Transferring L^{p} eigenfunction bounds from $S^{2 n+1}$ to h^{n}

by
Valentina Casarino (Torino) and Paolo Ciatti (Padova)

Abstract

By using the notion of contraction of Lie groups, we transfer $L^{p}-L^{2}$ estimates for joint spectral projectors from the unit complex sphere $S^{2 n+1}$ in \mathbb{C}^{n+1} to the reduced Heisenberg group h^{n}. In particular, we deduce some estimates recently obtained by H. Koch and F. Ricci on h^{n}. As a consequence, we prove, in the spirit of Sogge's work, a discrete restriction theorem for the sub-Laplacian L on h^{n}.

1. Introduction. In the last twenty-five years the notion of contraction (or continuous deformation) of Lie algebras and Lie groups, introduced in 1953 in a physical context by E. Inönu and E. P. Wigner, was developed in a mathematical framework as well. The basic idea is that, given a Lie algebra \mathfrak{g}_{1}, from a family of non-degenerate transformations of its structure constants it is possible to obtain, in a limit sense, a non-isomorphic Lie algebra \mathfrak{g}_{2}.

It turns out that the deformed algebra \mathfrak{g}_{2} inherits analytic and geometric properties from \mathfrak{g}_{1} and that the same holds for the corresponding Lie groups. As a consequence, transference results have attracted considerable attention, in particular in the context of Fourier multipliers. In fact, contraction has been successfully used to transfer L^{p} multiplier theorems from one Lie group to another. There is an extensive literature on this topic, centered about deLeeuw's theorems; we only mention here the results by A. H. Dooley, G. Gaudry, J. W. Rice and R. L. Rubin ([D], [DGa], [DRi1], [DRi2], [Ru]), concerning, in particular, contraction of rotation groups and semisimple Lie groups.

The primary purpose of this paper is to show that contraction is an effective tool to transfer L^{p} eigenfunction bounds as well. In particular, we shall focus on a contraction from the complex unit sphere $S^{2 n+1}$ in \mathbb{C}^{n+1} to the reduced Heisenberg group h^{n}.

2000 Mathematics Subject Classification: 43A80, 43A85, 42B10.
Key words and phrases: Lie groups contraction, complex spheres, reduced Heisenberg group, joint spectral projectors, discrete restriction theorem.

We recall that, if P is a second order self-adjoint elliptic differential operator on a compact manifold M and if P_{λ} denotes the spectral projection corresponding to the eigenvalue λ^{2}, a classical problem is to estimate the norm ν_{p} of P_{λ} as an operator from $L^{p}(M), 1 \leq p \leq 2$, to $L^{2}(M)$. Sharp estimates for ν_{p} have been obtained by C. Sogge ([So2]), who proved that

$$
\begin{equation*}
\left\|P_{\lambda}\right\|_{(p, 2)} \leq C \lambda^{\gamma(1 / p, n)}, \quad 1 \leq p \leq 2 \tag{1.1}
\end{equation*}
$$

where γ is the piecewise affine function on $[1 / 2,1]$ defined by

$$
\gamma\left(\frac{1}{p}, n\right):= \begin{cases}n\left(\frac{1}{p}-\frac{1}{2}\right)-\frac{1}{2} & \text { if } 1 \leq p \leq \tilde{p} \\ \frac{n-1}{2}\left(\frac{1}{p}-\frac{1}{2}\right) & \text { if } \tilde{p} \leq p \leq 2\end{cases}
$$

with critical point \tilde{p} given by $\tilde{p}:=2(n+1) /(n+3)$.
The starting point for our approach is a sharp two-parameter estimate for joint spectral projections on complex spheres, recently obtained by the first author ([Ca]). More precisely, we consider the Laplace-Beltrami operator $\Delta_{S^{2 n+1}}$ and the sub-Laplacian \mathcal{L} on $S^{2 n+1}$ (they form a basis for the algebra of $U(n+1)$-invariant differential operators on $S^{2 n+1}$). It is possible to work out a joint spectral theory. In particular, we denote by $\mathcal{H}^{l, l^{\prime}}, l, l^{\prime} \geq 0$, the joint eigenspace with eigenvalue $\mu_{l, l^{\prime}}$ for $\Delta_{S^{2 n+1}}$, where $\mu_{l, l^{\prime}}:=-\left(l+l^{\prime}\right)\left(l+l^{\prime}\right.$ $+2 n)$, and with eigenvalue $\lambda_{l, l^{\prime}}$ for \mathcal{L}, where $\lambda_{l, l^{\prime}}:=-2 l l^{\prime}-n\left(l+l^{\prime}\right)([\mathrm{Kl}])$. It is a classical fact ([VK, Ch. 11]) that

$$
\begin{equation*}
L^{2}\left(S^{2 n+1}\right)=\sum_{l, l^{\prime}=0}^{\infty} \oplus \mathcal{H}^{l, l^{\prime}} \tag{1.2}
\end{equation*}
$$

We denote by $\pi_{l, l^{\prime}}$ the joint spectral projector from $L^{2}\left(S^{2 n+1}\right)$ onto $\mathcal{H}^{l, l^{\prime}}$. In [Ca] the first author proved the following two-parameter L^{p} eigenfunction bounds:

$$
\begin{equation*}
\left\|\pi_{l, l^{\prime}}\right\|_{(p, 2)} \lesssim C\left(2 q_{l}+n\right)^{\alpha(1 / p, n)}\left(1+Q_{l}\right)^{\beta(1 / p, n)} \quad \text { for all } l, l^{\prime} \geq 0 \tag{1.3}
\end{equation*}
$$

where $Q_{l}:=\max \left\{l, l^{\prime}\right\}, q_{l}:=\min \left\{l, l^{\prime}\right\}$ and α and β are the piecewise affine functions represented in Figure 1 at the end of Section 2. We remark that the critical exponent in our case is $2(2 n+1) /(2 n+3)$ and cannot be directly deduced from Sogge's results. Observe moreover that $2 q_{l}+n$ and Q_{l} are related to the eigenvalues $\lambda_{l, l^{\prime}}$ and $\mu_{l, l^{\prime}}$, since they grow, respectively, as $\left|\lambda_{l, l^{\prime}}\right| /\left(l+l^{\prime}\right)$ and $\left|\mu_{l, l^{\prime}}\right|^{1 / 2}$.

On the other hand, on the reduced Heisenberg group h^{n}, defined as $h^{n}:=\mathbb{C}^{n} \times \mathbb{T}$, with product

$$
\left(\mathbf{z}, e^{i t}\right)\left(\mathbf{w}, e^{i t^{\prime}}\right):=\left(\mathbf{z}+\mathbf{w}, e^{i\left(t+t^{\prime}+\operatorname{Im} \mathbf{z} \cdot \overline{\mathbf{w}}\right)}\right)
$$

with $\mathbf{z}, \mathbf{w} \in \mathbb{C}^{n}, t, s \in \mathbb{R}$, we consider the sub-Laplacian L and the operator $i^{-1} \partial_{t}$. The pairs $(2|m|(2 k+1), m)$ with $m \in \mathbb{Z} \backslash\{0\}$ and $k \in \mathbb{N}$ give the discrete joint spectrum of these operators. Recently H. Koch and F. Ricci proved the following $L^{p}-L^{2}$ estimate for the orthogonal projector $P_{m, k}$ onto the joint eigenspace:

$$
\begin{equation*}
\left\|P_{m, k}\right\|_{\left(L^{p}\left(h^{n}\right), L^{2}\left(h^{n}\right)\right)} \lesssim C(2 k+n)^{\alpha(1 / p, n)}|m|^{\beta(1 / p, n)} \tag{1.4}
\end{equation*}
$$

for $1 \leq p \leq 2$, where α and β are given by (1.3) ([KoR]).
We start by showing in Section 2 that $P_{m, k}$ may be obtained as the limit in the L^{2}-norm of a sequence of joint spectral projectors on $S^{2 n+1}$. Then we give an alternative proof of (1.4) by a contraction argument.

A contraction from $S U(2)$ to the one-dimensional Heisenberg group H^{1} was studied by F. Ricci and R. L. Rubin ($[R],[R R u])$. In $[\mathrm{Ca}]$ the first author used some ideas from $[\mathrm{R}]$ to transfer $L^{p}-L^{2}$ estimates for norms of harmonic projection operators from the unit sphere S^{3} in \mathbb{C}^{2} to the reduced Heisenberg group h^{1}. In this paper we discuss the higher-dimensional case.

A contraction from the unit sphere $S^{2 n+1}$ to the Heisenberg group H^{n} for $n>1$ was analyzed by A. H. Dooley and S. K. Gupta; in a first paper they adapted the notion of Lie groups contraction to the homogeneous space $U(n+1) / U(n)$ and described the relationship between certain unitary irreducible representations of $U(n+1)$ and H^{n} ([DG1]), in a second paper they proved a deLeeuw type theorem on H^{n} by transferring results from $S^{2 n+1}$ ([DG2]). The contraction we use here is essentially that introduced by Dooley and Gupta; however, their approach is mainly algebraic, while our interest is directed to the analytic features of the problem.

As an application of (1.3) we prove in Section 3 a discrete restriction theorem for the sub-Laplacian L on h^{n} in the spirit of Sogge's work ([So1], see also (1.1)). More precisely, let Q_{N} be the spectral projection corresponding to the eigenvalue N associated to L on h^{n}, that is,

$$
Q_{N} f:=\sum_{(2 k+n)|m|=N} P_{m, k} f .
$$

The study of $L^{p}-L^{2}$ mapping properties of Q_{N} was suggested by D. Müller in his paper about the restriction theorem on the Heisenberg group ([M]). In [Th1] S. Thangavelu proved that

$$
\begin{equation*}
\left\|Q_{N}\right\|_{\left(L^{p}\left(h^{n}\right), L^{2}\left(h^{n}\right)\right)} \leq C\left(N^{n} d(N)\right)^{1 / p-1 / 2}, \quad 1 \leq p \leq 2 \tag{1.5}
\end{equation*}
$$

where $d(N)$ is the divisor-type function defined by

$$
\begin{equation*}
d(N):=\sum_{2 k+n \mid N} \frac{1}{2 k+n}, \tag{1.6}
\end{equation*}
$$

and the estimate is sharp for $p=1$. By writing $a \mid b$ we mean that a divides b.

