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Abstract: Satellite interferometry has recently developed as a powerful tool for monitoring dis-
placements on structures for structural health monitoring (SHM), as it allows obtaining information
on past deformation and performing back analysis on structural behavior. Despite the increasing
literature on this subject, the lack of protocols for applying and interpreting interferometric data for
structural assessment prevents these techniques from being employed alongside conventional SHM.
This paper proposes a methodology for exploiting satellite interferometric data aiming at remotely
detecting displacements and buildings’ criticalities at different levels of analysis, i.e., urban scale
and single-building scale. Moreover, this research exploits the capability of satellite monitoring for
damage diagnosis, comparing the millimeter scale displacements to information derived from on-site
inspections. Different data-driven algorithms were applied to detect seasonal and irreversible compo-
nents of displacements, such as statistical models for damage identification derived from traditional
on-site monitoring. Thus, the proposed methodology was applied to a XVI-century case study located
in the city center of Rome (Italy), Palazzo Primoli, and two stocks of COSMO-SkyMed (CSK) images
processed through the Small BAseline Subset Differential Interferometry (SBAS-DInSAR) technique
were used to assess displacements for an eight-year-long (between 2011 and 2019) monitoring period.

Keywords: satellite interferometry; COSMO-SkyMed; SBAS-DInSAR; MT-InSAR; deformation time
series; damage assessment

1. Introduction

Monitoring displacements and deformation of historical architectures is very relevant
for the preservation of cultural heritage assets, particularly in those countries exposed
to high levels of risk, due to seismic, geomorphological, hydrological, or climate change-
related hazards. Nowadays, traditional techniques for structural health monitoring (SHM)
allow for gathering accurate data for structural assessment by means of specific physical
sensors. Despite the high precision and the wide diffusion of these methods, different
drawbacks are still present, such as the high cost of equipment, the need for constant
maintenance, and the necessity of a deep preliminary study of the structural behavior [1].
These reasons led to the development and the diffusion of remote sensing techniques in
the field of structural health monitoring, such as Synthetic Aperture Radar Interferometry
(InSAR) [2–4]. Processing satellite images through Synthetic Aperture Radar (SAR) interfer-
ometry methods allows the collection of non-invasive, periodic, and widespread data, that
can be used for detecting building vulnerabilities both at a territorial and single-building
scale [5–9]. Multi-Temporal InSAR methods (MT-InSAR) have recently assumed a relevant
role in the analysis of past and recent deformations of buildings and infrastructures: these
methods can detect displacement velocity of coherent points along the satellite line of sight
(LOS), providing accurate time series [10–13].

Among MT-InSAR techniques, Permanent Scatterers Interferometry (PS-InSAR) [14]
and SBAS-DInSAR [15,16] methods have proven to be reliable in detecting ground motion
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and building displacements. During the last two decades, different authors [17–35] have
extensively performed satellite interferometry analysis to assess geological ground deforma-
tions and displacements on structures. Referring to SHM applications, MT-InSAR methods
have proven able to detect displacement phenomena on infrastructures [24,28,32,34], civil
structures and monuments [1,11,12,22,35,36], or archeological sites [8,9,17]. The mentioned
works include different levels of analysis, focusing both on an urban and local scale, thus
analyzing at first the context of the examined structures and performing a more accurate
study on the specific case studies. Moreover, several techniques have been exploited to
process interferometric data and the retrieved displacement time series (e.g., seasonal
detrending, cluster analysis, and trend identification methods). Consequently, MT-InSAR
methods embody a fundamental step in the field of SHM as they represent a significant
source of monitoring data that can be remotely acquired and can draw information on
past behavior on any structure. From this perspective, satellite data also rises as a pri-
oritization tool for the purpose of predicting building criticalities and selecting strategic
structures that need to be further investigated by means of in-situ inspections. On the
other hand, interferometric data must be carefully interpreted, since they cannot provide
extremely high accuracy unlike on-site monitoring methods and they require heavy initial
processing and post-processing. Therefore, a lack of detailed protocols and guidelines
for SHM application on buildings and infrastructures has yet to be overcome. Hence, the
present work aims to provide a sound procedure to apply and interpret interferometric
satellite data for structural monitoring purposes. More specifically, the proposed method
focuses on the back monitoring analysis for recognition of past and recent deformation
with increasing scale of analysis: starting from a territorial analysis of displacements,
the protocol then switches to a single-building scale, with the aim to identify damage
on a complex building aggregate in Rome. The back monitoring section investigates the
possibility of applying algorithms and methods derived from conventional monitoring,
such as detrending and damage detection algorithms, to interferometric data. To this pur-
pose, the research analyzes the interferometric output of two eight-year-long (2011–2019)
datasets of satellite images (from ascending and descending orbits) over the historical
center of Rome, which have already been extensively studied through radar interferometry
by several authors [1,8,35,37–39]. The employed datasets have been previously processed
through the SBAS-DInSAR by the Consiglio Nazionale delle Ricerche—Istituto per il Ril-
evamento Elettromagnetico dell’Ambiente (CNR-IREA) and provided to the authors for
above-mentioned analyses.

