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ABSTRACT

The current statistical methods applied in flood frequency analysis require long

data records to obtain reliable estimates, particularly for long return periods.

Moreover, the choice of the statistical model and the parameter estimation pro-

cedure may introduce uncertainty in the estimates. In this work, we investigate

the sensitivity of flood frequency analysis to various sample sizes, statistical

models, and parameter estimation methods over six major hydrological regions

in the contiguous United States. Results show that flood frequency estimates

based on annual maximum series approach convergence to the reference values

(estimates derived from 70 years record) in terms of median for 35-year or longer

records. However, the uncertainty remains significant and a record of 35 years

(20 years) is associated with ~50% (100%) larger uncertainty on the estimated

100-year flood. The generalised extreme value distribution combined with maxi-

mum likelihood estimation method is associated with the largest uncertainty,

while the log-Pearson type III exhibits comparable bias and smaller uncertainty.

Application of the partial duration series approach to 20-year records shows no

significant advantage. Our findings suggest that the hydroclimatic characteristics

of the catchments exhibit limited impact on the uncertainty.
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1 | INTRODUCTION

Reliable and robust estimation of magnitude and fre-
quency of floods are fundamental for infrastructure design,
risk-assessment, and decision-making. Traditional engi-
neering practice ties together flood risk assessment and
at-site flood frequency analysis (FFA), allowing one to
estimate flood magnitudes at given gauged locations for

return periods beyond the available data record (Nagy,
Mohssen, & Hughey, 2017; Rahman et al., 2013).

FFA consists of the identification of a statistical distri-
bution that is able to model the probability of exceedance
of extreme flood peaks. Traditionally, both the statistical
distribution class and the parameters describing it is
derived from past data records. The standard approach is
based on the annual maximum series (AMS), which
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involves the statistical modelling of the largest peak flows
observed in each year, a series of data that can be easily
and unambiguously extracted (Coles, Bawa, Trenner, &
Dorazio, 2001). Oftentimes, the generalised extreme
value (GEV) distribution is selected as a statistical model,
following the results of extreme value theorem: the max-
ima values of large samples (n ! ∞) of independent and
identically distributed random variables can only con-
verge to this distribution (Fisher & Tippett, 1928;
Gnedenko, 1943). However, some of these hypotheses are
rarely verified, so that other distributions are considered
(Sangal & Biswas, 1970). Particularly, log Pearson type III
(LP3) was extensively used for projects sponsored
(IACWD, 1982) and is widely applied in practice in the
United States due to its accurate estimation on magni-
tude and frequency of flood flows (Stedinger & Griffis,
2008; Subramanya, 2013; Wallis & Wood, 1985).

However, in the case of limited data records (usually
10 to 20 years), only few data points are available for the
estimation of the model parameters, causing important
uncertainties in the parameters estimation (Keast & Elli-
son, 2013). To overcome this limitation and extend the
available information, the partial duration series (PDS)
approach, also known as peaks over threshold (PoT) can
be adopted (Cunnane, 1973; Madsen, Rasmussen, & Ros-
bjerg, 1997). This approach makes use of the flood peaks
exceeding a sufficiently high threshold, thus including
more than one flood per year on average (Armstrong,
Collins, & Snyder, 2012). Extreme value theory, again,
but with some additional hypotheses, provides indica-
tions on the statistical model to be used for such
approach, the Generalised Pareto distribution (GPD).

The choices of statistical distribution and of the param-
eter estimation method used to model extreme values affect
the FFA estimates, and have been thoroughly explored in
past studies (Ahilan, Amp, Sullivan, & Bruen, 2012; Baratti
et al., 2012; Bobée, Cavadias, Ashkar, Bernier, & Rasmus-
sen, 1993; Haddad & Rahman, 2010; Haktanir & Hor-
lacher, 1993; Kidson & Richards, 2005; Meshgi & Khalili,
2008; Michele & Rosso, 2001; Villarini & Smith, 2010; Wil-
son et al., 2011). Log Pearson type III (LP3), GEV distribu-
tion, Extreme Value type I (EV1), GPD are frequently
adopted. In general, there has been no theoretical consen-
sus about a globally accepted probability distribution for
FFA across various sites and the choice of the distribution
has been mostly based on national guidelines (Wilson
et al., 2011). In this work, we examine the performance of
GEV, owing to the classic theoretical background, and
LP3, is the most widely applied in contiguous United States
(CONUS). Additionally, various estimation methods are
used for the identification of the distribution parameters
from a given data sample. The most common estimation
methods in flood frequency analysis are based either on

