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ABSTRACT
Artificial intelligence (AI) is currently being utilized in a wide range of sophisticated appli
but the outcomes of many AI models are challenging to comprehend and trust due to their bla
nature. Usually, it is essential to understand the reasoning behind an AI model’s decision-m
Thus, the need for eXplainable AI (XAI) methods for improving trust in AI models has arise
has become a popular research subject within the AI field in recent years. Existing survey pape
tackled the concepts of XAI, its general terms, and post-hoc explainability methods but there h
been any reviews that have looked at the assessment methods, available tools, XAI datasets, an
Therefore, in this comprehensive study, we provide readers with an overview of the current r
and trends in this rapidly emerging area with a case study example. The review starts by explain
background of XAI, common definitions, and summarizing recently proposed techniques in X
supervised machine learning. The review divides XAI techniques into four axes using a hiera
categorization system: (i) data explainability, (ii) model explainability, (iii) post-hoc explain
and (iv) assessment of explanations. We also introduce available evaluation metrics as well a
source packages and datasets with future research directions. Then, the significance of explai
in terms of legal demands, user viewpoints, and application orientation is outlined, termed
concerns. This paper advocates for tailoring explanation content to specific user types. An exam
of XAI techniques and evaluation was conducted by looking at 410 critical articles, published b
January 2016 and October 2022, in reputed journals and using a wide range of research databa
source of information. The article is aimed at XAI researchers who are interested in making t
models more trustworthy, as well as towards researchers from other disciplines who are look
effective XAI methods to complete tasks with confidence while communicating meaning from

duction
al Intelligence (AI) has become ingrained in our
it assists various sectors in dealing with difficult
reforming outdated methods. AI models run in
martphones to do various tasks [1], in cars to
ents [2], in banks to manage investment and loan
3, 4], in hospitals to aid doctors diagnosing and
isease [5], in law enforcement to help officials
dence andmake law enforcement easier [6], in the
many countries [7], in insurance organizations to
risk [8], etc. Moreover, many organizations are
onding authors at: College of Computing and Informatics,
an University
esses: tamer@skku.edu (Tamer Abuhmed), khanmuham-
.edu (Khan Muhammad)

actively trying to integrate AI into their workflows d
its remarkable performance, which competes with h
performance in a wide variety of tasks [9].

AI enables data-driven decision-making system
other words, a tremendous quantity of data is requi
produce an accurate AI model. Primitive Machine lea
(ML) models, such as linear regression, logistic regre
and Decision tree (DT), are less accurate due to the ass
tion of smooth linear/sub-linear data [10]. However
world data is highly non-linear and complex, this m
processing it to gain knowledge and insights a real chal
Under these circumstances, Deep neural networks (D
are exploited to extract information from highly com
datasets [11]. After using DNNs, scientists have re
that a deeper network is better for decision-making t

shallow network [12]. Moreover, to extract patterns from

.: Preprint submitted to Elsevier Page 1 of 65
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f complex data, a sophisticated DNN must be
a large dataset. A collection of convolutional
els is used to cover all the differences that come
on-linearity of the real-world data, this leads
rformance AI models. However, by increasing
r of filters an AI model uses, strain is put on
t layers of the DNN. Thus, even a basic network
several layers, with many filters, and neuronal
s for complex tasks often have millions or even
parameters. The underlying representations and
cross the network’s layers are difficult to examine,
number of learnable variables increases as the
designs become increasingly complex [13].
more, the structural design of a DNN model is
by a number of factors, including the activation
nput type and size, number of layers, pooling
connectivity pattern, classifier mechanisms, and
of compound learning techniques. The learning
is further influenced by a number of additional
such as normalization/regularization, weight up-
hanisms, cost/loss functions, and the type of end
sed. As a result, unlike other ML techniques
, Fuzzy rule-based systems (FRBSs), or Bayesian
BNs), a decision from a DNN is difficult to com-
d trust. Due to these hurdles, there is a problem,
with the aforementioned black-box conundrum
simpler ML models, such as DT, are easier to
d and self-interpret. In this case, interpret means
an explanation for the system’s decisions or to
m in a logical/reasonable manner [15]. Unlike
x systems, in the context of AI, a person may
d simplerMLmodels by glancing at the summary
ers of the model without the need for an external
rovide an explanation. We refer as a white-box
box model. In the research community, there is
ept known as the gray-box model which applies
e to FRBSs [16] or BNs [17], which are models
an interpret at some degree if they are carefully
s it can be seen in Figure 1, the labels white-box,
nd black-box refer to various levels of the internal
t [18]. The following paragraph will go through
pth descriptions and solutions for the black-box

Black-box Issue and Solution
community is more concerned about the black-
following the establishment of rules for trust-
s that are safe to use. eXplainable Artificial In-
(XAI) techniques are aimed at producing ML
h a good interpretability-accuracy tradeoff via: (i)
hite/gray-box ML models which are interpretable
(at least at some degree) while achieving high
r (ii) endowing black-boxmodels with aminimum
erpretability when white/gray-box models are not
ieve an admissible level of accuracy. XAI tech-
a crucial role when dealing with DNN models

and how to make their results comprehensible to hu
[19].

Furthermore, there are two terminologies by whi
can try to elucidate a DNNmodel: (i) interpretability a
explainability. Interpretability enables developers to
into the model’s decision-making process, boosting
confidence in understanding where the model gets its re
Instead of a simple prediction, the interpretation tech
provides an interface that gives additional informati
explanations that are essential for interpreting anAI sys
underlying functioning [20]. It aids in opening a doo
the black-box model for users with the required know
and skills, e.g, developers. On the other hand, explaina
provides insight into the DNN’s decision to the end-u
order to build trust that the AI is making correct and
biased decisions based on facts. Figure 1 depicts the di
tion between white-box, gray-box, and black-box dec
making processes, as well as shows how XAI is appl
achieve a trustworthy model with a good interpreta
accuracy tradeoff.

The ML approaches, which include different math
ical methods for extracting and exploiting important
mation from huge collections of data, from a technical
of view are now dominated by AI models. The go
XAI research is to make AI systems more comprehe
and transparent to humans without sacrificing perform
[21, 20]. The ability to understand patterns hidden in
plex data is both a strength and a weakness of auto
decision-making systems: an AI model may discover
plex structures in the data automatically, but the le
patterns are hidden knowledge without explicit ru
logical processes involved in finding them. Although
gorithms are capable of extracting correlations across a
range of complicated data, there is no assurance that
correlations are relevant or relate to real causal connec
Furthermore, the intricacy of the models used, partic
the cutting-edge DNNs, often hinders human operators
inspecting and controlling them in a straightforward m
In this way, AI is both a source of innovation an
significant problem in terms of security, safety, privac
transparency. In the next paragraph, we will go throug
entire list of goals behind XAI.
1.2. The Goal of XAI

The primary goal of XAI is to obtain human-interpr
models, especially for applications in sensitive sectors
as military, banking, and healthcare applications,
domain specialists need help solving problems more
tively, but they also want to be provided with mean
output to understand and trust those solutions. It
only beneficial for domain specialists to examine appro
outputs, but it is also beneficial for developers if the o
turn out to be incorrect as it prompts them to inves
the system. AI methods enable (i) the assessment of c
knowledge, (ii) the advancement of knowledge, and (i
evolution of new assumptions/theories [22]. In additio
goals behind XAI methods that researchers would l
.: Preprint submitted to Elsevier Page 2 of 65
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ML model and understand 

its decision

Higher Explainability and 
interpretability, yet lower 
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Self-interpretable

Due to less accuracy, it is 
not used in daily-life 

applications

Could not inspect the inner 
logic of the model and 
understand its decision

Higher accuracy, but 
lower explainability and 

interpretability

Due to a non-explainable 
decision, it is not practical 

to use in critical 
applicationsXAI

Reveal the decision-
making mechanism 

Disclose the internal 
working of the model

Interpretability

Explainability/ Interpretation

Built the user trust being fair and ethical 
(verify the prediction)

Understand the intrinsic properties of 
the model that enhance model’s 

transparency

Towards the 
trustworthiness 

of the model

Partially analyzed the 
internal working of a model 
and understand its decision

Can interpret at some 
degree with significant 

accuracy.

Can be used in critical 
applications if designed 

carefully

Neither interpretable 
nor explainable

comparison of white-box, gray-box, and black-box models. On the one hand, white-box models are interpreta
making their outputs easier to understand but less accurate. In addition, gray-box models yield a good interpreta
adeoff. On the other hand, black-box models are more accurate but less interpretable. More complex XAI tech
for creating trustworthy models.

with explainability are enhanced justification,
provement, and discovery [21]. The following
rizes the benefits by opening a window into these
systems [18]:
ower individuals to combat any negative conse-
of automated decision-making.
t individuals in making more informed choices.
se and protect security vulnerabilities.
rate algorithms with human values is an impor-
l.
nce industry standards for the development of AI-
products, thus improving consumer and business
ce.
rce the Right of Explanation policy.
odel to be embraced by end-users and indus-

st be trustworthy [23]. Building a reliable model,
s difficult. A few of the factors that contribute to
s trustworthiness include fairness [24], robustness
retability [26], and explainability/interpretation
inability is one of the most crucial aspects. Ex-
es have focused solely on providing better expla-

proposed different strategies to explain AI models
tatively using comprehensible text [28], mathematics
or visualizations [15]. In the following subsection, w
discuss our motivation for conducting this study.
1.3. Motivation

Most existing research on XAI focuses on provid
comprehensive overview of approaches for either expla
black-box models or designing white-box models, a
as looking at general reasons why explainability is i
tant. Some research concentrates on specific issues su
notions of explainability and interpretability, their be
and drawbacks, and the necessity for explainability in c
fields like healthcare, banking, the military, etc.

It becomes essential to explain AI models’ dec
once government regulations have been enforced. The
of XAI has evolved to comprehend AI systems better
helping us move towards systems that can provide hu
friendly explanations. However, no previous research h
amined whether the availability of an ever-expanding
of methodologies and tools is sufficient for the XAI res
field to crystallize and give practical support in the
scenarios described by regulatory stakeholders. For
ple, does score-CAM [30] or Grad-CAM [31] guarante
a DNN may be utilized for medical diagnosis? The a
d insights for future research. Researchers have
.: Preprint submitted to Elsevier Page 3 of 65
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e supervisory agencies have not prescribed risk-
arios that may assist the research community in
g what is needed to implement XAI-supported
odels in real-world contexts. Therefore, society

chniques in which XAI tools are an essential but
t step in determining whether or not an AI-based
be trusted and employed for the task at hand.
cuss more comprehensive XAI definitions and
ccepted terminologies in this study. In addition,
down the XAI worries into three distinct per-
(i) user, (ii) application, and (iii) government.
on approaches for analyzing the four axes that
he purposes behind an explanation in order to
aluate the results from intelligent systems more
These four axes are: (i) data explainability, (ii)
lainability, (iii) post-hoc explainability, and (iv)
t of explanations. Questions such as "What consti-
ceptable explanation?" and "how to establish user
-powered systems?" are still unresolved. We also
responsible principles in terms of fairness, secu-
ntability, ethics, and privacy in order to improve
n XAI.
vel contributions of this paper can be summarized

bility may be used at any point throughout the
opment process. We propose a four-axes method-
diagnose the training process and to refine the
r robustness and trustworthiness. These four axes
ata explainability, (ii) model explainability, (iii)
explainability, and (iv) assessment of explana-
e believe that explanations should be created by
ing each axis in terms of a typical AI pipeline.
r methodology has four axes, we formulated re-
uestions for each axis and will address them in the
g section. In addition, we introduce a taxonomy
axis and discuss various techniques, including a
dy example of a basic supervised binary classi-
task in which a model is created to distinguish
employees earn an annual income over 50K.
ore, we present a comparison between different
methods including a discussion of their ad-
, disadvantages, and underlying principles. A
atical model and a simplified visualization of its
process are used to demonstrate each post-hoc
e.
ose another methodology to provide a roadmap
to determine a given model and its explainability
A list of XAI tools and open-source datasets for
rs and end-users is also presented. We provide a
y of each tool in terms of the data types that are
, its explainability and the explanations that are
model type, and evaluation matrix.
I concept is defined using background research

explanation, explainability, and associated terms
given. We look at the explainability concept from
main points of view: (i) regulatory entities, (ii) v
stakeholders and decision-makers, and (iii) combat
cations. As a result, we suggest that explanations s
be created with the kind of user and evaluation cri
in mind.

• XAI researchers are currently developing new techn
and tools for the exploration, debugging, and valid
of AI models. Based on the literature, we highligh
discuss XAI’s open challenges and future directio
terms of (i) XAI system design, (ii) generalization of
(iii) user interactions with XAI, (iv) XAI ground
evaluation, and (v) advanced XAI tools.

Organization: The outline of the article is as follows
tion 2 looks at previous XAI literature and related su
Section 3 begins with the XAI concepts, a set of
definitions, and the balance between accuracy and
pretability. In section 4, a potential XAI model is discu
along with the questions that may be addressed along
of the explainability axes. The general classification o
methods is enumerated in Section 5. In Sections 6, 7
8, a major part of the proposed taxonomies is discus
terms of data explainability, model explainability, and
hoc explainability, respectively. In Section 9, the techn
and metrics for assessing explanations of XAI algor
are presented. The question of selecting an XAI m
according to research direction is addressed in Sectio
Step-by-step guidance for future researchers starting
emerging field of XAI is offered in Section 11. This
important guide to a research area that has the pot
to influence society, particularly those industries tha
gradually adopted AI as one of their core technologie
significance of XAI from the different stakeholders, go
ment restrictions and policies, and application perspe
are discussed further in Section 12. Section 13 conclud
survey. Figure 2 depicts the organization of our surve
help readers navigate through its content more easily.

2. Background Studies
Research interest in the field ofXAI is resurgent. In

Mueller et al. [32] published a systematic analysis of
methods and explanation systems, these were classifie
three generations: (i) First-generation systems attemp
describe the system’s internal working process explici
integrating expert knowledge into the rules via transfo
these rules into natural language expressions such as
used in expert systems from the early 1970s, (ii) Se
generation systems are human-computer systems tha
vide cognitive assistance by focusing on human know
and reasoning abilities from the early 2000s, and (iii) T
generation systems seek to clarify the inner workings
systems in the same way as the first generation. Howev
third-generation systems became mostly black-box sy
by a commonly accepted definition of a good from about 2012. Due to improved computer technology,

.: Preprint submitted to Elsevier Page 4 of 65
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gure 2: Detailed overview of the different sections and topics covered in the survey for easing its readability.

vel concepts for producing explainable choices
e more feasible. These ideas have arisen from the
ainly responsible, fair, and trustworthy processes
ns. The three generations of intelligent systems
cussed in detail in the following paragraphs.
eration Systems. Researchers have been inter-
derstanding the underlying workings of AI since
tages of AI systems. Chandrasekaran et al. [33],
out et al. [34, 35] were among the first to de-
ecision-making process of knowledge-based and
tems. Expert systems but also Fuzzy Sets and
SS) [36, 37, 38] in the 1970s, Artificial Neural
(ANN) [39] and BNs [40] in the 1980s, as well
endation systems [41, 42] in the 2000s have all
terest in intelligent system explanations. Despite
ematical correctness, these earlier works are in-
owever, they inspired subsequent research into
ing intelligent systems.
eneration Systems. This generation saw a more

were built became complex in nature. The decision-m
process of the AI systems was one that humans, incl
domain experts, did not fully comprehend when it ca
powerful ML classification models trained on large da
with high-performance infrastructures [43]. Anothe
associated with these techniques is that they may
tentionally make incorrect decisions as a result of b
artifacts or false correlations in the data. This is a partic
essential issue when it comes to using these systems in
risk applications like self-driving vehicles and med
where a single incorrect decision may result in a pe
death [44].
Third-Generation Systems. The current advances i
its application to diverse fields, concerns about une
usage [45], lack of transparency [46], and unintended
[47] in the models are the main reasons for the incr
interest in XAI research. This has an effect not just o
amount of information that can guide ethical decision
also on the accountability, safety, and industrial liabili
these XAI systems. Furthermore, new regulations en
I system being built. However, the models that

.: Preprint submitted to Elsevier Page 5 of 65
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countries mean an even greater need for XAI
establish trust in AI models [48]. The AI models
nsitive areas of scientific research, such as in
logy, and socioeconomic sciences, need to be able
an explanation of their results to allow scientific
nd advances in research.
g XAI work can be categorized in various ways,
XAI applications, multidisciplinary method fu-
xplainability by internal functionality modifica-
g others. The following subsection goes through
d literature.
ious Studies
s the potential to be extremely beneficial to the
h community. This subsection explores several
areas of research where explainable models are
eing used.
ns of XAI. Meske et al. [49] described the the-
pact of explainability on AI trust and how XAI
lized in a medical setting. Their work used CNN
-layer Perceptron (MLP) models to identify a
alaria) from the input image data (thin blood
images). In addition, the necessity for explain-
prior research in XAI for information systems
some of the risks of black-box AI [50]. Islam

illustrated common XAI techniques using credit
diction as the subject of a case study, the results
ated in terms of gaining a competitive advantage
local and global perspectives, offering significant
how to assess explainability, and recommending
rd responsible or human-centered AI.
ence and Argumentation in XAI. Miller [52]
XAI while including articles from the social sci-
author discusses how XAI incorporates ideas

sophy, cognitive science, and social psychology in
oduce good explanations of its results. Similarly,
mes to psychological theories of explanation,
[32] first stresses what a good explanation is.
re, argumentation and XAI have a lot in common
f explainability. Vassiliades et al. [53] examined
echniques and research on the linked subjects of
tion and XAI. The authors explored more inter-
ediction models that integrate ML and argumen-
ry. Humans have also been involved in assess-
ystems. Hussain et al. [54] used an engineering
o illustrate the concepts behind XAI by giving
cal outlines of the methods used.
or Improving Explanations: Scientists have at-
decipher the inner workings of black-box systems
transparent counterparts. Liu et al. [55] described
ive visualization method that aids in the diag-
prehension, and refinement of an AI system and
data mining issues. Zhang et al. [56] focused on
etability of CNNs’ middle-layer representations.
[57] investigated the explainability of certain
terms of dataset bias, which can result in biased

interpretability problem and its potential applications
authors also thoroughly discussed the Layer-wise Rele
Propagation (LRP) method.
XAI in Other Learning Methods: Explainability has
used in many studies on supervised ML, unsupervised
and Reinforcement Learning (RL) [59]. Puiutta et al
published the first review on Explainable Reinforc
Learning (XRL). The authors provided an overvie
the problem and definitions of key terms, they also
their classification and assessment of certain XRL me
Burkart and Huber [61] provided an overview of
Explainable Supervised ML (XSML) principles and
niques, as well as discussed other important concepts
field. The authors focused on supervised learning and o
a taxonomy of interpretable model learning, surrogate
els, explanation types, and data explainability. Gerli
al. [62] identified four thematic arguments (motivatin
need for XAI, completeness vs. interpretability dile
human explanations, and technologies producing XA
conducting a thorough study of the XAI literature o
subject. These arguments are essential to how XAI ha
the black-box issue.

Many surveys on XAI have been published previ
these have looked at the necessity of XAI as well as at
related notions, methods, software tools, and challenge
instance, Arrieta et al. [63] showed that the model’s ex
ability is one of the most important elements to gua
a system is able to provide good explanations insi
methodological framework.Many other reviews have l
at subjects such as post-hoc explanations [18, 26, 64
next subsection will briefly summarize the existing su
2.2. Related Surveys

Despite the fact that the number of studies on X
quickly growing (see Table 1), there is still a lack of tho
surveys and a systematic classification of these st
except [65]. There are numerous review articles on XA
the majority of these reviews concentrate on genera
techniques, their significance, and evaluation appro
For example, Doshi et al. [15] chart the path towar
definition and rigorous evaluation of interpretability.
main contribution is a taxonomy for assessing interpre
ity. Consequently, the authors focused on just one el
of explainability, i.e., interpretability and its related
ation techniques. Abdul et al. [66] built a citation ne
from a vast corpus of explainable research based o
core articles and 12412 citing publications. However
review was mainly concerned with Human-Computer
face (HCI) research that emphasizes explainability. Ad
al. [21] attempted to offer information on the idea, mo
and consequences that underpin XAI study in order
derstand the important topics in XAI.

Furthermore, Guidotti et al. [18] investigated a v
of approaches to explaining large-scale black-box m
including looking at data mining and ML techniqu
volved. The authors presented a comprehensive taxo
of explainability methods for systems that suffer fro
ontavon et al.[58] provided a brief review of the

.: Preprint submitted to Elsevier Page 6 of 65
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problem. Their work comprehensively assessed
s in terms of XAI; however, it only focused on
etability processes, leaving out other elements
ability like evaluation. Consequently, despite a
sive technical overview of the approaches under
on it was difficult to gain a general understanding
I immediately. Samek et al. [67] described two
r interpreting a model’s output. In their approach,
vity of the output is first calculated in relation
in the input. The second step is to break down
decision into its input variables. Dosilovic et al.
ghted recent developments in XAI to provide a
rison between interpretability and explainability
sed ML. Lipton [28] defined model properties
ques, as well as the notion of interpretability for
ML in terms of identity transparency to humans
t-hoc explanations.
nt years, Carvalho et al. [68] examined the inter-
of ML with a focus on the established techniques
s. Vilone et al. [69] divided popular XAI methods
ategories: review articles, theories and concepts,
gies, and evaluation. Arrieta et al. [63] discussed
ments of XAI in terms of effort and contributions.
omic approaches to explainability are discussed
iew: (i) ML model transparency, and (ii) post-hoc
ity. Linardatos et al. [70] carried out research that
ML interpretability techniques, particularly, liter-
sis and the taxonomy of interpretability methods,
ooked at links to programming implementations.
, Li et al. [26] described and defined two key XAI
interpretations and interpretability. The authors
l taxonomy to describe the architecture of several
on algorithms and they also highlighted some
on research initiatives. In addition to simply at-
comprehend any interpretation results, theywent

examine certain performance metrics for evaluat-
erpretation algorithms. Langer et al. [71] looked
stakeholder groups that seek AI explainability,
their needs. Confalonieri et al. [72] provided
l perspective of XAI, where they analyzed how
of explainability evolved from expert systems to
arning and recommender systems, until neuro-
I.
up, Table 1 provides a summary of existing

icles, and we can draw two main conclusions.
majority of the surveys addressed the research
core concepts of (and terms related to) XAI,
rns, and post-hoc explainability. Despite the fact
researchers have concentrated on XAI concerns
ologies associated with it, there are still evolving
t regulations to impose explainability, as well as
le and inconsistent definitions by the XAI com-
cond, numerous researchers have identified three
and ongoing challenges with XAI: (i) lack of
(ii) different axes or dimensions of explainability,
ighlight the need to take care seriously of XAI

evaluation (both automatic metrics and human evalu
in future directions.

3. Concepts of Explainability and Importa
Nomenclature
AI is a powerful technology with a wide range of

cations. AI has attained great accuracy not just as a
of improved hardware performance, but also as a
of employing more sophisticated algorithms, such as
employed in cutting-edge DL methods. Due to the com
nature of the algorithms used, these modern AI system
unable to explain their decisions in a straightforwardm
limiting their practical applicability [84]. As a resu
must tackle this black-box issue, even if the developer
to sacrifice performance. The necessity to explain A
encourage its adoption by many stakeholders has in
the creation of XAI as a new field of research. This s
is organized as follows: (i) the concept behind XAI is d
via background research, (ii) associated XAI termin
is explained, and (iii) the trade-off between accurac
interpretability is explored.
3.1. XAI Concepts

Van Lent et al. [85] created the XAI concept in 20
characterize their system’s capacity to explain the a
of AI-controlled units in simulation gaming applica
Academics and practitioners have recently rekindled th
terest in the subject of XAI [86, 87]. Several research g
have investigated the notion of explainability in AI dec
making. Each research community, however, approach
issue from a different angle and gives explanations
various meanings. The word explainability, in terms
concepts, means functional knowledge of the mode
purpose of which is to attempt to describe the m
black-box behavior [28]. It is often used interchang
with the term interpretability in the literature. Explaina
expresses what is occurring in the model by provid
human-readable explanation of the model’s decision.
ever, it is difficult to come up with a precise descript
what qualifies as an explanation. The following are
of the most widely recognized definitions of an explan
[53]:
• An attribution of causal responsibility is referred to

explanation [88].
• An explanation is an act of describing something an

viding the response to the question of why this descr
of something is correct [89].