The paper is structured as follows. First, a brief description of the data and the
SBAS-DInSAR technique is provided, and the proposed back monitoring methodology is
thoroughly presented. The same procedure is then applied to the case study of Palazzo Pri-
moli and, lastly, the main drawbacks and weaknesses of monitoring through interferometric
techniques are discussed.

2. Materials and Methods
2.1. Data Sources

To perform the monitoring, CNR-IREA processed through the SBAS-DInSAR tech-
nique two different stocks of CSK satellite images and supplied the interferometric data
in the framework of the research project DPC-RELUIS 2019–2022 WP6 “Structural Health
Monitoring and Satellite Data”. The CSK images were acquired by an X-band sensor,
through Stripmap HIMAGE mode, HH polarization, and 3 m spatial resolution on the
ground in both azimuth (along-track) and range (cross-track) directions. Therefore, the
source material of the present analysis consists of two eight-year-long (from 2011 to 2019)
CSK interferometric data deriving respectively from both ascending and descending orbits.
The satellite swaths cover two vast areas inside the historical center of Rome, approximately
4.5 km2 in the ascending orbit and 5.2 km2 in the descending one. Inside these sectors, a
significant number of measurement points (MPs) was detected, resulting in an MP density
of 73513 MP/km2 and 38918 MP/km2 for the ascending and descending orbits respectively,



Remote Sens. 2023, 15, 1177 3 of 24

highlighting major electromagnetic reflectivity of the areas. Tables 1 and 2 summarise the
dataset information.

Table 1. CSK satellite general information.

Satellite Acquisition
Mode Sensor Type Resolution Revisiting

Time Orbit Incidence
Angle

COSMO-SkyMed Stripmap
HIMAGE

X band
HH polarization 3 m 16 days Ascending 34.12◦

Descending 28.76◦

Table 2. CSK dataset and SBAS-DInSAR processing information.

Orbit Frame Number Monitoring
Period

Satellite
Images

Reference
Date

Reference
Point MP Density

Ascending H4-05 21 March 2011–11
March 2019 129 21/03/2011 41.89928◦;

12.50264◦ 73513 MP/km2

Descending H4-03 29 July 2011–13
March 2019 103 29/07/2011 41.88835◦;

12.49818◦ 38918 MP/km2

The SBAS-DInSAR technique exploits a large number of satellite SAR images acquired
on a selected area during a certain monitoring period: in detail, the primary purpose of
SBAS-DInSAR is to correctly select pairs of satellite images characterized by both small
perpendicular baseline (the distance between the position of two acquisition points of
the satellite sensor along his orbital track) and small temporal baseline (the time interval
between the acquisition of two satellite images), and obtain the phase difference between
the same images in the so-called differential interferograms. Thus, the above-mentioned
criteria enable the reduction of the noise effects on the multi-temporal series of differential
interferograms and optimize the number of measurement points detected on earth. Later,
the same interferograms undergo the unwrapping phase to solve the 2π phase ambiguities
and to collect the original phase signal, and the displacement time series are defined by
solving a linear system of equations in the least squares sense [40–43]. Last, a filtering
process allows the removal of atmospheric effects from the time series. Therefore, as for
all MT-InSAR methods, the SBAS-DInSAR enables the detection of pointwise information
of displacements associated with ground pixels: the main outcome of this technique is
the definition of measurement points spatially georeferenced (by longitude, latitude, and
altitude) and supplied by the coherence measure (from 0 to 1), defining the stability of
the target and its reliability, the mean annual LOS velocity value (given in mm/year) and
the displacement time series over the monitoring period. In particular, the displacement
measures are not absolute values, as they refer to a specific point, known as a reference
point, defined inside a stable and coherent area. SBAS-DInSAR technique provides mea-
surements with an accuracy of 1–2 mm/year for LOS velocity values and 5/10 mm for
each measure within the time series [44–48]. Furthermore, the georeferencing accuracy
depends on the satellite sensor and resolution, as well as on the Digital Elevation Model
(DEM) employed during the geocoding phase: considering CSK full resolution images, the
precision consists of 1–2 m, 2–3 m, and 1–2 m respectively for North-South, East-West, and
vertical directions [44].