the method of moments (MOM) or on the maximum likeli-
hood estimates (MLE). Other authors have proposed the
use of Probability Weighted Moments (PWM) (Greenwood,
Landwehr, Matalas, & Wallis, 1979), and L-moments
(Gubareva, 2011; Haddad & Rahman, 2010; Vivekanandan,
2015). For example, in the case of the United States, the
guidelines for determining flood frequency according to
Bulletin 17B (IACWD, 1982) (hereafter 17B), of the advisory
committee on water information, recommended weighted
moments estimators for use with LP3 distribution.

Both the AMS and PDS approaches have been widely
studied. Cunnane (1973) showed that, for the same range
of return periods, PDS estimation has smaller sampling
variance than the AMS if the PDS contains 1.65 N flood
peaks, where N is the number of years of record length.
Other studies also considered the parameter estimation
methodologies, showing that on the basis of a regional
average estimate, PDS provides the most efficient estima-
tion for heavy-tailed distributions (higher probability of
particularly high values) when MLE is used, and AMS
when MOM is used, whereas in the case of MOM and
PWM, PDS is superior for light-tailed (lower probability of
particularly high values) (Madsen et al., 1997). In general,
the idea that PDS outperforms AMS in the case of limited
data records was confirmed, even if most studies used the
full available sample sizes directly to conduct FFA
(Bezak, Brilly, & Šraj, 2014; Nagy et al., 2017). Recent
studies, however, challenged this idea showing no signifi-
cant improvement provided by the use of PDS with short
data records, particularly when automatic threshold selec-
tion methods need to be adopted (Marra, Nikolopoulos,
Anagnostou, & Morin, 2018; Schlögl & Laaha, 2017).

The most common problem encountered in at-site FFA
is the limited length of observations (Rahman et al., 2013).
Given the statistical basis of flood frequency estimates, this
will lead to inappropriate choice of the extreme value prob-
ability distributions and to inaccurate estimation of its
parameters (Archer, Leesch, & Harwood, 2007; Claps &
Laio, 2003; Cunnane, 1985). Nevertheless, in many cases
in practice, FFA is carried out on relatively short data
records, which typically do not exceed 50 years, rarely
reach 100 years, and often are limited to 20–30 years (Bhat
et al., 2018; Opere, Mkhandi, & Willems, 2006; Villarini,
Smith, Serinaldi, Ntelekos, & Schwarz, 2012). Relatively
short records may be applicable in low-flow design, but are
far from the requirements for high-flow design (typically
over 100 years) (Tallaksen, 2000). Such limitations result
in larger uncertainties in the estimation of the longer
return-period quantiles (Cunnane, 1988; Ribatet, Sauquet,
Grésillon, & Ouarda, 2006; Tallaksen, 2000).

As first indicated by Benson (1963) and later applied
by NERC (1975), reliable quantile estimates can be
obtained only for return periods that do not exceed by a

2 of 13 HU ET AL.



factor of two the flow record length. Douglas, Vogel, and
Kroll (2000) indicated that, in typical conditions, a mini-
mum of 30 years of data with no gaps is deemed satisfac-
tory. It has been demonstrated that, as the range of
interest is represented by the upper tail of the distribution
(longer return period), theoretical models that satisfacto-
rily fit the central area (i.e., return period <10 years)
could give biased estimates if extrapolated to much lon-
ger return periods (Landwehr, Matalas, & Wallis, 1978;
Landwehr, Matalas, & Wallis, 1980). For certain distribu-
tions, such as LP3, the skewness used is very sensitive to
sample size (IACWD, 1982). Chowdhury Jahir and
Stedinger Jery (1991), Reis and Stedinger (2005), and
Griffis and Stedinger (2007) emphasised that the avail-
able range of record is important to obtain accurate
weighted regional skew because skewness estimator can
be unstable due to limited sample size (IACWD, 1982).

