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Abstract. We show that the particle motion in Bohmian mechanics, given by

the solution of an ordinary differential equation, exists globally: For a large class

of potentials the singularities of the velocity field and infinity will not be reached

in finite time for typical initial values. A substantial part of the analysis is based

on the probabilistic significance of the quantum flux. We elucidate the connection

between the conditions necessary for global existence and the self-adjointness of

the Schrödinger Hamiltonian.

1 Introduction

Bohmian mechanics [7, 8, 4, 13, 14, 17] is a Galilean invariant theory for the mo-

tion of point particles. Consider a system of N particles with masses m1, ..., mN

and potential V = V (Q1, . . . ,QN), where Qk ∈ IRν denotes the position of the

k-th particle. The relevant configuration space is an open subset of νN = d-

dimensional space IRd, for example the complement of the set of singularities of

V , and shall be denoted by Ω. The state of the N -particle system is given by the

configuration Q = (Q1, . . . ,QN) ∈ Ω and the Schrödinger wave function ψ on

configuration space Ω. On the subset of Ω where the wave function ψ 6= 0 and is
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differentiable, it generates a velocity field vψ = (vψ1 , . . . ,v
ψ
N)

v
ψ
k (q) =

h̄

mk

Im
∇kψ(q)

ψ(q)
(1)

the integral curves of which are the trajectories of the particles. Thus the time

evolution of the state (Qt, ψt) is given by a first-order ordinary differential equa-

tion for the configuration Qt

dQt

dt
= vψt(Qt) (2)

and Schrödinger’s equation for the wave function ψt

ih̄
∂ψt(q)

∂t
=

(
−
∑N

k=1

h̄2

2mk

∆k + V (q)

)
ψt(q), (3)

where ∇k and ∆k denote the gradient and the Laplace operator in IRν and the

potential V is a real-valued function on Ω.

Bohmian mechanics may be regarded as a fundamental nonrelativistic quan-

tum theory, from which the quantum formalism—operators as observables, the

uncertainty principle, etc.—emerges as “measurement” formalism. It resolves

all problems associated with the measurement problem in quantum mechanics

[7, 8, 4, 13, 14, 17]. It accounts for the “collapse” of the wave function, for quan-

tum randomness as expressed by Born’s law ρ = |ψ|2, and familiar (macroscopic)

reality. For a thorough analysis of the physics entailed by Bohmian mechanics

see [7, 8, 13, 11], and [14] for a short overview of [13].

Here we are concerned with the mathematical problem of the existence and

uniqueness of the motion in Bohmian mechanics, i.e., with establishing that for

given Q0 and ψ0 at some “initial” time t0 (t0 = 0), solutions (Qt, ψt) of (2,

3) with Qt0 = Q0 and ψt0 = ψ0 exist uniquely and globally in time. (Note

that Schrödinger’s equation (3) is independent of the particle motion, while for

solving the Equation (2) for the particle motion we need the wave function ψt.)

Our first motivation for addressing this problem is the fact that the velocity field

(1) exhibits rather obviously possible catastrophic events for the motion: vψ is

singular at the nodes of ψ, i.e., at points where ψ = 0, so that the solution would

break down if a node were reached. Furthermore, the solution may cease to exist

at singularities of the wave function (if it has singularities), at the boundary of Ω

(if it has a boundary), and because of “explosion,” that is the escape to infinity of

a particle in a finite amount of time—events which have analogues in the N -body

problem (of gravitational interaction) in Newtonian mechanics.
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Recall that the problem of the existence of dynamics in Newtonian mechanics

is notoriously difficult [26, 12]. In addition to the possibility of routine collision

singularities, the N -body problem with N > 3 yields marvelous scenarios of

so-called pseudocollisions, where some particles, while oscillating wildly, reach

infinity in finite time. Examples of such catastrophies have been constructed by

Mather and McGehee [24],1 by Gerver [16], and by Xia [38]. While, for the case

of a “solar system” with small “planetary” masses, Arnold [2] established global

existence (and much more) “for the majority of initial conditions for which the

eccentricities and inclinations of the Kepler ellipses are small,” and while Saari

[34] has established global existence for “almost all initial conditions (in the sense

of Lebesgue measure and Baire category)” for the 4-body problem, for systems of

more than four particles it is not known whether the initial conditions leading to

such catastrophies are atypical, i.e., form a set of Lebesgue measure zero—though

this is certainly expected by most experts to be the case [12] (though not by all

[25]). Indeed, apart from obvious scenarios—such as the particles moving apart

sufficiently rapidly—and those covered by some version of the KAM theorem [3],

for N ≥ 5 it cannot, so far as we know, even be precluded on the basis of what

has so far been proven that this set has full measure!

It is remarkable that the situation in the corresponding quantum system is

very different. In orthodox quantum theory the time evolution of the state ψt is

given by a one-parameter unitary group Ut on a Hilbert space H. Ut is generated

by a self-adjoint operator H , which on smooth wave functions in H = L2(Ω) is

given by

H = −
∑N

k=1

h̄2

2mk
∆k + V = H0 + V, (4)

i.e., Schrödinger’s equation is regarded as the “generator equation” for Ut. Hence

the “problem of the existence of dynamics” for Schrödinger’s equation is reduced

to that of showing that the relevant HamiltonianH (given by the particular choice

of the potential V ) is self-adjoint. This has been done in great generality, inde-

pendent of the number of particles and for large classes of potentials, including

singular potentials like the Coulomb potential, which is of primary physical inter-

est [20, 32]. We shall discuss the meaning and the status of the self-adjointness

of the Hamiltonian from the perspective of Bohmian mechanics in Section 4. It

may be worthwhile to note, however, that the sufficiency of establishing only the

1However, this example, which is 1-dimensional, involves an infinite number of binary colli-

sions before the system explodes and thus does not describe a true pseudocollision.
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self-adjointness of the Hamiltonian for a satisfactory physical interpretation has

been questioned by Radin and Simon [29]: “Interestingly enough, while Kato’s

result ‘solves’ the dynamical existence question in the quantum case, it says

nothing about the question of x(t)2 remaining finite in time! From its physical

interpretation, proof of such regularity property is clearly desirable.”

In Bohmian mechanics we have not only Schrödinger’s equation (3) to consider,

but also the differential equation (2), governing the motion of the particles. Thus

the question of existence of the dynamics of Bohmian mechanics draws again

nearer to the situation in Newtonian mechanics, as it depends now on detailed

regularity properties of the velocity field vψ (1). Local existence and uniqueness

of Bohmian trajectories is guaranteed if the velocity field vψ is locally Lipschitz

continuous. We therefore certainly need greater regularity for the wave function

ψ than merely that ψ be in L2(Ω).

Global existence is more delicate. In addition to the nodes of ψ, there are

singularities comparable to those of Newtonian mechanics. Firstly, even for a

globally smooth velocity field the solution of (2) may explode, i.e., it may reach

infinity in finite time. Secondly, the boundary points of Ω, typically the singular

points of the potential, are reflected in singular behavior of the wave function at

such points, giving rise to singularities in the velocity field (1).2

The problem we address is the following: Suppose that at some arbitrary

“initial time” (t0 = 0) the N -particle configuration lies in the complement of the

set of nodes and singularities of ψ0. Does the trajectory develop in a finite amount

of time into a singularity of the velocity field vψ, or does it reach infinity in finite

time? According to Theorem 3.1 and Corollary 3.2, the answer is negative for

“typical” initial values, for a large class of potentials including the physically

most interesting case of N -particle Coulomb interaction with arbitrary charges

and masses. While we consider in this paper only particles without spin, Bohmian

mechanics can be naturally defined for spinor-valued wave functions as well [4,

8, 17]. We shall deal with spin, including the motion in a magnetic field, in a

subsequent work.

The quantity of central importance for our proof of these results—as well as

for the question of the self-adjointness of the Hamiltonian—turns out to be the

quantum flux Jψ(q, t) = (jψ, |ψ|2), a (d+1)-vector, with jψ = vψ|ψ|2 the quantum
2For example, the ground state wave function of one particle in a Coulomb potential V (q) =

1/|q|, q ∈ IR3 (“hydrogen atom”) has the form e−|q|, which is not differentiable at the point

q = 0 of the potential singularity.
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probability current. The absolute value of the flux through any surface in Ω× IR

controls the probability that a trajectory crosses that surface. Surfaces of interest

for us are the boundaries of neighborhoods around all the singular points for

Bohmian mechanics. Loosely speaking, the importance of the quantum flux flows

from the following insight: “If there is no absolute flux into the singular points,

the singular points are not reached.”

We remark that the quantum flux is, in fact, important for most applications

of quantum physics, as well as for the mathematics revolving around the self-

adjointness of Schrödinger operators. Heuristically, the “right” behavior of the

quantum flux at the critical points ensures self-adjointness of the Hamiltonian—

i.e., conservation of probability. But suppose we ask, probability of what? The

usual answer—the probability of finding a particle in a certain region—is jus-

tified by Bohmian mechanics: A particle is found in a certain region because,

in fact, it’s there. By incorporating the positions of the particles into the theo-

ry, and thus interpreting the quantum flux as a flux of particles moving along

trajectories, Bohmian mechanics can be regarded as providing the basis for all

intuitive reasoning in quantum mechanics. (For more on this point, see also

[7, 8, 4, 13, 14, 17, 11].)

The paper is organized as follows: In Section 2, the relevant notion of “typical-

ity” is discussed. Section 3 contains our main results. In Section 3.1 we present

the broad structure of the argument and in Section 3.2 we show how to trans-

form the problem to that of controlling flux integrals. The main theorem and

corollary are proven in Section 3.3. In Section 4 we discuss various aspects of

the self-adjointness of the Hamiltonian from the point of view of Bohmian me-

chanics. In particular, in Section 4.1 we show that in d = 1 dimensions global

existence holds under conditions which in certain respects are milder than those

of Theorem 3.1.