2.2. Methodology

The analysis of Palazzo Primoli follows the flowchart in Figure 1. The method is
divided into three main sections: Background information, Pre-processing, and Back
analysis. The first part embodies the initial collection of essential information about the
building, its constructive phases, geometrical and structural surveys, and damage pattern.
The Pre-processing section exhibits the preliminary analysis performed for Palazzo Primoli
as it examines interferometric data and shows the first attempt to define the displacement
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rate of the building. Both the Background information and the Pre-processing sections
represent the starting point of further and deeper study of the deformation process of
Palazzo Primoli.
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2.2.1. Background Information

The first part of the analysis begins by collecting principal information about the
building itself, taking into account different aspects of its structural features and conditions:
the literature review on the historical background of the structure, mainly addressed to
define the constructive development of the building and its principal features, as well as the
analysis of geometry and other surveys, in order to collect information on the conservation
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state or potential criticalities, have to be carefully developed. Thus, the most important
general aspects of Palazzo Primoli are investigated to achieve an overall global knowledge
of the building. The analysis includes:

1. a brief history of Palazzo Primoli and its major constructive phases;
2. geometric survey and drawings;
3. critical evaluation of the building, including damage and crack patterns.

2.2.2. Pre-Processing

Multi-interferometric data analysis starts within the Pre-processing section. In this sec-
tion, primary analysis of satellite data is performed by evaluating mean LOS displacement
velocity (VLOS), for initial detection of displacements around Palazzo Primoli. The study is
subdivided into two parts, depending on the scale of analysis: urban and single-building
scale. Urban scale analysis considers the whole satellite data and aims at highlighting areas
characterized by the highest deformation rate inside the city. A brief statistical analysis
is accomplished to recognize the distribution of VLOS values in the entire data. For a
better comprehension of deformations, the pointwise distribution is transformed into a
continuous map through a spatial interpolation approach, the Inverse-Distance-Weighting
(IDW) technique [49]: this method has been widely employed in the field of interferometric
analysis to interpolate different parameters of satellite data [50–54]. Interpolation is car-
ried out through quadratic weighting and by defining the AOI (Area Of Interest) inside a
Geographical Information System (GIS) environment, such as QGIS [55], for both orbits.
Interpolated maps are then used to estimate real displacement components, computed
from a combination of ascending and descending data on pixels common to both maps.
Vertical and east-west deformations are calculated through the expressions:

Vvertical =
(V LOS,desc/edesc

)
− (V LOS,asc/easc

)
(h desc/edesc)− (h asc/easc)

(1)

Vhorizontal =
(V LOS,desc/hdesc

)
− (V LOS,asc/hasc

)
(e desc/hdesc)− (e asc/hasc)

(2)

where VLOS,desc, and VLOS,asc are the mean LOS displacement velocity, respectively, for
descending and ascending orbits, while h and e are horizontal and vertical directional
cosines of the respective orbit [50].

Single-building scale analysis aims to define a primary evaluation of the displacement
rate of Palazzo Primoli. After geographical referencing of MPs on QGIS and Google
Earth Pro [56], the study starts examining the points distribution both from a planimetric
and an elevation point of view. Moreover, MPs are classified in relation to VLOS values
to interpret the global displacement rate on the structure. For the same purpose, real
deformation components are now qualitatively detected through the use of single data:
vertical and horizontal displacements are calculated by dividing ascending and descending
LOS velocity values respectively by vertical and horizontal directional cosines, modifying
the expressions defined in [57], as:

Vvertical,asc =
VLOS,asc

hasc
, Vvertical,desc =

VLOS,desc

hdesc
(3)

Vhorizontal,asc =
VLOS,asc

easc
, Vhorizontal,desc =

VLOS,desc

edesc
(4)

where Vvertical,asc, and Vhorizontal,asc are vertical and horizontal components retrieved from
ascending data, while Vvertical,desc, and Vhorizontal,desc derive from descending one.
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2.2.3. Back Analysis

The main body of the proposed methodology focuses on the back analysis of the build-
ing and analyzes displacement time histories of detected measurement points. A prelimi-
nary analysis of time histories is performed to understand global displacements/rotations
of the structure, provide initial information, and, mostly, observe the presence of defor-
mational trends which may affect displacement series. At first, displacement time series
have been singularly analyzed; then, they were subdivided and examined into elevation
groups, based on their altitude from the ground and referred to the examined structure,
i.e., the structural element they refer to; last, mean displacement time series are calculated
for the three detected elevation groups (ground floor, second floor, and rooftop) for both
ascending and descending data. After the time series analysis, the correlation between
environmental effects and recorded displacements is performed to evaluate the influence of
external parameters on measured displacements [58,59]. Firstly, displacement time series
are resampled weekly to fill gaps within various time windows; later, for each date, a mea-
sure of average daily temperature is retrieved from Roma Urbe meteorological station [60].
Thus, the correlation between temperature and displacement analysis is evaluated through
the Pearson coefficient [61], as for the expression:

rtd =
cov(t, d)
σtσd

(5)

where t and d are temperatures and resampled displacement time series of a single MP,
and σt and σd are the standard deviation of the two parameters [62,63].

