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A B S T R A C T   

Curvature-induced secondary flows are ubiquitous in nature and have long attracted scientist attention. 
Modelling such kind of secondary flows is not straightforward. While full 3D models fit the purpose at the cost of 
great computational demand, simplified models often pose concerns about their effectiveness and the repre
sentation of key processes. In the present study, helical flow secondary currents are included in a two- 
dimensional depth-averaged hydro-morphodynamic model on cartesian unstructured meshes. The non- 
uniform vertical distribution of velocity in streamwise and spanwise directions is accounted for introducing 
dispersive terms in the shallow water equations, an anisotropic diffusivity tensor in the advection-diffusion 
equation, and a correction to the direction of bed shear stress and bedload transport. Different approaches 
available in the literature are recast in similar form and compared to each other in terms of flow field, tracer 
transport, and bed evolution, using data from laboratory experiments and real-world case studies. The model 
includes a novel, pure 2D implementation of the non-linear saturation mechanism that limits the growth of 
secondary flows in relatively sharp bends. A substantial part of the paper is devoted to discuss key factors in 
secondary flow modelling, including implementation tricks, guidelines to mesh design, the suitability of local and 
non-local approaches, and the role of bathymetry. The final goal is to provide useful guidelines for 2D hydro- and 
morphodynamic modelling in river bends.   

1. Introduction 

In river and channel bends, the interplay between the curvature of 
streamlines in the horizontal plane and the non-uniformity of stream
wise velocity along the vertical produces a streamwise-oriented helical 
flow, because of an imbalance between the outward centrifugal accel
eration and the inward pressure gradient (Blanckaert and de Vriend, 
2010; Falcon, 1984; van Balen et al., 2010). This curvature-induced 
secondary current, which acts to deviate the high-velocity thread from 
the inner to the outer bank (Ahmadi et al., 2009; Bolla Pittaluga et al., 
2009; Johannesson and Parker, 1989a; Lien et al., 1999; Seminara, 
2006; Shimizu et al., 1990; Wu et al., 2004, 2005), has long attracted 
scientist attention (e.g., Boussinesq, 1868; Thomson, 1877; the tea 
leaves of Einstein, 1926; see also Bowker, 1988) because of interesting 
fundamental implications in shaping the riverbed bathymetry, in 
contributing to bank erosion and meander migration, in enhancing 
mixing and dispersions of heat and solutes, in increasing flow resistance, 

etc. (Constantinescu et al., 2013; Demuren and Rodi, 1986; Duan, 2004; 
Gu et al., 2016; Iwasaki et al., 2016; Jang and Shimizu, 2005; Koken 
et al., 2013; Lai et al., 2012; Papanicolaou et al., 2007; Termini, 2014). 

Modelling the secondary currents in river bends is an important and 
challenging issue. The most natural way of modelling secondary cur
rents is employing full three-dimensional (3D) models, which naturally 
resolve curvature-induced helical flows (Keylock et al., 2012). Starting 
from pioneering applications in the ’70s (Leschziner and Rodi, 1979; 
Pratap and Spalding, 1975), the increased computational power has now 
allowed modelling long stretches of natural rivers with full 3D 
Computational Fluid Dynamics (CFD) tools, but the need of suitable 
computing facilities and of large computational time still hinder their 
widespread application (Fischer-Antze et al., 2008; Horna-Munoz and 
Constantinescu, 2018). 

The search for efficient strategies to account for curvature-induced 
secondary flow in reduced-order hydraulic models, started by Van 
Bendegom (1947) by looking at the flow field in a single bend, has so far 
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produced many different approaches and modelling strategies (Blanck
aert and de Vriend, 2010; Camporeale et al., 2007; Lane, 1998). Most of 
these are linear (or weakly non-linear) models, valid for low curvatures 
of the river axis and slowly varying bed topography, hence suitable to 
model long-term migration of large-scale meandering rivers. 

To meet the specific needs of practical engineering problems 
involving fluvial hydro- and morpho-dynamics, two-dimensional (2D) 
free-surface shallow water models still represent a valid compromise 
between efficiency and effectiveness (Shaheed et al., 2021; Uijttewaal, 
2014). In 2D depth-averaged models, the vertical velocity profile is 
assumed implicitly, and it is commonly taken to be constant (Bates, 
2022; Ghamry and Steffler, 2002). To account for the effects of sec
ondary flows in channel bends, the shallow water equations (SWEs) are 
enriched with dispersive stresses (Bora and Khalita, 2020; Camporeale 
et al., 2021; Song et al., 2012), which parameterize the momentum 
transfer produced by the streamwise-oriented helical flow. 

The simplest approach to account for curvature-induced secondary 
flows in 2D models assumes instantaneous adaptation of secondary 
flow intensity to the driving curvature. The dispersive stresses are 
linked to the local streamline curvature directly (Begnudelli et al., 
2010; Duan, 2004; Guan et al., 2016; Lien et al., 1999; Song et al., 
2012). Actually, the problem is further complicated because the 
streamline curvature generates secondary flow progressively, i.e., with 
a phase-lag due to inertia, and the helical flow is subject to different 
dissipative mechanisms as well (Blanckaert and de Vriend, 2003, 
2004). The lagged formation of helical flow in steady state applications 
was simulated by introducing an adaptation length (Blanckaert and de 
Vriend, 2003; De Vriend, 1981; Johannesson and Parker, 1989b; Kik
kawa et al., 1976; Rozovskii, 1957; Wu et al., 2004, 2005). A more 
rigorous and general approach requires solving a transport-diffusion 
equation for vorticity (or angular momentum), with centrifugal force 
and resistance mechanisms acting as source and sink terms, respec
tively (Bernard and Schneider, 1992; Einstein and Li, 1958; Ikeda and 
Nishimura, 1986; Kalkwijk and Booij, 1986; Odgaard, 1986). At the 
cost of additional computational demand, this approach doesn’t suffer 
from local singularities in the curvature field and reproduces the slow 
decay of the helical flow, which vanishes at a long distance down
stream of a bend (Bai et al., 2019). 

Concerning the implementation of the above methods, modelling 
approaches proliferated with regard to: i) the basic conservation prin
ciple, such as extra equations from the Navier Stokes equations (Ghamry 
and Steffler, 2002; Jin and Steffler, 1993; Yeh and Kennedy, 1993), 
reduced versions of the momentum equation in the transversal direction 
(e.g., Kalkwijk and Booij, 1986; Odgaard, 1986), or the conservation of 
angular momentum in the transversal plane (e.g., Bernard and 
Schneider, 1992; Finnie et al., 1999); ii) the vertical profile for the 
streamwise velocity component, either logarithmic (Bernard and 
Schneider, 1992; De Vriend, 1977, 1981; Kitanidis and Kennedy, 1984; 
Shimizu et al., 1990) or power-law (Odgaard, 1986; Wu et al., 2004; 
Yeh and Kennedy, 1993); iii) the vertical profile for the spanwise ve
locity component, typically linear with zero mean (Odgaard, 1986), 
albeit with variations (De Vriend, 1977, 1981; Kikkawa et al., 1976; 
Shin and Seo, 2021); iv) the way in which local curvature is estimated 
and possibly filtered to avoid numerical instabilities (Abad et al., 2008; 
Begnudelli et al., 2010); v) the use of boundary-fitted orthogonal 
curvilinear grids, which naturally allow evaluating longitudinal and 
transversal terms (e.g., Blanckaert and de Vriend, 2003; Demuren, 
1993), as opposed to general-purpose unstructured meshes in a Carte
sian reference frame that are more flexible in case of unevenly curved 
bends and wandering riverbeds (Jin and Steffler, 1993; Nikora and Roy, 
2011); vi) the treatment of impervious banks using either the free- or 
no-slip condition, each one entailing specific pros and cons (Blanckaert, 
2001). 

In general, the basic model assumptions limit the scope of such 2D 
models to the case of mild curvatures. Indeed, in the case of sharp bends, 
curvature-induced secondary flows are characterized by relevant non- 

linear feedbacks. The helical flow, with its outward transport of 
streamwise momentum, modifies both the horizontal pattern and the 
vertical profiles of flow velocity: the high-velocity thread is moved 
outward, and the vertical profile is flattened, which means weakening 
the helical flow production mechanism (Blanckaert, 2009; Blanckaert 
and de Vriend, 2003; Blanckaert and Graf, 2004; Wei et al., 2016). This 
feedback-based non-linear process, referred to as saturation of second
ary flow, has been assessed quite recently, and its implementation in 2D 
depth-averaged models is still in its infancy (Guan et al., 2016; Otte
vanger et al., 2012; Qin et al., 2019; Shin and Seo, 2021; Xiao et al., 
2022). 

Finally, the implementation of 2D models accounting for curvature- 
induced secondary flows, as well as their application to laboratory and 
real-world case studies, lead to face many other subtle factors. Examples 
are the proper inclusion of high spatial gradients of water depth asso
ciated to compound cross-sections and irregular bathymetries, the 
computation of dispersive stresses at the wet/dry interface or at the 
mesh (lateral) boundaries, the need of accounting for lateral wall fric
tion (particularly for laboratory applications with rectangular cross- 
sections), effective strategies to employ coarser computational meshes, 
etc. 

The present study aims at providing a comprehensive assessment of 
curvature-induced secondary flows in the frame of general-purpose, 
depth-averaged 2D models for river hydro- and morpho-dynamics on 
cartesian (i.e., not curvilinear) coordinate systems. Different parame
terizations available in the technical literature are recast in similar form 
and implemented in a 2D finite-element hydrodynamic model, for both 
the cases of instantaneous adaptation of helical flow intensity and of 
transport of streamline vorticity. The saturation of secondary flow in the 
case of strong curvatures is modelled introducing a pure 2D extension of 
the model by Blanckaert and de Vriend (2003); saturation effects can be 
accounted for with any of the approaches for secondary flow imple
mented in the model. The hydrodynamic module for curvature-induced 
secondary flows is then integrated with a module for transport of passive 
tracers, and with a morphodynamic module solving for the bedload 
sediment transport. 

The paper is organized as follows. The theoretical models for 
curvature-induced flows are presented in Sect. 2, along with an in-depth 
description of implementation techniques. The model is verified against 
several laboratory experiments, both with fixed and movable bed (Sect. 
3). A model application to a real case-study (Po River) is used to assess 
some key factors in 2D depth-averaged hydro- and morphodynamic 
modelling of real rivers. The relevant aspects emerged in this study are 
then discussed in light of the recent advances on the subject and of open 
issues (Sect. 4). A set of conclusions closes the paper. 

