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FAST ITERATIVE SOLVER FOR THE ALL-AT-ONCE
RUNGE-KUTTA DISCRETIZATION

SANTOLO LEVEQUE*, LUCA BERGAMASCHI', ANGELES MARTINEZ!, AND JOHN W.
PEARSONS

Abstract. In this article, we derive fast and robust preconditioned iterative methods for the
all-at-once linear systems arising upon discretization of time-dependent PDEs. The discretization
we employ is based on a Runge-Kutta method in time, for which the development of robust solvers
is an emerging research area in the literature of numerical methods for time-dependent PDEs. By
making use of classical theory of block matrices, one is able to derive a preconditioner for the systems
considered. An approximate inverse of the preconditioner so derived consists in a fixed number of
linear solves for the system of the stages of the method. We thus propose a preconditioner for
the latter system based on a singular value decomposition (SVD) of the (real) Runge-Kutta matrix
Ark = USVT. Supposing Ark is invertible, we prove that the spectrum of the system for the stages
preconditioned by our SVD-based preconditioner is contained within the right-half of the unit circle,
under suitable assumptions on the matrix UV (which is well defined due to the polar decomposition
of Agrk). We show the numerical efficiency of our SVD-based preconditioner by solving the system
of the stages arising from the discretization of the heat equation and the Stokes equations, with
sequential time-stepping. Finally, we provide numerical results of the all-at-once approach for both
problems.
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1. Introduction. Time-dependent partial differential equations (PDEs) arise
very often in the sciences, from mechanics to thermodynamics, from biology to eco-
nomics, from engineering to chemistry, just to name a few. In fact, many physical
processes can be described by the relation of some physical quantities using a differen-
tial operator. As problems involving (either steady or unsteady) PDEs usually lack a
closed form solution, numerical methods are employed in order to find an approxima-
tion of it. These methods are based on discretizations of the quantities involved. For
time-dependent PDEs, the discretization has also to take into account the time deriva-
tive. Classical numerical approaches employed to solve time-dependent PDEs result
in a sequence of linear systems to be solved sequentially, mimicking the evolution in
time of the physical quantities involved.

In the last few decades, many researchers have devoted their effort to devising
parallel-in-time methods for the numerical solution of time-dependent PDEs, leading
to the development of the Parareal [20], the Parallel Full Approximation Scheme in
Space and Time (PFASST) [6], and the Multigrid Reduction in Time (MGRIT) [7, 8]
algorithms, for example. As opposed to the classical approach, for which in order to
obtain an approximation of the solution of an initial boundary value problem at a time
t one has to find an approximation of the solution at all the previous times, parallel-in-
time methods approximate the solution of the problem for all times concurrently. This
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in turns allows one to speed-up the convergence of the numerical solver by running
the code on parallel architectures.

Among all the parallel-in-time approaches for solving time-dependent PDEs, in-
creasing consideration has been given to the one introduced by Maday and Rgnquist
in 2008 [21], see, for example, [10, 23]. This approach is based on a diagonalization
(ParaDiag) of the all-at-once linear system arising upon the discretization of the dif-
ferential operator. The diagonalization of the all-at-once system can be performed in
two ways. First, by employing a non-constant time-step, for instance by employing a
geometrically increasing sequence 71, 7o, ..., Ty, as in [2I], one can prove that the dis-
cretized system is diagonalizable [9, [I0]. Second, one can employ a constant time-step
and approximate the block-Toeplitz matrix arising upon discretization by employing,
for instance, a circulant approximation [23]. Either way, the diagonalization of the
all-at-once linear system under examination allows one to devise a preconditioner that
can be run in parallel, obtaining thus a substantial speed-up.

Despite the efficiency and robustness of the ParaDiag preconditioner applied to
the all-at-once discretization of the time-dependent PDE studied, this approach has a
drawback. In fact, the discretization employed is based on linear multistep methods.
It is well known that this class of methods are (in general) not A-stable, a property
that allows one to choose an arbitrary time-step for the integration. Specifically,
an A-stable linear multistep method cannot have order of convergence greater than
two, as stated by the second Dahlquist barrier, see for example [I8, Theorem 6.6]. In
contrast, it is well known that one can devise an A-stable (implicit) Runge-Kutta
method of any given order. Further, implicit Runge-Kutta methods have better
stability properties than the linear multistep methods, (e.g., L- or B-stability, see
for instance [4} [12] [18]). For these reasons, in this work we present a preconditioner
for the all-at-once linear system arising when a Runge-Kutta method is employed
for the time discretization. To the best of the authors’ knowledge, this is the first
attempt that fully focuses on deriving such a preconditioner for the all-at-once Runge—
Kutta discretization. In this regard, we would like to mention the work [I7], where the
authors derived two solvers for the linear systems arising from an all-at-once approach
of space-time discretization of time-dependent PDEs. The first solver is based on the
observation that the numerical solution can be written as the sum of the solution of
a system involving an a-circulant matrix with the solution of a Sylvester equations
with a right-hand side of low rank. The second approach is based on an interpolation
strategy: the authors observe that the numerical solution can be approximated (under
suitable assumptions) by a linear combination of the solutions of systems involving
a-circulant matrices, where « is the jth root of unity, for some integer j. Although
the authors mainly focused on multistep methods, they adapted the two strategies in
order to tackle also the all-at-once systems obtained when employing a Runge-Kutta
method in time. We would like to note that the preconditioner derived in our work
does not exploit the block-Toeplitz structure of the system arising upon discretization,
therefore it could be employed also with a non-constant time-step.

We would like to mention that, despite the fact that one can obtain better stability
properties when employing Runge-Kutta methods, this comes to a price. In fact, this
class of method results in very large linear systems with a very complex structure:
in order to derive an approximation of the solution at a time ¢, one has to solve a
linear system for the stages of the discretization. Of late, a great effort has been
devoted to devising preconditioners for the numerical solution for the stages of a
Runge-Kutta method, see for example [T} 2, 22| 27, B0, [31]. As we will show below,
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the preconditioner for the all-at-once Runge-Kutta discretization results in a block-
diagonal solve for all the stages of all the time-steps, and a Schur complement whose
inverse can be applied by solving again for the systems for the stages of the method.
Since the most expensive task is to (approximately) invert the system for the stages,
in this work we also introduce a new block-preconditioner for the stage solver. This
preconditioner is based on an SVD of the Runge-Kutta coefficients matrix, and has
many advantages as we will describe below. Alternatively, one can also employ the
strategies described in [1 2], 22] [30], for example.

This paper is structured as follows. In Section [2] we introduce Runge—Kutta
methods and present the all-at-once system obtained upon discretization of a time-
dependent differential equation by employing this class of methods in time. Then, we
give specific details of the all-at-once system for the discretization of the heat equation
and the Stokes equations. In Section [3] we present the proposed preconditioner for
the all-at-once system together with the approximation of the system of the stages of
the Runge-Kutta method, for all the problems considered in this work. In Section [4]
we show the robustness of the proposed preconditioning strategy. Finally, conclusions
and future work are given in Section [f]

2. Runge—Kutta methods. In this section, we present the linear systems aris-
ing upon discretization when employing a Runge-Kutta method. In what follows, I,
represents the identity matrix of dimension m.