This is the first work concerned with a rigorous examination of the problem

of existence of the motion in Bohmian mechanics. For the related theory of

Nelson, stochastic mechanics, this question has been discussed by Nelson [28]

and also by Carlen [9]. The behavior of the Bohmian motion at the nodes of ψ

has been addressed by Bohm [7] and Holland [17]. Bohm argues that particles

are either repelled from the nodes or cross them with infinite speed. (Bohm,

however, was not concerned with the question of existence but with consistency

with “ρ = |ψ|2.”) Holland claims to show that a trajectory cannot reach a node
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unless it is always at some node. His argument, however, is circular, in that it

requires the very regularity whose breakdown at nodes is the source of difficulty.

Here is a simple counterexample to the claims of Bohm and Holland: Consider

the one-dimensional harmonic oscillator (with h̄ = m = ω = 1) and take as the

wave function of the particle a superposition of the ground state and the second

excited state, ψt(q) = e−q
2/2e−it/2[1 + (1 − 2q2)e−2it]. This wave function has

nodes (among others) at q = 0, t = (n + 1
2
)π for all integers n. It leads to a

velocity field which is an odd function of q, i.e., which defines a motion which is

reflection invariant. Therefore Qt = 0, t 6= (n + 1
2
)π, is a solution of (2) which

runs—first—into the node (0, π/2) (with velocity 0 and which furthermore may

be consistently continued through the nodes).

2 Equivariance and Typicality

The dynamical system defined by Bohmian mechanics is associated with a natural

measure, given by the density |ψ0|2 on configuration space Ω. If ψ0 is normalized,

i.e., if the L2-norm ‖ψ0‖ = (
∫
Ω |ψ0|2dq)1/2 = 1, then the density |ψ0|2 defines

a probability measure on configuration space Ω, which we shall denote by P,

that plays the role usually played by the “equilibrium measure.” Thus P de-

fines our notion of “typicality” [13]. Given the existence of the dynamics Qt

for configurations—the result we establish here—the notion of typicality is time

independent by equivariance [13]:

ρ0 = |ψ0|2 =⇒ ρt = |ψt|2 for all t ∈ IR, (5)

where ρt denotes the probability density on configuration space Ω at time t—

the image density of ρ0 under the motion Qt. This follows from comparing the

continuity equation for an ensemble density ρt(q)

∂ρt(q)

∂t
+

N∑

k=1

∇k · [vψt

k (q)ρt(q)] = 0 (6)

with the quantum continuity equation

∂|ψt(q)|2
∂t

+
N∑

k=1

∇k · jψt

k (q) = 0 (7)

and noting that the quantum probability current jψ = (jψ1 , ..., j
ψ
N ) is given by

j
ψ
k = v

ψ
k |ψ|2 =

h̄

2imk
(ψ∗∇kψ − ψ∇kψ

∗). (8)
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We further denote the space-time current, the quantum flux, by Jψ = (jψ, |ψ|2).
In our proof of global existence, this quantity gives the basic estimate for the

probability that a trajectory reaches singularities of the velocity field or infinity.

It is at this stage important to bear in mind the conceptual difference between

the Equations (6) and (7). The continuity equation (6), even without global

existence of differentiable trajectories Qt, holds “locally” on the set where vψ is

smooth, with ρt suitably interpreted. This understanding is indeed basic to all

our proofs.

Equation (7), on the other hand, is an identity for every ψt which satisfies

Schrödinger’s equation classically. This is seen by calculating

∂|ψt|2
∂t

=
1

ih̄
(ψ∗

tHψt − ψtHψ
∗
t ). (9)

But, without having established global existence, it is not a continuity equation

in the classical sense—despite its name. By establishing global existence, we

simultaneously show that the quantum probability current jψ is indeed a classical

probability current, propagating the ensemble density |ψ|2 along the integral

curves of the vector field vψ.

3 Global existence and uniqueness

We make the following general assumptions:

A1: The potential V is a C∞-function on Ω.

A2: The Hamiltonian H is a self-adjoint extension of H|C∞

0 (Ω) with domain

D(H).

A3: The initial wave function ψ0 is a C∞-vector of H, ψ0 ∈ C∞(H), and is

normalized, ‖ψ0‖ = 1.

The boundary ∂Ω of the configuration space Ω will be denoted by S. (Recall

that usually S is the set of singularities of the potential.) C∞
0 (Ω), the set of

C∞-functions with compact support contained in Ω, is dense in L2(Ω), and the

Hamiltonian is symmetric on this set. Since H is real, i.e., commutes with com-

plex conjugation, there always exist self-adjoint extensions. The set of admissible

initial wave functions, C∞(H) =
⋂∞
n=1D(Hn), is dense in L2(Ω) and invariant

under the time evolution e−itH/h̄, and is therefore a core, i.e., a domain of essential

self-adjointness for H .3

3Some special C∞-vectors are eigenfunctions and “wave packets” ψ ∈ Ran(P[a,b]), where

P[a,b] denotes the spectral projection of H to the finite energy interval [a, b].
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In Lemma 6.1 we show that as a consequence of A1–A3 we may regard ψt =

e−itH/h̄ψ0 as being in C∞(Ω×IR) (and thus as a classical solution of Schrödinger’s

equation). Then the velocity field vψ (cf. (1)) is C∞ on the complement of the set

N of nodes of ψ, N := {(q, t) ∈ Ω × IR : ψ(q, t) = 0}, i.e., on the set of “good”

points

G := (Ω× IR) \ N ,

which is an open subset of IRd× IR. Let Gt denote the slice of G at a fixed time t:

Gt := Ω \ Nt, where Nt := {q ∈ Ω : ψ(q, t) = 0}. Then by a standard theorem of

existence and uniqueness of ordinary differential equations, for all initial values

(q0, t0) in G there exist τ−(q0, t0) < t0, τ(q0, t0) > t0, and a unique maximal (non-

extendible) solution Q of (2) on the time interval (τ−(q0, t0), τ(q0, t0)). From

continuous dependence on initial values, the domain D of the maximal solution

Q(t; q0, t0),

D := {(t, q0, t0) : (q0, t0) ∈ G, t ∈ (τ−(q0, t0), τ(q0, t0))}, (10)

is an open subset of IRd+2 (and Q is locally Lipschitz continuous on D with

respect to (t, q0, t0)). Thus τ is lower semi-continuous and hence, in particular,

measurable. Because of the time translation invariance of the theory, we may fix

t0 = 0, writing τ(q0) for τ(q0, 0), with similar notation for τ−. Under additional

conditions on Ω and H (see Corollary 3.2), we shall show that τ(q0) = ∞ for

typical q0, i.e., we show that the solution exists globally in time P-almost surely:

P(τ <∞) = 0. (11)

This is equivalent to

∀T <∞ : P(τ < T ) = 0. (12)

(Note that by time translation invariance and equivariance, P(τ < ∞) = 0 for

all ψ0 ∈ C∞(H) implies that P(τ− > −∞) = 0 for all ψ0 ∈ C∞(H), so that (11)

indeed implies global existence and uniqueness.)

3.1 The program

We view the maximal solution Qt as a stochastic process on G0 equipped with the

probability measure P, i.e., q0 is distributed according to the probability density

|ψ0|2. The basic criterion for global existence arises from the following properties

of the maximal solution. The set of limit points L(q0) of the trajectory starting
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at q0 (q∗ ∈ L :⇔ there is a sequence tk, tk → τ ≡ τ(q0) with limk→∞Qtk = q∗)

is either empty—this is equivalent to limtրτ |Qt| = ∞—or nonempty, in which

case, if τ < ∞, (q∗, τ) ∈ ∂G for all q∗ ∈ L. (The solution Q need not be

continuous at t = τ , i.e., L might contain more than one point, and there might

additionally be sequences tk → τ along which |Qtk | → ∞.) We thus have to see

whether trajectories come too close to the boundary of G or to infinity. We do this

by checking whether they reach the boundary of Gn, an increasing (Gn1 ⊂ Gn2

for n1 < n2) sequence of open sets Gn ⊂ G, Gn ⊂ G, which are bounded in

configuration space, i.e., for all T ∈ IR, the set Gn[0,T ] := Gn ∩ (IRd × [0, T ]) is

bounded.

For q0 ∈ Gn0 , we introduce the stopping time τn(q0), at which the process Qt

first hits the boundary of Gn:

τn(q0) := sup{s > 0 : (Qt(q0), t) ∈ Gn for all t ≤ s}.

Now, from the elementary theory of ordinary differential equations, for all q0 ∈
Gn0 ,

if τ(q0) <∞, then τn(q0) < τ(q0) and (Qτn(q0)(q0), τ
n(q0)) ∈ ∂Gn. (13)

Furthermore, the sequence τn is increasing in n. For all n and all T ≤ ∞, we

have

{q0 ∈ G0 : τ < T} ⊂ (G0 \ Gn0 ) ∪ {q0 ∈ Gn0 : τn < T}

and therefore

P({q0 ∈ G0 : τ < T}) ≤ P(G0 \ Gn0 ) +P({q0 ∈ Gn0 : τn < T}) (14)

Thus to obtain the global existence and uniqueness of Bohmian mechanics for

typical initial configurations, it is sufficient to establish the vanishing of the right

hand side of (14) as n → ∞ for some sequence of sets Gn. (Note as a matter of

fact that the right hand side of (14) decreases as n increases.)

To proceed, we need to separate different parts of the boundary of Gn which

we shall treat in different ways: those close to infinity, those close to S = ∂Ω,

and those close to the set N of nodes of the wave function. We introduce Kn, a

sequence of bounded open sets exhausting IRd, Kn ր IRd; Sδ, a sequence of closed
neighborhoods of S of “thickness δ”; and N ǫ, a sequence of closed neighborhoods

of N of “thickness ǫ.” (For the following general remarks, we do not need to

specify these sets more concretely; this will be done in Section 3.3.) Thus the
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index n accordingly gets replaced by ǫδn. Gǫδn then denotes the set of “ǫ-δ-n-

good” points in configuration-space-time:

Gǫδn := (((Kn ∩ Ω) \ Sδ)× IR) \ N ǫ,

and Gǫδnt denotes the slice at a fixed time t ∈ IR:

Gǫδnt := (Kn ∩ Ω) \ (Sδ ∪N ǫ
t ).