Later, the whole analysis focuses on the most vulnerable parts of the structure, defined
according to both the Pre-processing analysis and the crack pattern of the building. In the
case of Palazzo Primoli, the study examines in depth the balconies of the second and third
floors of the building and a portion of the rooftop that is strictly linked with the balconies.
Cluster analysis is performed to locate structurally homogeneous MPs within the three
areas mentioned above. Different clustering criteria are chosen to highlight similarities and
differences between the selected MPs. The criteria are:

1. qualitative analysis of displacement time series: observation of time series and their
relationship aims to identify a similar deformation evolution.

2. quantitative comparison of displacement time series through two correlation coeffi-
cients, such as:

a. Pearson correlation coefficient rxy:

rxy =
cov(x, y)
σxσy

(6)

where x and y are the displacement time series of two MPs, and σx and σy are
the standard deviation of the series [62,63];

b. deviation B between MPs time series:

B =
M

∑
i=1

(x i − yi)
2 (7)

where x and y are the displacement time series of two MPs and M is the number
of dates [36];

3. proximity analysis of MPs: evaluation of planimetric and elevation location of each
MP. Every MP inside a cluster must be within:

a. a 2 m radius neighborhood from the center in planimetry of the cluster.
b. a 2 m radius neighborhood from the center in elevation of the cluster.

After highlighting the interdependence between temperature and deformation, a
seasonal detrending technique is applied to remove the environmental component from
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displacement time series and detect irreversible and pure deformation. For this purpose,
the simple moving average (SMA) method [64] is implemented following the expression:

SMAm =
Pm + Pm−1 + · · ·+Pm−(n−1)

n
(8)

where Pm is the displacement value at instant m and n is the number of values included
inside the mean calculation [65,66]. In this case, an annual moving average is performed by
applying n = 52 moving dates to obtain the displacement at instant m, which is determined
by averaging an entire year of previous values to consider environmental and noise effects.
The AutoRegressive output with an eXogenous input part model (ARX) is then employed
for deeper analysis of trends recognition inside time series, but also to develop an auto-
mated damage detection system. This technique belongs to black-box methods, as it is a
system identification model aiming at defining the output of a signal from the initial input
without any interest in the internal function of the signal itself [67]. Considering a Single
Input—Single Output model (SISO), the ARX model follows the expression:

yk + a1yk−1 + · · · + anayk−na
= b1uk + b2uk−nk−1 + · · ·+bnb uk−nk−nb+1 + ek (9)

where yk represents the final output of the model at instant k and uk is the input parameter;
terms ai (i = 1, . . . , na) and bi (i = 1, . . . , nb) are, respectively, the regression coefficients of
the autoregressive part, with a na order, and the exogenous part, with an nb order; nk is
the delay order, representing potential delay between input and output signals; ek is the
residual error of the regression [59,68–73]. Table 3 summarizes the information for ARX
model implementation.

Table 3. ARX model implementing—ascending data.

Phase Period Samples Number Data Data Type

Estimation
phase

21 March 2011–
29 December 2013

146
Input Temperature

Output LOS displacements

Validation
phase

5 January 2014–
17 March 2019 272

Input Temperature
Output LOS displacements

The whole procedure is implemented in a Matlab algorithm through the system
identification toolbox [74]. Initially, estimation and validation phases are defined: for the
estimation period, a more than two-year-long term is chosen to permit the model to perform
a better calibration of seasonal deformation cycles; the validation period lasts the remaining
years. During the estimation phase, the model is built using the temperature dataset as
input and LOS displacement as output. This process identifies an ideal displacement
time series, which is then tested in the validation phase introducing the remaining part of
the temperature data. Thus, uploading LOS displacement data of the validation period,
residuals ek between the ideal model and real measured parameter are calculated and,
starting from them, three coefficients are derived for the evaluation of the quality of
the model:

1. The goodness of fit (GOF) [75], evaluated by means of the absolute error index of the
Normalized Root Mean Squared Error (NRMSE):

GOF = (1 − NRMSE)% =

1 −

√
∑N

k=1 e2
k

N
y

% (10)

2. Loss function λ0 [76]:
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λ0 =
1
N

√√√√ N

∑
k=1

e2
k (11)

3. Final prediction error (FPE) [77]:

FPE = λ0
1+ d

N

1 − d
N

. (12)

Among all possible combinations between [na, nb, nk ] = [1:10, 1:10, 1:10], the best
fitting ARX model was selected considering the highest GOF, the lowest λ0, and the lowest
FPE: comparing the model and the real data, the first parameter evaluates the accuracy of
the fitting while the others define the misfitting level. For detection of possible outliers, a
confidence interval of 95% was set, with a range of:

[ y − tα/2,νσy; y + tα/2,νσy ] (13)

where y is the output value in the estimation phase, t represents the Student’s T distribution
of parameter y and σy is its standard deviation. Thus, if residuals remain inside the
confidence interval, the structural condition is stable; conversely, if residuals exceed the
confidence interval, an instability phenomenon may have occurred.

