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Maximal Intersections in Finite Groups

Andrea Lucchini

Abstract. For a finite groupG, we investigate the behavior of four invari-
ants, MaxDim(G), MinDim(G), MaxInt(G) and MinInt(G), measuring
in some way the width and the height of the lattice M(G) consisting of
the intersections of the maximal subgroups of G.
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We will say that a subgroup H of a finite group G is a maximal intersection
in G if there exists a family M1, . . . ,Mt of maximal subgroups of G with
H = M1 ∩ · · · ∩ Mt. We will denote by M(G) the subposet of the subgroup
lattice of G consisting of G and all the maximal intersections in G.

Let X be a set of maximal subgroups of the finite group G. We say that
X is irredundant if the intersection of the subgroups in X is not equal to the
intersection of any proper subset of X . The maximal dimension MaxDim(G)
of G is defined as the maximal size of an irredundant set of maximal sub-
groups of G. This definition arises from the study of the maximum size m(G)
of an irredundant generating set for G (that is, a generating set that does
not properly contain any other generating set). Indeed, it is easy to see that
m(G) ≤ MaxDim(G). However, in [6], it was proved that the difference
MaxDim(G) − m(G) can be arbitrarily large. Independent of this motiva-
tion, MaxDim(G) can be viewed as a measure of the width of the poset
M(G). The study of the maximal dimension of an arbitrary finite group is
quite complicated and it is difficult to find good strategies to investigate this
invariant. For example, one could ask the following question.

Question 1. Let N be a normal subgroup of a finite group G. Suppose that δ =
MaxDimG/N, d = MaxDimG and {M1/N, . . . , Mδ/N} is an irredundant
set of maximal subgroups of G/N . Do there exist d − δ maximal subgroups
Mδ+1, . . . ,Md of G such that M1, . . . ,Mδ, Mδ+1, . . . ,Md is an irredundant
set of maximal subgroups of G?
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We will prove that the answer is negative and this makes difficult to es-
timate MaxDim(G) arguing by induction. Another natural question to which
we will give an unexpected negative answer is the following.

Question 2. Does G contain an irredundant family of maximal subgroups of
size MaxDim(G) whose intersection is the Frattini subgroup?

The dual concept of minimal dimension was introduced in [8]. We say
that an irredundant set of maximal subgroups is maximal irredundant if it is
not properly contained in any other irredundant set of maximal subgroups.
Then, the minimal dimension of G, denoted MinDim(G), is the minimal size
of a maximal irredundant set. In [3] it was proposed to study the finite groups
G with MinDim(G) = MaxDim(G) (minmax groups). All nilpotent groups
are minmax, but there are non-nilpotent minmax groups, such as Sym(3),
Alt(4) and Sym(4). By a well-known theorem of Iwasawa [12], all unrefinable
chains in the subgroup lattice of a finite group G have the same length if and
only if G is supersoluble. In our case, in place of arbitrary unrefinable chains,
we restrict our attention to the unrefinable chains in the poset M(G). In
the context of Iwasawa’s result, it is worth noting that supersolubility does
not imply the minmax property. However, it seems reasonable to conjecture
that every minmax group is soluble. The results in [3] give evidence to this
conjecture, proving that every non-abelian finite simple group is not minmax.

One could even expect to have a relation between MinDim(G),
MaxDim(G) and the minimal and maximal length of an unrefinable chain
in M(G). We call these two new invariants MinInt(G) and MaxInt(G). How-
ever, the behavior of these invariants is more intricate than one can expected.
It is not difficult to prove that the following holds.

Theorem 3. If G is a finite group, then
1. MinDim(G) ≤ MinInt(G);
2. MaxDim(G) ≤ MaxInt(G).

However, the differences MinInt(G) − MinDim(G) and MaxInt(G) −
MaxDim(G) can be arbitrarily large. We will see in Sect. 2 that for any pair
(a, b) of positive integers with 2 ≤ a ≤ b, it can be constructed a finite soluble
group G with MinDim(G) = a+ b, MinInt(G) = 2a+ b, MaxDim(G) = a+ b,
MaxInt(G) = a + 2b.

It is more difficult to compare MaxDim(G) and MinInt(G). In the ex-
ample mentioned above MinInt(G) − MaxDim(G) = a can be chosen to be
arbitrarily large. However if p is a prime, then limp→∞ MaxDim(Sym(p)) −
MinInt(Sym(p)) = ∞.

Definition 4. We say that a finite group G is strongly minmax if MaxDim(G)
= MinInt(G).

By Theorem 3, if G is strongly minmax then MinDim(G) = MaxDim(G)
= MinInt(G) = MaxInt(G). This occurs for example when G is nilpotent or,
more in general, if there exists a finite nilpotent group K with M(G) ∼=
M(K). The group with this property have been studied in [11], where it
is proved in particular that they are supersoluble. Notice that Sym(4) is a
strongly minmax group which is not supersoluble.
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Definition 5. Let G be a finite group. We define α(G) as the smallest cardi-
nality of a family of maximal subgroups of G with the property that their
intersection coincide with the Frattini subgroup of G.

Clearly MinDim(G) ≤ α(G) ≤ MaxInt(G). In particular, if G strongly
minmax, then MinDim(G) = α(G) = MaxInt(G). This motivates the follow-
ing definition.

Definition 6. We say that a finite group G is weakly minmax if MinInt(G) =
MaxInt(G) = α(G).

Our main theorem is the following.