Other types of restriction theorems on the Heisenberg group were discussed by Thangavelu in [Th2].

By using orthogonality, we add up the estimates in (1.3) and obtain $L^{p}-L^{2}$ bounds for the norm of Q_{N}, which in some cases improve (1.5). The exponent appearing in (1.5) is an affine function of $1 / p$. In our estimate the exponent of $d(N)$ is, as in Sogge's results, a piecewise affine function of $1 / p$. In other words, there is a critical point \tilde{p} where the slope of the exponent changes. This critical point is the same as that found on complex spheres ([Ca]).

Our bounds are in general not sharp. The reason is that with our procedure we disregard the interferences between eigenfunctions. We show however that there are arithmetic progressions N_{m} in \mathbb{N} for which our estimates for $\left\|Q_{N_{m}}\right\|_{(p, 2)}$ are sharp and better than (1.5). Moreover, since the behaviour of $d(N)$ is highly irregular, we inquire about the average size of $\left\|Q_{N}\right\|_{(p, 2)}$. We prove in this case that $L^{p}-L^{2}$ estimates do not involve divisor-type functions and that the critical point disappears.
2. Preliminaries. In this section we introduce some notation and recall a few results, that will be used in the following.
2.1. Some notation. For $n \geq 1$ let \mathbb{C}^{n+1} denote the n-dimensional complex space endowed with the scalar product $\langle\mathbf{z}, \mathbf{w}\rangle:=\mathbf{z} \cdot \overline{\mathbf{w}}:=z_{1} \bar{w}_{1}+\cdots+$ $z_{n+1} \bar{w}_{n+1}$, $\mathbf{z}, \mathbf{w} \in \mathbb{C}^{n+1}$, and let $S^{2 n+1}$ denote the unit sphere in \mathbb{C}^{n+1}, that is,

$$
S^{2 n+1}:=\left\{\mathbf{z}=\left(z_{1}, \ldots, z_{n+1}\right) \in \mathbb{C}^{n+1}:\langle\mathbf{z}, \mathbf{z}\rangle=1\right\}
$$

The symbol $\mathbf{1}$ will denote the north pole of $S^{2 n+1}$, that is, $\mathbf{1}:=(0, \ldots, 0,1)$.
For every $l, l^{\prime} \in \mathbb{N}$ the symbol $\mathcal{H}^{l, l^{\prime}}$ will denote the space of restrictions to $S^{2 n+1}$ of harmonic polynomials $p(\mathbf{z}, \overline{\mathbf{z}})=p\left(z_{1}, \ldots, z_{n+1}, \bar{z}_{1}, \ldots, \bar{z}_{n+1}\right)$, of homogeneity degree l in z_{1}, \ldots, z_{n+1} and of homogeneity degree l^{\prime} in $\left(\bar{z}_{1}, \ldots, \bar{z}_{n+1}\right)$, i.e. such that

$$
p(a \mathbf{z}, b \overline{\mathbf{z}})=a^{l} b^{l^{\prime}} p(\mathbf{z}, \overline{\mathbf{z}}), \quad a, b \in \mathbb{R}, \mathbf{z} \in \mathbb{C}^{n}
$$

For a detailed description of the spaces $\mathcal{H}^{l, l^{\prime}}$ see Chapter 11 in [VK]. We only recall here that a polynomial p in $\mathbf{z}, \overline{\mathbf{z}}$ is said to be harmonic if

$$
\begin{equation*}
\Delta_{S^{2 n+1}} p:=\frac{1}{4}\left(\frac{\partial^{2}}{\partial z_{1} \partial \bar{z}_{1}}+\cdots+\frac{\partial^{2}}{\partial z_{n+1} \partial \bar{z}_{n+1}}\right) p=0 \tag{2.1}
\end{equation*}
$$

where $\Delta_{S^{2 n+1}}$ denotes the Laplace-Beltrami operator.
A zonal function of bidegree $\left(l, l^{\prime}\right)$ on $S^{2 n+1}$ is a function in $\mathcal{H}^{l, l^{\prime}}$ which is constant on the orbits of the stabilizer of $\mathbf{1}$ (which is isomorphic to $U(n)$). Given a zonal function f, we may associate to f a map ${ }^{b} f$ on the unit disk by

$$
f(\mathbf{z})={ }^{b} f(\langle\mathbf{z}, \mathbf{1}\rangle), \quad \mathbf{z} \in S^{2 n+1}
$$

(by using the notation in Section 11.1.5 of [VK] we have $\langle\mathbf{z}, \mathbf{1}\rangle=z_{n}=$ $e^{i \varphi} \cos \theta$, where $\varphi \in[0,2 \pi]$ and $\left.\theta \in[0, \pi / 2]\right)$.

By means of ${ }^{b} f$ we may define a convolution of a zonal function f and an arbitrary function g on $S^{2 n+1}$. More precisely, we set

$$
(f * g)(\mathbf{z}):=\int_{S^{2 n+1}}{ }^{b} f(\langle\mathbf{z}, \mathbf{w}\rangle) g(\mathbf{w}) d \sigma(\mathbf{w})
$$

where $d \sigma$ is the measure invariant under the action of the unitary group $U(n+1)$ (see (3.4) for an explicit formula). In the following we shall write $f(\theta, \varphi)$ instead of ${ }^{b} f\left(e^{i \varphi} \cos \theta\right)$.

Let $L^{2}\left(S^{2 n+1}\right)$ be the Hilbert space of functions on $S^{2 n+1}$ endowed with the inner product $(f, g):=\int_{S^{2 n+1}} f(\mathbf{z}) \overline{g(\mathbf{z})} d \sigma(\mathbf{z})$.

It is a classical fact ([VK, Ch. 11]) that $L^{2}\left(S^{2 n+1}\right)$ is the direct sum of the pairwise orthogonal and $U(n+1)$-invariant subspaces $\mathcal{H}^{l, l^{\prime}}, l, l^{\prime} \geq 0$. In other words, every $f \in L^{2}\left(S^{2 n+1}\right)$ admits a unique expansion

$$
f=\sum_{l, l^{\prime}=0}^{\infty} Y^{l, l^{\prime}}
$$

where $Y^{l, l^{\prime}} \in \mathcal{H}^{l, l^{\prime}}$ for every $l, l^{\prime} \geq 0$ and the series on the right converges to f in the $L^{2}\left(S^{2 n+1}\right)$-norm.

The orthogonal projector onto $\mathcal{H}^{l, l^{\prime}}$,

$$
\begin{equation*}
\pi_{l, l^{\prime}}: L^{2}\left(S^{2 n+1}\right) \ni f \mapsto Y^{l, l^{\prime}} \in \mathcal{H}^{l, l^{\prime}} \tag{2.2}
\end{equation*}
$$

may be written as

$$
\pi_{l, l^{\prime}} f:={ }^{b} \mathbb{Z}_{l, l^{\prime}} * f
$$

where $\mathbb{Z}_{l, l^{\prime}}$ is the zonal function from $\mathcal{H}^{l, l^{\prime}}$, given by

$$
\begin{array}{r}
\mathbb{Z}_{l, l^{\prime}}(\theta, \varphi):=\frac{d_{l, l^{\prime}}}{\omega_{2 n+1}} \frac{q_{l}!(n-1)!}{\left(q_{l}+n-1\right)!} e^{i\left(l^{\prime}-l\right) \varphi}(\cos \theta)^{\left|l-l^{\prime}\right|} P_{q_{l}}^{\left(n-1,\left|l-l^{\prime}\right|\right)}(\cos 2 \theta) \tag{2.3}\\
l, l^{\prime} \geq 1, \varphi \in[0,2 \pi], \theta \in[0, \pi / 2]
\end{array}
$$

where $q_{l}=\min \left(l, l^{\prime}\right), \omega_{2 n+1}$ denotes the surface area of $S^{2 n+1}, P_{q_{l}}^{\left(n-1,\left|l-l^{\prime}\right|\right)}$ is the Jacobi polynomial and

$$
d_{l, l^{\prime}}:=\operatorname{dim} \mathcal{H}^{l, l^{\prime}}=n \frac{l+l^{\prime}+n}{l l^{\prime}}\binom{l+n-1}{l-1}\binom{l^{\prime}+n-1}{l^{\prime}-1} \quad \text { for all } l, l^{\prime} \geq 1
$$

Recall finally that $\mathcal{H}^{l, 0}$ consists of holomorphic polynomials and $\mathcal{H}^{0, l}$ consists of polynomials whose complex conjugates are holomorphic. In both cases, the dimension of the space is given by

$$
\operatorname{dim} \mathcal{H}^{l, 0}=\operatorname{dim} \mathcal{H}^{0, l}=\binom{l+n-1}{l}
$$

and the zonal function is

$$
\mathbb{Z}_{l, 0}(\theta, \varphi):=\frac{1}{\omega_{2 n-1}}\binom{l+n-1}{l} e^{-i l \varphi}(\cos \theta)^{l}, \quad \varphi \in[0,2 \pi], \theta \in[0, \pi / 2]
$$

In this paper we shall adopt the convention that C denotes a constant which is not necessarily the same at each occurrence.
2.2. Some useful results. In order to transfer L^{p} bounds from $S^{2 n+1}$ to h^{n} we shall need both a pointwise estimate for the Jacobi polynomials, due to Darboux and Szegö ([Sz, pp. 169, 198]), and a Mehler-Heine type formula, relating Jacobi and Laguerre polynomials ([Sz], $[\mathrm{R}]$).

