 0.0, 0.6, and 0.8. The or-
ange curve correspond to the case in which we measure two points with
baselines 0.0 and 0.6. The green curve correspond to the case in which
we measure two points with baselines 0.0 and 0.8.

three-measurement scenario, the total integration time is three
and a half times that of the two-measurement scenario. Thus, to
distinguish the best strategy, we carried out a second analysis
in which we compared the results with the same total integra-
tion time. In Fig. 9 we show an example of the trend of (S/N)

θ

as a function of the total integration time TT . In this example
TT is the same in all the cases. Again, we chose the case with
d1/d0 = 0.0, for which we set the integration time to a fairly
high value (T1 = 10 ks) to ensure that the final trend of (S/N)

θ

goes almost with the square root of the integration time of the
other measurements (similarly to what we see with the red curve
in the top panel of Fig. 7). In Fig. 9 we show the curves of the
three-measurement scenario with measurements at 0.6 and 0.8
(blue curve), of the two-measurement scenario with one mea-
surement at 0.6 (orange curve), and of the two-measurement sce-
nario with one measurement at 0.8 (green curve). When the in-

Table 1. Input parameters for the simulation shown in Fig. 10 and de-
scribed in the text.

Parameter Value
Star size (θ) 1 mas
Photon rate geometric mean (n) 20 Mct/s
Central wavelength optical filter (λc ) 400 nm
Optical filter bandwidth (∆λ) 1 nm
Sampling time (dt) 1 ns
System efficiency (κ) 0.5
Baseline first zero Bessel function (d0 ) ∼ 100 m
Baseline first measurement (d1/d0 ) 0.0
Baseline second measurement (d2/d0 ) 0.6
Maximum observing time (T ) ∼ 1.7 h

tegration time for the first measurement is fixed, the integration
time for the other measurement in the two-measurement scenar-
ios is twice as long as the integration time for the two measure-
ments in the three-measurement scenario. The maximum (S/N)

θ

is clearly reached when all the available integration time is spent
on the measurement at 0.6 and is not divided between two mea-
surements. The scenario in which all the time spent on the mea-
surement at 0.8 is the worst case because we have no measure-
ment at the best baseline. We verified that in all cases it is better
to spend all the integration time on a baseline ranging from 0.4
to 0.7 to obtain the best results.

5. Realistic simulation

All the analyses carried out in the previous section were made
assuming α = 1 (see Eq. 7). We now wish to test the results
considering a more realistic simulation. Our aim is to show that
the previous equations can be used to predict the accuracy of
the reconstructed angular size of a star. Following the simplified
numerical procedure from Dravins et al. 2012 (Sect. 6.1), we
produce a simulation of a hypothetical SII observation with two
Cherenkov telescopes.

We considered a system that can observe a bright star at all
possible baselines between 0 and d0 in fully polarised light, mea-
suring simultaneously the (unknown) ZBC value and another
measurement at a longer baseline. The (S/N)

|γ12 |
2 can now be

written as

(S/N)
|γ12 |

2 = n
( λ2

c

c∆λ

)
κ|γ12 |

2

√
T
dt
, (27)

where n =

√
NA NB is the geometric mean of the average pho-

ton rates between the two detectors A and B, λc and ∆λ are the
central wavelength and bandwidth of the optical filter, κ is the
overall efficiency of the system, T is the integration time, and
dt is the sampling time. We then expect that (S/N)

θ
can be ex-

pressed as

(S/N)
θ

= n
( λ2

c

c∆λ

)
κεZBC

√
T
dt
, (28)

where εZBC is given by eq. (26). All the parameters used in the
simulation are reported in Table 1.

Figure 10 shows the results of this simulation (averaged over
ten realisations to reduce the statistical uncertainty of the single
simulation). In the left panel, we plot the final fitted visibility
function (red curve) together with the input model (dashed black
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Fig. 10. Results of the realistic simulation (averaged over ten realisations to reduce the statistical uncertainty of the single simulation). Left: Fitted
visibility function. The red measurements show the simulated data, the red curve shows the fitted model, the dashed black curve shows the input
model (Table 1) and the gray shaded area is the 1σ confidence interval. Right: Trends of (S/N)

|γ12 |
2 for the two measurements (blue and orange

continuous curves) and of (S/N)
θ

(red continuous curve) as a function of the integration time. The measured curves are compared to the theoretical
predictions (dashed curves) from Eq. (27) and (28).

curve) and two simulated measurements (red points). The recon-
structed angular size agrees with the input size, and (S/N)

θ
is

equal to ∼ 9.99. The theoretical value computed from Eq. (28)
is ∼ 9.93, which is very close to the measured value. In the
right panel, we show the measured trend of (S/N)

|γ12 |
2 for the

two simulated measurements (blue and orange curves) and the
trend of (S/N)

θ
(red curve) as a function of the integration time.