Theorem 7. If G if a finite weakly minmax group, then G is soluble. Moreover
the derived length of G/Frat(G) is at most 3.

The bound 3 on the derived length is best possible, since, for example,
Sym(4) is weakly minmax. Notice that MinInt(Alt(5)) = MaxInt(Alt(5)) = 3,
hence the condition MinInt(G) = MaxInt(G) does not imply that G is soluble.

1. Negative Answers to Questions 1 and 2

Our first aim is to give a negative answer to question 1. Let F be the field with
11 elements and let C = 〈c〉 be the subgroup of order 5 of the multiplicative
group of F. Let V = F

5 be a five-dimensional vector space over F and let σ =
(1, 2, 3, 4, 5) ∈ Sym(5). The wreath group H = C	〈σ〉 has an irreducible action
on V defined as follows: if v = (f1, . . . , f5) ∈ V and h = (c1, . . . , c5)σ ∈ H,
then vh = (f1σ−1c1σ−1 , . . . , f5σ−1c5σ−1). We will concentrate our attention on
the semidirect product G := V �H (notice that G = G11,5 in the notations of
[6, Section 3]). By [6, Proposition 11] MaxDim(G) = 5, while H ∼= G/V is a 2-
generated nilpotent group with MaxDim(H)=2. Let M1,M2 be two different
maximal subgroups of G containing V. We have M1 = V � K1 and M2 =
V �K2 with K1 and K2 maximal subgroups of H. Assume, by contradiction,
that {M1,M2} can be lifted to an irredundant set {M1,M2,M3,M4,M5}
of maximal subgroups of G. Then, M3,M4,M5 are complements of V in G
and it is not restrictive to assume M3 = H, M4 = Hv1 , M5 = Hv2 with
v1 = (x1, x2, x3, x4, x5), v2 = (y1, y2, y3, y4, y5) ∈ V. We must have |M3 ∩
M4| ≥ 53, hence, by [6, Lemma 10], the subset I of {1, . . . , 5} consisting
of the indices i with xi = 0 contains at least 3 elements and M3 ∩ M4 =
{(c1, c2, c3, c4, c5) ∈ C5

5 | ci = 1 if i /∈ I}. Notice that M1 ∩ M2 = V � F
with F = FratH = {(c1, c2, c3, c4, c5) ∈ C5

5 | c1c2c3c4c5 = 1}. In particular
M1 ∩ M2 ∩ M3 ∩ M4 = {(c1, c2, c3, c4, c5) ∈ C5

5 | c1c2c3c4c5 = 1 and ci =
1 if i /∈ I}, but then |M3 ∩ M4 : M1 ∩ M2 ∩ M3 ∩ M4| = 5, a contradiction.

Now, we give a negative answer to question 2. Let G = AGL(2, 5),
N = soc(G) and F/N = Frat(G/N). We have N ∼= C5 × C5, F/N ∼=
Frat(GL(2, 5)) ∼= C4 and G/F ∼= Sym(5). For a maximal subgroup M of
G, we have the following possibilities:

1. M is a complement of N in G (25 conjugates);
2. F ≤ M and M/F ∼= Alt(5) (1 conjugate);
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3. F ≤ M and M/F ∼= Sym(4) (5 conjugates);
4. F ≤ M and M/F ∼= C5 � C4 (6 conjugates);
5. F ≤ M and M/F ∼= Sym(3) × Sym(2) (10 conjugates).

Let H be a complement of N in G and let {K1, . . . ,K4} be an irredundant
family of maximal subgroups of G of type 3. Then {H ∩ K1, . . . , H ∩ K4} is
an irredundant family of maximal subgroups of H and H ∩ K1 ∩ · · · ∩ K4 =
H ∩ F = Frat(H) ∼= C4. In particular MaxDim(G) ≥ 5. Now assume that
M = {M1, . . . ,Mt} is an irredundant family of maximal subgroups of G with
M1 ∩ · · · ∩ Mt = 1. At least one of these maximal subgroups of G must be
of type (1), otherwise M1 ∩ · · · ∩ Mt ≥ F. So, it is not restrictive to assume
M1 = H. We distinguish two possibilities:

(a) Mi is not of type (1), whenever i ≥ 2. In this case, for i ≥ 2, there
exists a maximal subgroup Ki of H such that Mi = NKi. But then,
M1 ∩ M2 ∩ · · · ∩ Mt = K2 ∩ · · · ∩ Kt ≥ Frat(H) ∼= C4, a contradiction.

(b) M2 is of type (1). We have M2 = Hn for some 1 �= n ∈ N and D =
M1 ∩ M2 = H ∩ Hn = CH(n) ∼= C5 � C4. If X is a maximal subgroup
of G of type (3), then X ∩ D ∼= C4, and consequently, if X1 and X2 are
two different maximal subgroups of type (3), then X1 ∩ X2 ∩ D = 1.
Hence, either t ≤ 4 or M contains at most one maximal subgroup of
type (3). One of the 6 maximal subgroups of G of type (4) contains D,
the other intersect D in a subgroup of order 4; moreover if Y1 and Y2

are two different maximal subgroups of type (4) not containing D, then
Y1∩Y2∩D = 1. Hence, either t ≤ 4 or M contains at most one maximal
subgroup of type (4). If Z is a maximal subgroup of G of type (5), then
Z ∩D ∼= C2. Hence, if M contains a maximal subgroup of type (5), then
t ≤ 4. Summarizing we have proved that either t ≤ 4 < MaxDim(G)
or t = 5 and in that case we may assume M3 of type (2), M4 of type
(3) and M5 of type (4). However, this case cannot occur since it can be
easily checked that if X is of type (3) and Y is of type (4) and does not
contains D, then either X ∩ Y ∩ D = 1 or X ∩ D = Y ∩ D.