2. Accounting for curvature-induced secondary flows in 2D 
models 

2.1. Shallow water equations with dispersive stresses 

On a horizontal Cartesian frame with axes (x, y), under the hy
pothesis of hydrostatic pressure distribution, the depth-averaged Nav
ier-Stokes equations, commonly known as De Saint Venant or shallow 
water equations (SWEs), read: 
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(1)  

where t is time, D/Dt is the material (Lagrangian) time derivative, q =
(qx, qy) are the depth-integrated velocity components, Y is the equivalent 
water depth (i.e., water volume per unit area, Defina, 2000), Re are the 
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Reynolds turbulent stresses in the horizontal plane, (τbx, τby) are the bed 
shear stress components, ρ is the water density, g is gravity, and h is the 
water surface elevation over a datum. In the continuity equation, η(h)∈ ] 
0,1] is a depth-dependent storage coefficient defined as the wet area 
fraction (Defina, 2000). The dispersive stresses Dxx, Dxy, and Dyy emerge 
from the integration of a non-uniform vertical distribution of velocity 
over the water depth, and are defined as 

Dxx =

∫Y

0

[u
′

(z)]2 dz

Dxy = Dyx =

∫Y

0

u
′

(z)v
′

(z)dz

Dyy =

∫Y

0

[v
′

(z)]2 dz

(2)  

where the apostrophe denotes the difference between the real and the 
depth-averaged velocity component (note that the velocity vector is here 
defined as w = (u, v) = q/Y): 

u′

(z) = u(z) − u
v′

(z) = v(z) − v
(3) 

Dispersive stress terms thus account for the subscale spatial vari
ations of the unresolved velocity field. To obtain close-form expres
sions of the dispersive terms, it is convenient to use a local (s, n) 
reference frame, with s the longitudinal (streamwise) and n the 
transversal (spanwise) directions (see Fig. 1a), and to assume simple 
vertical distributions of the flow velocity components along s and n. 
Among the different expressions used in previous studies, a power law 
distribution can be assumed for the streamwise component, ws, which 
allows for a simpler derivation of dispersive stresses. According to 
Odgaard (1986): 

ws(z)
w

=
m + 1

m

( z
Y

)1
m (4)  

being w =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
u2 + v2

√
the magnitude of the depth-averaged velocity and m 

a friction parameter (m = χκ / g1/2 with χ the Chezy coefficient and κ =
0.4 the von Karman constant). For the spanwise velocity component, wn, 
a linear profile with zero mean is commonly used (Jin and Steffler, 1993; 
Kalkwijk and Booij, 1986; Odgaard, 1986): 

wn(z)
w

= v∗ns

(
2z
Y
− 1

)

(5)  

where v∗ns = vns/w is the non-dimensional transversal velocity compo
nent at the free-surface. Integration on the water depth provides (Beg
nudelli et al., 2010; Lien et al., 1999; Wu et al., 2004) 

Dss = Y
w2

m(2 + m)
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(
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)2

3

(6)  

being R the radius of curvature of depth-averaged streamlines (R is 
positive for clockwise bends in the flow direction, and negative vice- 
versa). Finally, these terms are rotated into the (x, y) coordinate frame 
by expressing the rotation matrix in terms of velocity components, to 
read 

Dxx = Dss
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v2
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uv
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(7)  

Lien et al. (1999) reported an equivalent derivation of these terms for 
the case of a logarithmic vertical profile of streamwise velocity. 

It’s worth noting that the net contribution to momentum (Eqs. (1)) of 
dispersive stresses Dij, with i and j denoting either x or y, depends on 
their spatial derivatives rather than on their magnitude. Concerning the 
role of the single dispersive terms, Dss does not depend on the secondary 
flow; it acts in the streamwise direction by hindering both spatial ac
celeration and deceleration. The mixed Dsn term is the most important 
term for simulating secondary flows; its spatial gradient may lead to 
additional resistance at the inner side of bends and to acceleration at the 
outer side of bends (Dietrich and Smith, 1983), thus accounting for the 
effect of outward momentum transfer ascribed to the helical flow. Dnn 
may produce a spanwise net stress that, depending on the spanwise 
gradient of flow velocity (w) and secondary flow intensity (v∗ns), may lead 
to a larger free-surface transversal slope. 

2.2. Instantaneous-adaptation and vorticity-transport approaches 

The dispersive stresses for curvature-induced secondary flows, which 
depend on the helical flow intensity, can be expressed in terms of non- 
dimensional spanwise velocity component at the free-surface, v∗ns. Basi
cally, v∗ns can be evaluated using two different approaches: i) a local 
approach, which implies instantaneous adaptation of the helical flow 
intensity to the local flow features, and ii) a vorticity-transport 
approach, which accounts for generation, transport, and dissipation of 
the helical flow. 

In the local approach, which is simpler and less computationally 
demanding, v∗ns is a direct function of the local water depth, velocity, and 

Fig. 1. a) Schematics of main and secondary flows in a channel bend, with notation. b) Estimation of the local streamline curvature. c) Model for wall friction.  
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streamline curvature. As a major drawback, the local approach does not 
consider the inertia of secondary flow, and the spatially distributed field 
of v∗ns becomes particularly sensible to local variations of flow field and 
streamline curvature, particularly in the vicinity of sharp boundaries (e. 
g., bridge piers, abutments). 

The vorticity-transport approach models the helical flow in terms of 
streamwise vorticity component, which emerges from the non- 
uniformity of the spanwise velocity (Einstein and Li, 1958). Usually, 
rather than solving the complete equation for three-dimensional 
vorticity vector (Blackaert and de Vriend, 2004), depth-average 
simplified versions of the vorticity equations are solved for the stream
wise component of vorticity, ω (Finnie et al., 1999; Uchida and 
Fukuoka, 2014). The general form of the transport equation for 
streamwise vorticity in the (x, y) horizontal plane is: 

Dω
Dt

= ΩPROD − ΩDISS (8)  

in which ΩPROD is a production term depending on the imbalance be
tween the centrifugal acceleration and the transversal pressure gradient, 
and ΩDISS is a dissipation term that derives from the bottom stresses 
(Farhadi et al., 2018; Nezu, 2005). Several formulations have been 
proposed in the technical literature to estimate the production and 
dissipation terms of Eq. (8). Although formally different, being obtained 
from different basis assumptions, they all share a similar structure, as 
shown in the following. 

Noting that the streamwise vorticity component, ω, is twice the 
angular velocity, Ω, and assuming the linear profile for spanwise ve
locity of Eq. (5), it results: 

ω = 2Ω = 2
vns

Y/2
= 4

vns

Y
(9) 

Under the hypothesis of slowly-varying water depth, Eq. (8) can be 
written directly in terms of vns in the general form 

Dvns

Dt
= fDkP

w2

R
− kD

vnsw
Y

(10)  

being kP and kD production and dissipation coefficients, whose formu
lation depends on the basic conservation principle; fD is a coefficient 
introduced to account for non-linearity in the production of helical flow 
(see Sect. 2.3). 

Kalkwijk and Booij (1986) derived a transport-diffusion equation 
starting from the momentum equation in the transversal direction and 
using a logarithmic vertical profile for streamwise velocity. This 
approach is also implemented in Delft3D, with a slightly different 
formulation for the production term (see Chavarrías et al., 2019). A 
similar approach has been proposed by Odgaard (1986), which used a 
power law (Eq. (4)) for the vertical profile of streamwise velocity. 
Actually, both these studies worked with the assumption of steady state, 

yet the generalization to unsteady flow is straightforward. 
Bernard and Schneider (1992) obtained the transport-diffusion 

equation by imposing angular momentum conservation on a 
cross-section and assuming a logarithmic vertical profile for the longi
tudinal velocity component; in the present work, for the sake of 
simplicity, the same approach has been reformulated using the power 
law in Eq. (4). 

Eq. (10) can be used to estimate the transversal surface velocity v∗ns 
for both the vorticity-transport approach and the instantaneous- 
adaptation approach. Indeed, the instantaneous-adaptation approach 
implicitly assumes that an equilibrium condition is locally attained 
elsewhere, which is equivalent to assume that the material derivative of 
streamwise vorticity (i.e., the left-hand side term in Eq. (10)) vanishes. 
In this case, v∗ns can be evaluated directly (and locally) as 

v∗ns =
vns

w
= fD

kP

kD

Y
R

(11) 

Compared to the local approach, which allows estimating the 
transversal velocity calculating production dissipation terms solely, the 
vorticity-transport method has a higher computational cost since the 
transport Eq. (10) must also be solved. 

Table 1 reports the different expressions for production and dissi
pation terms available in the literature, also expressed according to the 
form of Eqs. (10) and (11). In Fig. 2a, the magnitude of the transversal 
velocity component at the free-surface is plotted for different value of 
the Strickler roughness coefficient, Ks. The Bernard and Schneider 
(1992) model, reformulated assuming a power law vertical profile (red 
dashed line) is very similar to their original, lag-law based model (red 
continuous line). The model by Odgaard (1986) shows an opposite trend 
with respect to that of Kalkwijk and Booij (1986). By increasing values of 
Ks (i.e., moving toward smoother beds), the vertical profile of stream
wise velocity component is progressively flatter, which entails a reduced 
production of helical flow; yet, a smoother bed also entails reduced re
sistances to spiral motion. The two above models give different weight to 
these two opposing factors. 

2.3. Saturation of secondary flows 

In Eq. (10), as well as in Eq. (11), assuming fD = 1 leads to linear 
models in which the intensity of secondary flow increases indefinitely 
with the streamline curvature (Camporeale et al., 2007; Song et al., 
2012). This is not the real case, particularly for higher curvature ratios 
Y/R, because of the so-called saturation effect (Bai et al., 2019; 
Blanckaert, 2009; Blanckaert and de Vriend, 2003). The dampening 
factor fD ∈[0,1] is introduced in Eq. (10) to reduce the production term 
in all the formulation here implemented when the saturation mechanism 
plays a role. 

Blanckaert and de Vriend (2003) proposed a parameterization in 

Table 1 
Collection of the main formulations for secondary flow proposed in the literature. Ω, I, and vns measure the secondary flow intensity. In the Bernard and Schneider 
(1992) formulation, ω is the streamwise vorticity, CF is a friction parameter, CA, CB, CC, C2 are model parameters that are combined in the production, AS, and decay, DS, 
coefficients. In the Kalkwijk and Booji (1986) formulation, kb = kb(s) is a calibration parameter that accounts for the phase lag.   

Bernard and Schneider (1992) Kalkwijk and Booji (1986) Odgaard (1986) 

Derived from Angular Momentum Conservation on 
Transversal Section 

Steady state momentum equation in the 
transversal direction 

Steady state momentum equation in the 
transversal direction 

Transported quantity Ω =
CACBC2ω
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wY
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2m + 1
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Y
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Normalized transport-equation Dvns

Dt
=

̅̅̅̅̅̅̅̅̅
6AS

√

2
κ
m

w2

R
− DS

κ
m

wvns

Y 
w

dvns

ds
=

3
m

w2

R
−

2κ2

m − 2
wvns

Y 
w

dvns

ds
=

2m + 1
m(m + 1)

w2

R
−

2κ2

m + 1
wvns

Y 
Transversal velocity at equilibrium 
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which fD is a function of the bend parameter β, which in turn depends on 
the normalized transversal gradient of the depth averaged velocity, αs: 

fD = 1 − exp
(

−
0.4

1.05β3 − 0.89β2 + 0.5β

)

β =

̅̅̅̅̅̅
Y
|R|

√ (
0.41

m

)− 0.55

(αs + 1)0.25

αs =
R
w

∂w
∂n

(12) 

The key parameter is here αs, which varies from αs = − 1, i.e., po
tential flow (or free-vortex) spanwise velocity distribution with 
maximum velocity at the inner side, to αs = 1, i.e., forced-vortex with 
maximum velocity at the outer side (Blanckaert and de Vriend, 2003; 
Ottevanger et al., 2012). The rationale is that, generally, αs = − 1 at the 
bend entrance where the helical-flow production is stronger and the 
outward momentum transfer has still to affect the flow; as opposite, αs 
tends to 1 as the high-velocity thread shifts to the outer side of the bend, 
i.e., where the vertical profile of velocity is likely to be flattened and the 
production of helical-flow weakened. Accordingly, the dampening fac
tor fD decreases for increasing αs (Fig. 2b). Through the bend parameter 
β, fD also depends on hydrodynamic variables (Y and R) and on bottom 
friction (m). For increasingly sharp bends, fD decreases, indicating that 
non-linear effects become increasingly important in limiting the growth 
of helical flow. 

