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Abstract

In recent years, the Cognitive Radio and Cognitive Network paradigms have
received significant attention by the research community. Cognitive Radios
and Networks, in their initial formulation, are characterized by the addition
of cognition capabilities such as reasoning and learning to wireless devices
and networks, with the aim of providing enhanced adaptability and reconfig-
urability to cope with the ever-growing challenges of radio communications.
The concepts of Cognitive Radio and Network have actually been inter-
preted in several different ways. In this thesis, we will first of all provide an
overview of the different interpretations of Cognitive Radios and Networks,
as appeared in the recent literature. We will then focus on the cognitive
adaptation and reconfiguration of devices and networks by means of Ar-
tificial Intelligence (AI) techniques. In this respect, we will discuss how
two well-known AI techniques, i.e., Fuzzy Logic and Neural Networks, can
be used within a cross-layer and cross-device knowledge representation and
reasoning architecture to become major enabling technologies for Cognitive
Radios and Networks. For each technology we will discuss how it can be ef-
fectively adopted to implement key functionalities of cognitive systems, and
we will present and discuss example applications such as cross-layer param-
eter optimization, wireless network access selection and channel assignment.
For all the discussed applications, we will present performance evaluation
results showing the advantages that the proposed techniques provide with
respect to state-of-the-art approaches.
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Sommario

Negli ultimi anni, i concetti di Radio e Reti Cognitive hanno ricevuto una
notevole attenzione da parte della comunità scientifica. Nella loro formu-
lazione originale, questi concetti consistono nell’addizione a dispositivi radio
e reti di calcolatori tradizionali di capacità cognitive, come ad esempio la
capacità di ragionare e di imparare, con l’obiettivo di ottenere una adatta-
bilità e riconfigurabilità più elevata che consenta di affrontare le sempre più
difficili sfide poste dal progresso delle comunicazioni radio.

I concetti di Radio e Reti Cognitive sono stati in realtà interpretati
in tanti modi differenti. In questa tesi, forniremo dapprima una visione
generale delle diverse interpretazioni apparse nella recente letteratura scien-
tifica. In seguito ci concentreremo sulla riconfigurazione e ottimizzazione di
dispositivi e reti radio effettuata tramite tecniche di Intelligenza Artificiale
(IA). A questo proposito, discuteremo come due particolari tecniche di IA,
cioè la Logica Fuzzy e le Reti Neurali, possono essere utilizzate all’interno di
un’architettura cross-layer per la rappresentazione della conoscenza e il ra-
gionamento, e consentire cos̀ı la realizzazioni di Radio e Reti Cognitive. Per
ognuna di queste tecniche discuteremo come può essere utilizzata in prat-
ica per implementare funzionalità chiave di sistemi cognitivi; presenteremo
inoltre alcune loro applicazioni pratiche, come ad esempio l’ottimizzazione
cross-layer di parametri, la selezione del punto di accesso e la selezione del
canale in reti radio. Per ognuna delle applicazioni discusse sarà fornita una
valutazione delle prestazioni che mostrerà i vantaggi ottenuti rispetto allo
stato dell’arte.
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Chapter 1

Introduction

Trying to mimic the human behavior has been one of the most appeal-
ing research areas since the birth of Artificial Intelligence, and the word
cognitive has always made researchers enthusiastic. Recently, the commu-
nications research field has experienced the same excitement. Stimulated
by the progress in wireless communications and electronics, the concepts of
Cognitive Radios and Networks have attracted a lot of attention in the last
decade.

Cognitive Radios and Networks do not represent well-defined areas; the
initial definition of Cognitive Radio as a wireless communication devices
with cognitive capabilities that can “detect user communications needs as a
function of use context” and “provide radio resources and wireless services
most appropriate to those needs”[1] is very generic, and has actually been
interpreted in several different ways; similarly, the definition of Cognitive
Networks is rather broad in nature [2]. The reason for this generality is due
to the fact that they represent more a vision for future communications,
rather than a technology which is ready right now or is going to be ready in
the near future.

Unfortunately, there has been a rather big hype around these visions,
as if they were going to become reality in a few years. On one hand this
brought a fast increasing interest in the area, which can be regarded as a
positive effect; however, several downsides also came at the same time. The
quickness with which Cognitive Radio came to the attention of the research
community caused a lot of confusion on the term Cognitive Radio itself, to
the point that the initial broad definition of Cognitive Radio got confused
with one of its applications, i.e., Dynamic Spectrum Access, which currently
represents the most commonly used interpretation for Cognitive Radio. In
doing so, unfortunately, the focus shifted to spectrum access and physical
layer issues, while the cognitive and cross-layer nature of Cognitive Radios
was lost. The definition of Cognitive Networking, in spite of being more
recent, faces the similar risk of being restricted to a “network of devices
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Figure 1.1: Estimated current position of Cognitive Radio in the Hype Cycle

performing dynamic spectrum access”. Of course, we believe that Dynamic
Spectrum Access is an interesting and promising field, worth a lot of inves-
tigation. However, the point is that when we look at the recent proliferation
of publications labeled as being about Cognitive Radios or Networks, it is
somewhat sad to see that, while “cognitive capabilities” were at the begin-
ning the most exiting feature expected from these systems, most of this work
actually does not deal with anything related to cognition. Furthermore, in
conversation with other communications researchers, it happens often to
hear that a non negligible fraction of the research labeled as “cognitive” is
actually very similar to rather “traditional” approaches to communications,
such as frequency allocation, cross-layer optimization or ad hoc networking,
disguised as cognitive by using the proper keywords.

To summarize, the exaggeration with which Cognitive Radios have been
presented after their introduction, together with the failure to present prac-
tical solutions for their implementation, has caused a significant degree of
disillusionment. This can been interpreted as an occurrence of Gartner’s
Hype Cycle [3], according to which the “peak of inflated expectations” which
follows the initial discussion around new technology always results in dis-
illusionment and loss of visibility. Hopefully, when the hype has gone, the
technology can finally, and more quietly, find its way to the real world. Cog-
nitive Radio is now believed to be past its peak of visibility, on the way to
disillusion, as discussed in [4] and represented in Figure 1.1.

We believe, however, that there is a lot of good potential in the original
formulation of Cognitive Radios and Networks, and that the recent hype
and the consequent disillusion should not be regarded as a reason to drop
research effort on the topic. Rather, it should be seen as a motivation to
push firmly Cognitive Radios and Networks out of the hype into their real-
ization. All the work presented in this Ph.D. thesis was done with a clear
goal in mind: trying to make Cognitive Radios and Networks happen in their
original formulation of wireless communications devices and networks which
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leverage on cognitive capabilities to react to changes in the communications
environment in order to provide enhanced service to the users. With the aim
of giving a concrete contribution towards the realization of this vision, the
chosen line of research has been to identify Artificial Intelligence techniques
which could fit this purpose, and to actually test the fitness of these tech-
niques in real communication scenarios. While we are still far from being
able to claim that we realized Cognitive Radios and Networks, we hope that
at the end of our thesis the reader will agree that we have been able to bring
them closer to reality.

The rest of this thesis is organized as follows. In Chapter 2 we will
provide a detailed overview of the state of the art in Cognitive Radio and
network research, as appeared in the recent literature. The purpose of this
chapter will be to make the reader familiar with all the different interpre-
tations that have been given to the Cognitive Radio and Network concepts,
and also to examine what has been done from a practical point of view with
respect to each definition. In the subsequent two chapters we will present
the major contribution of this thesis: the investigation and experimentation
of Artificial Intelligence techniques for the purpose of introducing real cogni-
tive capabilities into radios and networks. In particular, Chapter 3 will deal
with Fuzzy Logic and Chapter 4 with Neural Networks. We will provide
a generic overview for each of these techniques, discussing the benefits of
their application in a Cognitive Radio and Network context, and present-
ing experimental applications including performance evaluation. Finally, in
Chapter 5 the conclusions will be drawn.
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Chapter 2

Cognitive Radios and

Networks: a survey

The original definition of the term Cognitive Radio was introduced by Mitola
in [1] and refers to a communicating device which is able to:

• detect user communications needs as a function of use context

• provide radio resources and wireless services most appropriate to those
needs.

It is to be noted that this definition is very generic. Mitola used the
term radio to identify a generic mobile terminal, such as a PDA, laptop
or smartphone, used for communication purposes by a human being. The
term cognitive provides a further connotation of the mobile terminal as an
intelligent agent : a cognitive radio device is expected to act both humanly
and rationally1 in its attempt to satisfy the needs of the user, observing the
environment, evaluating possible strategies, making decisions, performing
actions and learning from experience.

As pointed out in [6], in telecommunication research, as well as in many
other fields, the choice of metaphors plays a key role in how the ideas which
should be conveyed by these metaphors are actually interpreted by others.
Cognitive Radio is probably a case in which the choice of metaphors has led
to a deviation of the common interpretation of the term from its original
intended meaning. The use of the term radio has been in most cases in-
terpreted in a fairly reductive fashion as referring almost exclusively to the
lower-layer characteristics of wireless communications, in particular the PHY
layer. It is probably for this reason that the most popular interpretation of
Cognitive Radio is currently that of a spectrum-agile device performing Dy-
namic Spectrum Access [7, 8]. On the other hand, there is no prevailing

1It is to be noted that Acting Humanly and Acting Rationally are two commonly
adopted definitions of Artificial Intelligence. For a detailed discussion, see [5]
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interpretation of the term cognitive. In some cases, as for Dynamic Spec-
trum Access, it is interpreted more in the sense of acting humanly. The
Game-theoretic approach to Dynamic Spectrum Access, for example, fits
into this category, since it consists of analyzing the problem by compar-
ing the possible strategies that could be adopted by the cognitive radio to
human-like behaviors such as competition and cooperation. Similarly, the
concept of Cognitive Network, as formulated by Thomas et al. [2], is heav-
ily based on the metaphor of the networking devices as a human society in
which all individuals interact among themselves to pursue the wealth of the
society.2 In other cases, the term cognitive has been interpreted more in the
sense of acting rationally, i.e., the Cognitive Radio is seen as an Intelligent
Agent performing its actions to pursue the goal of providing satisfactory
communication services; in this respect, Artificial Intelligence techniques
are expected to be used to solve the evaluation, optimization, decision and
learning problems that arise.

In this chapter we will discuss the most common interpretations of the
Cognitive Radio and Network concept, as appeared in the literature.

2.1 Dynamic Spectrum Access

One of the applications proposed by Mitola [1] for cognitive radios was spec-
trum pooling, i.e., the possibility for a mobile user to overcome traditional
spectrum licensing schemes and to directly negotiate the needed spectrum
depending on his communication needs. The rationale for this application
is the observation that the continuously increasing demand for wireless con-
nectivity has led to a shortage of available spectrum: the majority of the
usable spectrum (i.e., upper limited by present-day technology) is already
allocated to specific services, and the room for additional services is scarce.
On the other hand, the few frequency ranges which do not require licence
and can be used freely are overcrowded by different services: a notable ex-
ample is the 2.4 GHz ISM band which hosts several popular protocols such
as 802.11, Bluetooth, Zigbee and WiMAX.

As a consequence of these fact, Dynamic Spectrum Access techniques
descending from the one proposed by Mitola for Cognitive Radios have re-
ceived a lot of interest in subsequent years, to the point that nowadays the
most commonly referred to interpretation of Cognitive Radio is that of a
device performing Dynamic Spectrum Access, as per the formal definition
of Cognitive Radio by the Federal Communications Commission [8].

Due to the popularity of Dynamic Spectrum Access, even though it is
not the main focus of the work presented in this thesis, we will cover it in
the next sections, outlining the major research directions in which it has

2An example is the capitalistic system in which individuals, by pursuing their own
interests, contribute to the wealth of the nation [9]
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been investigated in recent years.

2.1.1 Spectrum Regulation

The shortage of available spectrum which has been experienced in recent
years has brought the problem of spectrum regulation to the attention of
the research community. Several reports (e.g., [10, 11]) showed that the
spectrum usage in most licensed frequency bands is actually very low (below
10%). This was recognized to be due to the fixed and long-term licensing
scheme imposed by the radio regulation in force in most countries, commonly
referred to as the Command and Control model. As a consequence, it was
proposed by both the Federal Communication Commission in the US [12]
and the European Parliament in Europe [13] to investigate alternative means
of spectrum regulation and access in order to use spectrum more efficiently,
thereby overcoming the shortage currently being experienced.

Since then, several spectrum regulation strategies have been discussed.
The most important are:

• Spectrum leasing, where the license holders (primary users) can
rent spectrum to other users (secondary users) for a limited amount
of time;

• Spectrum trading, in which spectrum is dealt with as private prop-
erty, and as such can be sold, thereby enabling dynamic spectrum
ownership;

• Spectrum commons, according to which all users are allowed to
use the spectrum provided that they respect some constraints, such as
maximum transmit power. It is the same approach currently in use
for the ISM bands;

• Unlicensed use of licensed spectrum, i.e., allowing unlicensed
secondary users to use licensed spectrum provided that the primary
users are not using it, or that transmission by secondary users does
not cause harmful interference to primary users.

The perspective of the introduction of these spectrum regulation policies
has caused a significant research effort in order to develop practical schemes
by means of which they could be implemented. The Spectrum Commons
approach is interesting from a political and economical point of view, and for
this reason it is often advocated [14]; however, it is not investigated much by
the communications research community, since it can be seen as the exten-
sion of the policy adopted for the ISM bands to other bands, and therefore
most likely the same technologies currently used for the ISM bands could
be reused. Researchers in Economics focus much more on the Spectrum
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Leasing and Trading approaches, in particular on which market interactions
could take place between the different players (spectrum licensee, secondary
users and spectrum brokers) in order to make Dynamic Spectrum Access
viable. Communication research focuses mainly on the Unlicensed Reuse of
Licensed Spectrum, whose realization poses significant technical challenges;
for this reason, we will deal mainly with this approach in the next subsec-
tions.

2.1.2 Channel Sensing

When designing solutions for unlicensed access of licensed spectrum, a key
problem is how to detect the presence of a primary (licensed) user to deter-
mine if the secondary (unlicensed) user is allowed to use the spectrum. The
problem has been extensively studied in recent years, and several approaches
have been proposed.

In [11,15,16] the best-known sensing techniques are described and ana-
lyzed with respect to sensing performance and implementation complexity.
Among these techniques, it is worth mentioning energy detection, matched
filter, and cyclostationary feature detection. Of these techniques, cyclosta-
tionary feature detection seems to be the most promising, as several pro-
posed sensing strategies rely on it [17,18]. A good primer on cyclostationary
feature detection can be found in [19].

In [20] the authors propose the use of neural networks for signal classifi-
cation: the provided results show that this technique is effective in enhancing
sensing reliability, while at the same time keeping run-time complexity low
since most computationally demanding tasks are performed offline.

A number of papers [21–23] propose collaborative sensing performed by
a network of secondary users, in order to improve detection performance
and to avoid issues related to the hidden terminal problem.

Some other authors [24,25] propose the use of a dedicated wireless sensor
network for spectrum sensing purposes. The strength of this approach is that
sensors are inexpensive when compared with cognitive radio devices, and
thus can be deployed with higher density in order to provide better sensing
performance. Furthermore, with this architecture the secondary users are
not required to perform the sensing themselves, which in turns lowers their
requirements in terms of computational power.

2.1.3 Modeling of Dynamic Spectrum Access Networks

Several techniques have been adopted to investigate and study the dynamics
of Dynamic Spectrum Access devices and networks. Game Theory is one
of the most popular modeling strategies. In the game-theoretic approach to
Dynamic Spectrum Access, cognitive radio devices are viewed as indepen-
dent actors facing decision problems such as channel selection or parameter
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tuning. The choice made by each actor influences the performance – i.e.,
the reward – which can be achieved by other actors. Game Theory is used
to analyze how different behaviors and policies, such as competition and
cooperation, affect the performance seen by each radio device and by the
cognitive network as a whole. In [26], the authors discuss the fitness of Re-
peated Games, S-modular Games and Potential Games for generic decision
problems in cognitive radio networks. In [27] Game Theory is applied to the
case of an M -user Gaussian interference channel to derive a Pareto-optimal
spectrum allocation. A similar approach is also proposed in [28].

Other authors [29] use an information-theoretic approach to spectrum
management. In this type of approach a key concept is the interference
temperature, which describes the amount of interference caused by secondary
users to primary users. Calculating interference temperature allows the
determination of channel capacity using Shannon’s Theorem. One example
of this is [30], where both the interference temperature model and the Game-
theoretic approach are used.

An analysis of the performance limits achievable by Cognitive Radios is
presented in [31, 32]. In this approach, radio devices are cognitive in that
they are expected to have perfect knowledge of the messages being trans-
mitted by other radio devices, as well as perfect knowledge of the wireless
channel. In this situation, the Cognitive Radio can exploit MIMO tech-
niques such as dirty paper coding to overcome the interference and achieve
successful transmission, or can act as a cooperator and aid the other on-
going communications; also, a mixed combination of the two strategies is
proposed. In the papers, theoretical performance bounds for this approach
are derived.

The authors in [33] use color sensitive graph colouring to solve the Spec-
trum Allocation problem. This approach yields an optimal solution, but
it is computationally intractable (NP-hard) and moreover requires a cen-
tralized spectrum management. To overcome this issue, in the same paper
a near-optimal heuristic is proposed which is both computationally lighter
and well-suited to distributed spectrum management.

In [34] a distributed solution to the problem of spectrum management
is proposed. The solution consists of a bargaining algorithm which provides
local optimization of channel assignment in response to changes in topology
due to user mobility. The algorithm is claimed to provide nearly optimal
spectral efficiency while requiring a lower communication overhead and com-
putational effort compared to traditional centralized algorithms using graph
coloring techniques.

The same authors present in [35] another method of performing dis-
tributed spectrum management. This method consists of having each node
perform spectrum decisions independently by following pre-defined spectrum
access rules, and relying on minimal information exchange with other users.
Several rules are discussed in the paper, which differ on the type of channel
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assignment considered (conflict-free vs contention-based) and on the degree
to which fairness issues are considered. The reported performance evalua-
tion shows that the proposed solution has significantly lower complexity and
communication overhead compared to the solution in [33], while achieving
slightly lower performance.