For simplicity, we integrate the ordinary differential equation v'(¢t) = f(v(t),)
between 0 and a final time ¢ty > 0, given the initial condition v(0) = wvy. After
dividing the time interval [0,¢s] into n; subintervals with constant time-step 7, the
discretization of an s-stages Runge-Kutta method applied to v'(t) = f(v(¢),t) reads
as follows:

s
vn+1:vn+7—§ biki,na n=0,...,n — 1,
i=1

where the stages k; ,, are given byﬂ

kin :f Un+72ai,jkj,natn+ci7- s 1=1,...,s, (21)

)

J=1

with ¢, = n7. The Runge-Kutta method is uniquely defined by the coefficients a; ;,
the weights b;, and the nodes ¢;, for 4,7 = 1,...,s. For this reason, an s-stages
Runge-Kutta method is defined by the following Butcher tableau:

C1 | a1,1 c.. Q1s
Cs | sl -.. Qss
‘ bl bs

or in a more compact form

crK | ARk
bri

INote that the stages kin for i =1,...,s represent an approximation of the time derivative of
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A Runge-Kutta method is said to be explicit if a; ; = 0 when ¢ < j, otherwise it is
called implicit. Note that for implicit Runge-Kutta method the stages are obtained
by solving the non-linear equations (2.1f).

In the following, we will employ Runge—Kutta methods as the time discretization
for the time-dependent differential equations considered in this work. In particular,
we will focus here on the Stokes equations. Since this system of equations is properly
a differential-algebraic equation (DAE), we cannot employ the Runge-Kutta method
as we have described above. In order to fix the notations, given a subset Q C R,
with d = 1,2,3, and a final time ¢; > 0, we consider the following DAE:

%—lev:f(x,t) in Q x (0,t5),
Dov = g(x,t) in Q x (0,t5),

given some suitable initial and boundary conditions. Here, D; and D5 are differential
operators (only) in space. In addition, the variable v may be a vector, and contains
all the physical variables described by the DAE (e.g., the temperature for the heat
equation, or the velocity of the fluid and the kinematic pressure for the Stokes equa-
tions). In what follows, we will suppose that the differential operators D; and Dy
are linear and time-independent. In addition, we will suppose that only Dirichlet
boundary conditions are imposed.

Given suitable discretizations D, and D4 of D; and D respectively, after dividing
the time interval [0, ¢;] into n, subintervals with constant time-step 7, a Runge-Kutta
discretization reads as follows:

MV, =Mvy, + 7MY bikin, n=0,...,n— 1, (2.2)

i=1

with a suitable discretization of the initial and boundary conditions. Here, v,, repre-
sents the discretization of v at time ¢,,. The vectors k; ,, are defined as follows:

Mki,n+Dlvn+TDlzai,jkj,n :fi,na 7,: 1,...,8,

. (2.3)
Dovy +7D2 Y ai jKjn = im, i=1,...,s,
j=1
forn =0,...,n: — 1, where f; ,, and g;,, are discretizations of the functions f and g

at the time t,, + ¢;7, respectively. Finally, the matrix M is a suitable discretization
of the identity operator. We recall that the stages k;, for ¢ = 1,...,s represent
an approximation of g—"t’; therefore, the (Dirichlet) boundary conditions on k; , are
given by the time derivatives of the corresponding boundary conditions on v. Note
that, if we relax the assumption of D; and D5 being time-independent, would
be properly written as follows:

s
Mki,n + Dgn,z)v’n + TDgnﬂ) Z ai,jkj,n = fi,n7 7, = 1, -

j=1
S
Dg"’l)vn + TD§"”) Z a; jKjn = Bin, i=1,...,s,

j=1

ng) and D;n’i) being the discretizations of the differential operators D; and Dy at
time t,, + ¢;7, respectively, for n =0,...,n; — 1.
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In compact form, we can rewrite (2.3)) as follows:

(I @ M)k, + (e ® D1)v,, 4+ 7(Ark ® D1)k, = £,
(e ® Dy)v, + T(Ark ® Do)k, = g,,

where e € R? is the column vector of all ones. Here, we set k,, = [kIn, ce kLL]T,
£, =108, ...£,]", and g, = [g] ..., gl ,]". Further, we may rewrite (2.2) as

Mv, 1 = Mv,, + 7(bgi ® M)k,,.
We are now able to write the all-at-once system for the Runge-Kutta discretiza-

tion in time. By setting v = [v{ ,... ,V;';JT and k = [kJ,..., k! ], we can rewrite

ng—1
(2.2)—(2.3) in matrix form as

[52 ‘IélHH:b. (2.4)

M 0
_ bl @ M
o M ’ U= RK ,
—M M Thhx ® M
e®D; (2:5)
e®D2 A
Is @ M+ 1Ak ® Dy
Uy = - =1,
2 . ®D 0 9 @ t® TARK®D2
€ 1
e®D2 0

Note that © is block-diagonal.
In what follows, we will present the all-at-once system (2.4)) for the specific cases
of the heat equation and the Stokes equations.

2.1. Heat equation. Given a domain Q C R?, with d = 1,2, 3, and a final time
ty > 0, we consider the following heat equation:

%*Vzv:f(x,t) in Q x (0,%y),
v(x,t) = g(x,1t) on 082 x (0,¢), (2.6)
v(x,0) = vp(x) in Q,

where the functions f and g are known. In addition, the initial condition v (x) is also
given.

After dividing the time interval [0,t;] into n; subintervals, the discretization of
by employing a Runge—Kutta method reads as follows:

S
Mv, 1= Mv, + TMZ bikin, n=0,...,n;—1, (2.7)
=1
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with Mvy = Mv° a suitable discretization of the initial condition. The stages Kin
are defined as follows:

Mki,n+Kvn+TKZ;:1ai,jkj,n:fi,n7 izl,...,s, ’I’LZO,...,nt—l, (28)

where
(fz,n)m :/ f(xatn‘i’ci'r)d)m @, i=1,...,s.
Q

Here, K and M are the stiffness and mass matrix respectively. For a Dirichlet
problem, both matrices are symmetric positive definite (s.p.d.). As we mentioned
above, the boundary conditions on the stages k; ,, are given by the time derivatives
of the corresponding boundary conditions on v. Specifically, we have

9
(ki,n)|ag = a*?(-,tn + CiT)-

By adopting an all-at-once approach, we can rewrite the system (2.7)—(2.8) as
follows:
Mvy = MvO°,
MvnH—Mvn—TMZj.:lbjkj’n:Q n=0,...,n; —1,
Mk; , + Kv, +TKZ;:1 a;jkjn = fin, i=1,...,5,n=0,...,n; — 1.

In matrix form, we have

[ vo ] [ vO
V1 b1
> T : :
[ 7 © } Vo, | =1 ba |, (2.9)
%2,_/ kO f0
A . .
L knt—l i L fnt—l i
where the vectors b,,, n = 1,...,n;, contain information about the boundary condi-

tions. The blocks of the matrix A are given by

M 0
_ b @ M
@: M ) \:[11:_ R . 9
_M M Thyk @ M
e® K
Uy— , =1, ®(;®M+TArk ® K).
e®K 0

2.2. Stokes equations. Given a domain Q C R%, with d = 2,3, and a final time
ty > 0, we consider the following Stokes equations:

in  x (Oﬂff),
=0 in Q x (0,%y),

) on 08 x (0,ty),
7(x,0) = 0p(x) in Q.