Furthermore, we define

Gδn(0,T ) := ((Kn ∩ Ω) \ Sδ)× (0, T ). (15)

From (13), we may write, with x := (Qmin(τǫδn,T ),min(τ ǫδn, T )),

{q0 ∈ Gǫδn0 : τ ǫδn < T} = {q0 ∈ Gǫδn0 : x ∈ ∂Gǫδn ∩ (IRd × (0, T ))}
= {q0 ∈ Gǫδn0 : x ∈ ∂N ǫ ∩ Gδn(0,T )}
∪ {q0 ∈ Gǫδn0 : x ∈ (∂Sδ ∩ Ω)× (0, T )}
∪ {q0 ∈ Gǫδn0 : x ∈ (∂Kn ∩ Ω)× (0, T )}. (16)

and therefore we arrive at

P({q0 ∈ Gǫδn0 : τ ǫδn < T}) ≤ P({q0 ∈ Gǫδn0 : x ∈ ∂N ǫ ∩ Gδn(0,T )})
+ P({q0 ∈ Gǫδn0 : x ∈ (∂Sδ ∩ Ω)× (0, T )})
+ P({q0 ∈ Gǫδn0 : x ∈ (∂Kn ∩ Ω)× (0, T )}). (17)

By virtue of (14) (almost sure) global existence follows if for some suitable choice

of sets N ǫ, Sδ, and Kn, P(G0 \ Gǫδn0 ) and the right hand side of (17) can be made

arbitrarily small by appropriately choosing ǫ, δ and n.

3.2 The flux argument

Consider the random trajectory (G0,P, Q̃t) obtained by stopping the original

process Qt at time τ and placing it in the cemetery † : The process Q̃t : G0 −→
Ω ∪ {†} is defined, for all t ≥ 0, by

Q̃t(q0) :=




Qt(q0) for t < τ(q0)

† for t ≥ τ(q0).
(18)

Let ρt be the image density of Q̃t restricted to Ω.
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Denote by I the set

I := {(Qt(q0), t) : t ∈ (τ−(q0), τ(q0)) and q0 ∈ G0},

and by It := RanQ̃t \ {†} (It ⊂ Gt) its time-t slice. I is an open subset of G. (I
can be identified with D ∩ ({0} × IRd+1), cf. (10).) Clearly ρt = 0 on Gt \ It for
t > 0. Note that on I both |ψt|2 and ρt are solutions of the continuity equation (6)

restricted to I with the same initial data. Uniqueness of solutions of quasilinear

first order partial differential equations on the set where the characteristics exist

implies that for all t ≥ 0

ρt(q) = |ψt(q)|2 for all q ∈ It. (19)

Consider now a smooth surface Σ in G. Recalling the probabilistic meaning

of the flux Jt(q) := (ρt(q)v
ψt(q), ρt(q)), we obtain that the expected number of

crossings of Σ by the random trajectory Q̃t (including tangential “crossings” in

which the the trajectory remains on the same side of Σ) is given by
∫

Σ
|Jt(q) · U |dσ (20)

where U denotes the local unit normal vector at (q, t). (
∫
Σ(J ·U)dσ is the expected

number of signed crossings.) (Consider first a small surface element which the

trajectory can cross at most once. The probability density for this crossing is

readily calculated to be |J · U |. Invoking the linearity of the expectation value

yields then the general statement.)4

The probability of crossing Σ (at least once) is hence bounded by (20). From

(19) we obtain that

|Jt · U | ≤ |(|ψt(q)|2vψt(q), |ψt|2) · U | = |(jψt, |ψt|2) · U | = |Jψt · U |

and thus we arrive at the bound

P(Q̃t crosses Σ) ≤
∫

Σ
|Jψt(q) · U |dσ. (21)

If now the sets N ǫ, Sδ, and Kn are choosen in such a way that their boundaries

are piecewise integrable surfaces, the events on the r.h.s. of (17) are crossings by

4In stochastic mechanics [28], which involves the same quantum flux, the particle trajectories

are realizations of a diffusion process and are hence not differentiable, i.e., velocities do not

exist. Thus in stochastic mechanics the flux does not have the same probabilistic significance

and hence the subsequent arguments are not valid for stochastic mechanics.
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Q̃t through the respective surfaces, and hence (21) implies the following bounds

for the terms in (17):

P(x ∈ (∂N ǫ ∩ Gδn(0,T ))) ≤
∫

∂N ǫ∩Gδn
(0,T )

|Jψt(q) · U |dσ := N(ǫ, δ, n),

P(x ∈ ((∂Sδ ∩ Ω)× (0, T ))) ≤
∫

(∂Sδ∩Ω)×(0,T )
|Jψt(q) · U |dσ := S(δ), (22)

P(x ∈ ((∂Kn ∩ Ω)× (0, T ))) ≤
∫

(∂Kn∩Ω)×(0,T )
|Jψt(q) · U |dσ =: I(n).

(If a boundary happens to be the empty set, the corresponding integral of course

vanishes.)

It seems intuitively rather clear5 that all the flux integrals should vanish in

the limit ǫ → 0, δ → 0, and n → ∞: It seems fairly obvious that the “nodal

integral” N(ǫ, δ, n) should vanish as ǫ → 0 since Jψt is zero at the nodes.6 The

“singularity integral” S(δ) should vanish in the limit δ → 0 if the set S has

codimension greater than 1, which is usually the case. Furthermore, jψ = 0 at

S is a natural boundary condition defining a domain of self-adjointness of the

Hamiltonian. Finally, the “infinity integral” I(n) should tend to zero as n → ∞
since ψt(q) (which is sufficiently smooth) and hence Jψt(q) should rapidly go to

zero as |q| → ∞.

3.3 Global existence of Bohmian mechanics

Our main result is the following theorem:

Theorem 3.1 Assume A2, A3, and further

A1′: A1 and S ⊂ ⋃m
l=1 Sl, where m < ∞ and the Sl are (d − 3)-dimensional

hyperplanes;

A4:
∫ T
0 ‖∇ψt‖2dt <∞ for all 0 < T <∞.

Then P(τ <∞) = 0.

Since Sl is a (d−3)-dimensional hyperplane, it may be written as Sl = {yl = al}
with yl denoting the map IRd → IR3, q 7→ (q · y1l , q · y2l , q · y3l ) where y1l , y2l , y3l are

3 orthogonal unit vectors normal to the hyperplane Sl and al ∈ IR3 a constant.

5By mentioning these heuristics we do not wish to suggest the structure of the rigorous proof

given in the next section, nor need this proof sustain these heuristics.
6One might worry about the “size of ∂N”being uncontrollably large. However, since ψ is a

complex smooth function, N might be expected to have codimension 2 “generically,” so ∂N ǫ

should have small area.
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The Condition A1′ on the shape of S fits well with the 3-dimensionality of

physical space. If V is a central potential, Sl is of the form {qi = 0}, and for a

pair potential, Sl is of the form {qi − qj = 0} for some 1 ≤ i < j ≤ N . (Note

that if d = νN < 3, Assumption A1′ demands that S = ∅.)
Under the Assumption A1′, the configuration space Ω = IRd \ S; in particular,

L2(Ω) = L2(IRd).7 Recall that H0 denotes the self-adjoint operator

H0 = −
N∑

k=1

h̄2

2mk
∆k

on the Hilbert space H = L2(Ω) = L2(IRd).

The Condition A4 of “finite integrated kinetic energy” may be ensured

by bounding the quadratic form (∇ψt,∇ψt) ≤ M(ψt, H0ψt) with M =

(2/h̄2)max(m1, . . . , mN) by the form (ψt, Hψt), which is finite and independent

of t for ψ0 (and hence ψt) in the form domain [31] Q(H)(⊃ D(H)) of the Hamil-

tonian H .8 The following corollary shows that Theorem 3.1 indeed implies the

global existence and uniqueness of Bohmian mechanics for all ψ0 ∈ C∞(H) for a

large class of Hamiltonians.

Corollary 3.2 Assume

A1′′: A1′ and V = V1+V2, where V1 is bounded below, and V2 is H0-form bounded

with relative bound a < 1,

A2′: H is the form sum H0 + V [15],

and A3. Then P(τ < ∞) = 0 and Bohmian mechanics exists uniquely and

globally in time P-almost surely.

Proof. We show that A4 holds: That V2 is H0-form bounded means that

Q(H0) ⊂ Q(V2) and that for ψ ∈ Q(H0) there exist constants a, b > 0 such

that

|(ψ, V2ψ)| ≤ a(ψ,H0ψ) + b(ψ, ψ).

7Thus Theorem 3.1 does not cover the case of a bounded configuration space Ω, for which

boundary conditions of Dirichlet or Neumann (or mixed) type are normally imposed. See,

however, our Theorem 4.1.
8Note that the notation (ψ,Aψ) for the quadratic form associated with the self-adjoint

operator A is symbolic: Only for ψ ∈ D(A) does it coincides with the indicated scalar product

in H = L2(IRd); more generally it can be defined via the spectral representation for A.
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Since V1(q) ≥ −c, c > 0, for all q ∈ Ω, we obtain for ψ ∈ Q(H) = Q(H0)∩Q(V1)

that

(1− a)(ψ,H0ψ) ≤ (ψ, (H0 + V2)ψ) + b(ψ, ψ)

≤ (ψ, (H0 + V1 + V2)ψ) + c(ψ, ψ) + b(ψ, ψ)

= (ψ,Hψ) + (b+ c)(ψ, ψ).

