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Defoliator insects are a major disturbance agent in many forests worldwide. During
outbreaks, they can strongly reduce photosynthetic carbon uptake and impact tree
growth. In the Alps, larch budmoth (Zeiraphera diniana) outbreaks affect European larch
(Larix decidua) radial growth over several years. However, immediate and legacy effects
on xylem formation, structure, and functionality are still largely unknown. In this study, we
aimed at assessing the impact of budmoth defoliations on larch xylem anatomical features
and tree-ring structure. Analyses were performed in the Lotschental (Swiss Alps) within
(1,900 m a.s.l) and above (2,200 m a.s.l.) the optimum elevational range of larch
budmoth. We investigated variability of xylem anatomical traits along century-long tree-
ring series of larch (host) and Norway spruce (non-host) trees. We identified eight
outbreaks affecting larch xylem anatomy during the 20" century, particularly at 1,900 m
a.s.l. Tracheid number always showed a higher percent reduction than properties of
individual cells. Cell lumen size was slightly reduced in the first 2-3 years of outbreaks,
especially in the early part of the ring. The more carbon-demanding cell wall was thinned
along the entire ring, but more evidently in the last part. Theoretical tree-ring hydraulic
conductivity was reduced for several years (up to 6), mostly due to cell number decrease.
Reduced cell wall area and cell number resulted in a strong reduction of the tree-ring
biomass, especially in the first year of outbreak. Our study shows that, under carbon
source limitations caused by natural defoliation, cell division is more impacted than wall
thickening and cell enlargement (the least affected process). Consequences on both
xylem hydraulic properties and tree-ring biomass should be considered when assessing
long-term defoliator effects on xylem functioning, forest dynamics, and terrestrial
carbon cycle.

Keywords: cell wall, defoliation, insect outbreak, Larix decidua, quantitative wood anatomy, tracheid, xylem
functional traits, wood biomass
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INTRODUCTION

During their long lifespan, trees are exposed to climate
variability, stand dynamics (inter-tree interactions), and biotic
and abiotic disturbances, which strongly influence physiological
processes, including radial stem growth (Cook, 1987). Much
research has focused on the influence of temperature and
precipitation on inter-annual tree growth variability (Babst
et al, 2019). Still, large-scale natural disturbances are an
integral part of forest dynamics (Seidl et al., 2017) and can
strongly affect growth processes.

Insect outbreaks are a major disturbance in temperate and
boreal forests, significantly affecting nutrient cycling, forest
productivity, carbon sequestration, and biodiversity (Kautz
et al., 2017). In Europe, the most relevant biotic disturbance
agents are bark beetles (Schelhass et al., 2003). However,
defoliators can also cause severe damages at regional scale
(Netherer and Schopf, 2010; Foster, 2017). One of the most
studied species is Zeiraphera diniana Guenee (= Zeiraphera
griseana Hiibner, larch budmoth, hereafter LBM) that causes
large defoliations on European larch (Larix decidua Mill), a
conifer widespread in the European Alps. Past studies showed
that larch is highly sensitive to temperature variability, which
influences leaf phenology (Busetto et al., 2010), cone production
(Poncet et al., 2009), radial stem growth rates (Carrer and
Urbinati, 2006), xylem phenology (Cuny et al, 2019) and
structure (Carrer et al., 2017). However, the role of LBM should
also be considered as severe outbreaks can deeply reduce carbon
assimilation, causing strong growth reduction for several years
(Peters et al., 2017). Defoliations mostly occur between 1,700 and
2,000 m a.s.l, last for one to three years, and typically occur every
8-10 years (Baltensweiler and Rubli, 1999; Baltensweiler et al.,
2008; Biintgen et al., 2009; Biintgen et al., 2020). However, the last
40 years witnessed only very moderate periodic defoliations
(Johnson et al., 2010; Wermelinger et al., 2018). Several studies
have documented the effects of LBM on the width, density, and
stable isotope composition of tree rings from different Alpine
regions (Nola et al., 2006; Kress et al., 2009; Weidner et al., 2010;
Battipaglia et al., 2014; Hartl-Meier et al,, 2017; Cerrato et al,
2019). Despite these numerous studies, there is still a lack of
knowledge on how LBM affects xylem structure. Retrospective
analysis of a number of xylem anatomical traits can be used
therefore to gain further insight into the impact of outbreaks on
stem functioning and the amount of structural carbon stored in
wood (Locosselli and Buckeridg, 2017). Among them, the size of
the cell lumen, besides other features such as pit structure (Choat
et al., 2008), is critical for water transport, as hydraulic
conductivity depends on the fourth power of the conduit
diameter (Hagen-Poiseuille law). Cell wall thickness in the
latewood defines latewood density (Bjorklund et al., 2017),
which confers mechanical support (Chave et al., 2009), while
thick walls in the earlywood prevent cell implosions caused by
negative xylem pressures (Rosner et al., 2016). Integrating
information from all the cells in the ring, it is possible to assess
the structure and potential functioning of the entire tree ring. The
sum of theoretical hydraulic conductivity of all the cells defines
the theoretical tree-ring hydraulic conductivity (Tyree and