Despite the abundance of literature available on FFA, a
systematic comparison analysis that evaluates the sensitiv-
ity of results to extreme value approach, statistical model,
and parameter estimation method under short record con-
ditions and diverse hydroclimatic settings is still lacking.
The objective of this study is to present a comprehensive
sensitivity analysis of statistical models, which are used in
flood frequency analysis. The sensitivity of the models to
parameter estimation methods and data record length is
studied. The work aims to improve our understanding of
the interplay between these different factors affecting FFA
and investigate these aspects as a function of different cli-
mate characteristics. CONUS is chosen for this study
because of the sufficient number of gauges across different
hydrological regions and diverse hydroclimatic conditions.

The study consists of two parts. First, the impact of
sample size and the combination of different statistical dis-
tributions and parameter estimation methods on FFA
based on the AMS approach are examined. Then, the abil-
ity of the PDS approach to improve flood frequency estima-
tion based on shorter record (20-year) records, in
comparison with AMS, is tested. The article is organised as
follows: in section 2 we present the necessary information
of the study area, available data and their use in the context
of this study. In section 3 we describe the methodology
used for flood frequency analyses with different approaches
and their corresponding statistical models and parameter
estimation procedures, as well as the measurement of bias.
Section 4 presents and discusses the results and section 5
summarises the main conclusions of this study.

2 | STUDY AREA AND DATA

The study herein is based on historical annual maximum
flows and continuous streamflow observations over the

Contiguous United States (CONUS) extracted from the
U.S. Geological Survey (USGS) database. The basin scales
vary from 1.52 to 25,791 km2, with a median value of
178 km2.

In addition to the quality check from USGS, the
gauge data were further examined following a set of
criteria provided by the GAGES-II data set (Falcone,
2011) and detailed below. For a station to be included, it
should have at least a record of annual maximum peak
flows longer than 70 years (for AMS). Of these stations
with continuous streamflow record of at least 20 years
where used for PDS. Second, the selected drainage, of
selected basins, should be natural or minimally disturbed
by anthropogenic modification, such as regulation,
urbanisation, or land use change. Third, since the FFA
approaches examined are based on statistical stationarity,
no statistically significant trend should be observed in the
data. The stationarity of streamflow data were examined
based on the Philips-Perron test (Phillips & Perron, 1988)
and Mann–Kendall test (Kendall, 1975; Salmi, 2002). The
gauging stations that did not meet both these criteria at 5%
significance level were excluded from the analysis. The
final data set (Figure 1) that includes stations that passed
the three quality check criteria consists of 299 gauges with
at least 70-year record for the AMS approach. From those,
220 gauges included also a record of 20 years of continuous
streamflow for the PDS approach.

The available data set was further divided into hydro-
climatic regions according to the watershed characteris-
tics and Köppen climate classification, respectively. To
ensure, an adequate representation of the within-region
variability and to obtain robust results for the examined
regions, we included in our analysis only the regions with
at least 15 stations distributed across each region, and
excluded regions with only few available gauges. Specifi-
cally, six main regions were considered due to their rela-
tively large number of gauges and because they were
representative of different climate groups. The climate
group and corresponding region names, number of
gauges for AMS and PDS and climate class are presented
in Table 1. Three regions (01, 02, and 03) are from the
eastern, two (05,07) are in the Central, and one region
(17) is from the western US.

3 | METHODOLOGY

The analysis framework conducted in this article is pres-
ented in Figure 2. It is divided into two parts. The first
part consists of AMS modelling, which is composed of
three elements including: (a) a range of sample size from
available annual maximum flow data, (b) different distri-
butions, and (c) different methods for estimating the
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parameters of the distributions examined, all of which
are built as several combinations for further sensitivity
analyses. Our aim is to establish how these three ele-
ments affect flood frequency estimates at different
exceedance probability levels.