Although question 2 has a negative answer, a weaker result holds.

Proposition 8. If {M1, . . . ,Mt} is a maximal irredundant family of maximal
subgroups, then CoreG(M1 ∩ · · · ∩ Mt) = Frat(G).

Proof. It is not restrictive to assume Frat(G) = 1. Let {M1, . . . ,Mt} be a
maximal irredundant family of maximal subgroups of G and let X = M1 ∩
· · · ∩ Mt. Assume, by contradiction, that X contains a nontrivial normal
subgroup, say N , of G. Since Frat(G) = 1, there exists a maximal subgroup
Y of G with N �≤ Y. Since {M1, . . . ,Mt} is a maximal irredundant family,
the family {M1, . . . ,Mt, Y } is not irredundant. On the other hand, since
N ≤ M1∩· · ·∩Mt, we cannot have M1∩· · ·∩Mt ≤ Y. So, up to reordering, we
may assume M1∩· · ·∩Mt−1∩Y ≤ Mt. Let U = M1∩· · ·∩Mt−1. Since N ≤ U,
by the Dedekind law, N(U ∩Y ) = U ∩NY = U. From U ∩Y ≤ Mt, it follows
U = N(U ∩ Y ) ≤ NMt = Mt, against the assumption that {M1, . . . ,Mt} is
an irredundant family. �
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Question 9. Is the answer to question 1 negative also in the case of finite
soluble groups?

2. An Example

Let H be a cyclic group of order m := paqb, where p and q are two different
primes and 2 ≤ a ≤ b. For any divisor r of m, denote by Hr the unique
subgroup of H of order r. Let I := {p, p2, . . . , pa−1, q, q2, . . . , qb−1}. For any
i ∈ I, let pi be a prime such that m/i divides pi−1 and let Xi

∼= Cpi
. We have

an action of H on Xi with kernel Hi. Let X :=
∏

i∈I Xi and G := X � H.
The maximal subgroups of G are the following:

1. Ap := X � Hm/p, Aq := X � Hm/q;
2. Bpr,x := (

∏
i�=pr Xi) � Hx, with r ∈ {1, . . . , a − 1} and x ∈ Xpr ;

3. Bqs,x := (
∏

i�=qs Xi) � Hy, with s ∈ {1, . . . , b − 1} and y ∈ Xqs .

Now, we study the intersections of these maximal subgroups. Notice that if
t ≥ 2 and x1, . . . , xt are distinct elements of Xpr , then

Bpr,x1 ∩ · · · ∩ Bpr,xt
= Bpr,x1 ∩ Bpr,x2 =

⎛

⎝
∏

i�=pr

Xi

⎞

⎠ � Hpr . (2.1)

Similarly, if t ≥ 2 and y1, . . . , xt are distinct elements of Xqs , then

Bqs,x1 ∩ · · · ∩ Bqs,xt
= Bqs,x1 ∩ Bqs,x2 =

⎛

⎝
∏

i�=qs

Xi

⎞

⎠ � Hqs . (2.2)

Let Y be a family of maximal subgroups of G. For any i ∈ I, let Yi be the
set of subgroups in Y of the form Bi,x, for some x ∈ Xi. Moreover, define

• I0(Y) := {i ∈ I | Yi = ∅},
• I1(Y) := {i ∈ I | |Yi| = 1},
• I2(Y) := {i ∈ I | |Yi| > 1}.

For any i ∈ I1(Y), there exists a unique xi,Y ∈ Xi such that Bi,xi,Y ∈ Y. Let

xY :=
∏

i∈I1(Y)

xi,Y .

Finally, set

τp(Y) = min{a, r | pr ∈ I2(Y)}, τq(Y) = min{b, s | qs ∈ I2(Y)}
and define

LY :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

H if Ap, Bp /∈ Y,

Hpa−1qb if Ap ∈ Y, Bp /∈ Y,

Hpaqb−1 if Ap /∈ Y, Bp ∈ Y,

Hpa−1qb−1 if Ap ∈ Y, Bp ∈ Y.
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1. If τp(Y) = a and τq(Y) = b, then

⋂

Y ∈Y
Y =

⎛

⎝
∏

i∈I0(Y)

Xi

⎞

⎠ LxY
Y .

In this case, |Y| = |I1(Y)| + |Y ∩ {Ap, Aq}| ≤ a + b + 2. Moreover, if
Y is a maximal irredundant family, then by Proposition 8, I0(Y) = ∅,
I1(Y) = I and Ap, Aq ∈ Y. This implies |Y| = a + b.

2. If τp(Y) < a and τq(Y) = b, then, setting t = τp(Y), we have

⋂

Y ∈Y
Y =

⎛

⎝
∏

i∈I0(Y)

Xi

⎞

⎠ HxY
pt .

Let y1, y2 be two different elements in Xq. If follows from the fact that
∩Y ∈YY ∩ Xq,y1 ∩ Xq,y2 = 1 that Y cannot be a maximal irredundant
family.