Zimmermann, 2002; von Arx and Carrer, 2014). Summing the
cell wall area (Fonti et al., 2013) of all tracheids provides an
estimate of wood material in the ring (tree-ring biomass)
(Bjorklund et al., 2019). Finally, the ‘hydraulic carbon use
efficiency’ expresses the (yearly) theoretical tree-ring hydraulic
conductivity for a given carbon investment (Prendin et al., 2018).

So far, a handful of studies has investigated defoliator effects
on conifer xylem anatomical traits. These studies often only
assessed single responses (generally reductions) of tracheid
number (Krause and Morin, 1995), lumen size (Filion and
Cournoyer, 1995; Camarero et al, 2019), and latewood cell
wall thickness (Axelson et al., 2014; Paixao et al.,, 2019), of just
one event, providing a partial view of the species-specific xylem
response to outbreaks. In this study, we inspected radial growth
patterns and several xylem functional traits for a more
integrative and deeper understanding of European larch
responses to LBM defoliations. Sampling was conducted in the
Lotschental valley, Switzerland, within (1,900 m a.s.1.) and above
(2,200 m asl.) the optimum elevational range of the insect.
Retrospective analysis on tree-ring series covered the entire 20"
century. We examined cell anatomical parameters at the intra-
ring level, to evaluate modifications of cells formed in different
periods of the growing season. In addition, we assessed LBM
impacts on the theoretical tree-ring hydraulic conductivity and
the tree-ring biomass.

We hypothesized that: (1) lumen size, mostly dependent on
turgor pressure during cell enlargement (Taiz and Zeiger, 20065
Cabon et al., 2020a), and the derived cell and tree-ring theoretical
hydraulic conductivity, would be not or only slightly affected by
outbreaks; on the contrary (2) cell-wall thickness and cell
number, directly related to carbon availability (Cuny et al.,
2015; Carteni et al.,, 2018), would be strongly negatively
affected. We tested the stability of these patterns during
episodes of different outbreak severity, within and above the
LBM optimum. Furthermore, we evaluated whether the relative
reduction in tree-ring width during outbreaks differed from the
relative reduction in tree-ring biomass estimated from xylem
anatomy. We hypothesized (3) that the estimate from xylem
anatomy, considering variations of tracheid size, could provide
significantly different and more accurate estimate of biomass loss
in tree rings compared to tree-ring width.