Hence with a < 1 we have that for ψ0 ∈ Q(H) ⊂ Q(H0) and all t

1

M
(∇ψt,∇ψt) ≤ (ψt, H0ψt) ≤

1

1− a
(ψt, Hψt) +

b+ c

1− a
(ψt, ψt)

=
1

1− a
(ψ0, Hψ0) +

b+ c

1− a
‖ψ0‖2

and A4 follows. ✷

The class ofH0-form bounded potentials, with arbitrary small relative bound a,

includes for example R+L∞ or L3/2+L∞ on IR3, where R is the Rollnik class. (For

details, see for example [21, 36, 32].) Therefore such H0-form bounded potentials

include power law interactions 1/rα with α < 2, and thus the physically most

relevant potential of N -particle Coulomb interaction with arbitrary charges and

masses. (The class of H0-form bounded potentials contains the more familiar

class of H0(-operator) bounded potentials, which already includes the N -particle

Coulomb interaction [20].) Furthermore, harmonic and anharmonic (positive)

potentials are included, and arbitrarily strong positive repulsive potentials.

Proof of Theorem 3.1. We establish (12)—for all 0 < T <∞, P(τ < T ) = 0—

following the program described in Section 3.1 and the flux argument of Section

3.2.

We first choose suitable sets N ǫ, Sδ, and Kn. Let ǫ > 0. Set

N ǫ :=
⋃

k:Cǫ(k)∩N 6=∅

Cǫ(k), (23)

where (Cǫ(k))k∈IN is a “partition” of configuration-space-time into closed cubes

with side length ǫ whose edges are parallel to the canonical basis vectors of

IRd+1. Let δ = (δ1, . . . , δm), δl > 0 for all l. Recalling that S ⊂ ⋃m
l=1 Sl with

Sl = {yl = al}), set

Sδ :=
m⋃

l=1

Sδll , Sδll := {q ∈ IRd : dist(q,Sl) ≤ δl} = {|yl − al| ≤ δl}.
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For the cutoff at infinity we choose open balls with radii n ∈ IR+:

Kn := {q ∈ IRd : |q| < n}.

By virtue of (14), (17), and (22), we obtain that for all 0 < T <∞

P(τ < T ) ≤ P(G0 \ Gǫδn0 ) +P(τ ǫδn < T )

≤ P(G0 \ Gǫδn0 ) +P(x ∈ (∂N ǫ ∩ Gδn(0,T )))
+P(x ∈ (∂Sδ × (0, T ))) +P(x ∈ ((∂Kn ∩ Ω)× (0, T )))

≤ P(G0 \ Gǫδn0 ) +N(ǫ, δ, n) + S(δ) + I(n) (24)

For the first term on the right hand side of (24) recall that Gǫδn0 = (Kn ∩ Ω) \
(N ǫ

0 ∪ Sδ); therefore

G0 \ Gǫδn0 = (G0 \ Kn) ∪ (G0 ∩ Sδ) ∪ (G0 ∩N ǫ
0 ),

and thus

P(G0 \ Gǫδn0 ) ≤ P(G0 \ Kn) +P(G0 ∩ Sδ) +P(G0 ∩ N ǫ
0 ).

The vanishing of the three terms on the right hand side in the limit n → ∞,

δ → 0, resp. ǫ → 0, follows easily from the facts that P is a probability measure

with density |ψ0|2, and that the respective sets tend to P-measure 0 sets.

The vanishing of the remaining terms in (24) is the content of the following

lemmas:

Lemma 3.3 Assume A1–A4. For all 0 < T < ∞ there exists a sequence nk,

nk → ∞ as k → ∞, with

lim
k→∞

I(nk) = 0.

Lemma 3.4 Assume A1′, and A2–A4. Then there exists a sequence of m-vectors

δ(k), |δ(k)| → 0 as k → ∞ (with δ
(k)
l > 0 for all l, k), with

lim
k→∞

S(δ(k)) = 0.

Lemma 3.5 Assume A1–A3. For all 0 < T <∞, n <∞ and δ > 0,

lim
ǫ→0

N(ǫ, δ, n) = 0.
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These lemmas will be proven below. Lemmas 3.3, 3.4, and 3.5 imply that the

r.h.s. of (24) can be made arbitrarily small. (Note that if d < 3, Assumption A1′

demands that S = ∅, and hence that S ≡ 0, so that Lemma 3.4 is trivial in this

case.) ✷

Proof of Lemma 3.3.

I(n) =
∫

(∂Kn∩Ω)×(0,T )
|Jψt(q) · U | dσ =

∫ T

0

∫

∂Kn∩Ω
|jψt(q) · u| ds dt

≤ µ
∫ T

0

∫

∂Kn∩Ω
|ψt| |∇ψt| ds dt =: µĨ(n)

with µ = h̄/min(m1, . . . , mN), ds the (d − 1)-dimensional surface element of

∂Kn, and u the local unit normal vector of this surface. To show that Ĩ(n) goes

to 0 along some sequence nk, we prove a stronger statement, namely that Ĩ(n) is

integrable over n. This is immediate since
∫ ∞

0
Ĩ(n) dn yields the volume integral

of |ψt| |∇ψt|, which is easily estimated:

∫ ∞

0
Ĩ(n) dn =

∫ T

0

∫

Ω
|ψt| |∇ψt| dq dt

≤
∫ T

0
‖ψt‖ ‖∇ψt‖ dt =

∫ T

0
‖∇ψt‖ dt <∞,

where we have used A4 for the last inequality. We may thus conclude that there

exists a sequence (nk)k with nk → ∞ as k → ∞, along which Ĩ(nk) → 0. This

proves Lemma 3.3. ✷

Proof of Lemma 3.4. We may assume that d ≥ 3. We shall use the following

Inequality: For ψ ∈ Q(H0)

∫

IRd

|ψ|2
4|yl − al|2

dq ≤
∫

IRd
|∇ψ|2dq. (25)

This is a straightforward extension of the inequality known as Hardy’s inequality

or the “uncertainty principle lemma” (see, for example, [32]) usually given for

ψ ∈ C∞
0 (IR3):

∫

IR3

|ψ|2
4r2

dr ≤
∫

IR3
|∇ψ|2dr.

(One immediately obtains (25) for d = 3 and ψ ∈ C∞
0 (IR3). Then, viewing ψ ∈

C∞
0 (IRd) as ψ ∈ C∞

0 (IR3) by keeping all coordinates fixed except yl, one extends

this inequality easily to C∞
0 (IRd). It is then further extendible to ψ ∈ Q(H0)

because C∞
0 (IRd) is dense in Q(H0) with respect to the H0-form norm.)
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First we estimate

S(δ) =
∫

∂Sδ×(0,T )
|Jψt(q) · U | dσ =

∫ T

0

∫

∂Sδ
|jψt(q) · u| ds dt

≤ µ
m∑

l=1

∫ T

0

∫

∂S
δl
l
∩Ω

|ψt| |∇ψt| ds dt =: µ
m∑

l=1

S̃l(δl).

We now integrate (1/|yl − al|)S̃l(δl) over δl = |yl − al|: By the definition of

Sδll = {|yl − al| ≤ δl}, this yields the volume integral of (|ψ|/|yl − al|) |∇ψ|,
which may be bounded as follows:

∫ ∞

0

1

δl
S̃l(δl) dδl =

∫ T

0

∫

Ω

|ψt|
|yl − al|

|∇ψt| dq dt

=
∫ T

0

∫

IRd

|ψt|
|yl − al|

|∇ψt| dq dt ≤
∫ T

0
‖ ψt
|yl − al|

‖ ‖∇ψt‖ dt

≤ 2
∫ T

0
‖∇ψt‖2 dt < ∞

using Schwarz’s inequality and the Inequality (25). Since 1/δl is not integrable

at δl = 0, for each l there exists a sequence δ
(k)
l with δ

(k)
l → 0 as k → ∞, along

which S̃l(δ
(k)
l ) → 0. This proves Lemma 3.4. ✷

Proof of Lemma 3.5. This proof is more involved than the previous ones, since

the nodal set is unknown. The basic idea is the following: Where the (d + 1)-

gradient ψ′ =
(
∇ψ, ∂ψ

∂t

)
is small the current is very small, and where ψ′ is not

small the surface area can be controlled.

Let η > 0. We split the part of N ǫ contributing to the surface ∂N ǫ ∩ Gδn(0,T )
into two (not necessarily disjoint) sets:

N ǫ
> :=

⋃

k∈I>

Cǫ(k), and N ǫ
< :=

⋃

k∈I<

Cǫ(k) with

I> := {k : Cǫ(k) ∩ {(q, t) : ψ(q, t) = 0, |ψ′(q, t)| > η} ∩ Gδn(0,T ) 6= ∅}
I< := {k : Cǫ(k) ∩ {(q, t) : ψ(q, t) = 0, |ψ′(q, t)| ≤ η} ∩ Gδn(0,T ) 6= ∅}

Then

N(ǫ, δ, n) =
∫

∂N ǫ∩Gδn
(0,T )

|Jψt(q)·U | dσ ≤
∫

∂N ǫ
>

|Jψt(q)| dσ+
∫

∂N ǫ
<

|Jψt(q)| dσ (26)

On the compact set G(δ/2)(n+1)
(−1,T+1) (cf. (15)) there exist a global Lip schitz constant

L for ψ′, and a global boundK for |ψ′|. Observe that for ǫ < min(δ/(2
√
d), 1/

√
d),

N ǫ
>
<
⊂ G(δ/2)(n+1)

(−1,T+1) . Let therefore ǫ < min(δ/(2
√
d), 1/

√
d).
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Consider first N ǫ
<. In this set the flux |Jψ| is very small. We may estimate the

integral by simply taking an appropriate bound of |Jψ| times the total area of the

surfaces of all the cubes. In every ǫ-cube Cǫ of N ǫ
< there is a point (q∗, t∗) ∈ N

with |ψ′(q∗, t∗)| ≤ η. Thus (in every ǫ-cube of N ǫ
< and hence) for all (q, t) ∈ N ǫ

<

|ψ′(q, t)| ≤ η + L
√
d+ 1ǫ.

|ψ| is thus bounded on (every ǫ-cube of N ǫ
< and hence on) N ǫ

< by (η +

L
√
d+ 1ǫ)

√
d+ 1ǫ =: c1ηǫ+ c2ǫ

2. The flux is then bounded by

|Jψ| =
√
(|ψ|2)2 + |jψ|2 ≤ |ψ|2 + |jψ| ≤ |ψ|2 + µ|ψ| |∇ψ| (27)

≤ (c1ηǫ+ c2ǫ
2)2 + µ(c1ηǫ+ c2ǫ

2)(η + L
√
d+ 1ǫ)

To bound the surface area of N ǫ
<, we simply add the areas of the surfaces of all

ǫ-cubes in G(δ/2)(n+1)
(−1,T+1) . The number of ǫ-cubes in G(δ/2)(n+1)

(−1,T+1) is bounded by c3/ǫ
d+1

with

c3(n, T, d) = (T + 2)(2n+ 2)d,

and the surface area of a single cube is equal to 2(d+ 1)ǫd. Thus for the surface

area of ∂N ǫ
< we have the bound

|∂N ǫ
<| ≤

2(d+ 1)c3
ǫ

(28)

and combining (27) and (28) we obtain that

∫

∂N ǫ
<

|Jψ|dσ ≤
(
sup
N ǫ

<

|Jψ|
)
(|∂N ǫ

<|)

≤ 2(d+ 1)c3
ǫ

((c1ηǫ+ c2ǫ
2)2 + µ(c1ηǫ+ c2ǫ

2)(η + L
√
d+ 1ǫ)) (29)

= O(η2), ǫ→ 0.