2.3. The Case Study Application: Palazzo Primoli, Rome

Palazzo Primoli is a historical building in the center of Rome, not far from the main
landmarks of the city (such as Castel Sant’Angelo, Pantheon, and Vatican City) (Figure 2a).
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Figure 2. (a) Geographical context of Palazzo Primoli (highlighted inside the red circle) in the center
of Rome; (b) top view of Palazzo Primoli.

The palace stretches alongside Giuseppe Zanardelli street, within the I Municipio
of the city, and it lies near the banks of the Tiber river. Nowadays, the city municipality,
alongside the Primoli Foundation, owns Palazzo Primoli, which is the location of the
Napoleonic Museum, the Mario Praz Museum, and the Primoli Foundation itself.
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3. Results
3.1. Background Information

The palace was erected at the beginning of the XVI century for the Gottifredi family
and was subsequently bought by count Luigi di Gioacchino Primoli in 1828. The current
layout of Palazzo Primoli only partially derives from the original plan, since the building
was deeply modified between 1904 and 1911, due to changes in the roads which run north
and west of the palace [78,79]. Because of the presence of significant crack patterns on the
eastern part of the structure, on-site inspections were held at the request of the managing
bodies, who supplied previous geometric and critical surveys. Figure 3a shows cracks in
different structural elements in the rooms on the ground and first floor (Figure 3b). The
whole crack pattern is mainly located in rooms under the second-floor balcony, where
another crack runs longitudinally to the balcony. However, the damage pattern could
not be monitored since an on-site monitoring system has never been installed on Palazzo
Primoli. Moreover, the cracks have not been correlated to any evident cause, as no heavy
restoration works have occurred on the structure, nor damaging events have been registered
in the surroundings.
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3.2. Pre-Processing

The MPs classification based on the annual LOS displacement velocity of the whole
data is presented in Tables 4 and 5. Most MPs assume negative values along the LOS both
in ascending and descending orbits, which gives the idea of a global vertical motion of the
analyzed area: negative values indicate movement away from the satellite along the LOS
direction, while positive ones refer to movements towards the satellite. The LOS velocity
distribution, then, does not appear to be dangerous as most of the values remain inside
the so-called “interval of relative stability”, a threshold of LOS velocity values commonly
fixed at VLOS = ±0.15 cm/year [80]. However, some points reach higher negative values,
confirming the deformation trend away from the satellite.

Figure 4 presents the distribution of processed MPs in the city center of Rome, which
are distinguished based on their LOS velocity value. The maps highlight corresponding
results between ascending and descending data, with comparable areas characterized by
similar velocity measures, as demonstrated by the sector on the left bank of the Tiber, where
the upper sector detects positive values for both orbits, while the lower neighboring part
shows negative values.
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Table 4. Mean LOS displacement velocity distribution of the whole data.

Orbit
VLOS

[cm/Year]
VLOS ≥ 0.00 VLOS < 0.00

Ascending MPs 18.2% 81.8%

Descending MPs 31.0% 69.0%

Table 5. Mean LOS displacement velocity distribution of the whole data in the interval of relative
stability.

Orbit
VLOS

[cm/Year]

VLOS > +0.15 +0.15 ≥ VLOS ≥
−0.15 VLOS < −0.15

Ascending MPs 0.3% 93.0% 6.7%

Descending MPs 0.5% 95.3% 4.2%Remote Sens. 2023, 15, x FOR PEER REVIEW 11 of 25 
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descending orbit (b).

Figure 5 displays the spatial distribution of LOS velocity values, defined through
the IDW spatial interpolation algorithm applied to both ascending and descending data,
using a pixel width of 8 × 11 m. Some areas subjected to deformation can be detected
by observing the contour maps of the VLOS parameter: a wide area with positive values
is recognized in the western part of the city center; the rest of the map exhibits slightly
negative values, which become more severe on the right and left banks of the lower part of
Tiber River.