MATERIALS AND METHODS

Sample Collection

The study was conducted at the southeast-facing slope of the
Lotschental valley, in the central Swiss Alps (46°23'40"N, 7°45’
35"E), where previous dendrochronological studies evidenced
several LBM outbreaks in the 20™ century (Esper et al., 2007;
Kress et al., 2009; Peters et al., 2017). The approx. 15 km near
weather station of Crans-Montana (1,427 m a.s.l, 1931-2018)
has registered a mean annual temperature of 5.8°C and a mean
annual precipitation sum of 925 mm. The slope is covered by a
forest mostly composed of European larch and Norway spruce
(Picea abies (L.) Karst.). Two sample sites have been selected.
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One was located within the optimum elevational range of LBM at
1,900 m a.s.l. (§19), where we expected stronger outbreak effects
on larch xylem anatomy, and the second one above the optimum,
at the forest elevational limit (2,200 m a.s.l., S22). Besides larch,
we also sampled non-host Norway spruce at S19, to disentangle
the effects of species-specific causes (LBM outbreak) from other
large-scale factors that could affect growth of all species, such as
climate (Swetnam and Lynch, 1993).

At each site, one increment core from 12 adult (supposedly >
100 years), not suppressed, and undamaged trees was collected at
1.3 m above ground, on the uphill side of the stem to minimize
the influence of compression wood (Weber, 1997). Tree-ring
widths were measured to the nearest 0.01 mm using TsapWin
(Rinntech, Heidelberg, Germany), and cross-dating quality was
checked using COFECHA (Holmes, 1983). Cell anatomical
analyses were performed on a selection of seven cores from
larch at each site and seven spruce at S19 (see Supplementary
Table S1 for summary statistics), avoiding cores with nodes,
reaction wood, or with rotten or missing parts.

Anatomical Measurements
The cores were cut into 4-5 cm long pieces to prepare transversal
sections with a rotary microtome (RM2245, Leica, Heidelberg,
Germany). The sections were stained with safranin (1% in
distilled water), permanently fixed on the slides and finally
scanned at 100x magnification using a digital automated
microscope (D-sight, Menarini Diagnostic, Florence, Italy, and
Axio Scan.Z1, Zeiss, Jena, Germany; Gartner et al., 2015; von Arx
etal,, 2016). Tracheid anatomical measurements were performed
using ROXAS software (v. 3.1, von Arx and Carrer, 2014;
Prendin et al., 2017) that depends on the commercial software
Image-Pro Plus v. 6.1 (Media Cybernetics, Rockville, MD, USA).
Anatomical measurements were performed for each annual
ring in the common period 1900-2017 (Supplementary Table
S1). For each ring, we obtained the ring width (RW). For each
tracheid, we characterized its position within the ring, and we
measured the radial cell lumen diameter (CLD), mean cell-wall
thickness (CWT, as the average of radial and tangential wall
thickness), cell lumen area (CLA), cell-wall area (CWA), total
cell area (CTA, as CLA + CWA), theoretical cell hydraulic
conductivity (Kh.) approximated according to the Poiseuille’s
law and adjusted to elliptical tubes (Tyree and Zimmermann,
2002), and relative anatomical cell wood density (CWD, as
CWA/(CWA+CLA); Figure 1, Supplementary Table S1). We
then used the RAPTOR R package (Peters et al., 2018) to assign
tracheid to radial files and obtain the mean number of cells per
radial file (CN). This information provided the basis to calculate
the ring wall area (RWA) as the sum of all CWA of the average
radial file. Considering that >90% of conifer wood is typically
formed of tracheids (Carlquist, 1988; Chave et al., 2009), RWA
was a reliable estimate of the biomass in the tree ring (Bjorklund
et al., 2019). Besides, since wood carbon content in conifer cell
wall is quite uniform (50.8 + 0.7% [95% C.I], Thomas and
Martin, 2012), RWA was also a quite precise estimate of the
amount of structural carbon in the ring. The theoretical tree-ring
hydraulic conductivity (Kh,) was assessed as the sum of Kh, of
the average radial file (Figure 1). The ratio between Kh, and