3. If τp(Y) = a and τq(Y) < b, then, setting t = τq(Y), we have

⋂

Y ∈Y
Y =

⎛

⎝
∏

i∈I0(Y)

Xi

⎞

⎠ HxY
qt .

Let y1, y2 be two different elements in Xp. If follows from the fact that
∩Y ∈YY ∩ Xp,y1 ∩ Xp,y2 = 1 that Y cannot be a maximal irredundant
family.

4. If τp(Y) < a and τq(Y) < b, then
⋂

Y ∈Y
Y =

∏

i∈I0(Y)

Xi.

Moreover, if Y is a maximal irredundant family, then by Proposition 8,
I0(Y) = ∅, I1(Y) = I \ {pt, qu}, Ap, Aq /∈ Y. This implies |Y| = a + b.

From the previous discussion, it follows:

Proposition 10. MinDim(G) = MaxDim(G) = a + b.

Clearly, we have an unrefinable chain in M(G) of length |I| = a + b − 2
from H to G and a chain of length 2 from Hpa−1qb−1 to H. Moreover, we have
the following two unrefinable chains from 1 to Hpa−1qb−1 :

1 < Hp ≤ · · · ≤ Hpa−1 ≤ Hpa−1qb−1 , 1 < Hq ≤ · · · ≤ Hqb−1 ≤ Hpa−1qb−1 .

In particular, we may easily conclude:

Proposition 11. MinInt(G) = 2a + b, MaxInt(G) = a + 2b.

3. Proof of Theorem 3 and Further Considerations

Lemma 12. Assume that {M1, . . . ,Mn} is a family of maximal subgroups of
G. There exists J ⊆ I := {1, . . . , n}, such that
1. {Mj | j ∈ J} is an irredundant family;
2. ∩i∈IMi = ∩j∈JMj .
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Proof. By induction on n. If {Mi | i ∈ I} is a redundant family, then there
exists k ∈ I such that ∩i∈IMi = ∩j∈I\{k}Mj . We substitute the original
family with the subfamily {Mj | j ∈ I \ {k}} and we conclude by induction.

�

Proposition 13. MinDim(G) ≤ MinInt(G).

Proof. We may assume Frat(G) = 1. Let t = MinInt(G) and assume that

C : Kt < Kt−1 < · · · < K1 < K0 = G

is a non-refinable chain in M(G). There exists t maximal subgroups M1, . . . ,Mt

of G, such that Ki = ∩j≤iMj for 1 ≤ i ≤ t. Since Frat(G) = 1, if Kt �= 1,
then there exists a maximal subgroup M not containing Kt, and consequently
Kt ∩ M < Kt < · · · < K0 is a refinement of C. Hence Kt = 1. It follows from
Lemma 12 that there exists J ⊆ {1, . . . , t} such that {Mj | j ∈ J} is an
irredundant family of maximal subgroups of G with ∩j∈JMj = 1. The sec-
ond condition implies that {Mj | j ∈ J} is a maximal irredundant family of
maximal subgroups of G, hence MinDim(G) ≤ t. �

Proposition 14. MaxDim(G) ≤ MaxInt(G).

Proof. Let t = MaxDim(G) and suppose that {M1, . . . ,Mt} is an irredundant
family of maximal subgroups of G. For 1 ≤ j ≤ t, set Kj = ∩i≤jMi :

Kt < Kt−1 < · · · < K1 < K0

is a chain in M of length t, and this implies MaxInt(G) ≥ t. �

It is more difficult to compare MaxDim(G) and MinInt(G). In the exam-
ple discussed in the Sect. 2, MinInt(G)−MaxDim(G) = a. On the other hand,
if G = Sym(p) with p a prime, we may consider the chain 1 < GL(1, p) <
AGL(1, p) < Sym(p). Since GL(1, p) is maximal in AGL(1, p) and AGL(1, p)
is maximal in Sym(p), we may refine this chain to a chain of maximal in-
tersections of length at most 2 + log2(p − 1). Since MaxDim(Sym(p)) =
m(G) = p − 1, we have examples of finite groups G for which the differ-
ence MaxDim(G) − MinInt(G) is arbitrarily large. We may also construct
finite soluble groups G with MaxDim(G) > MinInt(G). Indeed assume that
p, q an r are three primes and that p divides r − 1. Let F be the field
with r elements and let C = 〈c〉 be the subgroup of order p of the mul-
tiplicative group of F. Let V = F

q be a p-dimensional vector space over
F and let σ = (1, 2, . . . , q) ∈ Sym(q). The wreath group H = C 	 〈σ〉 has
an irreducible action on V defined as follows: if v = (f1, . . . , fp) ∈ V and
h = (c1, . . . , cp)σ ∈ H, then vh = (f1σ−1c1σ−1 , . . . , fqσ−1cqσ−1). We consider
the semidirect product Gq,p,r = V � H. Let

e1 = (1, 0, . . . , 0), e2 = (0, 1, . . . , 0), . . . , eq = (0, 0, . . . , 1) ∈ V,

h1 = (c, 1, . . . , 1), h2 = (1, c, . . . , 1), . . . , hq = (1, 1, . . . , c) ∈ Cq ≤ H.