Lemma 2.1. Let $\alpha, \beta>-1$. Fix $0<c<\pi$. Then

$$
\begin{aligned}
& P_{l}^{(\alpha, \beta)}(\cos \theta) \\
& = \begin{cases}O\left(l^{\alpha}\right) & \text { if } 0 \leq \theta \leq c / l \\
l^{-1 / 2} k(\theta)\left(\cos \left(N_{l} \theta+\gamma\right)+(l \sin \theta)^{-1} O(1)\right) & \text { if } c / l \leq \theta \leq \pi-c / l \\
O\left(l^{\beta}\right) & \text { if } \pi-c / l \leq \theta \leq \pi\end{cases}
\end{aligned}
$$

where
$k(\theta):=\pi^{1 / 2}\left(\sin \frac{\theta}{2}\right)^{-\alpha-1 / 2}\left(\cos \frac{\theta}{2}\right)^{-\beta-1 / 2}, N_{l}:=l+\frac{\alpha+\beta+1}{2}, \gamma:=-\left(\alpha+\frac{1}{2}\right) \frac{\pi}{2}$.
Proposition 2.2 ([R, p. 224]). Let $n \geq 1$ and let x be a real number. Fix k and j in $\mathbb{N}, j \geq k$. Then

$$
\begin{align*}
\lim _{N \rightarrow \infty} \cos ^{N-j-k}\left(\frac{x}{\sqrt{N-j-k}}\right) P_{k}^{(j-k, N-j-k)} & \left(\cos \frac{2 x}{\sqrt{N-j-k}}\right) \tag{2.4}\\
& =L_{k}^{j-k}\left(x^{2}\right) e^{-x^{2} / 2}
\end{align*}
$$

Our proof is based on the following two-parameter estimate for the $L^{p}-L^{2}$ norm of the complex harmonic projectors $\pi_{l, l^{\prime}}$ defined by (2.2).

ThEOREM 2.3 ([Ca]). Let $n \geq 2$ and let l, l^{\prime} be non-negative integers. Then

$$
\begin{equation*}
\left\|\pi_{l, l^{\prime}}\right\|_{(p, 2)} \lesssim C\left(\frac{2 l l^{\prime}+n\left(l+l^{\prime}\right)}{l+l^{\prime}}\right)^{\alpha(1 / p, n)}\left(l+l^{\prime}\right)^{\beta(1 / p, n)} \quad \text { if } 1 \leq p \leq 2 \tag{2.5}
\end{equation*}
$$

where

$$
\alpha\left(\frac{1}{p}, n\right):= \begin{cases}n\left(\frac{1}{p}-\frac{1}{2}\right)-\frac{1}{2} & \text { if } 1 \leq p<\tilde{p} \tag{2.6}\\ \frac{1}{4}-\frac{1}{2 p} & \text { if } \tilde{p} \leq p \leq 2\end{cases}
$$

with $\tilde{p}=2(2 n+1) /(2 n+3)$, and

$$
\begin{equation*}
\beta\left(\frac{1}{p}, n\right)=n\left(\frac{1}{p}-\frac{1}{2}\right) \quad \text { for all } 1 \leq p \leq 2 \tag{2.7}
\end{equation*}
$$

The above estimates are sharp.

Fig. 1. The exponents α and β as functions of $1 / p$
3. L^{p} eigenfunction bounds on H^{n}. The Heisenberg group H^{n} is a Lie group with underlying manifold $\mathbb{C}^{n} \times \mathbb{R}$, endowed with the product

$$
(\mathbf{z}, t)(\mathbf{w}, s):=(\mathbf{z}+\mathbf{w}, t+s+\operatorname{Im} \mathbf{z} \cdot \overline{\mathbf{w}})
$$

for $\mathbf{z}, \mathbf{w} \in \mathbb{C}^{n}, t, s \in \mathbb{R}$.
We denote an element in H^{1} by ($\rho e^{i \varphi}, t$), where $\rho \in[0, \infty), \varphi \in[0,2 \pi]$, $t \in \mathbb{R}$, and an element in H^{n} by ($\rho \boldsymbol{\eta}, t$), where $\rho \in[0, \infty), t \in \mathbb{R}$ and $\boldsymbol{\eta} \in S^{2 n-1}$ is given by

$$
\boldsymbol{\eta}=\left\{\begin{array}{l}
e^{i \varphi_{1}} \sin \theta_{n-1} \sin \theta_{n-2} \ldots \sin \theta_{1}, \tag{3.1}\\
e^{i \varphi_{2}} \sin \theta_{n-1} \sin \theta_{n-2} \ldots \cos \theta_{1}, \\
\vdots \\
e^{i \varphi_{n}} \cos \theta_{n-1},
\end{array}\right.
$$

with $\varphi_{k} \in[0,2 \pi], k=1, \ldots, n$, and $\theta_{j} \in[0, \pi / 2], j=1, \ldots, n-1$.
Observe that $\boldsymbol{\eta}=\boldsymbol{\eta}\left(\Theta_{n-1}, \Phi_{n}\right)$, where $\Theta_{n-1}:=\left(\theta_{1}, \ldots, \theta_{n-1}\right)$ and $\Phi_{n}:=$ $\left(\varphi_{1}, \ldots, \varphi_{n}\right)$.

Define now a map $\Psi: H^{n} \rightarrow S^{2 n+1}$ by

$$
\Psi:(\rho \boldsymbol{\eta}, t) \mapsto\left(\Theta_{n-1}, \rho, \Phi_{n}, t\right),
$$

where $\left(\Theta_{n-1}, \rho, \Phi_{n}, t\right) \in S^{2 n+1}$ is given by

$$
\left(\Theta_{n-1}, \rho, \Phi_{n}, t\right):=\left\{\begin{array}{l}
e^{i \varphi_{1}} \sin \rho \sin \theta_{n-1} \sin \theta_{n-2} \ldots \sin \theta_{1} \tag{3.3}\\
e^{i \varphi_{2}} \sin \rho \sin \theta_{n-1} \sin \theta_{n-2} \ldots \cos \theta_{1} \\
\vdots \\
e^{i \varphi_{n}} \sin \rho \cos \theta_{n-1} \\
e^{i t} \cos \rho
\end{array}\right.
$$

We introduce in this way a coordinate system $\left(\Theta_{n-1}, \rho, \Phi_{n}, t\right)$ on $S^{2 n+1}$, if ρ and t are restricted, respectively, to $[0, \pi / 2]$ and $[-\pi, \pi]$.

The invariant measure $d \sigma_{S^{2 n+1}}$ on $S^{2 n+1}$ in the spherical coordinates (3.3) is

$$
\begin{equation*}
\frac{n!}{2 \pi^{n+1}} \prod_{k=1}^{n} d \varphi_{k} d t \sin ^{2 n-1} \rho \cos \rho d \rho \prod_{j=1}^{n-1} \sin ^{2 j-1} \theta_{j} \cos \theta_{j} d \theta_{j} \tag{3.4}
\end{equation*}
$$

The factor $n!/\left(2 \pi^{n+1}\right)$ is introduced in order to make the measure of the whole sphere equal to 1 .

The Haar measure on H^{n} in these coordinates is

$$
\frac{n!}{2 \pi^{n+1} \sqrt{\omega_{2 n+1}}} \rho^{2 n-1} d \rho d \varphi_{1} \ldots d \varphi_{n} \prod_{j=1}^{n-1} \sin ^{2 j-1} \theta_{j} \cos \theta_{j} d \theta_{j}
$$

The reduced Heisenberg group h^{n} is defined as $h^{n}:=\mathbb{C}^{n} \times \mathbb{T}$, with product

$$
\left(\mathbf{z}, e^{i t}\right)\left(\mathbf{w}, e^{i t^{\prime}}\right):=\left(\mathbf{z}+\mathbf{w}, e^{i\left(t+t^{\prime}+\operatorname{Im} \mathbf{z} \cdot \overline{\mathbf{w}}\right)}\right)
$$

for $\mathbf{z}, \mathbf{w} \in \mathbb{C}^{n}, t, s \in \mathbb{R}$.
Let now f be a function on h^{n} with compact support. Let \tilde{f} be the function f extended by periodicity on \mathbb{R} with respect to the variable t. Define the function f_{ν} on $S^{2 n+1}$ by

$$
\begin{equation*}
f_{\nu}\left(\Theta_{n-1}, \rho, \Phi_{n}, t\right):=\nu^{n} \tilde{f}(\rho \sqrt{\nu} \boldsymbol{\eta}, t \nu), \quad \nu \in \mathbb{N} \tag{3.5}
\end{equation*}
$$

Lemma 3.1. Let f be an integrable function on h^{n} with compact support. If $1 \leq p \leq \infty$, then

$$
\nu^{-n / p^{\prime}}\left\|f_{\nu}\right\|_{L^{p}\left(S^{2 n+1}\right)}<\|f\|_{L^{p}\left(h^{n}\right)}
$$

and

$$
\lim _{\nu \rightarrow \infty} \nu^{-n / p^{\prime}}\left\|f_{\nu}\right\|_{L^{p}\left(S^{2 n+1}\right)}=\|f\|_{L^{p}\left(h^{n}\right)}
$$

Proof. The proof is similar to that of Lemma 2 in $[\mathrm{RRu}]$ and is omitted. Compare also with Lemma 4.3 in [DG2].