The second part tests the advantage of PDS on limited
sample size, and is structured as a comparison of flood
frequency estimates obtained using AMS and PDS on the
most recent 20 years of data (the period 1997–2016). The
procedure in the AMS approach is similar to the first
part, but for consistency, is limited to 20 years of data
extracted from annual maximum flows. The PDS
approach is applied at the 20 years for which continuous
streamflow data are available.

Three distributions and three parameter estimation
methods are used resulting in six combinations in total:
LP3-MLE, LP3-17B, GEV-MLE, GEV-LMOM, GPD-MLE,
and GPD-LMOM. Specifically, GEV and LP3 are applied
in AMS. The following sections provide more details in
statistical metrics on the AMS and PDS methods for the
sensitivity analyses.

3.1 | AMS modelling

Two theoretical distribution functions, LP3 and GEV, are
used in AMS modelling. Three parameter estimation
methods MLE, L-moments (LMOM), and 17B are used.
MLE maximises the probability likelihood of the sample
data (Haddad & Rahman, 2010; Martins & Stedinger,
2000). LMOM is largely used in hydrological applications
owing to the lower sensitivity to outliers and to the better
estimation of the tail heaviness in presence of short data
records (Hosking, 1990). The method characterises a
wider range of distributions than conventional moments,
and has relatively small sampling variance, especially in
comparison with the classical coefficients of skewness
and kurtosis (Ahilan et al., 2012; Bobée & Rasmussen,
1995; Chowdhury Jahir & Stedinger Jery, 1991; Pearson,
1991; Seckin, Haktanir, & Yurtal, 2011). In the case of
LP3 distribution, weighted moments estimators based on
the logarithms of sample data are used instead of the clas-
sic LMOM, as recommended by Bulletin 17B. In addition,
17B uses a generalised estimate of the skew coefficient of

FIGURE 1 Selected gauges and hydrologic regions across CONUS. CONUS, contiguous United States

TABLE 1 Characteristic of selected hydrologic regions

Hydrological unit
map code

Number of
gauges (AMS)

Number of
gauges (PDS) Region

Climate
characteristic

01 15 15 New England Dfb

02 43 38 Mid-Atlantic Dfa and Dfab

03 29 17 South Atlantic-Gulf Cfb

05 25 16 Ohio Dfa

07 19 15 Upper Mississippi Dfa and Dfb

17 44 38 Pacific Northwest Csb

Abbreviations: AMS, annual maximum series; PDS, partial duration series.
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the station record to reduce error and bias in the skewness
estimation.

3.2 | PDS modelling

The PDS approach consists of modelling exceedances
above a predefined threshold. PDS modelling is under-
taken on continuous streamflow data.

Data used in the PDS approach should satisfy two
requirements: independence of events and selection of an
appropriate threshold, which will be further introduced
in subsequent subsections. Under extreme value theory
assumptions, exceedances are expected to follow a GPD
distribution, which is described by three parameters
(Bezak et al., 2014; Nagy et al., 2017; Pickands, 1975;
Ribatet et al., 2006).

Parameters are estimated with MLE and LMOM tech-
nique, which are also used in AMS. LMOM allow for the
estimation of the location parameter of the GPD distribu-
tion once the PDS is defined through the threshold
(Hosking & Wallis, 1997). Therefore, we have GPD-MLE
and GPD-LMOM for PDS modelling.

3.2.1 | Independence criteria

It is essential to ensure the independence of consecutive
flood peak events. Studies have shown that independence
criteria should be a function of catchments size and

interval between separate flood events (Lang, Ouarda, &
Bobée, 1999). In this study, we follow the recommenda-
tion of USWRC (1976) that the events should be sepa-
rated by a time interval θ:

θ>5days+2:59*log Að Þ ð1Þ

where A is the basin area in square kilometres.