In [16] the authors propose a Cognitive Radio approach for usage of Vir-
tual Unlicensed Spectrum (CORVUS). The proposal consists of a spectrum
pooling framework by means of which licensed bands which are not being
used by primary users are gathered together to form a Virtual Unlicensed
Band. In CORVUS, dedicated control channels are exploited by secondary
users to communicate spectrum sensing information as well as link manage-
ment and medium access control messages.

The authors of [36] discuss a Primary-prioritized Markov approach to
dynamic spectrum access. Interactions between the primary users and the
unlicensed users are modeled as continuous-time Markov chains; this model
is then used to design appropriate access probabilities for the unlicensed
users with the aim of achieving the desired tradeoff between spectrum effi-
ciency and fairness.

2.1.4 Multi-channel Medium Access Control

Medium Access poses significant challenges in a Dynamic Spectrum Access
system, due to the difficulties in handling multiple channels. To cope with
this issue, several solutions have been proposed in the recent literature.

In [37] the Dynamic Channel Access (DCA) scheme is proposed: it is a
modification of the 802.11 MAC tailored to multi-channel ad hoc networks.
The DCA scheme introduces modifications to the RTS/CTS mechanism
to include channel availability and preference information. The solution
requires terminals to have two separate wireless interfaces, since one of them
must transmit and receive on a fixed control channel, while the other is to
be used for data transmission on dynamically selected channels.

The solution proposed in [38] is based on the DCA scheme in [37], with
the addition of neighbor information reports which are used to exchange
information on the presence of primary users and, hence, provide enhanced
support for unlicensed access to unused licensed spectrum.

Another modified version of 802.11 targeting unlicensed reuse of licensed
spectrum is KNOWS [39]. The main features in KNOWS are cooperative
sensing among ad-hoc nodes to identify unused spectrum bands, and re-
source advertising and reservation performed by means of the newly defined
RTS/CTS/DTS handshake in place of the traditional 802.11 RTS/CTS.

A new multi-channel medium access protocol for ad hoc networks named
C-MAC is proposed in [40]. C-MAC exploits a dynamically determined
rendez-vous channel together with a slotted beaconing approach in order to
exchange channel availability and selection information for data transmis-
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sion. The rendez-vous channel is also exploited for broadcast and multicast
transmissions.

Another multi-channel MAC protocol is proposed in [41]. This proposal
considers the case in which a dedicated control channel exists.

In [42], the authors propose a distributed scheme with the aim to dynami-
cally allocate frequencies to access points in infrastructured 802.11 WLANs.
In [43], the performance of an experimental implementation of the same
scheme is reported.

In [44], the Single-Radio Adaptive Channel algorithm is presented. An
interesting contribution of this work is the notion of cross-channel commu-
nication, i.e., allowing a sender to transmit even if the channel is being
interfered, provided that the receiver is simultaneously not hit by the same
interference.

2.1.5 Channel Selection and Routing for Multi-hop Wireless

Networks

Some recent work goes beyond the type of approaches outlined in the previ-
ous section, and tries to design Dynamic Spectrum Access solutions which
take care both of Medium Access and Routing.

In [45], routing policies for multi-channel multi-hop wireless networks
are examined. The authors deal with the case of mobile terminals equipped
with a single radio interface; furthermore, they assume that a centralized
spectrum manager is providing information on the spectrum resources (e.g.,
unused licensed spectrum) which are available to mobile terminals. The
authors consider two different solutions: a decoupled approach, in which
channel assignment and routing are performed separately, and a collaborative
approach, in which channel assignment and routing decisions are performed
jointly by solving a scheduling problem on a conflict graph.

In [46] the author proposes a spectrum-aware, data-adaptive routing
scheme for multi-channel, multi-hop dynamic spectrum access networks.
The scheme selects the Pareto fastest paths from a source to a destination
by accounting for the quantity of data to be transmitted, the channel ca-
pacities, spectrum availability, the link propagation time and the secondary
user link occupancy. In the same paper, the author also proposes a solution
to the broadcast and multicast problem in the same scenario.

In [47], a spectrum-aware on-demand routing solution for multi-hop wire-
less networks is defined. Spectrum opportunities are identified according to
an approach previously outlined in [48]; this information is then exploited
within a modified version of AODV to perform both route selection and
channel allocation.

In [49] the authors propose a cluster-based solution according to which
each cluster is dynamically formed and allocated a channel; a hierarchical
network is then defined over cluster heads. Furthermore, a superframe-based
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MAC protocol is defined, which uses a TDMA period for data transmissions
and an ALOHA period for control message exchange; two more periods in
the superframe are reserved for spectrum sensing and neighbor discovery,
respectively.

In [50] an algorithm based on interference temperature model is proposed
for channel allocation in mesh networks. Interference temperature is used to
model occupancy and availability of a channel. Link and end-to-end routing
metrics are then proposed to select appropriate channels from the computed
set of available channels.

2.1.6 Standards related to Dynamic Spectrum Access

Some IEEE standards are related to Dynamic Spectrum Access:

• IEEE 802.22 [51, 52] is an emerging standard for Wireless Regional
Area Networks which aims at exploiting unlicensed access to unused
licensed TV channels.

• IEEE 802.16H [53] considers cognitive radio techniques for network
coexistence in license-exempt bands.

• IEEE 1900, which includes the following:

– IEEE 1900.1: Standard Definitions And Concepts For Spectrum
Management And Advanced Radio System Technologies

– IEEE 1900.2: Recommended Practice for Interference and Coex-
istence Analysis

– IEEE 1900.3: Recommended Practice for Conformance Evalua-
tion of Software Defined Radio Software Modules

– IEEE 1900.4: Coexistence Support for Reconfigurable Heteroge-
neous Air Interfaces

2.2 Cognitive Cross-layer Optimization

A typical communication system is composed of various layers, such as physi-
cal, medium access, network, transport and application. Each layer supports
different configurations and modes of operations, which determine the com-
munication performance of that layer. The overall end-to-end performance
of an application is determined by the combination of the performance of
each single layer in the protocol stack; in other words, in order to improve
end-to-end performance, the configuration parameters of each layer should
be tuned.

It is rather intuitive that separate optimization of each component of
a system is likely to yield sub-optimal performance with respect to what
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could, in theory, be achieved by a joint optimization of all components.
This practice in communication systems is commonly known as cross-layer
optimization: breaking the traditional encapsulation of the communication
protocol stack to enable a more effective optimization of the overall commu-
nication quality. Cross-layer optimization solutions need to be designed very
carefully, in order to avoid subtle interactions that could result in degraded
performance, as discussed in [54]; however, a cross-layer optimized com-
munication system is nowadays commonly expected to be able to provide
significant performance enhancements over a traditional system [55,56]

Because of potentially superior performance, Cross-layer Optimization
is expected to be extensively used in Cognitive Radio and Networks. The
Cognitive Engine at the heart of the Cognitive Radio or Network system
will leverage on cross-layer information exchange and interactions to exploit
different wireless interfaces and protocol stack configurations, in order to
achieve the best service quality for all communications.

Unfortunately, the current state of the art in wireless communication
systems research is still quite far from an effective formulation of the ul-
timate Cognitive Cross-layer Architecture. In the last decade, cross-layer
optimization strategies have been widely studied and adopted, but in most
cases the aim was to achieve performance enhancements in specific scenar-
ios. For instance, a vast number of those cross-layer solutions had the aim of
improving the performance of a particular multimedia application or trans-
port protocol over a given radio link such as 802.11 or UMTS. In most cases
these solutions cannot be reused for different wireless technologies or ap-
plications without a significant re-design effort. This unfortunately makes
them unsuitable for highly reconfigurable devices such as Software Defined
Radios upon which Cognitive Radios are based.

In more recent years, much effort has been put by the research commu-
nity in trying to synthesize all this experience on cross-layer optimization
into a more generalized, universal cross-layer architecture, with the aim of
enabling the exchange of information and interactions to arbitrary combina-
tions of applications, protocols and wireless technologies [57–59]. However,
although the awareness of the need for a generic and universal cross-layer
framework coexisting with the traditional protocol stack is fairly well es-
tablished in the research community, a definitive formulation for it is still
lacking.

We believe that such envisioned “ultimate cross-layer optimization ar-
chitecture” matches very well with the original Cognitive Radio definition
by Mitola [1], and is very interesting to investigate. For this reason, in this
thesis, we refer to Cognitive Cross-layer Optimization as the particular in-
terpretation of Cognitive Radio as an intelligent agent whose purpose is to
carry out a cross-layer optimization of the whole communication system in
order to achieve satisfactory communication performance for the end user.
The difference with traditional cross-layer optimization is that its design
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and scope should be by no means restricted to a particular scenario or ap-
plication, but rather should exhibit the highest possible degree of technology
and application independence, and that Artificial Intelligence techniques are
adopted with the aim of achieving more effective solutions which can also
adapt to heterogeneous and dynamically varying scenarios. In the rest of
this section we will summarize the current state of the art in Cognitive
Cross-layering.

In [60], the authors propose an architecture for Cognitive Radios which
is based on the encapsulation of different elements which are responsible
for well-distinct functionalities, such as Reasoning, Learning, Knowledge
Representation, and System Reconfiguration. However, there is no hint to
how to actually implement the proposed architecture.

The possibility of using Genetic Algorithms for implementing the brain
of a Cognitive Radio has also been investigated [61–63]. The major benefit
of GAs is that they are well-suited for solving optimization problems with
a very large number of parameters, as is typical in cross-layer optimization
for Cognitive Radio devices, for which other approaches are not feasible due
to the overwhelming complexity. The main issue with GAs is that the time
required to converge to the optimal solution can be very long; however, this
latency is greatly reduced for the case in which a nearly optimal solution is
acceptable.

Artificial Neural Networks have been proposed, among other things, for
channel assignment [64–66], routing [67] and, more recently, for signal clas-
sification [68, 69]. However, no work dealt with the use of Artificial Neural
Networks to design a general purpose Cognitive Radio Engine. In this thesis
we present our work on this approach, which has been in part published [C6].

Similarly, also Fuzzy Logic has been proposed several times as a par-
ticular solution to very specific problems in communications systems, e.g.,
for QoS routing in wired networks [70], route caching decisions in wireless
ad hoc networks [71], radio resource management [72], channel selection
in cellular networks [73], and mobility management [74]. An interesting
though not very recent survey on the usage of Fuzzy Logic techniques in the
telecommunication field can be found in [75]. However, we note that in all
these proposals a Fuzzy Logic system is tailored to a specific problem, and
no attempt is made to identify a generic Cross-layer architecture based on
Fuzzy Logic which can fit different wireless technologies and applications,
as envisioned in the Cognitive Radio paradigm.

.

2.3 Cognitive Networks

The concept of a Cognitive Network was already foreseen by Mitola, when
in [1] he suggested that his cognitive radios could interact within the system-
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level scope of a Cognitive Network. However, the contribution of Mitola to
Cognitive Networking does not go much beyond Cognitive Radio.

A significant step forward towards the concept of Cognitive Networking
was performed by Clark and Partridge: in [76] they propose the introduc-
tion of a Knowledge Plane in the Internet, to complement the Data Plane,
i.e., the current Internet infrastructure which takes care almost exclusively
of data delivery. This Knowledge Plane is conceived as a distributed archi-
tecture which is responsible for collecting and making available information
regarding the status of the Internet, and at the same time has cognitive
capabilities (e.g., reasoning and learning) which allow it to provide services
such as fault diagnosis, automatic reconfiguration, and enhanced QoS sup-
port. It is to be noted, however, that Clark and Partridge never mention
the term Cognitive Network.

Between 2003 and 2004 Cognitive Networking is repeatedly cited as a
promising technology [77, 78], but we have to wait until 2005 for a formal
definition of Cognitive Networks. In [79] (and, with minor differences, in [2]
one year later) Thomas et al. define a Cognitive Network as possessing a
“cognitive process that can perceive current network conditions, and then
plan, decide and act on those conditions”, and which can “learn from these
adaptations and use them to make future decisions, all while taking into
account end-to-end goals”.

Another highlight of [79] is that similarities and differences between
Cognitive Radio, Cross-layer Optimization and Cognitive Networks are an-
alyzed; among the similarities, it is to be noted the fact that Cognitive
Networks are foreseen to be based on the so-called Software Adaptable Net-
work, in exactly the same way in which Cognitive Radio is based on Soft-
ware Defined Radio. Almost simultaneously to the work by Thomas et al.,
Lake [80] proposed a similar approach; in particular, he defined his Software
Programmable Intelligent Network which turns out to be very similar to
Thomas’ (and, in turn, to Clark and Partridge’s) proposal.

An overview of Cognitive Networking can be found in [81].
A very generic overview of Machine Learning issues for Cognitive Net-

works is found in [82]. The authors discuss different aspects of learning
in Cognitive Networks, namely Classification, Interpretation/Understanding
and Acting/Planning. Moreover, several issues concerning the current prac-
tice in Machine Learning for Cognitive Networks are analyzed. The par-
ticular use cases examined in this work are mainly focused on traditional
networking issues, such as Parameter Optimization, Anomaly and Fault
Detection, and Intruder Prevention, and consequently are not explicitly tar-
geted to wireless communications. However, it is to be noted that the con-
siderations can be applied to wireless networks as well.

Concrete proposals concerning aspects of Cognitive Networking today
are still being awaited for. It is however to be noted that a significant
part of the research effort in the field of autonomic networks, such as [83–
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86], has a significant overlap both in goals and strategies with Cognitive
Networking, even though the term Cognitive Network is not commonly used
in this context. Moreover, we note that Cross-layer Optimization is relevant
to Cognitive Networks as well, and so many of the considerations that we
made in the previous section for Cognitive Radios apply here to.

2.4 Conclusions

In this chapter we have surveyed the state of the art in Cognitive Radios
and Networks, highlighting in particular the various interpretations that
have been given to these concepts. From this survey, it emerges clearly
that Dynamic Spectrum Access and the related subtopics discussed in Sec-
tion 2.1 have received most of the attention in recent years, while Cognitive
Cross-layer Optimization and Cognitive Networks, discussed respectively in
Section 2.2 and 2.3, still remain relatively unexplored. In the next chapters
of this thesis we will outline the research activity that we carried out during
our Ph.D. in an effort to fill this gap by investigating practical techniques
for Cognitive Cross-layering and Cognitive Networking. In particular, in
Chapter 3 we will describe our effort in the definition of a Knowledge Rep-
resentation Base and Information Processing Architecture for Cross-layer
Optimization in Cognitive Radios and Networks which leverages on Fuzzy
Logic; in Chapter 4 we will show how Neural Networks can be exploited
to provide Learning and Adaptation capabilities to Cognitive Radio and
Network systems.
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Chapter 3

Fuzzy Logic for Cognitive

Radios and Networks

As we clearly stated in the previous chapters, we refer to the definition of
Cognitive Radio and Network as an entity that has the primary objective of
providing wireless communication capabilities which are able to adapt to the
needs of the user(s) in face of varying environmental conditions. In particu-
lar, we are interested in investigating Artificial Intelligence (AI) techniques
in order to carry out Cognitive Cross-layer Optimization of wireless devices
and networks in order to fulfill this objective.

In this chapter, we argument that the design of such intelligent systems
is very challenging due to complexity, modularity, information imprecision
and interpretability issues. Following these considerations, we then propose
a Cognitive Cross-layer Knowledge Representation Base with the aim of
meeting these challenges by leveraging on Fuzzy Logic. As an incomplete
knowledge representation technique, Fuzzy Logic is well-suited for address-
ing imprecision issues; in addition to this well-known peculiarity of Fuzzy
Systems, we will show how the process of translating information into a fuzzy
representation can be exploited, together with an appropriate architecture
design, to address also the modularity, complexity and interpretability is-
sues. In order for the reader to better understand our proposal, we will also
provide a brief overview of Fuzzy Logic, including aspects such as Fuzzy
Arithmetic and Fuzzy Controllers. We will then present two particular ap-
plications of the proposed Fuzzy Knowledge Representation Base for Cross
Layer information. The first one belongs more to the Cognitive Radio field,
in that it deals with the Cross-layer Optimization of the transport layer
behavior using PHY and MAC information. The second one, on the other
hand, represents a Cognitive Networking approach to wireless network ac-
cess selection, based not only on cross-layer information processing but also
on knowledge sharing among users.
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3.1 Challenges of Cognitive Cross-layer Optimiza-

tion

We hereby describe the main challenges that the design of the ultimate
Cognitive Cross-layer Architecture shall meet. Although these challenges
can be considered as generic system design issues, in the following we will
discuss in particular how they relate to cognitive radio and network design.
After this discussion, we will evaluate to what degree existing proposals are
successful in meeting them.

3.1.1 Modularity

Traditionally, protocol encapsulation has always been effective in providing
modularity, i.e., in allowing independent implementation of all layers (e.g.,
wireless interfaces, drivers, protocol stacks, applications). In the definition of
a cross-layer framework, care should be taken in preserving the modularity of
the architecture, in order to allow components with cross-layer capabilities to
be designed independently of each other, and to be used interchangeably [54].

Abstracting from the underlying technology is a key prerequisite to this
concept of modularity. As an example, suppose we are designing a cognitive
transport protocol implementation which can exploit link state information
from the link layer to provide enhanced performance. If we can get the
necessary information from the link layer in an abstract way, say channel
error and congestion status, we can succeed in designing a modular transport
layer which will work with different technologies. If, on the other hand, we
are forced to rely on technology-specific information, e.g., the value of 802.11
Network Allocation Vector as a measure of link congestion, our design will
be unusable when we switch to a different link layer technology such as
UMTS or WiMax.