0% 50% 100%

= II

0
Percent distance from the ring border

0 100 200

0000

100%

400 pm

0%

Derived variables
cwty CWT = (cwty+cwt,+cwt, +owt,,)/4

cwtﬂr chttz CTA = CLA*CWA

CLD CWD = CWA/ (CWA+CLA)
CLA

Kh, ~ CLA
cwt,, cwa | Kh. = X1Kh,
RWA = 3.5 CWA
HCUE = Kh,/ RWA
1944 1945 1946 1947

CLD (um)
$ 1 $ 1 $

CWT (um)
S ()}

" 50 100 0 S0 '100 0 50 100 0 = 50 ' 100
Percent distance from the ring border

o

FIGURE 1 | lllustration of anatomical data extraction and computation. Within
each ring and along each radial file, for every tracheid (from 1 to n, where n is
the cell number, CN) we measured the cell lumen radial diameter (CLD), mean
cell-wall thickness (CWT), cell lumen area (CLA), cell-wall area (CWA), cell total
area (CTA), relative anatomical cell wood density (CWD), and theoretical cell
hydraulic conductivity (Khe). From this information, we derived intra-ring profiles
(i.e. loess fit of the anatomical parameter for each cell and its relative position in
the ring, lower panels) and ring-based traits as theoretical tree-ring hydraulic
conductivity (Kh,), ring wall area (RWA), and hydraulic carbon use efficiency
(HCUE). Anatomical data used in this figure come from rings of a larch tree at
S19, before (1944) and during the high-severity outbreak starting in 1945.

RWA provided the hydraulic carbon use efficiency (HCUE;
Prendin et al., 2018).

Assessing LBM Outbreak Impacts on
Xylem Anatomy

To verify correspondence with the 20™ century outbreaks
reported in previous studies in this area (Esper et al., 2007;
Kress et al., 2009), we investigated CN and CWT chronologies of
larch and spruce (Figure 2 and Supplementary Figure S1). In
conifers, CN is strongly related to RW (Castagneri et al., 2015),
which is the most commonly used parameter to detect LBM
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FIGURE 2 | Chronologies of mean-ring cell-wall thickness (CWT, A, C, E)
and cell number (CN, B, D, F) from 1900 to 2017 for larch at S22 (A, B) and
S19 (C, D) and spruce at S19 (E, F). Vertical lines represent the first years of
high- (red) and low- (yellow) severity outbreaks.

outbreaks (Biintgen et al., 2009). CWT mostly determines the
tree-ring maximum wood density (Bjorklund et al.,, 2017), a
proxy successfully used in past studies (Esper et al., 2007).

Since we expected that duration and effects of different
outbreaks were highly variable as reported in previous studies
(Weber, 1997), we separated the detected events in two equal-
size classes. Based on CWT reductions at S19, where the
outbreak effects were more evident, we distinguished: four
high-severity outbreaks with marked CWT decline (with the
strongest CWT reduction compared to previous five year
reference period); and four low-severity ones with less marked
CWT reduction (the other four identified events; Figure 2,
Supplementary Figure S1 and Supplementary Table S2). The
same classification was also applied to S22 to compare anomalies
at this site to those at S19 in the same years.

To quantify the outbreak effects on xylem structure, we
calculated the deviation (ratio) of each parameter in the first
year of the outbreak, from the mean in the previous five,
considered as reference (Peters et al., 2017). Welch’s t-test was
used to test for significant differences. The analysis was repeated
for the successive seven years by keeping the five years prior to the
outbreak as the reference. We then averaged this information for
severity level and site.

Similarly, to assess the effects of outbreaks at the intra-ring
level, we computed the intra-ring variation (profiles) of the
anatomical parameters calculated at the cell level (i.e. CLD,
CWT, CLA, CWA, CTA, Kh, CWD) for every year (mean of
seven trees) in the period 1900-2017 by considering high- and
low-severity outbreaks. Therefore, the anatomical profiles per
severity level and site were superposed to calculate cell anatomy
variations in the averaged five years before the outbreaks (to
serve as a reference) and in the individual successive years.

