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Abstract: Several studies have investigated cartilage degeneration and inflammatory subchondral
bone and synovial membrane changes using magnetic resonance (MR) in osteoarthritis (OA) patients.
Conversely, there is a paucity of data exploring the role of knee ligaments, infrapatellar fat pad (IFP),
and suprapatellar fat pad (SFP) in knee OA compared to post-traumatic cohorts of patients. Therefore,
the aim of this study was to analyze the volumetric and morphometric characteristics of the following
joint tissues: IFP (volume, surface, depth, femoral and tibial arch lengths), SFP (volume, surface,
oblique, antero–posterior, and cranio–caudal lengths), anterior (ACL) and posterior cruciate ligament
(PCL) (volume, surface, and length), and patellar ligament (PL) (volume, surface, arc, depth, and
length). Eighty-nine MR images were collected in the following three groups: (a) 32 patients with
meniscal tears, (b) 29 patients with ACL rupture (ACLR), and (c) 28 patients affected by end-stage OA.
Volume, surface, and length of both ACL and PCL were determined in groups a and c. A statistical
decrease of IFP volume, surface, depth, femoral and tibial arch lengths was found in end-stage OA
compared to patients with meniscal tear (p = 0.002, p = 0.008, p < 0.0001, p = 0.028 and p < 0.001,
respectively) and patients with ACLR (p < 0.0001, p < 0.0001, p = 0.008 and p = 0.011, respectively).
An increment of volume and surface SFP was observed in group b compared to both groups a and
c, while no differences were found in oblique, antero–posterior, and cranio–caudal lengths of SFP
among the groups. No statistical differences were highlighted comparing volume, surface, arc, and
length of PL between the groups, while PL depth was observed to be decreased in end-OA patients
compared with meniscal tear patients (p = 0.023). No statistical differences were observed comparing
ACL and PCL lengths between patients undergoing meniscectomy and TKR. Our study confirms
that IFP MR morphometric characteristics are different between controls and OA, supporting an
important role of IFP in OA pathology and progression in accordance with previously published
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studies. In addition, PL depth changes seem to be associated with OA pathology. Multivariate
analysis confirmed that OA patients had a smaller IFP compared to patients with meniscal tears,
confirming its involvement in OA.

Keywords: osteoarthritis; knee; anterior cruciate ligament rupture; infrapatellar fat pad; suprapatellar
fat pad; meniscal tear; magnetic resonance; posterior cruciate ligament; patellar ligament; segmentation

1. Introduction

Osteoarthritis (OA) is the most common musculoskeletal disorder with an increasing
impact worldwide. It is estimated that OA affects more than 32.5 million adults in the
US and over 350 million adults globally, leading to both pain and disability [1,2]. OA
can damage any joint, but preferentially affects knees, hands, hips, and the spine [2]. The
pathogenesis is still under investigation. However, it is well established that OA affects
not only cartilage but also all the other joint tissues [3–5]. Recently, attention has been
focused on the role of the infrapatellar fat pad (IFP) in OA disease, hypothesizing that IFP
and synovial membrane might act as an anatomo-functional unit [6]. It has been shown
that IFP is a source of adipocytokines, which could contribute to OA inflammation. In
addition, aging has a role in the remodeling of this tissue, and OA IFP appeared to be
a stiffer adipose tissue compared to subcutaneous, visceral adipose tissues and heel fat
pads [7–10]. Previous research has established that OA IFP is more inflamed, fibrotic, and
vascularized compared to IFP isolated from cadavers and patients with anterior ligament
cruciate rupture (ACLR) [11,12]. Moreover, OA IFP adipocytes are larger and numerically
lower than anterior cruciate ligament (ACL) IFP adipocytes and there is a different collagen-
type distribution, which could explain the changes in the biomechanical characteristics
found in OA IFP [12,13]. Interestingly, Eymard et al. reported that the OA suprapatellar fat
pad (SFP), another knee fat pad, was more fibrotic and produced higher levels of cytokines
than subcutaneous adipose tissue in OA patients [8].

While there are numerous studies investigating cartilage, subchondral bone, and
synovial membrane changes in OA patients using magnetic resonance imaging (MR) [14,15],
only a few papers have been published so far using this imaging technique to explore
the role of both IFP and SFP in knee OA. Moreover, there is a lack of studies evaluating
volumetric and morphometric characteristics of ACL, posterior cruciate ligament (PCL),
and patellar ligament (PL), also known as patellar tendon, in OA patients.