SIS
|
<

N
S
_|_
<
[~
I
gl
kel
=

(2.10)
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As above, the functions f and g as well as the initial condition 7i(x) are known.
After dividing the time interval [0,ty] into n; subintervals, the discretization of
(2.10) by a Runge-Kutta method reads as follows:
MyVip1 = Myvy, +7M, Y0 bik? n=0,...,n; — 1,

i,n

A 2.11
Mypnt1 = Mypy, +7M, >0, bikf’n, n=20,...,n; — 1, ( )

with M,vo = M,v° a suitable discretization of the initial condition, and M,po =
M,p° a suitable approximation of the pressure p at time ¢t = 0. The stages ki, and
kY, are defined as follows:

) s e T T s 1P — f.
Mk}, + Kovn + 7Ky 0 aigKy, + B pp+ 7B 30 ai ki, =i, (2.12)

Bv, +71B ijl a; kY, =0,

fori=1,...,8,n=0,...,n; — 1, where
(fi,n)mz/f(x,t,i+cir)~$mdﬂ, i1=1,...,s.
Q

Here, K, and M, (resp., K, and M,) are the vector-stiffness and vector-mass matrix
(resp., stiffness and mass), respectively. Finally, as above, the boundary conditions
on kY are given by

i,m
o7
(k%)»”)|8£2 = 52(- tn + 7).

By adopting an all-at-once approach, we can rewrite the system (2.11)—(2.12) as
follows:

Myvg = MUVO,
Mppo = Mppoa
MyvVig1 = Myvy —7M, 305 biky, =0

Mypny1 — Mppy — TM, Zle bikf’n =0
MY, + Koy (v +7 305 iKY )+ B (P73 ai k) ) =fin, i=1,...,s,
Bv, +71BY_ ai kY, =0, i=1,...,s,

forn =0,...,n; — 1. In matrix form, the system is of the form ([2.4)), with

=[Vg, P+ Vn, P,
[(kS)T’ (kg)Ta ) (k:]zt—l)T7 LR} (kp

v
k nt—l)T]T

)

where
kp =[(kp )", )T K =(kE )T, (KR )TT n=0, e — L
Further, the blocks of the matrix A are as in , with © =1, ® é, and
Uy
Uy = , M= [

Here, the blocks are given by

- _[e®K, e®B"| &5 [I,®M,+7Arx ® K, TArk ® B'
b= |00 0%, }7@_{ D A L (213)
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Note that we need an approximation of the pressure p at time ¢ = 0. In our tests,
before solving for the all-at-once system we integrate the problem between (0, epg)
employing one step of backward Euler. The approximations of the velocity v and
pressure p at time ¢ = egg are then employed as initial conditions for solving the
problem in (egg,tf). In our tests, we choose egg = h?®, with h the mesh size in
space. This choice has been made as a trade-off between having an accurate enough
solution at time ¢t = egg and a fast solver for the backward Euler discretization. We
would like to mention that finding suitable initial conditions for the problem (2.11f)—
(2.12) is beyond the scope of this work, and one can employ other approaches. For
instance, one can employ a solenoidal projection, as done in [14].

3. Preconditioner. Supposing that © is invertible, we consider as a precondi-
tioner for the system (2.4)) the following matrix:

P{g ‘I(i)l], (3.1)

where S = —® — ¥, 071U, is the Schur complement, with ®, ¥, U5, and © defined
as in (2.5)). Specifically, we have

M
g _ M+ X ,
-M+X M
where
-1
o I, @ M 4+ 7Ark ® Dy e® D,
X=r[bM ... bM ]  Ank © Dy coD, |-

The preconditioner P given in is optimal. In fact, supposing also that S is
invertible, one can prove that A(P~1A) = {1}, and the minimal polynomial of the
preconditioned matrix has degree 2, see, for instance, [16] [24]. For this reason, when
employing the preconditioner P, an appropriate iterative method should converge in
at most two iterations (in exact arithmetic). However, in practical applications even
forming the Schur complement S may be unfeasible due to the large dimensions of
the system. Besides, the block ©® may be singular, in which case not only is the Schur
complement S not well defined, but also we cannot apply the inverse of P. For this
reason, rather than solving for the matrix P, we favour finding a cheap invertible
approximation P of P, in which the block © is replaced by an invertible © and the
Schur complement S is approximated by S ~ —® — U0~ 1,, respectively. In what
follows, we will find approximations of the main blocks of P.

Clearly, the matrix © defined in is block-diagonal, with each diagonal-block
given by the system for the stages. Therefore, a cheap method for approximately
inverting the system for the stages gives also a cheap way for approximately inverting
the block ©.

We now focus on an approximation of the Schur complement S. The latter may
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be factorized as follows:

I,
M I X
S = — T e + bl (3'2)
M BN
—I,,+X 1I,,
S
where
-1

T IS®M+TARK®D1 e® D
X_T[ biln, ... bsln, } ARk ® Do e®Dy | (3.3)

From here, in order to approximately invert the Schur complement S one has to
employ a block-forward substitution, applying the inverse of the system for the stages
inexactly.

As we mentioned, the main computational task is to (approximately) solve for
the linear system of the stages. In the following, we present the strategy adopted in
this work. Again, we would like to mention that one may also employ other solvers
for the stages, providing their optimality.

In what follows, we will assume that the matrix Agrk is invertible.

3.1. Preconditioner for the stages. As we mentioned above, an all-at-once
solve for a Runge-Kutta discretization in time may be performed only if one has an
optimal preconditioner for the system of the stages

kl,n bl
I; @ M+ 7Agrk ® Dy )
TARk ® Dy : :
kS n bS

s

In order to derive a preconditioner for the matrix (:), we consider an SVD de-
composition of the matrix Agx = UXV™*, where U and V are unitary matrices whose
columns are the left and right singular vectors of Agrk, respectively, and X is a diagonal
matrix with entries equal to the singular values of Ark. Note that this decomposition
is not unique. Note also that since the matrix Ark is real, the matrices U and V' can
be chosen to be real [I1] Section 2.4], therefore they are properly orthogonal matrices.
For this reason, we can write Agg = UXV ". From here, we can write

LM+ 7Arx @D =, M+ 7(USV ") @ D,
=URL)UV)oM+720D|(V' @1,,).

Note that, since the matrices U and V' are orthogonal, the same holds for the matrix
UTV. In particular, the eigenvalues of the matrix U TV all lie on the unit circle cen-
tered at the origin of the complex plane, and its eigenvectors are mutually orthogonal.
Since all the eigenvalues have absolute value equal to 1, we can derive the following
approximation:

[VT ®1I,,] ~ o.

{ U® Iy, } {IS®M+TE®D1
Pri =

U®Inl TZ@DQ
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This approximation can be employed as a preconditioner for the matrix © within the
GMRES algorithm derived in [29]. Note that, excluding the effect of the inverses of
the matrices U ® I,,, and VT ® I, (which require only a matrix—vector product),
the (1,1)-block of the preconditioner is block-diagonal. Further, the matrices are all
real, and we are not forced to work in complex arithmetic. Finally, we would like
to mention that, compared to an eigendecomposition, by employing this strategy one
is able to avoid possibly ill-conditioned matrices arising from the eigenvectors, for
example. Despite the above properties holding, one cannot expect the approximation
Prik to be completely robust. In fact, the matriXAUTV has s distinct eigenvalues,
therefore we expect the preconditioned matrix ’Pgé@ to have s clusters of eigenvalues.
Nonetheless, we expect the preconditioner to work robustly at least with respect to
the mesh size h.

Below, we will show how to employ the preconditioner Prx for solving for the
matrix O.

3.1.1. Heat equation. Before specifying our strategy for the heat equation, we
would like to introduce other preconditioners employed for solving for the stages of a
Runge—Kutta discretization for this problem.