Consider next the set N ǫ
>. On this set we can control the size of the nodal

surface. To do this we use a further partition of configuration-space-time into

cubes (Cγ(k))k∈IN of side length γ (with sides parallel to the sides of the Cǫ-cubes).

We choose γ so small that any Cγ-cube which contains or overlaps the interior of a

Cǫ-cube ofN ǫ
> lies completely in G(δ/2)(n+1)

(−1,T+1) , i.e., γ < min(δ/(2
√
d)−ǫ, (1/

√
d)−ǫ).

(γ will later be chosen to be proportional to η, and we shall take the limit ǫ→ 0

for fixed η, so that γ ≫ ǫ eventually.)
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We show now that in each γ-cube the number of ǫ-cubes in N ǫ
> is small, at

least compared with (γ
ǫ
)d+1. Consider a γ-cube Cγ(k) containing or overlapping

the interior of a Cǫ-cube of N ǫ
>. Then there is a point (q∗, t∗) ∈ N ∩ Cγ

ǫ (k) with

|ψ′(q∗, t∗)| > η, where Cγ
ǫ (k) is the “ǫ- fattened” γ-cube, i.e., the cube of side

γ + 2ǫ with the same center as Cγ(k). That |ψ′(q∗, t∗)| > η implies that

|ψ′
i(q

∗, t∗)| > η√
2

for either i = 1 or i = 2 (or both), with ψ1 := Reψ and ψ2 := Imψ.

Let ek be that basis vector which is closest to the direction of ψ′
i(q

∗, t∗), i.e.,

for which |ek · ψ′
i(q

∗, t∗)| is maximal. Thus

|ek · ψ′
i(q

∗, t∗)| > η
√
2(d+ 1)

and hence we have that for all (q, t) ∈ Cγ
ǫ (k)

|ek · ψ′
i(q, t)| >

η
√
2(d+ 1)

− L
√
d+ 1(γ + 2ǫ).

Now choose γ such that L
√
d+ 1(γ + 2ǫ) = η/

(
2
√
2(d+ 1)

)
, i.e., introduce

c4 := 1/
(
2L

√
2(d+ 1)

)
and set γ = c4η − 2ǫ. Then for all (q, t) ∈ Cγ

ǫ (k)

|ek · ψ′
i(q, t)| >

η

2
√
2(d+ 1)

. (30)

Let x and y be two space-time points in Cγ
ǫ (k) ∩ N ǫ with ψ(y) = 0 and

x − y = lek, l > 0. Then, on the one hand, by the global bound K on |ψ′| we
have that

|ψi(x)| ≤ K
√
d+ 1ǫ.

On the other hand, it follows from (30) that |ψi(x)| ≥ lη/(2
√
2(d+ 1)). Thus

l ≤ 2K
√
2(d+ 1)ǫ/η =: c5ǫ/η. Therefore the number of ǫ-cubes in N ǫ

> contained

in Cγ
ǫ (k) and lying in an ek-column—the set of ek-translates of an ǫ-cube—is

bounded by (c5/η) + 1. (This is a rather crude estimate. The number of such

cubes is in fact bounded by 2d+
√
d+ 2, independent of η, as can easily be seen

by controlling also the projection of ψ′
i orthogonal to ek.)

Now the number of ek-columns in Cγ
ǫ (k) is no greater than [(γ/ǫ) + 2]d, while

the number of γ-cubes in G(δ/2)(n+1)
(−1,T+1) is bounded by c3/γ

d+1. Thus we obtain a

bound for the surface area of N ǫ
>:

|∂N ǫ
>| ≤

(
c5
η
+ 1

)(
c4η

ǫ

)d c3
(c4η − 2ǫ)d+1

2(d+ 1)ǫd.
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|Jψ| may be estimated (as in (27)) by invoking now the global bound K for

|ψ′| to yield

|Jψ| ≤ K2(d+ 1)ǫ2 + µK2
√
d+ 1ǫ

on N ǫ
>. Thus we arrive at the estimate

∫

∂N ǫ
>

|J |dσ (31)

≤
(
c5
η
+ 1

)(
c4η

ǫ

)d c3
(c4η − 2ǫ)d+1

2(d+ 1)ǫd
(
K2(d+ 1)ǫ2 + µK2

√
d+ 1ǫ

)

Using (29) and (31), by letting first ǫ → 0 and then η → 0, it follows from (26)

that lim
ǫ→0

N(ǫ, δ, n) = 0. ✷

3.4 Remarks

3.4.1. It is an immediate consequence of continuous dependence on initial con-

ditions for solutions of ODE’s that the probabilistic negligibility of the set of

“bad” initial values B := {q0 ∈ G0 : τ(q0) <∞}, P(B) = 0, implies the negligibil-

ity of B in the topological sense: B is of first category in G0, i.e., it is contained in

a countable union of nowhere dense (in G0) sets. (Take Bt = {q ∈ G0 : τ(q) ≤ t};
cf. also [34].) In other words: Global existence of Bohmian mechanics is typical

and generic.

3.4.2. Since P is equivalent to the Lebesgue measure L on G0, we have also

that L(B) = 0 and we thus have the global existence and uniqueness of Bohmian

mechanics L-a.s. on G0.

3.4.3. The flux argument shows that any given hypersurface in Ω × IR (where

ψ is C∞) of codimension greater than 1 will (almost surely) not be reached.

3.4.4. We have shown that under certain conditions on the initial wave func-

tion and the Hamiltonian, particle trajectories exist as solutions of (2) globally

in time for P-almost all initial conditions. In the introduction we have already

given an example showing that in general (i.e., assuming merely the conditions of

Theorem 3.1 or Corollary 3.2) this result does not hold for all initial configura-

tions. However, in that example the dynamics is uniquely extendible to a global

dynamics Q : IR2 → IR, (q, t) 7→ Qt(q). There are 3 continuous trajectories which
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periodically run into nodes of the wave function, while the other trajectories are

global solutions of (2). This extended dynamics Qt(q) is continuous.

However, if the trajectory running through the node at t = 0, q = 1 is analyzed,

one finds that locally Qt(1) ∼ 3

√
3
4
t2 + 1, i.e., the map Qt(q) is not differentiable

with respect to t at t = 0 for fixed q = 1. This may, for example, be seen by

considering the flux through q = 1 for t near 0, or, what amounts to the same

thing, by employing the Formula (41) (see Section 4) expressing the trajectories

as curves of constant value of the function F (q, t) =
∫ q

−∞
|ψt|2 dx. (This behavior

of trajectories hitting nodes is in fact typical—though it does not occur in the

example for the trajectory at the origin; in fact, if ψ(q, t∗) has a node of order

k at q∗, ψ(q, t∗) ∼ αxk with x = q − q∗, then F (q, t∗) ∼ F (q∗, t∗) + ax2k+1, a =
|α|2

2k+1
, and

∂F

∂t
(q, t∗) = −jψt∗ (q) ∼ bx2k, so that F (q, t) ∼ F (q∗, t∗) + ax2k+1 +

bx2ks + cs2, s = t − t∗, in the vicinity of the node. Thus for c 6= 0, the equation

F (q, t) = F (q∗, t∗) implies that x ∼ 2k+1

√
− c
a
s2.)

Concerning the regularity of Qt(q) in q at fixed t, one sees in the example that

for suitable choices of initial time the solution map will fail to be differentiable

at q = 0 (where there will be a fifth root singularity) or at q = ±1 (where there

will be a cube root singularity) as a function of q for fixed t.

For an even stronger breakdown of regularity in q for fixed t, consider the

harmonic oscillator in 3 dimensions, and take the (n = 1, l = 1)-state ψ(q, t) =

re−(r2+z2)/2eiφe−5it/2 in cylindrical coordinates. This wave function vanishes only

at r = 0, i.e., on the z-axis. Particles circle around the z-axis with angular

velocity 1/r2. The map Q is uniquely extendable to a global dynamics given by a

continuous map, which is however not differentiable with respect to q, by defining

Qt(q0) = q0 for all t and q0 ∈ N0.

It is possible also to give an example in which the extended map must fail

even to be continuous with respect to q for fixed t: Consider free motion in

1 dimension, and let the wave function ψ be even, (real and positive), C∞, and

supported on [−b,−a]∪ [a, b] with 0 < a < b <∞. Then ψ ∈ C∞(H0). Moreover,

there is a t1 > 0 such that
(
eiH0t1/h̄ψ

)
(0) 6= 0. Let ψ0 = eiH0t1/h̄ψ. ψt is then

even for all t, so that the velocity field is odd, i.e., symmetric under reflection.

Any extension Q which respects this symmetry must have Qt(0) = 0 for all t.