In 2015, Cowan et al. observed that IFP volume was higher in patients with patellofemoral
joint OA compared to controls in a small cohort [16]. On the contrary, no differences were
found in IFP volume between OA patients and healthy patients in two studies [17,18].
Cai et al. reported that a greater IFP volume was associated with greater knee cartilage
volume and fewer structural abnormalities, suggesting a protective role of IFP size in
OA [19]. Pan et al. measured the IFP size at the baseline and after 2.6 years of follow-up in
a healthy cohort showing that the IFP size area appeared to have a protective role in the
onset of knee symptoms and cartilage damage in older female adults [20]. Teichtahl et al.
showed as a larger IFP at baseline was associated with reduced knee pain at follow-up
in OA patients [21]. Moreover, a decrease in IFP volume, depth, and femoral and tibial
arch lengths was found in moderate and end-stage OA compared to controls [22]. On the
contrary, another study did not finc significant differences in IFP morphology between
painful versus painless knees of people with unilateral knee pain [23].

Other than IFP size, changes in the intensity of the MR signal of the IFP were inves-
tigated. Han et al. found an association between the hypointense signal and increased
knee cartilage defects, bone marrow lesions as well as knee symptoms in a cross-sectional
study following the participants for at least 2 years [24]. A difference in IFP hypointense
signal was also found between groups with moderate and end-stage OA compared to
controls [22], suggesting a role of fibrosis in OA progression. In addition, Ruhdorfer et al.
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showed a difference in IFP heterogeneity between OA patients and controls [17]. In 2020,
De Vries et al. observed that hyperintense IFP regions show different perfusion in con-
trols, patients with patellofemoral pain, and OA patients, supporting the inflammatory
pathogenesis of OA [25].

Regarding MR findings on SFP, the studies published so far on OA have been focused
on the association between the SFP mass effect (defined as a posterior convex border) and
the presence of anterior knee pain with contradictory results [26,27]. SFP signal intensity
alterations were associated with OA, pain, and bone marrow lesions [27]. Data from the
Osteoarthritis Initiative reported an association between SFP signal intensity alterations
and the progression of patellofemoral OA [28]. While a recent small study showed no
differences in SFP volumetric and morphometric characteristics between patients with
moderate and end-stage OA compared to non-osteoarthritic controls [22].

The aim of this study is to investigate and compare the IFP, SFP, ACL, PCL, and PL
MR volumetric and morphometric characteristics in patients with meniscal tears, ACLR,
and end-stage OA.

2. Materials and Methods
2.1. Study Population

Patients with meniscal tears and patients with end-stage OA were enrolled at the
Orthopaedic Clinic (University-Hospital of Padova, Padova, Italy), while patients with
ACLR were enrolled at the IRCSS Rizzoli Orthopedic Institute (Bologna, Italy). The patients
with meniscal tear were obtained in the framework of a multicenter prospective cohort
study, entitled “The role of the meniscus in OA pathology and symptoms”, funded by the
Italian Ministry of Health between 2012 and 2016 (Project code: GR-2010-2317593) [29].
The study was approved by both the Local Ethical Committee of the University-Hospital
of Padova (protocol code 0005073 and CESC code 4510/AO/18) and IRCS Rizzoli of
Bologna (prot N.0007206) and patients were enrolled after providing written informed
consent. Patients with previous knee surgery or other significant pathologies (such as
cancer and other rheumatologic disorders) were excluded from the study. For each patient,
demographic and clinical data were retrieved.

The patients were divided into three groups: (a) patients with meniscal tears; (b) pa-
tients with ACLR; (c) patients undergoing total knee replacements for end-stage knee OA.

2.2. MR Image Acquisition and Analysis

MR imaging of each patient was collected prior to surgery. Images were obtained by
different magnetic resonance equipment, and different imaging sequences, but all had at
least T1- and T2-weighted sequences, a sequence with fat suppression, and a sequence for
each scanning plane (sagittal, coronal, and axial).

Volumetric Analysis

For volumetric analysis, the T1-weighted sequence on the sagittal plane was chosen,
with the slice thickness of 4 mm, the matrix of 256 × 256 pixel and the number of slices for
each participant to cover the whole knee. Segmentation of the soft tissues were derived
manually using an imaging density segmentation software (ITK-SNAP). The reconstruction
of the soft tissues requires the elaboration of MR images that makes it possible to create
a mask of the tissues and distinguish the different soft tissues based on voxel intensity
(Figure 1). Manual mask-based adaptations were applied where necessary. The software
automatically integrates the segmented structures in a single 3D image, to calculate the
volumes and the surfaces. The lengths were calculated considering a single slice and
defining splines construct along highlighted tissues. The same reader (C.G.F.) defined all
segmentations, with quality control performed by an experienced radiologist (V.M.) to
ensure reliable measurements [30].
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Figure 1. (a) IFP (green area), SFP (yellow area), PCL (cyan area), ACL (fuchsia area), and PL (violet
area) masks on the central sagittal slice and (b) volumes identification on MR of all the tissues
analyzed. IFP: infrapatellar fat pad, SFP: suprapatellar fat pad, ACL: anterior cruciate ligament, PCL:
posterior cruciate ligament, PL: patellar ligament, MR: magnetic resonance.