The dashed curves are the corresponding trends computed from
Eq. (27) and Eq. (28). This simulation clearly shows that the the-
oretical values calculated through the expressions derived in this
study and the actual measured value of the error on the angu-
lar size of a star inferred from the simulations agree remarkably
well.

6. Discussion and conclusions

We studied the accuracy of the reconstructed angular size of a
star that can be achieved through SII observations. This study
was carried out to understand how the SII data acquisition can be
optimised. Because Cherenkov telescope arrays have fixed posi-
tions, changing the baseline of the observation means that the
stars are observed at different positions in the sky (and therefore
at different times during one night or during different nights in
the year). When a guess of the angular size of the observed star
is known in advance (e.g. through previous observations or from
some stellar model predictions), some practical prescription of
how to optimise the observing plans will be very useful.

We recall that we introduced some simplifications. We
adopted an approximate model for the stellar brightness profile,
a uniform disk model (Eq. 5), and a least-squares algorithm for
the data fitting. However, for the purpose of deriving a first-order
estimate of the error accuracy, this simplified approach provides
very useful information. The results that can be obtained with
more sophisticated methods are not expected to be much more
accurate than our estimations. A valid objection, however, might
be that in reality, the uniform disk model does not fit the true
stellar size because of limb-darkening effects and the presence
of hot or cold spots on the stellar surface. This is another reason
why we focused only on the fit of the first peak of the visibility
function because the effects of a deviation from a uniform disk
become strong from the second peak.

We found that knowing the ZBC value, as in the case of sys-
tems that perform SII in photon-counting mode, allowed mea-
suring a stellar size using just one measurement on the visibility
curve. When the value of (S/N)

|γ12 |
2 for this single measurement

was considered alone, the best results were obtained when it was
taken at the longest possible baseline. On the other hand, when
we considered the integration time needed to achieve a certain
accuracy, we found that it is better to have a measurement around
d/d0 ∼ 0.527 because at a larger baseline, the time needed to ob-
tain an acceptable (S/N)

|γ12 |
2 increases faster than the improve-

ment in the precision of the fit. Similarly to the case where the
ZBC value is known, it is then better to obtain a second measure-
ment at d/d0 ∼ 0.550 to optimise the results. This position tends
to move towards larger baselines as the baseline of the first mea-
surement increases. This is somehow similar to what has also
been found by Rai et al. (2021), who demonstrated in the more
complex situation of a close binary system that the best results
are obtained by taking measurements at certain specific positions
on the visibility curve.

We have found that similar (S/N)
|γ12 |

2 or similar integration
times for different measurements of the visibility curve will ba-
sically be the best observation strategy. Spending too much time
on one of the measurements tends to saturate the maximum
achievable (S/N)

θ
(horizontal limits in Fig. 6 and 7). If the sys-

tem in use does not allow observing two (or more) measurements
at the same time, and if only one of the two measurements can be
observed for a long time, it is then better to spend more time at a
longer baseline (because more time is required to obtain a good
(S/N)

|γ12 |
2 ). However, it is advisable to try to have similar inte-

gration times for the measurements because (S/N)
θ

can improve
more. When we tried to determine where another measurement
should best be added, we found that it is better to add it at a nor-
malised baseline around 0.5 − 0.6, regardless of the position of
the two other measurements. The best strategy is again measur-
ing the ZBC value and two, three, or n measurements around a
baseline of 0.5 − 0.6 (see Figs. 8 and 9).

The most useful results of this work certainly include the an-
alytical expressions describing the trend of (S/N)

θ
as a function

of (S/N)
|γ12 |

2 or the integration time. The expressions for η1p , ε1p ,
ηZBC , and εZBC can be directly used to obtain estimates of (S/N)

θ
,
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similarly to what is done usually for (S/N)
|γ12 |

2 . We tested the ro-
bustness of these results with a detailed simulation in which we
adopted the expression for (S/N)

|γ12 |
2 for photon-counting SII.

The behaviour of (S/N)
θ

perfectly agreed with our predictions
based on Eq. (28).

To summarise, it is not always necessary to measure the vis-
ibility curve at many different positions to obtain the best re-
sults. Instead, the best possible results can be obtained by taking
a series of measurements at the ZBC and at a baseline half-way
between zero and the position of the first zero of the visibility
curve. This consideration can have a significant impact for plan-
ning the observations with the current class of Cherenkov SII
instruments, as well as for the forthcoming instruments. If a sys-
tem can measure the ZBC value (or if it is known in advance), it
will then be possible to plan the observations by predicting the
achievable accuracy without having to carry out precise simula-
tions.
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