Throughout the paper we shall consider a pair of strongly commuting operators on h^{n}. The first is the left-invariant sub-Laplacian L, defined by

$$
L:=-\sum_{j:=1}^{n}\left(X_{j}^{2}+Y_{j}^{2}\right)
$$

where $X_{j}:=\partial_{x_{j}}-y_{j} \partial_{t}$ and $Y_{j}:=\partial_{y_{j}}+x_{j} \partial_{t}$. The second is the operator $T:=i^{-1} \partial_{t}$. These operators generate the algebra of differential operators on h^{n} invariant under left translation and under the action of the unitary group. One can work out a joint spectral theory; the pairs $(2|m|(2 k+n), m)$ with $m \in \mathbb{Z} \backslash\{0\}$ and $k \in \mathbb{N}$ give the discrete joint spectrum of L and $i^{-1} \partial_{t}$. We shall denote by $P_{m, k}$ the orthogonal projector onto the joint eigenspace.

By considering the Fourier decomposition of functions in $L^{2}\left(h^{n}\right)$ with respect to the central variable, we obtain an orthogonal decomposition of $L^{2}\left(h^{n}\right)$ as

$$
L^{2}\left(h^{n}\right)=\mathcal{H}_{0} \oplus \mathcal{H}
$$

where

$$
\mathcal{H}_{0}:=\left\{f \in L^{2}\left(h^{n}\right): \int_{\mathbb{T}} f(z, t) d t=0\right\} .
$$

The projectors $P_{m, k}$ map $L^{2}\left(h^{n}\right)$ onto \mathcal{H} and provide a spectral decomposition for \mathcal{H}. The importance of this decomposition is due to the fact that the spectral analysis of L on \mathcal{H}_{0} essentially reduces to the analysis of the Laplacian on \mathbb{C}^{n}.

On the complex sphere $S^{2 n+1}$ the algebra of $U(n+1)$-invariant differential operators is commutative and generated by two elements; a basis is given by the Laplace-Beltrami operator $\Delta_{S^{2 n+1}}$, defined by (2.1), and the Kohn Laplacian \mathcal{L} on $S^{2 n+1}$, defined by

$$
\mathcal{L}:=\sum_{j<k}\left(M_{j k} \bar{M}_{j k}+\bar{M}_{j k} M_{j k}\right)
$$

with

$$
M_{j k}:=\bar{z}_{j} \partial_{z_{k}}-\bar{z}_{k} \partial_{z_{j}} \quad \text { and } \quad \bar{M}_{j k}:=z_{j} \partial_{\bar{z}_{k}}-z_{k} \partial_{\bar{z}_{j}} .
$$

We shall denote by $\mathcal{H}^{l, l^{\prime}}$ the joint eigenspace of $\Delta_{S^{2 n+1}}$ and \mathcal{L} with eigenvalues respectively $\mu_{l, l^{\prime}}:=-\left(l+l^{\prime}\right)\left(l+l^{\prime}+2 n\right)$ and $\lambda_{l, l^{\prime}}=-2 l l^{\prime}-n\left(l+l^{\prime}\right)$ ([Kl]).

The next task is to prove that the joint spectral projection $P_{m, k}$ on h^{n} may be obtained as limit in the L^{2}-norm of an appropriate sequence of joint spectral projectors on $S^{2 n+1}$.

Proposition 3.2. Let f be a continuous function on h^{n} with compact support. Take $m \in \mathbb{N} \backslash\{0\}$ and $k \in \mathbb{N}$. For every $\nu \in \mathbb{N}$ let $N(\nu) \in \mathbb{N}$ be such
that

$$
\begin{equation*}
\lim _{\nu \rightarrow \infty} \frac{N(\nu)}{\nu}=m \tag{3.6}
\end{equation*}
$$

Then

$$
\begin{align*}
\left\|P_{m, k} f\right\|_{L^{2}\left(h^{n}\right)} & =\lim _{\nu \rightarrow \infty} \frac{1}{\nu^{n / 2}}\left\|\pi_{k, N(\nu)-k} f_{\nu}\right\|_{L^{2}\left(S^{2 n+1}\right)} \tag{3.7}\\
\left\|P_{-m, k} f\right\|_{L^{2}\left(h^{n}\right)} & =\lim _{\nu \rightarrow \infty} \frac{1}{\nu^{n / 2}}\left\|\pi_{N(\nu)-k, k} f_{\nu}\right\|_{L^{2}\left(S^{2 n+1}\right)} \tag{3.8}
\end{align*}
$$

Proof. The scheme of the proof is similar to that of Proposition 4.4 in [Ca]. Since the higher dimensional case is more involved, we present the proof for more transparency.

Fix two integers $m>0$ and $k \in \mathbb{N}$.
First of all, if $\mathbf{z}, \mathbf{w} \in \mathbb{C}^{n}$, by writing $\mathbf{z}:=\rho \boldsymbol{\eta}$ and $\mathbf{w}:=\rho^{\prime} \boldsymbol{\eta}^{\prime}$ with $\rho, \rho^{\prime} \in$ $[0, \infty)$ and $\boldsymbol{\eta}, \boldsymbol{\eta}^{\prime} \in S^{2 n-1}$, a simple computation yields

$$
\begin{align*}
\operatorname{Im} \mathbf{z} \cdot \overline{\mathbf{w}}=\rho \rho^{\prime}(& \sin \left(\varphi_{1}-\varphi_{1}^{\prime}\right) \sin \theta_{n-1} \sin \theta_{n-1}^{\prime} \ldots \ldots \sin \theta_{1} \sin \theta_{1}^{\prime} \tag{3.9}\\
& +\sin \left(\varphi_{2}-\varphi_{2}^{\prime}\right) \sin \theta_{n-1} \sin \theta_{n-1}^{\prime} \ldots \ldots \cos \theta_{1} \cos \theta_{1}^{\prime} \\
& \left.+\cdots+\sin \left(\varphi_{n}-\varphi_{n}^{\prime}\right) \cos \theta_{n-1} \cos \theta_{n-1}^{\prime}\right)
\end{align*}
$$

and

$$
\begin{align*}
&|\mathbf{z}-\mathbf{w}|^{2}= \rho^{2}+ \tag{3.10}\\
&+\rho^{\prime 2} \\
&- 2 \rho \rho^{\prime}\left(\cos \left(\varphi_{1}-\varphi_{1}^{\prime}\right) \sin \theta_{n-1} \sin \theta_{n-1}^{\prime} \cdots \sin \theta_{1} \sin \theta_{1}^{\prime}\right. \\
&+\cos \left(\varphi_{2}-\varphi_{2}^{\prime}\right) \sin \theta_{n-1} \sin \theta_{n-1}^{\prime} \cdots \cos \theta_{1} \cos \theta_{1}^{\prime}+\cdots \\
&\left.\cdots+\cos \left(\varphi_{n}-\varphi_{n}^{\prime}\right) \cos \theta_{n-1} \cos \theta_{n-1}^{\prime}\right)
\end{align*}
$$

Now, we denote by $\Phi_{k, k}^{m}$ the joint eigenfunction for \mathcal{L} and $i^{-1} \partial_{t}$ (for more details and an explicit expression see, for example, [FH, Chapitre V]). Orthogonality of joint spectral projectors yields

$$
\begin{aligned}
& \left\|P_{m, k} f\right\|_{L^{2}\left(h^{n}\right)}^{2}=\left\langle P_{m, k} f, f\right\rangle_{L^{2}\left(h^{n}\right)}=\int_{h^{n}} f * \Phi_{k, k}^{m}(\mathbf{z}, t) \overline{f(\mathbf{z}, t)} d \mathbf{z} d t \\
& \quad=\int_{h^{n}}\left(\int_{h^{n}} \Phi_{k, k}^{m}\left(\mathbf{z}-\mathbf{w}, t-t^{\prime}+\operatorname{Im} \mathbf{z} \cdot \overline{\mathbf{w}}\right) f\left(\mathbf{w}, t^{\prime}\right) d \mathbf{w} d t^{\prime}\right) \overline{f(\mathbf{z}, t)} d \mathbf{z} d t \\
& =m^{n} \int_{h^{n}}\left(\int_{h^{n}} e^{i m\left(t-t^{\prime}+\operatorname{Im} \mathbf{z} \cdot \overline{\mathbf{w}}\right)} L_{k}^{n-1}\left(m|\mathbf{z}-\mathbf{w}|^{2}\right) e^{-\frac{1}{2} m|\mathbf{z}-\mathbf{w}|^{2}} f\left(\mathbf{w}, t^{\prime}\right) d \mathbf{w} d t^{\prime}\right) \\
& \cdot \overline{f(\mathbf{z}, t)} d \mathbf{z} d t .
\end{aligned}
$$

Now we shall deal with the right-hand side in (3.7). For brevity we set

$$
d \Phi_{(n)}:=d \varphi_{1} \ldots d \varphi_{n} \quad \text { and } \quad d \Theta_{(n-1)}:=\prod_{j=1}^{n-1} \sin ^{2 j-1} \theta_{j} \cos \theta_{j} d \theta_{j}
$$