3.1.2 Information interpretability

As stated above, in order to achieve modularity it is necessary to choose a
knowledge representation base which can accommodate different implemen-
tations of layer modules. While necessary, this practice brings further design
challenges related to information interpretability. Suppose for instance that
we identify SNR as being a generic and useful information shared by all
wireless technologies, and as such we include it as a relevant link-layer in-
formation in the cross-layer knowledge base. The interpretation of SNR by
other layers or entities would be misleading, since it is impossible to, e.g.,
infer the goodness of a wireless link from SNR without technology-specific
knowledge such as the type of modulation and FEC/ARQ schemes used.
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3.1.3 Imprecision and uncertainty

Most information to be exported by the different layers is obtained from
measurements, which are affected by errors in precision and accuracy. These
issues can often be properly dealt with by jointly designing all layers of
a specifically targeted cross-layer optimization system. Unfortunately this
is not feasible in a modular cross-layer system where all components are
designed independently. Data can be easily misinterpreted if precision and
accuracy are not known.

The example of SNR is once again enlightening. Suppose that upper lay-
ers (transport, application) possess the technology-specific knowledge (BER
curves, etc.) needed for a correct interpretation of SNR measurements, and
use this information for cross-layer optimization. In most consumer de-
vices SNR measurements are very inaccurate, and in many systems, such
as 802.11, BER performance has a very sharp transition (within a few dBs)
from excellent to bad performance. As a consequence, if a SNR measure-
ment is considered as an exact value, a bad channel might be misinterpreted
as good and vice versa.

3.1.4 Complexity and scalability

The ultimate Cognitive Radio is required to be able to span over all avail-
able resources (e.g., available wireless interfaces and protocols, with all pos-
sible parameter configurations) in order to find the best solution to meet
the user’s needs. Cross-layer optimization is often a computationally inten-
sive task even in fixed scenarios; as the number of layers involved in the
optimization process increases, the computational load can easily become
unbearable. Moreover, if the information and parameters exported by each
layer are high in number and very different in nature, the complexity of
designing optimization or AI algorithms can make Cognitive Radio imprac-
tical. This issue is of course taken to the limit in Cognitive Networks, where
optimization is to be performed not only across the different layers in the
protocol stack, but also across different devices.

3.2 Related Work

Mitola, who is generally acknowledged as the father of Cognitive Radio,
proposed in [87] the adoption of a cross-layer knowledge representation base
named Radio Knowledge Representation Language (RKRL). This language
is a collection of micro-worlds, each one representing a particular technol-
ogy; for example, we have separate semantics to talk about GSM, UMTS,
and 802.11 links, as well as for different transport protocols and different
applications. The consequence of this type of approach is that performing
Cross-layer Optimization requires a full understanding of the semantics of
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each separate world in order to operate effectively. This implies that the
Cognitive Engine must be designed with explicit knowledge of the different
technologies that it needs to support, which is clearly against the modularity
and scalability constraints.

As far as complexity is concerned, jointly optimizing a lot of technology-
specific information and parameters is non-trivial even for a fixed combina-
tion of layers in the protocol stack, and becomes much harder if the cog-
nitive radio is supposed to be able to span over all possible combinations
of wireless technologies, links, routes and protocols. Moreover, a knowl-
edge representation approach like Mitola’s also has scalability issues, since
adding more protocols or wireless interfaces to the system can easily bring
to an overwhelming computational load to the cognitive engine responsible
for cross-layer optimization.

Actually, the majority of existing cross-layer architecture proposals (e.g.,
[56, 58, 88]) mainly rely on technology-specific information, and therefore
share the same drawbacks of Mitola’s proposal as far as modularity, infor-
mation interpretability and complexity are concerned. A remarkable excep-
tion is [59], in which an object-oriented model is used to allow both generic
and technology-specific information and commands to be exchanged with
the link layer, but no attempt is made to extend the same approach to the
whole protocol stack.

Finally, in a few works [72,74,89,90] Fuzzy Logic is used for Cross-layer
optimization. These proposals, however, are targeted to specific scenarios:
in all these works a fuzzy logic controller is used to implement a technology-
specific cross-layer solution. No effort is made to generalize the proposed
approach to different Cross-layer Optimization problems, and therefore the
design constraints we described in the previous section of this paper are not
met. To the best of our knowledge, our approach is novel, as there is no
previous work proposing Fuzzy Logic as a generic Knowledge Representation
Base for Cross-layer Optimization in Cognitive Radios and Networks.

3.3 Fuzzy Logic

We will now provide a very brief overview of Fuzzy Logic, introducing the
concepts of Fuzzy Sets, Fuzzy Logic Inference and Fuzzy Control System.

We point out that all notions provided within this section are well-
established in the Fuzzy Logic community. The purpose of this overview
is to help the reader unfamiliar with Fuzzy Logic understand our proposal;
however, an exhaustive presentation of Fuzzy Logic is clearly beyond the
scope of this paper, and for this purpose the reader is referred to the abun-
dant literature on this topic (see for instance [91]).
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3.3.1 Fuzzy Sets

Traditional set theory has a crisp1 concept of membership: an element either
belongs to a set or it does not, tertium non datur. Fuzzy Set Theory differs
from traditional set theory in that partial membership is allowed, i.e., an
element can belong to a set only to a certain degree. This degree of mem-
bership is commonly referred to as the membership value and is represented
using a real value in [0, 1], where 0 and 1 correspond to full non-membership
and membership, respectively. Formally, a fuzzy set A in a universe U is
defined by the membership function

A : U → [0, 1] (3.1)

so that for each u ∈ U its grade of membership to A is given by A(u). Com-
monly, triangular or trapezoidal functions are used as membership functions,
because of their simplicity; however, more smooth or complex shapes can
be used if necessary.

For fuzzy sets, the standard complement, union and intersection opera-
tors are defined as

A(u) = 1 − A(u) (3.2)

(A ∩ B)(u) = min(A(u), B(u)) (3.3)

(A ∪ B)(u) = max(A(u), B(u)) (3.4)

These operators are of particular importance since they correspond, in pred-
icate logic, to the ¬ (NOT), ∧ (AND) and ∨ (OR) operators, which in turn
are widely used in AI techniques such as Fuzzy Control and Fuzzy Decision
Making.

3.3.2 Fuzzy Logic Inference

Predicates in Fuzzy Logic can have partial degree of truth, in the same way
as elements can have partial membership in Fuzzy Set Theory. The grade of
truth of a predicate is represented using a real number in [0, 1]. The grade
of truth of a generic predicate P in the form “u is A”, where u is an element
in the universe U and A is a fuzzy set over U , is given by P (u) = A(u). The
traditional logic operators ¬ (NOT), ∨ (OR) and ∧ (AND) are redefined
in terms of how they modify the truth value of the predicate(s) they are
applied to in order to produce the truth value of the final statement:

(¬P ) (u) , 1 − P (u) (3.5)

(P1 ∧ P2) (u) , min (P1(u), P2(u)) (3.6)

(P1 ∨ P2) (u) , max (P1(u), P2(u)) (3.7)

1In Fuzzy Logic the term crisp is used to indicate variables having exact values, as
opposed to the term fuzzy which indicates a qualitative rather than quantitative method
of representation.
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We note that, as anticipated, there is a correspondence between the logical
and the set operators.

In addition to the traditional logic operators, other operators can be
introduced, which are commonly associated with linguistic modifiers. Clas-
sical examples are the concentrator and the dilution operators, which can
be associated with the linguistic modifiers very and somewhat :

(CONP ) (u) , (P (u))2 (3.8)

(DIL P ) (u) ,
√

P (u) (3.9)

Using these operators makes it possible to evaluate the truth of predicates
like “u is very A” and “v is somewhat B”, thus providing enhanced support
for qualitative reasoning.

3.3.3 Extension Principle

Ordinary functions can be extended to act on fuzzy sets by means of the
extension principle [91, Sec. 2.3]. Let U and V be ordinary sets, and let
A and B be fuzzy sets defined over U and V respectively. For a generic
function f : U → V the extension principle defines its fuzzy counterpart
f : A → B as

[f(A)] (v) = sup
u|v=f(u)

A(u) (3.10)

3.3.4 Fuzzy Numbers

A fuzzy set is said to be normal if supu∈U A(u) = 1. Finally, ∀α ∈ [0, 1], the
α-cut αA of a fuzzy set A is defined as

αA = {u ∈ U : A(u) ≥ α} (3.11)

α-cuts are important because of the so-called decomposition theorem [92],
which states that a fuzzy set is uniquely identified by the family of its α-cuts.

A fuzzy set X is said to be a Fuzzy Number if the following conditions
are satisfied: 1) its universe is R; i.e., X : R −→ [0, 1]; 2) X is a normal
fuzzy set; 3) ∀α ∈ (0, 1], the α-cut αX is a closed interval; 4) the support
of X is bounded, i.e., ∃a, b ∈ R such that ∀u /∈ [a, b] X(u) = 0.

Fuzzy Numbers are particularly interesting since they provide informa-
tion which is both quantitative and qualitative at the same time, and also
because the standard arithmetic operations can be applied to them. Due to
this peculiarity, Fuzzy Numbers play an important role in many applications
such as fuzzy control, fuzzy decision making and approximate reasoning.

3.3.5 Fuzzy Arithmetic

The arithmetic operations on fuzzy numbers can be defined thanks to the
property that each α-cut of a fuzzy number is a closed interval. Arithmetic
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Figure 3.1: Basic architecture of a fuzzy controller

operations on closed intervals [a, b], [c, d] ⊂ R are defined as follows [93]

[a, b] + [c, d] = [a + c, b + d] ; [a, b] − [c, d] = [a − d, b − c]

[a, b] × [c, d] = [min(ac, ad, bc, bd),max(ac, ad, bc, bd)]

[a, b] / [c, d] =

[

min(
a

c
,
a

d
,
b

c
,
b

d
),max(

a

c
,
a

d
,
b

c
,
b

d
)

]

(3.12)

Let now A and B be fuzzy numbers. ∀α ∈ [0, 1], using interval arithmetic
we can then define

α(A + B) = αA + αB α(A − B) = αA − αB
α(A × B) = αA × αB α(A/B) = αA/αB (3.13)

Thanks to the decomposition theorem, the definition of a family of α-cuts for
the result of each arithmetic operation on fuzzy numbers uniquely identifies
the result as a fuzzy set. It can be proved that this fuzzy set satisfies the
necessary requirements to be a fuzzy number.

Using a similar approach, if we define the MIN and MAX operators for
closed intervals [a, b], [c, d] ∈ R as

MIN([a, b] , [c, d]) = [min(a, c),min(b, d)] ; MAX([a, b] , [c, d]) = [max(a, c),max(b, d)]
(3.14)

we can then define the MIN and MAX operators for fuzzy numbers A and
B using α-cut decomposition:

α(MIN(A,B)) = MIN(αA, αB); α(MAX(A,B)) = MAX(αA, αB) (3.15)

3.3.6 Fuzzy Controllers

A fuzzy control system is a controller whose control actions are determined
using fuzzy logic reasoning. Since the inputs and outputs of the system
are commonly crisp in nature, a fuzzification and defuzzification process is
needed in order to translate them to and from fuzzy representation.

The architecture of a fuzzy controller is depicted in Figure 3.1. The
modules composing a fuzzy controller are described in the rest of this section.
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Knowledge base

the knowledge base characterizes the vision that the fuzzy logic has of the
outside world, defining the relationship between crisp input/output parame-
ters and their fuzzy representation understood by the fuzzy controller. From
a practical point of view, each input/output variable is characterized by the
following items in the knowledge base:

• its universe, i.e., the domain over which the variable can assume values;

• the set of linguistic attributes (“labels”) which compose its qualitative
representation;

• for each label, the membership function defining it.

As an example, suppose SNR in dB is an input variable of our con-
trol system. The corresponding universe is R, since in theory dB values
can assume any real value. We can choose the attributes good and bad
to represent SNR qualitatively; the membership function of each attribute
(SNRgood,SNRbad : R −→ [0, 1]) will be strictly related to the receiver per-
formance with respect to SNR, e.g., taking into account modulation perfor-
mance, receiver sensitivity, etc.2

Fuzzification

this is the process of translating crisp input measurements into their fuzzy
representation. This process is carried out for each input variable at every
control cycle, by evaluating the membership value of each attribute charac-
terizing it. Following the above mentioned SNR example, at each control
cycle a new SNR value x will be available to the fuzzifier, which will deter-
mine how likely the channel is to be considered good and bad by evaluating
SNRgood(x) and SNRbad(x) respectively.

Rule-based control and decision making

the heart of a fuzzy logic controller is composed by a set of IF–THEN rules
which is used to determine the value of the output variables. IF condi-
tions are composed using the predicates and logic connectors discussed in
Section 3.3.2, while THEN statements are commonly basic predicates indi-
cating the fuzzy attribute which is more appropriate for the output variables
involved.

The process of rule evaluation is easier to explain by an example. Let
X,Y be input variables and Z be an output variable. Let X,Y and Z be

2For an example of possible membership functions for the 6 Mbps modulation scheme
in 802.11g, see Figure 3.3 in Section 3.5.



3.4. Fuzzy Cross-Layer Knowledge Representation Base 25

represented by the linguistic attributes X1 and X2, Y1 and Y2, Z1 and Z2

respectively. Suppose we have the following rule set:

Rule 1: IF X is X1 and Y is Y1 THEN Z is Z1

Rule 2: IF X is X2 or Y is Y2 THEN Z is Z2

Finally, let x and y be the current crisp values for X and Y . First of all,
the truth value αi for each rule i is calculated:

α1 = (X is X1) ∧ (Y is Y1) = min (X1(x), Y1(y)) (3.16)

α2 = (X is X2) ∨ (Y is Y2) = max (X2(x), Y2(y)) (3.17)

then a modified membership function µ′ is calculated for the control output
recommended by each rule by taking the minimum (fuzzy ∧ operator) of its
membership function and the truth value of the IF clause:

Z ′
1 = α1 ∧ µZ1

= min (α1, Z1(z)) (3.18)

Z ′
2 = α2 ∧ µZ2

= min (α2, Z2(z)) (3.19)

The effect of the ∧ operation in (3.18) and (3.19) is that the membership
function of each control action (THEN clause) is limited to the truth value
of each antecedent (IF clause); in other words, a rule which is “more true”
yields a stronger contribution to the output of the Fuzzy Controller.

Finally, the membership function Z(z) for the control output of variable
Z is calculated by taking the maximum (fuzzy ∨ operator) of the modified
membership µ′ of all control actions referring to Z:

Z(z) = Z1 ∨ Z2 = max
(

Z ′
1(z), Z ′

2(z)
)

(3.20)

Defuzzification

the rule evaluation and decision making process has produced, for each out-
put variable, a membership function µZ(z) representing the appropriateness
of each output value z. Defuzzification is the process of determining an
appropriate crisp value z to be used as the actual output. One of the most
commonly used techniques for this purpose is the Center Of Area (COA)
method:

z =

∫

z Z(z) dz
∫

Z(z) dz
(3.21)

3.4 Fuzzy Cross-Layer Knowledge Representation

Base

3.4.1 Design principles

First of all the knowledge representation base of the Cross-layer architecture
needs to be defined. For each layer in the protocol stack, a set of variables
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and parameters should be identified. Variables and parameters must be
representative of the functionality provided by the layer, and should be
generic enough to accommodate different implementations and technologies
for the same layer. The set of variables and parameters should be kept to a
minimum, without duplication of information in different forms if possible,
and most importantly should not contain technology-dependent items. All
variables are intended to be fuzzy variables, and all parameters are intended
as fuzzy control variables. Both variables and parameters should have a
standardized meaning and interpretation.

For status variables to be determined from crisp measurements, we pro-
pose to keep the fuzzification process of the status variables confined within
the layer that exports them. Technology-specific knowledge is needed for
a correct design of the fuzzifier; this however poses no problem, since the
needed knowledge is normally possessed by the designers/manufacturers of
each layer. Moreover, we suggest the fuzzy representation of each variable to
be chosen such that part of the technology-specific knowledge is embedded
into the fuzzy representation, so that cross-layer information can be inter-
preted more easily by layers not possessing the same technology-specific
knowledge. For example, a PHY layer could exploit knowledge of the mod-
ulation and coding schemes being used to translate SNR measurements in
dB into more abstract fuzzy attributes bad or good ; the result of this fuzzi-
fication is that the fuzzy SNR bad/good characterization can be correctly
interpreted even without explicit knowledge regarding modulation an cod-
ing, since we can rely on the fact that they have been taken into account for
the fuzzification process.

3.4.2 Benefits

It is our opinion that using the above mentioned principles for the design of
a Fuzzy Cross-layer architecture can be a significant step forward in meeting
the challenges described in Section 3.1. First of all, such an architecture is
modular by definition. Keeping technology-specific information processing
within each layer allows independent implementation of the layers them-
selves, while representing cross-layer information using generic status vari-
ables with standardized meaning ensures that the information itself is consis-
tent and usable for cross-layer optimization, independently of the underlying
technology. One should note that achieving this modularity in practice will
require a significant standardization effort.

Using fuzzy variables also brings improved information interpretability:
e.g., information represented in the form “link reliability is high” is much
easier to interpret correctly than “SNR is 6 dB”. This is again a consequence
of having removed the need for possessing technology-specific knowledge.

As far as precision and accuracy of measured information are concerned,
the obstacle has been avoided by using an imprecise knowledge representa-
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tion base. Fuzzy Logic is intrinsically suited to represent the likelihood of
information, in other words how precise and accurate a measurement is. Ac-
complishing this in practice requires proper design of the fuzzification phase;
in our architecture, this phase is confined within the layer performing the
measurements, which is likely the place where accuracy and precision are
known best.

Finally, the complexity of our cross-layer framework is very low compared
to other proposals. By mapping technology-specific information available
at the various layers to a small and generic knowledge base, we keep a
considerable fraction of the system complexity distributed, thus making the
design of AI-based and optimization algorithms more manageable. As far as
computational power is concerned, Fuzzy Logic systems typically require low
computational resources when implemented in general purpose processors;
alternatively, dedicated Fuzzy Logic chips are available on the market for
use in critical scenarios.
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3.5 Application to Cognitive Cross Layer Opti-

mization

In this section we investigate the use of the just introduced Fuzzy Knowledge
Representation Base for the realization of a Cognitive Cross Layer Optimiza-
tion strategy for Cognitive Radios. We design a Fuzzy Logic Controller to
realize a Cognitive Cross-layer Engine which is to carry out cross-layer opti-
mization of transport layer parameters in order to adapt to varying network
and propagation conditions.