In [22], the authors approximate the matrix Is ® M + TArx ® K with a fixed
number of GMRES iteration, preconditioned with the following matrix:

M + Ta1,1K

Prns =
M+ 7a, K

The preconditioner Pyins is optimal, in the sense that it can be proved that the condi-
tion number of the preconditioned system Py (Is @ M +7Ark ® K) is independent
of the time-step 7 and the mesh size h, see [22]. However, numerical experiments
show that the condition number may be dependent on the number of stages s, see
[22]. We would like to mention that other approaches may be employed, since the
solver we propose for the all-at-once system is mainly based on a solver for the system
of the stages of a Runge-Kutta method. For instance, in [31] the authors employ as
a preconditioner the block-lower triangular part of the matrix I, ® M + 7Agrk ® K,
obtaining more robustness with respect to the number of stages s. Alternatively, one
may employ the strategies described, for instance, in [I}, 2, 27] as a preconditioner for
the linear system considered.

In the numerical tests below, we compare our preconditioner Prk only with the
preconditioner Pyng. This is done for various reasons. In fact, although the methods
presented in [31) 27] are robust, the preconditioners require one to solve for a block-
lower triangular matrix. On the other hand, the robust preconditioner employed in
[2] makes use of complex arithmetic, therefore the strategy requires one to solve for
systems twice the dimension of each block in order to work with real arithmetic.

We can now describe the preconditioner Prk employed for solving for the stages
of the discretization of the heat equation. The system for the stages is given by

I, @ M+ 17ARrk ® K.
In order to solve for this matrix, we employ GMRES with the following preconditioner:

Prk = (UL, )L, @M +18 K)(VI @1,,). (3.4)
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The following theorem gives the optimality of the proposed preconditioner, un-
der reasonable assumptions. More specifically, we require that the real part of the
* T
Rayleigh quotient w is positive, for any x € C* with x # 0. Note that, since
the matrix U "V is orthogonal (in particular, it is normal), this is equivalent to say-
ing that the real part of the eigenvalues of the matrix UV is positive, since the set

* T
{%\x eCs, x# 0} describes the field of values of the matrix UV, and it
represents the convex hull that contains the eigenvalues of this matrix. Note also
that, again with U TV orthogonal, our assumption is equivalent to saying that the

ratio w, with x € C®\ {0}, is contained within the right-half of the unit circle
centered at the origin of the complex plane. For these as well as other results on the
field of values, we recommend the book [I5].

REMARK 1. Before moving to the statement and the proof of the eigenvalue result
for the preconditioner we adopt, we would like to discuss the assumption we make.
As we mentioned above, the SVD is not unique. However, under the assumption
of Ark being invertible, the product UTV of the matrices containing the singular
vectors is uniquely defined. In fact, an invertible matriz Ark has a unique polar
decomposition Arx = UP, with U unitary and P Hermitian positive-definite, see [13,
Theorem 2.17].  Therefore, given Arx = ULV " as an SVD of the matriz Ark, we
clearly have U=UVT and P = VSVT. From the uniqueness of the matriz 17, we
can derive that the product UV is uniquely defined.

THEOREM 3.1. Let be Agrk be the matriz representing the coefficients of a Runge—
Kutta method. Let Agx = UXV' T be an SVD of the matriz Ark. Suppose that the
real part of Rayleigh quotient x*(gi—;l/)x is positive, for any x € C*\ {0}. Then, the
eigenvalues of the matriz Pﬁé(]s Q@M +71Ark ® K) all lie in the right-half of the unit
circle centered at the origin of the complex plane.

Proof. Let A be an eigenvalue of the matrix Pgé (Is ® M + 7Ark ® K), with x
the corresponding eigenvector. Then, we have

(Is ® M + TAgrk ® K)x = \PrkX.

By employing the SVD of the matrix Agk and a well known property of the Kronecker
product, we can write

UL )UTV)M+7185@ K) (VT @1,,)x = \PrgX.
From , by setting y = (VT ® I,,, )x, the previous expression is equivalent to
(UTV)aM+r2@ K)y = AL, ® M + 75 ® K)y.
Recalling that the matrix M is s.p.d., we can write Mz, Then, we have
(U@ I, +2@ (M KM 2 )z =AI,® I, + 15 ® (M 2 KM~ 7))z,

where z = (I, ® M2)y.

Since ¥ is s.p.d. and K is symmetric positive semi-definite, we have that the
matrix I, ® I,, + 75 ® (M~2KM~2) is s.p.d., therefore invertible. Thus, we can
consider the generalized Rayleigh quotient

- z(UTV)@ 1, +m5@ (M 2 KM~ %))z
2" (I, @1, +75® (M 2KM~%))z

* T R
_ 1 i (z (U V)®Inm)z+7_>\)’
1+ 7A 7'z
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with A — z*(E@(M*%KM*%))z_

z*Z

Again, since the matrix ¥ ® (M~2KM~2) is symmetric positive semi-definite,

the value A is real and non-negative. Then, since 7 > 0, we have 1 +7A > 1, and
A

1A —

Denoting here with ¢ the imaginary unit, under our assumption we can write

z2(UTV)® I,,)z
Z*7Z

with 0 < a <1, and b € [—1,1] such that a® + b* < 1, due to UV being orthogonal.
In fact, we have

= a + b,

z(UTV)®I,,)z _ 2*(I,, ® (UTV))z

Z*Z Z*Z

with z = Pz for a suitable permutation P. In particular, we have that the fields
* T * T
of values {w\x eC x# 0} and {Mh € Co=, 7 # 0} describe

the same subset of the complex plane. Since a > 0, from (3.5) we can say that the
real part of \ is greater than 0. Finally, from a? +b? < 1 and (3.5)) we can derive that
the absolute value of A is less or equal than 1, that is, A lies in the right-half of the

unit circle centered at the origin of the complex plane. In fact, we have

1 " 1 . .
|/\|2 =\ = m {(a + 7')\)2 + 52} = m {(12 + 0%+ (7'/\)2 + 2‘17'/\}

! [1 +(TA)?2 + 2a7’5\} < {1 +(TA)? + 27'5\} =1

< —= -
T (14 7A)2 (1+7A)2

Since A is an eigenvalue of the matrix Pgll((ls ® M + 17 ARk ® K), the above gives
the desired result.
0

In Figure we report the eigenvalue distributions of the matrices ’Plil((l sQM+
TArk ® K) and UTV, employing Qo elements, for 3-stages Gauss, 4-stages Lobatto
IIIC, 5-stages Radau ITA, and 9-stages Radau ITA methods, with 7 = 0.2 and level of
refinement 1 = 4. Here, 1 represents a spatial uniform grid of mesh size h = 271, in
each dimension. Further, in green we plot the unit circle centered at the origin of the
complex plane.

Interestingly, as observed in Figure the eigenvalues of Pﬁé (Is@M+1ARkQK)
all lie in, or near, segments that join 1 to an eigenvalue of UTV. We are not able to
explain this behavior using the analysis of Theorem [3.1] However, we would like to
note that, in practice, the eigenvalues seem to locate away from 0. In particular, we
cannot expect 0 to be an eigenvalue of 731;}1{(]3 ® M + TArk ® K), since both Prk
and I, ® M + 7Ark ® K are invertible.

We would like to mention that, for all the Runge-Kutta methods we employ
(excluding the 5-stages Radau ITA), the real part of the eigenvalues of the matrix
UTV was positive, thus the assumption of Theorem is not excessively restrictiveﬂ
Further, following the sketch of the proof above, one can understand that we are
able to derive this result about the preconditioner only because the matrix K is
symmetric positive semi-definite. For this reason, we cannot expect this property of
the preconditioner to hold for more general problems.

2For the 5-stages Radau ITA method, the eigenvalues of the matrix UT V are negative, but very
close to 0, as seen from Figure @
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Fig. 3.1: Eigenvalue distributions of 7’1{11((15 ® M + 7Agrk ® K) and of UV, for
3-stages Gauss, 4-stages Lobatto ITIC, 5-stages Radau IIA, and 9-stages Radau ITA
methods, with 7 = 0.2, and 1 = 4. In green, we plot the unit circle centered at the
origin of the complex plane.