The IFP volume and surface, the depth, the femoral arch length, and the tibial arch
length of the sagittal slice located in the center of the segmented IFP (central sagittal slice)
were determined (Figure 2a). The depth was calculated as the length of the perpendicular
segment to the patellar tendon passing through the point of the IFP more internally to the
joint. The femoral and tibial arch lengths were calculated as the profile of the IFP adjacent
to the corresponding bone extremities [22].

In the same way, the SFP volume and surface were determined together with the
antero–posterior (A–P), cranio–caudal (C–C), and oblique lengths (OBL) of the sagittal
slice located in the center of the segmented IFP (central sagittal slice) (Figure 2b). The A–P
length was defined as the distance between the posterior point of the pad and the dorsal
contour of the distal quadriceps’ tendon along a line parallel to the patient’s axial plane.
The C–C length was defined as the distance between the most superior and inferior points
of the pad along a line vertical to the patient’s axial plane. The OBL length was defined as
the distance between the most posterior and anterior points of the pad along an obliquely
oriented measurement tangent running parallel to the superior aspect of the base of the
osseous contour of the patella. The SFP arch length was evaluated on the transversal slice
in correspondence with the A–P measure.

The hypointense signal within the IFP was graded on T2-weighted MR images by count-
ing imaging slices with this abnormality as follows: grade 0 = none; grade 1 = 1–2 slices,
grade 2 = 3–5 slices, grade 3 = ≥6 slices, as previously reported [22,24]. The hypointense
scoring was also assessed within the SFP even if this MR grading system was not vali-
dated at this site. Moreover, the presence of edema within the SFP was evaluated, i.e., the
diffuse hyperintense signal within the fat pad. These evaluations were conducted by an
experienced radiologist (VM).
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Figure 2. (a) Definition of IFP depth, femoral and tibial arch lengths in the central slice. (b) Definition
of antero–posterior (A–P), cranio–caudal (C–C), and oblique (OBL) lengths for the SFP in the central
slice, with the definition of SFP arch length on the transversal slice. (c) Definition of PCL and (d) ACL
lengths on two different sagittal slices. (e) Definition of PL depth and length on the central sagittal
slice and (f) PL arch length on the transversal slice. IFP: infrapatellar fat pad, SFP: suprapatellar fat
pad, ACL: anterior cruciate ligament, PCL: posterior cruciate ligament, PL: patellar ligament.

The ACL and PCL volumes, surfaces, and lengths were extracted (Figure 2c,d) in the
meniscal tear group and in the end-stage OA group. ACL could not be measured in the
ACLR group as the ligament was ruptured. The ACL and PCL lengths were defined as the
maximum length, calculated on the sagittal slice where both the attachment sites of each
ligament were visible. The measurements were taken from the midpoint of the ACL and
PCL areas.

The PL volume and surface were determined, while the PL depth and length were
evaluated on the sagittal slice located in the center of the segmented PL (central sagittal
slice) (Figure 2e). The PL length was calculated as the length of the ligament from the lower
pole of the patella to its inferior insertion on the tibia, while the PL depth was calculated as
the length of the perpendicular segment to the PL passing through the midpoint of the PL
length. The PL arch length was evaluated on the transversal slice in correspondence with
the femoral condyles (Figure 2f).
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2.3. Statistical Analysis

The data were reported as the median and interquartile range (IQR). Chi-square
(χ2) test or Fisher’s exact test were performed to compare categorical and dichotomous
data. The distribution of continuous variables was checked with the Shapiro–Wilk test.
One-way ANOVA or Kruskal–Wallis, with Tukey’s post hoc tests, were used to compare
continuous variables depending on the distribution of the data. Spearman’s correlations
were performed to analyze correlations between variables. Linear regression models
were applied to investigate the association between the quantitative variables and some
predictors. The Shapiro–Wilk test was used to determine whether residuals were distributed
normally. In case of non-normal residuals appropriate transformations of the response
variable were modeled. Cumulative link models were used to study the association between
ordinal variables and some predictors.

A p < 0.05 was considered significant. All analyses were performed with SPSS version
25.0 or R [31].

3. Results
3.1. Patient Characteristics

A total of 89 patients were enrolled in this study and divided into three groups. Thirty-
two patients had meniscal tears, 29 ACLR, and 28 end-stage OA. Demographic data of
the patients are reported in Table 1. A difference was observed regarding gender between
the three groups (p < 0.001). Patients with meniscal tear and patients with ACLR were
younger compared to end-stage OA (p < 0.001). Patients with ACLR were younger in
comparison to patients with meniscal tears (p = 0.016). A difference between patients with
ACLR and end-stage OA was observed regarding body mass index (BMI) (p < 0.001). IFP,
SFP, and ligaments morphometric characteristics were investigated and compared among
the three groups.