Then the map Q is discontinuous in q for t = t1, and, in fact, any extension must

have this discontinuity.
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3.4.5. It is well known—at least if V is real analytic in Ω (see for example [30],

page 98)—that if ψ vanishes on a nonempty (bounded) open set in configuration-

space-time, it vanishes everywhere (in the components of Ω×IR that intersect this

set). We remark that under the hypotheses of Corollary 3.2, the same conclusion

would in fact obtain merely if ψ were to vanish everywhere on the boundary of

such a set (and even with the possible exception of a single piece of the boundary

contained in a constant-time hyperplane), since it would then follow from global

existence and the inaccessibility of the nodes that ψ must vanish everywhere in

this set.

3.4.6. The probability of reaching the nodes P(x ∈ (∂N ǫ∩Gδn(0,T ))) may also be

estimated without using flux integrals. We include this argument, which involves

a choice for N ǫ different from the one used earlier. We remark that for the new

N ǫ we can see no reason why ∂N ǫ must be smooth, even piece-wise. Notice also

that Lemma 3.6 involves both stronger premises and, since the convergence in it

is uniform, a stronger conclusion than the corresponding Lemma 3.5.

Lemma 3.6 Assume A1–A4 and, for ǫ > 0, let

N ǫ := {(q, t) ∈ Ω× IR : |ψt(q)| ≤ ǫ}. (32)

Then, uniformly in δ and n, with x := (Qmin(τǫδn,T ),min(τ ǫδn, T )),

lim
ǫ→0

P({q0 ∈ Gǫδn0 : x ∈ (∂N ǫ ∩ Gδn(0,T ))}) = 0.

The proof involves a fairly standard “existence of dynamics” argument and is

analogous to that of Nelson [28] for the similar problem in stochastic mechan-

ics: One looks for an “energy” function on the state space of the motion which

becomes infinite on the catastrophic event. With good a priori bounds on the

expectation value of that function, one can control the probability of catastrophic

events.

Proof. The function which recommends itself here is log |ψ|, i.e., what we control
is the “entropy.”

We first present a formal estimate, disregarding the problem that the solution

curve Qt(q) starting at q may not exist for all times—which is taken care of below.
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Let E denote the expectation with respect to P. We compute for arbitrary T :

E (| log |ψT (QT )| − log |ψ0| |) = E

(∣∣∣∣∣

∫ T

0

d

dt
log |ψt(Qt)|dt

∣∣∣∣∣

)

= E

(∣∣∣∣∣

∫ T

0

(
1

2

1

|ψt(Qt)|2
∂|ψt(Qt)|2

∂t
+

(∇|ψt|) (Qt)

|ψt(Qt)|
· vψt(Qt)

)
dt

∣∣∣∣∣

)
≤

∫ T

0
E

(
1

2

1

|ψt(Qt)|2
∣∣∣∣∣
∂|ψt(Qt)|2

∂t

∣∣∣∣∣

)
dt+

∫ T

0
E

(
µ
|∇ψt(Qt)|2
|ψt(Qt)|2

)
dt, (33)

where we used for the inequality the bounds

∇|ψ| ≤ |∇ψ| and |vψ| ≤ µ

∣∣∣∣∣
∇ψ
ψ

∣∣∣∣∣ (34)

Now use the equivariance of |ψ|2 (cf. (5)) to compute the expectation E(ft(Qt)) =∫
Ω |ψt(q)|2(ft(q))dq and obtain that the right hand side of (33) is equal to

∫ T

0

∫

Ω

1

2

∣∣∣∣∣
∂|ψt(q)|2

∂t

∣∣∣∣∣ dq dt+ µ
∫ T

0

∫

Ω
|∇ψt(q)|2dq dt. (35)

By virtue of (9) we replace |∂|ψt(q)|2/∂t| by |ψ∗
t (q)Hψt(q)−ψt(q)Hψ

∗
t (q)|/h̄. By

Schwarz’s inequality, the first term of (35) is then bounded by

1

h̄

∫ T

0
‖ψt‖ ‖Hψt‖ dt =

T

h̄
‖Hψ0‖ <∞,

and the second term is bounded for each T <∞ by Assumption A4.

To construct from this a rigorous proof we need only define a suitable killed

process. For t ≥ 0 we define Qǫδn
t : Gǫδn0 ∪ {†} −→ Gǫδnt ∪ {†} by

Qǫδn
t (q) :=




Qt(q) for t ≤ τ ǫδn(q)

† for t > τ ǫδn(q)
(36)

For completeness, we set Qǫδn
t (†) = † for all t ≥ 0. Consider the probability

measure P ǫδn
0 on Gǫδn0 ∪ {†} which has the density

ρǫδn0 (q) := |ψ0(q)|2 for q ∈ Gǫδn0

(and, of course, P ǫδn
0 (†) = 1− ∫Gǫδn

0
ρǫδn0 (q) dq). The image measure of the process

Qǫδn
t is denoted by P ǫδn

t := P ǫδn
0 ◦ (Qǫδn

t )−1 and has the density ρǫδnt on Gǫδnt . From

the definition of N ǫ (32),

{q0 ∈ Gǫδn0 : x ∈ (∂N ǫ ∩ Gδn(0,T ))} ⊂ {q0 ∈ Gǫδn0 : |ψ(x)| = ǫ}. (37)
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Since we keep δ and n fixed, and since the estimates are independent of δ and n,

we will omit the indices δ and n on Qǫδn,Gǫδn, ρǫδn.
Define for q ∈ Gǫ0 and t ≥ 0

Dǫ
t(q) := log |ψmin(τǫ(q),t)(Qmin(τǫ(q),t)(q))| − log |ψ0(q)|.

One has that

Dǫ
T (q) =

∫ T

0

∂

∂t
Dǫ
t(q) dt =

∫ T

0
ft ◦Qǫ

t(q) dt,

where

ft(y) :=





0 for y = †
1

2

1

|ψt(y)|2
∂|ψt(y)|2

∂t
+

∇|ψt(y)|
|ψt(y)|

· vψt(y) for y ∈ Gǫt

We shall show that uniformly in ǫ

P({q ∈ Gǫ0 : |Dǫ
T (q)| > K}) → 0 as K → ∞. (38)

Then, since for q0 as in (37) Dǫ
T (q0) = log ǫ− log |ψ0(q0)|, the lemma follows from

(38) by observing that

P({q ∈ Gǫ0 : | log |ψ0(q)|| > K}) → 0 as K → ∞

holds uniformly in ǫ, which is immediate since the density of P is |ψ0|2.
By Markov’s inequality we obtain that

P({q ∈ Gǫ0 : |Dǫ
T (q)| > K}) ≤ 1

K
E

(
1lGǫ

0

∣∣∣∣∣

∫ T

0
ft ◦Qǫ

t dt

∣∣∣∣∣

)
. (39)

Recall now that P = P ǫ
0 on Gǫ0, and that ft = 0 at †. Then by the definition of ρǫt

as the density of the image measure of Qǫ
t one obtains that the right hand side

of (39) is bounded by
1

K

∫ T

0

∫

Gǫ
t

ρǫt(q)|ft(q)|dq dt

Using the bounds (19) (with ρt replaced by ρǫt) and (34) (which holds on Gǫt ) we
finally obtain that

P({q ∈ Gǫ0 : |Dǫ
T (q)| > K}) ≤

1

K

(∫ T

0

∫

Ω

1

2

∣∣∣∣∣
∂|ψt(q)|2

∂t

∣∣∣∣∣ dq dt+ µ
∫ T

0

∫

Ω
|∇ψt(q)|2dq dt

)
. (40)

The bracket on the r.h.s. is (35). By the Assumptions A3 and A4, (35) is finite

and hence the r.h.s. of (40) goes to zero uniformly in ǫ as K → ∞. Thus we have

established Lemma 3.6. ✷
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4 Bohmian mechanics and self-adjointness

4.1. In this subsection we shall discuss the necessity of certain assumptions

under which we have established global existence of the Bohmian particle mo-

tion (cf. Theorem 3.1 and Corollary 3.2). We shall investigate in particular the

assumptions concerning self-adjointness of the Hamiltonian.

By Corollary 3.2 we obtain global existence if the Hamiltonian is the form sum

H0 + V , and if the potential V satisfies certain conditions leading in particular

to the Hamiltonian’s being bounded from below. These conditions on the Hamil-

tonian guarantee in particular that Assumption A4 of Theorem 3.1 is satisfied.

In the case of one particle moving on the half line Ω = (0,∞), we shall prove,

without invoking A4, global existence for a certain class of potentials for arbitrary

self-adjoint extensions, which furthermore may be unbounded below.

Theorem 4.1 Let Ω = (0,∞), H = L2(Ω), and suppose V ∈ C∞(Ω) is such

that H0 + V is in the limit point case at infinity (see for example [37]). Let H be

an arbitrary self-adjoint extension of (H0 + V )|C∞

0 (Ω), and let ψ0 ∈ C∞(H) with

‖ψ0‖ = 1. Then P(τ <∞) = 0.

It follows for example from Theorem X.8 in [32] that if V (r) ≥ −kr2 for r > c

with c, k ≥ 0, then H0 + V is in the limit point case at infinity.

Consider as an example the potential V (q) = −c/q2 with c > 0 large enough:

The Hamiltonian H = H0 + V is in the limit circle case at 0, in the limit point

case at infinity, and unbounded above and below (cf. for example [32]). Thus

by Weyl’s limit point-limit circle criterion there is a one-parameter family of

(similarly unbounded) self-adjoint extensions ofH|C∞

0 (Ω) for all of which, by Theo-

rem 4.1, Bohmian mechanics exists uniquely and globally for P-almost all initial

values.

The proof employs a new definition of the particle dynamics in one dimension

which extends the solution to (2) and is interesting in its own right. (In fact, this

definition extends the Bohm motion, defined by (1) and (2), to an equivariant

motion for all ψ ∈ L2!) Let Qt(q0) be defined implicitly by

∫ Qt(q0)

−∞
|ψt(q)|2dq =

∫ q0

−∞
|ψ0(q)|2dq.