Climate Influence on Larch and Spruce
Anatomy

To verify whether xylem anatomy anomalies in larch were caused
by LBM outbreaks, we investigated the responses in the non-host
spruce. The comparative approach assumes that two species have
similar responses to climate, thus anomalies in one species (larch in
our case) can be attributed to species-specific causes (Swetnam and
Lynch, 1993). To validate this assumption, we assessed climate
responses of the two parameters used to detect outbreaks, CN and
CWT (the latter split in earlywood and latewood, separated
according to a Mork’s index of 1, Denne, 1989), in larch and
spruce. Long-term trends, mostly due to tree radial and height
growth during ontogenesis (Carrer et al., 2015), were removed by
fitting a cubic smoothing spline with 50% frequency cut-off of 100
years. We then calculated the ratio between the observed and fitted
curves (Cook and Kairiukstis, 1990) using the R package dpIR
(Bunn, 2008). Mean chronologies for larch at S22 and larch and
spruce at S19 were built by calculating the bi-weight robust mean
from the detrended series. We then calculated bootstrap
correlations between each chronology and monthly temperature
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and precipitation from April to October (including the xylem
growing season of larch in the area, Cuny et al, 2019) for the
period 1931 to 2017 (covered by climate data from the Crans-
Montana weather station) using the R package treeclim (Zang and
Biondi, 2015). Correlations were calculated by both including and
excluding outbreak years (Weidner et al., 2010).

RESULTS

Correlations between anatomical chronologies and monthly
temperature and precipitation showed quite similar responses
in larch at the two study sites (Supplementary Figure S2). High
temperatures from May to August were related to high CN, and
CWT in latewood was positively associated with temperature
during early and, mostly, late summer. In spruce, CN was not
affected by climate variability. In contrast, latewood CWT was
positively associated with summer temperature, as for larch. That
is, concomitant low CWT values in larch and spruce should be
related to low summer temperature. CWT reductions during
specific years in larch, not evidenced in spruce, were instead
related to species-specific causes such as LBM outbreak.

Eight out of nine outbreaks reported in previous studies in this
area (years 1908, 1915, 1935, 1945, 1954, 1963, 1972, and 1981;
Esper et al., 2007; Kress et al., 2009) were evident in the CWT
larch chronology at S19 (Figure 2 and Supplementary Figure
S1). The CN chronology, strongly correlated with RW chronology
(Pearson’s correlation, r = 0.98, p < 0.001), was less accurate than
CWT for detecting the outbreak start. The 1923 outbreak
(described as weak in Weidner et al., 2010 and absent in
Arbellay et al., 2018) was not noticeable in our samples as it did
not show the CWT reduction typical for all other outbreak years.

The effects of the 1908, 1945, 1963, and 1972 outbreaks were
more intense and lasted longer at S19 than at S22 (Figures 2 and

3, Supplementary Figure S3). At both sites, traits related to cell
wall dimension (CWT, CWA, CWD) were more reduced than
those related to lumen size (CLD, CLA, CTA, Kh,), especially in
the first year. RW, CN, Kh,, and RWA were highly affected, both
in the first and in the successive years. Xylem anatomical
variations at S19 for low-severity outbreaks were similar to
those at S22 during the 1908, 1945, 1963, and 1972 outbreaks.
Anatomical parameters during the 1915, 1937, 1954, and 1981
outbreaks for larch at S22 and for all outbreak years for spruce at
S19 were not significantly different from the reference; therefore
they were not further investigated (Supplementary Table S2,
Supplementary Figures S3 and S4).