• A process for finding or creating common mean
known as an explanation [90].
A more recent widely embraced definition of ex

able IA is the one given in [63], where the focus
the receiver of the explanation: given an audience, a
plainable Artificial Intelligence is one that produce

tails or reasons to make its functioning clear or easy to

.: Preprint submitted to Elsevier Page 7 of 65
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Main Theme

022 410 2016-2022 ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ Model’s trustworthiness
022 70 2006-2021 ■ ■ ■ ■ Natural Language Explanations
022 53 2015-2020 ■ ■ ■ Knowledge based XAI
022 165 2016-2019 ■ ■ ■ ■ Counterfactual based XAI
022 71 2016-2021 ■ ■ ■ Introduction to XAI
022 190 2017-2022 ■ ■ ■ ■ ■ ■ Counterfactual explanations
022 182 2018-2022 ■ ■ ■ ■ ■ ■ XAI for time series
022 168 2018-2021 ■ ■ ■ ■ ■ ■ XAI in healthcare
021 113 1991-2020 ■ ■ ■ ■ ■ ■ ■ Contrastive and Counterfactual X
021 206 2015-2020 ■ ■ ■ ■ ■ Evaluation approaches of XAI
021 45 2017-2020 ■ ■ Black-box issue
021 150 2016-2020 ■ ■ ■ ■ ML interpretability methods
021 55 2017-2020 ■ ■ ■ ■ XAI methods classification
021 120 2014-2020 ■ ■ ■ ■ Argumentation enabling XAI
021 210 2015-2020 ■ ■ ■ ■ ■ ■ XAI methods classification
021 121 2016-2020 ■ ■ ■ Necessity of explainability
021 40 2017-2020 ■ ■ ■ User and their concerns
021 111 2016-2021 ■ ■ User and their concerns
021 123 2016-2020 ■ ■ ■ ■ ■ ■ XAI methods classification
020 60 2016-2020 ■ ■ ■ ■ XAI in reinforcement learning
020 196 2017-2019 ■ ■ ■ ■ ■ ■ XAI methods classification
020 400 2012-2019 ■ ■ ■ ■ ■ ■ ■ Responsible AI
020 205 2015-2020 ■ ■ ■ ■ Explainable recommendation
020 50 2017-2019 ■ ■ ■ ■ ■ Impact of XAI on trust
019 150 2014-2018 ■ ■ ■ Social Sciences related to XAI
019 140 2014-2019 ■ ■ ■ ■ ■ ■ ■ ML interpretability
019 57 2015-2019 ■ ■ ■ Counterfactual in XAI
019 350 2000-2018 ■ ■ ■ ■ ■ ■ Good explanation
018 46 2016-2018 ■ ■ ■ ■ Introduction to XAI
018 289 2010-2017 ■ ■ ■ Accountable System
018 130 2012-2017 ■ ■ ■ ■ Black-box issues
018 381 2014-2018 ■ ■ ■ ■ ■ ■ Key aspects of XAI
018 57 2016-2018 ■ User and their concerns
018 50 2015-2017 ■ ■ Introduction to XAI
018 30 2013-2017 ■ ■ ■ Interpretability and its desiderata
018 35 2014-2017 ■ ■ ■ Necessity of explainability
018 30 2015-2017 ■ ■ ■ Visual model interpretability
018 24 2014-2018 ■ ■ ■ XAI with human intelligence
017 48 2014-2017 ■ ■ ■ Definition of interpretability
017 53 2012-2016 ■ ■ ■ ■ Visual model interpretability

. In relation with the specific audience, Miller
onsidered presently available explanations to be
static. An ideal explanation is one in which the
nd the explainee interact with each other. The
gested that explanations are social and should
ively communicated to users. In the same vein,
ated cooperative principles [91] and four maxims
e followed by explanations:
ity: Ascertain that the explanation is of good
ith the following properties:
not provide some random explanation that may
be true, and

• Do not provide an explanation that does not
enough supporting evidence.

2 Quantity: Deliver the appropriate amount of inf
tion in an explanation that has the following propert

• Explanation must be informative i.e., provi
much information as needed, and

• At the same time, not provide more informatio
is required.

3 Relation: An explanation must contain only inf
tion relevant to the discussion. This maxim may be u
improve the quantity of the explanation.
.: Preprint submitted to Elsevier Page 8 of 65
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er: Rather than what is given, manner refers to
rmation is delivered. Grice [91] has divided this
mber of maxims:
id ambiguous language in the explanation.
id ambiguity in the explanation.
id prolixity with a concise explanation.
id information that is not in order.
xt-oriented: Explanations for developers are dif-
m those for regulators that are different from those
sers [92].
more, XAI is not a unitary entity; it encompasses
rconnected principles. According to the research
there are various contributing concepts for ex-
I systems. While there may appear to be some
tween these concepts, we believe they reflect the
ves for explainability. In the next paragraph, we
ough several concepts that outline the standard

XAI Nomenclature
ck-box issue in AI refers to a system’s difficulty in
easonable explanation for how the system arrived
n. The words black-box, gray-box, and white-box
computing science and engineering to refer to
els of closure of a system’s internal component.
inciple of explainability is closely connected to
rpretability. Interpretablemethods are explainable
can comprehend their operations. Even though
is a keyword in the XAI nomenclature, the term
le is more commonly used in the ML community
nable. The related terms are defined as follows:
3.2.1 (Explainability). The process of elucidat-
ling the decision-makingmechanisms ofmodels.
ay see how inputs and outputs are mathematically
. It relates to the ability to understand why AI
ke their decisions. The capacity to make auto-
pretations and describe the inner workings of an
in human terms is referred to as explainability.
able technique summarizes the reasons for an
decision. Furthermore, a model’s "Post-hoc Ex-
" refers to methods/algorithms that are used to
model’s decisions [21, 26, 27].
3.2.2 (Interpretability). Understanding the un-
orkings of the AI model is another issue with
odels. The intrinsic properties of a DLmodel are

hrough interpretability. This has to do with being
prehend howAI models make their decisions. AI
t explain the internals of an AImodel in amanner
s can comprehend are known as model intrinsic
[26, 27, 21].
are many supplementary criteria that may be
n XAI method such as transparency, fairness,

in the model. These concepts are further explained
following.
Definition 3.2.3 (Transparency). This is developed us
intrinsic method that generates a human-readable exp
tion for the model’s decision. Transparency is essent
assessing the quality of a model’s decision and for fe
off adversaries [26, 64, 93, 94, 95].
Definition 3.2.4 (Fairness). Due to fundamental bia
some datasets and algorithms, some groups of indiv
can be treated unfairly and discriminated against by A
tems. Fairness refers to a model’s ability to make unb
decisions without favoring any of the populations
sented in the input data distribution [27]. Biases may
AI systems in a variety of ways. Biases such as the locat
birth, socioeconomic background, and skills should no
factor in AI models [24, 95]. During the development
AI system and after its deployment, special method
be developed for collecting and implementing user
[96, 97].
Definition 3.2.5 (Robustness). The sensitivity of th
tem’s output to a change in the input is measured b
bustness [98]. It assesses the model’s capacity to fun
correctly in case of uncertainty. The behavior of the s
should not be dramatically affected by small changes in
[99]. This attribute is obtained by subjecting the mo
adversarial inputs and ensuring that the system’s erro
is near to that during training [100, 25].

A perturbation in the input example will cause a c
in the outcome. Causality [101, 102, 103] measure
change in the predicted output. A selection of importa
sights and common associated XAI terminologies are
pleteness [14, 104], informativeness [28, 50], justifia
[105, 106, 107], monotonicity [108], reversibility [109,
simplicity [52, 111], reliability [112, 113, 114], and tra
ability [21, 28, 115].

XAI is focused on demystifying black-box model
also compatible with responsible AI since it may as
creating transparent models.
Definition 3.2.6 (Satisfaction). The ability of an ex
ability technique to improve the usability and utility
ML-based system [116].
Definition 3.2.7 (Stability). The ability of a proced
provide comparable explanations for inputs that are s
[117, 118, 119].
Definition 3.2.8 (Responsibility). Building trust and
parency makes a model trustworthy; but, in order for i
responsible, societal values, morals, and ethical cons
tions must be also taken into account. Thus, Transpa
Responsibility, Accountability [21, 95, 120], Fairnes
Ethics [95, 120, 121] are the pillars that support Respo
AI [105, 120, 122, 123, 124].

Furthermore, we list out some XAI approaches, lo

or robustness. These are aimed at enhancing trust at issues ranging from trustworthiness to privacy awareness
.: Preprint submitted to Elsevier Page 9 of 65
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elations among XAI concepts. The knowledge graph
nterconnected potential uses of explainability con-
explainability concepts usually seek to accomplish
e goals with the explanations that produce. The
the approach, the depth of the justifications, and
ill be influenced by individual objectives. Inspired

, and recognize the relevance of purpose and
dience in data security [126, 127, 128] and safety
130].
on the previous nomenclature, we created a uni-
anized perspective of the key concepts in theXAI
e 3 depicts how such concepts are strongly interre-
explainability approaches always seek to accom-
r more goals with the explanations they produce.
plainability is closely related to interpretability
omes a prerequisite for explainability) and ro-
hich is increased by explainability). Similarly,
is related to (but it is not the same) stability; and
pts have an important impact on satisfaction and
In addition, confidence requires form interactivity
ying reliability. Moreover, interactivity enriches
ility while interpretability fosters interactivity.
on of the XAI approach, the depth of the expla-
d their aims will all be influenced by all these
hich have a direct impact on trustworthiness.
ly, we believe that studying the XAI concepts
earchers to become familiar with the subject and
und rapidly. Additionally, knowing the primary
ases in the area and the other terms that broadly
he same topics is a necessary prerequisite for
an insightful and compelling investigation.

3.3. Tradeoff between Accuracy and
Interpretability

Researchers typically seek interpretable and hig
forming models. Making the best model, however, u
increases model complexity, which tends to reduce
pretability. Understanding the tradeoff between accurac
interpretability becomes critical for successful analyt
more corporations turn to AI models to spur develop
The connection between accuracy and interpretabilit
be covered in this subsection.

Some experiments combine interpretable models t
vide additional levels of insight; nevertheless, som
terpretability may be sacrificed in order to get the
accurate model possible [52, 64]. The DT, for exa
is quite interpretable; but, when it is repeated many
and combined with another model, such as Random F
(RF), the interpretability suffers. As a result, we ca
complicated models have become less interpretable in
to attain higher accuracy. Explainability enters the p
since an explanation entails comprehending the compl
system.

Figure 4 depicts the apparent balance between th
model’s performance and its ability to make expla
predictions in terms of the associated interpretabilit
instance, a CNN is harder to understand than RF, and
easier to understand than RF. The crossover between
pretable and explainable models is represented by the
region. This is because LRmodels with a few characte
are simple to understand, but as the number of param
increases, the model gets increasingly complex. A sep
border between simple and complex models is diffic
define precisely. It is worth noting that according to
authors [132] "there is no scientific evidence for a g
tradeoff between accuracy and interpretability": even
many ML techniques the improvement of interpreta
is at the cost of imposing constraints that in practi
an upper limit to the maximum accuracy to be ach
a careful design can yield a good interpretability-acc
tradeoff. Indeed, interpretability usually helps to unde
how to improve a given model, so sometimes impr
interpretability can also improve accuracy.

Moreover, DNNs are already capable of comple
wide range of tasks that before only a person coul
including classification, object detection, and recogniti
well as predictive maintenance tasks [107, 133]. How
humans may fool a DNN to categorize an input
incorrectly, despite the DNN having generally great p
mance with proper input and training. A tomato pi
for example, is altered by a human using random no
order to deceive the DNN. When a model’s formal
(test-set prediction) and its real labels differ, explaina
is required. The explanation is needed in order to acqu
formation, create a trustworthy connection between hu
and AI systems, improve and learn from the system, a
as to comply with regulation. In addition, when comp
various models or architectures, model interpretability
be useful [58, 134]. The importance of models prov
.: Preprint submitted to Elsevier Page 10 of 65
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Interpretability

Deep Learning

Neural Networks 
(MLPs, RNNs, 

CNNs,…)

Ensemble 
Methods 

(Random Forest)

Kernel-based 
Methods

Black-box Models White-box ModelsGrey-box Models

..
Accuracy

Fuzzy Systems

1985

19491951

1957

k-means

k-Nearest 
Neighbors

Linear/ Logistic
Regression

Decision 
Trees

Bayesian Network Additive Model
(GAM, EBM,…)

1850

19902003

formers
, GPT,…)

2021

2021

Diffusion 
Probabilistic 

Models

Reversible 
Diffusion-based 

Method

lustration of the balance between accuracy and interpretability. The need for high model accuracy and interpretab
. Models with high accuracy need additional explainability, while models with low accuracy are simpler to compr
in many cases. The gray-box models represent the transition between black-box and white-box models. The n
he year in which it first appeared in the field of AI research.

s for their decisions has been discussed in many
e literature [86, 135]. Accordingly, this article
s why explainability is important in terms of
t regulations, user perspective, and application
. Explainability is not only a great academic
it will play a pivotal role in future AI systems that
d to be used by millions of citizens, all around the
eir everyday life.

sed XAI Taxonomy
nterpretable must the explanation be to satisfy
s user requirements? A plethora of factors may
ow anAImodel works and produces its decisions,
wide variety of explanations are needed. This is
to the absence of a universally accepted definition
8]. Also, it should be noted explainability focus
explanations more user-friendly and trustworthy
ing making recommendations too strong without
sting in the data used throughout the AI devel-
ocess in general. It is possible to conflict with
aim of gaining comprehension [136]. Explain-
s to understand the model and diagnose training
that fail to converge and refine the model for
and better performance. We think explanations
created by considering four axes in the typical
: (i) data explainability, (ii) model explainability,
oc explainability, and (iv) assessment of explain-
nsidering only one of the above may leave the
udience with an inadequate understanding. As
in Figure 4, data scientists and developers are

rned with post-hoc explanations but may gain
knowing the internal workings of the model to
e model’s performance and comprehend how the
lied to prevent overfitting. On the other hand,
perts and end consumers are more interested in

how and why a model generated a particular result an
key characteristics that led to that conclusion. As a r
this paper suggests that explanations must be created
the kind of user in mind.

As shown in Figure 4, this study uses a novel taxo
that incorporates all four axes of explanation. There ar
significant advantages to approaching explainability i
manner. (i) Since the goal of the explanation is more
parent and can be specified more precisely in a given
it makes the design and construction of explainable sy
cheaper and easier. (ii) This approach will improve sat
tion among developers, researchers, domain specialist
end consumers since they will get a more focused, eas
understand explanation compared to a broad general o
everyone. In addition, since metrics are unique to each
it will be simpler to assess which explanation is super

Towhat purpose does the explanation serve? Resea
have attempted to categorize the various explanations
to decipher the rationale in learning algorithms [137
plainability techniques should respond to many que
to create a comprehensive explanation. The most
questions like why and how the model under investig
generates predictions and inferences have been address
researchers [42, 138, 139]. However, the research co
nity has also recognized additional issues that could e
and need other kinds of responses and, as a result, re
different forms of explanation [140].We formulated res
questions based on a thorough examination of the lite
onXAI research, which includes various research pape
previous surveys to ensure that the selected question
aligned with the current state of XAI research. Our pr
objective was to encompass a wide range of topic
factors that are pertinent to XAI, such as trustworth
ethics, interpretability, explainability, and human fa
By doing so, we ensured that the survey captures a
prehensive understanding of the subject matter, incl
.: Preprint submitted to Elsevier Page 11 of 65
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Algorithm Explainability – What are the individual layers and the weights used for a prediction?

ata are used to fit the 
odel and why?

What features are used for thi
particular decision?

User-focused (tailored)
Explanation

Architectural Adjustments – Make necessary changes to the model architecture.

Application-grounded Assessment

Human-grounded Assessment

Functionally-grounded Assessment

Real Humans

Real Humans

No Real Humans

Real Tasks

Simple Tasks

Proxy Tasks

Humans Tasks

Proposed XAI 
Taxonomy

p-based Complexity-basedModel-based Methodology-based
Local [18]

Global [18]

(Intrinsic [145] )

Model-agnostic [148]

Model-specific [147]
Backpropagation-based [24]

Perturbation-based [149]

roposed four-axes XAI methodology. At every level of the AI process, we present our explainability approach.
ty summarizes and analyzes data to offer insight into that data. A subsequent understanding of the data, f
, and standardization can be achieved. Model explainability sheds light on the internal structure and running algo
t the picture depicts an example of DL but explainability applies also to other models). Post-hoc explainability eluc
features using several kinds of explanation. Several assessment approaches and their desiderata can be used to ev
tions. The dotted lines define the four axes in the framework, whereas the solid lines differentiate between the e
s.

earch questions that address several levels/axes of explanation.

By Data Explainability By Model Explainability By Post-hoc Explainability

at sort of information do we have
atabase?
at can be inferred from this data?
at are the most important portions
ata?
is the information distributed?
possible to increase the model’s

ance by lowering the number of
ns?
a better explanation be offered by
ta summarizing techniques?

M1: What makes a parameter, objective, or
action important to the system?
M2: When did the system examine a para-
meter, objective, or action, and when did
the model reject it?
M3: What are the consequences of making
a different decision or adjusting a parameter?
M4: How does the system carry out a
certain action?
M5: How do these model parameters, objec-
tives, or actions relate to one another?
M6: What factors does the system take into
account (or disregard) when making a decision?
M7: In order to achieve a goal/inference, which
techniques does the system utilize or avoid?

P1: What is the reason behind the
model’s prediction?
P2: What was the reason for occurrence
What would happen if Y was the cause o
occurrence X?
P3: What variables have the most influen
on the user’s decision?
P4: What if the information is altered?
P5: To keep current results, what criteria
must be met?
P6: Is there anything that can be done to
have a different outcome?
P7: Why is it essential to make a certain
conclusion or decision?

spectives and dimensions that are crucial in XAI
able 2 summarizes the research questions for the
axes of explainability. The fourth axis is distinct
thers yet depends on them, as such, we will
is thoroughly in Section 9.

5. Explainability Methods
Explainability techniques come in a variety of s

and sizes. The taxonomies covered in this section are
marized in Figure 4 (top portion). They can be divide
broad categories: scoop-based, model-based, compl
based, and methodology-based. While there are many
niques for determining explainability, they can be disc
in detail in the following paragraphs. Since most p
.: Preprint submitted to Elsevier Page 12 of 65
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plainability in ML algorithms, the word inter-
is often employed.
ed Explainers: Feature importance analysis is a
ethod for determining how model outputs relate
ither showing the entire model’s behavior or a
iction. Depending on the feature’s importance,
analysis performed can be categorized as either
global method. Local explainers only explain a
cision or instance [21]. This implies that their
re limited to a single case with a single expla-
E is a seminal example of a local explanation

he other hand, global explainers are those that
tionale for thewhole dataset [21]. These explana-
in true to overall observations. However, certain
lainers may offer localized explanations as well.
le, SHAP can provide local as well as global
s [141].
y-based Explainers: Interpretability is directly
al to the complexity of the ML model. In general,
omplicated a model is, the more difficult it is to
and explain. Interpretable ML algorithms can be
s intrinsic or post-hoc interpretable depending on
pretability is achieved. Intrinsic interpretability is
ed by creating models that are self-explanatory
nterpretability built right in. To put it another
sic interpretable models have a simple structure
any cases, the simplicity and interpretability of
, however, come at the expense of accuracy [142].
tive is to build a high-complexity, high-accuracy
then utilize a different set of methods to give

ary explanations without understanding how the
odel works. Post-hoc explanations are provided
ss of techniques [143]. Post-hoc interpretability
e development of a second model, usually as a
f the original model (e.g., TREPAN [144]), in
ovide users with explanations.
edExplainers:Model-agnostic ormodel-specific
nother way to categorize existing interpretability
21]. A model-specific [145] method, as the name
only applicable to particular kinds of models. By
intrinsic methods are model-specific. In contrast,
ostic [146] methods are independent of the kind
del used. Since model-agnostic interpretability
are model-free, there has been a recent increase
in them. Model-agnostic methods offer post-hoc
ility; they are often used to interpret ANNs as
l or global explainers.
gy-based Explainers:XAI core algorithms may
d in two ways depending on the implemented
gy: Backpropagation-based or perturbation-based
n the one hand, Backpropagation-based [27]
ay be used to backpropagate a significant signal
utput to the input. This begins with the output
ork and adds weight to each intermediate value
during the forward pass. To update the weights of
eter and align the output to the ground truth, a

Table 3
Publications in the literature regarding questions {D1, .
about model explainability, as described in Table 2.

Reference Year D1 D2 D3 D4 D5 D

[148] 2021 ■ ■ ■ ■
[149] 2020 ■ ■ ■ ■
[150] 2020 ■ ■ ■ ■ ■
[151] 2019 ■ ■ ■
[152] 2019 ■ ■ ■
[153] 2018 ■ ■ ■ ■
[154] 2018 ■ ■ ■ ■
[155] 2017 ■ ■ ■
[156] 2017 ■ ■ ■
[157] 2016 ■ ■ ■ ■
[158] 2016 ■ ■ ■
[159] 2011 ■ ■ ■
[160] 2011 ■ ■ ■
[161] 2008 ■ ■ ■ ■
[162] 2008 ■ ■ ■
[163] 2002 ■ ■ ■

gradient function distinguishes the network output w
spect to each intermediate parameter. Thus, Gradient-
is another name for these techniques [27]. Saliency
and class activation maps are other examples of this
of method. On the other hand, Perturbation-based
algorithms use occlusion, partly replacing features via
operations or generative algorithms, masking, condi
sampling, and other techniques to change the feature
a given input instance and investigate the impact of
changes on the network output. Backpropagating gra
are not needed in this case since a single forward p
enough to comprehend how the perturbed component
input instance contributes to the network output [27].

6. Data Explainability
Data explainability involves a group of techniques

at better comprehending the datasets used in the trainin
design of AI models. The fact that an AI model’s behav
heavily influenced by the training dataset makes this le
explainability very important. Therefore, many inter
data analysis tools have been developed to assist in u
standing the input data. If data are not of high enough qu
it is impossible to create a model that will performwell
must be carefully examined after being collected.

The main publications related to data explainabili
listed in Table 3. This table goes through each of the a
of data explainability that make up the following su
tions. As we will discuss below, data explainability
provide insights that can help AI systems (learned
data) become more explainable, efficient, and robus
main aspects to consider are: Exploratory Data An
(EDA), explainable feature engineering, dataset descr
standardization, dataset summarizing methodologies
knowledge graphs.
.: Preprint submitted to Elsevier Page 13 of 65
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oratory Data Analysis
al of EDA is to compile a list of the most signif-
cteristics of a dataset, such as its dimensionality,
dard deviation, range, and missing samples. A
oolkit for extracting these characteristics rapidly
ataset is Google Facets [155]. Consider a basic
binary classification task in which a model is
distinguish whether an employee has an annual
r 50K or not. The UCI Census Income data [164]
lized throughout this manuscript as a case study.
t was obtained from the employment board and
number of features. Further, assume that the

elected is less accurate. An EDA tool looks for
he dataset that may indicate an issue with class
such as having significantly fewer instances of
an income > 50K than those with an income

depicted in Figure 6. After identifying a problem
ing dataset, a variety of remedies may be applied
it comes to evaluating datasets, however, relying
atistical characteristics is seldom sufficient. For
atejka et al. [156] have shown that datasets with
tistical measurements may look different when
s a result, data visualization techniques are a
EDA tool. Data visualization provides a variety
options [165]. The best kind of chart to use draws
set, application, and statistical characteristics that
ntist wants to convey.
orld datasets are often complex and multidimen-
h a large number of variables. Visualizing such
sional data may be challenging since humans
ive three dimensions. To enable people to under-
with more than three dimensions, one approach
pecial charts, such as Parallel Coordinate Plots
]. These are utilized to figure out which features
d which ones to leave out as demonstrated in
The high-dimensional dataset may also be pro-
a lower-dimensional formwhile keeping asmuch
erlying structure as possible. Two well-known
n this area are Principal Component Analysis
t-Distributed Stochastic Neighbor Embedding
E). Figure 8 illustrates the t-SNE case from the
s Income dataset. If the underlying structure of
s known to be mostly linear, then PCA is the
; otherwise, t-SNE is preferred. The Embedding
toolbox [157] facilitates the use of both tech-
fortunately, t-SNE is too slow when applied to
ets. Dimensionality reduction approaches, such as
anifold Approximation and Projection (UMAP)
be used in similar situations. It is claimed that
ore accurate and scalable than t-SNE.
ainable Feature Engineering
ition to improving AI model performance, data
ity may aid in the development of explainable
in the comprehension of post-hoc model expla-
ature attribution, which involves evaluating the
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Capital Loss

Target

Train

Train

Figure 6: GoogleFacets: The UCI Census Income dat
used to classify the income of an adult as over 5
year or not. (a) Display all 16282 training data point
show the relationship between one feature (Age) and an
feature (Occupation), then faceting is performed in a diff
dimension according to a discrete feature (Work class
The table displays six integer-type statistical values fro
UCI Census datasets. Non-uniformity is used to grou
feature. For the sake of illustration, one feature, the capit
is presented. Red numbers signify regions with the po
issue, in the capital loss numeric feature with a high prop
of values, are set to zero. The right-hand histograms co
the distributions of the training and test data. (c) The
displays one categorical (string) type feature out of th
features in the UCI Census dataset. Distribution dista
used to group the features. The label values in the tra
test sets are different, as shown in the right-hand histo
A model trained and tested on such data would prov
incorrect assessment as a result of the label imbalance pro

relative significance of input features in a particular m
decision, is a common kind of post-hoc explanation
The related features should be explainable too, in the
that developers should be able to intuitively assign ame
to them and identify the most pertinent feature explan
for a specific end user. To put it another way, the acc
of a model’s predictions is limited by the characteristic
are employed to explain them [154].