3.2.2 | Threshold selection

Identification of the appropriate threshold is not a
straightforward task and still remains an issue of uncer-
tainty in PDS estimates (Langousis, Mamalakis, Puliga, &
Deidda, 2016). An appropriate threshold should be high
enough to represent the tail of the distribution and, at the
same time, the retained data should provide an increased
data sample with respect to the AMS (Caballero-Megido,
Hillier, Wyncoll, Bosher, & Gouldby, 2018). High thresh-
old level will reduce the number of events but increase
the likelihood of independence and fulfil the theoretical
requirements (Lang et al., 1999), while low threshold will
more likely violate the theoretical requirements. Various
approaches for threshold selection have been proposed
(Bernardara, Mazas, Kergadallan, & Hamm, 2014;
Bobée & Rasmussen, 1995; Lang et al., 1999; Tanaka,
Takara, Snorrason, Finnsdottir, & Moss, 2002), but many
of them have been quite subjective. In our study, we
followed an objective method recently proposed by Solari,

FIGURE 2 Methodology

flowchart
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Egüen, Polo, and Losada (2017), which selects the thresh-
old by minimising the complement of the p-value of the
Anderson-Darling test.

3.3 | Sensitivity analysis and uncertainty
quantification

Uncertainty in flood frequency estimates can be caused by
model errors, which comprise inappropriate estimation of
the population parameters owing to limited sampling, pos-
sible incorrect choice of the model, and possible non-
optimal choice of the parameter estimation procedure. In
this study, the impact of three factors is quantified:
(a) short record length, (b) selection of statistical models,
and (c) parameter estimation procedure. Particularly, the
experiment is divided into two parts: first, the sensitivity of
AMS models to the three above-mentioned factors is quan-
tified; then, sample size effect is examined for AMS and
PDS approaches focusing on 20-year records.

Uncertainty is quantified using the bootstrap approach
suggested by Overeem, Buishand, and Holleman (2008),
which comprises (a) the generation of synthetic records of
specified length via random sampling with replacement
of the full record of AMS or PDS and (b) the estimation
of flood quantiles (e.g., for 5-, 10-, 50-, 100-year return
period), from those synthetic records using different
models and parameter estimation methods. The proce-
dure is then repeated 10,000 times to create the bootstrap
sample.

The impact of the three factors mentioned above is
quantified using the relative difference (RD) defined as:

RD=
Xi−Xref
X ref

× 100% ð2Þ

For a given flood quantile, estimated based on a given
method (AMS or PDS) and parameter estimation tech-
nique, Xi is the flood estimate value estimated from syn-
thetic records of length i and X_ref the reference quantile
estimated from synthetic records of reference record length.
The exact time period of data record in X_ref varied per sta-
tion but all the selected stations covered the period
1947–2016. We considered two statistical indicators, the
median and interquartile range (IQR). The RD of median
and IQR allow us to quantify the impact of the factors
examined on both bias and uncertainty in FFA estimates,
respectively.

RD absolute values (that is, the magnitude of the RD
is considered without considering its sign) are first exam-
ined as a measure of the degree of bias of a particular dis-
tribution/parameter estimation method/sample size;
second, the sign of the RD is considered to indicate

whether the reference is under- or over-estimated. More
details are provided in the following sections.

3.3.1 | Sensitivity on AMS

The performance of different models (LP3-MLE, LP3-17B,
GEV-MLE, and GEV-LMOM) in FFA estimation based on
AMS for different sample sizes S(10-, 15-, 25-, 30-, 35-, 40-,
45-, 50-year) and return periods (5-, 10-, 50-, and 100-year
return period), is quantified using the RD from bootstrap to
quantify the variability between FFA result and reference.

In Equation (2), the reference X_ref corresponds to the
70 years AMS estimates. In sensitivity analyses, X_ref corre-
sponds to the estimation based on each model with full
record length (70 years) i.e., FFA estimates from each
model at sample size S are compared against the FFA esti-
mates of the same model at sample size equal to 70 years.