From the orthogonality of the joint spectral projectors $\pi_{l, l^{\prime}}$ in $L^{2}\left(S^{2 n+1}\right)$ and from (3.5) we deduce

$$
\begin{aligned}
& \left\|\pi_{k, N(\nu)-k} f_{\nu}\right\|_{L^{2}\left(S^{2 n+1}\right)}^{2}=\left\langle\pi_{k, N(\nu)-k} f_{\nu}, f_{\nu}\right\rangle_{L^{2}\left(S^{2 n+1}\right)} \\
& =\int_{S^{2 n+1}}\left(\pi_{k, N(\nu)-k} f_{\nu}\right)\left(\Theta_{n-1}, \rho, \Phi_{n}, t\right) \overline{f_{\nu}\left(\Theta_{n-1}, \rho, \Phi_{n}, t\right)} d \sigma_{S^{2 n+1}} \\
& =\frac{n!}{2 \pi^{n+1} \nu} \int_{A_{\nu}}\left(\pi_{k, N(\nu)-k} f_{\nu}\right)\left(\Theta_{n-1}, \frac{\rho}{\sqrt{\nu}}, \Phi_{n}, \frac{t}{\nu}\right) \bar{f}\left(\Theta_{n-1}, \rho, \Phi_{n}, t\right)\left(\frac{\sin \frac{\rho}{\sqrt{\nu}}}{\frac{\rho}{\sqrt{\nu}}}\right)^{2 n-1} \\
& \cdot \cos \left(\frac{\rho}{\sqrt{\nu}}\right) \rho^{2 n-1} d \rho d \Theta_{(n-1)} d \Phi_{(n)} d t \\
& =\frac{n!^{2}}{4 \pi^{2 n+2} \nu^{2}} \int_{A_{\nu}}\left(\int_{A_{\nu}}{ }^{b} \mathbb{Z}_{k, N(\nu)-k}\left(\left\langle\left(\Theta_{n-1}, \frac{\rho}{\sqrt{\nu}}, \Phi_{n}, \frac{t}{\nu}\right),\left(\Theta_{n-1}^{\prime}, \frac{\rho^{\prime}}{\sqrt{\nu}}, \Phi_{n}^{\prime}, \frac{t^{\prime}}{\nu}\right)\right\rangle\right)\right. \\
& \\
& \left.\quad \cdot \tilde{f}\left(\Theta_{n-1}^{\prime}, \rho^{\prime}, \Phi_{n}^{\prime}, t^{\prime}\right)\left(\frac{\sin \frac{\rho^{\prime}}{\sqrt{\nu}}}{\frac{\rho^{\prime}}{\sqrt{\nu}}}\right)^{2 n-1} \cos \left(\frac{\rho^{\prime}}{\sqrt{\nu}}\right) \rho^{\prime 2 n-1} d \rho^{\prime} d \Theta_{(n-1)}^{\prime} d \Phi_{(n)}^{\prime} d t^{\prime}\right) \\
& \\
& \quad \cdot \tilde{f}\left(\Theta_{n-1}, \rho, \Phi_{n}, t\right)\left(\frac{\sin \frac{\rho}{\sqrt{\nu}}}{\frac{\rho}{\sqrt{\nu}}}\right)^{2 n-1} \cos \left(\frac{\rho}{\sqrt{\nu}}\right) \rho^{2 n-1} d \rho d \Theta_{(n-1)}^{\prime} d \Phi_{(n)} d t
\end{aligned}
$$

where the integration set A_{ν} is given by

$$
\begin{array}{r}
A_{\nu}:=\left\{\left(\Theta_{n-1}, \rho, \Phi_{n}, t\right): 0 \leq \rho \leq \pi \sqrt{\nu} / 2,0 \leq \varphi_{k} \leq 2 \pi, k=1, \ldots, n\right. \tag{3.11}\\
\left.0 \leq \theta_{j} \leq \pi / 2, j=1, \ldots, n-1,-\pi \nu \leq t \leq \pi \nu\right\}
\end{array}
$$

Now by using (3.3) we compute the inner product in \mathbb{C}^{n+1} :

$$
\begin{aligned}
& \left\langle\left(\Theta_{n-1}, \frac{\rho}{\sqrt{\nu}}, \Phi_{n-1}, \frac{t}{\nu}\right),\left(\Theta_{n-1}^{\prime}, \frac{\rho^{\prime}}{\sqrt{\nu}}, \Phi_{n-1}^{\prime}, \frac{t^{\prime}}{\nu}\right)\right\rangle \\
& =e^{i\left(\varphi_{1}-\varphi_{1}^{\prime}\right)} \sin \left(\frac{\rho}{\sqrt{\nu}}\right) \sin \left(\frac{\rho^{\prime}}{\sqrt{\nu}}\right) \sin \theta_{n-2} \sin \theta_{n-2}^{\prime} \ldots \sin \theta_{1} \sin \theta_{1}^{\prime} \\
& \quad+e^{i\left(\varphi_{2}-\varphi_{2}^{\prime}\right)} \sin \left(\frac{\rho}{\sqrt{\nu}}\right) \sin \left(\frac{\rho^{\prime}}{\sqrt{\nu}}\right) \sin \theta_{n-2} \sin \theta_{n-2}^{\prime} \ldots \cos \theta_{1} \cos \theta_{1}^{\prime} \\
& \quad+\cdots+e^{i\left(\varphi_{n-1}-\varphi_{n-1}^{\prime}\right)} \sin \left(\frac{\rho}{\sqrt{\nu}}\right) \sin \left(\frac{\rho^{\prime}}{\sqrt{\nu}}\right) \cos \theta_{n-2} \cos \theta_{n-2}^{\prime} \\
& \quad+e^{i\left(t-t^{\prime}\right) \frac{1}{\nu}} \cos \left(\frac{\rho}{\sqrt{\nu}}\right) \cos \left(\frac{\rho^{\prime}}{\sqrt{\nu}}\right) \\
& = \\
& R_{\nu} e^{i \psi_{\nu}}
\end{aligned}
$$

where

$$
\begin{gathered}
R_{\nu}=1-\frac{1}{2 \nu}\left(\rho^{2}+\rho^{\prime 2}-2 \rho \rho^{\prime}\left(\cos \left(\varphi_{1}-\varphi_{1}^{\prime}\right) \sin \theta_{n-1} \sin \theta_{n-1}^{\prime} \ldots \sin \theta_{1} \sin \theta_{1}^{\prime}\right.\right. \\
+\cos \left(\varphi_{2}-\varphi_{2}^{\prime}\right) \sin \theta_{n-1} \sin \theta_{n-1}^{\prime} \ldots \cos \theta_{1} \cos \theta_{1}^{\prime} \\
\\
\left.\left.+\cdots+\cos \left(\varphi_{n}-\varphi_{n}^{\prime}\right) \cos \theta_{n-1} \cos \theta_{n-1}^{\prime}\right)\right)+o\left(\frac{1}{\nu}\right) \\
\psi_{\nu}=\arctan \left(\frac { 1 } { \nu } \rho \rho ^ { \prime } \left(\sin \left(\varphi_{1}-\varphi_{1}^{\prime}\right) \sin \theta_{n-1} \sin \theta_{n-1}^{\prime} \ldots \sin \theta_{1} \sin \theta_{1}^{\prime}\right.\right. \\
+ \\
+\sin \left(\varphi_{2}-\varphi_{2}^{\prime}\right) \sin \theta_{n-1} \sin \theta_{n-1}^{\prime} \ldots \cos \theta_{1} \cos \theta_{1}^{\prime} \\
+\cdots+
\end{gathered}
$$

as $\nu \rightarrow \infty$. Thus as a consequence of (3.9) and (3.10) we have
$R_{\nu}=\cos \left(\frac{1}{\sqrt{\nu}}|\mathbf{z}-\mathbf{w}|\right)+o\left(\frac{1}{\nu}\right) \quad$ and $\quad \psi_{\nu}=\frac{1}{\nu}\left(t-t^{\prime}\right)+\frac{1}{\nu} \operatorname{Im} \mathbf{z} \cdot \overline{\mathbf{w}}+o\left(\frac{1}{\nu}\right)$,
so that formula (2.3) for the zonal function yields

$$
\begin{aligned}
{ }^{b} \mathbb{Z}_{k, N(\nu)-k} & \left(\left\langle\left(\Theta_{n-1}, \frac{\rho}{\sqrt{\nu}}, \Phi_{n}, \frac{t}{\nu}\right),\left(\Theta_{n-1}^{\prime}, \frac{\rho^{\prime}}{\sqrt{\nu}}, \Phi_{n}^{\prime}, \frac{t^{\prime}}{\nu}\right)\right\rangle\right) \\
= & \frac{N(\nu)^{n}}{\omega_{2 n+1}} e^{i(N(\nu)-2 k) \frac{1}{\nu}\left(t-t^{\prime}+\operatorname{Im} \mathbf{z} \cdot \overline{\mathbf{w}}+o(1)\right)}\left(\cos \left(\frac{1}{\sqrt{\nu}}|\mathbf{z}-\mathbf{w}|\right)\right)^{|N(\nu)-2 k|} \\
& \cdot P_{k}^{(n-1,|N(\nu)-2 k|)}\left(\cos \left(\frac{2}{\sqrt{\nu}}|\mathbf{z}-\mathbf{w}|\right)\right)+o\left(\frac{1}{\nu}\right), \quad \nu \rightarrow \infty .
\end{aligned}
$$

By using condition (3.6) and the Mean Value Theorem, we easily check that

$$
\frac{1}{\nu^{n}}\left\|\pi_{k, N(\nu)-k} f_{\nu}\right\|_{L^{2}\left(S^{2 n+1}\right)}^{2}=\mathcal{I}_{\nu}^{M}+\mathcal{I}_{\nu}^{R}
$$

where the remainder term \mathcal{I}_{ν}^{R} satisfies $\lim _{\nu \rightarrow \infty} \mathcal{I}_{\nu}^{R}=0$, while the main term \mathcal{I}_{ν}^{M} is given by

$$
\begin{aligned}
\mathcal{I}_{\nu}^{M}= & \frac{n!^{2}}{4 \omega_{2 n+1} \pi^{2 n+2} \nu^{2}} \\
& \cdot \int_{A_{\nu}}\left(\int_{A_{\nu}}\left(\frac{N(\nu)}{\nu}\right)^{n} e^{i m\left(t-t^{\prime}+\operatorname{Im} \mathbf{z} \cdot \overline{\mathbf{w}}\right)}\left(\cos \left(\frac{1}{\sqrt{\nu}}|\mathbf{z}-\mathbf{w}|\right)\right)^{|N(\nu)-2 k|}\right. \\
& \cdot P_{k}^{(n-1,|N(\nu)-2 k|)}\left(\cos \left(\frac{2}{\sqrt{\nu}}|\mathbf{z}-\mathbf{w}|\right)\right) \tilde{f}\left(\Theta_{n-1}^{\prime}, \rho^{\prime}, \Phi_{n}^{\prime}, t^{\prime}\right)\left(\frac{\sin \frac{\rho^{\prime}}{\sqrt{\nu}}}{\frac{\rho^{\prime}}{\sqrt{\nu}}}\right)^{2 n-1}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\cdot \cos \left(\frac{\rho^{\prime}}{\sqrt{\nu}}\right) \rho^{\prime 2 n-1} d \rho^{\prime} d \Theta_{(n-1)}^{\prime} d \Phi_{(n)}^{\prime} d t^{\prime}\right) \overline{\tilde{f}\left(\Theta_{n-1}, \rho, \Phi_{n}, t\right)}\left(\frac{\sin \frac{\rho}{\sqrt{\nu}}}{\frac{\rho}{\sqrt{\nu}}}\right)^{2 n-1} \\
& \cdot \cos \left(\frac{\rho}{\sqrt{\nu}}\right) \rho^{2 n-1} d \rho d \Theta_{(n-1)} d \Phi_{(n)} d t, \quad \nu \rightarrow \infty
\end{aligned}
$$