The twomost common approaches to explainable f
engineering are domain-specific and model-based
ods [151]. Domain-specific methods rely on domain e
knowledge as well as insights gained via EDA to extra
identify significant features. Shi et al. [162], for exa
utilized a binary classifier on satellite images to distin
cloudy pixels from ice/snow pixels that looked quite si
Model-based feature engineering, in contrast, makes us

number of mathematical models to determine the underlying

.: Preprint submitted to Elsevier Page 14 of 65
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CP: The UCI Census training data is presented
graph to reveal a 2D pattern. The z-score on the
otted against each feature value. The graph can
hering feature correlations and identifying helpful
or class separation. It can be seen in the distinct
features of age and education have a significant role
ing a given class. In the class prediction, the capital
other hand, does not create separation boundaries.
eature may be left out of the classification task. The
epresents the target value > 50K, and the blue line
ome value < 50K.
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-SNE: Produces a graph with well-defined clusters
number of integer data points. To get a better sep-
een the clusters of the UCI Census Income dataset,

ance measures are used: a) Mahalanobis, b) Cosine,
ev, and d) Euclidean. All these distance measures,
ahalanobis, provide reasonable separation between

this scenario.

f a dataset. Clustering and dictionary learning are
les of model-based methods [151]. Disentangled
ion learning [153], which attempts to learn a
ion of a dataset in which the generative latent
re separated, is another important and related field
atent variables may be thought of as explainable
the dataset.

6.3. Dataset Description Standardization
Datasets are often released without adequate docu

tation. As such, standardization may solve issues su
systematic bias in AI models and data exploitation b
abling efficient communication between dataset creato
users. As a consequence of this, a number of sugge
for standard dataset descriptions have been made, in
ing Datasheets for Datasets [166], Dataset Nutrition L
[167], and Data Declarations for Natural Language Pro
ing (NLP) [168]. These methods effectively offer v
schemas for particular data connected to a dataset in or
track the datasets evolution, content, data collection me
legal/ethical problems, etc. For example, the nutrition
dataset approach [167] proposes a dataset documen
includes information on many modules such as met
statistics, pair plots, the probabilistic model, proven
and ground truth correlations. All these details are int
to be consistent with the nutrition information lab
packaged foods. Similar to how customers can selec
preferred food in a store regarding the nutrition inform
AI experts may use the "nutrition labels" associated w
dataset as a reference to effectively identify the best d
for their modeling objectives.
6.4. Dataset Summarizing Methodologies

Case-based reasoning [169] is a kind of expla
modeling technique that generates predictions for a
input and compares them to training samples/cases
a distance metric. Similar training samples, together
model predictions, can be provided to the end user
explanation of the process. However, one significant
back of this method is the need to retain the full tra
dataset, which may be prohibitively expensive or impra
for very large datasets, which have become more w
available. One solution to this problem is to save a port
the training dataset that is nonetheless representative
essence of that dataset. The goal of dataset summariza
to address this issue.

Document summarization [160], scene summa
[170], and prototype selection [159] are some of the
posed techniques. To summarize a dataset, it is comm
look for a small number of typical samples (known a
totypes) that provide a quick overview of the wider da
However, prototypes are insufficient for comprehendin
and complicated datasets; it is also important to in
criticism with the prototypes. A criticism is an item o
that is relatively rare and is not properly represented b
prototype examples [149].

Kim et al. [158] presented an unsupervised lea
technique for extracting both prototypes and criticisms
a dataset, they also performed additional testing by sho
humans summarized datasets. Humans who were s
both prototype and critique images as their decision-m
guide performed better than those who were just show
totype images, according to the research. Data squash
an another technique for data summarization [163]. Th
of data squashing is to create a smaller version of a d
.: Preprint submitted to Elsevier Page 15 of 65



Journal Pre-proof

S. Ali et al. Information Fusion

that produ
weights are
of the data
squashing
[152] have
recent stud
6.5. Kno

Knowl
given dom
by modeli
a directed,
an ontolog
determine
properties,
data from
researchers
explainabil
creates an
classificati
al. [173]
explainabil
believe sem
informatio
explanation

In add
justifying p
The Data
MON) [17
and existin
emphasize
addition, P
that offers
queries. Co
Trepan [17
explanation
extracted u
standable t
by human

6.6. Phys
A class

neural netw
into the arc
learningw
domain kn
eralization
incorporati
networks f
Earth syste
land surfac
two-step p
of turbulen
searchers a
of models.
to control

,M7}

M7

■

■
■

■
■

■
■
■
■

■
■

read

ining
ussed
stand-
incor-
with

dition
ount

uts or
hy a

lts. In
gated.
urally
els to
ically
plain-
d the
odern
n and
ay we
ith an
odel.
rs re-
in the
rough
es in-
nship
s, and

S. Ali et al
Jo
ur

na
l P

re
-p

ro
of

ces similar results. Unlike data summarization,
often assigned to samples in the smaller version
set. Similar criteria for the initially stated data
are used in Bayesian learning, Bayesian coresets
been highlighted as a data squashing method in a
y.
wledge Graphs
edge graphs provide a conceptualization of a
ain of application (e.g., finance, health, etc.)
ng entities and their relationships by means of
edge-labeled graph, often organizing them in
ical schema. A knowledge graph enables us to
which cues belong to ideas with similar semantic
factors that individuals may change, supporting
the dataset, and other systems [171]. Several
envision using semantic technologies in the

ity field [74]. For example, Doctor XAI [172]
agnostic XAI approach for ontology-linked data
on. A Knowledge Graph is used by Gaur et
to feed DL models in order to increase their
ity. In addition to the methods listed above, we
antic technologies should (i) give background

n, (ii) describe their properties, and (iii) give
s in a context and language that are suitable.
ition, ontologies offer a strong foundation for
redictions made by AI algorithms semantically.
Mining Ontology for Grid Programming (DA-
4] is a referencemodel for datamining approaches
g tools. Another example, KDDONTO [175]
s the development of data mining techniques. In
anov et al. [176] created a heavy-weight ontology
ways to express data mining items and inductive
nfalonieri et al. [177] proposed an extension of
8] that integrates ontologies in the generation of
s. In a user study, it was shown how explanations
sing an ontology were perceived as more under-
han those extracted without the use of an ontology
users.

ics-Informed Neural Network
of neural networks known as physics-informed
ork incorporates physical rules and constraints
hitecture of the network. The integration of deep
ith physical modeling, process understanding, and
owledge enhances the interpretability and gen-
of the models. Several methods have proposed
ng physical equations and constraints into neural
or modeling complex and non-linear processes.
m science (atmospheric and oceanic modeling,
e processes, and cryospheric science) [179] and a
rocess to improve the spatio-temporal resolution
t flows [180] are a few of these examples. Re-
lso proposed new methods to improve this family
For instance, Seo et al. [181] proposed a method
the behavior of neural networks using rule-based

Table 4
Publications in the literature regarding questions {M1,…
about model explainability, as described in Table 2.

Reference Year M1 M2 M3 M4 M5 M6

[183] 2020 ■ ■ ■
[184] 2019 ■ ■ ■ ■
[185] 2019 ■ ■ ■
[186] 2019 ■ ■ ■ ■
[187] 2019 ■ ■ ■ ■ ■
[188] 2019 ■ ■ ■
[189] 2019 ■ ■ ■
[190] 2019 ■ ■ ■ ■
[191] 2018 ■ ■ ■ ■
[118] 2018 ■ ■ ■ ■ ■ ■
[192] 2018 ■ ■ ■ ■ ■
[193] 2018 ■ ■ ■ ■
[194] 2018 ■ ■ ■ ■
[195] 2018 ■ ■ ■ ■ ■
[196] 2017 ■ ■ ■
[197] 2017 ■ ■ ■ ■
[198] 2016 ■ ■ ■ ■
[199] 2016 ■ ■ ■ ■
[200] 2016 ■ ■ ■ ■
[201] 2015 ■ ■ ■ ■

representations. Interested readers are encouraged to
the following survey paper [182].

7. Model Explainability
Even if data are clean and carefully prepared for tra

thanks to data explainability techniques like those disc
in the previous section, if the model lacks a clear under
ing, then developers may still find it challenging to
porate their own knowledge into the learning process
the aim of getting better results. Accordingly, in ad
to data explainability, model explainability is of param
importance. In many cases, just analyzing the outp
taking a single input is insufficient to comprehend w
training procedure failed to provide the desired resu
such a case, the training procedure needs to be investi
Model explainability aims to create models that are nat
more understandable. Limiting the selection of AI mod
a particular family of models that are deemed intrins
explainable is often considered identical to running ex
able modeling. The debate, however, extends beyon
traditional explainable model families to cover more m
and innovative methods such as hybrid, joint predictio
explanation, and many other approaches. Whichever w
look at it, the most challenging part is still coming up w
explanatorymechanism that is firmly ingrained in them

Table 4 includes some of the most relevant pape
garding themodel explainability issues to be discussed
following subsections. The following subsections go th
each of the aspects of model explainability, it includ
formation such as important parameters, the relatio
between object and action, the internal working proces
infer the technique used to make decisions.
.: Preprint submitted to Elsevier Page 16 of 65
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ily of Inherently Interpretable Models
nventional method for building explainable mod-
lect the modeling technique from a set of tech-
t are deemed interpretable (white-box models).
] suggested three modeling phases to ensure inter-
(i) Algorithmic transparency, (ii) Simulatability,
ecomposability. LR [202], DT [203], Decision
Rule sets [205], Case-based reasoning [169], In-
Fuzzy Systems [206], and Generalized Additive
AMs) [207] are all examples of this family.
er, merely choosing amodel from an interpretable
s not ensure explainability in practice. For exam-
not be possible to simulate an LR model using
sional input data and therefore the model would
inable [28]. To overcome this problem, one might
kind of regularization, such as the L1 norm, to
number of relevant input features while training
Furthermore, the coefficients calculated for the
may be unstable in the situation of feature multi-
(i.e., input features that are correlated). To solve
m, further regularization, such as the L2 norm,
ed [208]. While there are particular techniques
te these issues, interpretable model families are in
y basic, and therefore fall short of reflecting the
of some real-world situations. This results in the
terpretability-performance tradeoff, which states
ore performant a model is, the less interpretable
vice versa [209]. However, by creating models
th interpretable and performant, a number of aca-
e shown that the claimed interpretability versus
ce tradeoff does not always hold true [132, 210].
ting such a model, the primary issue is to make
nough for its target audience to understand while
omplex enough to properly match the underlying
.
rid Explainable Models
elop a high-performance and explainable model,
feasible to combine an inherently interpretable
echnique (like those cited in the previous section)
histicated black-box method [211]. Hybrid ex-
odels are based on this idea. TheDeep k-Nearest
(DkNN) [195] method uses kNN inference on the
resentation of the training dataset that is learned
of a DNN, as shown in Figure 9. The confor-
tion approach is then used to integrate the kNN
for all layers. DkNNs have been demonstrated

ent and robust, with example-based explanations
r its predictions in terms of the closest training
ilized in each layer. On the other hand, DkNNs
the storage of a hidden representation of the
ing dataset, this may be prohibitively expensive
tasets. It can also provide neighborhood-based
s, which make it easier to interpret the model’s
. The synergy between robustness and explain-
in the fact that DkNN can identify and handle
mal predictions that could potentially lead to the

model’s failure or poor performance, while also prov
insights into how the model is making its predictions
worth noting that DkNN does not directly provide co
factual explanations. However, it can be used in conjun
with counterfactual methods to improve model robu
and interpretability.

In terms of generating predictions within a conf
prediction framework, the Deep Weighted Averaging
sifier (DWAC) [187] technique is similar to DkNN m
in that it relies on the labels of training example
are comparable to the given input instance. Howeve
similarity is calculated only on the basis of the final l
low-dimensional representation.

Self-Explaining Neural Networks (SENN) [118] a
other example. The main concept behind SENN is to
eralize a linear classifier by utilizing NNs to learn it
tures, their associated coefficients, and how the net
are aggregated into a prediction. Concept encoders,
dependent parameterizer, and aggregators are used
scribe three NNs. The resultant hybrid classifier is s
have a linear model’s explainable structure but a blac
expressive capacity and flexibility. The Contextual Exp
tion Networks (CEN) [183] are related to SENNs in c
ways. The CEN presupposes a learning issue in whic
input in a particular context has to be predicted. Th
is to utilize a complicated model to encode the contex
probabilistic way into the parameter space of an inhe
interpretable model. The data is then entered into the
model to produce a prediction.

BagNets [188] are another example of hybrid expla
model. A BagNet is a bag-of-features model in whic
features are learned using a DNN. This kind of model
each input image as a bag of features when it comes to
classification. This bag-of-features representation is c
by slicing an image into many segments and passing
segment through a DNN to get local class evidence as s
in Figure 10. All local evidence is then aggregated fo
class and put through the SoftMax function to determi
overall probability.

Memory networks [212] also combine the learnin
pabilities of connectionist networks with a type of read
write-able memory, as well as inference powers.

Neural-symbolic (NeSy) models [213] look at the
cation of connectionist mechanisms to symbolic com
tion principles and the logical characterization and an
of sub-symbolic computation. These models can be
to explore, comprehend, visualize, and influence o
network complexity.We describe some of thesemodels

To begin with, Conceptors [214] are a type of n
computational mechanism that can be coupled with Bo
logic to add a semantic interpretation component.
based concept induction (a formal logical reasoning
description logics) can also be used to explain data
entials over background knowledge; in the case in
from Wikipedia knowledge base. Also using logic a
symbolic component to attain explainable-by-design m
.: Preprint submitted to Elsevier Page 17 of 65
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Pooling
Layer
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, … ,
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filter/kernel

,…
,

Fully Connected 
Layer

SoftMax 
Layer

,…
,

kNN: (a) The DNN, (b) the output representations at each layer, and (c) the nearest neighbors at each laye
Net training points are shown by the bird and monkey icons. High-dimensional representation spaces are shown
When the nearest neighbor labels are homogeneous, such as in the case of the bird images, confidence is high
ghbors contribute to the interpretability of each layer’s outcome. The term robustness refers to the ability to id
al predictions using nearest neighbor labels discovered for out-of-distribution inputs, such as an adversarial bird,
dden layers.

Class Evidence 
for each patch

,…
,

SoftMax
Layer
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∑
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89
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12,…
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BagNets: The input is first split into q × q patches. Each patch is passed to the DNN to extract the evidence
stage, we take the sum of the class evidence scores overall patches to reach the final image classification decis

Explained Networks [216], which allow to de-
k-box model decisions as first order logic axioms
based simple, compositional and approachable
anner.
les that facilitate the integration of expert knowl-
the black-box model for explainability within
paradigm consist of using ontologies or knowl-
s as symbolic elements to encode common sense
. For instance, to filter and refine opaque mod-
cene graph generators that describe images to
achine scene understanding [217]), or to expose
ning of a compositional model that can be first
verifying what object “parts” the model detected

properly to draw a particular´´whole” object classifi
decision [218].

These architectures can even go further and, after i
fying the misalignment in the expected explanation, c
it. One example of the latter approaches using XA
SHAP-backprop or alternatives) is the X-NeSyL (eX
able Neural Symbolic Learning) methodology [219],
allows aligning machine explanations and domain e
explanations via knowledge graphs.

Apart from knowledge graphs, linguistic summ
aid to better align explanations with the most uni
mean of symbolic understanding, i.e., using natural lan
[220]. PLENARY translates SHAP generated explan
.: Preprint submitted to Elsevier Page 18 of 65
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TED: The instance value  , true label , and explanation  are all part of the training data. The label and expla
before sending them to the DNN. The encoded component and the input for prediction are fed to the DNN. F

r will break down the label and explanation into their constituent parts.

utcomes into linguistic summaries so that experts
easily validate complex XAI technique outputs.
is also shown that having prior knowledge about
nment in the form of a hierarchical knowledge
gnificant speed up of contribution-based explain-
lyses can be achieved. More concretely, Myerson
be an efficient alternative to Shapley analysis in
systems or RL [221].
ymbolic elements showing to be a promising way
raphical clarity to interpret models include learn-
aces [222], or using Finite State Automata [223]
mplicit knowledge learned by agents and discern
ureka moments during learning. At last, causal
4] can be a post-hoc manner to performmediation
causal effects of certain features by identifying
g and mediating factors. These can act as the root
sal models motivating discriminatory policies.
t Prediction and Explanation
lainable model may be trained to give both a
and an explanation. To put it another way, a
d model may be explicitly trained to explain its
. This subsectionwill go through themethods that
lain a model’s decision as well as their benefits
acks.
in with, the Teaching Explanations for Decisions
ework [189] is used to supplement the training
including a collection of features, and output, as
user’s reasoning for that decision, which is called
tion, in each sample. When the model is trained,
ed output and its explanation are combined into
el, as shown in Figure 11. The model’s output is
the time of the test, to give an output and a related
together at the end of the process. The TED
offers a number of benefits, including the ability
xplanations thatmeet the end user’s requirements
lity to be broadly used.
al. [191] proposed a model explainability method
ting multimodal explanations. Their approach
ble to the TED framework in that it needs a
taset containing both textual and visual expla-
test their method, the researchers utilized two

ets relating to activity recognition and visual
swering tasks, both of which were supplemented

with multi-modal explanations. The authors suggeste
incorporatingmulti-modal explanations improves pred
accuracy. Two major flaws exist in the techniques desc
above: (i) the authors presume that explanations are ava
in the training dataset, which is not always the case
(ii) the explanations produced by these techniques
not always represent how the model actually mak
predictions, but rather they might show what people
to perceive as the explanation.

Some approaches in this category do not need e
nations for every prediction in the training dataset
helps to overcome the limitations of the aforement
methodologies. Hendricks et al. [199], for instance
gested utilizing DNNs to provide visual explanatio
the problem of object detection and recognition. In
to produce class-specific visual explanations of the
image predictions at the time of the test, their app
simply requires a textual explanation of images and
class labels at the time of training. Another example of
prediction and explanation approach is the Rationa
Neural Predictions (RNP) model [200], which cons
two parts (both trained simultaneously): a generator a
encoder. In order to make a prediction, the generator us
distribution of input text segments as potential explana
The textual explanations are discovered through trainin
explicitly given to the network. This is only accomp
by imposing two requirements: (i) the input text frag
must be brief and cohesive, and (ii) the model mu
able to act as a replacement for the original content f
specified prediction task. As the encoder makes predi
based on the generator’s rationale, it avoids two o
flaws stated previously. However, only providing ration
insufficient to enable the end user to completely unde
the prediction with confidence [192].
7.4. Explainability through Architectural

Adjustments
By adjusting model architectures, it is also possi

improve model explainability. For example, Zhang
[193] created an explainable CNN that can push repre
tions of upper-layer filters to be an object component
than just a combination of patterns. This is accomplish
incorporating a particular loss function into the feature
of an ordinary CNN. This loss function gives prefe
.: Preprint submitted to Elsevier Page 19 of 65
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This Look Like That: CL extracts the valuable features to employ for making predictions with the given bird da
otypes are learned by the network as representations of prototypical activation patterns in a region of the input i
each prototype may be seen as a hidden representation of a prototypical element of the given bird image.

parts of an object inside a class category while
quiet on images from other classes. The key
ighlight is that this method does not need any
ponent annotation data. Explainable CNNs store
ant information in their high-layer filters than
y trained CNNs do.
t al. [185] proposed This Looks Like That, an
e Deep Network (EDN) architecture for image
. The motivation behind this architecture is based
ople explain classification reasoning in terms of
rts of an image being compared to a collection of
age component prototypes. The authors suggested
rototypes Layer (PL) between the Convolutional
L) and the Fully Connected (FC) layer to the
NN architecture as can be seen in Figure 12. For
the PL includes a certain number of image com-
totypes. Each prototype is intended to contain the
rtant information for recognizing images within
Using a specific loss function, the PL and the
arameters are learned simultaneously. A sparse
imizationmethod is then used to learn the weights
yer. The suggested EDN outperformed black-box
o image classification problems.
more, attention mechanisms [201] is said to pro-
degree of explainability and they have altered the
L algorithms are used. There are many different
tention mechanisms, interested readers are kindly
[225]. Concisely, attention-based models are

ployed in applications of NLP [186], computer
7] or time series modeling [198]. Their goal is
the parts of an input that are most relevant for
well the specific task under consideration. Rele-

ten defined by a collection of weights/scores given
t components, referred to as the Attention Map.
e DNNs usually include some kind of attention
. However, formal research on attention as an
ity mechanism claims that attention is not the
xplanation [190]. For example, attention maps
eakly associated with gradient-based metrics of
ificance, according to a large collection of studies

on different NLP tasks. Furthermore, extremely divers
of attention maps may provide the same predictions.
7.5. Explainability through Regularization

Regularization techniques are often used to enhan
prediction performance of AI models, and may also be
to increase model explainability. For example, Tree
larization is presented by Wu et al. [192] to improve
explainability. The main concept is to encourage peo
learn a model with a decision boundary that can be
approximated using a tiny DT, allowing humans to sim
the predictions. This is accomplished by introducing
regularization term into the loss function that was u
train the model. Models built using this technique are
explainable without compromising predictive perform
according to their experimental findings for a variety o
world applications.

In addition, a significant corpus of research is focus
utilizing regularization to explicitly limit the explanati
model predictions; ensuring this way that they are c
for suitable reasons. For instance, Ross et al. [196] pro
a method for constraining local model predictions d
training to reflect domain knowledge. The authors co
ered input gradients as local first-order linear appro
tions that can be used to map model behavior, i.e., th
used as a first-order explanation for particular model
The domain knowledge is stored as a binary mask m
with each feature indicating whether it should be ut
to forecast each input. The model loss function is
supplemented with a new term that penalizes input gra
that do not match the mask matrix. Models trained
this method generalize considerably better when tra
and testing on datasets with large differences. In an
similar example, Ghaeini et al. [184] developed a tech
called Saliency learning. In their method, expert annot
concentrate on important portions of the input rathe
irrelevant parts, as well as having annotations at the
embedding level rather than at the input dimension leve
model extracts the event first by feeding the embeddi
two CNNs, as shown in Figure 13. After using max-po
.: Preprint submitted to Elsevier Page 20 of 65
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Saliency learning: A phrase is fed to two CNNs with kernel sizes of 3 × 3 and 5 × 5. The initial max-pooling ope
intermediate result. After that, the result is decomposed by performing the dimensional and sequential max-p
For the final prediction, the decoded output is concatenated and sent via a feed-forward layer.

diate output is generated. Later, dimension-wise
nce-wise max-pooling is used to get the final
eriments utilizing simulated explanations in a
tasks indicate that Saliency Learning produces
ate and reliable results.
r Methodologies
re a fewmore notable model explainability meth-
mentioning. Angelino et al. developed the Certi-
mum RulE ListS (CORELS) method [194], which
ution for finding optimal rule lists for reducing the
isk of a given set of training data. Furthermore,
S method has been shown to be quick and needs
e software [226]. The fact that it can only deal
rical data is its main disadvantage.

oc Explainability
iscussing data and model explainability issues, it
e to go in-depth with post-hoc explainability is-
arious methods to deal with post-hoc explainabil-
uped around six important features, as shown in
(i) attributionmethods, (ii) visualizationmethods,
le-based explanation methods, (iv) game theory
v) knowledge extraction methods, and (vi) neural
et us start by formulating the problem.
m Formulation: In supervised ML, a model
aps a feature vector x ∈  to a target y ∈  .

set D = {(x1, y1), (x2, y2), ..., (xn, yn)} is utilizedng/training of the model. According to whether
discrete value or a continuous value, supervised
s can be categorized either as classification or
problems. A black-box model can be formulated , b(x) = ywith b ∈ , where ⊂  gives the
pothesis space. For instance,  = {NN with one

be formulated in a similar way. Let’s suppose ŵ ∶ 
ŵ(x) = ywith ŵ ∈ ̂ , where ̂ ⊂  stands for them
hypothesis space, is a white-box model. For instance,
{decision trees of depth 2, 3, 4}.