Intra-ring profiles showed that the impact of outbreaks on
xylem anatomy was not the same along the entire ring (Figure 4,
Supplementary Figure S4). At S19, in the first year of the high-
severity outbreaks, CLD was reduced in the first part of the ring.
However, the lumen was slightly larger than usual in the last part
of the ring. Such a pattern was still evident, but to a lesser extent,
in the following year. CWT reduction in the first year of outbreak
occurred along the entire ring, but it was more evident in the last
part, normally characterized by very thick cell walls. In the
second year, cell-wall thickness was still reduced, but
the profile shape was more similar to the rings before the
outbreak. At the fourth year, CWT was normal along most of
the ring profile, but in the last part it was still thinner than the
reference. Such alterations influenced the cell wall area (CWA),
which was reduced along the entire profile, but more evidently in
the last part. In the fourth year, CWA was still slightly smaller
than before the outbreak. Similar intra-ring patterns were
observed in the same years at S22 and for low-severity
outbreaks at S19, but deviations from the reference profiles in
the first year were less evident, and carry-over effects were
shorter (Supplementary Figure S4).

CN was highly reduced in the first year of high-severity
outbreaks at $19. HCUE was the only tree-ring based parameter

S22 High-severity

S19 High-severity S19 Low-severity
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FIGURE 3 | Scatterplot of the duration and maximum deviation of LBM outbreaks on larch xylem anatomical parameters. Parameters are: mean cell lumen radial
diameter (CLD), mean cell-wall thickness (CWT), mean cell lumen area (CLA), mean cell-wall area (CWA), mean cell total area (CTA), mean theoretical hydraulic cell
conductivity (Khg), mean relative anatomical cell wood density (CWD), ring wall area (RWA), theoretical tree-ring hydraulic conductivity (Kh,), hydraulic carbon use

is the percentage variation of the mean value of the parameter from the reference, i.e.

the mean value in the five years before the outbreak, during the year of maximum reduction for an outbreak event. Duration corresponds to the number of years when
the parameter was statistically different from the reference, according to Welch’s t-
severity outbreaks, and for S19 and S22, separately. Parameters for low-severity years for larch at S22 are not presented since deviations were not significant.

test. Deviations and durations are merged for the four high-severity and the four low-
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that showed significantly higher value than the reference in the ~ Supplementary Figure S3). Although RW was significantly
first year. Instead, RWA and Kh, were reduced by more than half, = negatively affected, RWA reduction in the first year of most

with significant deviations lasting for six years (Figures 3 and 4,  outbreaks was even stronger (Figure 5). Differences between
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FIGURE 5 | RW and RWA deviations from reference during the first year of outbreaks at S22 and S19. Deviation is the percentage variation of the parameter during
the first year of each outbreak from the reference, i.e. the mean value in the five years before the outbreak. Each box represents median, interquartile range (IQR),
minimum and maximum deviation from the reference. Asterisks indicate significant difference between RW and RWA deviation within the same year at p < 0.05 (*),

p < 0.01 (**), and p < 0.001 (***), according to paired Welch’s t-test. Dashed lines indicate deviation equal to 0.
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RW and RWA were less evident in the successive years
(Supplementary Figure S4). Reduction of CN, RWA, Kh,, and
RW during low-severity outbreaks at S19 and high-severity
outbreaks at S22 was highly significant but was less marked and
lasted shorter than for high-severity outbreaks at S19.

DISCUSSION

LBM Outbreak Effects on Cell Anatomical
Features

Using a retrospective approach, we assessed the LBM long-term
influence on larch xylem anatomy. We could ascribe observed
xylem anomalies in larch to LBM outbreaks with high
confidence. Although CWT of both larch (host) and spruce
(non-host) was sensitive to summer temperature, CWT
reduction during the eight detected outbreaks occurred just in
larch (Figure 2). As expected, the outbreak effects were more
evident at 1,900 than at 2,200 m a.s.l. (S19 and S22, respectively).
Responses at S22 during the 1908, 1945, 1963, and 1972
outbreaks were quite similar to those at S19 during the 1915,
1937, 1954, and 1981 (low-severity) outbreaks. This suggests that
factors other than climate variability (that is the same at the two
close sites) influence LBM impact on xylem anatomy. Possibly,
during heavy outbreaks, LBM can reach also high-elevation
larches but with lower effects than on those within the insect
elevational optimum.