3.3.2 | AMS versus PDS

To evaluate AMS and PDS for short records, we compare
their performance based on 20-year records. More specifi-
cally, flood frequency estimates on AMS with 20 years
and continuous streamflow series on PDS are compared.
The statistical models and parameter estimation methods
in AMS are the same as in section 3.3.1. Since the true
distribution of each sample size is not known, the refer-
ence for quantile estimates is based on the empirical dis-
tribution function from the full 70-year record, which is
proposed as an optimal and fair reference to be more
powerful than other tests of fit for a wide range of sample
sizes (Ahmad, Sinclair, & Spurr, 1988). Therefore, X_ref
in this section is the estimation based on the empirical
distribution with a 70-year record. The classical Weibull
formula is selected for the empirical estimates:

Fi =
N− i+1
N +1

ð3Þ

where Fi, i, and N are the empirical non-exceedance
probability, the rank in descending order, and the num-
ber of extreme events (i.e., number of annual maxima),
respectively.

4 | RESULTS AND DISCUSSION

4.1 | Sensitivity on AMS modelling

An example of FFA (USGS site number: 01013500) based
on various distributions and parameter estimation methods
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is shown in Figure 3, where the resulting curves are
reported together with the associated uncertainty bounds
calculated as described in section 3.3. The confidence
intervals are obtained from bootstrapping experiments.
More specifically, we randomly sampled (with replacement)
the original record (70 years) and each time, flood quantiles
were estimated for each model/estimation method exam-
ined. The distribution of flood quantiles that resulted from
10,000 iterations was used to identify the 5th and 95th per-
centile that was used to represent uncertainty in our esti-
mates. The four distributions based on full record length
(70 years) begin to diverge at 25 years return period. Most
noticeable differences occur in the upper bounds of the
higher return period among the distributions. Compared to
the FFA results for 2-year return period, the differences
among the distributions increase nearly by a factor of
10, indicating an increase in uncertainty for higher return
periods. LP3-based estimates have more than 60% less
uncertainty than in GEV. LP3-MLE exhibits the lowest
uncertainty, manifested as the narrowest shade in Figure 3.
Conversely, GEV-MLE estimates are associated with the
highest uncertainty because of the widest shade area. For
parameter estimation methods, LMOM based estimates
exhibit less uncertainty than MLE. The greatest difference
between 17B and MLE based estimates is presented in the
upper bounds, where the uncertainty of 17B based estimates
is ~10% higher than the MLE for 200-year return period.

Similarly, a series of sensitivity analyses are carried
out for each distribution and parameter estimation
method (LP3-MLE, LP3-17B, GEV-MLE, GEV-LMOM) in
the selected hydrological regions. Results on the RDs in
median and IQR are summarised in Figures 4 and 5.

4.1.1 | Sample size

As record length increases and approaches the reference
length, RDs exhibit a nonlinear rate of decrease, which
highlights that the uncertainty is highly sensitive to sam-
ple size. RDs in the median reduce gradually and
approach zero (i.e., no difference with reference) as sam-
ple size increases in the four models studied herein. This
pattern is consistent in all regions examined and in differ-
ent return periods, suggesting that the variability of sam-
ple size affects flood frequency estimates, and affects it
dramatically at small sample sizes. Specifically, RDs in
the median are about 10% for 20 years record length and
5% for 30 years record length. RDs in IQR show a notice-
able decrease with increasing record length. They exhibit
very high RDs ranging from 150 to 350% with 10 years
record length, then dropping to less than 20% by 50 years
record lengths. For the 10-year return period RDs are
~100% for 20 years record length and reduce to less than
50% for 35 years of record length. Results for the 100-year
return period are similar but RDs are slightly higher.

4.1.2 | Distributions and parameter
estimation methods

In terms of RDs based on medians compared to refer-
ence, LP3-17B in most regions exhibit overestimation,
while the other three distributions, LP3-MLE, GEV-MLE,
and GEV-LMOM always exhibit underestimation. In
addition, LP3-17B presents no obvious decreasing trend
along with increasing sample sizes in shorter return
periods, showing its stability in various sample sizes for
low quantiles. The results for RDs in the median for
LP3-17B exhibits a regional dependence that is different
from other methods. Specifically results for some regions
are associated with overestimation, which is different
from the rest of the methods examined. This essentially
further highlights the regional dependence of FFA to esti-
mation method. Potential attribution for this regional
dependence can be related to the use of regional skew-
ness coefficients that are involved in the 17B approach.