The error measure  ∶  ∗  → ℝ is used to ev
the trained model’s prediction in terms of its performan
common example is the hinge loss from binary classifi
(ℎ(x), y) = max{0, 1−ℎ(x) ∗ y}with y ∈ {−1, 1}.
the actual label y and the prediction ℎ(x) are identica
loss is zero. The squared deviation (ℎ(x), y) = (ℎ(x)
is a popular error metric used in regression tasks. Supe
ML is aimed at minimizing a given error metric:

ℎ∗ = arg min
ℎ∈

1
|n|

n∑
x∈
(ℎ(xi), yi

)
,

where ℎ∗ is the optimized model with the smallest
Table 5 contains the nomenclature, symbols, and var
used in this study.

Table 6 includes some of the most relevant pape
garding the post-hoc explainability issues to be discus
the following subsections.
8.1. Attribution Methods

In the context of image processing, the majority of
bution methods depend on pixel associations to show
pixel of a training input image is relevant in terms
model activating in a certain manner. Therefore, each
of the input image is given an attribution value known
relevance or contribution [243]. Mathematically, a DN
takes an input image  = [i1, i2, ..., im] ∈ ℝN , the o
may be considered as () = [1(),2(), ...,where the total number of output neurons is denoted
An attributionmethod’s purpose is to estimate the Rele
Score (RS) of each input pixel im to the output c
er, two hidden layers}. White or gray boxes can a particular target neuron c is specified. When all of the
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8.3. Example-based 
Explanation Methods

3A. Prototype & Criticisms
3B. Counterfactuals Explanation

MMD-c

8.5. Knowledge 
Extraction Methods

5B. Model Distillation
5A. Rule ExtractionPedagogical Method

Decompositional Method

Hybrid Rule (Eclectic) 

8.6. Neural Methods

Vanilla Gradient

3C. Adversarial Examples

6A. Influence Methods

6B. Concept Methods

Feature Importance
levance Propagation
Sensitivity Analysis

Concept Activation Vector
Testing with CAV

8.4. Game Theory 
Methods

4B. SHAP
4A. Shapley Values

8.2. Visualization 
Methods

2A. Partial Dependan
2B. Accumulated Local

8.1. Attribution Methods

1B. Perturbation Methods  
1C. Backpropagation Methods

1D. DeepLift

Anchors
Deconvolutional Network

RISE

CAM & Gradient (Grad) CAM 
Guided GradCAM & ScoreCAM

Smooth Gradient 
Integrated Gradients
Guided backpropagation

1A. Deep Taylor DecompositionSurrogation

LIME

SP-LIME
NormLIME

LORE
CluReFI

3C. Individual Conditional Expec

A proposed taxonomy for Post-hoc Explainability. Definition of acronyms: LIME - Locally Interpretable Model-Ag
LORE - Local Rule-based Explanation, CluReFI - Cluster Representatives with LIME, SP LIME - Submodula
E - Randomized Input Sampling to Provide Explanations, CAM - Class Activation Map, MMD - Maximum
y, CAV - Concept Activation Vector. The numerical value and sub-index indicate the sequence and sub-secti
techniques are presented in the manuscript.

ure in this manuscript.

Description

Dataset with n instances
Training set, a training instance x
Testing set, a testing instance y
Hypothesis space, a hypothesis ℎ ∈ 
black-box model family
White box model family
A ML model, either black-box or white box F ∈ ,
Input image of size m × m having pixel i
Output from b
Number of Classes, a specific class represent by c
Loss function
Relevance score or contribution
Number of layers in a network
Taylor series function
Binary mask
Precision threshold
Number of neurons
Weight matrix
Activation map
Class probability
Gaussian noise
Standard deviation

he same dimension as the input image, the two
erged to form an Attribution Map [244]. In the
couple of years, a number of novel attribution
have been developed. As you can see in Table 7
uish four families of attribution methods: Deep
omposition (DTD); Perturbation Methods; Back-
n Methods; and DeepLift. They will be carefully
n the rest of this section.
aylor Decomposition (DTD)was inspired by the
, decomposes the function value (.) by summing

Table 6
Publications in the literature regarding questions {P1,…
about post-hoc explainability, as described in Table 2.

Reference Year P1 P2 P3 P4 P5 P6

[30] 2020 ■ ■ ■ ■
[227] 2020 ■ ■ ■ ■ ■
[228] 2020 ■ ■ ■
[229] 2018 ■ ■ ■
[230] 2018 ■ ■ ■
[231] 2018 ■ ■ ■ ■
[232] 2017 ■ ■ ■ ■
[141] 2017 ■ ■ ■ ■
[233] 2017 ■ ■ ■ ■
[234] 2017 ■ ■ ■ ■
[31] 2017 ■ ■ ■ ■
[29] 2016 ■ ■ ■ ■
[235] 2016 ■ ■ ■ ■
[236] 2015 ■ ■ ■
[237] 2015 ■ ■ ■ ■ ■
[238] 2014 ■ ■ ■
[239] 2014 ■ ■ ■ ■
[240] 2013 ■ ■ ■ ■ ■
[241] 2009 ■ ■ ■ ■ ■ ■
[242] 1988 ■ ■ ■

15 shows the pixel-wise Taylor decomposition proce
the classification step; the input image  is used as a f
vector feed to the network. The network classifies the
into a specific class. In the next step; the classification o(.) is decomposed into the RSs. The RSs are the
in a first-order Taylor series expansion of the funct
at an initial point x such that  (x) = 0. The initial
removes the information from the input for which  (x
The following is a possible way to write this Taylor
elucidate the model’s behavior [236, 240]. Figure
.: Preprint submitted to Elsevier Page 22 of 65
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ensive overview of attribution-based XAI methods, highlighting advantages and disadvantages.

od Ref. Advantages Disadvantages Concept

D [240] Training free method, may apply directly to any
NNs.

i) Inconsistent in providing a unique solution, and
slow computations [245]; ii) Partial explanation as
higher order derivatives terms are set to zeros.

SA method

E [29]

i) Suitable to a very large number of explanatory
variables, sparse explainer; ii) Same local
interpretable model could be replaced [149]; iii)
Selective and possibly contrastive explanations; iv)
Provides local fidelity; v) Makes no assumptions
about the model.

i) Incapable of explaining models with non-linear
decision boundaries; ii) Incapable of explaining
surrounding observations [149]; iii) Unsolved
problem with tabular data.

Model agnos
local surroga

E [246]

i) Provide a counterfactual suggestion with the
explanation; ii) Utilise a genetic algorithm that
takes advantage of the black-box to generate
examples; iii) Parameter-free method.

i) Based on assumption; ii) Cannot provide a
global explanation; iii) Works for tabular data.

Local
explanation

eFi [247] Provides local explanation to a cluster. Representative of each cluster presents the
explanation of important features.

Local
explanation

ME [29]
To check the entire model by extracting some
data points. Aggregate the local models to form a
global interpretation.

Less beneficial for high-level comprehension. Model agnos
global surrog

IME [227]
Provides finer-grained interpretation in a
multi-class setting and add proper normalization
to reduce the computation.

Aggregate many explanations for the class-specific
explanation.

Local
explanation

ors [231] i) Less computation than SHAP; ii) Better
generalizability than LIME [227].

i) Requires discretization, highly configurable, and
impactful setup; ii) Coverage drastically decreases
with an increase in the number of feature
predicates.

Perturbatio
based mod
agnostic R

vNet [238] i) Highlights fine-grained details; ii) Dense feature
representation with multi-layer.

Artifacts in the visualization [31]; ii) Training is
difficult due to the large output space.

Pixel-space
gradient

visualizatio

E [229] i) Any architecture can be generalized; ii)
Proposes causal metrics.

i) Inconsistent due to random mask; ii) Slow
computation. Pixel salienc

[235] i) Identifies discriminative areas in an image
classification task; ii) Fast and accurate.

i) Modify the network architecture that lends to
complex model [31]; ii) Applicable to a specific
type of CNN.

Regularizati

AM [31]

i) Applies to a broad range of CNN model-families;
ii) Robust to adversarial perturbations in an image
classification task; iii) Help to achieve the model
generalization by removing biases.

i) Lacks the ability to highlight fine-grained
details; ii) Individual interpretations are difficult to
aggregate for global knowledge.

Regularizati

ed
agation [248]

i) Highlights the fine-grained details and less noisy
explanation [31]; ii) Provides more interpretable
results than DeepLift.

i) Captures pixels detected by neurons, not the
ones that suppress neurons [31]; ii) Less
class-sensitive than the vanilla gradient.

Pixel-space
Gradient

Visualizatio

ed
AM [31]

i) Removes negative gradients and understand the
model’s decision; ii) Provides class descriptive and
high-resolution maps.

i) Distinguishes an object of the same class; ii)
Does not consider the entire class region.

Guided Bac
propagation
Grad-CAM

AM [30]
i) Solves the dependency’s problem on the
gradients; ii) Achieves better visualization and fair
interpretation.

i) Localization results are poor and lead to
non-interpretability; ii) Smoothing generates
inconsistent explanations.

CAM

lla
ent [239] i) Simple to implement based on backpropagation;

ii) Pixel-wise features are important.

i) Makes undesirable changes with data
pre-processing [249]; ii) Vulnerable to adversarial
attacks [250]; iii) Decision-making process is
unknown.

Backpropag
tion

interpretatio

rad [233]
i) Denoising impact on the sensitivity map is
achieved by training with noisy data; ii) Generates
images with multiple levels of noise.

i) More effective with Large areas of the class
object. ii) Degeneralizes to different networks.

Regularizati
[251]

ated
s (IG) [252] i) Very suitable for neural networks; ii) Optimizes

the heatmap for faithful explanations.

i) Does not meet the Shapley values’ axiom; ii)
Frail mechanism to identify specific features and
inconsistent to produce the explanation.

Shapley valu

Lift [234] i) Gradient-free [227]; ii) Achieves the goal of
completeness.

i) Depends on a reference point or baseline; ii)
Produces inconsistent results due to redefining
gradient.

Feature
importance

) =
d∑
i=1
 i(x) + (xx ), (2)

where higher-order derivative terms are denoted by(.
higher-order derivative terms are non-zero. In this w
fraction of the explanation is generated. By neglecting
the first-order terms are used to compute the  a
.: Preprint submitted to Elsevier Page 23 of 65
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Convolutional Layer + ReLU

, … , 

Pooling 
Layer

Convolutional Layer + ReLU

, … , 

Pooling 
Layer

, … , 

1, 2, … , 𝑁௅

,…
,

SoftMax 
Layer

,…
,

age

Fully Connected 
Layer

Convolutional Neural Network

Classification Step

Monkey
Bird
Human
Dog

Cat

4
89

0

3

12,…
,

Pixel-wise Step for Explanation

Output

S(Bird)
ൌ ൌ … ൌ

Sum of RS

Deep Taylor Decomposition: The input image has been identified as a bird in the first step, while the model’s rec
res is shown as a heat map based on the relevance scores estimated from each hidden layer in the second step
unding the bird’s location had a substantial impact on the outcome, as shown by the red regions that proved
ion. In contrast, the blue regions were found not to be helpful in the decision.

lanation of  :
(x) = )

)xi
|||x=x ⋅ (xi − xi). (3)

rbation Methods are the second family of at-
ethods under consideration in this survey. They
e attribution of a training instance feature directly
, masking, or changing the input instance, then a
ss on the modified input is executed before com-
btained results to the original output.While these
provide for direct measurement of a feature’s
fluence, the methods become very sluggish as the
attributes to test increases [253].
n. A distinct model is created to explain the
decision either locally or globally [254], and the
ated is intrinsically interpretable. Separating a
model from its explanation, according to Ribeiro
, provides better accuracy, flexibility, and usabil-
ate models may be classified as local or global. By
following model equation, surrogate models are
ta:
argmin

w∈
1
||

∑
x∈
( (x),(x)). (4)

ction acts as the fidelity score, indicating how
rrogate ∗ approximates the black-box model .
l scenario occurs, when the surrogate ∗ uses the
ing dataset, while we define  = {x1, x2, ..., xn}of the entire training datasetD. Often a subset 
nt the data distribution of themodel sufficiently
Local scenario occurs, when the surrogate ∗
tes  around a single test input x defined as  =
(x)}, where  is a neighborhood of x.
terpretable Model-Agnostic Explainer (LIME)
model and their derivatives are the best exam-
h local and global surrogate methods [29]. This
ocuses on developing local surrogate models to
ividual predictions of black-box ML techniques.
stigates what happens to predictions when differ-
f data are fed into the ML model. LIME creates a
t using altered samples and the black-box model’s
. LIME then uses the perturbed dataset to build

instances’ closeness to the instance of interest [29]
interpretable model, such as Least Absolute Shrinkag
Selection Operator (LASSO), LR, or DT, may be used
learned model should be a good local approximation
MLmodel’s predictions but does not necessarily need t
a good global approximation. Local fidelity is anothe
for this level of precision.

The ideal way to acquire data variation depen
the type of data, which might be images, text, or ta
information. For images and text, turning single wo
super-pixels on/off often is the best solution. LIME gen
fresh samples from tabular data by perturbing each f
independently and drawing sample points from a n
distribution with the feature’s mean and standard dev
[149]. The LIME model can be defined as:

Θ(�) = arg min∈(f, , ��) + !( ).
The obtained explanationΘ(�) interprets the targe

ple x, with linear weights when  is a linear model. A m ∈  , where  is a class of interpretable models;
is the complexity measure; f ∶ ℝd → ℝ is the model
explained; and ��(x) is a proximity measure betwee
perturbed sample x and �. The function  is a meas
the unfaithfulness of  in approximating f in the lo
defined by ��. LIME is a model-agnostic method,
means that the obtained proxy model is suitable for us
any model [29].
Local Rule-based Explanation (LORE) [246] is a
nostic method capable of providing interpretable and
worthy explanations. It constructs a simple, interpr
predictor by first using an ad-hoc “genetic algorith
generate a balanced set of neighbor instances of the
instance x, from which a decision tree classifier c
extracted. The resulting decision tree is then used to
a local explanation e as follows:

e = ⟨r = p→ y,∳⟩,
where the first part, r = p→ y is a rule for making a de
y with a binary predictor p. The second part, ∳, is a
counterfactual rules, which are the minimum changes
feature x values that would cause the predictor to reve
decision.
table model that is weighted by the sampled

.: Preprint submitted to Elsevier Page 24 of 65
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presentatives with LIME (CluReFI) [247] was
extending LIME. First, LIME describes the rep-
of a cluster once the data has been clustered.
ating an unknown data instance to the closest
explanation visualizes cluster assignments using
per-feature validity. Then, CluReFI visualizes
r’s feature validity ranges for the most essential
ntributing to the specified class. Unlike LIME,
hows the user the most significant aspects that
to the class for their representation.
ar Pick (SP) – LIME. Examining the model’s
one by one can assist in deciding whether the
be trusted as a whole. However, under typical
, it is impossible to examine all predictions. SP-
strategy for identifying must-see events. The
events to examine is selected to be as large as
that the model can be understood. Cases with
atures are also included [29]. By looking at the
s for the subset chosen by SP-LIME, users will
hoose whether or not to trust the model’s general
he pick set problem may be stated as a problem
g a set that leads to maximum coverage while
within a certain budget B.
Set( ,) = arg max,||≤Bℂ(, ,) (7)
the coverage; the overall relevance of features
at least once in the examples from set is given
rtance  for instances . As solving the given
NP-hard, a greedy approach is used.
E. LIME approximates a large NN on a small
he data manifold locally. Extraction of common
s from many local approximations yields global
s. However, the optimum way to integrate local
tions remains unclear. Based on local model ex-
NormLIME determines a feature’s importance.
ly, for a certain model f ∶  →  , it is
train an interpretable model  that is local to
surrounding a certain input x0 ∈  . A Gaus-
bility distribution �x0 is used to sample the data
Drawing x′ from �x0 and applying f (.) repeatedlynew dataset  ′ = {x′, f (x′)}. Thus, given the
et  ′, we develop a sparse LR  (x′, x0) = wTx0x′zing the following loss function using !(.) as the
omplexity.
in
x0
(f, , �x0 ) + !(wx0 ), (8)

loss weight (f, , �x0 ) = Ex′≈�x0 (f (x
′ −

. An upper limit  is set for the number of non-
onents in wx0 , such that !(wx0 ) = (||wx0 ||0 >gh the optimization is difficult, it may be ap-
y choosing  features using LASSO regression
arrying out regression exclusively on the top 
s another variant from LIME that looks for a

black-box classification model. To create local explan
for predictions made by black-boxMLmodels, Anchor
perturbations [231]. The resulting explanations are giv
easy-to-understand IF-THEN rules termed anchors, thi
contrast to the surrogate models employed by LIME
As LIME only uses a linear decision boundary tha
approximates the model in a given perturbation spa
findings do not reflect how faithful the models are. An
given an identical perturbation space, generates explan
in such a way that the coverage is customized to the m
behavior and clearly expresses the decision boundaries
result,Anchors is trustworthy by design and clearly ide
which scenarios it applies to.

As previously stated, the algorithm’s conclusio
explanations are given in the form of anchors, which a
cision rules. This approach overcomes the shortcomin
LIME. Refer to Table 7 for the downsides of each expl
Anchors reduce the number of model calls by comb
RL techniques with a graph search method [231]. We
an instance as x, the collection of predicates is , i.e
resultant anchor or rule when (x) = 1 implies′s feature predicates relate to the feature values of x
following is a formal definition of an anchor:

Ex(|)[1 (x)= (z)] ≥ �;(x) = 1.
A rule or anchor  must be discovered for an ins

x, and predicts a similar class to x for a fraction of a
� (a precision threshold), i.e., only rules with at le
local faithfulness are deemed valid, this based on,x(utilizing the given ML model (supplied by the ind
function 1 (x)= (z)). Wherein x(.|) represents thebution of x’s neighbors, which correspond to , and
the categorization model to be explained is denoted by
Deconvolutional Network. Zeiler et al. [238] sugg
exploring the intermediate layers of a Convolutiona
work (ConvNet) to explain themodel’s decision. The au
visualized the activity of the intermediary layers tomat
input pixel space by the use of a Deconvolutional Ne
(DeconvNet) [256]. A DeconvNet is similar to a Con
it uses the same layer components such as pooling,
larization, and filtering in reverse order. A DeconvNet
was connected to a ConvNet layer, as seen in Figure 16
DeconvNet process, seen at the bottom of the figure, w
the layer underneath to rebuild an approximate replica
ConvNet features.

To examine a given ConvNet activation map, all
maps in the network are set to zero. Only the non
activation map is passed to the DeconvNet layer. Th
convNet layer performs three operations on the inputm
Unpooling - Despite the max pooling operation being
invertible, an approximate inverse is recorded in a Sw
variable. (ii) Rectification - The reconstructed feature
through the Rectifying Linear Unit (ReLU) non-linea
ensure that the reconstructedmaps are positive. (iii) Fil
- The DeconvNet takes the transpose of the learned fi
With the exception of the reverse of the ReLU laye
le that will explain individual predictions of any convNet calculates its results in the same manner as Vanilla
.: Preprint submitted to Elsevier Page 25 of 65
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, … , 

Max 
Pooling 
Layer

ConvNet

DeconvNet
R
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tif

ie
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ur
e M

ap
s

Rectified Unpooled + 
Convolutional Filtering

, … , 

Unpooling
Layer

Sw
itc

he
s

To Next ConvNet

From Previous DeconvNetf 
s

DeconvNet: Every layer in the ConvNet has a
linked to it, allowing a continuous route back to the
ut. The ConvNet receives an image and computes
ross all layers. All the other activations in a layer
ero and feed the extracted feature maps into the
econvNet layer to investigate ConvNet activations.
can rebuild an approximate replica of the feature
y ConvNet. During ConvNet’s pooling operations,
ep track of where the local maxima are located.

257]. Vanilla Gradient may be thought of as a
ralized version of DeconvNet. When it comes to
ating the gradient via ReLU, DeconvNet takes a
proach:

L
= L+11(L+1 > 0),

(10)
reconstructions of the layers L and L + 1L

and L+1 respectively. During
ation, the DeconvNet layer remembers which
maps in theL layer have been set equal to zero
ard pass and ensures they are unchanged in the
er.
ed Input Sampling to Provide Explanations
tsiuk et al. [229] estimated the value of important
n image by lowering the brightness of pixels to
om combinations. Bymultiplying an input image
ise with a randomly generated binarymask,
were able to mimic this effect. Next, a confidence
puted using the masked images by passing them
A heatmap is produced by a linear combination
s, the confidence score is derived from the target
e masked input. The authors further explain that
ue may be used to provide visual explanations for
ctor predictions [258].
ropagation Methods are another family of at-
ethods. In one forward and one backward pass to
ackpropagation methods calculate the attribution
all the input features. Several of these passes
uired in certain cases, although this number does
the number of input features and is often sig-

approaches. Backpropagation approaches are often q
than perturbation-based approaches, while their resul
seldom directly tied to output variation [243]. The follo
summarizes the backpropagation approaches that ar
cussed in this article.
Gradient-only methods are only concerned with th
dient when determining if a change to a given pixel w
affect the final prediction. Grad-CAM [31] and Vanilla
dient [239] are two examples of such methods. The com
idea behind gradient-only methods is that if a pixel
input image is altered, the predicted probability of the
will either increase (positive gradient) or decrease (ne
gradient). The greater the impact of an alteration to a
the higher the absolute value of that gradient. TheClass
vationMap (CAM)method and its variants will be disc
first, followed by Vanilla-based gradient approaches.
Class Activation Map (CAM). Lin et al. [259] ut
Global Average Pooling (GAP) as a structural regul
in a CNN to reduce the number of parameters used
retaining exceptional performance. With little modifi
to the GAP method, Zhou et al. [235] discovered th
network could efficiently detect discriminative image
in a single forward pass. The weighted activation ma
duced for each feature map is referred to as a CAM. F
17 depicts the process of creating a CAM. The GAP
is positioned immediately before the last layer (Soft
The GAP takes the previously generated feature map
calculates the spatial average. The SoftMax layer retur
class probability according to the weighted sum of the s
averagemap values. Theweightmatrix is then passed b
the last convolutional layer, where it is used to calcula
weighted sum of the feature mappings and produce a C

Lete (x, y) be the activation map of the e-th n
from the last convolutional layer at a given location
The GAP spatial average may be calculated as follows

 =∑
x,y
e(x, y).

Considerwe to be the weight matrix that corresponds
class  at the e-th neuron. Thus, for class , the So
takes an input of ∑ew


e ⋅  . The SoftMax laye

return the class probability as:

ℙ =
exp

(∑
ew

e ⋅ )

∑

(
exp

(∑
ewe ⋅ )

) .

The weight matrix we is passed back to the feature
generated by the last convolutional layer. In this wa
obtained map is referred to as the CAM and defined b

(x, y) =
∑
e
we ⋅e(x, y).

Gradient-weighted CAM (Grad-CAM) [31] provid
sual explanations for any model in the CNN family
ess computationally expensive than perturbation out needing to go through architectural modifications or
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Convolutional Layer + ReLU

, … , 

Pooling 
Layer

Convolutional Layer + ReLU

, … , 

Pooling 
Layer

, … , 

1, 2, … , N

,…
,

SoftMax 
Layer

,…
,

GAP

𝑤ଵ

𝑤ଶ

𝑤௡

𝑤ଷ

𝑤ଵ  ∗ 𝑤ଶ  ∗ , … , 𝑤௡  ∗൅ ൅ ൅ ൌ 

Class: 
Western 
Meadowlark

The spatial average of each unit’s feature map, from the last possible CL, is generated by the GAP. The final re
sing a weighted sum of the spatial data. The discriminative areas, distinct to each class, are highlighted in the

Convolutional Layer + ReLU

, … , 

Pooling 
Layer

Convolutional Layer + ReLU

, … , 

Pooling 
Layer

, … , 

1, 2, … , 𝑁௅

,…
,

RCFM

Convolutional Neural Network

Input Image

Class of Interest

Image Classification

Image Captioning

Question Answering,…
,

Task-Specific Network

𝑤ଵ𝑤ଶ

𝑤௡

𝑤ଷ

GradCAM

Guided backpropagation

ReLU

Guided GradCAM

Bird

Bird on tree

Is there a bird? Where?

The input image and class of interest are fed into the DNN, which then performs task-specific calculations to p
for the class. Guided backpropagation is the output of the task-specific network. The Guided backpropagation
the RCFM in order to calculate the rough Grad-CAM localization, which reflects where the model must look in
ecific decisions. Elementwise multiplication of the heatmap of the Grad-CAM with Guided backpropagation pro
d-CAM, which is concept-specific and has high resolution.

unlike regular CAM approaches. The CNN layers
own for capturing both spatial information and
semantics. With this foundation in place, the final
may have the optimal composition for extracting
data. Grad-CAM assigns significance ratings to
n for the given target class using the gradient
n backpropagated to the final convolutional layer.
ew of Grad-CAM is shown in Figure 18. This
siders: (i) an input image, and (ii) a target class.
raw score for a particular category, the input
assed via a CNN module and uses task-specific
s. All the gradients are set equal to zero except
et class. The non-zero signal is backpropagated to
ng features map, these are referred to as Rectified
nal Feature Maps (RCFM) which are combined
the Grad-CAM map of the target class.
Grad-CAM localization map be

Grad−CAM ∈
representing width and t representing height for
. The class score is defined by  before going
e SoftMax function. Firstly, the gradient of  is
with respect to the RCFM mk; 
k = )

)m . The

computed gradient 
k is passed to the GAP layer to o
the significant weights matrix for the neurons of th
convolutional layer as follows:

wk = 1
∑
p

∑
q

k(p, q) =

1
∑
p

∑
q

)
)mk(p, q)

The weight matrix wk is a partial linearization of the
that represents the significance of the k-th feature m
the class . The weight matrix multiply with the RCF
and passed to the ReLU layer to obtain the Grad-CAM
as:


Grad−CAM = ReLU

(∑
k
wkmk

)
.