3.5.1 Fuzzy Controllers for Cognitive Cross-layer Optimiza-

tion

Since Fuzzy Logic has been chosen for the knowledge representation base,
Fuzzy Logic Controllers are the natural choice for the implementation of
Cross-layer control schemes. A fuzzy controller can either be embedded into
a layer or implement a centralized cognitive engine. In the first case, it is
used to tune some private and possibly technology-specific control parameter
of the layer. In the second case, its output variables are the fuzzy control
parameters exported by all layers.

As an example, we propose the following approach. Both link, routing
and transport layers could be assumed to be satisfactorily characterized by
just using reliability, congestion, bandwidth and delay as the knowledge rep-
resentation base. The first two variables can be purely qualitative fuzzy
variables, i.e., expressing just the concept of high and low. By contrast the
last two, due to their quantitative nature, are better represented by fuzzy
numbers with layer-dependent landmark values; for example, a linguistic at-
tribute for the bandwidth could be “about 100 kbps”, and for the delay “less
than 150ms” or, alternatively, “excellent for interactive communications”.

All information concerning the link layer is well suited to be determined
by measurements, while upper layers might need to interpret cross-layer in-
formation before being characterized. For instance, a WLAN layer could
easily determine channel reliability and congestion by evaluating SNR mea-
surements and frame statistics. By contrast, a TCP layer might exploit link
layer information to better distinguish between congestion and error status
of a connection, and a routing layer could exploit information from both the
link layer and the transport layer to assess route characteristics.

In this example, cross-layer optimization strategies could be implemented
in different ways. The TCP layer could export no control parameters, us-
ing just an embedded fuzzy controller to optimize its own throughput; this
would make sense since in TCP it is not possible to trade off throughput
for delay and/or reliability. By contrast, an RTP layer could export two
fuzzy control parameters, reliability and throughput, determining (after de-
fuzzification) the amount of FEC to be used; these fuzzy parameters would
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Figure 3.2: Example of Fuzzy Cognitive Cross-layer Architecture

allow an application or a centralized cognitive engine to increase/decrease
throughput and reliability in order to improve the QoS perceived by the user.
In other words, embedded controllers are more suitable for layers which can
be optimized independently of others; for the general case in which this
separate optimization might lead to suboptimal performance, a centralized
controller performing joint optimization may be preferred.

3.5.2 Case study: TCP Fuzzy

As a proof of concept for our proposal, in this section we present a cross-layer
optimization scheme for TCP which uses fuzzy logic for the representation
of relevant cross-layer information, and a fuzzy controller for the implemen-
tation of the optimization engine.

Many solutions have been proposed in the literature to improve the per-
formance of TCP over error-prone links by differentiating packet losses due
to congestion and errors, and by setting TCP’s congestion control param-
eters accordingly [94]. For TCP Fuzzy we use a similar approach, except
that the optimization engine leverages on cross-layer information provided
by the knowledge representation base described earlier in this chapter, and
is implemented using a fuzzy controller.

Design

We associate the increment and decrement value of TCP’s congestion win-
dow to the fuzzy variables cwndIncr and cwndDecr, respectively. The value
of these variables is determined as the output of a Fuzzy Controller using
the following rule set:
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IF (linkCongestion is high)

THEN (cwndIncr is weak AND cwndDecr is strong)

IF (linkCongestion is low)

THEN (cwndIncr is strong AND cwndDecr is weak)

linkCongestion is a cross-layer information provided by the MAC layer in
the form of a fuzzy variable. If the MAC layer possesses some measurement
which is directly related to congestion, then linkCongestion can be deter-
mined by proper fuzzification of that measurement. Alternatively, if the
MAC only possesses some measurement related to reliability, the congestion
level can be determined using a cross-layer approach, provided that the PHY
layer possesses some other measurements related to the status of the chan-
nel, e.g., a signal strength indicator. Let linkReliability and channel be fuzzy
variables obtained by fuzzification of the above mentioned measurements;
the value of linkCongestion is determined using fuzzy inference:

IF (linkReliability is low AND channel is good)

THEN linkCongestion is high

IF (linkReliability is high OR (linkReliability is low AND channel is bad))

THEN linkCongestion is low

The rule sets just provided result in a conservative management of the
TCP congestion window when the link is affected by congestion, and in a
more aggressive behavior when the link is not congested and the channel is
affected by errors.

The cross-layer architecture used by TCP Fuzzy is clearly technology-
independent and therefore is suitable for use with different wireless technolo-
gies. For instance, a plain 802.11b/g device could exploit the MAC coun-
ters to derive linkReliability and RSSI measurements to determine channel.
Alternatively, an 802.11e or 802.11k device could exploit cell load measure-
ments provided by the AP to derive linkCongestion directly, and a UMTS
device could possibly use interference power measurements for the same
purpose.

Performance evaluation

Performance evaluation has been carried out for the 802.11g case using the
NS-Miracle simulator [C7]. The simulated scenario is an infrastructured
802.11g cell with different numbers of users placed at a varying distance from
the AP. All nodes used the 6 Mbps modulation scheme and performed a bulk
data transfer for a duration of 300s to a fixed host connected to the AP with
a wired link with 10 Mpbs bandwidth and 0.1s one-way delay. Transmission
errors were determined using a Packet Error Rate vs. SINR relation which
was derived offline for the modulation scheme in use; SINR was calculated at
runtime using path loss and a gaussian interference model. Simulations were
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modulation scheme of 802.11g

conducted using alternatively TCP Reno (which is one of the most widely
used versions of TCP) and TCP Fuzzy which was implemented by modifying
TCP Reno according to the above described algorithm. For both TCP
schemes a 64 kB window limit was used. The membership functions used for
the input variables of the fuzzy controller are reported in Figures 3.3 and 3.4,
and were designed specifically for the 802.11g PHY and MAC used for the
performance evaluation, thus following the design principles introduced in
Section 3.4.1. The membership functions used for the output variables,
reported in Figure 3.5, were chosen to make TCP Fuzzy behave the same as
TCP Reno when the channel is good, thus exhibiting the same congestion
control and fairness behavior, while being more aggressive when the channel
is bad in order to provide improved performance.

Simulation results are reported in Figure 3.6, averaged over 100 iter-
ations per point. TCP Fuzzy can achieve significantly better throughput
performance than TCP Reno at critical SNR values; moreover TCP Fuzzy
tends to achieve similar performance to TCP Reno as the number of users
increase, showing that the more aggressive management of the congestion
window performed by TCP Fuzzy is mitigated as congestion becomes rele-
vant.

These results confirm that our Fuzzy Logic solution can achieve the
performance improvements provided by cross-layer optimization, while at
the same time being much more modular and reuseable than traditional
cross-layer solutions, and is therefore a promising approach for cognitive
radio networks, worth of further investigation.



32 Chapter 3. Fuzzy Logic for Cognitive Radios and Networks

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

-0.2  0  0.2  0.4  0.6  0.8  1  1.2

m
em

be
rs

hi
p 

va
lu

e

measured MAC PDU drop rate

link reliability low
link reliability high

Figure 3.4: Membership functions of link reliability attributes for 802.11
MAC

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  0.5  1  1.5  2  2.5  3

m
em

be
rs

hi
p 

va
lu

e

parameter value

cwnd increment strong
cwnd increment weak
cwnd reduction strong
cwnd reduction weak

Figure 3.5: Membership functions of the output variables of the Fuzzy con-
troller



3.5. Application to Cognitive Cross Layer Optimization 33

TCP Reno, 7 users
TCP Fuzzy, 7 users
TCP Reno, 5 users
TCP Fuzzy, 5 users
TCP Reno, 3 users
TCP Fuzzy, 3 users

SNR (dB)

av
er

ag
e

p
er

-u
se

r
th

ro
u
gh

p
u
t

(b
it
/s

)

32.521.51

800000

750000

700000

650000

600000

550000

500000

450000

400000

350000

300000

250000

Figure 3.6: Performance of TCP Fuzzy compared to TCP Reno



34 Chapter 3. Fuzzy Logic for Cognitive Radios and Networks

3.6 Application to Wireless Network Access

The recent progress in radio communications today provides several network
access technologies for wireless connectivity, e.g., IEEE 802.11, WiMAX and
UMTS. At the same time, advances in microelectronics allow all these tech-
nologies to be exploited within a single mobile device equipped with multiple
radio interfaces. As a consequence of these facts, many new challenges have
arisen for the telecommunication research community. The one we focus
on in this section is wireless network access, i.e., how a user who wants to
connect to the Internet can select, among all the available opportunities, the
one which yields the best performance.

Most previous work dealing with this problem considers only a specific
wireless technology. The most notable example is 802.11: several valuable
solutions have been proposed to solve the problem of Access Point selection
[95–97], but all of them rely on 802.11-specific metrics. The consequence
is that these solutions cannot be used with other wireless technologies and,
most importantly, the obtained performance metrics cannot be compared
to the ones obtained by different solutions designed for other types of radio
interfaces. Moreover, while it is possible to design network access schemes
to handle a particular set of existing technologies, an ideal network access
solution would be required to be generic and modular enough so as to ac-
commodate even new wireless technologies as they are introduced.

Another issue in wireless network access is that an ideal solution should
be optimal with respect to the end-user perspective. In particular, two key
aspects should be considered. First, user-perceived service quality depends
on end-to-end performance, in which the wireless link plays an important
role without however being the only issue. Previous work on access point
selection targeted only scenarios in which the wireless link is the bottleneck,
while in many real life scenarios also the core network can exhibit non-ideal
performance, thus having a non-negligible effect on end-to-end network per-
formance. Second, the optimization of the end-to-end network performance
should take the Quality of Service (QoS) requirements of different applica-
tions into account. Much previous work on Access Point Selection focuses on
the maximization of network throughput only; however, applications such
as VoIP and gaming are more strongly affected by other factors such as net-
work delay and reliability. In recent years, interest in providing satisfactory
service quality for these applications has grown considerably, due to their
increased popularity; this in turn has promoted a significant effort by the
research community to find methods and solutions able to enhance the QoS
of multimedia applications on various wireless technologies, most notably
802.11 [98–100] and UMTS [101–103]. Unfortunately, this QoS-related re-
search has focused almost exclusively on optimizing the performance of an
already established multimedia communications, and the problem of per-
forming a QoS-aware network access decision has not been dealt with so
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far.

To summarize, the problem of identifying an algorithm for wireless net-
work access selection which 1) is independent of the radio technology, 2) can
accommodate the QoS requirements of different applications, and 3) can ac-
count not only for wireless link performance, but also for possible non-ideal
conditions of the entire end-to-end path, is a very challenging and still open
issue.

From this perspective, the recently proposed Cognitive Network paradigm
seems to be a very promising approach. In [2], a Cognitive Network is de-
fined as “a network with a cognitive process that can perceive current network
conditions, and then plan, decide, and act on those conditions”. Cognitive
Networking implies the presence of a cognition process which spans both all
the layers of the protocol stack and all the network components of end-to-
end communication; this cognition process is distributed among the different
nodes composing the network, which share their knowledge and cooperate
among themselves. This architecture is promising in that it is potentially
able to solve problems which are too complex to be handled within a tradi-
tional cross-layer approach, while at the same time being capable of learning
the behavior of different wireless technologies and applications.

In this section, we propose a Cognitive Network approach to the Wireless
Network Access problem. In particular, we propose a knowledge represen-
tation framework based on Fuzzy Logic which enables the implementation
of a cognition process which is both cross-layer and network-aware; fur-
thermore, we exploit knowledge sharing among different devices with the
purpose of achieving a more complete and reliable characterization of the
performance of the whole network. Subsequently, we define a network access
scheme based on Fuzzy Decision Making which allows each user to choose
the Access Point which best satisfies its QoS requirements. We stress that
the modularity of the architecture and the generality of the chosen knowl-
edge representation allow our solution to easily provide optimized network
access policies for new wireless technologies and applications which outper-
form state-of-the-art schemes while at the same time minimizing the effort
required to accommodate different wireless technologies and applications.

3.6.1 Cognitive Network Access

It is worth mentioning that the original definition of Cognitive Radio by J.
Mitola [87] already tries to address the problem of wireless network access.
Mitola’s Cognitive Radio has the explicit purpose of “detecting user needs,
and providing wireless services most adequate to meet them”. The use of the
term cognitive highlights the fact that some Artificial Intelligence (AI) needs
to be at the heart of the device which is to choose and adapt its services to
the user’s needs. One of the most quoted definitions for AI is “how to make
machines do things at which, at the moment, humans are better” [104]. So,
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in the context of wireless network access, the goal of a cognitive radio would
be to relieve the mobile users from having to figure out themselves which
is the most satisfactory access opportunity. The key motivation behind the
approach proposed in this section directly follows from these considerations:
our goal is to replace user’s decisions trying to mimic the actual decision
strategies that a typical human user would adopt.

As an example, consider a cafe with a nearby 802.11 hotspot, in an area
covered by a UMTS provider. A single user comes in with his laptop, orders a
coffee and looks for an Internet connection to do some web surfing. He might
try UMTS first, maybe just to realize that it is too slow for what he pays
for it. Then he might realize that there is an 802.11 hotspot nearby, connect
to it and finally surf the web happily with high throughput. A second user
comes in, orders another coffee, and turns on his mobile device to watch a
TV program via video streaming from the Internet. Instead of figuring out
the quality of the available networks by himself, he might just notice the
first user who is surfing happily, and query him about the best connection
available. Based on this knowledge of the previous experience of the first
customer, he would likely connect to the hotspot, and be satisfied by enjoying
video streaming with high throughput connectivity. Then a third user comes
in and, under advice from the previous users, connects to the hotspot for
a VoIP conversation. It could happen, however, that she is not satisfied
because, e.g., the wired network serving the hotspot has a considerably high
delay, or the hotspot itself has become congested; consequently, she might
try out UMTS, and possibly be more satisfied because of the lower Round
Trip Time. Finally, a last user might come in with his laptop to play some
highly interactive online game. He asks all previous customers about the
performance they experienced, and he decides to use the UMTS connection,
since he understands that his application requirements (low latency) are
much closer to the requirements of the VoIP user rather than to those of the
other two.

Although very simple, this example highlights some important facts.
First of all, while direct experience is an effective means of inferring the
quality of several connection opportunities, exploiting knowledge previously
gathered by other users may be a quicker and easier way. Second, the choice
of a suitable knowledge representation base for performance evaluation met-
rics becomes crucial: on one hand it is impossible to find a unique definition
of quality, since different applications can have even conflicting performance
requirements, and so we need different metrics; on the other hand, we can-
not rely on too fine-grained and technology-specific metrics, since this could
possibly make information gathered by some users difficult to interpret by
others having similar but not identical needs. Furthermore, we point out
that the performance seen by each user is actually made up of two compo-
nents, i.e., radio link and core network performance, and that these aspects
should be evaluated jointly. In the example above, suppose the first user
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leaves the cafe and goes and sits on a bench in a nearby park. Previous
experience still indicates the hotspot as the most suitable choice. However,
current link quality metrics (e.g., the RSSI indicator) might show that he is
too far from the hotspot to get an acceptable throughput. Finally, it should
be noted that all the available information should be interpreted cum grano
salis, i.e., not only quantitatively but also qualitatively, because performance
reports by other users might be biased, measurements might be affected by
errors, and all this information might be partial and/or old. 3

Based on the above discussion, we consider here a scheme in which
prospective users have access to a shared knowledge base that contains in-
formation about the service quality experienced by past and present active
connections. To overcome the above mentioned issues, we define a generic
knowledge representation framework using Fuzzy Numbers with the aim of
enabling a generic representation of the most relevant performance metrics
of different applications. We propose the use of this knowledge represen-
tation to build a Cognitive Network Knowledge Database, which is to be
filled with service quality information fed back by all users actively using
the network. A user willing to set up a new connection can then retrieve
such information and compare it to both application requirements and other
measurements, in order to assess the expected service quality for each ac-
cess opportunity; in this process, both Fuzzy Logic Inference and Fuzzy
Arithmetic are used. Finally, the most suitable network access opportunity
must be selected using Fuzzy Decision Making techniques. The presence of
a knowledge representation base including information belonging to differ-
ent components of the communication system, the cross-layer processing of
this information, the mechanism by which a node learns from its neighbors’
experience as well as its own history, the use of Fuzzy Logic for incom-
plete knowledge representation, and the use of Fuzzy Decision Making to
select among access opportunities clearly identify our proposed scheme as
belonging to the Cognitive Network Paradigm.

We note that Fuzzy Logic has been already proposed for use in the
context of telecommunication system, e.g., for QoS routing in wired net-
works [70], route caching decisions in wireless ad hoc networks [71], radio
resource management [72] and channel selection in cellular networks [73]. An
interesting survey on the usage of Fuzzy Logic techniques in the telecom-
munication field can be found in [75]. The main difference of our approach
is that, unlike previous work, we do not consider a Fuzzy Controller imple-
menting a simple input-output relationship using logic inference, but rather
a Fuzzy Decision Making scheme which works on top of a rather complex
performance evaluation framework based on Fuzzy Arithmetic which spans

3An important aspect ignored in this section is how to deal with users that maliciously
provide wrong information to influence other nodes’ decisions. This issue is left for future
research.
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across the whole protocol stack; moreover, we propose the adoption of Fuzzy
Logic not only to design a decision strategy which can take into account
imprecision and uncertainty issues, but also as a technology-independent
knowledge representation which can fit different radio technologies, network
protocols and user applications.

3.6.2 Knowledge Representation, Cross-layer Information Pro-

cessing and Information Sharing

Following the approach described in Section 3.6.2, we characterize perfor-
mance in terms of throughput, delay and reliability (defined as the success
ratio of packet transmissions), where each of these items is represented us-
ing a fuzzy number. This characterization is applied to different components
of the communication performance: wireless link quality measurements per-
formed by each user, wired network performance reported by all users to the
Cognitive Network Database, estimation of end-to-end network-layer and
transport layer performance, and QoS requirements of user applications.