% MPug(l, ® M + 7Apk ® K)) ¥ MPug(l, ® M + Ak ® K))
o MNU'V) o MNU'V)
1 e 1 _——

* *

* * o

Im())
Im(X)

0.5 *432" 05 **** s
1 e ) -1 — o
1 0.5 0 0.5 1 15 -1 -0.5 0 0.5 1 1.5
Re()) Re())
(a) 3-stages Gauss. (b) 4-stages Lobatto IIIC.

% APl ® M + mApg ® K))
o AU'V)

Im(\)

1 f—e—f ° 1
1 0.5 0 0.5 1 1.5 -1 0.5 0 0.5 1 15
Re()) Re(\)
(c) 5-stages Radau ITA. (d) 9-stages Radau ITA.

3.1.2. Stokes equations. In this section we derive a preconditioner for the

block © defined in (2.13).
We recall that the matrix © is given by

é o Is ®Mv +TARK ®Kv TARK (9 B—r
o TARk @ B 0 ’

In order to solve for this system, we employ as a preconditioner

Prre — I @ M, + TArk ® K, 0
R TARk @ B Srx |’
where
Srk = —77(Ark ® B)(Is ® My, + TArk ® K,) ' (Arx ® B'). (3.6)

The (1,1)-block Iy ® M, + TArk ® K,, can be dealt with as for the heat equation.
More specifically, we approximate it with (U ® I,,,) (I, ® M, + T2 @ K,) (V' ® I,,,).
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In order to find a suitable approximation of the Schur complement Sgyk, we ob-
serve that

ARk ® B = (Arx ® Ip,,)(Is ® B),
Ark ® BT = (I, ® B")(Ark ® I,,).

It is clear that if we find a suitable approximation of the following matrix:
Sint & Sint = (I ® B)(I, ® My, + 7Ark ® K,) "' (I, @ B'),
then a suitable approximation of the Schur complement Sgk is given by
Srk = —72(Ark @ In,)Sint(Ark © I,))- (3.7)

Note that the matrix (Ark ® I,,,) can be easily inverted by making use of the SVD
of the matrix Agx = UZV .

In order to derive a suitable approximation of the matrix Si,, we employ the
block-commutator argument derived in [19]. We would like to mention that a similar
approach has been derived independently and employed for a parallel-in-time solver for
the incompressible Navier—-Stokes equations by the authors in [5]. The approximation
we employ is given by

Sint = (I @ K,) (I ® M, + 7Ark @ K,) " (I, @ M,).

Then, our approximation of the Schur complement Sgk is given by with this
choice of gint- For details on the derivation of the approximation, we refer to [19].

In Figure we report the eigenvalues of the matrix g’gIl(SRK, for 3-stages Gauss,
3-stages Lobatto IIIC, and 3-stages Radau ITA methods, with 7 = 0.2, and level of
refinement 1 = 5. Here, 1 represents a (spatial) uniform grid of mesh size h = 2171
for Q; basis functions, and h = 27! for Qs elements, in each dimension. Since for the
problem we are considering the matrix K, is not invertible, we derive an invertible
approximation SrK by “pinning” the value of one of the nodes of the matrix K, for
each K, within the definition of Sip.

Finally, we can present our approximation Prk of the preconditioner Pry for
the matrix ©. By employing a well known property of the Kronecker product, the
approximation of the preconditioner Pryk is given by the following

~ o U® Iny 0 D. VT ® I"v 0
Pri = { 0 U® I, } int [ 0 vT I, |’ (3.8)
with
5 |:IS®M+TE®K 0 }
int = Y® B —7r2 ((ZVT) ® Inp) Sint ((UE) ® Inp) '

Before completing this section, we would like to mention that the matrix O is not
invertible. For this reason, the block © = I,,, ® © is not invertible, and one cannot
employ the preconditioner defined in as it is. We thus rather employ as (2,2)-
block the matrix © = I, ® é, with © given by the following invertible perturbation
of ©:

I, ® M, + TArk ® K, TARK(X)BT

0= TARk ® B —72y(Ajg @ M) |’
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Fig. 3.2: Commutator approximation for the Stokes equations. Eigenvalues of
SgéSRK, for 3-stages Gauss, 3-stages Lobatto II1IC, and 3-stages Radau ITA methods,
with 7=0.2, and 1 = 5.

0.1 0.15

N
*
* 0.1
0.05 +
*
LT e e 0.05 o .
S MR * * * ¥ *
* * * Tx %
= . * = xR
= 0% * o b Hk K **d — 0 ok % Hkkk kK x xx  amEl
= * * E * *ox g K
- * B o x* = * %
*op o * . * * ** * *
N N *** N * -0.05 *  x *
-0.05 -
* -0.1
*
*
-0.1 -0.15
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Re()) Re())
(a) 3-stages Gauss. (b) 3-stages Lobatto IIIC.
0.15
0.1 *
0.05 )
.05 b Lk
= *ow gher ko x ay
Z 0 %‘ xx néﬂmm ok xx el
= ¥ % WeErx ox ¥
0.05 * ** ok * %
*
-0.1 *
-0.15
0 0.2 0.4 0.6 0.8 1
Re())

(c) 3-stages Radau ITA.

where 0 < v < 1. The parameter « has to be chosen such that the perturbed matrix
O is invertible, but “close” enough to the original ©. In our test, we chose v = 1074
Note that we chose this perturbation of the (2, 2)-block for the expression of the Schur
complement Sgk given in . In fact, it is easy to see that

—72y(Ajk ® Mp) = —7*(Ark ® I, ) (7] @ My)(Ark ® I,),

implying that we perturb Siy; only by the matrix vI, ® M,.

4. Numerical results. We now provide numerical evidence of the effectiveness
of our preconditioning strategy. All tests are run in sequential on MATLAB R2018b,
using a 1.70GHz Intel quad-core i5 processor and 8 GB RAM on an Ubuntu 18.04.1
LTS operating system. A future version of this work will consider a parallel imple-
mentation of the proposed solver.

In all our tests, d = 2 (that is, x = (21, 72)), and Q = (—1,1)2. We employ Q; and
Q- finite element basis functions in the spatial dimensions for the heat equation, while
employing inf-sup stable Taylor-Hood Q2—Q; for the Stokes equations. In all our
tests, the level of refinement [ represents a (spatial) uniform grid of mesh size h = 2!~
for Qi basis functions, and h = 27! for Q, elements, in each dimension. Regarding
the time grid, denoting with ¢rg the order of the finite element approximations and
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with grk the order of the Runge-Kutta method we employ, we chose as number of
intervals in time n; the closest integer such that 7 < hare/ amx where T = ty/ny is the
time step.

In all our tests, we apply 20 steps of Chebyshev semi-iteration to mass matrices,
while employing 2 V-cycles (with 2 symmetric Gauss—Seidel iterations for pre-/post-
smoothing) of the HSL_MI20 solver [3] for other matrices.

All CPU times below are reported in seconds.

4.1. Heat equation: sequential time-stepping. In this section, we compare
our SVD-based preconditioner with the block-diagonal preconditioner Pyns derived
in [22]. We refer the reader to Section for this choice of preconditioner. We
evaluate the numerical solution in a classical way, solving sequentially for the time
step n, that is, we solve for the system of the stages given in and then update
the solution at time ¢, with . We compare the number of iterations required
for convergence up to a tolerance 10~% on the relative residual for both methods. We
employ GMRES as the Krylov solver, with a restart every 10 iterations.

