Ranzini, M. ${ }^{1}$, Mioni, G. ${ }^{1}, \&$ Cutini, S. ${ }^{2}$

${ }^{1}$ Department of General Psychology (DPG), University of Padova, Italy
 DEGL STuDI di Padova of Developmental Psychology and Socialisation (DPSS), University of Padova, Italy

Introduction

A large body of evidence indicates that processing numbers recruits sensorimotor mechanisms of hand action [1]. For instance, observing or executing hand motor actions, such as pointing or grasping, modulates performance in tasks involving the explicit or implicit processing of number magnitudes [e.g., 2-4].

In a recent study, we used motor adaptation to investigate the effects of hand action on the performance in a following number magnitude task [4]. We found that pointing as compared to grasping (and control conditions) slowed down response latencies in number magnitude comparison.

Schematic representation of results of [4].

Aim of the study

We learn to list and count through pointing: therefore, point might share with numbers mechanisms for order processing. Again, we need to estimate object size during grasping: therefore, grasp and number might share mechanisms for magnitude processing.
In this study we hypothesized that observing hand pointing might enhance the processing of number ordinality, while observing hand grasping might enhance the processing of number magnitude.

Methods

The method was preregistered on the Open Science Framework (OSF).
Participants. The data from 173 adults (mean age $=23 \mathrm{y} / \mathrm{o}, 128 \mathrm{~F}$) were considered for the analyses. Each participant was assigned to one of the following four conditions:

- $N=32$ in the Pointing \& Magnitude Comparison condition;
- $\mathrm{N}=56$ in the Grasping \& Magnitude Comparison condition:
- $N=35$ in the Pointing \& Order Comparison condition:
- $N=50$ in the Grasping \& Order Comparison condition.

Materials

Representation of materials and conditions. The four conditions are indicated by the coloured arrows.
Procedure. The data were collected online. Each participant did baseline numerical trials prior to six adaptation blocks. Within each adaptation block, numerical trials were preceded by hand action observation.
Number targets were all digits w/o 5.

Results

RTs were analysed by means of frequentist and Bayesian ANOVA:
\rightarrow Within-subject factors: Magnitude/Order (small/before: 1-4; large/after: 6-9); Distance (close: 3-4, 6-7; far: 1-2, 8-9).
\rightarrow Between-subjects factors: Action Type (Point, Grasp).

Magnitude Comparison

Order Comparison

$*=\mathrm{p}<.05, \mathrm{BF}>3 ;{ }^{* *}=\mathrm{p}<.01, \mathrm{BF}>3 ;{ }^{* * *}=\mathrm{p}<.001, \mathrm{BF}>3 ; \mathrm{ns}=\mathrm{p}>.05, \mathrm{BF}<1$.

Conclusion

In number magnitude comparison, response times were slower after observing hand pointing as compared to grasping. However, the current analyses did not reveal enhanced performance in the order task after pointing. Overall, these results suggest that hand actions can modulate different and specific aspects of numerical processing [1-4].