We introduce the notation beforehand, in order to make the discussion
easier to understand in spite of the heterogeneity and vast number of vari-
ables used. We denote throughput, delay and reliability metrics with t, d
and r; the subscripts l, n, e, t and a denote respectively radio link, core net-
work, end-to-end, transport and application metrics. Finally, for a generic
metric x, we denote its measured value with x̌, its estimated value with x̂,
and its fuzzy representation with x̃.

Our knowledge representation and cross-layer information processing
architecture is represented in Figure 3.7. Some modules are expected to
make use of technology-dependent information to measure and/or estimate
communication quality, and represent it using the technology-independent
throughput, delay and reliability metrics. One of such modules is the radio
link module, which is in charge of providing the radio link performance mea-
surements ťl, ďl and řl for ongoing communications, and of expressing the
estimated radio link performance for access point selection using the fuzzy
metrics t̃l, d̃l and r̃l. Another use of technology-dependent information is
within the transport module, where a characterization of the performance
provided to the application by the transport layer as a function of the end-to-
end network layer performance is needed; we suppose this characterization
can be expressed using the three functions ft(de, re, te), fd(de, re, te) and
fr(de, re, te), which provide respectively application layer throughput, delay
and reliability as a function of end-to-end network-layer performance (either
measured or estimated). Finally, application QoS requirements are repre-
sented using fuzzy sets. We denote with t̃a, d̃a, r̃a the fuzzy sets representing
respectively satisfactory throughput, delay and reliability for a particular
application; the membership functions of these sets are to be determined a
priori using application-specific knowledge.
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end-to-end network
layer performance

transport layer

performance

wireless link

performance

core network

performance

user-perceived
service quality

ξ

transport layer model

protocol-specific

application–specific

QoS requirements

cognitive network

database

t̃l d̃l r̃l t̃n d̃n r̃n

t̃e d̃e r̃e

t̃a d̃a r̃a

Figure 3.7: Knowledge representation and cross-layer information processing
for Cognitive Network Access



40 Chapter 3. Fuzzy Logic for Cognitive Radios and Networks

According to the principles discussed in Section 3.6.2, while technology-
specific knowledge is needed to design these modules properly, the overall
architecture is technology-independent, thanks to its modularity and to the
use of an abstract and generic knowledge representation base in the definition
of the interfaces between modules. In the rest of this section, we discuss
the technology-independent architecture; an example implementation of the
technology-dependent components will be provided in Section 3.6.3.

Each cognitive user performs at a given time one of two cognitive activ-
ities. The first one, Access Point Characterization, is carried out by users
having ongoing communications, and consists in processing radio link and
end-to-end performance measurements to obtain an estimate of the core
network performance for the access point in use; this information is shared
with other users by means of the cognitive network database. The second
activity is Access Point Selection, which is performed by users willing to
start a new communication; it consists of estimating the application-layer
communication performance by combining the estimated performance at the
radio link with the Access Point Characterization obtained from the Cogni-
tive Network Database, and subsequently selecting the Access Point which
is expected to better satisfy the application requirements. Each of these
activities will be explained in the following subsections.

Access Point Characterization

This process is represented in the left side of Figure 3.7. When a com-
munication is being performed over the radio link, the radio link module
provides instantaneous measurements for the metrics ťl, ďl and řl. For the
same communication, the transport layer module measures the end-to-end
network layer performance it is perceiving, which we denote with ťe, ďe and
ře. We define core network performance as the performance of the part of the
network beyond the Access Point. In our architecture, this is the information
which is to be shared among users to support cooperative access point char-
acterization effectively. Unfortunately, core network performance cannot be
measured directly. For this reason, we propose to measure the core network
throughput, delay and reliability (ťn, ďn and řn, respectively) by comparing
the measured end-to-end network-layer performance with the performance
at the radio link layer and at the transport layer. In detail, the delay and
reliability are calculated as ďn = ďe − ďl and řn = ře/řl, respectively. For
the core network throughput, the most reasonable way to measure it is by
evaluating the measured end-to-end network-layer throughput ťe. However,
we must consider that if the core network is not the bottleneck this method
can result in a severe underestimation; this can happen, for instance, when
the bottleneck is at the wireless link, or when throughput is limited by the
transport layer (e.g., due to high round trip time in TCP) or the applica-
tion layer. To overcome these issues, we define the following estimate of core
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network throughput:

ťn =

{

ťe if ťe < ťl and ťe < ft(ďe, ře, ťl)

Tmax otherwise
(3.22)

where Tmax is a suitably large number. Using all these calculations, users
with ongoing communications can periodically compute core network perfor-
mance measurements and upload them to the Cognitive Network Database.
The database will therefore be populated with a performance characteriza-
tion of all available access networks.

Access Point Selection

This process is represented in the right side of Figure 3.7. When a user
wants to start a new communication, it estimates the service quality which
can be provided by all the available access points, and selects the most suit-
able one. This estimation is obtained for each AP by processing the shared
access point performance characterization provided by the cognitive network
database, and the radio link performance estimation provided by the relative
radio link module within the particular user being considered. Radio link
performance metrics are represented using the fuzzy numbers t̃l, d̃l and r̃l;
these metrics are to be provided by the radio link module based on technol-
ogy specific measurements (such as RSSI, interference, mobility. . . ), and the
fuzzification process is intended to account for imprecision and inaccuracy
in the measurements. Core network performance metrics are represented
by the fuzzy numbers t̃n, d̃n and r̃n; the fuzzification process is intended to
represent the uncertainty due to differences in the measurements performed
by different users. To this aim, we chose to represent the resulting metrics
using triangular fuzzy numbers, where maximum membership is attained
by the mean µ of the available measurements, and the support of the mem-
bership function is [µ − 2σ, µ + 2σ], where σ is the standard deviation of
the measurements [105]. A rectangular sliding window is used to select only
the more recent measurements, so that in the fuzzification process older
measurements are discarded.

All the fuzzy performance metrics just introduced are processed using
Fuzzy Arithmetic in order to evaluate the communication quality expected
from each AP. From now on, we explicitly include the index of the AP in
the notation whenever needed to avoid confusion.

First of all, the expected network-layer end-to-end performance t̂e(i),
d̂e(i) and r̂e(i) for each Access Point i is determined by combining radio
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link and core network performance as follows:4

t̃e(i) = MIN(t̃l(i), t̃n(i))

d̃e(i) = d̃l(i) + d̃n(i)

r̃e(i) = r̃l(i) × r̃n(i) (3.23)

Then, transport-layer performance is derived applying (3.10) to the func-
tions ft, fd and fr:

t̃t(i) = ft(d̃e(i), r̃e(i), t̃e(i))

d̃t(i) = fd(d̃e(i), r̃e(i), t̃e(i))

r̃t(i) = fr(d̃e(i), r̃e(i), t̃e(i)) (3.24)

The fuzzy metrics just defined provide an estimate of the communication
performance which will be provided to the application. By comparing them
with t̃a, d̃a, r̃a we can derive the values ζt(i), ζd(i), ζr(i) ∈ [0, 1], which rep-
resent to what degree the connection through Access Point i is expected
to satisfy each performance requirement of the application. Different tech-
niques can be used for this purpose, the most straightforward being maxi-
mum membership [105]:

ζt(i) = max
x∈R

(t̃t(i) ∩ t̃a)(x)

ζd(i) = max
x∈R

(d̃t(i) ∩ d̃a)(x)

ζr(i) = max
x∈R

(r̃t(i) ∩ r̃a)(x) (3.25)

We obtain an overall measure of the fitness ξi of Access Point i to meet
the user needs, by calculating the highest degree to which all application
requirements are jointly satisfied, i.e.,

ξi = min(ζt(i), ζd(i), ζr(i)) (3.26)

and choose the access opportunity for which ξi is maximum.

3.6.3 Case study: File Transfer and VoIP over WLAN and

UMTS

In this section, we described how our proposed scheme can be implemented
in some practical cases. In particular, we will consider the scenario of file
transfer and VoIP applications over WLAN and UMTS radio links. For
this scenario, we will provide a possible implementation of the technology-
specific components which are present in our proposed framework. For the

4we note that (3.23) is based on the assumption that the radio link and the core network
performances are independent.
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majority of the fuzzy metrics, we adhere to the wide-spread practice of us-
ing triangular membership functions [91], since they provide a good trade-
off between expressivity and simplicity. We note that the characterization
provided in the following sections are not intended to be the best possible;
rather, our focus is on showing the implementability of our architecture, and
to provide support for the performance evaluation which will be presented
in Section 3.6.5.

Application requirements

For file transfer, the membership function t̃a(u) we use for the throughput re-
quirement is logarithmically increasing from 0 to 1 in (103, 108); we preferred
a logarithmic increase over a linear increase since it yields a more meaningful
representation of how user satisfaction increases with throughput. Further-
more, we assume that file transfer poses no delay constraints (d̃a(u) = 1 ∀u)
but requires strict reliability (r̃a(u) = 1 for u = 1, and 0 otherwise). For
VoIP, we adopt the commonly recognized reference values for G.711 speech
quality. In particular, the one-way delay is considered excellent if < 0.15 s
and poor if > 0.45 s, so we define the round-trip delay requirement d̃a(u) as
linearly decreasing from 1 to 0 in (0.3, 0.9); the packet loss rate is considered
acceptable if < 0.05, and consequently we define r̃a(u) as linearly increasing
from 0 to 1 in (0.95, 1); finally, the throughput requirement t̃a(u) is chosen
as linearly increasing from 0 to 1 for throughput ranging from 64000 (G.711
bitrate) to 80000 in order to provide some margin. We note that, thanks to
the expressivity of the proposed fuzzy knowledge representation base, it is
straightforward to provide support for other applications: all that is needed
is to provide a proper fuzzy definition of their QoS requirements.

Radio link performance

For 802.11 access, we propose the following characterization derived from
the AP capacity metric presented in [95] which refers to the case where the
downlink communication path is the bottleneck of the ongoing communi-
cations in the cell (a realistic assumption for most 802.11 scenarios). In
these conditions, it has been shown [106] that in the long term each user
gets a fair share of the available cell capacity, due to the fact that the AP
is almost the only node contending for the channel. Let A be the set of
users already associated with the AP, and let τj be the time required for the
transmission of a packet from the AP to user j ∈ A. If we make the further
assumption that packet losses are negligible, a lower bound for τj can be
easily calculated once the packet size and the modulation scheme used by
each user j ∈ A are known. Supposing that the AP uses a simple round-
robin scheduling policy, it will serve all its users in an interval T =

∑

j∈A τj,
and the average throughput tl experienced by a particular user is given by
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tl = s/T , where s is the payload size of the packets addressed to the user
being considered. In the case of a user which is not already associated with
the AP, we redefine tl as the throughput he might expect when associated
with the AP as tl = s/(T + τ), where τ is the transmission time of the
user under consideration. Due to the assumptions made, tl is an optimistic
estimate of the radio link throughput. To account for this estimation bias,
we define the fuzzy metric t̃l as having a triangular membership function
with support (0.5tl, tl) and peak at 0.75tl. Using the same assumptions, we
can determine a lower bound on the radio link contribution to the average
round trip time as dl = 0.5T + τ , where we have accounted for the average
waiting time for a random packet arrival at the AP in the downlink, and for
the lowest possible transmission time (no contention, no retransmissions) in
the uplink. Again, to account for the estimation bias we define the fuzzy
metric d̃l with a triangular membership function with support (dl, 1.5dl) and
peak at 1.25dl.

For the reliability metric, we consider the error probability of a SDU
frame, for which we calculate the lower bound pl = p(rmax+1) and upper

bound pl = (p+q)(rmax+1), where p is the frame error rate (due to SNR only)
for the modulation scheme being used, rmax is the MAC retransmission limit
and q is a worst case estimate of the collision probability (in our simulations
we used the fixed value q = 0.3; more accurate estimators could be used, such
as the one in [C4]. We then define the lower and upper reliability bounds as
rl = 1 − pl and rl = 1 − pl, respectively. Finally we define the fuzzy metric
r̃l using a symmetric triangular membership function with support (rl, rl).

We point out that the type of information needed for this scheme is
likely to be possessed by the Access Point, and can be forwarded to the
clients, e.g., using information frames such as those specified in the 802.11k
and 802.11e protocols [107, 108]. Alternatively, each user could privately
monitor each wireless channel and get equivalent performance metrics by
direct measurements, though at a higher computational cost.

For UMTS access, we consider a Release 4 system in which data transmis-
sion is performed over a Dedicated Channel (DCH) using Acknowledge Mode
(AM) at the Radio Link Control (RLC) layer. For convenience we define the
following: K is the number of PDUs per SDU, I is the length of the inter-
leaving, TPDU is the duration of a PDU transmission, TRLC = 2(2I +TPDU)
is the RLC Round Trip Time, m = ⌊TRLC/TPDU⌋ is the number of PDUs
per RLC Round Trip Time, L is the maximum allowed number of trans-
mission attempts for a single PDU. Furthermore, we suppose an estimate
of the PDU error probability p to be available5 with a known confidence
interval of σp. We define p = max(p − σp, 0) and p = min(p + σp, 1). For a

5We note that in a real system p can be evaluated as a function of the SINR measure-
ments which are commonly performed by UMTS devices as part of the inner loop power
control.
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given spreading factor x and link direction y (uplink/downlink), a DCH has
a well-defined data throughput tl(x, y) [109]. This is the maximum through-
put which can be achieved in ideal conditions; however, in typical conditions
the actually achieved throughput can be slightly lower due to PDU losses
and the Selective Repeat ARQ used in AM. To account for this factor, we
define the fuzzy metric t̃l as having a triangular membership with support
((1−p)tl, (1−p)tl) and peak at (1−p)tl. For the reliability, we consider the
widely adopted block-fading model, according to which SDU losses occur
with probability f(z) = 1 − (1 − zL)K , where z is a given PDU error prob-
ability. Consequently, for the fuzzy reliability metric r̃l we use a triangular
membership function with support (fr(p), f(p)) and peak at f(p).

Finally, for the delay, we use the heuristic proposed in [110] which pro-
vides a very good approximation of the complementary cumulative distribu-
tion function ccdf(t, z)6 of the SDU delay t as a function of the PDU error
probability z. Let dl = {t | ccdf(t, p) = 0.5}, dl = {t | ccdf(t, p) = 0.95} and

dl = {t | ccdf(t, p) = 0.05}. The fuzzy delay metric d̃l is defined as having a
triangular membership with support (dl, dl) and the peak at dl.

Transport layer performance

Since the applications considered in this case study are file transfer and VoIP,
we need to provide a proper characterization of the impact on performance of
the TCP and UDP/RTP transport protocol. For RTP/UDP we suppose that
no particular ARQ/FEC scheme is in place; this choice yields fr(de, re, te) =
re, fd(de, re, te) = de and ft(de, re, te) = ηte, where η ≤ 1 accounts for
protocol overhead. For TCP, we have fr(de, re, te) = 1 thanks to TCP’s
reliability; for the throughput we adopt the formulation in [111], i.e.,

ft(de, re, te) = min
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(3.27)
where W0 is the maximum window size, pe = 1− re is the end-to-end packet
error rate, L is the packet size, b is the delayed ACK parameter, and αde

is an estimate of the retransmission timeout obtained by scaling the end-
to-end delay. Furthermore, since we did not impose any delay constraints
for the file transfer application, we provide no formulation of fd(de, re, te)
for the TCP case, as it is not needed for our implementation. Finally, we
note that the model in [111] might not be very accurate in wireless scenarios.
However, the use of a fuzzy representation and processing of the inputs of the
model ensures that our transport layer characterization is able to provide
an effective and meaningful representation of the range and likelihood of

6i.e., the probability that a SDU experiences a delay greater than t
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the performance experienced on top of TCP, even in scenarios in which the
model itself might not be very accurate.

Cognitive Network Database Implementation

It is to be noted that in this work we do not make any assumption on
the type of architecture to be used for data upload and retrieval; instead,
we just assume that the Cognitive Network Database is available to all
users. In practice, different approaches could be adopted, each one having its
own benefits and drawbacks7 [81]. This assumption is justified by the need
to validate the proposed cognitive network approach while not precluding
any possible implementation. A detailed study of the architecture of the
Cognitive Network Knowledge Base and the related trade-offs is left as a
future research topic.

3.6.4 Other Network Access Decision Schemes

In this section we introduce other network access schemes for comparison
purposes. The first two schemes, Highest RSSI and Link Capacity, repre-
sent the current state-of-the-art in wireless network access; however, as we
will discuss in this section and show in Section 3.6.5, they present some
obvious sub-optimality with respect to our cognitive scheme – e.g., they do
not consider the performance of the part of the network beyond the AP –
and therefore they cannot provide any insight on how close the performance
of our cognitive scheme is to a hypothetical optimal performance. To ad-
dress this issue, we introduce two additional schemes, Network Capacity and
Low Delay, that we explicitly design for comparison purposes. These two
last schemes are application-specific, and exploit a priori knowledge of the
network topology as well as of the characteristics of the traffic generated
by the users. This prior knowledge is rarely available, if ever, in practice,
so the Network Capacity and Low Delay strategies we will describe in this
section are not very well suited for implementation. This particular design
choice was made in order for the performance of these schemes to be as close
to the optimal as possible, so that it is possible to evaluate the degree of
sub-optimality of the cognitive scheme due to 1) its independence from the
particular application being used, and 2) the usage of access point charac-
terization by means of information sharing performed by the users, instead
of a priori knowledge of the network characteristics.

7For example, a centralized approach such as storing the information related on each
access opportunity on the Access Point itself could be very efficient; however this approach
may have serious security problems, since a malicious operator could deliberately alter the
information in the database to get more subscribers and increase its own revenue. Keeping
the Cognitive Network Database distributed among users would be more robust in this
sense, though at an increased computational/storage cost and communication overhead.
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Highest RSSI scheme

This access scheme is very often implemented in real devices, due to its
simplicity. The fundamental assumption behind it is that a higher RSSI
allows a higher rate modulation scheme to be used, and therefore yields
higher throughput and lower communication delay. Let ρi be the Received
Signal Strength Indicator (RSSI) seen from Access Point i by the user under
consideration. The Highest RSSI approach consists of choosing the access
opportunity which maximizes ρi.