For any 1 ≤ i, j ≤ q, we have

h
ej

i = hi if i �= j, hei
i = ((1/c − 1)ei)hi.
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But then, for each i ∈ {1, . . . , q}, we have

hi ∈
⋂

j �=i

Hej , hi /∈ Hei ,

hence He1 , . . . ,Heq is an irredundant family of maximal subgroups of Gq,p,r

and therefore MaxDim(Gp,q,r) ≥ q. Now assume that p has order q − 1 mod
q : in that case Cq is the direct sum of the irreducible 〈σ〉-module, C1 and
C2, of dimension, respectively, 1 and q − 1. If we consider

Y0 = 1 < Y1 = 〈σ〉 < Y2 = C1〈σ〉 < Y3 = H < Y4 = Gp,r,q,

we have that Yi is a maximal subgroup of Yi+1, so MinInt(G) ≤ 4. Hence,
the difference MaxDim(G) − MinInt(G) can be arbitrarily large even in the
soluble case.

The fact that m(G) ≤ MaxDim(G) motivates the following question.

Question 15. Does there exist a finite soluble group G with the property that
m(G) > MinInt(G)?

We are going to prove that the previous question has an affirmative
answer if the Fitting length of G is at most 2. But the question remains open
in the general case.

Lemma 16. Let G be a finite nilpotent group and let F be a family of sub-
groups of G which contains G and all the maximal subgroups of G and is
closed under taking intersections. Let C = Xt < Xt−1 < . . . X1 < X0 be a
chain in F . If C cannot be refined in F , then t ≥ u, where u is the composi-
tion length of G/Frat(G).

Proof. Clearly, since C is not refinable, we must have X0 = G. Let F =
Frat(G). If Xt �≤ F, then there exists a maximal subgroup M of G not
containing Xt. But then Xt ∩M < Xt. However Xt ∩M ∈ F , and this would
contradict the assumption that C cannot be refined in F . For any H ≤ G, let
H := HF/F. We have a chain

C : F = Xt ≤ · · · ≤ X0.

Assume that Xi �= Xi+1. This implies that there exists a maximal subgroup
M of G containing Xi+1 but not Xi. We have Xi+1 ≤ Xi ∩ M < Xi. Since
Xi ∩ M ∈ F and C cannot be refined in F , we deduce Xi+1 = Xi ∩ M. But
then Xi/Xi+1 = Xi/(Xi ∩ M) ∼= XiM/M = G/M, hence Xi+1 is a maximal
subgroup of Xi (and therefore Xi+1 is a maximal subgroup of Xi). This
implies that the length of C is precisely u, hence t ≥ u. �

Theorem 17. Let G be a finite group. If G/Fit(G) is nilpotent, then

MinInt(G) ≥ m(G).

Proof. We may assume Frat(G) = 1. In this case Fit(G) = soc(G) has a
complement, say X, in G and Z(G) has a complement, say W , in FitG,
which is normal in G. Let H = Z(G)X. We have

G = W � H =
(
V δ1

1 × · · · × V δt
t

)
� H,
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where V1, . . . , Vt are faithful irreducible H-modules, pairwise not H-isomorphic.
By [10, Theorem 1], m(G) is the number of non-Frattini factors in a chief
series of G. Hence, m(G) = δ1 + · · · + δt + u, where u is the composition
length of H/Frat(H). Let M be the family of the maximal subgroups of H
and let

D = {CH(v) | v ∈ Vi, 1 ≤ i ≤ t}.

Consider the family F consisting of H and all the possible intersections of
elements of D and M.

Now let 1 = Yρ < · · · < Y0 = G be a chain of maximal intersections in G
that cannot be refined. By an iterated application of [7, Theorem 15], there
exists w ∈ W such that for 1 ≤ i ≤ ρ, we have Yi = UiZ

w
i , with Ui ≤H W and

Zi ∈ F . Moreover either Zi = Zi+1 and Ui/Ui+1
∼=H Vj for some 1 ≤ j ≤ t

or Ui = Ui+1 and Zi+1 = Zi ∩ X with X ∈ D ∪ M. In the second case, the
fact that there is no maximal intersection in G strictly between Yi+1 and Yi

implies that Zi+1 is F-maximal in Zi. Let J := {j | Uj+1 < Uj}. Assume
|J | = a and order the elements of J so that j1 < j2 < · · · < ja: we have
that 0 < Uja

< Uja−1 · · · < Uj2 < Uj1 = W is an H-composition series of W
and this implies a = δ1 + · · · + δt. Now let J∗ := {j | Uj+1 = Uj}. Assume
|J∗| = b and order the elements of J so that j1 < j2 < · · · < jb: we have that
1 < Ujb

< UZb−1 · · · < Zj2 < Zj1 = H is an F-chain that cannot be refined,
so by Lemma 16, b ≥ u. We conclude ρ = a + b ≥ δ1 + · · · + δt + u = m(G).

�

Remark. One could hope to generalize Lemma 16 as follows: let G be a finite
soluble group and let F be a family of subgroups of G which contains G
and all the maximal subgroups of G and is closed under taking intersections.
Let C = Xt < Xt−1 < . . .X1 < X0 be a chain in F . If C cannot be refined
in F , then t ≥ m(G). This would allow to prove Theorem 17 for arbitrary
finite soluble groups. However, this more general statement is false. Let G =
H1 × H2 × H3, with Hi

∼= Sym(3) and let Ki be the Sylow 3-subgroup
of Hi. Let 1 �= ki ∈ Ki and let X = 〈k1, k2, k3〉. Let F be the family of
subgroups of G consisting of G, the maximal intersections in G and X. A
maximal subgroup of G containing X, contains also K := K1 × K2 × K3, so
1 < X < K < K1 ×K2 ×H3 < K1 ×H2 ×H3 = G in a non-refinable F-chain
in G. However m(G) = 6.