We take ty = 2, and solve the problem with solution given by

TI2
— 1
() +t

with initial and boundary conditions obtained from this v. In Tables [L.I}H4:4] we
report the average number of GMRES iterations and the total CPU times for solving
all the linear systems together with the numerical errors ve;or on the solution, for
different Runge-Kutta methods. We evaluate the numerical error ve,o, in the scaled
vector £*°-norm, defined as

v(x,t) = e " cos (%xl) cos

I’U‘ _ U_sol
_ 1 j,n ith § = ‘ ., sol
Verror = mﬁx | o ; with j = argmax|vjn — v o,
Vi J

where v;,, and v !

o are the entries of the computed solution v and the (discretized)
exact solution for v at time t = ¢,,. Further, in Tables we report the dimen-
sion of the system solved for Radau ITA methods when employing Q; and Qs finite
elements, respectively. We would like to note that those values coincide with the di-
mension of the system arising when employing the corresponding level of refinement
of an s-stages Gauss or Lobatto IIIC method.

Tables[I.IH£-4show a very mild dependence of our SVD-based preconditioner with
respect to the mesh size h and the number of stages s. Nonetheless, the preconditioner
we propose is able to reach convergence in less than 25 iterations. Although the block-
diagonal preconditioner Pying is optimal with respect to the discretization parameters,
the number of iterations required to reach the prescribed tolerance is not robust
with respect to the number of stages s. For instance, in order to reach convergence
the solver needs almost 60 iterations for the 5-stages Lobatto IIIC method. On the
other hand, our solver does not suffer (drastically) from this dependence. In fact,
when employing a high number of stages, our solver can be between 2 and 3 times
faster. Finally, we would like to note that the error behaves as predicted, that is,
the method behaves as a second- and third-order method with Q; and Q- finite
elements, respectively. In particular, we do not experience any order reduction for
the numerical tests carried out in this work, aside the pollution of the linear residual
on the numerical solution.
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Table 4.1: Sequential solve of the heat equation: average GMRES iterations, total
CPU times, and resulting relative errors in v for Gauss methods, employing Q; and

Q- finite elements.

Q1 Q2
PuMNs Prk PuMNs Pri
s |1 it [ CPU [ Verror it [ CPU [ Verror it [ CPU [ Verror it [ CPU [ Verror
3 10 0.05 6.35e-03 8 0.05 6.35e-03 10 0.1 1.33e-04 8 0.1 1.33e-04
4 10 0.1 1.69¢-03 8 0.09 1.69e-03 10 0.4 1.62e-05 9 0.4 1.62e-05
215 10 0.3 4.55e-04 8 0.2 4.55e-04 10 2.2 2.39e-06 10 2.2 2.39e-06
6 10 1.3 1.14e-04 9 1.2 1.14e-04 10 16 2.91e-07 12 19 2.91e-07
7 10 6.7 2.95e-05 10 6.8 2.95e-05 10 116 3.44e-08 13 167 3.45e-08
3 18 0.2 5.45e-03 12 0.1 5.45e-03 18 0.2 5.10e-05 11 0.2 5.10e-05
4 17 0.2 1.53e-03 | 11 0.1 1.53e-03 18 0.6 3.43e-06 13 0.5 3.43e-06
315 16 0.5 4.17e-04 12 0.4 4.17e-04 18 3.1 2.36e-07 | 15 2.5 2.36e-07
6 16 1.8 1.07e-04 12 1.6 1.07e-04 17 20 1.69e-08 17 18 1.66e-08
7 16 8.0 2.71e-05 | 13 7.0 2.71e-05 17 107 1.95e-09 18 122 1.78e-09

Table 4.2: Sequential solve of the heat equation:

average GMRES iterations, total
CPU times, and resulting relative errors in v for Lobatto IIIC methods, employing
Q1 and Q> finite elements.

Qi Q2
PuNs Prk PuNs Pri
s | 1 |[it [ CPU [ verror it [ CPU [ error it [ CPU [ werror it [ CPU [ werror
3 12 0.1 1.36e-02 7 0.09 1.36e-02 13 0.5 2.55e-03 9 0.3 2.55e-03
4 12 0.3 4.10e-03 8 0.2 4.10e-03 14 2.8 3.66e-04 10 1.9 3.66e-04
215 12 1.4 1.14e-03 9 0.9 1.14e-03 13 23 5.06e-05 | 12 22 5.06e-05
6 12 8.7 3.01e-04 10 7.1 3.01e-04 13 276 6.45e-06 12 263 6.45e-06
7 12 66 7.77e-05 | 12 68 7.77e-05 12 3226 8.18e-07 | 12 3377 | 8.17e-07
3 26 0.2 5.42e-03 8 0.07 5.42e-03 25 0.5 1.15e-04 | 10 0.2 1.15e-04
4 25 0.3 1.48e-03 9 0.1 1.48e-03 26 1.6 1.75e-05 11 0.7 1.75e-05
315 25 0.9 3.79e-04 | 10 0.4 3.79e-04 29 9.5 2.95e-06 | 12 4.1 2.95e-06
6 25 4.7 9.82e-05 | 11 2.2 9.82e-05 28 64 3.90e-07 | 15 37 3.89e-07
7 26 25 2.43e-05 | 12 13 2.43e-05 28 490 4.82e-08 | 17 330 4.81e-08
3 40 0.4 5.75e-03 | 12 0.1 5.75e-03 41 0.6 2.37e-05 | 13 0.2 2.37e-05
4 37 0.4 1.55e-03 | 11 0.1 1.55e-03 42 2.0 1.65e-06 | 15 0.7 1.66e-06
4 5 37 1.4 4.18e-04 13 0.5 4.18e-04 44 9.2 1.63e-07 16 3.5 1.61e-07
6 38 5.4 1.07e-04 | 15 2.4 1.07e-04 44 60 1.33e-08 | 18 27 1.28e-08
7 39 25 2.73e-05 | 16 11 2.73e-05 43 368 2.18e-09 | 18 171 2.32e-09
3 56 0.5 5.91e-03 | 15 0.2 5.91e-03 55 1.0 1.94e-05 | 15 0.3 1.94e-05
4 52 0.8 1.55e-03 | 15 0.2 1.55e-03 56 2.8 1.19e-06 | 17 0.9 1.19e-06
515 51 1.8 4.07e-04 | 14 0.5 4.07e-04 59 12 7.31e-08 | 18 3.7 7.39e-08
6 53 6.9 1.07e-04 | 16 2.3 1.07e-04 57 67 4.93e-09 | 21 27 3.95e-09
7 54 34 2.71e-05 17 11 2.71e-05 57 389 9.56e-10 | 22 162 7.53e-09

4.2. Heat equation: sequential all-at-once solve. In this section, we present
the numerical results for the all-at-once Runge—Kutta discretization of the heat equa-
tion given in (2.9). The problem we consider here is the same as the one in Section
We employ as a preconditioner the matrix P given in (3.1)), with the matrix S
defined in approximated with a block-forward substitution. Within this process,
the matrix X defined in is applied inexactly through an approximate inversion
of the block for the stages. More specifically, given the results of the previous section,
we approximately invert each block for the stages with 5§ GMRES iterations precon-
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Table 4.3: Sequential solve of the heat equation: degrees of freedom (DoF), average
GMRES iterations, total CPU times, and resulting relative errors in v for Radau ITA
methods, employing Q; finite elements.