Figure 6 shows vertical and horizontal E-W displacements, computed by combining
the two satellite orbits using Equations (1) and (2). The maps report a generally stable
situation regarding horizontal deformation of the area and a more variable condition for
vertical displacements, which approximately display a distribution similar to LOS velocity.
However, the area surrounding the case study (highlighted with a red circle) presents a
relatively stable condition. Moreover, the displayed results are consistent with previous
satellite investigations held in the city center of Rome, such as [1], performed by processing
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ERS-1/2 and ENVISAT images spanning from 1992 to 2020 through SBAS-DInSAR, and [39],
where CSK datasets from 2011 to 2013 are processed through the PSInSAR method.
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Focusing on the case study, its relative MPs are retrieved from the whole data through
a geographical selection. The points are then analyzed and firstly subdivided into three
main elevation categories (ground floor, second floor, and rooftop) based on their altitude:
Table 6 provides the subdivision of points.

Table 6. Palazzo Primoli’s MPs classification based on their elevation.

Orbit G (Ground Floor) S (Second Floor) R (Rooftop)

Ascending MPs 18% 24% 58%

Descending MPs 9% 48% 43%
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The points are then analyzed referring to their LOS velocity, as presented in
Tables 7 and 8, and displayed in Figure 7. The results point out a significant prevalence
of negative values both for the ascending and descending orbit, scattered on the whole
structure: this outcome remarks the idea of a potential slight tendency to downward move-
ments of the entire building. However, almost all MPs are characterized by very low LOS
velocity values, remaining inside the above-mentioned “interval of relative stability”.

Table 7. Mean LOS displacement velocity distribution for Palazzo Primoli.

Orbit
VLOS

[cm/Year]
VLOS ≥ 0.00 VLOS < 0.00

Ascending MPs 8.7% 91.3%

Descending MPs 2.2% 97.8%

Table 8. Mean LOS displacement velocity distribution in the interval of relative stability for Palazzo
Primoli.

Orbit
VLOS

[cm/Year]
VLOS > +0.15 +0.15 ≥ VLOS ≥ −0.15 VLOS < −0.15

Ascending MPs 0.5% 96.0% 3.5%

Descending MPs 0.5% 93.5% 6.0%Remote Sens. 2023, 15, x FOR PEER REVIEW 13 of 25 
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Figure 7. Mean LOS displacement velocity distribution on Palazzo Primoli in ascending (a) and
descending (b) orbits.

Once the LOS velocity distribution is defined, vertical and horizontal deformation
rates are analyzed by means of Equations (3) and (4). Results are presented in Figure 8:
horizontal displacements are not significative, as ascending and descending data provide
opposite components since their MPs have similar LOS velocity values but discordant
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horizontal directional cosine; conversely, the presence of vertical deformations, even though
with a relatively low intensity of 0.00 cm/year ≤ VU ≤ +0.20 cm/year, is confirmed, as
there is correspondence between results from both orbits.
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3.3. Back Analysis

The back analysis starts by examining the deformation time series for each point
identified for Palazzo Primoli. Figure 9 represents the mean displacement time series for
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each above-mentioned elevation category, both in ascending and descending orbits (March
2011–March 2019 for ascending orbit; July 2011–March 2019 for descending orbit). Each
curve displays negative LOS displacements during the whole monitoring period for all
three groups of MPs.
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Figure 9. Mean LOS displacement time series of the three elevation categories in ascending (a), and
descending (b) orbits. Vertical dotted lines define the interval of major displacement inside the whole
monitoring period.

Moreover, time series provide deeper information regarding the development of
deformations. The evolution of displacements can be subdivided into three main periods: a
first one, with stable and periodic deformations; then, a phase characterized by more severe
displacements, from the end of 2014 to the second half of 2015; finally, another interval
with periodic deformations.

The analysis suggests that the occurred deformations may not have been constant
during the whole monitoring period, but they could have developed during a specific term.
Moreover, seasonal displacement trends can be observed, as time series show periodic
variations that may depend on environmental effects, such as temperature.
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The correlation between displacements and temperature is deeper analyzed through
Pearson correlation coefficient rtd, as described in (5), and results are displayed in Figure 10a.
Despite the initial idea, the distribution of rtd shows a very low correlation between the
examined parameters. Further analyses are performed considering two distinct peri-
ods, and excluding the previously highlighted central part characterized by significant
displacements.
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When the same Pearson correlation coefficient is applied, results provide higher corre-
lation values, as presented in Figure 10b,c: for example, considering values greater than
rtd ≥ 0.4, the analysis defines an average correlation growth of 19% and 35%, respectively,
for the ascending and descending data.

Subsequently, the analysis focuses on the second-floor balcony, the third-floor balcony,
and a related portion of the rooftop of Palazzo Primoli since these areas are considered
more vulnerable due to the observed damage pattern.