The non-linear model by Blanckaert and de Vriend (2003) has been 
conceived for reduced order models developed on curvilinear reference 
frames, typically used as meander-migration models, in which the sec
ondary currents are parameterized based on momentum balance at the 
channel centreline. Ottevanger (2013) proposed to extend the model to 
the whole channel width by extending the secondary flow intensity 
estimated at the centreline modulated with empirical power-law 
weighting functions. Such an extension is limited to regular-shaped 
cross-sections and presumes the knowledge of the channel centreline 
and walls. Iterative procedures are required to deal with more complex 
geometries (Qin et al., 2019). The generalization of this nonlinear model 
to a form that is suitable to general-purpose 2D schemes is still to be 
sought. 

2.4. A pure 2D approach and the treatment of banks 

Within the scope of general-purpose 2D depth-averaged models, 
which include the salient features of curvature-induced secondary flows, 
the approach used to account for impervious banks and the transversal 
distribution of the Dsn dispersive stress deserves some discussions. 

As well explained by Blanckaert (2001), it is known since Johan
nesson and Parker (1989a) that, in a channel bend, the Dsn dispersive 
stress must satisfy two conditions: i) it should be positive in the central 
region of the cross section, where the helical flow produces the highest 
transversal momentum flux, and ii) it should decay to zero toward the 
impervious banks, where the direction of secondary flow is mostly 

vertical and the velocity progressively reduces due to sidewall friction. 
When applying linear models for secondary currents to strongly curved 
flows, the helical flow intensity is generally overestimated when the 
(physically sound) hypotheses of no-slip condition is assumed (e.g., 
Blanckaert, 2001; Lien et al., 1999). Indeed, in the external part of the 
bend, the no-slip condition amplifies the (negative outward) spanwise 
gradient of velocity, entailing a larger, streamwise-oriented, net stress at 
the outer side of the bend. 

A simple solution that has often been used in previous studies (Lien 
et al., 1999; Song et al., 2012) is adopting the free-slip condition at 
impervious banks. The spanwise gradient of velocity is reduced, and so it 
is the dispersive stress Dsn; unfortunately, this causes an unphysical 
momentum flux at the banks (Johannesson and Parker, 1989a). More
over, while assuming a free-slip condition at the banks entails minor 
drawbacks in case of relatively large cross-sections, the sidewall friction 
plays a significant role in case of cross-sections with large aspect ratios, 
typical of artificial channels and laboratory flumes, and should be 
accounted for. 

Physics-based analytical solutions proposed in previous studies (e.g., 
Ikeda et al., 1990) are unsuitable to general-purpose 2D depth-averaged 
models, for which the channel centreline and width, as well as the dis
tance from the banks, cannot even be identified. Actually, the bank 
location can change substantially depending on the water level in typical 
compound cross-sections (e.g., passing from full-bank to flood 
discharge), as well as due to movable-bed dynamics in case of active (i. 
e., migrating, braided, anabranching) riverbeds. 

In general-purpose 2D models based on a Cartesian (i.e., not curvi
linear) reference frame, only local variables (i.e., the flow depth and 
velocity, the radius of curvature R, etc.) can be used to estimate the helical 
flow strength (Jin and Steffler, 1993; Koch and Flokstra, 1980). Hence, 
here we explore the practical solution of implementing a model for sec
ondary flow, including the associated non-linear saturation effects, based 
on local variables only. The effectiveness of such a pure 2D approach has 
to be verified by means of model applications (the reader is referred to 
Sect. 3 and 4). The basic idea is that considering the physics-based satu
ration effects, rather than the unphysical free-slip condition at sidewalls 
or other case-specific tuning parameters, could alleviate the over
estimation of secondary flow that is produced in strongly curved bends 
when the no-slip condition acts at impervious banks. 

Of course, providing a physically sound representation of the com
plex 3D phenomena occurring in strongly curved channel bends is 
beyond the scope of the present work. The goal is achieving a cost- 
effective, versatile, and useful tools for engineering applications. 

2.5. Advection-diffusion equation in the presence of secondary currents 

The advection-diffusion equation allows to determine the evolution 
in time and space of the vertically-averaged concentration, C, of tracers 
and substances transported by the flow. It is used to model suspended 
sediment, pollutant transport, and other transported quantities such as 
the vorticity ω (Sect. 2.2). The advection-diffusion equation can be 

Fig. 2. a) Magnitude of the transversal velocity at the free-surface, vns, scaled by w(Y/R), evaluated with different approaches using eq. (11) with fD = 1. b) 
Dampening factor for vorticity production, fD, for different values of the friction parameter, m, and the normalized spanwise gradient of streamwise velocity, αs. 
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written as: 

∂YC
∂t

+∇⋅Cq − ∇⋅(YεT∇C) − ∇⋅(YDD∇C) = S (13)  

where ∇ ⋅ is the 2D divergence operator, εT = νT / σT is the turbulent 
diffusivity, commonly expressed as a function of the eddy viscosity, νT, 
and of the Schmidt number, σT (Duan, 2004), DD is an anisotropic 
diffusivity tensor that accounts for dispersion, and S is a source term. 

The dispersive-diffusion term is often neglected in the practice (i.e., 
DD = 0), and the turbulent diffusivity is tuned using the Schmidt-number 
as a calibration parameter for representing experimental data in general 
conditions (smaller values for the Schmidt number increase the mixing 
and vice-versa) (Duan, 2004; Hu et al., 2017). However, the 
curvature-induced helical flow enhances the lateral mixing (Engmann, 
1986; Fischer, 1969; Lee and Kim, 2012; Moncho-Esteve et al., 2017; 
Rishnappan and Lau, 1977). Particularly, large curvature and strong 
secondary currents entail a marked anisotropic diffusivity that needs to 
be modelled with a suitable parameterization (Demuren and Rodi, 1986; 
Duan, 2004). This generally suffices to make the calibration of the 
Schmidt number unnecessary (i.e., σT = 1 can be assumed) in the case of 
channel bends. 

The principal components of the DD tensor, in the local (s, n) refer
ence frame, can be expressed in the following general form: 

DDss = αDsu∗Y DDnn = αDnu∗Y DDsn = DDns = 0 (14)  

where u* is the friction velocity and αDs, αDn are proper parameters 
Elder, 1959; Holly and Usseglio-Polatera, 1984; Shin et al., 2020). 
Different formulations for αDs and αDn are available in the literature, 
depending on flow and environmental conditions, e.g., the shape of the 
velocity profile (Seo and Baek, 2004) or the presence of vegetation (Lou 
et al., 2020). Following Elder (1959), a common choice is αDs = 5.93. To 
account for the presence of helical flows, αDn can be estimated as a 
function of the transversal velocity at the free-surface, vns, as a result of 
depth-averaging (Fischer et al., 1979; Lee and Seo, 2013). Considering 
the vertical distributions of velocity expressed by Eqs. (4) and ((5) leads 
to 

αDn =
1
6κ

(
vns

u∗

)2

(15)  

Finally, by rotating the principal-component tensor onto the (x, y) 
reference frame, the diffusivity components DDij become (Alavian, 
1986): 

DDxx = DDss
u2

w2 + DDnn
v2

w2

DDxy = DDyx = (DDss − DDnn)
uv
w2

DDyy = DDss
v2

w2 + DDnn
u2

w2

(16)  

2.6. The 2DEF finite element numerical model 

The different parameterizations of curvature-induced secondary 
currents are implemented in the framework of the 2DEF Finite Element 
hydrodynamic model (D’Alpaos and Defina, 2007; Defina, 2003; Viero 
et al., 2014; 2013). The model solves Eqs. (1), which constitute a 
modified version of the full shallow water equations, to deal with wet
ting and drying processes over irregular topography (Defina, 2000). The 
bottom friction is expressed using the Strickler-Manning formulation; it 
is treated semi-implicitly to enhance model stability (Cea and Bladé, 
2015; Valiani et al., 2002; Viero and Valipour, 2017). 

The computational domain is discretized with 2D triangular ele
ments. A staggered scheme is used in which water levels are defined at 
the grid nodes and assumed to vary piecewise linearly through the 
domain; flat triangular elements, characterized by a constant elevation, 

convey the discharge among adjacent nodes. In the framework of semi- 
implicit, mixed Eulerian-Lagrangian scheme, in the momentum equa
tion the material (Lagrangian) derivative of the depth-averaged velocity 
is replaced by its finite difference formulation: 

Dw
Dt

=
w − w0

Δt
(17)  

where the subscript “0′′ indicates the terms at the previous time step and 
position (backward along the Lagrangian trajectory). Under the hy
pothesis of slowly varying flows, momentum equations are linearized 
and then solved for q = wY, which in turn are substituted into the 
continuity equation, and solved with a Finite Element Galerkin’s method 
(Defina, 2003). The semi-implicit nature of the scheme limits its appli
cability to subcritical flows, yet relaxes the CFL restriction on the 
computational time step. A single system of N algebraic equations, being 
N the number of nodes, is solved at each time step by a modified con
jugate gradient method. Considering that the accuracy of the scheme 
allows for using relatively coarse meshes, the model turns out to be 
particularly efficient. 

2.6.1. Computation of the local streamline curvature 
The Lagrangian approach for convective terms is used also to esti

mate the local radius of curvature of the streamlines, based on the spatial 
variation of the direction of the velocity (Bonetto and Defina, 1998). 
Denoting with ϑ the angle of the velocity vector to the x axis (positive 
counter clockwise) and with R the local radius of curvature of the 
streamline (Fig. 1b), the streamwise distance ds can be written as: 

ds = − R [ϑ(s+ ds) − ϑ(s)] = − R dϑ (18)  

Observing that tanϑ = v/u and cosϑ = u/w, the derivative of ϑ can be 
expressed in terms of velocity components as: 

d
ds

(v
u

)
=

d
ds

tanθ =
1

cos2ϑ
dϑ
ds

=
(w

u

)2dϑ
ds

(19)  

The local streamline curvature, 1/R, is then obtained by combining Eqs. 
(18) and (19): 

1
R
= −

dϑ
ds

= −
(u

w

)2 d
ds

(v
u

)
= −

u2

w2

(
1
u

dv
ds

−
v
u2

du
ds

)

=
1

w2

(

v
du
ds

− u
dv
ds

)

(20)  

For slowly varying flows, Δs ≅ w1Δt, and the spatial derivative of the 
velocity components can be approximated as: 

du
ds
|1 ≅

u1 − u0

w1Δt
;

dv
ds
|1 ≅

v1 − v0

w1Δt
(21)  

where the label “1′′ denotes the centre of a generic cell. Hence, making 
use of Eqs. (20) and (21), the local curvature is finally given by: 

1
R1

≅
1

w3
1Δt

[v1(u1 − u0) − u1(v1 − v0)] =
1

w3
1Δt

[u1 v0 − v1u0] (22)  

2.6.2. Computation of the Reynolds turbulent stresses 
The horizontal components of Reynolds turbulent stresses are 

modelled with the Boussinesq approximation and the depth integrated 
eddy viscosity by Stansby (2003) and Uittenbogaard and van Vossen 
(2004) (see also Viero, 2019). The Reynolds terms in Eqs. (1) are 

Reij ≅ νT Y
(

∂ui

∂j
+

∂uj

∂i

)

(23)  

with indexes i and j denoting either x or y, νT the eddy viscosity, and ui =

qi/Y the generic depth-averaged velocity component. Looking at the first 
equation in (1), under the hypothesis of smooth spatial variations of the 
eddy viscosity, the first Reynolds stress component becomes 
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∂Rexx

∂x
+

∂Rexy

∂y
≅ νT Y

[
∂
∂x

(

2
∂ux

∂x

)

+
∂
∂y

(
∂ux

∂y
+

∂uy

∂x

)]

=

= νT Y
(

∂2ux

∂x2 +
∂2ux

∂y2

)

+ νT Y
∂
∂x

(
∂ux

∂x
+

∂uy

∂y

) (24) 

According to the continuity equation in (1), the last right-hand side 
term is proportional to the temporal variation of the water level, and is 
negligible in case of slowly varying flows. Hence, the Reynolds stress can 
be estimated as 
⎡

⎢
⎢
⎢
⎣

∂Rexx

∂x
+

∂Rexy

∂y
∂Reyx

∂x
+

∂Reyy

∂y

⎤

⎥
⎥
⎥
⎦

≅ νT Y

⎡

⎢
⎢
⎢
⎢
⎣

∂2ux

∂x2 +
∂2ux

∂y2

∂2uy

∂x2 +
∂2uy

∂y2

⎤

⎥
⎥
⎥
⎥
⎦
= νT Y∇2u (25)  

Considering that these terms have to be computed for each element of an 
unstructured triangular mesh, the divergence theorem is used to obtain 
the average cell value of the Reynolds stresses: 

νT Y
Ae

∫

Ae

∇2u dA =
νT Y
Ae

∫

Γe

∇u⋅nΓ dΓ ≈
νT Y
Ae

∑

k
∇uk⋅nk Lk (26)  

in which Ae is the area and Γe the boundary of the computational 
element, nΓ is the unit-vector normal to the cell boundary (positive 
outward), and k identifies each of the three cell sides, whose length is Lk. 