Guided Backpropagation [248] and deconvolution
ods compute the gradient of the target output with re
to the input as shown in Figure 18. However, the back
agation of ReLU functions is overridden so that only
negative gradients are backpropagated. In guided back
agation, the ReLU function is applied to the input grad
k and during deconvolution, the ReLU function is applied
.: Preprint submitted to Elsevier Page 27 of 65
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put gradients and directly backpropagated. De-
nd guided backpropagation approaches generate
rsions of the gradient rather than the true gradient

rad-CAM is a class-discriminative method and
get class areas, however, it lacks the capacity to
fine-grained features that pixel-space gradient
n techniques (e.g., DeconvNet [238]) or Guided
gation [248] can provide. When backpropagating
layers, Guided Backpropagation illustrates gradi-
tion to the input image, where the negative gra-
suppressed. This seems to be aimed at capturing
are sensed by neurons rather than capturing those
t neurons. Figure 18 shows how to combine (by
lement-wise multiplication) both Guided Back-
n and Grad-CAM visualizations, thus producing
ad-CAM.

[30] also incorporates gradient information,
ept known as Increase of Confidence is used to
iority for each activation map. Let  =  (X) be
t accepts  as an input image and produces logits
enotes the i-th channel of the convolutional layer
ontribution ofiL

to  ′ with b as the baseline
lass category c is:
t(iL

) =  c( ⋅ ℍil) −  c(b), (16)

= s
(
Up

(iL

))
. The operator Up (.) upsam-

to the required input size and s normalizes each
[0, 1]. Score-CAM can be represented as:

reCAM = ReLU
(∑

i
�ciiL

)
, (17)

Cont
(iL

)
.

radient. Simonyan et al. [239] named this ap-
mage-Specific Class Saliency, or simply Saliency
his approach, the loss function’s gradient is cal-
th regard to the input pixels. Many XAI algo-
erate saliencymaps, i.e., heatmaps that emphasize
input with the largest impact on the prediction;
ss denoting areas that have a significant effect on
s ultimate decision [239]. Accordingly, saliency
a means of evaluating a CNN’s prediction, but
been criticized for concentrating on the input
to describe how the model actually makes its
he first technique offered by Zeiler et al. [238]
nvNet. A DeconvNet reconstructs the input from
on of an intermediate layer of the network to dis-
e features (pixels) in the input that the particular
te layer of the network was looking for. The sec-
mplest, method of obtaining a saliency map was
y Simonyan et al. [239]. This method computes
ts of logits with respect to the network’s input
ackpropagation technique. It highlights pixels of

the gradient received, indicating the pixel contribution
final relevance score. A guided backpropagation algo
was presented as a third method of obtaining saliency
by combining both techniques [248]. Instead of ma
the importance signal based on negative input signa
ues in the forward pass or using negative reconstru
signal values (deconvolution), the authors mask the
according to whether each of these situations occurs
method excels at obtaining high-resolution, precise sa
maps. As the idea of the gradient is present in all
this technique may be used with any ANN. As a resul
approach might be called a model-agnostic interpre
approach.

The formal definition of a saliency map is that an has a class  with (.) being the class relevance
then the pixels of image , based on the score function
linear model, can be represented as:

() = b + w,
wherew denotes the network’s weight vector and b deits bias. The significance of the pixels is determined b
magnitude ofw. In the case of a DNN, however, the sc
function is quite nonlinear. As a result, the above equ
may be expressed as:

() ≈ b + w,
where w can be derived for an image 0:

w =
)
) |||0 .

As non-linear units like ReLU return unsigned values,
is uncertainty about how the gradient will be calc
in the backward pass. The ReLU function is definL+1(l) = max(0,L) from layerL to layerL−1following is how the uncertainty is resolved:

)
)L

= )
)L+1

⋅ (L > 0).

Rearranging the components of w yields the salien
sensitivity or pixel attribution map ∈ ℝmxn. The nu
of components inw equals the number of pixels for the
scale image . Thus, the saliency map is defined as:

ij =
|||widx(i,j)

||| ,
where idx(i, j) represents the component of w that
sponds to the i-th row and j-th column. The saliency m
an RGB image  is derived as:

ij = maxcℎ
|||widx(i,j,cℎ)

|||,

where cℎ denotes the color channel of image . To cr
single saliency map, the equation takes the maximum
from all the color channels.
SmoothGrad (SmGrad). In practice, sensitivity map
age via backpropagation based on the quantity of to be very noisy as the maps are based on the gradients of
.: Preprint submitted to Elsevier Page 28 of 65
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Input Image Sensitivity Map, 𝑀௜ ,௝

A noisy sensitivity map based on the gradient from
assification network. Partial derivatives with greater
lues are represented by brighter pixels.

core [239, 260]. This noise is due to the sharp
s of the partial derivatives. Moreover, sensitivity
ot show correlations between the highlighted
the input label over the entire region, as shown
9. It is possible to smooth the gradient using a
ernel, instead of visualizing the gradient values
e gradients are smoothed by adding several forms
n noise to the input image before averaging the
maps. As a result, SmGrad has the following
233]:

() = 1
n

n∑
1
n

( + (0, �2)), (24)

umber of instances is n, the input image is , and
ussian noise with � as the standard deviation.
nt-based sensitivity maps may be sharpened us-
pes of smoothing, according to previous studies
[233]. First, it seems that averaging maps that
d from numerous small perturbations of an input
a substantial smoothing impact. Second, if the

ta has been skewed with random noise, then the
y be amplified even further.
Gradient. According to Sundarajan et al. [252]
ent-based techniques miss key propositions that
le attributes. Intuitively, we understand the Inte-
dient (IG) approach as combining Gradient Im-
on Invariance (GII) with the sensitivity of LRP or
chniques. Let  be a DNN,  be an input image,
he baseline image, which could represent a black
mage classification networks, or could be a vector
or word embedding in text prediction models.
nts along the inputs, which are on a straight line
e baseline image ′ and the input image  are
gether using an IG technique to suppress noise.
, the IGs along the k-th dimension are defined as:

(k−′k) ∗ ∫
1

�=0

)(′ + �( − ′))
)k d�. (25)

t, a Riemann sum or Gauss Legendre quadrature
used to approximate this integral.
IFT [234] is the last family of attribution meth-
sign significance ratings to input variables, in a

premise in DeepLIFT is that it frames the topic of s
icance in terms of deviations from a reference con̂, which is selected by the user. At the layer Lcontributions can be specified as follows:

L
i () = i() − i(̂),

where i is the interested neuron in the NN. For all o
L

i () is set to zero. The reference is often set to
just as it is in LRP. Running a forward pass determines
the values in ̂ij for each hidden layerL. The RS m
defined as follows:

L
i () =∑

i

ij − ̂ij∑
j ij −∑

j ̂ij
L+1
i ,

when a reference ̂ij is fed to the NN, the weighted activ
is denoted as ̂ij = wL+1,L

ij ̂L
i for a neuron i

respect to neuron j. This rule was included as part
method’s original development.
8.2. Visualization Methods

Understanding an AI model, by visualizing its rep
tations to investigate the underlying patterns is a natura
cept. Visualization methods are most often used with s
vised learningmodels. Various visualization approache
be covered in the following paragraphs and their stre
and weaknesses are summarized in Table 8.

(a) (b)

Figure 20: (a) The average projected risk, or probabilit
certain event, is shown by the black curve. (b) The lin
(top) and partial dependency bar (middle) are shown. Th
represents the outcome’s predicted risk. At the bottom
figure is a color map. Taken from [139].

2A. Partial Dependence Plot (PDP) [237]. When
dividual feature is changed throughout its range, the
displays the black-box’s average prediction. Partial d
dency is a concept that attempts to demonstrate how a
feature influences the global model’s prediction. In P
the connection between an individual feature and the
is represented. As seen in Figure 20(a), for the origina
the red line depicts the average projected risk. The me
y to pixel-wise decomposition. The fundamental the observed values is represented by a vertical line, and the
.: Preprint submitted to Elsevier Page 29 of 65
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of visualization-based XAI methods, highlighting advantages and disadvantages.

Ref. Advantages Disadvantages Concept

[237] i) Provides a clear interpretation; ii) Intuitive, easy
to implement, and shows global effects.

i) Issue with the assumption of independence; ii)
Heterogeneous effects are hidden.

Global techniqu
Feature visualizat

[241]

i) Potential to reveal heterogeneous relationships;
ii) Fitted values vary over a wide range of relevant
factors; iii) Reveals the potential locations and
magnitude of variation.

i) Shows a single feature at a time; ii) Not easy to
plot the average results; iii) Independence
assumption for a single feature.

Global techniqu
Feature visualizat

[228]
i) Able to compute the plots more quickly; ii) The
interpretation is extremely apparent; iii) Unbiased
plots.

i) Interpretation is more challenging with closely
correlated features; ii) Unsteady plots. Global techniqu

of observed values is represented by a histogram
the figure. A range of one standard deviation
mean values is shown by dotted lines. Krause et
sualized how features influence a prediction using
nsion. A partial dependency bar has been added
this displays a colored depiction of the prediction
ss the range of input values that a feature may
own in Figure 20(b). For regression, the partial
y function is:

= Ex
[
f̂ (x , x)

]
= ∫ f̂ (x , x)dℙ(x), (28)

et of x features and other features x are utilized, such that x , x ⊂  , the whole feature set. The contains one or two features for which the PDP
o analyze their impact on the prediction.
od for the average calculation of the training data,
known as the Monte Carlo technique, is used to
e partial function ̂fx :

x ) = 1
n

n∑
i=1

f̂ (x , x(i) ), (29)

otal number of samples in the dataset is n, and x(i)the actual feature values which are not included.
dual Conditional Expectations (ICE). PDPs are
o include ICE plots [241]. These plots show the
between the target and a single feature, rather
hole model. The difference between a feature’s
behavior and its average behavior may be seen
plots and PDPs are displayed together in the same
shown in Figure 21. The centered and deriva-
lots are two further extensions of the standard
that may be used to identify heterogeneity and
ate the existence of interacting effects [237]. In
CE is defined as follows: for each example, be
, x(i) )

}N
i=1

, the ICE plot f̂ (i) is drawn against x(i) ,
emains the same.
ulated Local Effects (ALE) is a novel technique
zation methods that does not rely on erroneous
on with associated predictors [228]. The changes
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Figure 21: The figure shows income prediction (target va
on Y-axis) based on the employee’s age, capital loss, hou
week, and capital gain. The red line shows the average be
of all features (PDP), and the gray lines show the beha
individual features (ICE). The selected features and res
variables are also presented in a scatter plot (circle mar

in the predictions are averaged and accumulated over th
in graphs. It is defined as follows:

f̂xp = ∫ Ex‖xp
[
f̂ (xp, x)|xp = x

]
dxp − con

= ∫
(
∫ f̂ (x , x)dℙ(x‖x = xp)

)
dxp −

The formula shows three differences from PDP [149].
averaging prediction changes rather than the predi
themselves. Second, determining how a feature aff
prediction by adding up the local partial derivatives a
the range of features in set  . Third, subtracting a co
from the result such that the ALE plot is centered, i.e
average effect across the data is 0.
8.3. Example-based Explanation Methods

Example-based explanations are also commonly k
as case-based explanations. We have found in the

ature the following methods for generating this kind of
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ensive overview of example-based XAI methods, highlighting their advantages and disadvantages.

Advantages Disadvantages Concept

and
158]

Provides intuitive and interpretable explanations to end-
users.

May fail to identify important features due
to sampling of prototypes.

Local technique

Can help improve model accuracy and applied to various
types of models

Prone to high variance and bias.

uals
Provides specific and actionable explanations for individual
instances.

Computationally expensive and may not
scale well with high-dimensional data.

Generation-base
method

Helps identify the causal effect of input features. Generates explanations that may not be
intuitive to end-users.

l
49]

Can provide insights into the robustness of a model against
malicious attacks.

May not provide meaningful insights into
model behavior.

Attack-based m

Helps identify model vulnerabilities and improve adversar-
ial training.

Generated adversarial examples may not be
representative of real-world data.
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Data Point
Prototypes
Criticisms

Prototypes and Criticisms for two variables, age and
eek, from the UCI Income dataset presented with
istribution.

: prototypes and criticisms, counterfactuals, and
examples. In the upcoming paragraphs, these
are discussed, and their respective advantages

acks are outlined in Table 9.
type and Criticisms. Prototypes are single in-
th the capability to represent the entire dataset.
is a data instance that is not included in the

of prototypes because it is distinct enough for
g complimentary insights [262]. For example, in
the small black circles represent data points, pro-
red) are manually selected to encompass the data
’s centers, while criticisms are green diamonds
with clusters different from those of prototypes.
s a number of ways for finding prototypes in data.
[263], a clustering method similar to k-means, is
oldest and most popular among them. However,
se methods provide only prototypes without crit-
cordingly, one of the methods recently introduced
al. [158], called Maximum Mean Discrepancy
tic), has gained popularity. Thismethod integrates
and criticisms into a single framework. MMD-
pares the data distribution with the distribution
prototypes. Firstly, the user defines the number
es and criticisms to be identified. Then, proto-
criticisms are discovered using a greedy search

prototypes and the distribution of data varies. For exa
MMD-critic is applied to the ImageNet mini dataset to
different bird breeds as prototypes along with criticism
Figure 23).

The following are the fundamental elements i
MMD-critic method: (i) a kernel function to analyz
data densities that determine the prototypes; (ii) a w
function to measure how the two distributions are diffe
specific data points in order to identify criticisms; and
greedy search strategy for prototype and criticism sele
The equation below is used to calculate the squared M
measure:

2 = 1
p2

p∑
i,j=1

k(zi, zj) −
2
pn

p,n∑
i,j=1

k(zi, xj)

+ 1
n2

n∑
i,j=1

k(xi, xj)

The kernel function is defined as k, p is the numb
prototypes z, and n is the number of data points x2 measure is combined with the witness funct
find criticisms. The witness estimator is defined as fo

witness(x) = 1
n

n∑
i=1

k(x, xi) −
1
p

p∑
j=1

k(x, zj).

There are three ways in which the MMD-critic
improve interpretability: (i) assist in a better understa
of data distributions; (ii) construct understandable m
and (iii) make black-box models understandable [257]

In this context, an interpretable model is defined a
f̂ (x) = argmax

i∈ k(x, xi),

where the prototype i is selected from the set  that te
the highest value of the kernel function. The explanat
the model prediction is the prototype itself.
3B. Counterfactuals are “contrary-to-fact” examples
Unlike prototypes, counterfactuals do not need to
with actual training set instances; instead, they m
Criticisms are selected where the distribution of synthetically generated. Wachter et al. [261] introduced the

.: Preprint submitted to Elsevier Page 31 of 65
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Prototypes

Criticisms

The MMD-critic approach learned two bird breeds
ageNet mini dataset.

nterfactual explanations for a model’s decision.
s defined a loss function that takes an instance of
a counterfactual x′, and the desired outcome y′.
nction is optimized to get the best counterfactual
as follows:
x′, y′, �) = �.

(
f̂ (x′) − y′

)2
+ d(x, x′) (31)

factor � balances between the first and second
en � is high, then the priority are counterfactuals
edictions close to the desired outcome y′. On
ry, when � is small, the counterfactuals x′ are
to x. The first term in  represents the quadratic
etween the model prediction for x′ and y′. The
m represents the Manhattan distance d between
hich is defined as:

x′) =
n∑
j=1

|xj − x′j|
MADj

(32)

D is the Median Absolute Deviation of feature j
hole dataset, which is defined as:
Dj = median

i∈{1,2,...,n}
|||xi,j − median

l∈{1,2,...,n}
(xl,j)

|||. (33)
rfactual explanations provide the minimal cir-
s that would have led to an alternate conclusion.
l. [265] published the Multi-Objective Counter-
OC) approach that enables more detailed post-
nability. To do this, the authors simultaneously
our objective losses (O1,O2,O3,O4):
x′, y′,Xobs) =

(
O1(f̂ (x′), y′),O2(x, x′),

O3(x, x′),O4(x′,Xobs)
) (34)

detail, themeaning of each loss function and how
lculated, the interested readers are kindly referred

Synthetically generated counterfactuals may not be
istic and therefore yield misleading explanations and
ardize trustworthiness. To cope with this problem, S
et al. [266] proposed the generation of counterfactu
planations with user feedback. Accordingly, the user c
preferences and constraints (e.g., protected features,
tion ranges, etc.) with the aim of enhancing the auto
explanations which are better alignedwith user expecta
Finally, in addition to numerical counterfactuals, it i
possible to generate linguistic counterfactuals as pro
by Stepin et al. [267]. Thanks to the ability of fuzzy se
systems to compute with words and information gra
the generated counterfactuals can be verbalized in n
language.
3C. Adversarial Examples can be used to fool D
[149], but they can be also used for generating anal
and contrastive explanations. On the one hand, anal
explanations are supported by analogical reasoning
by searching for two explanatory evidences coming
familiar and unfamiliar domains [268]. On the other
contrastive explanations are supported by contrastiv
soning, i.e., by searching for two competing or op
explanatory evidence [80].
8.4. Game Theory Methods

In 1953, Lloyd Shapley wanted to know how much
player in a coalition game contributes [242]. Afterwa
searchers in the field of ML used this approach to inves
what is the link between interpretability andML predic
In this context, the "game" is a single instance of a dat
prediction in a task. The "gain" is the difference betwe
actual prediction for the given prediction and the aver
predictions for all instances in the dataset. The "player
the instance’s feature values who work together to obta
gain, i.e., the Shapely value of a feature tells us how m
contributes to a particular prediction outcome.
4A. Shapley Values. The question is how each attribu
fluences a certain data point’s prediction. Here is an ex
of how a linear model can do prediction for a given da

̂ (x) = w0 +w1x1 +w2x2 + ... +wnxn,
where xi is the i − tℎ instance/feature value from whi
contributions are calculated. Theweight for feature i is
a total number of features n. The i− tℎ feature contrib
Φi can be computed as:

Φ(̂ ) = wixi − E(wii) = wixi −wiE(xi),
where E(wii) is the estimated mean effect for feature
contribution is equal to the difference between the f
and the mean effect. When all feature contributions fo
.: Preprint submitted to Elsevier Page 32 of 65
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Table 10
Game theo
tages and d

Method
(Ref.)

Shapley
Values
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ry-based XAI methods, together with their advan-
isadvantages.

Advantages Disadvantages Concept

) Fairly Distributed;
i) Solid theoretical
oundation; iii)
ontrastive
xplanations.

i) High computing time
and misinterpretation; ii)
Cannot be used for sparse
explanations; iii) Suffers
from the inclusion of
unrealistic data instances
[149].

Coalitional
Game
Theory

) Computes many
hapley values; ii) All
hapley values
dvantages connect
o LIME; iii) Fast
mplementation for
ree-based models.

TreeSHAP produces
unintuitive feature
attributions; ii) Does not
provide causality. A
problem of
misinterpretation; iii)
KernelSHAP is slow and
ignores feature
dependence (TreeSHAP
solves it) [149]

Optimal
Shapley
values
Game
Theory

e combined together, it results in:

=
n∑
i=1

(
wixi − E(wixi)

)

=
(
w0 +

n∑
i=1

wixi
)
−
(
w0 +

n∑
i=1

E(wixi)
)

= ̂ (x) − E
(̂ (x)).

(37)

ted, total contribution of all potential feature
e Shapley value. A value function val of players
is used to define the Shapley value as:

al) =
∑

⊆{x1,x2,...,xn}{xi}
||!(p − || − 1)!

n!
(
val( ∪ {xi}) − val()).

(38)

ey Additive Explanation (SHAP) suggested by
unified way to understand the output of any

. SHAP is a technique for explaining individual
using the coalitional game’s best Shapley values
ayer can be represented by a single feature value,
tabular data. A player can also be made up
tion of feature values. For instance, pixels can
into superpixels, and the information to make

tion that describes the image is spread among
Shapley value explanation is an Additive Feature
approach, a linear model, which is a step forward
brings to the table. According to SHAP, the
is given as follows:

= Φ0 +
∑
i=1
Φi̂i, (39)

ands for the explanatory model, the feature at-

of the coalition is , the coalition vector (the simp
features) is denoted by  ∈ {0, 1}. Where 1 i
coalition vector indicates that the relevant feature va
“present”, whereas 0 indicates that the feature is “mis
SHAP has properties such as local accuracy, missing
and consistency in addition to the Shapley value prop
of efficiency, symmetry, dummy (Shapley value equal
and additivity [149]. Table 10 compares Shapley value
SHAP techniques.

Moreover, KernelSHAP, an alternative kernel-bas
timate strategy based on Shapley values inspired by
surrogate models, and TreeSHAP, an efficient estim
strategy for tree-based models, were proposed by the S
authors. SHAP values can be determined for any tree-
model, in contrast to other approaches that rely on surr
models such as linear regression or logistic regression.
global interpretation techniques based on aggregatio
Shapley values are also included in the family of S
based techniques.

The following is a synopsis of SHAP in terms of wh
the approach is based on local or global interpretation

• Local Interpretability: SHAP values are assign
each observation, as a result, their transparency i
stantially improved. This allows us to see why
is predicted in terms of the predictors’ contribu
Due to the local interpretability, the impacts
components may be localized and compared.

• Global Interpretability: The combined SHAP v
can show how much each predictor contributes
target variable, either favorably or negatively. T
similar to the variable importance plot, except
also display if each variable has a positive or ne
connection with the target.

8.5. Knowledge Extraction Methods
It is challenging to describe how black-box ML

els behave internally. For example, ANN algorithms
change the filter/kernel in the hidden layer, which can
to intriguing internal representations of the whole net
The task of extracting explanations from an ANN im
retrieving the knowledge learned by an individual
during training and encoding it in a human-understan
format. Several publications in the literature (see T
11 and 12) offer methods for extracting information
black-box models. These methods depend primarily o
techniques: Rule Extraction and Model Distillation.
5A. Rule Extraction According to Mark Craven
the rule extraction process produces an understandab
rough approximation of a network’s predicted behavio
the training data and the trained ANN.