Qt(q0) is well-defined if

F (q, t) :=
∫ q

−∞
|ψt|2dx
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is strictly monotonic in q. This is the case except at extended intervals with

ψt = 0, where F (·, t) has a plateau. To define Qt(q0) globally for q0 ∈ IR, set for

example

Qt(q0) := min{q : F (q, t) = F (q0, 0)} (41)

(and Qt(q0) = −∞ if F (q0, 0) = 0, Qt(q0) = ∞ if F (q0, 0) = 1).

Proof. From Lemma 6.1 we obtain that ψ ∈ C∞(Ω × IR). Therefore, using the

continuity of the scalar product and the L2-differentiability of t 7→ ψt,

F (q, t) =
∫ q

0
|ψt|2 dx = (1l[0,q]ψt, ψt)

(where (·, ·) denotes the scalar product in H = L2(Ω)) is jointly continuous and

differentiable. Clearly F (0, t) = 0, limq→∞ F (q, t) = 1, and ∂F/∂q = |ψt(q)|2.
Moreover,

∂F (q, t)

∂t
=
∫ q

0

∂|ψt|2
∂t

dx = −jt(q) + lim
c→0

jt(c) = −jt(q).

Here the existence of limc→0 jt(c) follows for ψ ∈ C∞(H) from partial inte-

gration of
∫ d
c (ψ

∗(Hψ) − (Hψ∗)ψ) dx and Schwarz’s inequality; the value 0 for

limc→0 jt(c) = 0 follows from the symmetry of H together with the fact that

limd→∞ jt(d) = 0, which holds because H is in the limit point case at infinity.

(See for example [37].)

For all t and all q0 ∈ G0 = Ω\N0, let Qt(q0) be defined by (41). It follows from

the implicit function theorem that t 7→ Qt(q0) is continuous and differentiable for

(q0, t) such that ψt(Qt(q0)) 6= 0, with dQt/dt = j(Qt)/|ψt(Qt)|2 = vψt(Qt), i.e.,

Qt solves the differential equation (2) on G = (Ω × IR) \ N . It remains to show

that for P-almost all initial q0, τ(q0) = sup{s > 0 : Qt(q0) ∈ G for all t ≤ s} is

infinite, i.e., (2) has global solutions for almost all initial values.

Now it is obvious from this definition that Qt(q0) ∈ Ω for all t and all q0 ∈ G0.

(Qt(q0) = 0 corresponds to F (q0, 0) = 0, Qt(q0) = ∞ to F (q0, 0) = 1, and for

q0 ∈ G0, F (q0, 0) ∈ (0, 1).) Moreover, by the L2-continuity of t → ψt, we have

that for 0 < T < ∞ and q0 ∈ G0, inf0≤t≤T Qt(q0) > 0 and sup0≤t≤T Qt(q0) <

∞, i.e., the trajectories cannot run into the (only) possible singularity of the

potential S = {0} or to infinity in finite time. Thus it remains only to control

the probability of hitting N , for which Lemma 3.5 does the job. We omit the

details. ✷
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4.2. One might now wonder whether we have global existence of Bohmian me-

chanics for any self-adjoint Schrödinger Hamiltonian (without assuming A4).

This is quite trivially wrong, as is easily seen by considering free motion on

the interval Ω = (0, 1). There are self-adjoint extensions of H0|C∞

0 (Ω) with

j(0) = j(1) 6= 0. (Similarly one might consider potentials on Ω = (0,∞) such

thatH0+V is in the limit circle case at infinity.) This corresponds to an incoming

flow at 0, balanced by an outgoing flow at 1 (or the other way round) so that

the total probability is conserved (a situation which can of course be identified

with a motion on a circle). Typically, the particle will reach the boundary of Ω,

so that almost sure global existence in the sense of solutions of the differential

equation (2) fails. However, the motion is quite trivially extendible in such a way

that the trajectories are piecewise solutions of the differential equation: when the

boundary of Ω is reached they jump to the other end of Ω. |ψ|2 then remains an

equivariant measure. This motion can be described by replacing (41) by

Qt(q0) := min{q : F̃ (q, t) = F̃ (q0, 0)}

with

F̃ (q, t) =
(
F (q, t)−

∫ t

0
js(0) ds

)
(mod 1)

[Another possibility to define a global motion in this case is to use the unmodified

(41). This provides then an example of a deterministic dynamics completely

different from (and not an extension of) the Bohmian dynamics, ((2) is replaced

by the nonlocal form dQ/dt = (jψ− jt(0))/|ψ|2) for which, however, |ψ|2 remains

equivariant. With this motion, particles do not jump from 1 to 0 or the other

way round. (However, they might all run through nodes!)]

In fact, we expect generally that self-adjointness guarantees (possibly discontin-

uous) extendibility of the Bohmian motion in such a way that |ψ|2 is an equivari-

ant measure. This is suggested by the fact that the symmetry of the Hamiltonian

leads to

lim
δ→0,n→∞

(∫

∂Sδ∩Kn
(jψt(q) · u)ds +

∫

∂Kn\Sδ
(jψt(q) · u)ds

)
= 0,

using integration by parts (Green’s identity)

∫

M
ψ∗(Hψ)dq −

∫

M
(Hψ∗)ψdq = −ih̄

∫

∂M
(jψ · u)ds,
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forM = Kn\Sδ. The vanishing of the integrals over the absolute flux yields global

existence of Bohmian mechanics: In finite time the singularities and infinity are

not reached. The flux balance from self-adjointness alone suggests extendibility

of the motion: Some parts of the singularities (or infinity) may act as sources,

others as sinks.

4.3. For a wider perspective on this matter let us consider a Schrödinger Hamil-

tonian H on a domain where it is not (essentially) self-adjoint, i.e., where the

boundary conditions are too few or too weak. Then, first of all, the time evolu-

tion of wave functions is not unique: There are infinitely many different unitary

evolutions (corresponding to the different self-adjoint extensions), and there are

also semi-groups for which ‖ψt‖ is not conserved. The (essential) self-adjointness

of H is equivalent to Ker(H∗ ± i) = {0}, so that if H is considered on a domain

where it is symmetric but not self-adjoint, then H∗ has imaginary eigenvalues.

Together with the (space) regularity for eigenstates of the elliptic operator H∗

(assuming sufficient regularity for the potential V ) we thus obtain classical solu-

tions of Schrödinger’s equation with exponentially decreasing or increasing norm.

Since ρ = |ψ|2 still holds on I (cf. the paragraph around Equation (19)), those

solutions lead with positive probability to catastrophic events.

This possibility is not that far-fetched: The Hamiltonian for one particle in a

Coulomb field V (r) = −1/r considered on the “natural” domain C∞
0 (IR3 \ {0})

is not essentially self-adjoint and hence the time evolution of the wave function

is not uniquely defined [22, 19]. There are many properties that mathematically

distinguish the self-adjoint extension usually regarded as “the Coulomb Hamilto-

nian” from other possible extensions. However, we do not know of any convincing

(a priori) physical argument for “the Coulomb Hamiltonian” unless one accepts,

for example, that the Coulomb potential is a “small perturbation” of the free

Hamiltonian [20], or that “in reality the singularity is smeared out.” Of course,

if we require that Bohmian mechanics be globally existing, then, as we have ar-

gued above, only self-adjoint extensions are possible. But among all self-adjoint

extensions Bohmian mechanics seems not to discriminate: While our Corollary

3.2 applies only to the form sum (which is “the Coulomb Hamiltonian”), it is

heuristically rather clear (or at least plausible) that Bohmian mechanics should

exist globally and uniquely for all the other self-adjoint extensions ofH|C∞

0 (IR3\{0})
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as well.9

Nonetheless, discussions about the “right” (unitary or contractive) evolution,

i.e., about the “right” boundary conditions, as for example in the case of strongly

singular potentials like the 1/r2 potential (see [10, 23, 27]), do gain now firm

ground by taking into account the actual behavior of the particles: Whether

or not we should consider the Bohmian particle to be caught at the origin is a

matter of the physics we wish to describe: whether or not particles disappear in

the nucleus. An axiom, or dogma, of self-adjointness of the Hamiltonian (or equi-

valently of unitarity of the wave function evolution) appears quite inappropriate

from a Bohmian perspective—even though the importance of self-adjointness is

profoundly illuminated by this perspective!

Moreover, the particle picture of Bohmian mechanics naturally yields an in-

terpretation of the current j as a current of particles moving in accordance with

the density |ψ|2. In this way, boundary conditions for self-adjointness of the

form j = 0 at the singularities or j(in) = j(out) may be viewed as “arising

from Bohmian mechanics.” For example, the outcome of a detailed analysis

of self-adjoint extensions of H0 on the half line (0,∞)—there is a one parame-

ter family of self-adjoint extensions Ha
0 , the respective domains being defined

by ψ′(0)/ψ(0) = a, a real, or ψ(0) = 0 (a = ∞)—is easily guessed from the

point of view of Bohmian mechanics by demanding that either vψ(0) = 0, i.e.,

Im(ψ′(0)/ψ(0)) = 0, or that |ψ(0)|2 = 0.

4.4. We wish to conclude with some remarks on the general Hilbert space de-

scription of orthodox quantum theory viewed from the perspective of Bohmian

mechanics. We have discussed the fact that Bohmian mechanics is well defined,

i.e., trajectories exist globally and uniquely, for typical initial values and for

wave functions which are C∞-vectors of the self-adjoint Hamiltonian H . The set

9The singularity of the radial current at 0 may be estimated for ψ =
∑
l,m flm(r)Ylm(θ, φ) ∈⊕∞

l=0 D(Hr,l)⊗Kl, where, for angular momentum l, Hr,l is the radial part of H and Kl is the

corresponding eigenspace of the angular part of − h̄2

2m∆, as follows: Hr,lflm ∈ L2(IR+, r2 dr)

implies for the worst behavior of flm as r → 0 that flm ∼ rα with α > 1/2 for l ≥ 1 resp.