Table 1. Demographic data of enrolled patients.

Meniscal Tear ACLR End-Stage OA p-Value

Number of
patients 32 29 28

Sex, male
number (%) 20 (62.5) 21 (72.4) 7 (25) <0.001

Age, years,
median (IQR) 48.0 (58.0–35.0) 34.0 (43.5–24.5) 73.5 (78.0–66.5)

a 0.016
b <0.001
c <0.001

BMI, Kg/m2,
median (IQR)

25.1 (29.9–23.8) 25.2 (26.3–22.2) 28.2 (31.6–24.8) c <0.001

ACLR: anterior cruciate ligament rupture, OA: osteoarthritis, IQR: interquartile range, BMI: body mass index.
Data are expressed as median (IQR). a meniscal tear versus ACLR, b meniscal tear versus end-stage OA, c ACLR
versus end-stage OA.

3.2. IFP and SFP Morphometric Characteristics

IFP volume, surface, depth, and femoral and tibial arch lengths were measured and
compared between the three groups of patients (Figure 3, Table 2). IFP volume, surface,
depth, femoral and tibial arch lengths were higher in patients with meniscal tears compared
to end-stage OA patients (p = 0.002, p = 0.008, p < 0.0001, p = 0.028, and p = 0.0005,
respectively). IFP volume, surface, depth, femoral and tibial arch lengths were higher also
in patients with ACLR compared to end-stage OA patients (p < 0.0001, p < 0.0001, p < 0.008,
and p = 0.011, respectively). Interestingly, patients with ACLR exhibited higher IFP volume,
surface, depth, and femoral and tibial arch lengths compared to patients with meniscal
tears, even if no statistical difference was observed.
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Figure 3. IFP morphometric characteristics in patients with meniscal tear, ACLR, and end-stage OA.
(a) IFP volume, (b) IFP surface, (c) IFP depth, (d) IFP femoral arch, and (e) IFP tibial arch. Data are
expressed as median and interquartile range. IFP: infrapatellar fat pad. ACLR: anterior ligament
cruciate rupture.

Table 2. IFP and SFP MR morphometric characteristics in patients with meniscal tear, ACLR, and
end-stage OA.

Meniscal Tear ACLR End-Stage OA p-Value

IFP volume (mm3) 32113 (35460–23943) 35073 (38249–28536) 21552 (25111–18017)

a 0.250
b 0.002

c <0.0001

IFP surface (mm2) 7550 (8366–6319) 8495 (9393–7062) 5906 (6549–5405)

a 0.074
b 0.008

c <0.0001

IFP depth (mm) 29.2 (33.4–25.7) 31.3 (35.1–29.0) 23.2 (26.8–20.8)

a 0.508
b <0.0001
c <0.0001

IFP Femoral arch length (mm) 30.9 (34.4–26.7) 32.0 (34.2–29.2) 25.7 (30.1–19.2)

a 0.999
b 0.028
c 0.008

IFP Tibial arch length (mm) 31.2 (36.4–28.6) 32.1 (34.4–26.9) 28.3 (30.0–20.5)

a 0.999
b <0.001
c 0.011

SFP volume (mm3) 1264.2 (1454.0–842.2) 1979.3 (2401.5–1203.9) 1021.6 (1480.0–784.0)

a 0.001
b 0.999

c <0.0001

SFP surface (mm2) 903.3 (1021.3–754.8) 1236.3 (1395.1–890.1) 782.0 (1066.1–608.8)

a 0.001
b 0.999

c <0.0001
SFP OBL (mm) 10.1 (11.8–9.3) 9.2 (10.5–8.4) 9.5 (11.0–9.1) 0.113
SFP C–C (mm) 16.3 (18.4–13.9) 16.7 (18.6–14.4) 15.6 (18.0–14.3) 0.837
SFP A–P (mm) 8.4 (9.3–6.9) 8.3 (9.1–6.8) 8.5 (9.2–7.6) 0.689
SFP arch (mm) 27.4 (30.4–27.4) 27.7 (30.4–23.1) 24.6 (30.4–21.9) 0.380

IFP: infrapatellar fat pad, SFP: suprapatellar fat pad, MR: magnetic resonance, OA: osteoarthritis, OBL: oblique
length. C–C: cranio–caudal length. A–P: antero–posterior length. Data are expressed as median (interquartile
range). a meniscal tear vs. ACLR, b meniscal tear vs. end-stage OA, c ACLR vs. end-stage OA.