PuMNs Pri
s |1 DoF it [ CPU [ Verror it [ CPU [ Verror
3 98 11 0.09 5.48e-03 8 0.08 5.48e-03
4 450 10 0.1 1.39e-03 8 0.08 1.39e-03
215 1922 12 0.5 3.67e-04 9 0.4 3.67e-04
6 7938 12 2.9 9.44e-05 10 2.3 9.44e-05
7 32,258 12 17 2.35e-05 11 16 2.34e-05
3 147 21 0.1 5.71e-03 | 10 0.07 5.71e-03
4 675 19 0.2 1.60e-03 10 0.1 1.60e-03
315 2883 19 0.6 4.17e-04 11 0.4 4.17e-04
6 11,907 20 2.6 1.08e-04 12 1.6 1.08e-04
7 48,387 20 14 2.74e-05 13 9.3 2.74e-05
3 196 30 0.2 5.59e-03 12 0.08 5.59e-03
4 900 29 0.4 1.55e-03 12 0.2 1.55e-03
4 |5 3844 27 1.0 4.18e-04 15 0.5 4.18e-04
6 15,876 27 3.6 1.07e-04 16 2.1 1.07e-04
7 64,516 28 17 2.70e-05 17 10 2.70e-05
3 245 40 0.4 5.91e-03 16 0.1 5.91e-03
4 1125 38 0.6 1.55e-03 | 16 0.2 1.55e-03
515 4805 36 1.2 4.07e-04 | 15 0.5 4.07e-04
6 19,845 36 4.7 1.07e-04 | 17 2.2 1.07e-04
7 80,645 37 25 2.71e-05 18 12 2.71e-05

Table 4.4: Sequential solve of the heat equation: degrees of freedom (DoF), average
GMRES iterations, total CPU times, and resulting relative errors in v for Radau ITA
methods, employing Q- finite elements.

Pumns Prx
s |1 DoF it [ CPU [ error it [ CPU [ error
3 450 12 0.2 2.10e-04 8 0.2 2.10e-04
4 1922 12 0.8 2.86e-05 | 10 0.6 2.86e-05
215 7938 12 5.4 3.76e-06 | 11 5.1 3.76e-06
6 32,258 12 45 4.82e-07 | 14 52 4.82e-07
7 130,050 12 400 6.11e-08 | 14 496 6.11e-08
3 675 20 0.3 2.62e-05 | 11 0.1 2.62e-05
4 2883 23 0.9 2.61e-06 | 12 0.5 2.61e-06
315 11,907 22 4.7 2.31e-07 | 15 3.3 2.31e-07
6 48,387 23 32 2.94e-08 | 17 24 2.96e-08
7 195,075 22 215 2.95e-09 | 18 183 2.85e-09
3 900 28 0.4 1.94e-05 | 15 0.2 1.94e-05
4 3844 30 1.1 1.17e-06 | 16 0.6 1.17e-06
415 15,876 30 5.3 7.25e-08 | 17 3.2 7.14e-08
6 64,516 30 31 5.29e-09 | 18 19 3.43e-09
7 260,100 30 203 9.39e-10 | 19 126 1.20e-09
3 1125 38 0.7 1.92e-05 | 16 0.3 1.91e-05
4 4805 40 1.6 1.20e-06 | 16 0.7 1.20e-06
515 19,845 42 8.3 7.37e-08 | 19 3.9 7.39e-08
6 80,645 40 41 4.67e-09 | 21 23 4.05e-09
7 325,125 40 235 1.15e-09 | 22 130 7.42e-09

ditioned with the matrix Prx defined in (3.4). This process is also employed for
approximating the (2,2)-block ©. Since the inner iteration is based on a fixed num-
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ber of GMRES iterations, we have to employ the flexible version of GMRES derived
in [28] as an outer solver. As above, we restart FGMRES after every 10 iterations.
Our implementation is based on the flexible GMRES routine in the TT-Toolbox [26].
The solver is run until a relative tolerance of 10~8 is achieved.

In Tables we report the number of FGMRES iterations and the CPU
times, for different Runge-Kutta methods. Further, we report the numerical error
Verror 1N the scaled vector £°°-norm, defined as in the previous section, together with
the dimension of the system solved for each method.

Table 4.5: All-at-once solve of the heat equation: degrees of freedom (DoF), FGMRES
iterations, CPU times, and resulting relative errors in v for Gauss methods, employing
Q; and Q finite elements.

Q1 Q2
s |1 DoF “ it [ CPU [ Verror DoF “ it [ CPU [ Verror
3 637 6 0.3 6.06e-03 4275 6 0.8 1.08e-04
9 4 4275 6 0.7 1.45e-03 29,791 8 4.0 1.44e-05
5 24,025 6 1.8 4.38e-04 194,481 8 20 2.07e-06
6 146,853 8 13 9.62e-05 1,322,578 8 148 1.73e-07
3 833 9 0.8 5.40e-03 3825 8 1.1 3.57e-05
3 4 3825 8 1.0 1.51e-03 24,025 9 4.0 1.98e-06
5 24,025 9 3.2 3.52e-04 130,977 12 25 1.02e-07
6 115,101 12 16 8.37e-05 790,321 13 167 1.57e-08

Table 4.6: All-at-once solve of the heat equation: degrees of freedom (DoF), FGMRES
iterations, CPU times, and resulting relative errors in v for Lobatto IIIC methods,
employing Q; and Q3 finite elements.

Qi Q2
s |1 DoF “ it [ CPU [ Verror DoF “ it [ CPU [ Verror
3 1225 5 0.5 1.28e-02 11,025 6 2.1 2.20e-03
9 4 11,025 6 1.7 3.56e-03 133,579 8 18 3.25e-04
5 93,217 7 8.2 1.05e-03 1,528,065 8 163 4.56e-05
6 766,017 8 65 2.71e-04 17,580,610 10 | 2512 5.81e-06
3 833 6 0.5 5.42e-03 5625 7 1.3 9.82e-05
3 4 5625 7 1.1 1.28e-03 39,401 7 5.1 1.58e-05
5 31,713 7 3.3 3.63e-04 257,985 9 34 2.59e-06
6 194,481 7 16 8.27e-05 1,758,061 10 292 3.68e-07
3 1029 9 1.0 5.75e-03 4725 9 1.7 2.37e-05
4 4 4725 9 1.4 1.54e-03 29,791 12 7.3 1.57e-06
5 29,791 12 5.9 3.53e-04 162,729 12 31 1.38e-07
6 142,884 12 22 8.40e-05 983,869 13 231 1.75e-07
3 931 10 1.1 5.91e-03 5625 12 2.8 1.94e-05
5 4 5625 12 2.4 1.54e-03 29,791 13 8.6 1.19e-06
5 24,025 12 4.9 4.01e-04 146,853 13 33 2.40e-07
6 123,039 12 20 9.64e-05 790,321 15 232 4.85e-08

Tables show the parameter robustness of our preconditioner, with the
linear solver converging in at most 15 iterations for all the methods and the parameters
chosen. We are able to observe almost linear scalability of the solver with respect to
the dimension of the problem. We would like to note that, when employing the
finest grid for Qo elements for the 2-stages Lobatto IIIC method, the all-at-once
discretization results in a system of 17,580,610 unknowns to be solved on a laptop.
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Table 4.7: All-at-once solve of the heat equation: degrees of freedom (DoF), FGMRES
iterations, CPU times, and resulting relative errors in v for Radau ITA methods,
employing Q; and Q: finite elements.