We shall now treat \mathcal{I}_{ν}^{M} by means of the Lebesgue dominated convergence theorem. First of all, we extend the integration set in \mathcal{I}_{ν}^{M} (this may be done, since f has compact support and the integrand is periodic with respect to t), and we obtain

$$
\begin{equation*}
\mathcal{I}_{\nu}^{M}=\frac{n!^{2}}{4 \pi^{2 n+2} \omega_{2 n+1}} \int_{0}^{\infty} \int_{0}^{\pi / 2} \cdots \int_{0}^{\pi / 2} \int_{0}^{2 \pi} \cdots \int_{0}^{2 \pi} \int_{-\pi}^{\pi} \tag{3.12}
\end{equation*}
$$

$$
\left(\int_{0}^{\infty} \int_{0}^{\pi / 2} \cdots \int_{0}^{\pi / 2} \int_{0}^{2 \pi} \cdots \int_{0}^{2 \pi} \int_{-\pi}^{\pi}\left(\frac{N(\nu)}{\nu}\right)^{n} e^{i m\left(t-t^{\prime}-\operatorname{Im} \mathbf{w} \cdot \overline{\mathbf{z}}\right)}\right.
$$

$$
\cdot\left(\cos \left(\frac{1}{\sqrt{\nu}}|\mathbf{z}-\mathbf{w}|\right)\right)^{|N(\nu)-2 k|} P_{k}^{(n-1,|N(\nu)-2 k|)}\left(\cos \left(\frac{2}{\sqrt{\nu}}|\mathbf{z}-\mathbf{w}|\right)\right)
$$

$$
\left.\cdot f\left(\Theta_{n-1}^{\prime}, \rho^{\prime}, \Phi_{n}^{\prime}, t^{\prime}\right)\left(\frac{\sin \frac{\rho^{\prime}}{\sqrt{\nu}}}{\frac{\rho^{\prime}}{\sqrt{\nu}}}\right)^{2 n-1} \cos \left(\frac{\rho^{\prime}}{\sqrt{\nu}}\right) \rho^{\prime 2 n-1} d \rho^{\prime} d \Theta_{(n-1)}^{\prime} d \Phi_{(n)}^{\prime} d t^{\prime}\right)
$$

$$
\overline{f\left(\Theta_{n-1}, \rho, \Phi_{n}, t\right)}\left(\frac{\sin \frac{\rho}{\sqrt{\nu}}}{\frac{\rho}{\sqrt{\nu}}}\right)^{2 n-1} \cos \left(\frac{\rho}{\sqrt{\nu}}\right) \rho^{2 n-1} d \rho d \Theta_{(n-1)} d \Phi_{(n)} d t
$$

By using Lemma 2.1 and the Mehler-Heine formula as stated in Lemma 2.2 (with $N=N(\nu)+j-k, j-k=n-1$ and $x=\sqrt{\frac{N(\nu)-2 k}{\nu}}|\mathbf{z}-\mathbf{w}|$), we may conclude as in Proposition 4.4 of [Ca].

The proof for (3.8) is completely analogous.
Theorem 3.3. Let $n>2$. Take $m \in \mathbb{Z} \backslash\{0\}$ and $k \in \mathbb{N}$. Then

$$
\begin{align*}
& \left\|P_{m, k}\right\|_{\left(L^{p}\left(h^{n}\right), L^{2}\left(h^{n}\right)\right)} \tag{3.13}\\
& \qquad \lesssim \begin{cases}C(2 k+n)^{n\left(\frac{1}{p}-\frac{1}{2}\right)-\frac{1}{2}}|m|^{n\left(\frac{1}{p}-\frac{1}{2}\right)} & \text { if } 1 \leq p<\tilde{p} \\
C(2 k+n)^{\frac{1}{4}-\frac{1}{2 p}}|m|^{n\left(\frac{1}{p}-\frac{1}{2}\right)} & \text { if } \tilde{p} \leq p \leq 2\end{cases}
\end{align*}
$$

where $\tilde{p}=2(2 n+1) /(2 n+3)$. Moreover, the estimates are sharp.
Proof. Take $m>0$ (the other case being analogous). For every $\nu \in \mathbb{N}$ let $N(\nu) \in \mathbb{N}$ be such that

$$
\lim _{\nu \rightarrow \infty} \frac{1}{\nu} N(\nu)=m
$$

Thus

$$
\begin{aligned}
\left\|P_{m, k} f\right\|_{L^{2}\left(h^{n}\right)} & =\lim _{\nu \rightarrow \infty} \frac{1}{\nu^{n / 2}}\left\|\pi_{k, N(\nu)-k} f_{\nu}\right\|_{L^{2}\left(S^{2 n+1}\right)} \\
& \leq \lim _{\nu \rightarrow \infty}\left(\frac{N(\nu)}{\nu}\right)^{n / 2}\left(\frac{2 k(N(\nu)-k)}{N(\nu)}+n\right)^{n / 2}\left\|f_{\nu}\right\|_{L^{1}\left(S^{2 n+1}\right)} \\
& =m^{n / 2}(2 k+n)^{(n-1) / 2} \lim _{\nu \rightarrow \infty}\left\|f_{\nu}\right\|_{L^{1}\left(S^{2 n+1}\right)} \\
& =m^{n / 2}(2 k+n)^{(n-1) / 2}\|f\|_{L^{1}\left(h^{n}\right)}
\end{aligned}
$$

where we have used first (3.7) and then Theorem 2.3 and Lemma 3.1.
In the same way, we see that

$$
\begin{aligned}
&\left\|P_{m, k} f\right\|_{L^{2}\left(h^{n}\right)}= \lim _{\nu \rightarrow \infty} \frac{1}{\nu^{n / 2}}\left\|\pi_{k, N(\nu)-k} f_{\nu}\right\|_{L^{2}\left(S^{2 n+1}\right)} \\
& \leq \lim _{\nu \rightarrow \infty} \frac{1}{\nu^{n / 2}}\left(\frac{2 k \cdot(N(\nu)-k)}{N(\nu)}+n\right)^{-\frac{1}{2(2 n+1)}} \\
& \quad \cdot N(\nu)^{\frac{n}{2 n+1}}\left\|f_{\nu}\right\|_{L^{2 \frac{2 n+1}{2 n+3}}\left(S^{2 n+1}\right)} \\
& \leq(2 k+n)^{-\frac{1}{2(2 n+1)}} \lim _{\nu \rightarrow \infty} \frac{1}{\nu^{n / 2}} N(\nu)^{\frac{n}{2 n+1}} \nu^{\frac{n(2 n-1)}{2(2 n+1)}}\|f\|_{L^{2 \frac{2 n+1}{2 n+3}}\left(h^{n}\right)} \\
&=(2 k+n)^{-\frac{1}{2(2 n+1)}} m^{\frac{n}{2 n+1}}\|f\|_{L^{2 \frac{2 n+1}{2 n+3}}\left(h^{n}\right)}
\end{aligned}
$$

An interpolation argument yields the conclusion. Finally, sharpness follows from arguments in $[\mathrm{KoR}]$.
4. A restriction theorem on h^{n}. By applying the bounds proved in Section 2 we obtain a restriction theorem for the spectral projectors associated to the sub-Laplacian L on h^{n}. Our theorem improves in some cases a previous result due to Thangavelu ([Th1]). More precisely, let Q_{N} be the spectral projection corresponding to the eigenvalue N associated to L on h^{n}, that is,

$$
Q_{N} f:=\sum_{(2 k+n)|m|=N} P_{m, k} f
$$

where $P_{m, k}$ is the joint spectral projection operator introduced in the previous section. We look for estimates of the type

$$
\begin{equation*}
\left\|Q_{N}\right\|_{\left(L^{p}\left(h^{n}\right), L^{2}\left(h^{n}\right)\right)} \leq C N^{\sigma(p, n)} \tag{4.1}
\end{equation*}
$$

for all $1 \leq p \leq 2$, where the exponent σ is in general a convex function
of $1 / p$. In [Th1] Thangavelu proved that

$$
\begin{equation*}
\left\|Q_{N}\right\|_{\left(L^{p}\left(h^{n}\right), L^{2}\left(h^{n}\right)\right)} \leq C N^{n(1 / p-1 / 2)} d(N)^{1 / p-1 / 2}, \quad 1 \leq p \leq 2, \tag{4.2}
\end{equation*}
$$

where $d(N)$ is the divisor-type function defined by

$$
\begin{equation*}
d(N):=\sum_{2 k+n \mid N} \frac{1}{2 k+n}, \tag{4.3}
\end{equation*}
$$

and the estimate is sharp for $p=1$. Here $a \mid b$ means that a divides b. Thangavelu also proved that when $N=n R$ with $R \in \mathbb{N}$, then

$$
C N^{n(1 / p-1 / 2)} \leq\left\|Q_{N}\right\|_{\left(L^{p}\left(h^{n}\right), L^{2}\left(h^{n}\right)\right)}, \quad 1 \leq p \leq 2 .
$$

Here we show that there exist arithmetic progressions a_{N} in \mathbb{N} such that the estimate for $\left\|Q_{a_{N}}\right\|_{(p, 2)}$ is sharp and better than (4.2) for $1<p<2$.