The evaluation of SFP volume, surface, OBL, C–C, A–P, and arch lengths in the
three groups (Figure 4) showed that SFP volume and surface were higher in ACLR patients
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compared to end-stage OA patients (p < 0.0001 and p < 0.0001, respectively). SFP volume
and surface were smaller in patients with meniscal tear compared to patients with ACLR
(p = 0.001 and p = 0.001, respectively). No other differences were highlighted.

Figure 4. SFP morphometric characteristics in patients with meniscal tear, ACLR, and end-stage
OA. (a) SFP volume, (b) SFP surface, (c) SFP OBL, (d) SFP C–C (e) SFP A–P, and (f) SFP arch. Data
are expressed as median (interquartile range). SFP: suprapatellar fat pad. ACLR: anterior ligament
cruciate rupture. SFP= suprapatellar fat pad. OBL: oblique length. C–C: cranio–caudal length. A–P:
antero–posterior length.

IFP and SFP hypointense signals were evaluated in the three groups (Table 3). An
increase in IFP hypointense signal was observed in end-stage OA patients compared to
both ACLR and meniscal tear patients (p < 0.0001). The SFP hypointense signal decreased
in ACLR patients compared to meniscal tear patients (p = 0.002), while the signal increased
in end-stage OA compared to ACLR patients (p < 0.005). No differences were reported
comparing the presence of SFP edema between the three groups (p = 0.385).

Table 3. IFP and SFP MR hypointense signal grading in meniscal tear, ACLR, and end-stage
OA patients.

Meniscal Tear (n = 32) ACLR (n = 29) End-Stage OA (n = 28) p-Value

IFP <0.0001
Grade 0 19 (59.4%) 15 (51.7%) 1 (3.6%) a 0.101
Grade 1 12 (37.5%) 7 (24.1%) 8 (28.6%) b <0.0001
Grade 2 1 (3.1%) 6 (20.7%) 10 (20.7%) c <0.0001
Grade 3 0 1 (3.4%) 9 (32.1%)

Meniscal tear (n = 32) ACLR (n = 26) End-stage OA (n = 27) p-value

SFP <0.012
Grade 0 8 (25%) 13 (50%) 8 (28.6%) a 0.002
Grade 1 12 (37.5%) 13 (50%) 10 (37%) b 0.910
Grade 2 12 (37.5%) 0 9 (32.1%) c 0.005
Grade 3 0 0 0

Meniscal tear (n = 32) ACLR (n = 24) End-stage OA (n = 26) p-value

SFP edema 0.385

Yes 12 (37.5%) 5 (20.8%) 9 (34.6%)

No 20 (62.5%) 19 (79.2%) 17 (65.4%)

Data are reported as the number of patients (%). a meniscal tear vs. ACLR, b meniscal tear vs. end-stage OA,
c ACLR vs. end-stage OA.
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3.3. ACL, PCL, and PL Morphometric Characteristics

ACL volume, surface, and length were evaluated in patients with meniscal tears
and end-stage OA. No differences were observed between the two groups (Figure 5 and
Supplementary Table S1). PCL volume, surface, and length were measured in all groups
without finding any differences.

Figure 5. ACL and PCL morphometric characteristics in patients with meniscal tear, ACLR, and
end-stage OA. (a) ACL volume, (b) ACL surface, (c) ACL length, (d) PCL volume, (e) PCL surface,
and (f) PCL length. Data are expressed as median (interquartile range). ACL: anterior cruciate
ligament. PCL: posterior cruciate ligament. ACLR: anterior ligament cruciate rupture.

PL volume, surface, length, depth, and arc were measured in all the groups showing
no differences with the only exception being PL depth (Figure 6, Table 4). PL depth was
higher in patients with meniscal tear compared to end-stage OA patients (p = 0.023).

Figure 6. PL morphometric characteristics in patients with meniscal tear, ACLR, and end-stage OA.
(a) PL volume, (b) PL surface, (c) PL length, (d) PL depth, and (e) PL arc. Data are expressed as
median (interquartile range). PL: patellar ligament. ACLR: anterior ligament cruciate rupture.
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Table 4. PL characteristics in patients with meniscal tear, ACLR, and end-stage OA.

Meniscal Tear ACLR End-Stage OA p-Value

PL volume (mm3) 4476 (5242–3659) 5172 (5913–4351) 4302 (5175–3735) 0.076
PL surface (mm2) 3139 (3973–2856) 3494 (3764–3093) 3287 (3704–2821) 0.716
PL length (mm) 48.8 (53.1–45.8) 50.8 (54.4–46.7) 47.6 (51.0–44.6) 0.108

PL depth (mm) 4.4 (4.7–3.3) 4.2 (4.4–3.8) 3.7 (4.1–3.5)

a 0.999
b 0.023
c 0.153

PL arch (mm) 30.3 (36.9–28.6) 31.2 (33.1–28.2) 30.8 (34.8–27.6) 0.962
PL: patellar ligament, ACLR: anterior ligament cruciate rupture. OA: osteoarthritis. Data are expressed as median
(interquartile range). a meniscal tear vs. ACLR, b meniscal tear vs. end-stage OA, c ACLR vs. end-stage OA.