Denoting with O the centroid of the cell and with Ok the centroid of 
the cell adjacent to the k-th side of the cell, and with dk the projection of 
the segment OOk onto nk, the last term of Eq. (26) becomes 

2νT

Ae

∑

k
(uOk − uO)

pkLk

dk
(27)  

in which the weight pk = min(Yk/Y; 1) accounts for the fact that the 
Reynolds stresses take only place at the wet interface shared by adjacent 
cells (e.g., if the adjacent cell is dry, no Reynolds stress occurs). For cell 
sides belonging to the mesh boundary, assuming uOk = uO (or, equiva
lently, pk = 0) allows simulating the slip-condition. 

2.6.3. Computation of the dispersive stress terms 
Similar to the Reynolds stresses, the computation of dispersive 

stresses in Eqs. (1) requires a suitable evaluation of the spatial de
rivatives of the Dij terms defined at Eq. (7). Denoted the dispersive terms 
with 

D =

[
Dxx Dxy
Dyx Dyy

]

(28)  

the dispersive stresses are given by ∇ ⋅ D. The average of the dispersive 
stresses for each computational cell can be evaluated making use of the 
divergence of D: 

1
Ae

∫

Ae

∇⋅D dA =
1
Ae

∫

Γe

D ⋅nΓ dΓ ≈
1
Ae

∑

k
Dk⋅nk Lk (29)  

in which Dk is the tensor of dispersive terms evaluated at the centre of 
the k-th cell side. This can be obtained as the average of the D terms, 
previously computed for adjacent cells and weighted with the distance 
of centroids to the centre of the k-th cell side. 

Concerning the dampening factor, which accounts for the saturation 
of secondary flow in case of sharp bends, the key point is the compu
tation of the transversal gradient of the velocity, which appears in Eq. 
(12) within αs, and is equal to ∂w/∂n = ∇w •n, with n the unit vector 
normal to the local flow direction. Making use of the divergence theo
rem, for each computational cell the average value of the velocity 
gradient is evaluated as 

1
Ae

∫

Ae

∇w dA =
1
Ae

∫

Γe

wnΓ dΓ ≈
1
Ae

∑

k
wk nΓk Lk (30)  

where the velocity at the side centre, wk, is computed as the average of 
the w at adjacent cells weighted with the distance of centroids to the 
centre of the k-th cell side, Lk is the length of the k-th cell side, and nΓk is 
the outward unit vector normal to the cell side. 

2.6.4. Wall function to account for no-slip condition at sidewalls 
At the mesh boundaries, the model allows imposing a classical slip 

condition, or to use a wall function to account for additional friction 
exerted by sidewalls. In the latter case, an additional stress component, 
parallel to the wall direction, is added to the momentum balance of wall- 
adjacent elements. It is computed as (Wu et al., 2000): 

τwall = ρw2

⎡

⎢
⎢
⎣

κ

ln
(

dwall
es

)

⎤

⎥
⎥
⎦

2

(31)  

where es is the equivalent sand grain roughness of lateral walls and dwall 
is the limit between the buffer and the logarithmic layers at the wall (see 
Fig. 1c), assumed equal to 

dwall =
50 ν

u∗
(32)  

where ν is the kinematic viscosity of water, and u* the shear velocity. For 
each grid cell, the wall shear stress is applied on the surface Y⋅bwall, being 
bwall the length of the vertical wall. 

2.6.5. Numerical scheme for the transport-diffusion equation 
The transport-diffusion equation (Sect. 2.5) is solved using a con

servative, second-order in space numerical scheme. The scheme is 
equivalent to that described by Casulli and Zanolli (2005), with the 
substantial difference that variables are located oppositely in the two 
staggered meshes. In Casulli and Zanolli (2005), the model cells are 
control volumes that exchange fluxes through the cell-sides; in the 
present model, the triangular elements convey fluxes from a node to the 
others, or from two nodes to the remaining one. The second order ac
curacy in space, for the advective terms, is achieved using an upwind, 
total variation diminishing (TVD) scheme; to avoid spurious oscillations, 
the SUPERBEE limiter is applied based on two consecutive gradients of 
nodal tracer concentration. For each node of the grid, the preliminary 
step is computing the upstream concentration as the average concen
tration of all the upstream nodes, weighted with the value of incoming 
water discharge (Casulli and Zanolli, 2005). Then, for each element, the 
direction of the velocity vector determines each couple of nodes that 
exchange flow and tracer with each other, and the concentration value 
at these two connected nodes is completed with the upstream concen
tration. The two consecutive gradients allow applying the TVD limiter, 
and the limited gradient of concentration is finally used to compute the 
tracer flux between nodes. 

2.6.6. Bedload transport 
The bed evolution module of the 2DEF model, described in Defina 

(2003), is based on the Exner sediment balance equation: 

(1 − n)
∂zb

∂t
+∇⋅qb = 0 (33)  

where n is the bed sediment porosity, zb the bottom elevation, and qb the 
volumetric sediment transport rate per unit width, expressed as 
(Struiksma, 1985): 

|qb| = qb0

(

1 − χcf
∂zb

∂s

)

(34) 
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being χ an empirical factor to account for the effect of longitudinal slope 
on transport rate (χ = 0.03 according to Crosato and Struiksma, 1989) 
and cf the friction coefficient (cf = KS

2Y4/3/g). The sediment transport 
rate, qb0, is evaluated with a continuous variant (Carniello et al., 2012) 
of the threshold-based Meyer-Peter and Müller (MPM) formula: 

qb0 = 8
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

gd3
s (s − 1)

√

T1.5 with T = − θC +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

θ4
C + μθ44

√

(35)  

where ds is the characteristic (median) sediment diameter, s = ρs/ρ the 
relative density of sediments, μ the ripple factor (Vermeer, 1986), θ the 
Shields parameter, and θC the threshold value for incipient bedload 
transport. Compared to the original MPM formulation, the continuous 
variant provides smoother (hence more stable), practically equivalent 
solutions. 

The components of the sediment rate, qbx and qby, are obtained from | 
qb| as a function the direction of sediment transport, which in turn de
pends on the near-bed flow velocity. In channel bends and meandering 
rivers, using the mean velocity of the primary flow to estimate the 
bedload transport is often incorrect since the curvature-induced sec
ondary flow can significantly affect the flow (and sediment) direction at 
the bottom (Abad et al., 2008; Kitanidis and Kennedy, 1984). The 
inward-oriented velocity at the bottom is the main cause of bend scour 
and of point-bar accretion, respectively at the outer and at the inner 
sides of bends (Bathurst et al., 1977; Engel and Rhoads, 2012; Rozov
skii, 1957). 

Empirical corrections have been proposed in the literature for rep
resenting the deviation of bedload transport to the mean flow velocity. 
Olesen (1987) suggested the following angular correction: 

Δβ = Ac
Y
R

(36)  

where Ac is a parameter typically assumed in the range 7 ÷ 12. 
Accordingly, the bottom velocity can be estimated as: 

wb = (u+Δβ⋅v; v − Δβ⋅u) (37) 

Such an approach still finds widespread applications in hydro- 
morphological models (Vanzo et al., 2021). Yet, a major limitation 
comes from the direct dependence on the local streamline curvature, as 
in the instantaneous-adaptation approach for secondary flows (Sect. 
2.2), which may produce unphysical results in case of large curvatures 
(inertia and saturation are not considered). Moreover, the bottom 
characteristics, such as the bed roughness that shapes the vertical profile 
of flow velocity, are not accounted for explicitly. As a consequence, such 
a correction model needs, at least, robust and site-specific calibration. 

Alternatively, when curvature-induced helical flow is modelled 
effectively, the bottom deviation angle Δβ can be evaluated depending 
on the near-bed transversal velocity component. This is expected to 
provide a more accurate estimation of bedload than using empirical, 
local corrections (Wang and Tassi, 2014), as inertia, saturation, and 
vertical velocity profiles can be all accounted for. According to the linear 
velocity profile of Eq. (5), the transversal velocity component at the 
bottom is opposite to that at the free-surface, i.e., -vns. The near-bed 
velocity becomes equal to 

wb = (ub; vb) =
(
u+ v∗ns⋅v; v − v∗ns⋅u

)
(38)  

and it forms an angle δ = arctan(vb/ub) to the x axis. The direction of 
sediment transport, α, is also influenced by the bed slope (Baar et al., 
2018; Chavarrías et al., 2019), which is accounted for according to 
Struiksma (1985): 

α = arctan

⎡

⎢
⎢
⎣

sen(δ) − 1
f (θ)

∂zb
∂y

cos(δ) − 1
f (θ)

∂zb
∂x

⎤

⎥
⎥
⎦ (39) 

The function f(θ) weights the influence of the transverse bed slope 

and is estimated as (Talmon et al., 1995): 

f (θ) = ζ⋅
̅̅̅
θ

√
with ζ = 9(ds/Y)0.3 (40)  

3. Results 

3.1. Test with fixed-bed, mild-curvature, laboratory experiments 

The effectiveness of secondary flow parameterizations described in 
the previous section is first verified by comparing the hydrodynamic 
field, modelled with different approaches, to the laboratory data from 
the RIPRAP test facility experiment (Bernard and Schneider, 1992; 
Finnie et al., 1999).The RIPRAP channel is L = 274 m long and B = 5.27 
m wide, with 2:1 bank slope in the lower part of lateral walls (Fig. 3). 
The four bends (90◦ and 135◦ right wise, 90◦ left wise and 135◦ right 
wise) have a constant centreline radius of curvature R = 15.2 m. The 
longitudinal slope is 0.216% and the Strickler roughness coefficient is 
KS =38.5 m1/3/s. 

The numerical mesh is made of 6,293 nodes and 11,528 triangles, 
with mean linear size of 45 cm (i.e., channel width to cell-side-length 
ratio, B/Δx, of about 12). The model of Odgaard (1986) is used for the 
source terms in Eq. (10) and (11) (see also Table 1), and the wall 
function of Eq. (31) is used to enforce the no-slip condition at the lateral 
boundaries, thus accounting for the presence of side walls. As boundary 
conditions, constant flowrate (Q = 4.25 m3/s) and water depth (YD =

0.8 m) are imposed at the inlet and outlet sections, respectively. 
Fig. 4 shows the spanwise profiles of depth-averaged velocity, in 

steady state conditions, for the 11 cross-sections of Figure 3; the 
experimental data (red dots, from Finnie et al., 1999) are compared with 
model results obtained without considering dispersive stresses (dotted 
lines), with the instantaneous-adaptation (solid lines), and with the 
vorticity transport (dash-dotted lines) approaches. For the same cases, 
the plan view of Fig. 5 shows the location of the main stream (high-
velocity thread). In the Supplementary Material, Figure S1 highlights 
the importance of using a wall function to account for the resistance 
induced by sidewalls, and Figure S2 and S3 the performance of the 
different formulations, collected in Table 1, for the source terms of Eq. 
(10) and (11). 