Cluster analysis of structurally homogeneous points is performed to highlight MPs
with similar deformational behavior, following the criteria described in Section 2.2.3. A
spatial proximity criterion was employed to overcome the low accuracy in the elevation
position of the MPs in Palazzo Primoli, which is caused by MT-InSAR positioning inac-
curacies (e.g., for MT-InSAR processing with CSK acquisitions, the positioning error is
about 1–3 m [81]). Figure 11 shows the identified clusters based on the area they belong to.
Because of the lack of points, not all sectors are equally represented by clusters: ascending
data provides clusters on the central part of the investigated areas, while external parts are
not covered at all; on the other hand, the descending orbit detects homogenous clusters in
peripheral parts. It is worth mentioning that only one cluster is identified on the second-
floor balcony: this aspect represents a great limit and influences the whole analysis, as that
balcony is where the damage occurred.
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Figure 11. Cluster distribution on the three areas of Palazzo Primoli in ascending (a), and descending
(b) orbits.

Results from ascending clusters will only be presented in this work, as they are in the
most vulnerable areas according to the observed crack pattern. The mean LOS velocity
time series of all recognized clusters are presented in Figure 12a,c,e. Through the simple
moving average method (Equation (8)), the same time series are filtered from seasonal
environmental effects to define pure residual deformation trends. In Figure 12b,d,f, the
corresponding SMA series are displayed from January 2013 to March 2019. Deformation
curves confirm the previous interpretation of the LOS time series: displacements occurred
in the central part of the monitoring period in all three analyzed areas; the deformation rate
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is not constant as clusters identify slightly different values; starting from the end of 2014
and the beginning of 2015, displacements tend to decrease, when conditions of relative
stability appear inside all SMA series.
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Figure 12. Ascending clusters mean LOS time series in second (a), and third floor (c) balconies, and
in the rooftop (e); ascending clusters SMA time series in second (b), and third floor (d) balconies,
and in the rooftop (f). The curves for different clusters on the same floor are represented by a color
scale consistent with the colors used in Figure 11 (blue for the second-floor balcony, green for the
third-floor balcony, and yellow for the rooftop).
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Last, the ARX model is applied to the above-mentioned clusters. Table 9 presents
values of initial processing and evaluation of the regressive model for each of the analyzed
clusters. Results from all three parameters prove high consistency in fitting LOS time series
with the ARX model, as the comparison between real displacements and model output
detects low values of λ0 and FPE, as well as high measures of GOF (with values higher
than 75%), for the examined clusters.

Table 9. ARX model results—ascending clusters.

Cluster na nb nk λ0 FPE Goodness of Fit

s1 10 10 4 0.0004 0.0004 76.5%

t1 10 10 2 0.0007 0.0011 80.3%

t4 10 10 4 0.0004 0.0006 82.8%

c1 10 10 8 0.0002 0.0004 76.3%

c4 10 10 4 0.0006 0.0009 81.3%

The most outstanding cases are presented as an example. After evaluating the re-
gressive parameters for each cluster, ideal curves defined by the ARX model (blue curve)
are compared with the corresponding mean LOS displacement time series (red curve), as
displayed in Figure 13a,c,e,g,i.
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(a,b), t1 (c,d), t4 (e,f), c1 (g,h), c4 (i,j).

The comparison between ARX model outputs and LOS displacement time series re-
calls the previous interpretation of time series: while the estimation phase presents similar
behaviors on both curves for the majority of clusters, in the following validation phase
a different trend is visible, with LOS displacement curves shifting towards more intense
values in the negative direction. Residuals are then computed as the difference between real
and estimated displacements, as shown in Figure 13b,d,f,h,j, and they confirm the earlier
hypothesis of structural behavior: the curves show a first period that is relatively stable,
which is followed by an increment of negative displacements. The damage identification
process is retrieved from evaluating a confidence interval, displayed in Figure 13b,d,f,h,j,
stated at 95%, defining α = 0.05 in (13). The system provides meaningful results for the sta-
bility assessment of Palazzo Primoli, as many of the analyzed clusters show displacements
that come out of the confidence interval, indicating irreversible deformation trends. More-
over, residual curves of clusters (except for t1) show a good correspondence in detecting
the beginning of damaging displacements, as they all overcame the confidence interval
during the second half of 2014 or the beginning of 2015, further confirming the results of
the assessment.
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4. Discussion

Considering the whole process, the present study has pointed out some issues in the
interferometric analysis. The first topic concerns the georeferencing quality of data pro-
duced by MT-InSAR methods. During the analysis, a significant deficiency in the precision
of MPs positioning has been experienced, especially in the elevation parameter. Clear
errors were identified in the altitude of points, whereas the planimetric geolocation may
be considered sufficiently accurate. Comparing the actual height of Palazzo Primoli, it is
evident an overestimation in the elevation parameter. This issue in the georeferencing could
also lead to a misinterpretation of data since analyzed MPs could refer both to structural
and non-structural elements (e.g., tiles, railings, chimneys), where the deformational trend
of the latter does not necessarily coincide with the global structural behavior. Further re-
search needs to be developed, both to decrease such georeferencing errors, and to consider
potential errors in geocoding caused by representation and GIS software.