GEV-MLE and GEV-LMOM show a relatively higher
decreasing trend in RDs for the sample size range from
10 to 30 years of record length, demonstrating that it is
more sensitive to the smaller sample sizes. After 20 years,
the impact of the record length is weak. More specifically,
the RDs among four models are very small and after
30 years of record length the RDs are negligible and
approach zero.

In terms of RDs based on IQR, the four models dem-
onstrate similar results in the range of 160 to 200% for
the 10-year return period. GEV-MLE exhibits high

FIGURE 3 Example results of flood frequency estimates and

5th and 95th percentile (from bootstrapping, see section 3.3 for

details) obtained for different distributions/parameter estimation

methods. Results are shown for USGS gauge station 01013500.

USGS, U.S. Geological Survey
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FIGURE 5 RDs_IQR of 10- and 100-year return period quantiles of annual maximum streamflow derived from nine sample sizes

(10-,15-,20-,25-,30-,35-,40-,45-,50-year) using AMS among six regions(01, 02, 03, 05, 07, 17). AMS, annual maximum series

FIGURE 4 RDs_median of 10- and 100-year return period quantiles of annual maximum streamflow derived from nine sample sizes

(10-, 15-, 20-, 25-, 30-, 35-, 40-, 45-, 50-year) using AMS among six regions (01, 02, 03, 05, 07, 17). AMS, annual maximum series
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sensitivity to sample size and maintains a consistent
behaviour for all regions. The value of RDs, however, are
large for small sample sizes (300% for the 100-year return
period and 200% for the 10-year return period). In gen-
eral, RDs of GEV-MLE are approximately 30% higher
than those in the other distributions when using smaller
sample sizes. GEV-LMOM shows much less RDs than
does GEV-MLE, which shows that GEV-LMOM has less
uncertainty than GEV-MLE and thus highlights the
impact of the parameter estimation method on the uncer-
tainty of FFA estimates. In the 10-year and 100-year
return period, GEV-MLE and GEV-LMOM both exhibit
strong dependence of the results on the quantiles, while
LP3-MLE yields stable predictions because there are no
regional differences in the RDs within any of the return
periods, showing it has no distinct dependence on the
quantiles. The comparison between the 10-year and the
100-year return periods gave no significant divergence in
short return periods for LP3-17B.

4.2 | Sensitivity on PDS

Analysis of flood frequency estimates based on the AMS
approach (section 4.1) demonstrated that, even with

20 years of data, we are still dealing with significant
uncertainty in FFA estimates that can be even 100%
higher than the reference (i.e., estimates from 70 years of
observations). An alternative method, PDS, allows us to
partially overcome issues with short record length. In this
section, we present a comparative analysis between the
AMS and PDS approaches for 20 years of continuous
streamflow observations. Evaluation of the flood fre-
quency estimates from the two methods is performed
against the empirical quantiles derived from the 70-year
AMS record, which is considered the reference. Evalua-
tion results for six models, four AMS models and two
PDS models are presented in Figure 6 and Figure 7 for
different return periods (5-, 10-, 25-, 50-year) and regions.
Note that, since our reference record is 70 years long, we
could not estimate empirical quantiles for the100-year
return period and thus we present results for up to the
50-year return period.

In terms of RDs based on median, except for region
02 and 05, GPD-based estimates exhibit less variability
for the 5-year return period. For the 10-year return
period, only region 03 and 05 exhibit smaller variability
with GPD-based estimates, while GPD-based estimates
in the other regions did not show obvious advantage. In
particular, GPD in region 02 presents more uncertainty.

FIGURE 6 RDs_median of the 5-,10-,25- and 50-year return period quantiles derived from 20 years AMS and PDS in six regions

(01, 02, 03, 05, 07, 17). AMS, annual maximum series; PDS, partial duration series
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For the 25- and 50-year return periods, GPD-based esti-
mates exhibit large variability except for of region17.
Although GPD-MLE and GPD-LMOM exhibit good
results with the least bias in region 03 for the 5- and
10-year return periods, this pattern is not consistent for
all regions.