3.4. Correlation Matrices

The relationships between the variables (age, BMI, and IFP, SFP, ACL, PCL, and PL
lengths) were studied building a correlation matrix for all patients (Figure 7a) and each
subgroup of patients (Figure 7b–d).

Figure 7. Spearman correlations among the variables. (a) all patients, (b) meniscal tear patients,
(c) ACLR patients, and (d) end-stage OA patients. Negative correlations are displayed in red color,
while positive correlations are in blue. The color intensity and the size of the circle are proportional
to the correlation coefficients. ACLR: anterior ligament cruciate rupture.

Age negatively correlated with IFP volume, IFP surface, IFP depth, IFP femoral, tibial
arch, and PL depth considering all the patients (r = −0.515, p < 0.0001; r = −0.492, p < 0.0001;
r = −0.490, p < 0.0001; r = −0.262, p = 0.015; r = −0.301, p = 0.005; r = −0.363, p = 0.001,
respectively). However, when the patients were analyzed separately, the correlations with
age were not retained. BMI was positively correlated with SFP OBL (r = 0.268, p = 0.015).
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Strong positive correlations were found between IFP volume and PL volume and PL surface
(r = 0.674, p < 0.0001; r = 0.557, p < 0.0001, respectively).

3.5. Age, BMI, and Gender Influence

Since there is a difference between the three groups regarding gender, age, and BMI
and all of these are risk factors for OA, linear models were applied to control their influence
on IFP and SFP measurements (Table 5). The volume and surface of SFP did not fit a normal
distribution and thus, data were log-transformed before being modeled.

Table 5. General linear models.

Age
(p-Value)

Gender
(p-Value)

BMI
(p-Value)

ACLR vs.
Meniscal Tear

(p-Value)

End-Stage OA vs.
Meniscal Tear

(p-Value)

IFP volume 0.579 <0.0001 0.066 0.010 0.018
IFP surface 0.549 <0.0001 0.028 0.002 0.045
IFP depth 0.413 <0.0001 0.907 0.322 0.004

IFP Femoral arch
length 0.145 0.0012 0.540 0.457 0.059

IFP Tibial arch
length 0.217 <0.001 0.621 0.341 <0.001

SFP volume 0.243 0.025 0.025 <0.001 0.288
SFP surface 0.279 0.018 0.035 <0.001 0.196

IFP hypotense
signal 0.662 0.011 0.590 0.225 <0.001

SFP hypotense
signal 0.319 0.609 0.832 <0.005 0.598

PL depth 0.082 <0.001 0.229 0.137 0.659

Age did not affect the variables, while gender was always significant with the only
exception being the SFP hypointense signal. BMI was significant only regarding IFP surface,
SFP volume, and surface.

Considering the possible confounders, end-stage OA patients exhibited significantly
smaller IFP volume, IFP surface, IFP depth, IF tibial arch length, and IFP hypointense signal
compared to patients with meniscal tears.

ACLR patients had a significantly higher volume and surface of both IFP and SFP and
lower SFP hypointense signal compared to patients with meniscal tears. The full models
are reported in the Supplementary Files (Tables S2–S11).

4. Discussion

In this study, IFP, SFP, ACL, PCL, and PL MR volumetric and morphometric character-
istics in patients with meniscal tears, patients with ACLR, and patients with end-stage OA
were compared.

In this work, IFP and SFP geometries were measured by drawing tissue contours
and the volumes were computed by a software program, adopting the same procedure
as other authors [19,22,32]. Cheruvu et al. determined IFP volume using MR images by
using a 3d Reconstruction software, ellipsoidal approximation, and a MATLAB code [32].
Their results showed that there was no significant difference between methods, validating
all these procedures to measure the IFP volume [32]. We observed a decrease in IFP
volume, surface, depth, and femoral and tibial arch lengths in end-stage OA compared to
patients with meniscal tears, confirming the data of our previous study [22]. Moreover,
a difference was found also comparing all the IFP lengths of ACLR patients with end-
stage OA patients supporting the hypothesis that the IFP volumetric and morphometric
characteristics undergoing modifications in patients affected by OA. An increase in the
IFP hypointense signal was observed in end-stage OA patients compared to meniscal tear
and ACLR patients, confirming that fibrotic IFP changes are important features of OA
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pathogenesis [12]. Regarding SFP, we observed a difference in SFP volume and surface
between patients with ACLR and patients with meniscal tears as well as between patients
with ACLR and end-stage OA patients. On the contrary, we did not find differences
between patients with meniscal tears and end-stage OA patients suggesting that this fat
pad is less involved in OA than IFP, in agreement with our previous study, probably due
to the different locations in the knee and to different involvement in joint kinetics [22]. In
any case, an increase in SFP hypointense signal was recorded comparing meniscal tear
with ACLR patients and ACLR with end-stage OA patients, while no differences were
highlighted regarding SFP edema. ACL and PCL morphometric characteristics in patients
with meniscal tear, ACLR, and end-stage OA were comparable with the only exception of
an increase of PL depth in meniscal tear patients compared to end-stage OA patients.