Fig. 4 confirms that accounting for curvature-induced secondary 
flow is necessary to obtain reasonable transversal velocity profiles in the 
presence of bends. While the difference with a classical 2D formulation 
without dispersive terms is striking, the local instantaneous-adaptation 
and the vorticity-transport approaches perform similarly to each 
other; they both reproduce the experimental data very well, with the 
vorticity-transport approach slightly retarding the development of the 
secondary flow, and in turn the outer shift of higher velocities, at the 
beginning of bends (see Sect. 2, 6, and 10). The mean RMSE evaluated 
for the whole 11 sections is 0.224 m/s without dispersive terms, 0.109 
m/s using the local approach, and 0.123 m/s using the vorticity- 

Fig. 3. The RIPRAP facility channel (Finnie et al., 1999) with numbered 
cross-sections. 
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transport approach. 
The dispersive stresses in the SWEs produce deceleration of the flow 

in the inner part and acceleration at the outer part of the bend (Dietrich 
and Smith, 1983), thus shifting the high-velocity thread toward the 
outer side of bends compared to the simulation without dispersive terms 
(Fig. 5). Fig. 5 also shows one of the main differences between the 
instantaneous-adaptation and the vorticity-transport approaches; by 
looking at the undisturbed flow approaching the first bend, the outward 
shift of the high-velocity thread is faster with the local approach 
(Fig. 5a), as it doesn’t account for rotational inertia. On the contrary, the 
vorticity-transport approach can account for the phase lag, which be
comes more important in the last part (and downstream) of bends. 
Indeed, the vorticity-transport approach (Fig. 5b) shows a persistent 

deviation of the high-velocity thread well after the bend (i.e., when there 
is no more curvature of the streamlines). In the case of multiple subse
quent bends, the residual helical flow interacts with the secondary 
current that grows in the following bend (Abad and Garcia, 2009), thus 
increasing or decreasing the intensity of the helical flow depending on 
the curvature sign of successive bends. Passing from the first to the 
second bend, the high-velocity thread returns to the channel centre with 
the local approach, whereas it remains at the outer (left) side of the 
channel by transporting the vorticity. On the contrary, the change in 
curvature sign in the two last bends produces a retarded outward shift of 
the high-velocity thread in Fig. 5b. 

In the RIPRAP experiment, the width ratio Y/B ≈ 0.2 is quite low; 
notwithstanding, the sidewalls of the channel affect significantly the 

Fig. 4. Transversal profiles of depth-averaged velocity in the RIPRAP test (Finnie et al., 1999): measured data (red dots) and modelled profiles without dispersive 
terms (dotted lines), with the instantaneous-adaptation approach (solid lines) and with the vorticity-transport approach (dash-dotted lines). The relative transversal 
coordinate spans the channel width from the left bank. 

Fig. 5. Main stream flow (velocity higher than 1.15 m/s) for the model without the dispersive terms (red) and a) with the instantaneous-adaptation approach (blue), 
b) with the vorticity-transport approach (green) for curvature-induced secondary flow. 
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transversal velocity profile. As shown in Figure S1 (Supplementary 
Material), without including a wall function for the boundary elements, 
the model overpredicts the flow velocity close to the walls, and at some 
sections this overprediction becomes larger when including the disper
sive stresses for curvature-induced helical flow. 

The different formulations implemented for the source terms kP and 
kD in Eq. (10) and (11), reported in Table 1, produce very similar results. 
The different solutions become nearly indistinguishable both using the 
instantaneous-adaptation and the vorticity-transport approach 
(Figures S2 and S3 in the Supplementary Material). 

3.2. Test with fixed-bed, strong-curvature, laboratory experiments 

In strongly curved bends, the strong secondary circulation produced 
by the large streamline curvature flattens the vertical profile of velocity, 
thus weakening the mechanism of helical-flow production in what is 
called the saturation of secondary flows (Blanckaert and de Vriend, 
2003). We use the experiments of Blanckaert and de Vriend (2003) and 
Rozovskii (1957), in which the curvature is strong and the saturation 
effect plays a key role, to check the model accuracy in terms of sec
ondary circulation strength and spatial pattern. 

The Ecole Polytechnique Fédérale Lausanne (EPFL) channel 
(Blanckaert and de Vriend, 2003) has a length L = 19.7 m and a width B 
= 1.3 m, with vertical side walls. The bend develops for 193◦ with a 
constant curvature (radius R = 1.7 m at the centreline, Fig. 6a). For the 
experiment here considered, the bottom is flat and fixed, and the 
Strickler coefficient is KS = 60 m1/3/s. Three different steady-flow ex
periments have been conducted with inflow of 56, 89, and 104 l/s and 
downstream water depth of 10.9, 16.0, and 21.3 cm, respectively. With 
fixed upstream discharge and downstream water level, numerical sim
ulations have been run until steady state conditions are attained. For the 
three scenarios, the bend sharpness is Y/R = 0.065, 0.095, and 0.125. 

The dampening factor, fD, introduced in Sects. 2.2 and 2.3, is 
computed for each computational cell based on the local flow variables, 
and in particular on the transversal gradient of longitudinal velocity, αs. 
Fig. 7 shows that, in the first part of the bend, the high-velocity thread is 
located at the inner side of the bend (αs < 0 as in a potential flow), the 
streamise vorticity is still developing and the interaction with the pri
mary flow is negligible: the production of streamwise vorticity is 
maximum (fD ≈ 1). In the second part of the bend, as the high-velocity 
thread is moved outward by the momentum transfer associated to the 
helical flow (αs progressively increases), the non-linear saturation 
feedback mechanism becomes important and the production of vorticity 
is reduced (fD << 1). At the downstream end of the bend, the high- 
velocity thread is close to the outer bank and αs ≈ 1. Expectedly, by 
increasing the bend sharpness Y/R, the saturation effect develops faster 
and becomes stronger (second and third column in Fig. 7), with the 
consequence that the helical flow intensity does not grow much with Y/ 
R. 

In Fig. 8, the model results are compared with experimental data in 
terms of the non-dimensional quantity 〈fn2〉 (angle brackets highlight 

depth-averaging), which measures the strength of the secondary circu
lation and is defined as (Blanckaert and de Vriend, 2003): 

〈
fn

2〉 =

〈
v2

ns

〉

(
wY
R

)2 (41) 

Comparing the results with experimental data, the non-linear model 
allows to predict the magnitude of the secondary flow far more precisely 
than the linear model, confirming the effectiveness of the present 
approach. It has to be said that, while 〈fn2〉 magnifies the secondary flow 
strength (thus the difference between linear and non-linear models), the 
change in the flow field obtained by accounting for non-linear saturation 
model is quite small in the first case (Q = 56 l/s), and more important for 
the largest discharge values. This suggests that accounting for non-linear 
effects improves the model predictions, and becomes fundamental for 
larger values of the bends sharpness. 

The channel used by Rozovskii (1957) has a length L = 11.5 m and a 
width B = 0.8 m, with vertical side walls. The bend develops for 180◦

with a constant curvature (radius R = 0.8 m at the centreline, Fig. 6b). 
For the experiment here considered, the bottom is flat and fixed, and the 
Strickler roughness coefficient is KS = 70 m1/3/s. The inlet velocity is w 
= 0.26 m/s, and the downstream water depth is Y = 5.1 cm. The bend 
sharpness is Y/R ≈ 0.07. 

The model results, obtained with the no-slip condition at the side
walls, are compared with the measured data in terms of depth-averaged 
velocity at different cross-sections (Fig. 9), and in terms of water surface 
elevation along the channel at the inner and outer sidewalls (Fig. 10). 
The model without dispersive terms overpredicts the velocity peak at the 
inner part of the bend, as can be noted especially between Section 5 and 
11 in Fig. 9. Introducing the dispersive terms with a linear formulation 
(i.e., fD = 1 in Eq. (10) or in Eq. (11)), the high-velocity thread is shifted 
to the outer side of the bend (dash-dotted lines), overestimating the 
observed redistribution of velocity, especially in the final part of the 
bend. Including the representation of the saturation mechanisms leads 
to a general improvement of model predictions. The free-surface profiles 
in Fig. 10 show that a classical 2D model without dispersive terms tends 
to underpredict the head losses. The linear model for secondary currents 
leads to a significant overestimation of head losses, probably because the 
flow is much confinated toward the outer side of the bend. Again, 
including the non-linear effect improves the model prediction. 

The interest here is checking the effectiveness of the pure 2D non- 
linear model for secondary flow in terms of transversal distribution of 
dispersive stresses, as discussed in Sect. 2.4. For the experiment by 
Blanckaert and de Vriend (2003) with a discharge of 89 l/s, Fig. 11a 
shows the spanwise distribution of the Dsn dispersive term at 90◦ from 
the beginning of the bend; the red line shows the measured data as re
ported by Ottevanger (2013). Linear models, either analytical (Otte
vanger, 2013) or the present numerical scheme (green and black 
dash-dotted lines, respectively) overrate the dispersive stress, especially 
close to the sidewalls, where it has to decay to zero (Johannesson and 
Parker, 1989a; Blanckaert, 2001). The prediction from the non-linear 
model with the no-slip condition at sidewalls (black solid line) is in 

Fig. 6. a) The EPFL channel (Blanckaert and de Vriend, 2003), and b) the Rozovskii (1957) channel, with numbered cross-sections.  
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good agreement with the empirical formulation by Ottevanger (2013), 
and not too far from the measured data. A comparison among the same 
models and formulations, for the experiment by Rozovskii (1957), is 
reported in Fig. 11b in terms of transversal velocity at the free-surface, 
− vns, which stands for the helical flow intensity. Although measured 
data are not available, it emerges that i) linear formulations (dash-dotted 
lines) lead to excessively strong circulation, ii) the no-slip condition at 
the sidewalls reduces the momentum redistribution close to the banks 
(black lines), and iii) accounting for both the sidewall friction and the 
non-linear saturation effects (black solid line) improves the physical 
soundness of the solution. 

3.3. Transport of passive tracers in curved channel 

To test the model effectiveness in reproducing the transport of a 
generic passive tracer in presence of curvature-induced secondary cur
rents, we use the experiments of Chang (1971), which have been subject 
to many model applications (see e.g., Begnudelli et al., 2010; Duan, 
2004; Duan and Nanda, 2006; Ye and McCorquodale, 1997). The flume 
is 35.4 m long and it has two opposite 90◦ bends with a radius of cur
vature R = 8.53 m; the cross-section is rectangular and the width is B =
2.34 m. The mean velocity is U = 0.367 m/s and the water depth is Y =
0.115 m, which are obtained imposing an upstream inflow of 0.0988 
m3/s, a downstream water level of 0.115 m, and running the model until 
steady state conditions are attained. A constant inflow of a conservative 

Fig. 7. Spatial distribution of the depth-averaged flow velocity, w, of the normalized transversal gradient of velocity, αs, of the dampening factor, fD, and of the 
transversal velocity at the free surface, vns, for a) Q = 56 l/s, b) Q = 89 l/s, and c) Q = 104 l/s. Note that the αs field has been masked where the local curvature radius, 
R, is larger than 20 m (both R and αs tend to infinity in straight reaches). 