Our analysis evidenced that LBM defoliation effects were not
the same for all xylem functional traits. This indirectly indicates
that xylogenesis phases of cambial division, cell enlargement, and
cell wall thickening are differently affected not only by
temperature and water (Castagneri et al., 2017; Cabon et al.,
2020b), but also by carbon availability. Specifically, lumen size
was reduced in the first two to three years of outbreak, but to a
lesser extent than cell-wall thickness and cell number,
confirming our initial hypothesis. Analysis at intra-ring level
revealed that reduction in the first year was evident just in the
first part of the ring, while in the last part, the lumen was larger
than the reference (Figure 4). This could be due to reduced cell-
wall thickness of the last cells, resulting in larger lumina. From
anatomy, we could infer on the LBM effects on the processes that
determine tracheid size. Cell enlargement is highly sensitive to
water availability at the onset of growing season (Hsiao, 1973;
Castagneri et al., 2017; Cabon et al., 2020a), whose variability is
not related to LBM outbreaks. Still, reduced availability of carbon
in the cambium could lower the osmotic potential and eventually
impacts the cell enlargement rate (De Schepper and Steppe,
2010). Further, reduced carbon could affect primary wall
synthesis during the enlargement phase (Cuny et al, 2015;
Carteni et al., 2018). Lumen size narrower than reference was
evident even in the very first cells of the ring, indicating that LBM
effects started very early in the season (cell enlargement of larch
starts around early June at this site, Cuny et al., 2019).
Interestingly, the typical cell-lumen size pattern within conifer
rings was kept even during high-severity outbreaks. Despite the
strong carbon shortage of high-severity outbreaks, both large

earlywood and small latewood type-cells were formed. However,
the last cells of the ring did not present the very thick walls
typical of larch latewood. Thinner cell walls in the last part of the
ring were also observed in other conifer species after defoliation
(Liang et al.,, 1997; Axelson et al., 2014). However, intra-ring
analysis evidenced that wall thickness was reduced not only in
the tracheids formed at the end of the growing season, but along
the entire ring, especially in the first year of high-severity
outbreaks. Still, CWT never fell below ~3 um (the wall
thickness of earlywood cells during normal years), which
probably represents a minimum biomechanical threshold for
larch trees investigated here. Reduced CWT resulted in a
noticeable decrease of the amount of wood material per cell
(CWA). Cells formed in the first year of high-severity outbreaks
at S19 comprised only about 2/3 of wood material compared to
normal years. Such patterns agreed with our initial expectation.
Secondary wall formation requires considerable carbon supply
(Cuny et al., 2015; Deslauriers et al., 2015); therefore this process
was heavily affected along the entire growing season during
strong defoliations. After the first outbreak year, wall
thickening was less affected, and the amount of wood material
invested for each tracheid increased, yet for the next three years it
was smaller than before the outbreak.

Compared to lumen size and cell-wall thickness, cell number
was reduced more, and for more years. This was evident in both
the study sites, and for both high- and low- severity outbreaks at
S19. Defoliations reduced leaf photosynthetic capacity for some
years, and caused long-term carbon reserve depletion
(Baltensweiler et al., 2008). Six years after high-severity outbreak
start at S19, cell number was still below pre-outbreak levels. Such
reduction did not solely affect tree radial growth rates, as observed
in previous studies on tree ring widths (Nola et al, 2006;
Battipaglia et al., 2014; Peters et al., 2017), but also the tree-ring
biomass, and its potential hydraulic functioning.