There are different types of rule extraction techn
depending on the type of rule under consideration:
• IF-THEN Rule: It is the most generic form of a simp

comprehensible conditional statement:

r i − tℎ feature is Φi ∈ ℝ, the maximum size IF x ∈  TℍEℕ  = y(i) (40)
.: Preprint submitted to Elsevier Page 33 of 65
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Table 11
A family of alable
Rule Induct ractor

RULES
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RULES-
RULES-5
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Rule Extraction Systems (RULES). SETAV - SET of Attributes and Values, PRSET - Partial Rules SET, SRI - Sc
ion Algorithm, IS - Immune System inspired, TL - Transfer Learning, IT - Incremental Transfer, REX - Rule Ext

Reference Upgrade features

1 [269] Extracting IF-THEN rule by considering all examples.
2 [270] RULES-1 have been upgraded to provide individual example analysis.
3 [271] New version of RULES-2 with more general features.
+ [272] RULES-3 has been extended to include two new features: 1) SETAV and 2) PRSET.
4 [271] The first incremental learning system that updates and refines previously learned information in preparation for new examples.
5 [273] The first version of RULES to deal with continuous attributes without discretizing them.
+ [274] A novel rule space representation method that improves performance.
6 [275] It is an expansion of RULES-3 plus that makes a scalable version of the RULES family.
7 [276] The RULES-6 extension that focuses on one seed at a time.
8 [277] A new version that takes into account online continuous attributes.
F [278] RULES-5 are extended to accommodate both continuous characteristics and continuous classes.
+ [274] RULES-F included a new rule space representation technique.
RI [279] Extension version of RULES-6 to enhance the scalability.
IS [280] An immune system-inspired incremental algorithm.
XT [281] An enhanced version of RULES-3.
L [282] Another scalable method that has been suggested to improve speed and performance while also including more intelligent featu

IT [283] An incremental version based on the RULES-TL for dealing with big and incomplete problems incrementally.
[284] RULES-3, RULES-3+, and RULES-4 were improved to speed up the process and create simpler models with fewer rules.

ut will be tagged to a certain class if the condition
.e., x is a member of  . The expressive power of
xtraction algorithm is directly related to the if...
se... rule structure. For example,  is medium if
and  is high, where low, medium, and high

y sets with associated membership functions. The
d reader is referred to [285] for further details on
eal properly with fuzzy rules.
rules: A Boolean expression is used to look for
th this strategy. When  of  sets are fulfilled,
ession is completed. This strategy is both ef-
nd universal [286]. M-of-N rules are written as
{} TℍEℕ .
wo main categories have been chosen to represent
ed rules: (i) Propositional/Boolean logic and (ii)
ntional logic. Notice that, rule extraction facili-
g insight into ML models. Rule extraction tech-
ude, among others, fuzzy modeling [287], genetic
ing [288], boolean rule extraction [289], and the
tion approach [290]. In addition, Andrew et al.
opi [291] suggested multidimensional modalities
ng rules.
ing the relation between the extracted rule and
NN architecture, there are three distinct types

s: (a) Decompositional methods operate on the
el rather than over the whole NN design; (b)
almethods operate disregarding the NN architec-
n; and (c) Eclectic methods are a combination of
tional and pedagogical methods.
itional Methods operate by breaking down a net-
ts constituent neurons. The results from each neu-
n combined to represent the whole network. After
ng an ANN, it may be scrutinized and translated
hat are viewed as composing a transparent model
A fundamental requirement for rule extraction
at use this approach is that the extracted output
neuron must be in the form of a consequential

neuron can be thought of as a step function or a Boolean
this reduces the rule extraction problem to determinin
instances in which the rule is true.
Pedagogical Methods consider rule extraction as a lea
problem in which the learning task pay attention t
network parameters and input features [297]. Therefore
agogical methods are aimed at extracting rules that di
relate inputs to outputs. These methods are often emp
in combination with a symbolic learning algorithm
fundamental concept is to utilize the trained ANN to
instances for the learning algorithm. These methods in
among others, Valid Interval Analysis (VIA), reverse
neering, and sampling methods [305].
Eclectic methods include aspects of both decomposi
and pedagogical rule extraction methods. On the one
a decompositional method is usually more transparen
a pedagogical one, but they do operate in layers. As a c
quence, decompositional methods may be time-consu
and laborious. On the other hand, the pedagogical me
outperform the decompositional ones in terms of comp
burden and execution time [306]. In terms of ANN arc
ture, pedagogical methods also offer the benefit of flexi
Techniques that use knowledge of the trainedANN’s in
architecture and weight vectors to supplement a sym
learning method are classified as eclectic methods [30
5B. Model Distillation is another approach that com
der the knowledge extraction category. Distillation im
transferring information (dark knowledge) from a te
network (e.g., a DNN) to a student network (e.g., a sh
NN) via model compression [308, 309]. Model compre
was first suggested to decrease a model’s runtime comp
cost, but it has subsequently been used to improve ex
ability. Tan et al. [310] explored how to translate co
cated models into interpretable ones via model distill
Che et al. [311] proposed Interpretable Mimic Lea
as a method for learning phenotype features that are
pretable for generating robust predictions while imi
the performance of black-box DL models. DarkSig
binary result (yes/1 or no/0). Thus, each hidden
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methods for knowledge extraction from black-box models.

chniques Type of ANN Method Rule Extraction Approach Drawback

N-miner [292] MLP Decompositional IF-THEN It is not an application to DNN.
ED [293] MLP Decompositional Decision Tree Discretization is not used in this method and may not apply directly to D
NN [294] MLP Decompositional M-of-N split, IF-THEN The relevance of DNN is not addressed.
T [295] MLP Decompositional IF-THEN DNNs are ignored in the analysis.
s algorithm [296] MLP & RNN Decompositional IF-THEN This method has polynomial computational complexity.
PAN [297] MLP Pedagogical M-of-N split, Decision Tree The hidden layer in NN is the only one.
INV [298] MLP Pedagogical Hyperplane Rule DNN is not being considered.
-RE [299] MLP Pedagogical Binary Rule A shallow MLP is used to test the algorithm.
uleEX [300] MLP Pedagogical Decision Tree DNN is not being considered, and the design of ANN is not disclosed.
EN [301] MLP Pedagogical IF-THEN a traditional feedforward neural network is employed.
-DT [203] MLP Pedagogical Binary and Decision Tree –
X [302] MLP Eclectic IF-THEN A shallow MLP is used to test the algorithm.
A [303] MLP Eclectic IF-THEN –
RED [304] DNN Decompositional IF-THEN –
amanli and Allahverdi’s Algorithm

d XAI methods, their advantages and disadvan-

Advantages Disadvantages Concept

) Provides unique
olution, training free
rocess, and fast
omputation [245]; ii)
dentifies weak and
rominent features.

i) Inconsistent procedure;
ii) Generates noisy
explanation maps.

Input
alteration

) Scalable and
xplainable to
omplicated DNNs;
i) Calculates the
eights for each
euron to improve
nterpretability.

i) Usable with ReLU
activation; ii) Compatible
with backpropagation
networks.

Propaga-
tion
rules

) Provides
uman-interpretable
xplanation of any
eural network; ii)
orks on high-level

eatures vector.

i) Reduced effectiveness
with strong correlations
in the data; ii)
Inappropriate with a
random selection of input
concepts [27].

Concept
method

n technique for understanding the predictions of
odels on datasets inspired by the concept of dark

, was proposed in [312]. This approach integrates
rom DNN visualization, knowledge distillation,
sion reduction. For further information interested
ay look at [310, 313].
al Methods
ction concentrates on neural network interpreta-
ques. These techniques explain specific predic-
lify neural networks, or visualize the features and
at a neural network has learned. Table 13 sum-
e strengths and weaknesses of the most relevant
under consideration.
nce Methods. By altering the input or internal
nd analyzing which ones (and how much) change
formance, these methods assess the significance
[70]. Then, ML models can be debugged, while
ior and prediction explanations can be improved
influential training examples. There are three

significance of an input variable: (i) feature importanc
Layer-wise Relevance Propagation (LRP), and (iii) Sen
ity Analysis (SA).
Feature Importance. A data instance with a signi
impact on the trained model is an important feature. W
model is retrained with that specific instance removed
the training data, the model parameters or prediction
to a large extent, indicating how important that instance
this way it is possible to assign a degree of significant
to each feature, this is especially useful when the se
instance has a significant impact on model performanc
significance value of an instance for the goal y deter
whether it has an influence on the trained model. A
example of the LR model may be seen in Figure 24.

Feature importance is calculated using the chan
the model’s error seen in the feature permutation pr
As the model depends on features for its prediction,
ture is considered important if rearranging its values
the model’s error. A feature is irrelevant if rearrangi
values has no effect on the model’s error since the f
was disregarded for prediction in the input instance
example, Lei et al. [314] proposed Leave-One-Cova
Out (LOCO) inference that uses local feature impor
Fisher et al. [315] suggested Model Class Reliance (M
as a model-agnostic variant of feature significance bas
this approach. The MCR algorithm has the following
for finding feature importance:

1. Input - A model f , feature matrix  with target v
y, and error function (y, f ).

2. Measure the error of the original model using
Squared Error (MSE); e∗ = (y, f ())

3. For each feature i = 1, ..., p:
• Permute the feature i, and get the feature mpre.
• Calculate the permuted error; ê = (y, f (
• Estimate the permuted feature importance

ê
e∗ .
chniques in the literature for determining the
.: Preprint submitted to Elsevier Page 35 of 65
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A linear model was trained on two cases, one with
t features and one without unimportant features. In
e, without unimportant features, the slope produced
el changes significantly in contrast to the instance
ortant features.

eature Importance on Training or Testing Data?
r estimates are based on the same training data
he model was initially trained, the model error or
ce measurements appear to be much better than
reality. Given that feature importance permu-
on having accurate model errors, unseen data
nsidered here [257]. Finding the importance of
ing training data leads us to assume that certain
e significant for predictions, however, the model
erfitting, so in practice, these features could be
t. Therefore, when it is necessary to know how
del relies on each feature for making predictions,
feature importance approach in the training data.
her hand, if it is required to know how much
contributes to the performance of the model on
a, we use the feature importance approach in the
a. According to our review, there is no study in
re on the topic of feature importance based on
. test data. To get a deeper understanding of this
r research is required.
eRelevance Propagation (LRP) [236] has proven
ely applicable while performing very well in
experiments [316, 317]. The LRP algorithm
ted as another method for computing relevance.
m a network’s output layer and backpropagating
input layer, LRP redistributes the prediction
n their opposite order. Relevance conservation is
re of this redistribution procedure. It presupposes
assifier, in its basic form, may be broken into
yers of computation. A typical forward pass is
on a network, as illustrated in Figure 25, and the
at every layer are recorded. Following that, using
et of rules, a score calculated at the output layer
agated. To formulate the LRP problem, consider
the k-th neuron’s relevance, while j and k are
of two neurons in successive layers. The share
ance score, k redistributed to neuron j, may
as j←k. The following conservation property

Neural Network Layer-wise ℛ𝒮 computation

, … , 
𝑤ଵ→ଶଵ

𝑤ଵ→ଶଶ
𝑤ଵ→ଶଷ

𝑤ଵ→ଶ௡

ℛ𝒮ଶ→ଵଵ

ℛ𝒮ଶ→ଵଶ

ℛ𝒮ଶ→ଵଷ

ℛ𝒮ଶ→ଵ௡

ℛ𝒮ଶ→ଵସ

ℛ𝒮଴→ଵଵ

ℛ𝒮଴→ଵଶ

ℛ𝒮଴→ଵଷ

ℛ𝒮଴→ଵ௡O
ut

pu
t

Figure 25: LRP: The rationale behind LRP is to deco
a model’s prediction function into a sum of layer-by
relevance values. LRP can be thought of as the Deep
Decomposition of a prediction when used with ReLU net
wn
1→2 denotes a weight propagating from layer 1 to laye

the n-th neuron. A similar notation may be applied to 
generate an explanation.

must hold:
∑
j
j←k = k.

Similarly, the contribution to a neuron’s relevance co
from the higher layer may be aggregated to produc
relevance in the lower layer:

j =∑
k
j←k.

By combining these two equations, the relevance con
tion property between two layers may be obtained. T
fore, the sequence of equalities for the whole network c
written as:

d∑
i=1
 i = ... =∑

j
j =∑

k
k = ... =  (x)

where x is the input data, and  (.) is the function
encodes the concept at the output neuron.
Sensitivity Analysis (SA) is another approach for ide
ing the most relevant input features [318, 319]. The
important input features are those with the greatest i
on the output. This approach has already been us
applications such as mutagenicity predictions [260], m
diagnosis [320], or ecological modeling [321]. SA is in
ingly utilized to explain results of image classificat
specific terms [322, 323]. In the context of ML and
the effect of input and/or weight perturbations on the m
output is referred to as its sensitivity [232]. In this app
data is deliberately perturbed, and the resulting outpu
themodel is used to check its behavior and the stability
model outputs. As showing model stability as data ch
over time improves confidence inML results, visualizi
outcomes of SA is considered a model-agnostic explan
method. SA is defined formally in terms of a relevance
as follows, based on the local gradient x of model  :

 i(x) =
( )
)xi

)2
.
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Convolutional Layer + ReLU
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Layer
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The DNN is supplied with a user-defined collection of striped samples and random instances. For the examined
led training data was also provided to the network. The sensitivity of the network to the concept behind the exa
e quantified using Concept Activation Vectors (CAVs). CAVs are created by teaching a linear classifier to discrim
e activation generated by a concept’s instances and the activations caused by examples at the m-th layer. The
to the classification border is known as the CAV; vn . The directional derivative ,⫋, is used by the Testing C
e conceptual sensitivity of the studied class (bird).

relevance scores are decomposed into the gradient
m as follows:

i(x) = ||∇ (x)||2. (45)

noting that SA does not offer an explanation
rather shows explanation variations. As a result,
SA is rarely to explain any connections that have
vered. However, SA is often used to check for
tworthiness and stability, as a tool for identifying
g irrelevant input features.
ptMethods. Concerns about bias inML are valid,
kes are even higher when it comes to AI. The
sed methods are introduced in order to make AI
orthy and transparent.
ctivationVectors (CAVs) were proposed byKim
. This method provides human-friendly explana-
e internal states of NNs globally. Consider the
) as a space m in the form of a vector with a
r vm. The vector space ℎ represents the space
understanding with a basis vector vℎ. Thus, inplain model decisions in a human-friendly way,
tion function, g ∶ m → ℎ, may produce the
erstandable concepts , as explanations.
or with n activations can be determined for a
dataset in order to express a concept of human
ctivations in the layer n, generated by a concept
e against random examples, may be used to find
tor. CAVs, as shown in Figure 26 (gray arrow),
nal to a hyperplane that separates instances with-
ept from instances with a concept in the layer
[230]. A positive concept  denotes a vector
a set of concepts of human interest, whereas a
oncept  denotes that there is no concept of
rest (random inputs). This approach uses a binary
on task in which a classifier vn distinguishes

between the layer activation of two sets: n(x) ∶ xand n(x) ∶ x ∈ .In addition, the use of CAVs for testing AI mod
known as Testing CAVs (or just TCAVs for short). T
utilizes directional derivatives to assess the sensitivit
model,  , in a similar way to gradient-based methods
sensitivity of a model is determined by shifting the
in a direction toward the concept  for a particular la
Consider for an input x,c(x) is the gradients logit of lfor class c, then the conceptual sensitivity ,c,n of the
c to  can be computed as the directional derivative
concept vector vn :

,c,n = lim
∈→0

n,c(n(x)+ ∈ vn) −n,c(n(x))
∈

= ∇n,c(n(x)) ⋅ vn .
Moreover, the sensitivity of all classes of inputs c

computed with TCAV techniques. For the entire datas
with class c, TCAV may be defined as:

TℂAV ,c,n =
|||{x ∈ c ∶ ,c,n > 0}|||

|c| .

The CAV method has been built upon and enh
further in numerous research articles where technique
as Automatic Concept-based Explanations (ACE)
Causal Concept Effect (CaCE) [325], Ground truth
(GT-CaCE) [325], Variational Auto Encoders based
(VAE-CaCE) [325], and ConceptSHAP [326] have be
forward.

9. Assessment of Explanations
After revisiting different methods for dealing with

models, and post-hoc explainability in the proposed
taxonomy, it is now time to go deeper with the fourt
in our proposal. Accordingly, this section pays attent

the evaluation of explainability.
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ualities of explanation methods, individual explanations, and human-friendly explanations.

e Qualities Description

ation
ods

Translucency Expresses how deeply an explanation approach probes the model [328].

Portability Expresses how successfully an approach covers a wide variety of models [329].

Explanatory Power The number of events that can be explained using the explainability technique [32

Algorithmic Complexity The computational complexity of explanation algorithms [329].

Generalizability To increase the utility because of the diversity of model architectures [288].

dual
ations

Fidelity How closely the explanations match the prediction model’s behavior [288].

Consistency To extent various models learned on the same problem give similar explanations [2

Accuracy To generalize an explanation of a specific decision to previously unknown situatio
[52].

Stability The frequency with which identical explanations are offered for the same instance
[288].

Comprehensibility The readability and length of explanations [288].

Certainty To a model decision’s degree of certainty [330].

Interpretability The ease with which people can comprehend the model and/or the outcomes [52

Representativeness How well the explanation depicts the most important aspects of the explanation.

riendly
ations

Explanation using contrastiveness The ability to represent distinct properties between the instance being explained a
a reference point [261].

Specificity Capability of providing particular reasons indicating which explanations are the ke
reasons for a prediction [52].

Sociological The social context and intended audience of the model should be considered whil
choosing the most applicable explanation [52].

Abnormality Identification of the odd circumstances that might have a substantial influence on
the outcome [29].

Factuality Plausibility and relevant to other examples’ predictions [29].

Fairness The predictions do not include any implicit or explicit bias against targeted users
[52].

Privacy Assurance of the security of sensitive data [288].

Reliability Ensuring that minor input modifications do not have a significant influence on th
model prediction [261].

Causality The identification of cause-and-effect relations between inputs and outputs in a
given model [328, 331].

more, achieving progress in XAI research that
the level of explainability for AI systems has
ortance after proposals for EU laws regulating
ter current standardization activities, that would
AI systems breakthroughs into the de facto regu-
[327]. All regulatory actions agree on the need

arefully the goodness of automated explanations.
of Explainability:When it comes to delivering

tion, it is advantageous for a model to have certain
roperties. They are defined in terms of explana-
ds, individual explanation properties, and human-
planation capabilities. Thus, Table 14 comprises a
that every explanation should have, based on our
he literature. These characteristics may be used to
d compare various explanation approaches.
regard, Robnik et al. [328] specified certain char-
that are desirable for high-quality explanations.
the recipients of these explanations are humans,
hat makes an explanation human-friendly is im-

study of explanatory articles in the humanities. The deg
which amodel is explainable, alongwith its privacy and
discrimination promises, has a great impact on how
human users will trust it. In addition, the degree of tr
a model increases when it is built in accordance with
monotonicity constraints [332]. Usability is another a
that raises a model’s level of confidence [333]. Indiv
are more inclined to trust a model which provides them
information that helps them understand how it com
its task. In this scenario, an interactive and questio
explanation is preferable to a printed and static one.

The majority of the existing approaches are buil
ill-defined or very general explainability aims and ofte
well-defined context-specific use cases. As a consequ
methodologies are created without a thorough grasp
unique needs of a certain domain and use case, this r
in poor adoption and sub-optimal outcomes. Nonethel
is normal to see one or more assessment settings pro
in pioneering publications about XAI approaches, m
which are centered on explanatory desiderata [231,
addition, Miller [52] undertook a comprehensive
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ation is sometimes only emulated [29] or even
ntirely from the assessment process [234]. The
xplanations is significantly influenced by how
ese explanations prove to be for end-users in the
aking process [87, 335]. Therefore, in this study,
er human-in-the-loop approaches for evaluating
explanations. Accordingly, end-users must be in-
e review process, preferably in a setting with real
ata. Furthermore, measurements should represent
formance, e.g., the accuracy or speed with which
are made.
orth noting that the focus of this section is on
ment with end-users as the target audience. This
the human user is generally the final decision-
pay special attention to end-users who are in roles
ibility, such as judges, doctors, or other domain
ey assessment algorithms are categorized based
pearance in the literature for XAI systems, as
in Figure 27. In addition, Table 15 contains an
f XAI assessment methodologies.
itive Psychological Measures

domain of XAI, explanations aid users in devel-
ntal image of how the AI operates. Researchers
d of HCI keep into account the mental state
to see how well they comprehend intelligent

es in a variety of settings. For instance, how
rehend a smart grid system was investigated in
adjusted to uncertainty in ML in terms of time
ions arrival [337]. Cognitive psychology theories
ed to describe a formal representation of how
terpret a system. The efficiency of explanations
ng a model’s decision-making process may be
looking at the mental state of the human user.
re, psychology research has also looked at the
], structure [89], and roles of explanations [339]
ing the fundamental basis for good explanations
improve user comprehension of AI systems.
’s understanding of AI systems may be investi-
uestioning the related decision-making process.
ly, some researchers have looked at how users
AI agents [340, 341] and algorithms [342] in

etermine what kind of explanation is preferred.
design process for adding explainability to AI

sers’ attention and expectations should also be
account [343].
erstandability and Satisfaction
ssessing explainability, it is important to consider
understanding of and satisfaction with the expla-
en. Despite the fact that there are implicit ways
ing user satisfaction [344], a large portion of the
lies on qualitative assessments of user satisfaction
rveys and interviews. For instance, Gedikli et
nd Lim et al. [346] assessed distinct explanation
sed on user satisfaction ratings.

Table 15
Summary of assessment methods for XAI.

Methods References

Cognitive
Psychological

Theories

Failure and Output [29, 231, 349, 337,

Model understanding [336, 340, 351, 341,
352, 204, 338, 353,

Understandability
and Satisfaction

Understandability [354, 345, 348, 34

Satisfaction [355, 345, 338, 346,
348, 356, 357, 358, 35

Trust
and Transparency

Trust [361, 362, 363, 36

Transparency [361, 365, 366, 367,

Assessment by
Human-AI Interface

Model Performance [369, 359, 29, 370, 37

User Performance [346, 204, 356, 343,
373, 374]

Computational
Assessment

Explainer Fidelity [29, 231, 375, 249, 37
378, 253]

Model Trustworthiness [238, 379, 141, 380,

Researchers have utilized a variety of subjectiv
objective metrics for quantifying understandability an
equacy of sufficiency [52]. For instance, Curran et al.
ranked and coded user transcripts to determine how
users understood the explanations given in a computer
challenge. Participants showed varying degrees of tr
the correctness of the explanations, this was based o
clarity and understandability of the explanations, desp
fact that they all came from the same model. Accord
Lage et al. [348], increasing the complexity of an explan
decreases satisfaction. The length and intricacy of exp
tions have an impact on both understandability and sat
tion, in addition to accuracy and response time. Confal
et al. [177] measured the perceived understandabil
explanations by users through task performance, n
accuracy and time of response, and subjective measure
as confidence in their answers and explicit understanda
provided in a Likert scale.
9.3. Trust and Transparency

When the decision-making process in a model is
oughly understood, the model becomes transparent. T
parency promotes trust in the model. Trust is an em
and cognitive component which determines how a s
is perceived, either positively or negatively. Various ty
trust, such as the initial trust of a user as well as the bu
of trust through time have been described in the follo
ways: (i) Swift trust [382], (ii) Default trust [383], an
Suspicious trust [384].

Prior information and beliefs have a role in fo
the initial state of trust; however, trust and confidenc
evolve over time as the system is explored and experie
Common variables used to assess and study trust in
user knowledge, familiarity, technical competence,
dence, emotions, beliefs, faith, and personal attach
[385, 386]. These variables may be quantified by exp
questioning users about their experiences with a s
during and after usage. For instance, Yin et al. [368
Nourani et al. [361] found that over time, both the de
.: Preprint submitted to Elsevier Page 39 of 65
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of<<<<Assessment of Explainability

Cognitive Psychological 
Measures

Understanding and 
Satisfaction

Transparency and Trust Assessment by 
Human-AI Interface

Computational Assessment

1) Debugging Model and Training
2) Human-Grounded Evaluation

Explainer Fidelity Model Trustworthiness

1) Sanity Check
2) Comparative Evaluation
3) Simulated Experiments

Model Performanc

User Performance

1) Task Performance
2) Task Throughput
3) Model Failure Predic

1) Model Accuracy
2) Model Tuning and Se

rust

arency

mpetence
ce with System 
dability

nation
e Questionnaire

1) Engagement with Explanations
2) Task Duration 
3) Cognitive Load

Understanding Satisfaction

1) Interview and Self-report
2) Likert-scale Questionnaire
3) Expert Case Study

Failure and Output Understanding of Model

1) Interview and Self-Explanation
2) Likert-scale Questionnaire

1) User Prediction of Model Output
2) User Prediction of Model Failure

Figure 27: Relationship among assessment methods for XAI and their desiderata.

f a model and the accuracy perceived by the user
user trust.
ition, multiple scales can be used to evaluate
tions of system predictability, dependability, and
our and Forzy [364] proposed a thorough trust
t setup that evaluates three ways a system presents
sers by measuring user trust in terms of three
ust scales. Another study compared user trust to
s for AI decisions in terms of transparency [366].
s used perceived understandability to assess user
ound that clear explanations may help mitigate
e consequences of trust loss. Bussone et al. [363]
ert scale and think-aloud to assess user trust in a
ision-support system and discovered that factual
s resulted in increased user trust. In addition,
. [387] used Likert scales to evaluate how humans
trustworthiness of automated counterfactual ex-

ssment of Human-AI Interface
the main goals in the XAI research field is to
users in becoming more effective in the use of
n-support systems. As a result, the human-AI
an be judged by the performance of the human in
sk. For instance, to assess the influence of various
planation, Lim et al. [346] examined the perfor-
uman users in terms of task completion time and
ewhile usingAI systemswith those various forms
tion. Another benefit of assessing the human-
e is to assist in the verification of the model’s
3, 374] and in the debugging of interactive AI
signed for specific requirements [369, 372]. To
se aims, Myers et al. [388] created a framework
sers may ask why and why not questions while
an intelligent interface to respond reasonably to
tions.

Domain specialists may scrutinize models and c
their hyper-parameters to facilitate the AI system’s ana
This process is guided by visualizing the internal stru
of the model, its details, and the uncertainty in the m
outputs. This corpus of work highlights how impor
is to include user feedback in order to enhance mode
comes. TopicPanaroma [370] is an example of a text an
visual analytical tool that was evaluated by two doma
perts. FairSight [389] is another visual analytic solutio
through visualizing, evaluating, diagnosing, and red
biases, aids fair data-driven decision-making.