Fig. 8. Magnitude of the secondary current, 〈fn2〉 along the EPFL channel bend axis. Comparison of experimental data (symbols, adapted from Blanckaert and de 
Vriend, 2003) with the results of the linear (dashed lines) and non-linear (solid lines) models, for the three discharge values considered in the experiments. 
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tracer (QC = 0.01 m3/s) is then introduced as point injection located at 3 
different transversal coordinates (the injection points are named IP1, IP2, 
and IP3 in Fig. 12). 

The mesh resolution is a key factor for controlling the numerical 
diffusion in transport problems (Begnudelli et al., 2010; Casulli and 
Zanolli, 2005). To test the mesh-dependency of the model solution, three 
different mesh grids have been used, with 3,396 (mesh 1x), 13,349 

(mesh 4x), and 49,587 (mesh 16x) elements, respectively. These are 
obtained through halving the sides of each elements (i.e., the number of 
elements is about 4 times greater at each refinement). For the three 
meshes, the channel width to cell-side-length ratio, B/Δx, is about 10, 
20, and 40. Figure S4 and Figure S5 in the Supplementary Material show 
that only the finest mesh (16x, channel width to cell-side-length ratio of 
about 40) leads to reliable results; with the coarser meshes (1x and 4x), 

Fig. 9. Transversal profiles of depth-averaged velocity for the Rozovskii (1957) experiment (red squares), compared with model results without dispersive stresses 
(dotted lines), with the linear, instantaneous-adaptation approach (dash-dot lines), and with the non-linear model (solid line). The transversal coordinate spans the 
channel width from the left to the right bank. 

Fig. 10. Longitudinal profiles of water surface elevation at the outer (black lines) and inner (blue lines) sides of the bend. Red squares are the data measured by 
Rozovskii (1957); model results are shown without considering dispersive terms (dotted lines), with the linear model for secondary currents (dash-dot lines), and 
including the non-linear saturation effect (solid lines). 

Fig. 11. a) Transversal profiles of the Dns/Y dispersive term for the 89 l/s experiment by Blanckaert and de Vriend (2003) at 90◦ from the beginning of the bend. The 
red line resembles the experimental data reported by Ottevanger (2013). b) Transversal profiles of the helical flow intensity (in terms of − vns) for the Rozovskii 
(1957) experiment at cross-section 6. In both panels, dash-dotted lines denote linear formulations; for the present model, black and blue lines correspond to no-slip 
and free-slip condition at the sidewall, respectively; the green lines are the theoretical profiles from Ottevanger (2013), referring to a linear model and its power-law 
extension (dash-dotted and solid lines, respectively). 
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numerical diffusion becomes unacceptably high. 
Using the finest mesh, the concentration profiles (Fig. 13) are in good 

agreement with the experimental data of Chang (1971). The comparison 
of solutions obtained with and without considering the 
curvature-induced dispersion (grey and black lines in Fig. 13) highlights 
the enhanced diffusion generated by the helical flow, well described 
introducing the dispersive terms in the transport-diffusion equation. 

When a proper mesh resolution is used, the dispersive terms in the 
advection-diffusion equation allow reproducing the correct tracer dis
tribution in the curved channel with the Schmidt number σT = 1. 
Contrarily, to match the experimental data without using these disper
sive terms, the Schmidt number has to be tuned to lower values 
(Figure S6 of the Supplementary Material), so as to increase the span
wise diffusion artificially (Rodi, 2017; Ye and McCorquodale, 1998). 

The top views of Fig. 14a,b, referring to the same scenarios of Fig. 13, 
suggest that the strength of the secondary flow is modest in the exper
iments of Chang (1971). This is confirmed by looking at Fig. 14c, 
d (lateral injection points IP2 and IP3): the tracer remains almost 
confined closed to the lateral walls, according to the experimental data 
and numerical results shown by Duan (2004) and Moncho-Esteve et al. 
(2017). 

Finally, the role of the longitudinal dispersion terms (Ds in Eq. (14)) 
is highlighted in Figure S7 of the Supplementary Material by releasing 
the tracer at point IP1 starting at t = 0, on a steady baseflow. With Ds = 0, 
the leading front of the “coloured” water reveals that the high-velocity 
thread is located at the inner side (free-vortex flow, weak velocity 
redistribution performed by the secondary current); the additional 
anisotropic, streamwise diffusion provided by the Ds terms makes the 
leading front faster and closer to the channel centreline. 

3.4. Bedload transport – laboratory experiments 

The parametrization of curvature-induced helical flows allows to 
estimate the near-bed transversal component of the flow velocity, thus 
predicting more precisely the direction of the bedload transport. To 
analyse this influence on the bed evolution, we considered the experi
ment performed by Koch and Flokstra (1980) at the Laboratory of Fluid 
Mechanics (LFM) channel. The channel has a rectangular cross-section 
(width B = 1.7 m) and a U-shape bend with curvature radius R =

4.25 m measured at the centreline. The longitudinal bed slope is 0.18% 
and the Strickler roughness coefficient is KS = 36 m1/3/s. The discharge 
is Q = 0.17 m3/s and the downstream water depth is Y = 0.2 m. The bed 
sediment has a median diameter ds = 0.78 mm and a relative density s =
2.65. 

The mesh has 1,719 nodes and 3,040 elements, corresponding to 
about 8 elements per channel width. The simulations started from a 
previously-computed steady flow over a bed with only streamwise slope; 
then, keeping fixed the inflow discharge and the downstream water 
level, the bed is left free to evolve until an equilibrium state is reached. 

Without any corrections to account for helical flow, the bottom shear 
stresses are aligned to the primary flow (Fig. 15a). Introducing the 
secondary current correction, bottom stresses change their direction 
inward (Fig. 15b). This produces an imbalance in the bedload transport, 
with leads to scouring at the outer side and bed accretion at the inner 
part of the bend. 

The bed topography at equilibrium is shown in the colour maps of 
Fig. 16 in terms of erosion/deposition with respect to the initially flat 
bed, Δz, and in the transversal profiles of bed elevations reported in 
Fig. 17 (see also Figure S8 of the Supplementary Material, which plots 
the difference between computed and measured values of Δz). With 
respect to the experimental data (Fig. 16a), a 2D model with no cor
rections for the bedload direction leads to completely unreliable results: 
only the accelerations and decelerations associated to the free-vortex 
flow field at the beginning and at the end of the bend produce some 
modifications of the bed (Fig. 16b). The empirical correction of bedload 
direction proposed by Olesen (1987), with Ac = 10 in Eq. (36), tends to 
overestimates both erosion and depositions (Fig. 16c); especially, as this 
correction is based on the local radius of curvature, scour and deposition 
start at the very beginning of the bend (no phase lag) and proceed 
uniformly along the bend (in the experiment scour and erosion slightly 
decrease). At 135◦, the computed Δz is over 3 times larger than the 
measured one (Fig. 17). 

The explicit parametrization of the secondary current and the 
correction of bedload direction proposed by Bernard and Schneider 
(1992) leads to better estimations; compared to the 
instantaneous-adaptation approach (Fig. 16d), the vorticity-transport 
approach in Fig. 16e correctly reproduces the initial phase lag and the 
increased scour at the end of the bend, close to the outer wall. The 
cross-sections in Fig. 17 show that the inclusion of secondary flow, ac
cording to Bernard and Schneider (1992), well reproduces the inner 
aggradation, whereas the outer scour is underestimated. 

Finally, Fig. 18 shows a comparison of the scour/deposition pro
duced by the three different models for secondary flow here imple
mented. The bed evolution is estimated using different parametrization 
for secondary currents intensity. Compared to Bernard and Schneider 
(1992), which is in good agreement with experimental data, the models 
of Kalkwijk and Booji (1986) and Odgaard (1986) slightly underestimate 
the magnitude of Δz, yet with a very similar spatial pattern (see also 
Figure S9 of the Supplementary Material, which plots the difference 
between computed and measured values of Δz). 

Fig. 12. Layout of the flume used in the experiments by Chang (1971), with the 
location of the three point injections (IP1, IP2, IP3) considered in the 
experiments. 

Fig. 13. For the Chang (1971) experiment with point injection IP1 and for the finest mesh (16x), transversal profiles of relative concentrations for Sections 7, 9, 11, 
and 13: experimental data (red dots) and model results without (grey lines) and with (black lines) dispersive terms in the momentum advection-diffusion equations. 
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3.5. Real-world case study: fixed and mobile bed 

The model is finally applied to a real-world case study, the ~50 km 
long reach of the Po River (Northern Italy) between the Mincio and the 
Panaro confluences, i.e., from 12 km upstream of Ostiglia to 8 km 
downstream of Ficarolo (Fig. 19). The meandering reach has been 

modelled using a 2D triangular grid with 58,570 nodes and 114,452 
elements. The focus is here on three meandering bends, denoted as M1, 
M2, and M3 in Fig. 19. Table 2 reports additional details. The bathym
etry, derived from a 2004 multibeam survey merged with a 2008 LiDAR 
survey, is shown in Figure S10 of the Supplementary Material. 

A fixed water level, derived from an available rating curve, is used as 
downstream boundary condition. We then considered three different 
discharge scenarios, named Q_3990, Q_7400, Q_11,500 (where Q de
notes the discharge expressed in m3/s and imposed at the inlet section). 

For each discharge scenario, a first set of simulations has been per
formed with the fixed, real bathymetry, with and without including the 
dispersive terms in the momentum equations. The inclusion of second
ary flow correction entails minor changes to the flow field. An example 
is shown in Figure 20; at the AA cross-section (meander M1), the in
crease and the outer shift of the peak velocity, obtained by including the 
correction for the secondary flow, is absolutely modest, and it further 
decreases for lower flowrate values (e.g., Q = 3990 m3/s, Fig. 20b). 
Using the instantaneous adaptation or the vorticity-transport approach 
entails negligible differences as well (dashed and solid lines in Fig. 20b). 
Similar results are obtained for meanders M2 and M3 (some relevant 
parameters are reported in Table 2). The depth-averaged velocity field at 
meander M1, for the discharge Q = 11,500 m3/s and including the 
dispersive stresses in the momentum equations, is shown in Fig. 21. The 

Fig. 14. For the Chang (1971) experiment, depth-averaged normalized concentration obtained with the finer mesh 16x. For IP1, with (a) and without (b) dispersive 
terms in the momentum and transport-diffusion equations; for IP2 (c) and IP3 (d) with dispersive terms. 

Fig. 15. Water velocity vectors at the bottom without (a) and with (b) 
correction for the secondary flow. 

Fig. 16. Bed elevation with respect to the undisturbed flat bed (Δz >0 denotes deposition, Δz <0 erosion). a) Experimental data reproduced from Koch and Flokstra 
(1980); b) model results without any correction for bed-load direction; c) model results with empirical bed-load direction correction (A = 10 in Eq. (36)); d) model 
results with dispersive terms correction (instantaneous-adaptation approach), e) model results with dispersive terms correction (vorticity-transport approach). 
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w = 2 m/s isoline is plotted for both the cases with (magenta) and 
without (orange) the dispersive stresses, again without any substantial 
difference. These results suggest that including the dispersive terms for 
curvature-induced secondary flow is inessential to model the depth- 
averaged 2D flow field in natural rivers with fixed, deformed bed. 
Nonetheless, it has been already pointed out that secondary flow plays a 
major role with respect to the development of the bed topography 
(Blanckaert, 2010; Shimizu et al., 1990). 