LBM Outbreak Effects on the Theoretical
Tree-Ring Hydraulic Conductivity and
Tree-Ring Biomass

Analyses of tracheid anatomy revealed that lumen size was less
reduced than wall thickness and cell number. However, the
theoretical cell hydraulic conductivity (Kh.), which depends
on the fourth power of conduit diameter (Tyree and
Zimmermann, 2002), was much more reduced (25% less in
the second year of high-severity outbreaks at S19) than cell
lumen size. However, water transport in the stem depends not
only on lumen size, but also on the number of conduits. The
theoretical tree-ring hydraulic conductivity (Kh,), that
represents the contribution of all tracheids formed in the
year to the stem hydraulic system, was indeed more severely
reduced (of 64% in the first year) than Kh,, due to the strong
decrease of cell number. Even when lumen size returned to
pre-outbreak values (e.g. after the third year, for high-severity
outbreaks at S19), reduced cell number resulted in a loss of
theoretical tree-ring hydraulic conductivity. The hydraulic
carbon use efficiency (HCUE) evidenced that the balance
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between carbon used for building xylem (RWA) and the
theoretical tree-ring hydraulic conductivity (Kh,) was quite
stable despite large tracheid anatomical modifications.
Such homeostasis was altered just in the first year of high-
severity outbreaks when reduced carbon invested in xylem
formation was counter-balanced by a more efficient xylem
water transport.

Cell wall thinning certainly affected stem mechanical
function. Despite a single ring with reduced wood density
might not affect the entire tree stability, high-severity
outbreaks reduced cell-wall thickness for four years, and many
outbreaks occurred along the past century. Furthermore, reduced
CWT resulted in a smaller cell wall area (CWA). This in turn
affected the loss of tree-ring biomass during outbreaks. Previous
studies quantified defoliator impacts on stem wood biomass or
productivity through ring widths (Peters et al., 2017; Boyd et al.,
2019; Paixao et al., 2019). However, these studies did not
consider the xylem structure, which determines the wood
density (Bjorklund et al., 2019). Missing such information can
result in significant under/over estimations of wood biomass
increments (Chave et al., 2009; Bouriaud et al., 2015; Pretzsch
et al., 2018; Andrianantenaina et al., 2019). In the case of high
severity outbreaks at S19, in the first year the estimate of biomass
loss from ring width (classical approach) would be 26% lower
(on average for the four outbreaks) than the assessment based on
anatomical traits (RWA, considering both CN and CWA). From
the second year, when CWT was less affected, estimates based on
RW and RWA would converge.

CONCLUSION

Periodic LBM defoliations strongly affected larch radial growth
over the 20" century in the investigated area. We here assessed
the long-term impacts of outbreaks on cell anatomy and the tree-
ring structure. This illustrated the effects of natural defoliations
on xylem formation processes, potential functioning, and carbon
accumulation in tree rings.

Both maximum impact (relative to the reference) and effect
duration (number of years of significant reduction) of LBM
outbreaks were stronger for tracheid number than for their
anatomy, mostly confirming our initial hypotheses. This
indicates that cambial division, that determines cell number,
was more affected than the processes that shape the tracheid
(anatomical) properties. Among the latter, cell wall thickening,
which is a more demanding process in terms of carbon, was more
affected than cell enlargement.

Over millennia of coevolution with LBM, larch evolved a
strategy to primarily preserve traits related to water transport
under strong carbon limitation. However, despite lumen size was
the least affected trait, the theoretical tree-ring hydraulic
conductivity was reduced for several years, due to the long
carry-over effect of outbreaks on cell number. Reduced cambial
division caused long-term radial growth reductions, but we
demonstrated that even cell anatomy alterations (thinner cell-

wall thickness, especially in the first year) significantly affected
the amount of wood biomass accumulated in the tree rings. Our
findings evidence that xylem anatomy should be considered in
future assessments of defoliator impacts on tree physiology,
forest dynamics, and terrestrial carbon cycle.
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