4. Strongly and Weakly Minmax Finite Groups

Lemma 18. Let N be a normal subgroup of a strongly minmax finite group.
If N in an intersection of maximal subgroups of G and G is weakly minmax,
then G/N is weakly minmax.

Proof. Let M+(G,N) (resp. M−(G,N) be the sublattice of M(G) consisting
of the subgroups in M(G) containing N (resp. contained in N). Let N =
H0 ≤ · · · ≤ Ht = G and N = K0 ≤ · · · ≤ Ku = G be two unrefinable chains
in M+(G,N). If T0 ≤ · · · ≤ Tv = N is an unrefinable chain in M−(G,N),
then
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1 = T0 ≤ · · · ≤ Tv = H0 ≤ · · · ≤ Ht = G

and

1 = T0 ≤ · · · ≤ Tv = K0 ≤ · · · ≤ Ku = G

are two unrefinable chains in M(G), so, since G is weakly minmax, they have
the same length, but then t = u and therefore MinInt(G/N) = MaxInt(G/N).

Now assume that X1, . . . , Xa is a family of maximal subgroups of G
with minimal size with respect to the property X1 ∩ · · · ∩ Xa = N and that
Y1, . . . , Yb is a family of maximal subgroups of G containing N and with the
property that the chain

C : Y1 ∩ · · · ∩ Yb < Y1 ∩ · · · ∩ Yb−1 < · · · < Y1 ∩ Y2 < Y1 < G

cannot be refined in M+(G,N). We want to prove that a = b. First, notice
that, since N is a maximal intersection and C is not refinable, Y1 ∩ · · · ∩Yb =
N. There exists Z1, . . . , Zc such that X1, . . . , Xa, Z1, . . . , Zc is a maximal
irredundant family of maximal subgroups of G. Consider the chain of maximal
intersections:

X1 ∩ · · · ∩ Xa ∩ Z1 ∩ · · · ∩ Zc < X1 ∩ · · · ∩ Xa ∩ Z1 ∩ · · · ∩ Zc−1 <

< · · · < X1 ∩ · · · ∩ Xa ∩ Z1 < X1 ∩ · · · ∩ Xa < · · · < X1 < G.

Since G is weakly minmax, this chain cannot be refined (and in particular
a + c = MinInt(G) = MaxInt(G)). On the other hand,

N ∩ Z1 ∩ · · · ∩ Zc < N ∩ Z1 ∩ · · · ∩ Zc−1 <

< · · · < N ∩ Z1 < N = Y1 ∩ · · · ∩ Yb < · · · < Y1 < G

is a chain of maximal intersections and we must have c + b ≤ MaxInt(G) =
a + c, hence b ≤ a (and consequently b = a). �

Theorem 19. A finite weakly minmax group is soluble.

Before proving this theorem, we need to introduce a couple of definitions
and related lemmas.

Definition 20. Let X be an almost simple group and S = soc X.

1. We define σ(X) as the largest positive integer σ for which there exists
a core-free maximal subgroup Y of X and s1, s2, . . . , sσ in S such that

Y s1 ∩ S > Y s1 ∩ Y s2 ∩ S > · · · > Y s1 ∩ Y s2 ∩ · · · ∩ Y sσ ∩ S.

2. We define τ(X) as the minimal size of a family of core-free maximal
subgroups of X with trivial intersection.

Lemma 21. σ(X) ≥ 3.

Proof. Let Y be a core-free maximal subgroup of X and let T = S ∩ Y . We
have T �= 1 (see for example the last paragraph of the proof of the main
theorem in [13]). If suffices to prove that there exists s ∈ S such that 1 <
T ∩ T s < T. We have Y = NG(T ), so T = NS(T ). Assume by contradiction
1 = T ∩ T s for every s ∈ S\T : this means that S is a Frobenius group and T
is a Frobenius complement, but this is in contradiction with the fact that S
is a non-abelian simple group. �
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Lemma 22. τ(X) ≤ 4, with equality if and only if X = U4(2).2

Proof. See [4, Theorem 1]. �

Proof of Theorem 19. Let G a finite weakly minmax group. If G is not sol-
uble, then it admits a non-abelian chief factor H/K. Let C = CG(H/K).
Then, G/C is a monolithic group (with socle isomorphic to H/K) and is
weakly minmax by Lemma 18. So, to complete the proof, it would suffice to
prove that a finite monolithic group with non-abelian socle cannot be weakly
minmax.

Let G be a monolithic primitive group, and assume N = soc(G) ∼= Sn,
with S a non-abelian simple group.

Let ψ be the map from NG(S1) to Aut(S) induced by the conjugacy
action on S1. Set X = ψ(NG(S1)) and note that X is an almost simple group
with socle S = Inn(S) = ψ(S1). Let T := {t1, . . . , tn} be a right transversal
of NG(S1) in G; the map

φT : G → X 	 Sym(n)

given by

g �→ (ψ(t1gt−1
1πg

), . . . , ψ(tngt−1
nπg

))πg,

where πg ∈ Sym(n) satisfies tigt−1
iπg

∈ NG(S1) for all 1 ≤ i ≤ n, is an
injective homomorphism. So we may identify G with its image in X 	T , where
T = {πg | g ∈ G} is a transitive subgroup of Sym(n). In this identification,
N is contained in the base subgroup Xn and Si is a subgroup of the i-th
component of Xn.