α = −1 for l = 0. Therefore the worst behavior of the the radial current jψr = h̄
m Im

(
ψ∗ ∂ψ

∂r

)
as

r → 0 is jψr ∼ r−(3/2)+ǫ (using the fact that the radial current at 0 vanishes on D(Hr,0) for all

self-adjoint extensions, cf. the proof of Theorem 4.1). Thus we should have that
∫
Kr

|jψ ·u| ds =∫
S2 |jψr | r2 dω ∼ r(1/2)+ǫ → 0 as r → 0. For a proof of global existence along the lines of Theorem

3.1, it is necessary also to control the time change of the radial current. However, the global

existence for the one-dimensional problem (Theorem 4.1) suggests that this should be possible.
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C∞(H) is dense and invariant; however, it is most likely not a residual in the

norm topology of the Hilbert space L2(Ω), i.e., it is presumably not a “generic”

set, and it furthermore depends on the Hamiltonian. One might now wonder how

Bohmian mechanics can be taken as the basis for the quantum formalism (as has

been claimed—see [11]) if the former cannot even be defined for a really “fat”

set of wave functions. And since, as we have seen, Bohmian mechanics yields a

natural understanding of the (spirit of the) meaning of the self-adjointness of a

Schrödinger Hamiltonian, the question should be even more puzzling. The an-

swer is, of course, that the embedding of Bohmian mechanics into a Hilbert space

structure is a natural but purely mathematical device. Indeed this answer is (of

course, in disguise) commonly accepted—though maybe not as loudly stated: No

physicist believes that a generic L2-wave function (in the residual sense) results

as the “collapsed” wave function from a preparation procedure. The state space

of physical wave functions ψ is not the Hilbert space H = L2(Ω) but more or

less the space of classical, smooth solutions of Schrödinger’s equation, for the

analysis of which the L2-norm and hence the Hilbert space structure is of critical

importance.

Other aspects of this embedding are commonly taken more seriously: for exam-

ple, that observables are self-adjoint operators on H. While we do not wish here

to enter into a general discussion of this question (see [11]), we would like once

again to comment on the self-adjointness of the Hamiltonian H . The importance

of this property is certainly not that “measured energy values must be real” but

lies rather in Stone’s theorem: H acts as the generator of a one-parameter unitary

group Ut, which gives the time evolution of states ψt = Utψ0 (or of observables

At = U−1
t AUt), and hence must be self-adjoint by Stone’s theorem. Why should

the time evolution be unitary? Simply because the norm ‖ψt‖ must be invariant,

so that the total probability is conserved.

We conclude with some remarks about effective descriptions. We first note that

restrictions of configuration space such as described in the last paragraph of Sec-

tion 4.3 (with a freedom in the boundary condition) are perhaps best understood

physically as arising as a limit of a sequence of (moderately realistic) potentials

V a
n tending to “V = 0 for q > 0, V = ∞ for q < 0” in a suitable way—such that

H0 + V a
n → Ha

0 in an appropriate sense. This problem is analyzed in [35, 1, 5],

and in [5] the convergence of the Bohmian trajectories in this limit is derived.

In other physically interesting but complex situations we may have an effective

description involving a Hamiltonian which is self-adjoint but not of Schrödinger-
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type,10 so that the probability current j may fail to be of the usual form [cf.

Eq. (8)], or where there may in fact be no local conservation law at all for the

probability density |ψ|2.
For an example with nonstandard current j, consider the self-adjoint shift

operator Hc = −ih̄c∇, where c is a constant with the dimension of a velocity.

ψt(q) = e−itHc/h̄ψ0(q) = ψ0(q − ct) describes translation without “spreading.”

This Hamiltonian may perhaps arise in a limit in which the spreading of the

wave function, induced by the Laplacian, can be neglected. In any case, the

corresponding current is jc = c|ψ|2, and the obvious candidate for the “Bohm

motion” in this case is v = jc/ρ = c, not (1).

It is conceivable that an approximation procedure leading to an effective Hamil-

tonian like Hc, when applied to Bohmian mechanics, also converges to a deter-

ministic limit. If so, then vψ = c would be the natural guess for the motion in

this limit.

For a Hamiltonian with no local conservation law for probability there is of

course no “Bohm motion” generalizing (1).

5 Acknowledgements

During this work, we profited from discussions with many collegues. In particular,

we wish to acknowledge helpful discussions with Lara Beraha, Martin Daumer,

Joseph Gerver, John Mather, Markus Schneider, Eugene Speer, Avy Soffer, Her-

bert Spohn, Francois Treves, and Jürgen Weckler. This work was supported by

the DFG, by NSF Grant No. DMS-9305930, and by the INFN.

6 Appendix: On the regularity of ψ

Lemma 6.1 Assume A1–A3, and let ψt(q) = e−itH/h̄ψ0(q). Then there exists a

function ψ̃ ∈ C∞(Ω× IR) such that for all t ∈ IR ψ̃(q, t) = ψt(q) for almost all q.

(ψ̃ is a classical solution of Schrödinger’s equation.)

This fact is presumably folklore knowledge to experts in PDE’s, but since

we could find no suitable reference—and since it does not appear to be well

10The modeling of physical situations leads often to idealizations which are very singular. In

Newtonian mechanics one considers for example singular evolutions induced by “hard walls”

confining a particle or by elastic collision between hard spheres.
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known among mathematical physicists—we shall supply a proof. (Hunziker [18]

has established space-time regularity of ψ for potentials which are bounded, have

bounded derivatives, and are C∞ on IRd for ψ0 in Schwartz space. Also, regularity

(in space) of eigenfunctions (for sufficiently regular potentials) is well known [32].)

Proof. We apply standard methods of elliptic regularity (see, for example, [33])

to the elliptic operator L on Ω× IR

L := −h̄2 ∂
2

∂t2
−

N∑

k=1

h̄2

2mk
∆k + V = −h̄2 ∂

2

∂t2
+H

From A3, ψt ∈ C∞(H), and therefore the functions φn,t := Hnψt(= e−itH/h̄φn,0)

are in L2(Ω) for all n and t. With this definition, formally

Lψ = φ2 + φ1, and Lφn = φn+2 + φn+1 (42)

To apply the theorem of elliptic regularity, we need to show a) that ψ and φn

are locally L2 in Ω × IR, therefore locally in the Sobolev space W 0 (we refer to

the definitions and theorems of [33], where however W n is written Hn) in Ω× IR,

and b) that (42) is satisfied in the distributional sense on Ω × IR. Then, by

repeated use of Theorem 8.12 in [33] we obtain that ψ (and φn) are locally in W n

for all even (positive) integers n. Then by Sobolev’s lemma ψ is indeed (almost

everywhere equal to) a C∞-function on Ω × IR. (The space-time set of measure

0 on which ψ has to be corrected indeed splits into t-slices that are of measure 0

for all t. This is a consequence of L2-continuity of t 7→ ψt.)

a) This is an easy consequence of Fubini’s theorem if ψ and φn are jointly

measurable in q, t. ψt is measurable in q (ψt ∈ L2(Ω)) and the map t 7→ ψt

resp. t 7→ φn,t is weakly measurable (indeed much more is true, namely strong

differentiability). Then by a theorem of Bochner and von Neumann [6] joint

measurability of ψt(q) and φn,t(q) in (q, t) follows in the following sense: There

exist functions ψ̃ and φ̃n which are jointly measurable in q, t, and for all t ψ̃(q, t) =

ψt(q) and φ̃n(q, t) = φn,t(q) for almost all q ∈ Ω. In the following, we shall denote

ψ̃(q, t) and φ̃n(q, t) by ψ(q, t) and φn(q, t) or again by ψt(q) and φn,t, as convenient.

b) First one convinces oneself that ψ and φn satisfy Schrödinger’s equation in

the distributional sense, i.e., for all test functions f ∈ C∞
0 (Ω× IR),

−ih̄
∫
(
∂

∂t
f)ψ dq dt =

∫
(Hf)ψ dq dt.
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This follows by looking at the function G : IR → IR, t 7→ ∫
f(q, t)ψ(q, t)dq =

(f ∗
t , ψt), where (·, ·) denotes the scalar product in L2(Ω). G has compact support,

and its derivative is seen to be

dG(t)

dt
=

1

ih̄
(f ∗
t , Hψt) + (

∂f ∗
t

∂t
, ψt)

by the continuity of the scalar product (·, ·) and the weak (in L2(Ω)) differentia-

bility of ψt. The same holds with ψ replaced by φn for all n. Since furthermore

ft ∈ D(H) for all t, and therefore (f ∗
t , Hψt) = (Hf ∗

t , ψt), ψ and φn are indeed

weak solutions of Schrödinger’s equation (and the self-adjoint operator H on

D(H) agrees with the operator on distributions defined by H), i.e., we’ve arrived

at

ih̄
∂ψ

∂t
= Hψ = φ1 and ih̄

∂φn
∂t

= Hφn = φn+1

weakly, and therefore (42) indeed holds in the distributional sense (on Ω× IR). ✷

References

[1] Albeverio, S., Gesztesy, F., Høegh-Krohn, R., Holden, H.: Solvable models

in quantum mechanics. New York: Springer 1988

[2] Arnold, V.I.: Small denominators and problems of stability of motion in clas-

sical and celestial mechanics. Russian Math. Surveys 18(6), 85–191 (1963)

[3] Arnold, V.I.: Mathematical methods in classical mechanics. New York:

Springer 1989

[4] Bell, J.S.: Speakable and unspeakable in quantum mechanics. Cambridge:

Cambridge University Press 1987

[5] Beraha, L.: Diplom thesis. Universität München 1994

[6] Bochner, S., von Neumann, J.: On compact solutions of operational-

differential equations I. Annals of Math. 36, 255–291 (1935)

[7] Bohm, D.: A suggested interpretation of the quantum theory in terms of

“hidden” variables, Parts I and II. Phys. Rev. 85, 166–179 and 180–193

(1952)

[8] Bohm, D., Hiley, B.J.: The undivided universe: An ontological interpreta-

tion of quantum theory. London: Routledge 1993

33



[9] Carlen, E.A.: Conservative diffusions. Commun. Math. Phys. 94, 293–315

(1984)

[10] Case, K.M.: Singular potentials. Phys. Rev. 80, 797–806 (1950)
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