In our study, we showed that the IFP geometry of ACLR patients tends to be higher
compared to those of meniscal tear patients, even if no statistical differences were high-
lighted. These results are in line with those of Cheruvu et al. reporting that patients with
torn ACLs had significantly larger fat pads compared to a group of age, gender, and sport
activity matched controls with intact ligaments [32]. Abnormalities of IFP, such as focal and
diffuse edema, tears, scars, and synovial proliferation, are reported to be more common in
patients with ACLR than in healthy subjects [33]. The main functional role of the ACL is
to provide stability against anterior tibial translation and internal rotation. Patients with
ACLR exhibit anterior translation of the tibia relative to the femur [34]. It is presumable
that the intact ACL maintains confined the IFP in its localization and upon rupture, the
adipose tissue is able to remodel itself. Moreover, the mechanical transmission of loads due
to ligament injury causes a change of stress distribution in the tissues, with a consequent
modification of its morphometry. Further studies are needed to determine the effects of
ACLR on IFP.

Importantly, multivariate analysis confirmed a difference in IFP geometry (except for
IFP femoral arch length) between patients with meniscal tears and end-stage OA patients
considering possible confounders (age, BMI, and gender). A difference in IFP volume and
IFP surface was also found between patients with meniscal tears and patients with ACLR.
Interestingly, we found that gender influenced all IFP measures. This is in agreement with
the findings of Diepold et al. who observed an increase of IFP volume in healthy men
compared to healthy women [35].

SFP general linear models confirmed a difference only when comparing patients with
ACLR and patients with meniscal tears considering possible confounders (age, BMI, and
gender). Thus, it can be hypothesized that this fat pad might not be involved in OA
pathology as we have previously described [22]. It should be noted that in literature there
is a paucity of MR-based studies on SFP. Schwaiger et al. suggested an association between
SPF abnormalities and the progression of patellofemoral OA [28]. However, Schwaiger
evaluated the SFP signal alteration and not SFP geometry. An SFP mass effect was described
in literature as an SFP expansion with a mass effect on the suprapatellar joint recess, defined
by the presence of a convex posterior fat-pad border on the sagittal intermediate-weighted
images [26]. Tsavalas et al. reported no correlations between the presence of SFP mass
effect and patellofemoral malalignment, or patellofemoral joint OA, or pain [26]. On the
contrary, Wang et al. observed that SFP mass effect and/or signal intensity alterations are
deleteriously associated with knee pain and radiographic OA [27].

SFP abnormalities as well as IFP abnormalities were studied by Heilmeier et al. in a
small cohort of patients with ACLR [36]. While they found several correlations between
IFP abnormalities and inflammatory cytokines and metalloproteinases in synovial fluid,
SFP abnormalities correlated only with interleukin-6 [36]. However, the authors did not
evaluate the volume and surface of SFP.

In our study, SFP does not appear to be involved in OA while it may be affected by
the mechanical change induced in the knee because of ACLR.

Several studies have been published on stem cells derived from IFP (for a review
see [37]). However, it has been suggested that OA IFP-derived stem cells are primed by
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the pathological environment and thus these cells seem to exert an incomplete protective
activity from OA inflammation [38]. Since SFP seems not to be involved in OA, SFP-derived
stem cells are a promising possible source for cell therapeutic solutions to joint degeneration.
This idea is supported by the study of Ignacio Muñoz-Criado et al. [39]. They showed that
adipose stem cells derived from SFP represent a promising source for cartilage regeneration
by promoting efficient endogenous chondrogenesis in a mouse model of severe OA [39].