Let F/N = Frat(G/N) and assume that Y1, . . . , Yt is a family of max-
imal subgroups of G of minimal size with respect to the property F =
Y1∩· · ·∩Yt. Now, choose a core-free maximal subgroup Y of X and s1, . . . , sσ

as in the definition of σ = σ(X) and let M = G ∩ (Y 	 T ). By [1] Proposi-
tion 1.1.44, M is a maximal subgroup of G. For 1 ≤ i ≤ n and 1 ≤ j ≤ σ,
let τi,j = (1, . . . , 1, sj , 1 . . . , 1) ∈ Sn, where sj is in the i-th position of τi,j

and let Mi,j = Mτi,j . We order lexicologically the pairs (i, j). Let Σk,l =
∩1≤i≤k,1≤j≤lMi,j ∩ F. We have Σk,l ∩ Mk,l < Σk,l and this implies

MaxInt(G) ≥ t + n · σ(X). (4.1)

Now let τ = τ(X) and suppose that R1, . . . , Rτ are core-free maximal sub-
groups of X with trivial intersection. Again by [1] Proposition 1.1.44, Zi :=
G ∩ (Ri 	 T ) is a maximal subgroup of G for 1 ≤ i ≤ τ. Let W = Y1 ∩ · · · ∩
Yt ∩ Z1 ∩ · · · ∩ Zτ and let π : G → T the epimorphism sending g to πg. Since
W ∩ Xn = 1, we have W ∩ ker π = 1, so W is isomorphic to a (proper)
subgroup of T. Moreover since W ∩ N = 1, we have W ∼= WN/N ≤ F/N,
hence W is a nilpotent subgroup of Sym(n). With the same arguments used
by Cameron, Solomon and Turull in [5], it can be easily proved that the max-
imal length l(K) of a chain of subgroups in a nilpotent permutation group
of degree n is at most n − 1. It follows l(W ) ≤ n − 1. Since G has trivial
Frattini subgroup, there exist at most n − 1 maximal subgroups of G whose
total intersection with W is trivial, hence
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α(G) ≤ t + τ(X) + n − 1. (4.2)

Since G is weakly minmax, combining (4.1) and (4.2), we get

n · (σ(X) − 1) < τ(X). (4.3)

By Lemmas 21 and 22, 2n < 4, hence n = 1.

We have so proved that n = 1, i.e. G is an almost simple group. First
assume that G = S is a simple group. We have α(G) = MaxInt(G) ≥
MaxDim(G) ≥ m(G) ≥ 3. Since, by [3, Theorem 1], α(G) ≤ 3, it follows
MaxDim(G) = m(G) = α(G) = 3. Since m(An) ≥ n − 2 and α(A5) = 2,
it follows that G is not an alternating group. If G is sporadic, then by [3,
Theorem 3.1] the condition α(G) = 3 implies that G = M22. However, M22

has a maximal subgroup H = L3(4) with b(M22,H) = 5 (see [2, Table 1])
and we deduce that MaxInt(M22) ≥ 5. If G is an exceptional group of Lie
type, then [3, Theorem 1] implies that G = G2(2)′ ∼= U3(3), however, by a
theorem of Wagner [16], G can be generated by 4 involutions and no fewer,
so m(G) ≥ 4.

So we may assume S < G. Let H be a core-free maximal subgroup of
G and let b = b(G,H) be the minimal size of a set of conjugates of H with
trivial intersection (i.e., the base size of the primitive action of G on the set of
the right cosets of H). This set of conjugates of H is an irredundant family of
maximal subgroups with maximal size, so α(G) ≤ b(G,H) ≤ MaxDim(G) ≤
MaxInt(G). In particular, if G is weakly minmax, then b(G,H) is the same
for any choice of a core-free maximal subgroup H of G. It follows from [2],
that if soc G is a sporadic simple group, then G has faithful primitive actions
with different base sizes, hence G is not weakly minmax. In any case, by
Lemma 22, if G is weakly minmax, then α(G) = MaxDim(G) = MinInt(G) =
MaxInt(G) ≤ τ(G) = 3 if G �= U4(2).2, α(G) = MaxDim(G) = MinInt(G) =
MaxInt(G) ≤ τ(G) = 4 if G = U4(2).2.

If n ≥ 5, then b(Sym(n),Sym(n − 1)) = n − 1 ≥ 4 > 3, and therefore
Sym(n) is not weakly minmax. Finally, assume that G is an almost simple
with a socle S of Lie type and S < G. Let B be Borel subgroup of S and
let u be the number of the nodes of the associated Dynkin diagram, or the
number of the orbits for a suitable groups of symmetries of this diagram
if S is of twisted type or G involves a graph automorphism of G). There
exists a family Y1, . . . , Yu of maximal parabolic subgroups of G such that
S > S ∩ Y1 > S ∩ Y1 ∩ Y2 > · · · > S ∩ Y1 ∩ Y2 ∩ · · · ∩ Yu = B. Moreover, as
in the proof of Lemma 21, since NS(B) = B and S is not a Frobenius group,
there exists x ∈ S with 1 < B ∩ Bx < B. Let m = m(G/S). There exists an
irredundant family X1, . . . , Xm of maximal subgroup of G containing S. Let
X = X1 ∩ · · · ∩ Xm. Then, 1 < (X ∩ Y1 ∩ · · · ∩ Yt) ∩ (X ∩ Y1 ∩ · · · ∩ Yt)x <
X∩Y1∩· · ·∩Yt < · · · < X∩Y2∩Y1 < Y1∩X < X < · · · < X2∩X1 < X1 < G
is a chain in M(G), so τ(G) ≥ MinInt(G) ≥ m+u+2 ≥ 3+u, a contradiction.