Proposition 4.1. Let $n \geq 1$. Let N be any positive integer. Then for every $1 \leq p \leq 2$,

$$
\begin{equation*}
\left\|Q_{N}\right\|_{\left(L^{p}\left(h^{n}\right), L^{2}\left(h^{n}\right)\right)} \leq C N^{n(1 / p-1 / 2)} d(N)^{\rho(1 / p, n)}, \tag{4.4}
\end{equation*}
$$

where ρ is defined by

$$
\rho\left(\frac{1}{p}, n\right):= \begin{cases}\frac{1}{2} & \text { if } 1 \leq p<\tilde{p} \tag{4.5}\\ \left(n+\frac{1}{2}\right)\left(\frac{1}{p}-\frac{1}{2}\right) & \text { if } \tilde{p} \leq p \leq 2\end{cases}
$$

with $\tilde{p}=2(2 n+1) /(2 n+3)$, and $d(N)$ is given by (4.3).
Proof. For $p=1$ our estimate coincides with (4.2); nonetheless we give a different, simpler proof:

$$
\begin{aligned}
\left\|Q_{N} f\right\|_{L^{2}\left(h^{n}\right)}^{2} & =\left\|\sum_{(2 k+n)|m|=N} P_{m, k} f\right\|_{L^{2}\left(h^{n}\right)}^{2}=\sum_{(2 k+n)|m|=N}\left\|P_{m, k} f\right\|_{L^{2}\left(h^{n}\right)}^{2} \\
& \leq C \sum_{(2 k+n)|m|=N} m^{n}(2 k+n)^{n-1}\|f\|_{L^{1}\left(h^{n}\right)}^{2}, \\
& \leq C N^{n} \sum_{2 k+n \mid N} \frac{1}{2 k+n}\|f\|_{L^{1}\left(h^{n}\right)}^{2},
\end{aligned}
$$

whence

$$
\begin{equation*}
\left\|Q_{N}\right\|_{\left(L^{1}, L^{2}\right)} \leq C N^{n / 2} d(N)^{1 / 2} . \tag{4.6}
\end{equation*}
$$

For $p=2$ the bound is obvious, since Q_{N} is an orthogonal projector. Finally, for $p=\tilde{p}$ one has

$$
\begin{aligned}
\left\|Q_{N} f\right\|_{L^{2}\left(h^{n}\right)}^{2} & =\sum_{(2 k+n)|m|=N}\left\|P_{m, k} f\right\|_{L^{2}\left(h^{n}\right)}^{2} \\
& \leq C \sum_{(2 k+n)|m|=N}(2 k+n)^{-1 /(2 n+1)}|m|^{2 n /(2 n+1)}\|f\|_{L^{\tilde{p}}\left(h^{n}\right)}^{2} \\
& =C N^{2 n /(2 n+1)} \sum_{2 k+n \mid N}(2 k+n)^{-1}\|f\|_{L^{\tilde{p}}\left(h^{n}\right)}^{2},
\end{aligned}
$$

whence

$$
\begin{equation*}
\left\|Q_{N}\right\|_{\left(L^{\tilde{p}}, L^{2}\right)} \leq C N^{n /(2 n+1)} d(N)^{1 / 2} \tag{4.7}
\end{equation*}
$$

Then by applying the Riesz-Thorin interpolation theorem to (4.6) and to (4.7) we get (4.4).

Remark 4.2. Observe that estimate (4.4) is better than (4.2) only when $d(N)<1$.

Thus, on the one hand, we are led to seek arithmetic progressions $\left\{N_{m}\right\}$ on which the divisor function $d\left(N_{m}\right)$, whose behaviour is in general highly irregular, is strictly smaller than one. On the other hand, we are led to inquire about the average size of the norm of Q_{N}.

We remark that if $n=1$ then $d(N)$ is necessarily greater than one.
Remark 4.3. Proposition 4.1 reveals the existence of a critical point $\tilde{p} \in(1,2)$ where the form of the exponent of the eigenvalue N in (4.1) changes.

In the following we list some cases in which estimate (4.4) really improves the result in [Th1]. First of all, when $n \geq 2$ and N is a prime number, Proposition 4.1 yields the following sharp result.

Proposition 4.4. Let $n>2$ be odd. Let N be a prime number. Then for every $1 \leq p \leq 2$,

$$
\left\|Q_{N}\right\|_{\left(L^{p}\left(h^{n}\right), L^{2}\left(h^{n}\right)\right)} \leq \begin{cases}C N^{n\left(\frac{1}{p}-\frac{1}{2}\right)-\frac{1}{2}} & \text { if } 1 \leq p<\tilde{p}, \tag{4.8}\\ C N^{-\frac{1}{2}\left(\frac{1}{p}-\frac{1}{2}\right)} & \text { if } \tilde{p} \leq p \leq 2,\end{cases}
$$

with $\tilde{p}=2(2 n+1) /(2 n+3)$. Moreover, the above estimate is sharp.
Proof. (4.8) follows directly from (4.4). Furthermore, since in this case

$$
\left\|Q_{N}\right\|_{\left(L^{p}\left(h^{n}\right), L^{2}\left(h^{n}\right)\right)} \sim\left\|P_{1,(N-n) / 2}\right\|_{\left(L^{p}\left(h^{n}\right), L^{2}\left(h^{n}\right)\right)}, \quad 1 \leq p \leq 2,
$$

sharpness follows from Theorem 3.3.
Proposition 4.4 may be generalized to the case $N=r^{k_{0}}$, where $k_{0} \in \mathbb{N}$ and r varies in the set of all prime numbers.

Proposition 4.5. Let $n \geq 2$ be odd. Fix a positive integer k_{0}. Set $N_{r}=$ $r^{k_{0}}$, where r varies in the set of all prime numbers. Then for every $1 \leq p \leq 2$,

$$
\left\|Q_{N_{r}}\right\|_{\left(L^{p}\left(h^{n}\right), L^{2}\left(h^{n}\right)\right)} \leq \begin{cases}C N_{r}^{n\left(\frac{1}{p}-\frac{1}{2}\right)-\frac{1}{2 k_{0}}} & \text { if } 1 \leq p<\tilde{p} \tag{4.9}\\ C N_{r}^{\left(n-\frac{1}{2 k_{0}}(2 n+1)\right)\left(\frac{1}{p}-\frac{1}{2}\right)} & \text { if } \tilde{p} \leq p \leq 2\end{cases}
$$

with $\tilde{p}=2(2 n+1) /(2 n+3)$. Moreover, (4.9) is sharp.
Proof. (4.9) follows directly from (4.4), since

$$
d\left(N_{r}\right)=\frac{1}{r}+\frac{1}{r^{2}}+\cdots+\frac{1}{r^{k_{0}}} \leq \frac{2}{r}
$$

To prove that (4.9) is sharp, take the joint eigenfunction f_{0} for L and $i^{-1} \partial_{t}$ with eigenvalues, respectively, $(2 k+n) m=N_{r}$ and $m=r^{k_{0}-1}$, yielding the sharpness for the joint spectral projection $P_{r^{k_{0}-1},(r-n) / 2}$, that is, such that

$$
\left\|P_{r^{k_{0}-1},(r-n) / 2}\right\|_{(p, 2)} \sim \frac{\left\|f_{0}\right\|_{p^{\prime}}}{\left\|f_{0}\right\|_{2}} .
$$

Now we have

$$
\begin{aligned}
\left\|Q_{N}\right\|_{\left(L^{2}\left(h^{n}\right), L^{p^{\prime}}\left(h^{n}\right)\right)} & \geq \frac{\left\|Q_{N} f_{0}\right\|_{L^{p^{\prime}}}}{\left\|f_{0}\right\|_{L^{2}}}=\frac{\left\|f_{0}\right\|_{L^{p^{\prime}}}}{\left\|f_{0}\right\|_{L^{2}}} \sim\left\|P_{r^{k_{0}-1},(r-n) / 2}\right\|_{(p, 2)} \\
& \sim C r^{n\left(\frac{1}{p}-\frac{1}{2}\right)-\frac{1}{2}}\left(r^{k_{0}-1}\right)^{n\left(\frac{1}{p}-\frac{1}{2}\right)} \sim C r^{-\frac{1}{2}} r^{k_{0} n\left(\frac{1}{p}-\frac{1}{2}\right)} \\
& \sim C N_{r}^{n\left(\frac{1}{p}-\frac{1}{2}\right)-\frac{1}{2 k_{0}}}
\end{aligned}
$$

for all $1 \leq p \leq \tilde{p}$. For $\tilde{p} \leq p \leq 2$ an analogous estimate holds, so that (4.9) is sharp.

We shall now consider integers of the form $N_{l}:=q_{0}^{l}$, where q_{0} is a fixed prime number and $l \in \mathbb{N}$. The argument of the previous proposition also proves the following.