In addition to domain experts, AI specialists an
velopers can employ visual analytics to discover defe
the architecture of their models. For example, LST
[360] and RNNVis [390] are both tools that may be
to interpret neural models for NLP applications, wi
aim of better understanding some training issues and,
end, enhancing classification and prediction perform
DGMTracker [391] is another example of a tool that pro
visual representations of training dynamics. All these
assist users in visualizing the internal mechanisms of a
model.
9.5. Computational Assessment

Due to the preference of users for simpler exp
tions, only relying on human assessments of explan
may result in convincing explanations instead of transp
systems. As a result of this issue, Herman [136] a
that computational approaches, rather than human-s
investigations, should be used to assess the fidelity
planations. The accuracy of an approach in creating ge
explanations, such as the correctness of a saliency m
referred to as the fidelity of an explainer. As a consequ
a set of computational methods for assessing the va
of produced explanations, the uniformity of explan
outcomes, and the fidelity of explainability methodol
.: Preprint submitted to Elsevier Page 40 of 65
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to the original black-box model have been devel-
ample, Zeiler and Fergus [238] investigated the
a CNN visualization tool in terms of the validity
tions in detecting model flaws; using this tool re-
hanced prediction outcomes. Other techniques of
t include comparing the fidelity of an explanation
that are intrinsically interpretable by design: ex-
generated by the LIME explainer were compared
tions from sparse LR and DT models [29]. An-
ach for evaluating automated explanations relies
ulated assessments: by defining untrustworthy
s, the user’s trust and models are simulated for
and Anchors [231] explainers.
tion, Ross et al. [196] conducted empirical assess-
used the LIME approach as baseline to evaluate
ency and computing cost of the proposed expla-
midt and Biessmann [381] took an alternative
aluating the quality of explanations using human
hey proposed an explanation quality score.
, through the generated explanations, explainabil-
hes can also offer quantitative measurements of
tworthiness, in terms of domain-specific objec-
features (fairness), robust features (safety), and
For instance, Zhang et al. [56] showed how ex-
may be utilized to detect representation learning
ue to the biases induced in the training data.

hodological recommendations and
are tools for XAI research
ction covers XAI tools for model creation and
. The intended roadmap for how to determine
explainability criteria is illustrated in Figure
odel structure is at the core of the taxonomy
ented. In this paper, we consider three methods
g XAI: (i) Interpretable-by-design methods, (ii)
cific post-hoc methods, and (iii) model-agnostic
ethods. Interpretable-by-design methods include
such as LR, DT, decision rules, or kNN models,
ers. Careful model design facilitates explicitly
the behavior of a particular component in a given
fortunately, in some cases, the model structure is
ated that it can not be explained only in terms
al model parameters and hyperparameters. Then,
to resort to alternative methods which are able
g information that is tailored to certain models.
called model-specific methods and they assume
ccess to the model structure in order to approxi-
ore complicated processes involved in reaching
. In contrast, model-agnostic methods are the
ric methods that allow us to analyze a model
ving to know anything a prior about its underlying
Typically, this kind of analysis is based on the
a series of model assessments using appropriately
erturbed input data. Open-source toolkits that aim

to answer questions such as “what are the overall re
ments to use each of the methods?” or “how to choo
explanation ?”, will be explored below.

The number of tools available for analyzing pred
models is fast increasing, yet there is no agreed-upon d
tion of what constitutes an XAI tool. As a result, ident
and presenting all available XAI packages becomes a
exercise. Table 16 provides a thorough comparison
various pieces of available software. The comparis
based on the techniques that each package supports, the
data that each package accepts, and the type of explan
that each method provides including local, global, glas
or black-box approaches. In addition, the type of explai
ity provided by a package, based on the suggested taxo
described in this article, along with the evaluation m
that are utilized to assess the goodness of the auto
explanations are also taken into account.

Arya et al. [394] evaluated new XAI tools in comp
to the most well-known packages available today. One
most complete libraries in terms of number of method
plemented is OmniXAI, including feature analysis, f
selectionmethods, featuremaps, prediction and biasm
This open source XAI library provides from 2 to 10 diff
methods for each input data type (tabular, image, tex
time series) [407], while Shapash [410] facilitates inter
apps fromSHAP and LIME in online interactive dashb
The list of tools has been extended to include other r
tools and commonly used R packages that also suppor
techniques. The Institute for Ethical AI andML, for exa
has provided an Ethical ML tool [411] based on the
principles of Responsible ML. This tool covers three
1) data analysis, 2) production monitoring, and 3) mod
sessment. Similarly, Wexler et al. [412] presented the W
If Tool, an interactive model-agnostic visualization t
aid AI model comprehension. This tool was developed
the intent of identifying a wide range of user needs. Th
comes with the following features: (i) it can elucida
tential performance improvements for multiple model
minimal code, (ii) use visual representations to aid m
comprehension, (iii) test hypotheses without knowin
internal workings of a model, and (iv) perform explo
analysis of a model’s performance. Another example
XAI package is XPLIQUE [413], a TensorFlow-base
for explaining NNs. The package contains attribution
niques, feature visualization methods, and concept-
approaches, among others.

Each of these packages provides comparable me
that can be utilized in similar ways when it comes to
core functionalities. DALEX offers a common wrapp
AI models that may be used with other XAI packages
ward. DALEX is built on the assumption that each e
nation should be offered from the viewpoint of Rasho
This implies that a single graph may include any nu
of explainers. AIX360 and modelStudio provide a
.: Preprint submitted to Elsevier Page 41 of 65
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Table 16
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InterpretM
[392]

Alibi
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AIX360
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Skater
[395]
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tf-explain
[396]

Interpretab
ML (IML) [3

DALEX
[398]

H2O
[399]

ELI5
[400]

iNNvestiga
[401]

n
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Captum
[405]

y
06]
06]

S. Ali et al
Jo
ur

na
l P

re
-p

ro
of

sive overview of XAI software packages and their evaluation metrics

Data Type Explainability Explanation Model Type Evaluatio
MetricsSupported Methods Tabular Text Image Data Model Post-hoc Global Local Glass box black-box

L

Explainable Boosting ■ ■ ■ ■ ■ ■

—

Decision Tree ■ ■ ■ ■ ■ ■
Decision Rule List ■ ■ ■ ■ ■ ■
Linear/Logistic Regression ■ ■ ■ ■ ■ ■
SHAP Kernel Explainer ■ ■ ■ ■ ■ ■
LIME ■ ■ ■ ■ ■ ■
Morris Sensitivity Analysis ■ ■ ■ ■ ■ ■
Partial Dependence Plot (PDP) ■ ■ ■ ■ ■ ■

Accumulated Local Effects (ALE) ■ ■ ■

Trust Scor
Linearity Mea

Anchors ■ ■ ■ ■ ■ ■
Counterfactual Instances ■ ■ ■ ■ ■
Contrastive Explanation Method ■ ■ ■ ■ ■
Counterfactuals Guided by Prototypes ■ ■ ■ ■ ■
Integrated Gradients ■ ■ ■ ■ ■ ■
Kernel SHAP ■ ■ ■ ■ ■
Tree SHAP ■ ■ ■ ■ ■

Boolean Decision Rules via Column Generation ■ ■ ■ ■ ■ ■

Faithfulne
Monotonic

Generalized Linear Rule Models ■ ■ ■ ■ ■ ■
ProtoDash ■ ■ ■ ■ ■ ■ ■ ■
ProfWeight ■ ■ ■ ■ ■ ■ ■ ■
Teaching Explanation for Decisions ■ ■ ■ ■ ■ ■ ■ ■
Contrastive Explanations Method ■ ■ ■ ■ ■ ■ ■
CEM with Monotonic Attribute Functions ■ ■ ■ ■ ■ ■ ■
Disentangled Inferred Prior Variational Autoencoder ■ ■ ■ ■ ■

Partial Dependence Plots (PDP) ■ ■ ■ ■ ■

Interpretabi
Transparen

LIME ■ ■ ■ ■
Feature Importance ■ ■ ■ ■
Epsilon-LRP ■ ■ ■ ■ ■
Integrated Gradient ■ ■ ■ ■ ■ ■
Scalable Bayesian Rule Lists ■ ■ ■ ■ ■
Tree Surrogates ■ ■ ■ ■ ■

Saliency Maps ■ ■ ■ ■ ■

—

Activations Visualization ■ ■ ■ ■ ■
Vanilla Gradients ■ ■ ■ ■ ■
Gradients*Inputs ■ ■ ■ ■ ■
Occlusion Sensitivity ■ ■ ■ ■ ■
Grad CAM ■ ■ ■ ■ ■
SmoothGrad ■ ■ ■ ■ ■
Integrated Gradients ■ ■ ■ ■ ■

le
97]

Partial Dependence Plots (PDP) ■ ■ ■ ■ ■ ■ ■

—

Individual Conditional Expectation (ICE) ■ ■ ■ ■ ■
Feature Importance ■ ■ ■ ■ ■ ■ ■
Global Surrogate Tree ■ ■ ■ ■ ■
Local Surrogate Models ■ ■ ■ ■ ■ ■
Shapley Value ■ ■ ■ ■ ■ ■ ■ ■
Interaction Effects ■ ■ ■ ■ ■ ■

Partial Dependence Plots (PDP) ■ ■ ■ ■ ■

—
Accumulated Local Effects Plot ■ ■ ■ ■ ■
Merging Path Plot ■ ■ ■ ■ ■ ■
Shapley Values ■ ■ ■ ■ ■ ■
LIME ■ ■ ■ ■ ■ ■

Shapley Feature Importance ■ ■ ■ ■ ■ ■

—

Feature Importance ■ ■ ■ ■ ■ ■
Partial Dependency Plots (PDP) ■ ■ ■ ■ ■
Individual Conditional Expectation (ICE) ■ ■ ■ ■ ■
Decision Tree ■ ■ ■ ■ ■ ■
Local Linear Explanations ■ ■ ■ ■ ■
Global Interpretable Model ■ ■ ■ ■ ■

LIME ■ ■ ■ ■ ■ ■

—Permutation Importance ■ ■ ■ ■ ■ ■
Grad-CAM ■ ■ ■ ■ ■ ■
TextExplainer ■ ■ ■ ■ ■ ■

te

Gradient × Input ■ ■ ■ ■

Perturbatio
Analysis

(PixelFlippi
[317]

SmoothGrad ■ ■ ■ ■
Integrated Gradients ■ ■ ■ ■
DeconvNet ■ ■ ■ ■
Guided BackProp ■ ■ ■ ■
PatternNet [402] ■ ■ ■ ■
LRP ■ ■ ■ ■
Shapley Value Sampling ■ ■ ■ ■

io

Break Down Plot ■ ■ ■ ■ ■ ■ ■

—

SHAP Values ■ ■ ■ ■ ■ ■ ■
Ceteris Paribus [404] ■ ■ ■ ■ ■ ■ ■
Feature Importance Plot ■ ■ ■ ■ ■ ■ ■
Partial Dependency Plot (PDP) ■ ■ ■ ■ ■ ■ ■
Accumulated Dependency Plot ■ ■ ■ ■ ■ ■ ■

Grad-CAM ■ ■ ■ ■ ■ ■

Scalabilit
Infidelity [4
Sensitivity [4

GuidedBackProp ■ ■ ■ ■ ■ ■
Integrated Gradient ■ ■ ■ ■ ■ ■
DeconvNet ■ ■ ■ ■ ■ ■
DeepLift ■ ■ ■ ■ ■ ■
SHAP ■ ■ ■ ■ ■ ■
Occlusion ■ ■ ■ ■ ■ ■
.: Preprint submitted to Elsevier Page 42 of 65
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Questions? How to improve explanation?

Step-by-step approach to the application of XAI using preferred selection criteria. It is recommended that an AI
based on its performance and/or explainability. After a model is selected, it is advantageous to seek specific ty
and to use XAI to enhance the outcomes that can be achieved.

Data Type Explainability Explanation Model Type Evaluation
Metricses Supported Methods Tabular Text Image Data Model Post-hoc Global Local Glass box black-box

AI
]

Grad-CAM, Grad-CAM++ ■ ■ ■ ■ ■ ■

—

Score-CAM ■ ■ ■ ■ ■ ■
LayerCAM [408] ■ ■ ■ ■ ■ ■
Partial Dependency Plot (PDP) ■ ■ ■ ■ ■ ■ ■
GuidedBackProp ■ ■ ■ ■ ■
Integrated Gradient ■ ■ ■ ■ ■ ■ ■
Accumulated Local Effects (ALE) ■ ■ ■ ■
Sensitivity Analysis ■ ■ ■ ■ ■
Counterfactual Explanations ■ ■ ■ ■ ■ ■ ■
Contrastive Explanations ■ ■ ■ ■ ■
SHAP ■ ■ ■ ■ ■ ■ ■ ■
LIME ■ ■ ■ ■ ■ ■ ■ ■
SmoothGrad ■ ■ ■ ■ ■ ■
Layer-CAM ■ ■ ■ ■ ■ ■
Learning to explain (L2E) [409] ■ ■ ■ ■ ■ ■ ■ ■

sh
]

SHAP ■ ■ ■ ■ ■ ■ ■ ■ ■ Stability, Consistency
CompacityLIME ■ ■ ■ ■ ■ ■ ■ ■

n-standard applications. Furthermore, modelStu-
tes the generation of an interactive Javascript-
el exploration tool with a single command. Are-
fairmodels [415], triplot [416], xai2shiny [417],
8], and flashlight [419] are some other popular R
he interested readers are kindly referred to [420]
details on other related R packages.
rth noting that all packages presented so far were

end-users. However, different tools are more or less su
to use in the various stages of a model’s developmen
cess. For example, the main target group of flashlight
is different than the target of modelStudio or model
tools. flashlight is a tool that serves mostly to devel
allowing them to fit models based on their experience
is an important part of the model life cycle. In co
modelStudio is dedicated to end-users who usually
serve as XAI support for model developers and model and want to explore its behavior rather than fitting a
.: Preprint submitted to Elsevier Page 43 of 65
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l for the same task. In the case of modelDown, it
a new trend in the XAI toolkit research. This tool
ateway to model exploration for those who lack
wledge about AI modeling but want to become
th the behavior of the model they use.
nally, other tools are available. For instance,
21] offers a list of more than 25 reference metrics
n the evaluation of explanations. Several busi-
elopers, and researchers joined forces to develop
parent and sociable AI systems. The What-If
is an endeavor to build a standard foundation
ability of algorithms. An approach based on this
irness, Accountability, and Transparency (FAT-
[422]) proposes inspecting all facets of the ML
addition, TensorFlow Extended [423] - a separate
oped by the TensorFlow community, makes it
alyze the TensorFlow models.
more, PyCEbox [424] deals with explainability
s. Another example of tool for algorithmic trans-
Yellowbrick [425]. Some tools with the focus
analysis are BlackBoxAuditing [426], fairness-

n [427], FairTest [428], FairML [429], and Fair-
.
, tools for assisting in the analysis of account-
arding also security and privacy) are the most
find. Some examples are TensorFlow Privacy
pGame [432] (a deep neural network verification
yGrid [433]. In addition, there are some tools
pecial attention to the robustness of the model
ersarial attacks. For example, IBM’s adversarial
tool [434], FoolBox [435] or CleverHans [436].

rent Research Directions
s a scarcity of reliable and comprehensive system-
risons across available XAI methodologies [437].
ly, concepts that reflect the range of opportunities,
resources must be carefully organized to bridge
ween the study and practice stages. Moreover, the
nt and regulation of trustworthy AI systems are
ork.
desire for XAI and the demand for trustworthy
ightly linked, the importance of explainability in
trustworthy AI is thoroughly examined in this
r related surveys are supplemented by this study,
ides a methodology with explicit suggestions for
AI technologies. In addition, by reviewing met-
ntitative assessment of XAI and proposing useful
, this paper provides additional contributions to
g literature. This section discusses how XAI can
ay towards building trustworthy AI. We also point
cuss some open challenges and future directions.
chers in the XAI domain are currently developing
e exploration, debugging, and validation of AI
hese tools enable users to test models with a
of structures, allowing users to pick the best

their task based on specific metrics. Namely, the

requirements that XAI tools must fulfill to provide in-
model analysis arise from a variety of scenarios:
• A model may make mistakes when dealing with

instances. In order to enhance the model, it is cruc
figure out what is causing such bad judgments. In c
situations, XAI tools may aid in the debugging of
model by identifying the causes of its inefficiency.

• Inquisitive individuals do not like to rely on mode
dictions without knowing extra justifications or the
behind certain predictions that will gain the user’s
and confidence.

• It is conceivable that some hidden correlations in th
may be retrieved and understood by examining t
model with XAI tools, what may help users to learn
about the problem under study.

• Increasingly not only decisions, but also argument
planations, and reasons for decisions, are expected
produced automatically.

• If developers want to propose the adoption of a c
model for a given task, experts must first be able to
how it works. As a result, black-box models cann
relied upon for important decisions requiring accoun
ity, i.e., a more in-depth grasp of the decision-m
model is demanded.
In addition, the following scenarios support and pro

the intended design and assessment framework at mu
levels.
Evaluation Metrics and XAI System Design. When
suring the performance of XAI systems, it is criti
apply the right metrics. The use of the same evalu
metrics for diverse design objectives is a typical pro
when selecting measurement methods for XAI system
basic solution to this problem is to use numerous sca
record distinct features in each assessment to discrim
between measurements. The idea of user trust, for exa
is made up of numerous variables that may be examin
ing distinct scales in surveys and interviews [364]. To
certain explanation qualities, user satisfaction assess
might be established for variables such as explaina
usefulness, and sufficiency of information [438]. In ite
design processes, balancing diverse design approache
assessment types is an effective strategy to connect d
objectives with suitable evaluation metrics.
Overlap in Explanation Design Objectives. Four pr
dimensions along which to place XAI systems are pro
by our XAI classification axes: 1) data explainabili
model explainability, 3) post-hoc explainability, and
sessment of explanations. Across certain disciplines,
are overlaps in the axes. While the fundamental aim
similar (to produce better explanations), different exp
tion objectives should be explored in consideration
various users, what results in a diverse collection o

sign parameters and implementation approaches. Designing

.: Preprint submitted to Elsevier Page 44 of 65



Journal Pre-proof

S. Ali et al. Information Fusion

XAI system
developme
the model
approaches
According
tional dime
disciplinar
a variety o
tween XAI
User Inter
developing
tions. Inter
to enhance
tive system
papers hav
systems [4
how intera
their action
results. Ex
the models
used. Allow
ine model
training pr
are just a
systems.
System an
ing into con
When con
assessing u
systems, th
[446]. Wit
becomes m
ments, this
collection
is a crucial
but also in
Controlled
of model
baseline (n
investigatio
Expansion
vided 18 h
tematically
infused pro
49 design
tional info
assist in th
XAI syste
expandable
design guid
context-aw
Explainab
sample siz
ing overfitt
cost of mo
the model

erous
catas-
ms is
quen-
rning
of the
prob-
ribute
odel

tance,
loped
ely, it
tting-
offer
pend-
yper-
cient.
ted to
s and
anges
niche
in the
peline
with
s are

ly the
ance,
uality
levant
ve ac-
s and
odel
pro-

aliza-
ment,
ers to
ration
ount

signal
nce, a
maps
-class
oving
ed on
tainty
1].
mod-
con-
Hans
ature
eyond
chal-
which
oduc-

S. Ali et al
Jo
ur

na
l P

re
-p

ro
of

s for AI novices, for example, necessitates the
nt of human-centered XAI interfaces to convey
explanations, but developing new interpretability
for AI specialists implies other requirements.

ly, XAI user groups may be considered as an addi-
nsion along which to arrange XAI goals in cross-
y problems while emphasizing the integration of
f research aims in order to address the overlap be-
goals across different research disciplines [439].
actions in XAI. Another factor to consider when
XAI systems is how to handle human interac-
active visual tools enable AI and data specialists
the performance of models. Moreover, interac-
s might also be beneficial to novices. A few
e concentrated on the interactive design of AI
40, 441, 442, 443]. These studies demonstrated
ctive methods enable users to assess the effect of
s and alter their subsequent queries for enhancing
pert users may utilize visual tools to comprehend
they are using by interacting with the algorithms
ing data scientists andmodel specialists to exam-
representations interactively [444], assess model
ocesses [391], and discover learning biases [445],
few examples of the advantages of these XAI

d Ground Truth Evaluation. Taking user learn-
sideration is a key part of assessing XAI systems.
ducting cognitive psychological experiments for
ser understanding, satisfaction, and trust of XAI
eir learnability becomes even more important
h regular usage of the system, a user learns and
ore comfortable with it. In terms of XAI assess-
emphasizes the value of recurrent temporal data
[447]. Moreover, the choice of the ground truth
aspect in interpreting XAI assessment outcomes
comparing results across many investigations.
studies are often used to investigate the impact
explanations on a control group compared to a
o explanation required) group in human-subject
ns [361, 442].
and Generalization. Amershi et al. [448] pro-
uman-AI interaction design criteria. They sys-
evaluated the recommendations from 20 AI-
ducts via numerous rounds of assessments with
practitioners. Their design guidelines give addi-
rmation inside the user interface design layer to
e creation of suitable end-user interactions with
ms. The framework suggested in this paper is
and consistent with current AI-infused interface
elines. Adaptive explainable models that provide
are explanations are also available [449].
ility in Dynamic Learning Scenarios. Large
es can improve model generalization by prevent-
ing in individual cases, but they also increase the
del training. Moreover, when we add more data,
often has to be fine-tuned or trained from the start

using the extended dataset. Otherwise, learning num
tasks in a row or from dynamic data might result in
trophic forgetting [450]. One way to tame these proble
using continual learning [451] strategies, suitable in se
tial data streams scenarios, or state representation lea
[452, 453], as a way to intermediately learn the states
problem space as an intermediate task to solve control
lems involving deep learning. Explainable AI can cont
to a better refinement of the knowledge captured by a m
from evolving data that is retained over time. For ins
a relevance-based neural freezing method was deve
in [454] to reduce catastrophic forgetting. Unfortunat
has been shown that the explanations produced by cu
edge methodologies are inconsistent, unstable, and
very little information regarding their accuracy and de
ability [455]. These approaches also demand much h
parameter adjustment and are computationally ineffi
Consequently, efficiently producing explanations sui
deal with the varying nature of data and/or learning task
improving the adaptation of the model to eventual ch
by exploiting such explanations fall within a research
that will surely attract the interest of the community
future. Above all, standard protocols for continuous pi
adaptation that produce explanations on-the-fly, cope
errors and correct them in continual learning setting
much in need nowadays.
Other usages of explanations. Explanations can supp
extra information required to boost a model’s perform
convergence, robustness, efficiency, reasoning, and eq
[456]. For instance, understanding relevant and irre
feature representations can cut training time and impro
curacy. Similarly, determining the most crucial neuron
filters in a neural architecture is essential to increase m
effectiveness. The more stable, conservative learning
cess of augmented models allows for improved gener
tion [457]. Furthermore, in an active learning environ
explanatory interactive learning enables human us
correct a model’s decision-making [458, 459].Deterio
in the model performance can be measured by the am
of Out of distribution (OoD) samples, since it is a
that can be used to explain model failures. For insta
clustering based on archetypical explanation saliency
can detect OoD samples in settings with low intra
variability [460]. It is also possible to use XAI for impr
object counting and instance classification models, bas
landmarks that assist heatmaps’ sensitivity and uncer
analyses, for more accurate and certain predictions [46

Another approach that goes beyond exposing what
els really learn consists of masking artifacts that may
fuse models and their explainability (known as Clever
effects). This is a way towards the necessary but imm
research line of model certification [462]. Issues b
those carried out by explaining a model include the
lenges involved in XAI-based model improvement,
can accumulate sequential errors in the explanation pr
ing pipeline [456].
.: Preprint submitted to Elsevier Page 45 of 65
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an also be used to drive network improvement
ession, making DNNs low-bit and sparse. For
RP XAI method can be used to preserve the
ormation weights based on entropy, make most
ro and in this way compress networks beyond 100
size, which can be useful for learning on the edge
in the same spirit of efficiency, explainability can
d for pruning neural network layers as a criterion
oncept unlearning [465, 466].
r usage of XAI, when using causal explanations,
ng accountability, providing algorithmic recourse
planation more actionable [467], or facilitating
ability of themodel. In [468], Bargal et al. demon-
increasing the explainability of a deep classifier
d to improve its generalization, both to unseen
mples and out of domain ones, fine grained pre-
nd to be more efficient when using the network
s well as robust to network compression. These
esirable - but hard to quantify properties - of ML
t can be improvedwithXAI techniques are further
theoretical framework in [456].
, while XAI can be a tool to help conveying
s in natural language, there is often a lack on
d benchmarks that include explanations’ ground
ly validate models. One example of such datasets
X Visual Reasoning Dataset [469] for evaluating
guage explanations.
ation and model robustness. Given a domain,
s understood as the ability of a system to maintain
ance quality under varying conditions (ISO/IEC
XX), and it needs to be monitored in all life cycle
he AI system (ISO/IEC DIS 22989:2021). There
ways to evaluate the robustness of models and
ctive explanations. Generic approaches to guar-
l robustness borrow inspiration from well devel-
plines within the field of Software Engineering,
erification, and Validation (V&V) of the model.
verification process confirms through the provi-
jective evidence that the specified requirements
5000:2014 4.43, ISO/IEC 25030:2019(en), 3.22)
met, the validation process confirms via objective
nd testing that the verified software on real data
it should and works as expected. In this area
mily of formal methods are being extended to
work models to prove whether they satisfy ro-
roperties (ISO/IEC 25000:2014, 4.41, ISO/IEC
9(en), 3.21).
atic XAI metrics and methods that account for
lity of data/task are in much need. Some ways
verification are via program synthesis [470] (to
ies in RL), or running reality checks [471] or
r XAI technique pitfalls [472].
ach that, apart from robustness, serves as well
to the above-mentioned uncertainty issues is to
ertainty in black-box explanations. This requires
ep track of how certain the model is for different
r during its life cycle as it keeps learning in

time, post-deployment, with new data. One example i
direction [473] consists of estimating epistemic and ale
uncertainty maps associated to segmentation maps pro
by a Bayesian MultiResUNet.
Despite robustness being a desired and required pro
(Art. 15 of EU AI Act [474], Precision and Robu
and Cybersecurity of high-risk AI systems (HRAIs
upcoming AI Act Sandbox), there is a lack of proce
ways to approach and certify model robustness. In add
one of the most common limitations of formal me
for V&V approaches is the lack of scalability to h
dimensional inputs typical of deep learning. While
robustness properties can be documented defining a
range for the input features, this may not bemeaningful
individual features such as pixels have no semantic mea
However, a list of recommendations towards institut
legal and technical bodies towards auditing and verifi
of AI systems are being developedwith paramount rele
to implement trustworthy AI [475].
XAI and late breaking models. Explaining gene
models is an unexplored arena in XAI. Modern gene
models (GPT-3 for text generation from a prompt, Cha
[476], DALL-e 2 [477] or stable diffusionmethods for
generation from text) may, in occasions, require expla
their generated samples. This requirement depends
gently on the purpose for which such samples are c
(e.g., as specified in the AI system requirements,
anticipated by the compulsory requirements of e.g., H
in the EU AI Act [474]).