�

Proposition 23. Let G be a primitive monolithic soluble group. If G is weakly
minmax, then the derived length of G is at most 3.
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Proof. Assume G = V � H, where V is an irreducible H-module and H is a
finite soluble group. By [15, Theorem 2.1], the base size b(H) of H on V is at
most 3, i.e., there exist v1, v2, v3 ∈ V such that CH(v1)∩CH(v2)∩CH(v3) = 1.
This implies 1 = H ∩ Hv1 ∩ Hv2 ∩ Hv3 , hence α(G) ≤ 4.

Let 1 = X0 < X1 < · · · < Xt = G be a chain of normal subgroups in
M(G) with the property that, for every 0 ≤ i ≤ t − 1, there is no normal
subgroup Y ∈ M(G) with Xi < Y < Xi+1. For every 0 ≤ i ≤ t − 1, let
Yi/Xi be a minimal normal subgroup of G/Xi contained in Xi+1/Xi. If M
is a maximal subgroup of G containing Yi, then CoreG(M) ∩ Xi+1 ∈ M(G)
is a normal subgroup containing Yi, hence CoreG(M) ∩ Xi+1 = Xi+1 and
consequently Xi+1 ≤ M. This implies Xi+1/Yi = Frat(G/Yi). In particular
Y0 = V and X1 = V Frat(H). If we refine the normal series X0 < Y0 <
X1 < Y1 < · · · < Xt = G to a chief series of G, the non-Frattini factors are
precisely the t factors Yi/Xi for 0 ≤ i ≤ t− 1. In particular, by [10, Theorem
2], t = m(G). Since G is weakly minmax, t = m(G) ≤ MaxDim(G) ≤
MaxInt(G) = α(G) ≤ 4.

Assume t = 4. In this case, α(G) = m(G) = 4 and the chain 1 < X1 <
X2 < X3 < X4 = G cannot be refined inserting other maximal intersections.
In particular, X1 ∩ H = 1 and therefore, Y1 = X1 = V and Frat(H) = 1.
If i ≥ 1, then Xi = V Zi, with Zi ∈ M(H) and 1 = Z1 = H ∩ X1 < Z2 =
H ∩ X2 < Z3 = H ∩ X3 < Z4 = H < G is a non-refinable chain in M(G).
Since Z2 is normal in H and V is a faithful irreducible H-module, we must
have CV (Z2) = 1. Let 0 �= v ∈ V. Then, CZ2(v) = Hv ∩ Z2 < Z2 and
therefore, since Hv is a maximal subgroup of G, we must have CZ2(v) = 1.
In particular, if N is a minimal normal subgroup of H contained in Z2, then
N is an elementary abelian group acting fixed-point-freely on V , so it is cyclic
of prime order (see [14, 10.5.5]). Moreover H is not a supersoluble, otherwise
there would exist x and y in V such that CH(x)∩CH(y) = 1 (see [17, Theorem
A]) and consequently α(G) ≤ 3. In particular G contains a minimal normal
subgroup M which is not H-isomorphic to N. Since m(H) = m(G) − 1 = 3,
we must have H ∼= (N × M) � K with K a cyclic group of order pt for a
suitable prime p. In particular V < V MKp < V NMKp < V H = G is a
chain of normal subgroups in M(G). Arguing as before, we deduce that also
M acts fixed-point-freely of V , but this would imply that M is cyclic of prime
order and H is supersoluble. This excludes t = 4.

Assume t = 3. Then m(H) = 3, so in particular there exist two primes
p and q and a normal subgroup N of H such that F = Frat(H) ≤ N, N/F
is a non-Frattini chief factor of H of q-power order and H/N is cyclic of
p-power order. Let K be the unique maximal subgroup of H containing N.
Then 1 ≤ F < V F < V K < G is a chain in M(H), so MaxInt(G) ≥ 3,
with equality only if F = 1. In particular if α(G) = 3, then F = 1 and G
has derived length at most 3. We remain with the case F �= 1 and α(G) = 4.
This implies in particular that the minimal size b(H) of H on V is equal to
3. By [9, Theorem 1.1], (|H|, |V |) �= 1. If follows that V is a q-group and F a
p-group. Let P be a Sylow q-subgroup of H. Since P is contained in N , by
the Frattini Argument, G = NNG(P ) = FPNG(P ) = FNG(P ) = NG(P ) so
P is normal in G and Frat(G/P ) ≥ PF/P = N/P ( [14, 5.2.13 (iii)]). But
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then G/P is a cyclic p-group. This would imply that H is supersoluble, and
consequently b(H) = 2 by [17, Theorem A], a contradiction.

Finally, if t ≤ 2, then m(H) ≤ 1 and consequently, H is cyclic and G is
metabelian. �

Corollary 24. If G is weakly minmax, then the derived length of G/Frat(G)
is at most 3.

Proof. It follows immediately from the fact that G can be embedded in∏
N∈Ω G/N being Ω be the family of the normal cores of the maximal sub-

groups of G and that G/N has derived length at most 3 for any N ∈ Ω by
the previous proposition. �
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