For the RDs based on IQR, GPD-based estimates pre-
sent the lowest RDs and magnitude of uncertainty in
region 05 while RDs among all distributions/parameter
estimation methods in other regions are around 200% in
the 5-year return period. It is notable that GPD-LMOM
presents high uncertainty in region 07 for the 50-year
return period. In other regions, GPD-MLE and GPD-
LMOM did not show obvious advantages since they have
similar uncertainties with distributions in AMS. For the
25-year return period, the results for region 01, 03,
05, and 17 are acceptable due to the RDs of IQR are close
to those in AMS modelling but the results for region
02 and 07 are not.

Overall, flood frequency estimates based on PDS
approach do not exhibit a consistent advantage over the
equivalent AMS-based estimates for 20 years of record.
This suggests that a priori acceptance of the common
idea that PDS outperforms AMS in extracting extreme
value information from short data records are not

validated in this experiment. This was also been observed
in other recent studies by Schlögl and Laaha (2017) and
Marra et al. (2018).

5 | CONCLUSIONS

This study presents a comprehensive framework for sen-
sitivity of FFA across CONUS, with respect to sample
size, statistical model, and parameter estimation method.
Results are presented for six major hydrologic regions
and consistently show that all the factors examined corre-
spond to significant sources uncertainty in flood fre-
quency estimates. Record length has a major control in
FFA and particularly affects the uncertainty of the esti-
mates. As an example for the AMS approach, a record of
around 35 years is associated with 50% higher uncer-
tainty than the 70-year reference. FFA estimates and
associated uncertainty are also dependent on the choice
of distribution. GEV-MLE had the highest uncertainty,
while LP3-MLE and LP3-17B exhibited the lowest among
the distributions examined. This has important practical
applications and suggests that when using short records
to estimate high return periods (100 years or greater),
careful consideration of the model/method used and

FIGURE 7 RDs_IQR of the 5-,10-,25- and 50-year return period quantiles derived from 20 years AMS and PDS in six regions (01, 02,

03, 05, 07, 17). AMS, annual maximum series; PDS, partial duration series
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quantification of the uncertainty associated with FFA
estimates is imperative.

Comparison between AMS and PDS approach with
20 years of record length did not reveal a clear winner
since the RDs in median and IQR did not exhibit consis-
tent improvement across regions for any of the methods.
Nevertheless, it should be mentioned that the findings in
this study are not meant to defy other studies that may
have shown superior performance of PDS relative to
AMS (see for example Bezak et al., 2014). However, our
results highlight clearly that in practice, identification of
the most appropriate method is not a straightforward
task and depends on a number of factors. As shown, the
magnitude of uncertainties varies with parent distribu-
tion, model type, and sample size for a particular region.
The results obtained from this study indicate the magni-
tude of uncertainty that can be expected in the quantile
estimates and thus can hopefully provide some guidance
to relevant application over CONUS.

Clearly a major limitation of current at-site FFA
approaches relates to the fact that continuous observa-
tional records are relatively short (less than or equal to
20 years) and the fact that both AMS and PDS make only
partial use of these data sets. An existing approach that
used to deal with limited record is the Regional Flood Fre-
quency Analysis (RFFA) (Kohnová & Szolgay, 2003;
Mckerchar & Pearson, 1990; Mediero & Jiménez, 2007).
While RFFA offers a potential solution, it has to be
highlighted that a fundamental prerequisite for its applica-
tion is the identification of statistically homogeneous
regions, which is far from being a straightforward task for
applications at the scale of CONUS, where areas with large
variability in climate and watershed characteristics (both
natural and anthropogenic) are observed. Alternatively,
future research for improving at-site FFA could therefore
focus on two possible directions that aim to (a) generate
long-term hydrologic information by combining reanalysis
data set with distributed hydrological models (Cea &
Fraga, 2018; Hardesty, Shen, Nikolopoulos, & Anagnostou,
2018) and (b) investigate new statistical approaches
(Marani & Ignaccolo, 2015) that overcome the limitations
from shortage of data set and obtain more reliable assess-
ment of high quantiles.
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