The Po River case study is then used to check the ability of the 
different approaches for curvature-induced secondary flow in modelling 
the relevant hydro-morphodynamic processes and to produce real-like 
bathymetric configurations. Hence, a set of mobile-bed simulations 
has been run starting from a flat bed, i.e., an unbalanced bathymetric 
configuration obtained by linearly interpolating the bed elevation from 
the mesh inlet to the outlet (Fig. 22b, the surveyed bed is shown in 
Fig. 22a). The movable-bed simulations, either with or without disper
sive terms and correction for bedload direction, are run with a constant 

Fig. 17. Transversal profiles of bed elevation at 45◦, 90◦, and 135◦with the results provided by different modelling approaches compared to the Koch and Flokstra 
(1980) experimental data. 

Fig. 18. Bed topography in terms of erosion/deposition with respect to a flat bed, computed with the dispersive terms corrections computed using the instantaneous- 
adaptation approach and the formulations of (a) Bernard and Schneider (1992), (b) Kalkwijk and Booji (1986), and (c) Odgaard (1986). 

Fig. 19. The meandering reach of the Po River (Italy) between the Mincio and 
Panaro confluences. 

Table 2 
Po River case study. Characteristics of the simulations and relevant flow variables for scenarios Q_3990, Q_7400, and Q_11,500; the depth-average velocity is computed 
either neglecting (w) or considering (w*) the dispersive terms.    

Q_3990 Q_7400 Q_11,500 

Discharge [m3/ 
s] 

3990 7400 11,500 

Downstream  
water level 

[m] 8 12 16   

M1 M2 M3 M1 M2 M3 M1 M2 M3 
YMAX [m] 21.5 20.6 20.8 25.1 24.5 25.0 28.7 28.0 28.8 
R [m] 480 630 570 480 630 570 480 630 570 
wMAX [m/s] 2.71 2.59 2.32 3.95 3.27 2.59 4.37 3.39 2.58 
Ds_MAX [Pa] 29 23 22 50 28 26 53 49 29 
vs_MAX [m/s] 0.27 0.30 0.35 0.41 0.32 0.41 0.51 0.36 0.23 
w*MAX [m/s] 2.91 2.68 2.45 4.24 3.30 2.65 4.66 3.98 2.59 
w*MAX /  

wMAX 

[-] 1.07 1.03 1.06 1.07 1.01 1.02 1.07 1.17 1.01  
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discharge Q = 11,500 m3/s until an equilibrium bed condition is 
reached. The inclusion of dispersive stresses and the correction for 
bedload direction are actually necessary to obtain reliable bed config
urations, as demonstrated by comparing the equilibrium configuration 
obtained in the two different modelling approaches (Fig. 22c). 

Interestingly, reliable equilibrium bathymetries are obtained also 
using the empirical correction for the bedload direction proposed by 
Olesen (1987), with Ac = 10, or considering a lower discharge of Q =
7400 m3/s (see Figure S11 of the Supplementary Material). 

Fig. 23 shows the bed evolution and the depth-averaged velocity 
field, from the initially flat bed to the equilibrium condition (reached at 
time Teq ≈ 2 years), modelled considering the dispersive terms. With the 
flat bed, the high-velocity thread is located at the inner part of the bend, 
and the flow then collides at an oblique angle with the outer bank; in this 
situation, the secondary flow is relatively strong, and so is the velocity 
redistribution entailed by the dispersive terms. As time advances, sedi
ments are carried toward the accreting point bar, in the inner part of the 
bend, due to the inward direction imposed by the helical flow. The main 
part of the discharge then flows over the deepest part of the bend, driven 

by the so-called topographic steering (Blanckaert, 2010) more than by 
momentum redistribution induced by the secondary flow. Approaching 
the equilibrium condition, the importance of topographic steering in
creases, and the already weak effect of dispersive terms further reduces. 

4. Discussion 

This study deals with the inclusion of helical flow secondary currents 
in two-dimensional, general-purpose, river- and flood-models. The 
implementation of different modelling approaches and the application 
to several case studies, both in the laboratory and in the field, shed light 
on a set of interesting issues, which are here discussed. 

4.1. The role of dispersive terms in momentum and transport-diffusion 
equations 

The model applications described in the previous section highlighted 
the importance of including the dispersive terms; yet, not all these terms 
play an important role, nor are always necessary. 

In the momentum equations, the most important contribution is 
given by the diagonal term Dsn; its spatial gradient entails additional 
resistance at the inner side of bends and acceleration at the outer side of 
bends (Dietrich and Smith, 1983), which are the outcome of the outward 
momentum transfer generated by the helical flow. The Dss and Dnn terms 
are often neglected in the technical literature (e.g., Finnie et al., 1999). 
Indeed, the streamwise variation of Dss is generally smooth, and the Dnn 
term is typically much smaller than Dsn when the curvature ratio, Y/R, is 
much lower than 1 (Lien et al., 1999). In the model applications 
described above, the inclusion of the Dss and Dnn terms (not shown) 
produced negligible modifications in the model outcomes. 

In the equation for transport and diffusion of conservative tracers 
and suspended matters, the inclusion of dispersive terms suffices to 
avoid the calibration of the Schmidt number to match experimental 
data. However, in transport/diffusion problems, the mesh resolution is 
the key factor to control the numerical diffusion and to obtain reliable 
results. 

Fig. 20. Po River case study. Transversal profiles at the AA cross-section (at meander M1, panel a) of the depth-average velocity (b) and water and bed levels (c).  

Fig. 21. Spatial distribution of the depth-average velocity at meander M1 for 
Q_11,500 and isoline for w = 2 m/s without (orange) and with (magenta) 
dispersive terms in the momentum equations. 
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4.2. Model sensitivity to the mesh resolution 

The dispersive terms for curvature-induced secondary flows rely on 
the proper evaluation of the transversal gradient of the Dsn dispersive 
stress. The effectiveness of the helical-flow parameterization then de
pends on the mesh resolution. We performed an ad-hoc sensitivity 
analysis of the model results to the mesh resolution for the above case 
studies. 

As a representative example, we considered the RIPRAP experiment 
and compared the model results obtained with four different mesh 
(Fig. 24):  

• mesh_1x: cell-side-length ≈ 2.00 m, B/Δx = 4, tot. 1,112 cells;  
• mesh_10x: cell-side-length ≈ 0.45 m, B/Δx = 10, tot. 11,528 cells;  
• mesh_40x: cell-side-length ≈ 0.22 m, B/Δx = 24, tot. 43,395 cells;  
• mesh_160x: cell-side-length ≈ 0.11 m, B/Δx = 48, tot. 166,965 cells; 

with B/Δx the channel width to cell-side-length ratio. 
Fig. 24 shows that the dispersive terms, which come from the 

transversal derivatives of the Dsn stresses, are smoothed out excessively 
using the coarsest mesh_1x. The mesh_10x well adheres to the experi
mental velocity data (Fig. 24f). The mesh_40x improves the representa
tion of dispersive terms, particularly close to the channel walls where 
the highest gradients of dispersive terms are located (Fig. 24b), leading 
to an improved spanwise distribution of flow velocity (Fig. 24f). Finally, 
as shown in Fig. 24g, the far increased computational need required by 
mesh_160x (vertical bars) is not counterbalanced by a further improve
ment of the solution (the velocity RMSE does not reduce for B/Δx > 10). 

The mesh resolution was shown to have a far more important role in 
controlling the numerical diffusion of passive tracers and suspended 
matters (Sect. 3.3), which requires finer meshes (B/Δx ≈ 40) than for 
including the parameterization of secondary-flow on momentum equa
tions only (B/Δx ≈ 10÷20). Using a coarser mesh with the Schmidt 
number tuned to larger values is a computationally efficient alternative; 

Fig. 22. Po River case study, meander bend M1. Surveyed bathymetry (a), flat bed used as initial condition for mobile-bed simulations (b), bed equilibrium condition 
modelled without (c) and with (d) dispersive terms and correction of bedload direction (vorticity-transport approach). The different bed configurations are also 
shown at cross-sections AA and BB (e,f). 

Fig. 23. Po River case study, meander bend M1. Bed evolution from an initial flat bed up to the equilibrium condition: modelled bathymetry (upper row) and flow 
velocity (lower row) at different time instants (0, 1/20 Teq, 1/8 Teq, and Teq), with the time needed to reach the equilibrium condition being Teq ≈ 2 years. 
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however, it entails extra diffusion in straight river segments and a loss of 
predictive ability (ad-hoc calibration becomes mandatory). 

The choice of the grid structure (e.g., structured or unstructured, 
regular or irregular) is another issue that can affect the numerical 
diffusion of transported tracers (Casulli and Zanolli, 2005). While un
structured meshes allow for a greater flexibility and easier adaptation to 
irregular boundaries, the computation of the spatial gradients of 
dispersive stresses may become challenging close to geometrical singu
larities and at interfaces where the elements size changes abruptly (Nabi 
et al., 2016). An ad-hoc sensitivity analysis (not shown here) demon
strated that, when a proper mesh resolution is chosen, the schemes 
described at Sects. 2.6 leads to an accurate estimation of the spatial 
gradients irrespective of the kind of structured mesh employed (e.g., 
regular, aligned with flow, or irregular cell patterns). 

4.3. Modelling approaches to dispersive stress estimation 

Different options have been implemented to estimate the helical flow 
intensity, which regard the local or transported approach (i.e., with 
instantaneous adaptation or by transporting the streamwise vorticity 
component), the theoretical formulation for the secondary flow 
parameterization (i.e., the expression for kP and kD in Eqs. (10) or (11)), 
the inclusion of wall functions and of a non-linear model for secondary 
flow saturation. The choice of the most suitable approach mainly de
pends on the geometrical configuration of the channel. Here we collect 
some general criteria. 

The local approach is the easiest to implement, the cheapest from a 
computational standpoint, and particularly suitable for long, regular 
bends. As it neglects the secondary-flow inertia, the helical flow in
tensity can be overpredicted in high-curvature bends, especially at the 
entrance of the bend, or mispredicted in tight succession of counter
rotating bends. Moreover, the local approach is very sensitive to 
geometrical singularities that entail abrupt variations of streamline 
curvature (also in straight river segments, where spurious local varia
tions of dispersive stresses can appear). Thus, to avoid the onset of 
unphysical dispersive stresses, it is a good practice to apply a spatial 
smoothing (e.g., a Shapiro filter, Shapiro, 1970) to the streamline cur
vature field. The vorticity-transport approach, which intrinsically 
smooths out possible unevenness in the streamline curvature field as a 
result of the secondary flow inertia, is surely more robust and physically 
sound, yet more demanding from a computational standpoint. It is 
advisable for river channels in which the bathymetry presents some 

unevenness, in the case of sharp bends, and in tight sequences of bends. 
The different parameterizations of secondary flow here implemented 

(see Table 1) lead to dispersive stresses, Dij, whose magnitude are quite 
different; however, the dispersive terms in the momentum equations, 
which depend on the spatial gradients of Dij, are coherently predicted by 
the different parameterizations. The model applications of Sect. 3 sug
gested that the different theoretical formulations are practically equiv
alent to each other. 

The magnitude of dispersive terms in momentum equations, which 
depends on the gradients of dispersive stresses Dij, is generally negligible 
at the channel centreline and maximum towards the banks, where both 
flow velocity and the dispersive stress tend to zero (Blanckaert, 2001; 
Johannesson and Parker, 1989a). In case of compact, low aspect-ratio 
cross-sections, the velocity gradient at the banks is greatly affected by 
the no-slip condition at the channel walls. In these cases, which are 
generally found in laboratory flumes, the use of wall functions to ac
count for side-wall friction is mandatory. Instead, in natural bends, the 
effect of lateral wall is less significant as banks are tilted and the aspect 
ratio is far larger; in this kind of cross-sections, velocity reduces pro
gressively in the transversal direction, dictated by the progressive 
reduction of water depth. Consequently, the free-slip condition at side
walls is generally an acceptable hypothesis in natural rivers. 