The debate around the explainability of generative
els departs from two main questions: 1) Do generative
els require explainability? and 2) Is it even possible to
satisfactory explanation of an output from the most m
large generative models? The first question can be ans
around two cases:
• No specific need for explanations: in generative art, u

copyright creation out of the generated samples
be legally claimed, no issue requiring explanation
arise. However, who is to be compensated in pos
usages when, for instance, plagiarism is detected a
generative art samples?Who is to blamewhen a gen
resource exposes private content worth censoring,
longing to some private data that can result into trou
attempting against people’s privacy, dignity or intim

• Explanations required, as it occurs in HRAIS such
data augmentation models for medical diagnosis
patients lives are at stake. If the model fails in its p
tion for a given query, and post-hoc explanations
that the cause for the miss-prediction was inde
augmented sample generated by these models, we
to have explanations indicating why the model gen
it, unlearn [466, 465] this augmented sample fro
trained model, and avoid that the generative mode
duces it again. The challenge resides in the creation
planations from probability distribution learning m

such as stable diffusion [478].
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r issue with modern generative models is that fact
ge models can leak private information []. Thus,
g challenge is: how can XAI deal with explaining
hancing technologies (PETs) or models having
lex and abstract blending capabilities (such as
iting properties of style transfer [479] or image
[480] models) that a human can hardly explain?
allenge would be defining what constitutes an
in such models, so that XAI techniques for de-
enance and traceability of samples in generative
can be devised to gain trust in large generative
ds an Ethical Code. The study of ethics in
pplications of AI is a complex and multi-faceted
requires interdisciplinary collaboration between
I, ethics, law, and other related fields. One of the
nges is the diversity of ethical issues that arise in
of AI. These issues range from bias and fairness
-making to privacy and security concerns, and
e approached technically in a variety of ways.
le, addressing bias in AI models may require
ocessing techniques, algorithmic modifications,
versight [24]. Similarly, ensuring the robustness
lity of AI systems may involve techniques such
ial training, uncertainty quantification, and fault-
sign [481]. In addition, ethical considerationsmay
ding on the application domain and the stakehold-
d. For instance, medical AI systems raise unique
es related to patients’ safety, informed consent,
y, which may require different technical and legal
s compared to other domains such as finance or
ion [482]. Protocolizing the study of ethics in
plications of AI requires a nuanced and context-
proach that takes into account the complexity
ity of ethical issues in different domains and
s. Recent works have proposed frameworks and
for ethical AI design and deployment, such as the
al Initiative for Ethical Considerations in AI and
us Systems [483] and the EU Ethics Guidelines
orthy AI [484].
Tools in XAI. The state-of-the-art tools for ex-
classification, qualification, and evaluation can
d by implementing new methods. For example,
tion and XAI are intertwined, since argumenta-
een utilized to provide explainability to AI in
s. Vassiliades et al. [53] have demonstrated that
tion can be used to explain how an AI system
decision, how it achieves that decision in the
biguity, and how it can solve problems when
with contradicting data. The more sub-symbolic
based intelligent systems have saturated our daily
ever, these systems are not comprehended well.
lt, symbolic techniques are gaining traction in
endeavor to make AI more understandable, ex-
and trustworthy. Calegari et al. [485] presented
w of the most common symbolic/sub-symbolic
approaches, with a special emphasis on those

aimed toward XAI systems. The recent advanceme
technology for the Internet of Things may aid in the
mission of explanations from Machine to Machine.

In addition, planning is a key aspect of AI that i
ployed in situations where learning is not possible.
porating explainability into the planning process e
converting the generated plan stages into a human-rea
format. Furthermore, this process encourages econom
terpretations that can handle concerns including cos
mates and variance, algorithm propriety, trade secre
closure, as well as anticipating XAI market develop
One potential approach to XAI in planning that can
a fresh breeze to the current spectrum of XAI meth
the use of neural-symbolic learning for sequential de
making [486]. This can be done in two sequential
from symbolic to neural representations, or viceversa, a
interface in between, or b) end-to-end, being able to h
both symbolic and subsymolic formalisms at the same
An example of model (of type a) with an interface in be
modules) is in [487]. It combines the deep neural net
symbolic components of planning and a symbolic de
tions. Common symbolic approaches for classical pla
include the use of first order logic -FOL- or Plannin
main Definition Language -PDDL. And an example
that jointly processes symbolic, neural representatio
inference, is DeepProbLog, based on neural probab
and deep learning [488].

It is worth noting that even if there are many
strategies, metrics and tools, as we will see in the
section, several questions still remain without an an
which methodology delivers the best explanations?
should the quality of explanations be assessed?

12. Concerns and Open Issues about XAI
The more pervasive AI is in our daily life, the mor

cerns turn up. For example: (i) due to the size of AI sys
input and state spaces, exhaustive testing is impractic
most AI systems currently in use have complex in
structures that are difficult for humans to interpret, an
most AI systems are highly dependent on the training
We have identified three main categories of concer
be discussed in the rest of this section): user con
application concerns, and government concerns.
12.1. Concerns from the User Perspective

In this work, we have distinguished among data ex
ability, model explainability, and post-hoc explainabil
depicted by the internal border in the Figure 29. With
outer boundary of the Figure, the various stakeholder
regulatory entities interested in AI system explanatio
depicted. The text highlighted at the bottom of each
represents their motivations and desire for a property
provided with explainability. While all organizations
to get a correct answer, the degree of detail and int
involved in this may differ significantly.

Brandao et al. [489] claimed that most research on

to interpret and explain AI systems is mainly motivated by
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Human Readability

Data Explainability

Explanation

Post-hoc Explainability

Data 
Insights

Feature Analysis
Feature and 

Decision 
Relationship

End consumers affected by model decisions

Who? Patients, accused, loan applications, etc.
Why? Understand the decision, verify fair decisions.

rs and product owners

ists, developers, and analysist.
ure product efficiency, 

with new functionalities.

Domain experts and end users

Who? Physicians, judges, loan officers, etc.
hy? Trust the model and gain insight knowledge.

Regulatory entities and agencies

Who? EU (GFPR), DARPA, GDPR, NYC Council, US Gov. 
Why? Ensure fairness with the legislation in force and right of users.

Business entities

Who? Managers and executive board
Why? Assess regulatory complia
understand corporate AI applicat

Right to
explanation

Eliminating
overfitting 

Interactivity

stworthiness TrustworthinessCausality

Causality

Causality

Transferability

y

Informativeness

Informativeness

Informativeness

Informativeness

Informativeness

onfidence

Fairness

Confidence

Confiden

Accessibility

Fairness

Accessibility

Accessibility

Interactivity
Accessibility Privacy awareness

Privacy awareness

Facilitating
improvement

Human Readability

Model Explainability

The aim of XAI is expressed to various stakeholders such as end-users, domain experts, developers, and gover
also highlight how the explainability of various axes can benefit multiple stakeholders. Each stakeholder
of participants - outlined in Who, and objectives - outlined in Why. Additionally, each group promotes explain
a specific characteristic. Each targeted platform’s characteristic is asserted in the gray box at the bottom.

ments of developers rather than users. Compre-
earch has confirmed and emphasized the need to
systems with actual users to ensure transparency
ntability [490], and fairness [24]. Moreover, AI
g a keystone in the development of automated
aking systems based on personal information,
have substantial implications for people’s basic
ice that, people have the right to request an expla-
get a guarantee that AI systemswill not negatively
lives under the GDPR policy [491].
tion, the level of explanation given to specialists
ry users does not have to be the same. Accord-
logical studies have focused on how individuals
planations. For example, Miller [52] reviewed
cal research to determine what people perceive as
lanation. He concluded that an explanation must
, socially acceptable, and contrastive.
, Doshi-Velez and Kim [15] suggested three lay-
ng to evaluate explainability: first, experiments
e carrying out real-world activities; second, basic
tal tasks with people; and lastly, proxy tasks and
t have been validated by previous research using
ion techniques mentioned above.
cerns from the Application Perspective
er application where an AI system is in charge of
tonomous decisions which may endanger human
ust emerges as the most important quality that the

related intelligent system must possess. For instance,
annual Neural Information Processing Systems confe
in December 2018, two pictures were shown on a s
[492]: (i) a patient with a human surgeon and a ca
showing the 15% risk of the patient dying during su
and (ii) a robotic arm with a 2% failure rate. The
audience was given the option to vote which surgeo
preferred. Everyone voted for the human surgeon excep
Thus, a 2% risk of dying should be preferable to a
chance of dying, but why did the audience not choo
more accurate model? Apart from accuracy issues, tr
AI systems is required in this kind of situations where h
lives are involved. However, this result may change if A
tems were able to provide good explanations, which w
increase trust by allowing individuals to understand ho
why the system makes specific decisions. Medical do
experts can find a comprehensive overview of the st
XAI in healthcare, including applications, challenge
future directions in the recent surveys [493, 494].

In detection and classification applications, a DL m
can automatically explore, learn, and extract data
sentations. The capacity of models to describe their
workings and decision-making processes is inevitably
ited when trying to maximize data utilization and inc
prediction accuracy. However, it is difficult to trust sy
whose decisions are not easy to comprehend, such as
from CNNs and ensemble models. This is especially t
.: Preprint submitted to Elsevier Page 48 of 65
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s like healthcare or autonomous vehicles, where
d moral issues naturally arise.
, the need for reliable, fair, resilient, and high-
models for real-world applications has been one
ers in the XAI field. The general trend depicted
0 (see the Appendix A) indicates that research
s on XAI have grown greatly during the previous
e large increases seen in recent years have been
y an increase in studies on ethical issues within
ime span. Consequently, it is apparent that users
ical concerns in addition to an explanation of
i.e., XAI highlights the importance of safety,
security, transferability, privacy, informativeness,
d ethical decision-making when it comes to AI
aking important decisions [495].
cerns from the Government Perspective
USA, the Defense Advanced Research Projects
ARPA), began its XAI initiative in 2017 with
creating new methods for explaining intelligent
96]. The program comprised 19 projects and
021 [497]. DARPA’s XAI initiative emphasizes
or explainability in order to better understand,
control the next generation of AI systems. This
ect on accountability [498], safety [499], and
esponsibility [500]. This is essential in high-risk
s like self-driving vehicles and medicine, where
correct outcome may result in a person’s death.
t, across various business sectors and scientific
d explanations are at the core of responsible and
earch. This necessitates an increase in investment
ners and industries to ensure the decision of AI
properly explained [32, 501].
, although AI systems are usually supervised by
reasonably controlled settings, AI is anticipated
emented on a much wider scale in the coming
ssitating a response from regulatory authorities.
this aim, the European Commission has com-

establishing guidelines for the trustworthy and
AI in our digital society [502]. The provisions
ersecurity Act aim to encourage an ecosystem
g AI technology to quickly develop and favor
while protecting basic rights [503]. This act was
n 2017 and established an EU-wide certification
r digital products, services, and processes.
more, one of the numerous responses to the new
he GDPR legislation has been a demand for XAI
lanations not just to users, but to society at large
ularly, knowing the risks and responsibilities as-
ith AI systems is essential in healthcare, clinical,
al professions since human lives are involved.
onsibility is delegated to a single expert, risk
occurs. Moreover, instances of minorities in em-
rocedures, recidivism in the COMPAS system,
l fairness have all contributed to XAI literature’s
, 501, 504, 505]. Another element driving the
AI, according to Adadi and Berrada [21], is the

development of algorithms that are not only fair and so
responsible, but also accountable and able to explain
output. The GDPR refers to the “Right to an Explana
which has sparked a lot of interest in both academi
industry, pointing the people concerned to XAI as a pot
compliance option [437, 506, 507]. There is wides
agreement that putting such a concept into practice
sential and that it is now a major open scientific
As a result, when it comes to understanding AI a pr
emphasis is put on the audience for whom explainabi
desired. In general, scholars concur on the need to de
user-friendly explanations.

Are the XAI techniques available today sufficie
resolve all the explainability concerns, even if several
are used? The answer is NO. As described in the Eur
AI Act (which is currently pending of final publication
time of writing), AI systems for tackling real-world
lems should be auditable and subject to regulatory pre
in terms of the criticality of the situation (such as s
[508]. Furthermore, explainability alone does not suffi
realizing trustworthiness in AI-based systems: explan
need to be accompanied by robustness guarantees, cau
studies, data governance, security, accountability or h
in- or on-the-loop interfaces (depending on the level o
of the AI system as per the AI Act), among other fact
relevance [509, 439].

Furthermore, there is a controversy when it com
choosing between the best-performing model and th
XAI method. In reality, we are far from regulated
performance models. Transparent models cannot hand
phisticated real-world applications. Many applications
themodeling complexity provided by black-box system
if authorities and agencies fail to recognize that not e
thing can be explained by existing technologies, regu
may become a threat to clamp down on unsafe sys
To define the requirements that should be satisfied by
tools, the idea of risk/criticality of the application sho
identified beforehand and governed accordingly. Alth
specific audit procedures are already well established,
still call for more analysis and the creation of brand
audit technologies and tools.

It is worth noting that end-user, application-oriente
government-led efforts to audit AI systems are essenti
insufficient to alleviate all concerns raised by the r
and advancements made in explainability. Establishin
methodological criteria for guiding future endeavors to
AI systems acceptable in critical situations necessitate
ulatory supervision surrounding crucial scenarios and
cations. Additionally, in order to drive future research
from simply producing additional tools but toward
fruitful cases where XAI tools are used successfull
require methodological measures, and assurances of
parency, among various other aspects, to confirm the
ibility of explanations provided by XAI in specific c
situations.

Fortunately, to foster trustworthy AI, several regu
efforts are in progress. For example, the European A
.: Preprint submitted to Elsevier Page 49 of 65
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to ensure quality and trust to enhance industrial
ch capabilities while upholding the fundamental
tizens [508]. This European regulation establishes
for which technical guides are being developed for
ensure compliance with. Subsequently, in 2022,
lished the first AI supervisory council in Europe.
itting the threats that AI may pose to individuals’
freedoms, the Spanish government is also seeking
ge and optimize the use of AI technology [510].
monitor and erode any danger connected with

ogy, the government has taken the initial steps to
supervisory authority in 2023.
er to modernize our laws for the 21st-century
American and European authorities have paved
r a new era of technological collaboration. They
work together to develop AI technologies that
then privacy protections, explore cooperation on
nduct an economic study looking at the effects
he future of the workforce. AI systems must be
, trustworthy, and respectful of universal human
e sharing democratic values [511]. Other coun-
also shown interest and proposed several rules
instance, China’s cyberspace authority recently
algorithmic recommendations for internet infor-
vices to standardize Internet information services
Brazilian Congress enacted a law establishing a
ework for AI in 2021 to lay forth broad guide-
e advancement of AI and its regulation [513].
other 58 countries proposed more than 700 rules
framework for AI. For further details, interested
uld refer to [514]. Besides this, we still require
cies and regulatory frameworks to guarantee that
e technologies are advantageous to humanity.
achieve this, the 193 member nations of UN-
ased a global agreement on the ethics of AI in
. Despite several sub-national, national, regional,
endeavors, the practical use of AI systems will
lack of trust in terms of the sufficiency of the
s produced for such systems.

clusion
mand for Trustworthy AI will expand as the
is used more often in practical applications, par-
hen making automated decisions that might have
ects on human lives. In this work, we have ana-
urrent state of XAI literature, standard definitions,
ds, and necessary concerns about the objectives
rthy AI. The study has looked at the four axes
bility: data explainability, model explainability,
plainability, and assessment of explanations. The
is arranged to provide a high-level discussion on
d with good examples and insight into the related
cal modeling. The proposed framework for end-
I system deployment integrates design objectives,
XAI concerns, with assessment methodologies.
ach encourages more conversation regarding the

relationship between the design and assessment of XA
tems. Proper assessment metrics and properties for diff
user groups have been also addressed in the study.

In addition, we have considered the target audien
whom the explanation is required. To comprehend
system satisfactorily, each user needs a different le
explanation. The needed attributes for different grou
users have been identified and associated with the
posed explanation axes. According to the classificati
explainability, research questions are addressed acco
to the various aims to achieve related to each axis
proposed classification demonstrates the importance o
tidisciplinary collaboration in designing and evaluating
systems. All interface and interaction design areas have
covered. This brings attention to complementary soci
ence resources that might help expanding the scope of
and cognitive components of explanations. Standard
related to XAI have also been specified to make intel
systems trustworthy and ethically appropriate.

Moreover, we have presented two main contributi
this comprehensive survey. We have first elicited me
ological suggestions using advanced XAI technologies
ond, we highlight the key issues and future directio
XAI research.

As AI technology advances, several technical (bu
legal and ethical) issues are explored by academia, wh
industry is also establishing new strategies. As a resu
creation of relevant standards, auditing plans, proce
and tools is progressing quickly. While Trustworthin
a matter of more aspects beyond explainability, ex
ability is a required ingredient. However, it alone
sufficient. Application contexts where AI-based syste
used can easily impose other restrictions that can
the trustworthiness and actionability of AI system ou
compromising fairness, data governance, privacy, acc
ability, sustainability, and robustness. This is why only
confluence and provision of guarantees in these desid
we can provide AI pipelines we can trust.

To pose the general conclusion of the paper: we
community have advanced notably in the explainabil
AI models to date. However, we are progressing ove
one of the requirements for trustworthiness. More w
done towards showing experiences and use cases accou
for more than the delivery of explanations for the know
and decisions elicited by AI models. Below there is a
mary of what we have discovered about XAI and what
required to attain truly trustworthy AI:
• Many methods are already available. Therefore, we

simply need more methods. Instead, we need to pay
attention to critical situations so that regulatory b
and supervisory authorities can enforce the necessi
explanations to be provided. Not just the AI model
needs to be explainable; its decision-making proce
must also be explainable.

• Although we can elicit explanations of various

the quantity of proposals without regard to whether they

.: Preprint submitted to Elsevier Page 50 of 65
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he intended audience’s needs has reached a satu-
int.
ave been many promises about creating trans-
odels, yet practical applications need complex
g: How much performance can be sacrificed for
ency?
for AI Governance and supervisory regulations
currently in design comply with seven identified
ents for developing Trustworthy AI: (i) robust-
safety, (ii) human agency and oversight, (iii)

ency, (iv) privacy and data governance, (v) diver-
-discrimination, and fairness; (vi) accountability,
) social and environmental well-being. In order
dvance only over only one of the requirements
worthiness, we advocate for simultaneously ap-
g the problem of reaching trustworthy AI from
perspectives.
more, the importance of bridging the gap be-
l clauses in trustworthy AI regulations and techni-
es, tools, and practices in related fields is needed.
ction is crucial for developing risk-aware scenar-
reasing the number of cases in which trustwor-
equired over time. To achieve this goal, it is nec-
ontinuously learn from the initially approached
d apply these lessons to future development. As
is a need for collaboration between legal and tech-
rts to establish a comprehensive framework for
AI. This enables the deployment of AI systems

t only technically advanced, but also meet legal
requirements. Addressing this gap facilitates the
nt of trustworthy AI and ensures that it is used for
of the society.
rvey has shown that it is feasible to boost a
istemic confidence by taking advantage of the
ered by several complementary explainable ap-
he goal of XAI is to learnmore about AI systems,
them, and establish trust in them. The XAI field,
as more promise than merely promoting trustwor-
plainability may inspire the development of novel
ethods and evaluation metrics that guarantee the
ness and consistency of even the most compli-
bstract models. Due to techniques that primarily
e on technological aspects of AI systems, we are
om having end-to-end XAI systems. The user
er interactions required for an AI system to be
employed are not taken into account by most

aches. This is why interactive systems that offer
s and feedback can be crucial for objectively and
demonstrating to users and decision-makers that
can be trusted.
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A. Literature Search Strategy
This section describes the methodology follow

structure and filter the reviewed XAI papers included
survey. It is hard to search and arrange the XAI literatu
to its interdisciplinary nature. Therefore, some restri
were imposed to exclude certain studies, as follows:

• Any XAI studies in fields other than AI and Com
Science, Mathematics, Philosophy, and Psychol

• Studies with methods that were created only f
purpose of increasing model transparency but
not explicitly focused on explanation.

• Papers focused on concepts other than the explan
of Supervised ML models.

• Studies not written in the English language.
• Papers that are published before January 2016.
The keywords explainable artificial intelligence, re

sible artificial intelligence, explainable machine lea
trustworthy artificial intelligence, ethical artificial
ligence, understandable artificial intelligence and
pretable machine learning were used to search for
cations that discussed explainability using Google Sc
The research articles discussing explainability and
pretability were selected from peer-reviewed journals
ferences, and workshops that were published between
uary 2016 and June 2022, and as shown in Figur
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rvised ML, unsupervised ML, and reinforcement
s, explainability techniques have been used. Al-
lainability is used with all three learning meth-
ore of XAI research is focused on supervised
herefore, this article discussed explainability in
of supervised learning. For the purpose of com-
the snowballing process was applied [516]. The
ork Section of each article was briefly skimmed,
nal relevant papers were sought out. More papers
sources, such as the European Conference on

Vision (ECCV), ACMTransactions on Intelligent
d Technology (ACM-TIST), Computational Vi-
(CVM), the Workshop on Human-In-the-Loop

ytics (HILDA), and IEEE Transactions on Big
discovered using this procedure.
3790 peer-reviewed articles were identified as a
is search strategy. The titles and abstracts of all
es were scrutinized. After that, we excluded any
t did not satisfy the criteria for inclusion by apply-
triction criteria mentioned above. Finally, a com-
nalysis of the remaining articles was conducted
identify the most relevant papers. Furthermore,
ce lists of the shortlisted papers were manually
find out other relevant publications.
lowing six major categories were identified after
ensive examination of all of the reviewed papers:
of explainability techniques - This category con-
stematic reviews in the area of XAI from the

overview of the reviews that are currently acces
along with open challenges.

• Concepts related to explainability - This category
prises research aimed at defining concepts linked
idea of explainability, as well as determining th
features and requirements of a successful explanatio

• Data explainability - This category contains paper
suggest new and innovative approaches for impr
explainability by interpreting training data.

• Model explainability - This category contains paper
suggest new and innovative approaches for impr
explainability by understanding the inner working
models.

• Post-hoc explainability - This category contains p
that suggest new and innovative approaches for im
ing explainability by providing a human-understan
explanation of the AI model’s decision.

• Assessment of explainability - This category contain
cles that describe the findings of scientific research
at assessing the effectiveness of various explaina
techniques.
We applied the limitation criteria step by step to o

our set of distinct and specific papers for this study after
ering a list of research articles based on related keyw
Figure 31 depicts the whole procedure, with the num
iod specified. Table 1 provides a comprehensive
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isited discussion on challenges and future directions of XAI and Trustworthy AI
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