For the multi-technology case, we consider the case in which one or more
802.11 APs are present together with at most one UMTS AP. A simple but
reasonable policy would be to prefer 802.11 whenever available, following
the common sense that 802.11 provides a higher throughput and lower price
connection. In this case, we assume a SNR threshold ∆ is defined, repre-
senting the minimum SNR required for successful communication with an
802.11 AP. If no 802.11 AP is reachable with SNR > ∆, then the UMTS
AP is selected, otherwise one of the 802.11 APs is selected using the Highest
RSSI selection method.

Link Capacity scheme

Using the throughput estimate given in Section 3.6.3, a new user k can
evaluate the throughput tl(i) he could get from each available AP i. It has
been proposed in [95] to perform 802.11 AP selection based exclusively on
this metric, which aims at achieving an even load balancing between different
APs. This is clear once we note that, with reference to the expression of
tl for 802.11 provided in Section 3.6.3, s does not depend on the AP being
considered, and the chosen AP is the one that minimizes T + τ . If τ ≪ T ,
this is the AP with the lowest load, and hence highest residual capacity. For
this reason we refer to this scheme as Link Capacity.

Network Capacity scheme

The Network Capacity access scheme is explicitly designed to maximize TCP
throughput. We adopt the same metrics used for our Cognitive scheme,
except that explicit knowledge of core network performance is employed
instead of measurements retrieved from the Cognitive Network Database.
More in detail, suppose we known a priori the nominal bandwidth B(i),
delay D(i) and packet error rate P (i) of the link between the fixed host and
AP i. Let tl(i), dl(i) and pl(i) be the expected radio link throughput and
lower bounds for the delay and packet error rate, as defined in Section 3.6.3.
Furthermore, let Ni,TCP and Ni,CBR be the number of TCP and CBR users
associated with AP i, respectively, and let the generic CBR application
k = 1 . . . Ni,CBR have bandwidth BCBR,k. For each access opportunity i, the
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end-to-end network-layer performance can be estimated as

t̂e(i) = min
(

tl(i),
(

B(i) −
∑Ni,CBR

k=1
BCBR,k

)

/Ni,TCP

)

d̂e(i) = dl(i) + D(i) + B(i)/s

r̂e(i) = 1 − (P (i)pl(i)) (3.28)

where s is the packet size in use by the user performing the access decision.
Then, using (3.27), we can calculate the expected TCP throughput from AP
i as tt(i) = ft(d̂e(i), r̂e(i), t̂e(i)), and select the AP which maximizes tt(i).

Low Delay scheme

This scheme is explicitly geared towards real-time applications, such as Voice
over IP, Video Conferencing, and other interactive applications whose ser-
vice quality is heavily influenced by packet errors and communication delays.
As before, we use the same radio link performance metrics used for the Cog-
nitive scheme, and we replace the role of the Cognitive Network Database by
explicit knowledge of core network performance. In particular, we reuse the
end-to-end network performance metrics derived in (3.28) for the Network
Capacity scheme, and we choose the access opportunity which satisfies the
following minimization problem:

min
i

d̂e(i) : r̂e(i) ≥ 1 − ECBR (3.29)

The solution of (3.29) is not necessarily optimal for all real-time communi-
cations, since a certain amount of delay might be tolerable and throughput
requirements are not considered. However, this scheme is reasonably efficient
for applications such as VoIP, which have very low throughput requirements
together with a well-defined maximum packet error rate for acceptable ser-
vice quality (typically, 0.05 for the G.711 codec), and in which the satisfac-
tion level of the end user is inversely related to the experienced end-to-end
delay.

3.6.5 Performance Evaluation

Performance evaluation of the proposed access scheme was carried out using
NS-Miracle [C7], which is a multi-interface cross-layer extension of the well-
known NS simulator [112]. We simulated a square area of 30 × 30 m2 with
two Access Points placed on one side of the square, and n randomly placed
users. Each AP is connected to a fixed host with a dedicated symmetrical
link, whose bandwidth has a specified fixed value according to the consid-
ered scenario. Depending on the scenario, either two 802.11 APs or one
802.11 and one UMTS AP were used.8 For 802.11 communications, both

8We actually carried out performance evaluation for scenarios with 3 and 4 APs as
well. In general, the behavior of the Access Schemes under evaluation was very similar
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the wireless users and the APs use 802.11g with a rate adaptation scheme
which consists of selecting the modulation scheme based on the experienced
SNR in order to achieve a target Packet Error Rate ≤ 0.01. For UMTS, we
used a spreading factor of 8 in both downlink and uplink, which corresponds
to a bit rate of 456 kbps in downlink and of 240 kbps in uplink.

In the following, we present simulation results highlighting the different
performance of the schemes outlined in the previous section. We consider
several scenarios in order to evaluate different issues relevant to the network
access selection problem, such as load balancing on the radio link, core
network performance degradation, satisfaction of QoS requirements, and
interactions in mixed traffic situations. All reported results, unless explicitly
stated, have been obtained averaging 100 independent simulation runs in
order to achieve the necessary statistical confidence. In several cases, we will
be interested in the fairness of a metric xi for the set of users i = 1, . . . , n;
for this purpose, we use Jain’s index, defined as (

∑

i xi)
2/(n

∑

i xi
2)

Scenario 1: Load balancing on the radio links

The purpose of this scenario is to evaluate the load balancing capabilities of
the different access schemes being considered. We simulated a scenario in
which the links connecting the two APs with the fixed host have the same
bandwidth (10 Mbps). The APs are placed so that the RSSI seen by all
users from one AP is always slightly better than from the other AP. The
results, reported in Figure 3.8 for different numbers of TCP users, show that
in such a situation the Highest RSSI scheme suffers a severe performance
degradation due to unbalanced load at the APs. All other schemes achieve a
similar performance, with the Cognitive scheme achieving a slight through-
put improvement over the others when there are enough users (n ≥ 6) to
provide sufficient statistical confidence for the performance estimation pro-
vided by the Cognitive Network Database. The performance improvement
is due to the fact that using network performance measurements fed back
from all users allows to account for events such as, for instance, increased
Round Trip Time due to downlink congestion at the AP; this type of perfor-
mance degradation is neglected by the other schemes because they consider
a priori knowledge only (Network Capacity scheme) or they do not consider
core network performance at all (Highest RSSI, Link Capacity).

Scenario 2: Asymmetric core network performance

In this scenario we examine the performance of the different access schemes
in response to asymmetries in core network bandwidth: the bandwidth of

to the one observed in the two AP scenarios, but the analysis of the results is much more
complex due to the higher number of environmental variables to consider. To summarize,
scenarios with more than 2 APs do not give any significant insight compared to scenarios
with 2 APS, and have therefore been omitted for the sake of brevity.
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Figure 3.8: Throughput for Scenario 1

the link connecting the second AP to the fixed host is only a fraction of the
10 Mbps bandwidth which is available to the first AP. In each simulation, we
have n TCP users uniformly distributed with respect to the APs. We show
only the results for n = 15, as a qualitatively similar behavior was observed
for other values of n. The obtained behavior for different bandwidth ratios is
reported in Figures 3.9 and 3.10: although the throughput averaged among
all users seems similar across the different schemes, in asymmetric situations
(low bandwidth ratio) the RSSI and Link Capacity schemes exhibit a signif-
icantly lower degree of throughput fairness compared to the other schemes.
Both the Cognitive and the Network Capacity scheme provide good through-
put and good fairness in all cases. As evident from Figure 3.11, this is due
to the fact that the RSSI and Link Capacity schemes assign on average half
of the users to AP2 in spite of the fact that it can offer significantly lower
throughput compared to AP1, whereas the Network Capacity and Cognitive
schemes are able to properly adapt to the bandwidth differences.

We also examined other types of asymmetries in core network perfor-
mance, e.g., in terms of delay or packet error rate. The obtained performance
is similar to what observed for the varying bandwidth case: the Highest
RSSI and Link Capacity schemes fail to recognize core network performance
degradation and result in severe throughput differences among users, while
the Cognitive and Network Capacity schemes provide significantly better
fairness.
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Figure 3.9: Average Throughput for Scenario 2
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Figure 3.10: Throughput Fairness for Scenario 2
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Figure 3.11: AP usage for Scenario 2

Scenario 2b: Multi-technology load balancing

For this scenario, we used an 802.11 AP and a UMTS base station co-located
in the center of one of the sides of the square area in which 15 users are
randomly placed. The backhaul link of the UMTS AP was configured with
a bandwidth of 100 Mbps. We ran several simulations varying the backhaul
link bandwidth of the 802.11 AP.

The key point of this scenario is that the performance of the UMTS
access is radio-link limited, while for the 802.11 access it is core-network
limited; in particular, when the backhaul link of the 802.11 AP is not a
bottleneck, the overall throughput achievable with 802.11 is greater than
with UMTS due to the greater radio link capacity. Moreover, while UMTS
can offer almost the same performance regardless of the number of users (as
long as they are not located at the border of the cell and their number is
below the interference-limited capacity of the cell), the performance in an
802.11 cell and in its backbone is heavily influenced by the number of users,
due respectively to the contention-based medium access and the limited
bandwidth available.

The performance obtained by the different schemes in this scenario is
reported in Figure 3.12. The RSSI and Link Capacity schemes always select
the 802.11 AP, resulting in poor throughput performance as the bandwidth
of the backhaul link becomes low. The behavior of the RSSI scheme is due to
the fact that in the chosen topology the 802.11 AP is always reachable with
sufficient RSSI to perform communication, while the Link Capacity scheme
always chooses the 802.11 AP because the expected radio link throughput
is always higher for 802.11 than for UMTS. On the other hand, the Network
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Figure 3.12: Throughput for Scenario 2b

Capacity and Cognitive schemes are successful in progressively preferring
the UMTS AP as the 802.11 AP backhaul link bandwidth becomes lower.

Scenario 3: Real-time applications

This scenario is designed to compare the performance of the access schemes
with respect to real-time applications. The topology of this scenario is the
same as in Scenario 2 as far as the asymmetry in core network performance is
concerned; the only difference is the use of VoIP connections instead of TCP
file transfers. The results, reported in Figure 3.13, show again that the RSSI
and Link Capacity schemes provide poor delay performance, due to their
inability to choose the AP based on the bandwidth of the backhaul link. On
the other hand, the Cognitive scheme achieves almost the same performance
as the Low Delay scheme, which achieves the best performance among all
schemes thanks to its perfect knowledge of the network parameters. (In
this scenario, where delay rather than throughput is the main application
constraint, we use Low Delay instead of Network Capacity.)

Scenario 4: Mixed traffic types

In this scenario, we consider the case in which the two traffic types coexist
in the same area (6 TCP users and 7 VoIP users in the results shown), and
share the same access resources. The purpose of this study is to investigate
the interactions between the two traffic classes and to understand how the
transmission resources are shared. Figures 3.14 and 3.15 show the TCP
throughput and VoIP delay performance of the two classes of users. As
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Figure 3.13: Average Round Trip Time for Scenario 3

expected, the Highest RSSI scheme performs poorly in both cases, due to its
complete unawareness of the core network asymmetries, as in scenarios 2 and
3. The other schemes trade off the throughput of TCP users and the delay
of VoIP users in different ways. For example, the Cognitive scheme tends
to keep a sufficiently low delay, at the expense of a somewhat lower TCP
throughput for data users. On the other hand, the Link Capacity scheme
provides better TCP throughput but totally unacceptable VoIP delay.

The behavior of the centralized schemes (Network Capacity for TCP
users and Low Delay for VoIP users, according to the performance require-
ments of the two applications) needs some more detailed explanation. For
extreme asymmetry, all users are connected to the “good” Access Point,
AP1 (see Figures 3.16 and 3.17). As the bandwidth of AP2 increases, at
some point (400 kbps in the Figures) there is a sharp increase of the TCP
throughput. In fact, such bandwidth value can serve very well a single VoIP
connection, and therefore each VoIP user decides to move from AP1 to AP2
(note that these decisions are made simultaneously with no awareness of
other users’ intentions). The result is that much more bandwidth becomes
available to TCP users (who stay at AP1) whereas AP2 becomes congested,
which leads to unacceptable VoIP performance. This is a result of the blind-
ness of the Low Delay strategy that, while knowing the network parameters
a priori, is unable to react to events such as sudden increases in delay due
to the AP queues being filled by the relatively aggressive behavior of TCP
flows. As the bandwidth of AP2 is further increased, congestion at AP2 is
relieved, and VoIP performance significantly improves. At this point, some
TCP users also try to move towards AP2, but this in fact results in poorer
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Figure 3.14: TCP throughput for Scenario 4
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Figure 3.15: VoIP Round Trip Time for Scenario 4
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Figure 3.16: AP usage for Scenario 4 (TCP users)

overall performance due to the complex interactions among the coexisting
traffic flows. On the other hand, the Cognitive scheme, while possibly show-
ing a slightly inferior overall performance for some classes of users, has a
much more stable behavior and a significantly better fairness than the other
schemes.

Scenario 4b: Multi-technology multi-application

This is similar to Scenario 4 but with a UMTS AP in place of one of the
802.11 APs, as done for Scenario 2b. The results are reported in Figures 3.18
and 3.19. As expected, the RSSI and Link Capacity schemes always choose
the 802.11 AP, thus resulting in poor performance for both TCP and VoIP
flows. The joint usage of the Network Capacity and Low Delay scheme
results in the VoIP flows always selecting UMTS to minimize the communi-
cation delay, and in the TCP flows distributing between UMTS and 802.11
to maximize throughput performance. The Cognitive scheme has a similar
behavior, with the difference that for high values of the backhaul link band-
width a small fraction of VoIP users select the 802.11 AP; this results in
some fluctuations in the AP usage by TCP users which resembles the one
already observed in Scenario 4, although smaller in magnitude, and has the
same explanation provided in the previous section.

Control traffic overhead

To evaluate the entity of the control traffic overhead for the Cognitive
scheme, we consider a simple implementation with a centralized Cognitive
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Figure 3.17: AP usage for Scenario 4 (VoIP users)
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Figure 3.18: TCP Throughput for Scenario 4b
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Figure 3.19: VoIP RTT for Scenario 4b

Network Database reachable through any of the APs. We assume that a QoS
report consists of a 20 byte packet, 12 of which are used for the through-
put, delay and reliability metrics (a 32 bit floating point number for each,
just to be very conservative), 32 bytes to identify the AP (i.e., interface
type, operating frequency, network name, and so on) and 8 bytes reserved
for protocol-related information. Such a report protocol would likely work
on top of UDP/IP, which requires additional 20 + 8 byte headers. Conse-
quently, a QoS report packet just below the IP layer consists of 80 bytes. A
query to the Cognitive Network Database could consist only of the 8 bytes
of protocol-related information. The response provided by the Cognitive
Network Database would include a 72 byte field for each AP being reported,
plus the 8 bytes of protocol-related information. If we suppose that the per-
formance of at most 10 APs can be included for each response, we obtain a
packet size of 36 bytes for the query and of 756 bytes for the response. In
our simulations we used a report interval of 2 s, and an average data flow
duration of 12.5 s. As a consequence, for each user, the bandwidth required
is 352 bit/s for QoS reports and 506.88 bit/s for queries/responses to and
from the Cognitive Network Database. Although these figures do not take
into account the overhead introduced by the MAC and PHY layers, it is
clear that an implementation of the solution proposed here would require
almost negligible control traffic overhead.

3.6.6 Conclusions

In this section we have proposed a Cognitive Network Access scheme in
which the network performance reported by all previous users is compared



3.6. Application to Wireless Network Access 59

to application requirements and expected radio link performance in order to
help new users to choose the best access opportunity. The framework fea-
tures a modular design and a generic and technology-independent knowledge
representation based on fuzzy logic, which together facilitate the integration
of different wireless technologies and applications.

The performance of the proposed scheme has been evaluated by means of
simulation and compared with both state-of-the-art access schemes known
from the literature and omniscient application-specific schemes that we in-
troduced as performance benchmarks. The performance evaluation involved
scenarios explicitly designed to highlight specific issues, in particular load
balancing on the radio link, load balancing in the whole network, satis-
faction of real-time QoS requirements, and coexistence of different traffic
types. Both single radio technology (802.11) and multi-technology scenar-
ios (802.11 and UMTS) were considered to evaluate the capability of the
different schemes to cope with heterogeneous wireless technologies.

The results have shown that the Cognitive access scheme proposed in this
section performs significantly better than state-of-the-art schemes, in terms
of both overall performance and fairness. Also, in most cases, the Cognitive
scheme has proven capable of achieving similar performance to the refer-
ence omniscient application-specific schemes. The fact that the Cognitive
scheme achieved this by exploiting information shared by users rather than
omniscience, while at the same time offering a modular and flexible design
which can easily integrate new wireless technologies and applications, con-
firms that the cognitive network approach we proposed in this section for
wireless network access is effective, and worthy of further investigation.
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Chapter 4

Neural Networks for

Cognitive Radios and

Networks

4.1 Orientation and Learning in Cognitive Radios

and Networks

In [1], Mitola describes the fundamental activities that a CR should perform
in order to meet this goal: observing the environment, orienting itself, mak-
ing decisions, performing actions and learning from experience; this set of
activities is referred to as the Cognition Cycle, and has been proposed for
use in Cognitive Networks as well [2].

There is a very common practice of interpreting the Cognition Cycle as
an optimization problem [62, 113], as represented in Figure 4.1. According
to this interpretation, the different phases assume the following form:

• the action phase consists of (re)configuring the CR to provide en-
hanced communication quality with respect to user-defined goals. Such
configuration can be, for instance, the choice of the wireless radio inter-
face to be used for communication, or the tuning of the communication
system’s parameters;

• the observation phase implies collecting sensorial information about
the surrounding communication environment. This sensorial informa-
tion is expected to be available in the form of measurements of different
types, e.g., traffic information, signal and noise power measurements,
as well as time and location coordinates.