In addition, the entire work points out a strong contrast between information brought
by VLOS values, which are defined on the whole monitoring period, and accurate analysis
of LOS displacement time series for each MP. Indeed, results displayed from the first
parameter seem to provide a relatively stable condition, as most points present low values
of annual LOS displacement, remaining inside the stability thresholds: this trend is also
confirmed by previous studies on the area of Rome, where similar displacement rates have
been highlighted; conversely, the further analysis of deformation time series gives a more
critical view of the displacement rate, identifying and confirming, by means of the damage
detection system, a trend of deterioration. Such analysis highlights that it is not reliable
to use only the VLOS parameter as an index for assessing building stability, but a more
accurate investigation of time series should be performed to determine the displacement
rate of a structure. Further inspections and data from the on-site monitoring system would
be a suitable tool for both assessing stability and validating interferometric results. In the
case of Palazzo Primoli, the presence of displacement transducers on the structure on major
cracks could have represented a potential source of information for both validating the
displayed results and determining with higher accuracy the structural behavior of Palazzo
Primoli, in particular for the balconies and the rooftop.

Combining satellite and in-situ monitoring has now gathered increasing interest in
the field of SHM since the results from both methods can lead to widening resources
for predicting structural damages and preserving both strategic structures and cultural
heritage monuments.

Lastly, results given by the Pearson coefficient on correlation analysis between LOS
displacements and temperature are heavily influenced by two aspects. First, the noisiness
of satellite MPs time series can affect the comparison between parameters, as their high
standard deviation decreases the correlation coefficient. Moreover, as previously stated, the
analyzed MPs can be referred to as non-structural elements, whose deformational behavior
could not necessarily depend on any environmental parameters.

5. Conclusions

In recent years, Satellite MT-InSAR methods have proven successful efficacy for
remotely monitoring civil structures and infrastructures involved in damaging phenomena
such as local or global deformations and rotations. The interferometric technique represents
a powerful support for traditional SHM systems, as satellite monitoring enables the free,
non-invasive, and widespread collection of displacement data on structures inside large
areas. Moreover, MT-InSAR methods allow the performance of back analyses of past
deformation, providing an effective tool for detecting structural vulnerabilities and damage.
This work presents a methodology for interpreting and analyzing interferometric satellite
data, aiming at providing a guideline to facilitate the use of this new technique.

The protocol splits into three main sections (Background information, Pre-processing,
and Back analysis), characterized by specific tasks and methods: at first, the gathering of
background information on the examined structure; later, analyzing LOS velocity values at
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urban and building scales; last, testing time series for detrending and damage detection.
In addition, the protocol considers two different perspectives of analysis, at both urban
and single-building scales. Thus, the methodology seeks to achieve the detection of dis-
placements by taking advantage of the different capabilities and potentialities of satellite
monitoring. The whole analysis consists of examining mean annual LOS displacement
velocity and displacement time series. Moreover, data are processed through different
techniques (IDW for spatial interpolation, Pearson correlation analysis, cluster analysis,
SMA, and ARX regression for detrending and time series analysis) to optimize interfero-
metric information and to allow detecting displacements during various levels of analysis.
Throughout the whole analysis, algorithms derived from traditional on-site monitoring are
applied to interferometric data.

Two data (ascending and descending) deriving from the SBAS-DInSAR processing
of CSK images, dating back from 2011 to 2019, were employed to validate the proposed
methodology on a specific building: Palazzo Primoli, a XVI-century building in the his-
torical center of Rome. The achieved outcome demonstrated the effectiveness of the
methodology. At first, the territorial scale deformation of Palazzo Primoli’s surroundings,
and the center of Rome, was defined through mean annual LOS displacement velocity.
The results showed consistency with previous studies on the city of Rome held. Later, the
global deformation of Palazzo Primoli was recognized, stating a potential slight vertical
movement of the structure, that comes along with the urban scale analysis. Last, a diagno-
sis of structural damage was hypothesized through inspection of local displacement time
series: applying clustering, detrending, and regression techniques the presence, temporal
evolution, and intensity of past deformations were detected in three vulnerable areas. Thus,
the application of satellite interferometric data for SHM purposes has exhibited its potential
contribution to assessing the condition and behavior of structures.

Among the different outcomes, the need for heavy post-processing of interferometric
data, as well as deep and focused interpretation of results, were highlighted during the
study and the design of the proposed methodology. The presented guideline still demands
meticulous supervision and qualitative assessment, and further research for automatic
processing must be analyzed. Unlike traditional on-site systems, that monitor specific
parameters with high precision and reliability, satellite monitoring must be carefully read
and interpreted and interferometric data must be properly processed to be connected to the
actual damaged state of structures.
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