Finally, the model applications showed that the saturation of sec
ondary flow has to be accounted for, to limit the intensity of helical flow, 
when strong secondary currents act to flatten the vertical profile of the 
streamwise velocity component (Blanckaert, 2009; Blanckaert et al., 
2013). When (and where) the saturation effect becomes important is not 
only a function of the bend curvature, but also of the local flow field. 
Indeed, the key parameter governing the occurring of saturation is the 
spanwise gradient of the longitudinal velocity component, which de
scribes if the high-velocity thread locates at the inner (free-vortex type 
flow) or at the outer (forced-vortex type flow) of the bend. Importantly, 
the local flow field and the transversal gradient of velocity, αs, also 
depend on the bed bathymetry, i.e., flat or deformed (outward tilted). 

This can be seen also by looking at the spatial distribution of the 
parameter αs (the normalized transversal gradient of the depth-averaged 
velocity). For a flat-bed rectangular cross-section, αs is expected to 
approach − 1 at the beginning of the bend (free-vortex flow type) and to 
progressively increase along the bend to denote forced-vortex flow type 
(Blanckaert, 2010). This is roughly depicted by the plots in the second 
line of Fig. 7. Instead, in a real bend with deformed bed, the 
high-velocity thread locates at the outer side of the bend due to 

Fig. 24. (a-d) Magnitude of dispersive terms in the first bend of the RIPRAP facility channel for different mesh resolutions; (e) location of the first bend, and (f) 
transversal distribution of depth-averaged flow velocity at cross-section AA for the different mesh resolutions; (g) computational time (vertical bars) with respect to 
that of the 1x mesh, and velocity RMSE (black line) for the different mesh resolutions. 
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topographic steering, keeping αs ≈ 1 at the inner side, and αs ≈ − 1 at the 
outer side all along the bend (Figure S12 in the Supplementary Mate
rial). As a result, the helical flow intensity is dampened by the saturation 
model (fD << 1) at the main core of the flow (outer side of the bend) 
where the velocity and the centrifugal force are highest, and limited by 
the low streamwise velocity at the inner side of the bend (where the 
dampening factor fD ≈ 1 would let the helical flow to develop free). 
Interestingly, when the depth-averaged flow field is mainly driven by 
the bathymetry, the spatial distribution of αs remains broadly the same 
either considering or ignoring the dispersive terms (Figure S12 in the 
Supplementary Material). The role of bend bathymetry is further dis
cussed in Sect. 4.5. 

A relevant aspect concerning the model implementation is that the 
saturation effect can be effectively assessed with a pure 2D approach 
thus avoiding any reference to the channel centreline or width (Gu et al., 
2016; Ottevanger et al., 2012), nor requiring time-consuming iterative 
procedures to estimate the non-linear parameters (Qin et al., 2019). In 
this way, the validity of traditional 2D models is extended to relatively 
sharp bends in a straightforward manner and without dramatic increase 
of the computational burden. The modeller should be aware that 2D 
models, equipped with this kind of description of secondary flows, 
cannot represent the formation of counterrotating secondary cells in 
very sharp bend (Blanckaert and de Vriend, 2010; Stoesser et al., 2010). 

4.4. Ill-posedness and instability in 2D secondary flow models 

The recent study by Chavarrías et al. (2019) highlighted an impor
tant issue concerning the possible ill-posedness of 2D depth-averaged 
models with linear formulation for the secondary flow. They consid
ered the case in which the helical flow intensity is computed using a 
transport equation. Ill-posedness was shown to appear in the form of 
non-physical oscillations of the flow field, which increase with increased 
grid refinement. They demonstrated that adding a certain amount of 
diffusion, particularly in the spanwise direction, may lead to a 
well-posed problem and provide stable solutions. Besides that, they 
observed that accounting for the saturation effect may have a similar 
stabilizing effect, as saturation models act to dampen any kind of un
bounded production of helical flow intensity, as in the case of unstable 
short waves. 

On the one hand, we stress that, while 2D models compute the in
tensity of the helical flow locally, the secondary flow typically emerges 
as a unique rotating cell in the physical domain. Hence, to be physically 
consistent, the helical flow intensity computed by 2D models should 
vary smoothly in the spanwise direction. Of course, enhanced trans
versal diffusion, as that provided by the use of coarse grids, is beneficial 
in this regard. On the other hand, it is interesting to note that, in the 
numerical experiments by Chavarrías et al. (2019), model instabilities as 
a result of ill-posedness were significant for a grid with B/Δx = 100 and 
disappeared when they used a coarser grid with B/Δx = 10, comparable 
with the grid resolution used (and suggested as reasonable) in the pre
sent study. 

4.5. The interplay of secondary flow and bed bathymetry 

The importance of secondary flow in shaping hydro- and morpho
dynamics in curved channels, as well as the ability of 2D models to 
effectively capture the effects of helical flow, have been long debated in 
the literature (Alho and Mäkinen, 2010; Guan et al., 2016; Kasvi et al., 
2015; 2013; Lane, 1998). A tangled picture also emerges from the case 
studies assessed in Sect. 3. Including the dispersive terms in the mo
mentum equations was crucial in the case of laboratory experiments, yet 
it entailed minor changes to the flow field in the real-world case of the 
Po River considering the surveyed bed bathymetry. The different 
behaviour might be attributed to different curvature ratios among these 
tests. We then computed, for the model applications presented in Sect. 3, 
different scaling parameters that have been proposed to measure the 

strength of curvature-induced secondary flow and its effects on hydro
dynamic (Kashyap et al., 2012). According to the values collected in 
Table 3, the secondary flow correction is most important in the EPFL 
channel of Blanckaert and de Vriend (2003), followed by that of 
Rozovskii (1957), and less important for the Chang (1971) case. This 
ranking agrees with the outcomes of the model applications shown in 
Sect. 3.1 and 3.3, respectively. In fact, we used the experimental data by 
Chang (1971) only to check the transport and diffusion module, because 
the effect of dispersive terms on the depth-averaged 2D hydrodynamics 
was negligible. Looking at the Po River case study, the parameters of 
Table 3 values are actually lower than most of their laboratory coun
terparts, but not sufficiently small to justify the weak to negligible effect 
of secondary flows on the depth-averaged hydrodynamics of the Po 
River test case. Similarly, the velocity redistribution by secondary flow 
is known to be much important for narrow cross-sections (e.g., B/Y ≈
10) and negligible in shallow ones with B/Y > 50 (Blanckaert, 2011; 
Blanckaert and de Vriend, 2010; Constantinescu et al., 2013) but, again, 
the aspect ratio of the Po River case study is not so different to justify the 
basically different behaviour. 

The above considerations and the results shown in Sect. 3.5 suggest 
that the main reason for the controversial results obtained in the pre
vious and present applications stems from the fact that the development 
of (and the role played by) secondary flows essentially depends on the 
bed bathymetry. In the Po River test, the surveyed bottom is deformed 
(see the cross-section in Fig. 20 and the colour map in Fig. 22a), whereas 
the laboratory tests dealt with compact cross-sections with flat bed and 
vertical walls. By performing additional numerical experiments in which 
the bed was artificially flattened, it was shown that the flow field in the 
Po River bends is mainly driven by the bed topography (i.e., the so- 
called topographic steering) than by momentum exchanges and veloc
ity redistribution ascribed to curvature-induced secondary flow 
(Blanckaert, 2010; Chen and Duan, 2006; Deng et al., 2021; He, 2018; 
van Balen et al., 2010). 

Of course, the fact that the depth-averaged 2D flow field is not 
significantly altered by the secondary circulation and can be roughly 
predicted by traditional 2D models without including dispersive terms, 
does not imply that secondary circulations do no play a role at all. 
Secondary circulations, causing the inner and outer streamwise-oriented 
vortical cells, still amplify the boundary shear stresses, altering the 
transport of sediments and posing a threat to bank stability; this picture 
further complicates in very sharp bends (Blanckaert, 2011; Con
stantinescu et al., 2013). Accounting for the effects of curvature-induced 
secondary flow in 2D hydro-morphological models remains almost 
necessary, in particular when the bathymetric configuration is far from 
equilibrium conditions (Shimizu et al., 1990), or when the bathymetry 
could be subject to strong variations (e.g., long-term simulations). 
However, the vast majority of natural river bends are mildly curved 
and/or have a deformed bed; in these conditions, the depth-averaged 2D 
flow field is nearly independent of dispersive terms, and the major 
outcome of curvature-induced secondary circulations is by far the 
change in bedload direction. This explains why many 
hydro-morphological models, to account for the effect of secondary 
flows, only implement empirical formulations to correct the bedload 
direction (e.g., Defina, 2003; Vanzo et al., 2021). 

5. Conclusions 

A correction for curvature-induced secondary flow in channel and 
river bends is implemented in the hydro- and morpho-dynamic model 
2DEF. The dispersive terms appearing in the momentum equations are 
expressed according to three different formulations, recast in similar 
form. The computation can be performed assuming the instantaneous- 
adaptation of secondary flow to the driving streamline curvature, or 
accounting for inertia and phase-lag of the helical flow via a vorticity- 
transport approach. The effect of impervious banks is accounted for 
using wall functions. The classical linear model for secondary flow is 
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completed with a novel, pure 2D implementation of a robust non-linear 
model accounting for the saturation of secondary flow occurring in 
relatively sharp bends. Dispersive terms are added also to the transport 
and diffusion equation, and accounted for in the morphodynamic 
module for bedload transport and mobile bed evolution. 

Model applications to laboratory tests and to a real river, with both 
fixed and mobile beds, confirm the importance of accounting for sec
ondary flow and the validity of the approaches. The different formula
tions for dispersive terms perform similarly to each other. The local, 
instantaneous-adaptation approach is less demanding and suitable to 
isolated bends in riverbeds with a regular bathymetry (the streamline 
curvature field must be smoothed out to avoid numerical instabilities). 
All the local approaches (either to compute the dispersive stresses or to 
correct the direction of bedload transport) produce unphysical results in 
presence of geometrical singularities such as bridge piers or abutments. 
The inertia of secondary flow, which is accounted for intrinsically when 
transporting the streamwise vorticity, filters out the typical unevenness 
characterizing the bathymetry and the curvature field of real rivers and 
possible geometrical singularities. 

The non-linear model for secondary flow saturation is a fundamental 
ingredient to counteract the excessive growth of helical flow intensity in 
relatively sharp bends and to produce physically sound spatial distri
butions of dispersive stresses. To this purpose, wall functions are needed 
to model the effect of vertical, impervious walls; nonetheless, in real 
rivers with tilted banks, wall functions are unnecessary. 

Curvature-induced secondary flows are shown to produce important 
modifications to the depth-averaged flow field in case of rectangular 
cross-sections (i.e., flat bed in the spanwise direction). The high-velocity 
thread is moved from the inner to the outer side of the bend, and satu
ration of secondary flow soon becomes important, even for not exces
sively sharp bends. On the contrary, in real rivers with formed 
bathymetry (outer scour) the moderate streamline curvature and the 
already-formed bed bathymetry make the effects of the correction less 
evident in terms of depth-averaged flow field. The estimation of sec
ondary flow intensity remains important for modelling the transport of 
suspended matter and, above all, for repercussions on bedload transport 
and morphological setting. However, in real river with formed ba
thymetry, empirical corrections for the direction of bedload transport, 
based on the local streamline curvature and without including disper
sive terms in the momentum equations, generally perform satisfactorily. 
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