No differences were observed in ACL and PCL measurements between the groups.
Taneja et al. studied PCL morphometry and concluded that subjects with ACLR present
larger PCL dimensions compared to controls [40]. Similarly, Jamison et al. analyzed left-
and right-sided ACL volumes in control subjects [41]. All these studies measured ACL
and PCL geometry from coronal and sagittal slices of MR, using a different procedure
compared to our study. Indeed, in the present work ACL and PCL were selected considering
only sagittal slices of MR obtaining smaller ACL and PCL volumes in all three groups,
probably due to the different methodology. Other authors evaluated the double bundle
anatomy of the ACL by measurement of consecutive coronal images using 3D analysis
software [42,43]. Fayad et al. studied gender differences in ACL and PCL volumes and
showed that gender differences in ACL volume are present, but may be accounted for
height differences between males and females [42]. The mean ACL length reported by Van
Zyl et al. was 40.6 mm in subjects with no apparent knee pathology, surgery, or trauma [44].
In our study, we observed a mean ACL length of 35.2 mm for patients with meniscal tears
and 33.9 for end-stage OA patients). This might be due to the degenerative changes that all
joint tissues, including the ACL, undergo during the OA process.

Regarding PCL, which is a knee fundamental stabilizer [45], no differences were
observed in terms of volume and length. Ranmuthu et al. found significant differences
in the distribution of T1rho and T2 values of the cruciate ligaments according to the sub-
region between control and OA [46]. Particularly, in OA both T1rho and T2 values were
significantly higher in the distal ACL when compared to the rest of the ligament, while the
variation of T2 values within the PCL was lower in OA knees [46]. Thus, it is likely that
OA determines changes in ligament composition heterogeneously within the ligament as
demonstrated by histological analysis [47], but does not alter the volume and lengths. To
the best of our knowledge, this study is the first report analyzing PCL volume and lengths.

Few studies evaluated the PL length reporting a range of 32–61 mm in healthy indi-
viduals [48,49] in line with the findings of this study. The PL length of OA patients was
coherent with that reported by Lemon et al. who compared the PL length changes between
patients who had their IFP either preserved or excised after total knee replacement [50].
Yoo et al. described the geometry of PL measured on knee MR for not OA patients, ana-
lyzing the proximal and distal part of PL. The PL depth was calculated on axial images
and ranged from 3.2 to 5.0 mm, for the proximal and the distal parts, respectively. On the
contrary, we evaluate the PL depth in the midpoint of the PL length on the sagittal image,
measuring an intermediate value. Yoo et al. calculated the PL length as the minimum
distance on PL between rotula and tibial insertions [49]. The PL longitudinal length was
40.2 mm [49], while in our study the values for control knees were higher, probably due
to the different endpoints chosen for the evaluation of the distance. Wang et al. studied
the geometric data of healthy PL and ACL by MR and analyzed the correlation of the two
with body weight, height, and gender [51]. They found that the lengths of the PL and ACL
in males were significantly greater than those in females [51]. Similarly, to our study, the
length of PL was calculated in the ACL and non-ACL injury groups by Kang et al., finding
not significant differences [52]. The biomechanical equilibrium of the joints is strongly
affected by the presence of trauma or pathologies. In patients with meniscal tear, ACLR and
end-stage OA, the biomechanics of the knee is modified and this alteration could affect both
spaces and forces, causing both IFP and PL to change. This is evidenced by the positive
correlations found between IFP and PL volumes in the three groups. To the best of our
knowledge, no data about PL surface and volume are reported in the literature.
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The main limitations of this study are the small sample size of patients analyzed and
the different facilities used for collecting MR. However, it was possible to perform multi-
variate analysis, which enabled us to evaluate the influence of demographic confounders on
IFP, SFP, and ligament measurements, strengthening the results. Finally, another limitation
is the lack of MR collected from a control group of healthy subjects with an active lifestyle
and without history of injuries/trauma involving the knees.

5. Conclusions

In conclusion, a decrease in IFP volume, surface, depth, femoral and tibial arch lengths,
and an increase of the IFP hypointense signal was observed in end-stage OA patients
compared to meniscal tear and ACLR patients. These data point out that IFP volumetric
and morphometric characteristics are modified by OA disease and that fibrotic changes are
important features of OA pathology. No differences between patients with meniscal tears
or ACLR and end-stage OA patients were found regarding SFP, suggesting that probably
this fat pad is less involved in OA than IFP. Regarding ACL, a decrease in PL depth in
end-stage OA patients was observed.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biomedicines10061369/s1, Table S1: ACL and PCL MR morpho-
metric characteristics in patients with meniscal tears, ACLR, and end-stage OA, Table S2. Multivariate
analysis of IFP volume, Table S3. Multivariate analysis of IFP surface, Table S4. Multivariate analysis
of IFP depth, Table S5. Multivariate analysis of IFP femoral arch length, Table S6. Multivariate
analysis of IFP tibial arch length, Table S7. Multivariate analysis of SFP volume, Table S8. Multi-
variate analysis of SFP surface, Table S9. Multivariate analysis of IFP hypointense signal, Table S10.
Multivariate analysis of SFP hypointense signal and Table S11. Multivariate analysis of PL depth.
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