• the orientation phase consists of identifying and understanding the sta-
tus of the network and the impact on communication performance of
the external environment and of possible system configurations. This
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Figure 4.1: The Cognitive Radio’s Cognition Cycle as an optimization prob-
lem

is achieved by identifying a functional relation between measurements
and configuration parameters and different aspects of communication
performance (e.g, throughput, delay, reliability). Also part of the ori-
entation phase is the prediction of the evolution of the state of the
network;

• the decision phase is the solution of the performance optimization
problem, i.e., it is a search in the space of possible configurations
which aims at finding the one that best satisfies user-defined goals,
which are expressed in terms of high-level performance metrics such
as application-layer throughput, delay and reliability, as well as cost,
power consumption, etc.

• finally, the learning phase consists of evaluating the outcome of the
decisions which have been made, thereby gathering knowledge to be
exploited in future orientation phases with the aim of being more
effective in the decision phase.

While a significant research effort has been put into examining suitable
decision strategies, i.e., effective search algorithms to solve the optimiza-
tion problem, very little research has been done on the orientation phase,
i.e., to analyze suitable approaches for the determination of the performance
metrics to be used in the optimization process and their dependence on envi-
ronmental factors and configuration parameters. Many CR proposals, such
as [62,114], rely on a priori characterizations of these performance metrics,
which are often derived from analytical models. Unfortunately, as we will
discuss in Section 4.2, this approach is not always practical due to, e.g.,
limiting modeling assumptions, non-ideal behaviors in real-life scenarios,
and poor scalability. Further, the use of analytical models often provides
no means to actually include learning from experience in the performance
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characterization; thus, the aspect of learning, though repeatedly claimed to
be one of the fundamental features of CRs, has often been overlooked.

In this chapter, we propose Multilayered Feedforward Neural Networks
(MFNN) as a convenient techniques to synthesize performance evaluation
functions in CRs. The major benefit of using MFNNs is that they provide a
general-purpose black-box modeling of the performance as a function of the
measurements collected by the CR; furthermore, this characterization can
be obtained and updated by a CR at run-time, thus effectively implementing
some learning capabilities. In the next sections we will discuss how MFNNs
can be used to achieve accurate performance modeling of the components of
a CR system. We will compare the features offered by MFNNs with respect
to other modeling approaches, including analytical models and black-box
modeling techniques such as regression and linear dynamic systems. We
will also present practical examples of applications of the MFNN approach
to Cognitive Radios and Networks.

4.2 Related Work

As we mentioned in Section 4.1, in many Cognitive Radio and Network pro-
posals analytical models have been used for performance characterization.
For instance, in [113] analytical models for the bit error rate performance
of different modulation schemes are used to derive some objective functions,
which are then evaluated in the process of optimizing the chosen PHY layer
configuration; in [115] a generic framework for cross-layer optimization of
multimedia communications is described, in which analytical models are
used to define objective functions; in the approach we presented in Sec-
tion 3.6.3, analytical models for MAC-layer and transport-layer performance
are used to derive the performance of the available wireless network access
opportunities.

There are, however, several problems associated with analytical models
in this context:

• they are based on some modeling assumptions (traffic load, topology,
channel idealization, etc.) which may not apply in real life scenarios;

• the results of the model might be biased with respect to real perfor-
mance due to, e.g., non-ideality of the device, failure of some compo-
nents, or unexpected environmental factors. Analytical models typi-
cally provide no explicit means for dealing with these issues;

• in several situations an analytical model might not be available and/or
practical to use;

• every time a new component is added to the CR system, a new analyt-
ical model needs to be developed off-line and loaded into the system.
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This is a major drawback if we consider that a CR is expected to be
highly reconfigurable and modular, and that developing a new analyt-
ical model may require significant human effort.

An alternative approach to analytical models is black-box modeling, which
consists of analyzing input-output relations of the system under considera-
tion, and trying to build a predictor with the purpose of estimating output
values for unknown combinations of the inputs. Unlike analytical models,
black-box models exploit almost no a priori knowledge of the laws driving
the real system; as a consequence, this approach has the following benefits:

• it poses no issues concerning simplifying assumptions which could not
be verified in practice;

• it can account for non-idealities in parameters (tolerance of compo-
nents, device failures, etc.) since the measurements are also affected
by them;

• there exist several well-known general purpose models that can be
trained for different particular systems.

An example of black-box modeling can be found in [61], where the author
proposes the use of a Hidden Markov Model (HMM) trained by a Genetic
Algorithm to model the channel response. The choice of HMM for system
modeling makes sense in this case: in fact, modeling the wireless channel
using Markov Models, such as the Gilbert-Elliot model and its derivatives,
is a widely accepted practice. However, HMMs cannot be considered to be
in general suitable for performance modeling in CRs, primarily for the diffi-
culty of representing the type of input/output relation needed for orientation
which we discussed in Section 4.1.

Linear Models (FIR, ARX, ARMAX, Kalman filters) [116] are often used
to model dynamic systems for control purposes. The major issue with these
models is that in most practical cases the system being modeled is non-linear
in nature, and consequently the input-output relation cannot be reproduced
with accuracy. Linear models are often still suitable for control systems,
where system dynamics are the main concern, and in which a quantitatively
accurate output of the predictor is not of primary importance as long as an
effective control action can be achieved. Unfortunately, using linear models
for performance characterization in CRs is in general not very effective, since
this lack of accuracy can severely impact the results of the optimization
process.

Another possibility is to apply regression techniques to non linear mod-
els, which are defined in terms of some parametric function (polynomials,
exponentials, etc.). These approaches can achieve a better approximation of
the input-output relation of the system with respect to linear models. How-
ever, the choice of the parametric function is critical, and has often to be
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performed exploiting some a priori knowledge about the system; moreover,
these types of models can be very complex to handle as the number of input
and output variables of the system grows [116].

In recent years, Multilayer Feedforward Neural Networks (MFNNs) have
become increasingly popular as general-purpose function approximators and,
in particular, for modeling dynamic systems [116]. In this paper, we inves-
tigate and discuss the use of MFNNs for modeling the performance char-
acteristics of the components of a CR system. It is our opinion that using
MFNNs for this purpose is a promising approach for the following reasons:

• MFNNs provide black-box modeling, thus offering the above discussed
benefits with respect to analytical models;

• MFNNs provide a non-linear input-output relation with superior func-
tion approximation capabilities with respect to what can be achieved
with state of the art linear regression techniques [116,117];

• the CR can effectively learn as we train the MFNNs characterizing
system performance with data obtained from real-time measurements
(observations) performed by the CR itself;

• the process of training a MFNN has been deeply investigated in recent
years, and several techniques have proven to be very effective for this
purpose [118];

• MFNN can be effectively used even when the number of both inputs
and outputs is high;

• the output evaluation of a MFNN is computationally very light and
therefore well-suited for real-time systems1;

• training is computationally much more intensive than output evalua-
tion; however, we note that training does not need to be performed
frequently, and it is reasonable for a CR device to perform it when
computational resources are available (e.g., the device is idle, perhaps
attached to a power source).

A limited number of publications on this subject appeared in recent
years. The authors of [119], dealing with the problem of network traffic pre-
diction, evaluate the effectiveness of traditional prediction techniques such
as Auto Regressive Integrated Moving Average (ARIMA) and Fractional
Auto Regressive Integrated Moving Average (FARIMA), and compare them
with Multilayer Feedforward Neural Networks (MFNNs), concluding that

1This statement is significant for the case in which the MFNN is implemented in
software, as is often seen in applications. We also note that hardware implementations of
MFNNs can be completely parallelized, and thus can offer almost instantaneous output
calculation.
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MFNNs are more practical due to lower complexity and the ability to model
non-linear relationships. In [120] the authors compare the performance of
linear regression models with that of MFNN for the purpose of building mod-
els of the performance in mobile ad hoc networks as a function of external
factors such as traffic load and configurable parameters such as the routing
protocol being used; again, the authors conclude that MFNNs are the best
choice for modeling in the considered scenario. The key difference with our
work lies in the scope of application. The authors of [121] aim primarily at
replacing the need for extensive simulation campaigns to characterize the
performance of a MANET for design purposes; on the contrary, we focus
on exploiting the capabilities of MFNNs for real-time learning within a real
system. Furthermore, the authors of [121] consider the dependence of end-
to-end metrics on just a few very specific parameters they are interested in,
and therefore do not attempt to model the whole complexity of the system.
On the other hand, we propose a divide-and-conquer approach to handle
the complexity of a communication system: we use several MFNNs to sepa-
rately model smaller components, e.g., single protocol layers, which are less
complex and therefore can be more easily modeled taking into account all
the relevant parameters that determine the performance.

4.3 Multilayer Feedforward Neural Networks

We will hereby provide a very brief overview on MFNNs. For a more de-
tailed description, the reader is referred to the abundant literature on Neural
Networks (for instance, see [116–118,122]).

The basic element of a MFNN is the single neuron or perceptron, which
implements the following relation between its inputs xi, i = 1, . . . ,M , and
its output y:

y = f(a), a =
M
∑

i=1

wixi + θ (4.1)

where wi are the weights associated with each input, θ is the bias and f(a)
is the activation function, which is in many applications a sigmoid function,
e.g., f(a) = 1/(1 + e−a).

A MFNN is composed of several neurons connected in a feedforward
fashion and arranged into L layers. Let Nl be the number of neurons at
layer l. Each neuron in a layer l = 2, . . . , L has Ml = Nl−1 inputs, each of
which is connected to the output of a neuron in the previous layer. Each of
the M1 inputs of the MFNN is connected to each neuron in the first layer.
The outputs are obtained from the output of each neuron at layer L (i.e., the
output layer), so the MFNN provides NL outputs. Layers 1, . . . , L − 1 are
referred to as hidden layers. An example of a two-layer (L = 2) MFNN is
depicted in Figure 4.2, where it can be noted that layer l = 1 is the hidden
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Figure 4.2: Example of a two-layer MFNN

layer, layer l = 2 is the output layer, and the number of inputs of each
neuron in the output layer is equal to the number of neurons in the hidden
layer (i.e., M2 = N1 = 5).

It can be proven [118] that a two-layer MFNN can approximate arbitrary
continuous functions defined over compact subsets of RM1 , provided that a
sufficient number of neurons is used at the hidden layer. From a practical
point of view, in order to achieve this it is necessary to determine the values
of the weights and biases which provide the desired approximation; this
operation is referred to as training.

MFNNs are typically used with supervised learning, in which a set of
sample input-output tuples is used to train the MFNN. This is done by ap-
plying in sequence all input tuples to the MFNN and at each step adjusting
the weights and biases to reduce the error between the known output tuples
and the output values provided by the MFNN; the process is repeated un-
til the error falls below a certain threshold. The most commonly adopted
strategy for this purpose is the backpropagation algorithm [118].

4.4 MFNNs for Cognitive Radios and Networks

As we anticipated in Section 4.2, we propose to use the function approxi-
mation capabilities of MFNNs for the performance characterization of the
components of a Cognitive Radio system. The key prerequisite is that, for
each component of which performance modeling is desired, the Cognitive
Radio be able to obtain the following:

• environmental measurements, i.e., some measurements which can con-
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vey information on the external factors which might affect perfor-
mance; 2

• performance measurements, i.e., measurements of the performance
which is to be modeled, such as throughput, delay or reliability.

• Parameter Settings: the values of the configurable parameters of the
system which have been used in the past;

As we stated in the previous section, the key point of our design is that we
require the cognitive controller to be able to learn how performance depends
on both environmental conditions and network configuration. We train a
MFNN-based predictor using Environmental Measurements and Parameter
Settings as inputs, and Performance Measurements as known output values.
The purpose of this component is to predict the performance that will be
experienced in the future for different values of the configurable parameters
in different environmental settings, so that the optimal configuration can be
chosen. This is done by solving an optimization problem using the predicted
performance as a cost function and the parameters as the variables.

2We note that it is not necessary to actually know the exact relation between the
measured variables and the external factors we want to consider; it is sufficient that they
are directly related. For example, if we consider performance modeling of an 802.11 cell,
the number of users is clearly an environmental factor that impacts the performance, and
which unfortunately cannot be measured directly. However, as we will show in Section 4.5,
it is sufficient to consider the number of detected transmissions together with the fraction
of idle channel time as environmental measurements for the MFNN to be able to learn
the impact on performance of a different number of users.
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4.5 MFNNs for 802.11 performance characteriza-

tion

In this section we show in some case studies how MFNN can be effectively
used for performance characterization of the components of a CR system.
For each case study, we identify the relevant environmental factors and mea-
surements to be used to characterize the performance. We run several simu-
lations using the NS-Miracle simulator [C7] to obtain a set of data character-
izing the performance with respect to these measurements. We use a subset
of this data to train a MFNN; afterwards, we use the rest of the data set to
compare the performance of the prediction provided by the trained MFNN
with the actually experienced performance. We also report the prediction
obtained by means of some well-known analytical models for comparison
purposes.

4.5.1 802.11 with ideal channel

As a first case study, we consider the problem of predicting the through-
put performance of an infrastructured 802.11 cell. For simplicity, we con-
sider the case of saturation traffic in uplink, with all mobile terminals near
the Access Point (SNR = 30 dB, losses due to collision only) and using a
fixed modulation scheme of 54 Mbps; furthermore, we consider single-hop
communications only. Under these assumptions, the achievable throughput
performance depends on the traffic load in the cell; more precisely, it is a
function of the number of users, which is an environmental factor. Unfortu-
nately, the number of users is not a measurement commonly available from
a real device; so, to characterize this environmental factor, we consider the
following environmental measurements:

• ReceivedFrames, i.e., the number of data frames sensed on the channel
(regardless of their destination) which are correctly received;

• ErroneousFrames, i.e., the number of frames for which a failed check-
sum indicated an incorrect reception;

• IdleTime, i.e., the fraction of time in which the channel was sensed
idle;

We use these metrics as the input variables to a MFNN whose output vari-
able is the expected throughput. We note that all these metrics can be
expected to be exported by a real 802.11 card, so implementation of this
scheme is actually feasible.

In our simulations, the measurements were collected by a single node
interpreting the role of the CR. We ran several simulations varying the
number of nodes to evaluate whether the MFNN was able to model the
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Figure 4.3: Comparison of the MFNN predictor with Bianchi’s model

throughput performance with respect to the traffic load. We used a two-
layer MFNN with 6 neurons in the hidden layer, which was trained using 6
data samples obtained from simulations with 2, 6, 10, 14, 18 and 22 nodes.
Then we verified the performance prediction capabilities of the MFNN by
applying some test data (i.e., environmental measurements obtained from
more simulations with different number of users) as input, and comparing
the output of the MFNN with the expected throughput associated with the
test input data. The results are reported in Figure 4.3, and show that the
the MFNN is able to successfully predict the performance.

We note that, in the conditions considered above, one could use Bianchi’s
model [123] to calculate the expected throughput, which, as reported in Fig-
ure 4.3, would result in a predicted performance very close to that provided
by the MFNN. These values were obtained evaluating Bianchi’s model with
the actual number of users which, as we already mentioned, is not com-
monly available in real devices. To estimate it, Bianchi proposed the use of
a Kalman filter [124]; this practice, however, requires additional complex-
ity, and is expected to reduce the accuracy of the throughput performance
prediction. Most importantly, as we will discuss in the next section, the
usability of Bianchi’s model in practical cases is severely limited by the fact
that it only applies to the ideal case we have considered, and cannot be used
in more realistic scenarios.

4.5.2 802.11 with channel errors

One of the major drawbacks of analytical models is that it can be very
difficult to extend a given model to include new factors, i.e., new input vari-
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Figure 4.4: MFNN predictor performance with varying SNR

ables. For instance, Bianchi’s model does not take into account losses due to
non-ideal propagation conditions. Some attempts have been made to extend
the model in this direction, unfortunately with little success; for instance,
in [125] the authors propose the addition of a packet error probability term
to the collision probability variable; however, in doing so the authors assume
that all users in the 802.11 cell undergo the same packet error rate, which
may severely limit the usability of the model for performance estimation in
real scenarios.

On the other hand, adding new input variables to a MFNN performance
predictor requires little effort, apart of course from re-training the MFNN.
For instance, we added to the MFNN described in the previous section a
Signal-to-Noise Ratio (SNR) environmental measurement, with the aim of
accounting for the propagation conditions as a new environmental factor. We
ran several simulations varying both the number of nodes and the distance
of the test node from its destination. We used 30 performance samples as
training data to characterize the bi-dimensional environmental factor space.
The other samples obtained from the simulations were used to test the pre-
diction capabilities of the trained MFNN. The obtained prediction accuracy
is very good, as shown in Figure 4.4. We also note that, as expected, the
asymptote for SNR−→ ∞ corresponds to the throughput performance pre-
dicted by Bianchi’s model, which on the other hand cannot be used for finite
SNR values.
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Figure 4.5: MFNN predictor performance with different PHY modes in a
scenario with 2 interferers

4.5.3 802.11 multirate

As we discussed in Section 4.4, environmental measurements are not the only
type of input which can be applied to the MFNN. It is indeed feasible and of
great interest to also use configuration parameters as input variables in order
to provide support for the optimization process which is to be performed by
the CR. As an example, consider the problem of evaluating the performance
of the different PHY modes available in 802.11g. For this purpose, we added
to the MFNN described in the previous section a new input representing
the modulation scheme being used. We ran several simulations varying the
number of users, the distance of the test node and the modulation scheme
which was kept fixed for the whole duration of the simulation. Of the data
resulting from the simulations, 210 samples were used for training, and the
others were used for testing purposes. The results are reported in Figure 4.5:
the trained MFNN is able to predict the performance of different modulation
schemes even in face of conditions (traffic load, SNR) which differ from what
experienced during the training.