Q1 Q2
s |1 DoF “ it [ CPU [ Verror DoF “ it [ CPU [ Verror
3 931 6 0.5 5.09e-03 5625 6 1.0 2.02e-04
9 4 5625 6 0.9 1.35e-03 47,089 7 5.3 2.51e-05
5 38,440 6 3.1 3.46e-04 384,993 8 41 3.41e-06
6 254,016 8 21 8.35e-05 3,112,897 8 351 5.71e-07
3 833 7 0.5 5.71e-03 4725 8 1.2 2.57e-05
3 4 4725 7 1.0 1.46e-03 27,869 9 4.4 2.28e-06
5 27,869 9 3.7 3.30e-04 178,605 10 26 2.24e-07
6 130,977 9 14 1.03e-04 1,048,385 12 204 2.68e-08
3 784 9 0.7 5.59e-03 4725 10 1.7 1.94e-05
4 4 4725 10 1.5 1.54e-03 24,986 10 4.8 1.12e-06
5 24,986 10 4.0 3.77e-04 142,884 12 27 7.56e-08
6 123,039 12 18 9.00e-05 741,934 15 196 6.63e-07
3 931 12 1.2 5.91e-03 5625 14 3.2 1.92e-05
5 4 5625 14 2.7 1.54e-03 24,025 13 6.4 1.16e-06
5 24,025 14 5.7 4.01e-04 146,853 14 35 5.18e-08
6 123,039 14 23 9.65e-05 693,547 13 171 1.32e-07

Finally, we also observe the predicted second- and third-order convergence for Q;
and Qg discretization, respectively, until the linear tolerance causes slight pollution
of the discretized solution for the finest grid of Qo discretization (see, for instance,
level 1 = 6 for the 5-stages Radau ITA method in Table .

4.3. Stokes equations: sequential time-stepping. In this section, we pro-
vide numerical results of the efficiency of the preconditioner Prk defined in for
the system of the stages for the Stokes problem. We run preconditioned GMRES up
to a tolerance of 10~8 on the relative residual, with a restart after every 10 iterations.

We present results for a sequential time-stepping. We take ¢ty = 2, and solve the
problem , testing our solver against the following exact solution:

U(x,t) = et 207 23, 501 — 5as] T,
p(x,t) = e~ (60xizs — 2023) + constant,

with initial and boundary conditions obtained from this ¢. The previous is an example
of time-dependent colliding flow. A time-independent version of this flow has been
used in [25, Section 3.1]. We evaluate the errors in the L>(H}(€2)4) norm for the
velocity and in the L>(L?(£2)) norm for the pressure, defined respectively as follows:

Verror = 1Max [(Vn - VZOI)TKU(Vn - V;OI)] e )
n
1/2
perror = m??‘X I:(pn - pZOI)TMp(pn - piOl)} .

sol (resp., p5!) is the discretized exact solution for ¥ (resp., p) at

In the previous, v
time t,,.

In Tables [L.8{4.9 we report the average number of GMRES iterations and the
average CPU times together with the numerical errors on the solutions, for different
Runge-Kutta methods. Further, in Table we report the dimensions of the system

solved for Lobatto ITIC and Radau ITA methods. As for the heat equation, those values
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coincide with the dimensions of the system arising when employing the corresponding
level of refinement in an s-stages Gauss method.

Table 4.8: Sequential solve of the Stokes equations: average GMRES iterations, av-
erage CPU times, and resulting errors in ¥ and p, for Gauss methods.

68 3.3 2.39e-02 | 3.20e-02
75 17 3.07e-03 1.10e-02
83 85 3.96e-04 | 3.87e-03

l S [ 1 “ it [ CPU [ Verror [ Perror l
3 36 0.15 1.29e+00 | 9.73e-01
9 4 37 | 0.34 1.66e-01 4.86e-01
5 42 1.5 2.08e-02 2.15e-01
6 47 6.8 2.57e-03 1.20e-01
7 50 32 3.12e-04 5.94e-02
3 54 0.36 1.42e400 | 7.19e-01
3 4 61 0.97 1.85e-01 1.20e-01
5
6
7

Table 4.9: Sequential solve of the Stokes equations: degrees of freedom (DoF'), average
GMRES iterations, average CPU times, and resulting errors in ¢ and p, for Lobatto
ITIC and Radau ITA methods.

Lobatto I1IC Radau ITA
s |1 DoF it [ CPU [ Verror [ Perror it [ CPU [ Verror [ Perror
3 1062 33 0.14 1.41e400 | 5.67e-01 35 0.15 1.37e400 | 5.07e-01
9 4 4422 39 0.36 2.04e-01 5.19e-02 38 0.37 1.77e-01 4.20e-02
5 18,054 46 1.5 3.19e-02 5.11e-03 44 1.4 2.27e-02 3.53e-03
6 72,966 50 6.8 5.25e-03 5.45e-04 49 6.9 2.91e-03 3.13e-04
7 293,382 54 34 8.95e-04 6.20e-05 54 36 3.90e-04 3.36e-05
3 1593 42 0.26 1.36e4-00 | 5.06e-01 48 0.28 1.35e4-00 | 5.01e-01
3 4 6633 44 0.64 1.76e-01 4.18e-02 55 0.79 1.75e-01 4.16e-02
5 27,081 54 2.7 2.24e-02 3.54e-03 64 3.1 2.23e-02 3.53e-03
6 109,449 62 14 2.82e-03 3.04e-04 74 17 2.82e-03 3.02e-04
7 440,073 70 73 3.55e-04 2.64e-05 78 85 3.54e-04 2.61e-05
3 2124 56 0.46 1.35e400 | 4.99e-01 67 0.54 1.36e4-00 | 4.97e-01
4 4 8844 67 1.3 1.75e-01 4.14e-02 69 1.4 1.75e-01 4.07e-02
5 36,108 75 5.2 2.23e-02 3.49e-03 79 5.4 2.22e-02 3.45e-03
6 145,932 80 25 2.81e-03 2.99e-04 87 28 2.80e-03 2.96e-04
7 586,764 88 131 3.53e-04 2.59e-05 91 135 3.52e-04 2.56e-05
3 2655 68 0.74 1.34e400 | 4.88e-01 76 0.83 1.34e400 | 4.89e-01
5 4 11,055 82 2.2 1.75e-01 4.08e-02 90 2.3 1.74e-01 4.10e-02
5 45,135 96 8.9 2.22e-02 3.46e-03 93 8.3 2.21e-02 3.43e-03
6 182,415 99 43 2.80e-03 2.94e-04 105 45 2.80e-03 2.95e-04
7 733,455 110 242 3.52e-04 2.55e-05 110 247 3.52e-04 2.55e-05

From Tables [I:8{4.9] we can observe that the mesh size h is slightly affecting
the average number of GMRES iterationsﬂ Further, we can observe a more invasive
dependence on the number of stages s. Nonetheless, the CPU times scale almost
linearly with respect to the dimension of the system solved. Finally, we can observe

3From the authors’ experience, this is because we are simply approximating the (1,1)-block. In
fact, the block-commutator preconditioner would have been more effective if one employed a fixed
number of GMRES iterations to approximately invert the (1,1)-block. However, having a further
“layer” of preconditioner would have been non-optimal in the all-at-once approach.
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that the error on the velocity and on the pressure behaves (roughly) as second order
for every method but the 2-stages Gauss method, for which we observe a first-order
convergence for the error on the pressure.

5. Conclusions. In this work, we presented a robust preconditioner for the
numerical solution of the all-at-once linear system arising when employing a Runge—
Kutta method in time. The proposed preconditioner consists of a block diagonal solve
for the systems for the stages of the method, and a block-forward substitution for the
Schur complement. Since the preconditioner requires a solver for the system for the
stages, we proposed a preconditioner for the latter system based on the SVD of the
Runge—Kutta coefficient matrix Agrk. Numerical results showed the efficiency and ro-
bustness of the proposed preconditioner with respect to the discretization parameters
and the number of stages of the Runge-Kutta method employed for a number of test
problems.

In the next version of this report we will present results from a fully parallel
implementation.
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