Proposition 4.6. Let $n=2$ or $n>2$ odd. For $n=2$ let $q_{0}=2$, for $n>2$ let q_{0} be a prime number strictly greater than 2 . Set $N_{l}:=q_{0}^{l}, l \in \mathbb{N}$. Then

$$
\begin{equation*}
\left\|Q_{N_{l}}\right\|_{\left(L^{p}\left(h^{n}\right), L^{2}\left(h^{n}\right)\right)} \leq C N_{l}^{n(1 / p-1 / 2)} \quad \text { if } 1 \leq p \leq 2 \tag{4.10}
\end{equation*}
$$

Moreover, (4.10) is sharp.
The above examples show the highly irregular behaviour of $d(N)$, and therefore of $\left\|Q_{N}\right\|_{p, 2}$. In order to smooth out fluctuations we introduce appropriate averages of joint spectral projectors. More precisely, for $N \in \mathbb{N}$ we define

$$
\begin{equation*}
\Pi_{N} f:=\sum_{L=n}^{N} \sum_{(2 k+n)|m|=L} P_{m, k} f \tag{4.11}
\end{equation*}
$$

and ask what is the behaviour of $\left\|M_{N}\right\|_{(p, 2)}$, where

$$
\begin{equation*}
M_{N} f:=\frac{1}{N} \Pi_{N} f \tag{4.12}
\end{equation*}
$$

For $p=1$ Theorem 3.3 and orthogonality yield

$$
\begin{aligned}
\left\|\Pi_{N} f\right\|_{L^{2}\left(h^{n}\right)}^{2} & =\left\|\sum_{L=n}^{N} \sum_{(2 k+n)|m|=L} P_{m, k} f\right\|_{L^{2}\left(h^{n}\right)}^{2} \\
& =\sum_{(k, m):(2 k+n)|m| \leq N}\left\|P_{m, k} f\right\|_{L^{2}\left(h^{n}\right)}^{2} \\
& \leq C \sum_{(k, m):(2 k+n)|m| \leq N}(2 k+n)^{n-1}|m|^{n}\|f\|_{L^{1}\left(h^{n}\right)}^{2} \\
& \leq C \sum_{m=1}^{N} m^{n} \sum_{2 k+n=n}^{[N / m]}(2 k+n)^{n-1}\|f\|_{L^{1}\left(h^{n}\right)}^{2} \leq C N^{n} \cdot N\|f\|_{L^{1}\left(h^{n}\right)}^{2},
\end{aligned}
$$

whence

$$
\begin{equation*}
\left\|\Pi_{N}\right\|_{(1,2)} \leq N^{(n+1) / 2} \tag{4.13}
\end{equation*}
$$

The trivial $L^{2}-L^{2}$ estimate and Riesz-Thorin interpolation yield

$$
\begin{equation*}
\left\|\Pi_{N}\right\|_{(p, 2)} \leq C N^{(n+1)(1 / p-1 / 2)}, \quad 1 \leq p \leq 2 \tag{4.14}
\end{equation*}
$$

Observe that by using Theorem 3.3 we may obtain the following estimate at the critical point \tilde{p} :

$$
\begin{aligned}
\left\|\Pi_{N} f\right\|_{L^{2}\left(h^{n}\right)}^{2} & =\sum_{(k, m):(2 k+n)|m| \leq N}\left\|P_{m, k} f\right\|_{L^{2}\left(h^{n}\right)}^{2} \\
& \leq C \sum_{(k, m):(2 k+n)|m| \leq N}(2 k+n)^{2 \alpha} m^{2 \beta}\|f\|_{L^{\tilde{p}}\left(h^{n}\right)}^{2} \\
& =C \sum_{m=1}^{N} m^{2 \beta} \sum_{2 k+n=n}^{[N / m]}(2 k+n)^{2 \alpha}\|f\|_{L^{\tilde{p}}\left(h^{n}\right)}^{2} \\
& =N^{2 \alpha+1} \sum_{m=1}^{N} m^{2 \beta-2 \alpha-1}\|f\|_{L^{\tilde{p}}\left(h^{n}\right)}^{2} \\
& \leq C N^{2 \alpha+2}\|f\|_{L^{\tilde{p}}\left(h^{n}\right)}^{2}
\end{aligned}
$$

where we have used the fact that $2 \beta-2 \alpha=1$ for all $1 \leq p \leq \tilde{p}$, with $\alpha=\alpha(1 / p, n)$ and $\beta=\beta(1 / p, n)$ given by (2.6) and (2.7).

Thus

$$
\begin{equation*}
\left\|\Pi_{N}\right\|_{(\tilde{p}, 2)} \leq C N^{\alpha+1}=C N^{(2 n+1 / 2) /(2 n+1)} \tag{4.15}
\end{equation*}
$$

A comparison between (4.14) and (4.15) shows that at the critical point
the estimate given by Riesz-Thorin interpolation is better than the bound obtained by summing up the estimates for joint spectral projections.

Thus we obtain the following result.
Proposition 4.7. Let $n \geq 1$. The following $L^{p}-L^{2}$ bounds hold for Π_{N} and for the average projection operators M_{N} :

$$
\left\|\Pi_{N}\right\|_{\left(L^{p}\left(h^{n}\right), L^{2}\left(h^{n}\right)\right)} \leq C N^{(n+1)(1 / p-1 / 2)} \quad \text { if } 1 \leq p \leq 2
$$

and

$$
\left\|M_{N}\right\|_{\left(L^{p}\left(h^{n}\right), L^{2}\left(h^{n}\right)\right)} \leq C N^{(n+1)(1 / p-1 / 2)-1} \quad \text { if } 1 \leq p \leq 2
$$

A similar proof also yields the following result about the operators $E_{N_{1}, N_{2}}$, where

$$
E_{N_{1}, N_{2}}:=\Pi_{N_{2}}-\Pi_{N_{1}}, \quad N_{1}, N_{2} \in \mathbb{N}, N_{2}>N_{1}
$$

Proposition 4.8. Let $n \geq 1$. Then
$\left\|E_{N_{1}, N_{2}}\right\|_{\left(L^{p}\left(h^{n}\right), L^{2}\left(h^{n}\right)\right)} \leq C\left(N_{2}^{n}\left(N_{2}-N_{1}\right)\right)^{1 / p-1 / 2} \quad$ for all $1 \leq p \leq 2$.
Remark 4.9. This should be compared with Proposition 3.8 in [M], which shows that this estimate is sharp.

Acknowledgements. It is a pleasure to thank Professor Fulvio Ricci for his valuable help.

References

[Ca] V. Casarino, Two-parameter estimates for joint spectral projections on complex spheres, Math. Z. 261 (2009), 245-259.
[D] A. H. Dooley, Contractions of Lie groups and applications to analysis, in: Topics in Modern Harmonic Analysis, Ist. Naz. Alta Mat., Roma, 1983, 483-515.
[DGa] A. H. Dooley and G. I. Gaudry, An extension of deLeeuw's theorem to the n dimensional rotation group, Ann. Inst. Fourier (Grenoble) 34 (1984), 111-135.
[DG1] A. H. Dooley and S. K. Gupta, The contraction of $S^{2 p-1}$ to H^{p-1}, Monatsh. Math. 128 (1999), 237-253.
[DG2] —, 一, Transferring Fourier multipliers from $S^{2 p-1}$ to H^{p-1}, Illinois J. Math. 46 (2002), 657-677.
[DRi1] A. H. Dooley and J. W. Rice, Contractions of rotation groups and their representations, Math. Proc. Cambridge Philos. Soc. 94 (1983), 509-517.
[DRi2] -, 一, On contractions of semisimple Lie groups, Trans. Amer. Math. Soc. 289 (1985), 185-202.
[FH] J. Faraut et K. Harzallah, Deux Cours d'Analyse Harmonique, Progr. Math. 69, Birkhäuser, Boston, 1987.
[IW] E. Inönu and E. P. Wigner, On the contraction of groups and their representations, Proc. Nat. Acad. Sci. USA 39 (1953), 510-524.
[Kl] O. Klima, Analysis of a subelliptic operator on the sphere in complex n-space, thesis, School of Mathematics, Univ. New South Wales, 2003.
[KoR] H. Koch and F. Ricci, Spectral projections for the twisted Laplacian, Studia Math. 180 (2007), 103-110.
[M] D. Müller, A restriction theorem for the Heisenberg group, Ann. of Math. (2) 131 (1990), 567-587.
[R] F. Ricci, A contraction of $S U(2)$ to the Heisenberg group, Monatsh. Math. 101 (1986), 211-225.
[RRu] F. Ricci and R. L. Rubin, Transferring Fourier multipliers from $\operatorname{SU}(2)$ to the Heisenberg group, Amer. J. Math. 108 (1986), 571-588.
[Ru] R. L. Rubin, Harmonic analysis on the group of rigid motions of the Euclidean plane, Studia Math. 62 (1978), 125-141.
[So1] C. Sogge, Oscillatory integrals and spherical harmonics, Duke Math. J. 53 (1986), 43-65.
[So2] -, Fourier Integrals in Classical Analysis, Cambridge Tracts in Math. 105, Cambridge Univ. Press, Cambridge, 1993.
[Sz] G. Szegö, Orthogonal Polynomials, 4th ed., Amer. Math. Soc. Colloq. Publ. 23, Amer. Math. Soc., Providence, RI, 1974.
[Th1] S. Thangavelu, Restriction theorems for the Heisenberg group, J. Reine Angew. Math. 414 (1991), 51-65.
[Th2] -, Some restriction theorems for the Heisenberg group, Studia Math. 99 (1991), 11-21.
[VK] N. Ja. Vilenkin and A. U. Klimyk, Representation of Lie Groups and Special Functions. Vol. 2. Class I Representations, Special Functions and Integral Transforms, Kluwer, 1993.

Dipartimento di Matematica
Politecnico di Torino
Corso Duca degli Abruzzi 24
10129 Torino, Italy
E-mail: casarino@calvino.polito.it

Dipartimento di Metodi e Modelli Matematici per le Scienze Applicate Via Trieste 63
35121 Padova, Italy
E-mail: ciatti@dmsa.unipd.it