Once trained, the MFNN predictor can be used to optimize the con-
figuration of the CR. In the example just presented, the presence of the
PHY rate as an input parameter makes the MFNN predictor suitable, for
instance, for the implementation of a rate adaptation algorithm. We studied
the performance of a scheme which evaluates exhaustively the performance
of all available PHY modes with respect to the current environmental con-
ditions, and selects the PHY mode which, according to the MFNN pre-
dictor, will yield the best performance. We ran some simulations varying
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the distance of the node from the AP as well as the number of interfering
nodes, in order to compare the MFNN-based rate adaptation with the well-
known Auto Rate Fallback (ARF) [126] and MPDU-Based Link Adaptation
Scheme (MBLAS) [127]3. In Figure 4.6 we report the obtained results: the
MFNN-based scheme always outperforms ARF, and also achieves better per-
formance with respect to MBLAS in the presence of interferers, as evident
for SNR values in the intervals [4, 5], [10, 11] and [17, 19] where a through-
put improvement of up to 20% can be observed. This is explained observing
that MBLAS chooses the optimal PHY mode based on the throughput per-
formance expected in the absence of interference, and this choice becomes
increasingly sub-optimal as the number of users that contend for the medium
grows. We also note that MBLAS and the MFNN-based scheme achieve the
same (optimal) performance when interference is not present.

4.5.4 Some implementation issues

So far we have demonstrated the features of performance prediction using
MFNN; however, the discussion would not be complete if we did not talk
about some implementation issues related to this approach.

The first and most obvious is the number of samples required for a proper
training of the MFNN. This is actually an issue which is not exclusively rel-

3The MBLAS scheme selects the optimal PHY mode with respect to an analytical
model of the throughput performance accounting for the SNR at the receiver, the MPDU
size, and the 802.11 MAC backoff mechanism. It is to be noted that the adopted analytical
model is valid only for scenarios with a single transmitter/receiver pair.
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evant to MFNN, but rather appears in all statistical learning methods. The
fact is that the training data needs to be sufficiently representative of the
performance variations with respect to the environmental factors which need
to be accounted for. For a single environmental factor, i.e., when the envi-
ronmental factor space is one-dimensional, a few samples might be enough
– as an example, we recall that for the case discussed in Section 4.5.1, where
the only environmental factor was the number of users, 6 samples already
provided a quite accurate model. Unfortunately, the number of required
samples grows in principle exponentially with the number of dimensions
in the environmental factor space – for instance, in the example provided
in 4.5.2 we added one environmental factor (SNR) and we found that about
30 samples were needed for a proper training of the MFNN.

Another issue is the size of the hidden layer. More hidden layer neurons
allow the representation of more complicated functions; however, too many
of them can result in overfitting the training data and consequently in poor
generalization of the performance prediction. This issue, however, can be
dealt with by means of network pruning strategies such as the Optimal Brain
Surgeon [128].

Finally, we observe that it is of primary importance to verify that the
training of the MFNN has been successful. This is commonly accomplished
by testing the MFNN with a set of test samples which have not been used
for training, and then evaluating the prediction error.
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4.6 MFNNs for Dynamic Channel Selection in 802.11

networks

We now apply the MFNN approach to the problem of Dynamic Channel
Selection in IEEE 802.11 networks.4 The reasons for this choice are many.
First of all, channel selection in 802.11 systems is an interesting and challeng-
ing topic, due to the ubiquity of 802.11 networks and due to the well-known
overcrowding of the 2.4 ISM bands in which 802.11b/g operates. Second,
802.11 is a very well known and studied technologies; as such, its behavior in
different operating conditions is very well understood, and in particular the
problem of channel allocation has already been studied in the past, so that
we have some legacy channel allocation strategy to use as a performance ref-
erence. Last, commercial 802.11 devices, in particular those supporting the
MadWiFi Linux driver [129], offer a very flexible and cost-effective solution
for the implementation of a Cognitive Network testbed.

4.6.1 Related Work

Traditionally, Channel Assignment in 802.11 infrastructured networks has
always been performed in a static fashion, allocating the APs with tech-
niques such as graph coloring [130]. More advanced proposals use a more
theoretical approach, in which several pieces of information are supposed to
be known a priori, such as the number of users in the network, the amount
of traffic they generate, and the propagation characteristics of the network;
with this information it is in theory possible to calculate the amount of
interference generated by the users in one cell to the users in other cells,
and therefore to determine the channel assignment for each cell which maxi-
mizes some metric such as the cumulative throughput or the fairness among
users. Several publications follow this approach in the literature; however,
while being a reasonable strategy from a theoretical point of view, in real
deployments it suffers from some major issues. First, the propagation and
interference models commonly used have some subtle differences from prop-
agation in a real environment, and as a consequence the theoretical model
for inter-cell interference and the resulting optimization model for channel
allocation could fit poorly in a real deployment. Second, a typical assump-
tion which is made is that there are few access points which have a very high

4The work presented in this section was done during the visit to the California Institute
for Telecommunications and Information Technology, UCSD division, under supervision
by prof. Ramesh Rao and in collaboration with B. S. Manoj and B. R. Tamma. It is to
be noted that the the deployment of the wireless network infrastructure and the multi-
channel sensing system was mainly performed by the collaborators. The contribution
of the author in this work the design of the MFNN-based Cognitive Controller for Dy-
namic Channel Selection, the development of the client performance measurement system
which was needed for its implementation but was not available previously, and finally the
implementation and performance evaluation of the MFNN-based Cognitive Controller.
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load, while in many urban scenarios there are even tens of APs within range
of each other, and the traffic per AP can be rather low; as a consequence,
while many theoretical proposals focus prominently on load balancing is-
sues among APs in the same network, in a real deployment other issues
may be more relevant, such as interference from other wireless networks
or microwave ovens. Third, the presence of users and the amount of traf-
fic they generate varies significantly not only with respect to time, but also
with respect to space; for this reasons, taking into account the instantaneous
variations of load at all access points to do a joint channel assignment, while
straightforward in theoretical approaches where everything is assumed to be
known, is not practical in real scenarios.

4.6.2 Application of MFNN to channel assignment in 802.11

networks

In order to apply the proposed approach to the particular problem of channel
assignment in an 802.11 wireless network, we need to identify what particular
pieces of information available in a real 802.11 system can be conveniently
used for each of the categories introduced in the previous subsection.

For the Parameter Setting we obviously use the channel setting (1, 2, . . . , 11).
For the training, this is the channel for which some particular measurement
data has been obtained. At run time, this is the channel whose performance
the Cognitive Controller wants to predict.

Since the objective of our cognitive controller will be to provide the
channel assignment which maximizes the throughput of the users, for the
Performance Metrics we use the application layer throughput of the mobile
users. For the training phase, we exploit measurements performed by a test
client node; alternatively, other techniques could be used, such as through-
put estimation based on traffic sensing [131], or QoS reports fed back by
real clients as we discussed in Section 3.6. During the evaluation phase,
the estimated application layer throughput is provided as the output of the
predictor.

Finally, the most relevant environmental factor determining the perfor-
mance of an 802.11 cell with respect to a particular channel is how much
interference is present in the cell on that channel.

Interference actually comes in two forms: interference in the form of
radio power added to noise which negatively affects the success probability of
frame receptions, as generated by far away 802.11 transmitters as well as by
non-802.11 devices such as bluetooth and microwave ovens, and interference
in the form of 802.11 transmissions contending for the medium, which trigger
the transmission deferral and backoff freeze procedures as per the 802.11
standard, and result in increased medium access times. To characterize
both these aspects, we use as Environmental Measurements the following
metrics:
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• the Packet Rate, defined as the number of valid IEEE 802.11 frames
received per unit time;

• the Data Rate, defined as the value of the PHY data rate averaged
over all successful IEEE 802.11 receptions;

• the CRC Error Rate, defined as the number of incoming IEEE 802.11
transmissions for which the link-layer CRC check failed;

• the PHY Error Rate, defined as the number of times acquisition was
triggered at the PHY layer but reception was aborted because of a
failure in the PLCP header check.

• the Packet Size, defined as the average size of valid IEEE 802.11
frames.

Furthermore, some other Environmental Measurements are exploited, in
particular information used to characterize the behavior of the system with
respect to time:

• The Day of Week, ranging from 0 (Monday) to 6 (Sunday)

• The Hour of Day, ranging from 0 to 23

We note that every Cognitive Access Point in the network will collect
the above mentioned measurements, and thus the characterization will be
specific to the position of each cell, thus effectively modeling the dependency
of the performance of the communication system on location.

For the implementation of the MFNN-based predictor, the simplest way
would be to assume that the environmental conditions vary only slowly, and
therefore using only the last measurement as input of the neural network
is sufficient for an accurate prediction. This was the approach we followed
in the work we presented in Section 4.4. However, this solution is not ex-
pected to be effective when the environmental conditions vary significantly
between subsequent optimization periods. This aspect has actually been
investigated in the past in the context of both generic and MFNN-based
control systems [116]. To cope with this issue, we feed past measurements
to a delay line with k taps prior to applying them to the MFNN, and feed
simultaneously all the measurement values obtained at all the taps of the
delay line to the MFNN for prediction. In this way, the MFNN predictor is
expected to be able to identify and learn regular behaviors in the training
data, thereby providing a more accurate prediction.

4.6.3 Implementation

The system described in the previous section was implemented on a testbed
deployed in the Calit2 building at the University of California, San Diego,
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Figure 4.7: Diagram of the Cognitive Wireless Network Testbed used for
the experiment.

which is represented in Figure 4.7. A collection of Cognitive APs forms the
basis of our system. Each Cognitive AP consists of a Soekris Engineering
net4521 system board, equipped with two 100 Mbps Ethernet interfaces
and two Ubiquity 802.11a/b/g cardbus wireless interfaces based on Atheros
AR5213 chipset with external antenna connectors. Of the two wireless NICs,
one acts as an AP and provides network access to wireless client nodes,
while the other is configured in monitor mode to capture all 802.11 packets
on the air, thereby acting as a wireless network traffic sensor. The testbed
is facing two main sources of interference: the production wireless service
in the building, made up of Avaya APs configured for 802.11b/g service,
and several experimental ad-hoc and mesh networks on the sixth floor of
the building. For the experiment described in this paper, we have deployed
5 Cognitive APs on the 6th floor of the building among the production
APs. Each Cognitive AP runs Voyage Linux [132], and uses the MadWiFi
driver [129] for driving the Atheros-based wireless interfaces. Each Cognitive
AP is connected to the campus intranet via one of its Ethernet interfaces.

The Cognitive APs also feature a time-based sensing control module,
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which uses the STT sampling scheme described in [131], with a sampling
period of 11s and a sampling duration of 1s. As discussed in [131], this
allows accurate measurement across all 11 channels using a single wireless
NIC. The synchronization and control module, on the other hand, performs
synchronization of the Cognitive APs with the Cognitive Controller using
NTP [133] over the wired network.

Using the capture-to-file functionality of the open source tcpdump packet
sniffer, the traffic sensor module creates capture files and remits them to the
Cognitive Controller (Dell PowerEdge 1900 server with two Dual Core Intel
Xeon processors operating at 2 GHz with 4 GB RAM and 7.2 TB of storage)
via the data transfer module. To further reduce the storage cost, tcpdump
is configured to capture only the first 250 bytes of each sampled packet.
This is a reasonable solution, since all protocol headers we are interested
in are located at or near the start of the packet. At the Cognitive Con-
troller, a modified version of tcpdump is employed to read the capture file
to extract Prism monitoring header fields and header field values from the
MAC through transport layers of the TCP/IP protocol stack. These values
are stored in our Cognitive Network Database, implemented using MySQL
server, from which they can be queried to extract the training and test data
used for this work, as well as for generic analysis purposes. The Cognitive
Controller stores the information in two separate forms: (i) instantaneous
traffic records and (ii) historical traffic records. The instantaneous traffic
records contain large amounts of wireless network data traffic tagged with
space and time information. The historical traffic records are created from
instantaneous traffic records, by averaging data referring to the same loca-
tion and channel over one-minute intervals. The purpose of having historical
traffic records is to speed up subsequent reprocessing of information by not
needing to process the complete traffic records every time (which is a very
costly operation).

In addition to traffic samples, we gather other measurements which can
be used to better characterize the conditions of the wireless medium. In
particular, the MadWIFI driver has a tool (athstats) which provides ad-
ditional statistics like the number of CRC errors (i.e., receptions failed due
to bad CRC in the MAC trailer) and PHY errors (receptions failed due
to the CRC failure on the PLCP header). This information is transferred
periodically to the Cognitive Controller and is stored in a dedicated record.

Implementation of the time-based sensing module is done using a com-
bination of shell scripts running wireless-tools [134] and MadWiFi tools.
These are used to periodically switch the wireless NIC’s channel setting in
order to gather traffic samples from all 802.11 b/g channels; channel switch-
ing is done in parallel to the traffic sensing activity. In order to report
additional information about the packet currently being captured, the Mad-
WiFi driver generates the Prism monitoring header, 144 bytes in length,
and adds it to the packet. The Prism monitoring header contains, among
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Figure 4.8: A realization of the MFNN predictor.

other information, the Received Signal Strength Indicator (RSSI), channel
and data rate of the packet. The data transfer module takes care of trans-
ferring the sensed traffic information files from a large number of wireless
traffic sensors to the Cognitive Controller in an automated way; this module
is implemented using the File Transfer Protocol (FTP).

We complement the set of Cognitive APs with a number of nodes built
using the same hardware, with a single wireless NIC in managed mode, and
configured as Programmable Clients (PCs). The Cognitive Controller inter-
acts with the PCs, so that each PC is periodically associated with a different
Cognitive AP, and runs a modified version of the iperf software [135] to
carry out active measurements by performing TCP data transfers both in
the uplink and in the downlink direction. In this way application-layer per-
formance metrics, such as throughput, delay, jitter, and packet loss ratio,
are collected by the Cognitive Controller.

The MFNN-based Cognitive Controller described earlier in this section
was implemented using the Fast Artificial Neural Network library [136]. In
Figure 4.8 we represent a realization of the predictor with k = 2 delay line
taps and H = 13 neurons at the hidden layer.

4.6.4 Performance Results

We used data gathered by the Cognitive Network testbed described in the
previous section for the performance evaluation of the proposed Cognitive
Controller. This data consists of the measurements described in Section 4.6.2
collected by the Cognitive APs of the testbed described in 4.6.3 and averaged
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Figure 4.9: Subset of the training data for node006 over a two week pe-
riod from May 29 to June 12, 2008. The first five spectrograms represent
environmental measurements which are used as input data to the MFNN
predictor. The last spectrogram represent the performance measurements
which are used as the known values of the output of the predictor.
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over one-hour intervals. Data gathered from April 1 to July 15, 2008 was
used as the training set, while data gathered from July 16 to September 15
was used as the testing set; the former set was used to train the Cognitive
Controller, while the latter was used to test the accuracy of the prediction
by calculating the mean square error between the predicted value and the
known output value, and also to evaluate the performance achieved by both
the MFNN-based channel selection scheme and other comparison schemes.
A small subset of the data collected by node006 from May 29 to June 12
is shown in Figure 4.9. We note that some correlation is evident between
environmental measurements (first five spectrograms) and performance (last
spectrogram). This is exactly the type of correlation that we want the
MFNN predictor to learn. Representation of other data is omitted due to
space constraints.

Training procedures were performed using the backpropagation algo-
rithm [122] with a learning rate of 0.7 and a number of epochs of 1000. We
tested different types of MFNNs predictors varying the number of neurons
H at the hidden layer and the number of delay taps k; we achieved the best
prediction performance with H = 13 and k = 2, and therefore used these
MFNN parameter values for the MFNN predictor to be used for channel
selection.

For every Cognitive AP, the Cognitive Controller performed channel se-
lection at the beginning of every hour in the test period using the measured
data in the preceding hours. This was performed by applying, for every
channel, the environmental data relative to that channel to the inputs of the
MFNN predictor, and retrieving the predicted performance for that channel
in the next hour as the output of the MFNN. The channel providing the
highest expected performance was then selected.

We compare the performance of the MFNN-based channel selection scheme
with the performance obtained by two channel allocations obtained as valid
solutions of the graph coloring approach described in [130] on the set of
Cognitive APs. We also report the performance obtained by randomly se-
lecting a different channel every hour, and the best a posteriori performance
determined by measuring the throughput performance on all channels and
selecting the highest value.5

The throughput performance we obtained for the channel selection schemes
just mentioned is reported in Figure 4.10, for every AP considered, and av-
eraged over the whole testing period. We note that the graph coloring ap-
proach does not perform very well: the first allocation performs very poorly,
while the second allocation has rather good performance for node001 and
performance close to random on the other nodes. This poor performance of

5This can be done in our setup since we always measure the performance of all channels
for evaluation purposes. However this is not a feasible channel selection scheme, since
channel selection needs to be done before channel usage, and therefore has to be based on
past measurements only.
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Figure 4.10: Performance of different Channel Selection schemes

graph coloring is due to its staticity, combined with its inability to con-
sider external interference in the determination of valid solutions. The
MFNN-based scheme achieves a performance improvement which ranges
from roughly 13% to 50% over the random scheme, and is even more signif-
icant in several cases with respect to the graph coloring approach. We note
that in the case of AP node006 the performance achieved by the MFNN
scheme is almost equal to the best performance, while in the other cases
it is lower. In this respect, we note that the “best” performance can be
better than the one achievable by any possible predictor, especially when
there is a high short-term variance in the network conditions and/or in the
performance measurements.

These results show that the MFNN-based channel selection scheme was
able to provide significant performance improvements over legacy techniques
such as graph coloring, thus proving that the MFNN-based approach to
Cognitive Networking is practical and effective.
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Chapter 5

Conclusions

In this thesis, we have discussed the application of two well-known Artificial
Intelligence techniques, i.e., Fuzzy Logic and Neural Networks, to Cognitive
Radio and Network systems. We have explained how Fuzzy Logic can be
conveniently adopted for Knowledge Representation in a cognitive system,
providing benefits such as an enhanced interpretability of information, the
ability to represent imprecise and uncertain data, and the applicability of
control techniques such as Fuzzy Controllers and Fuzzy Decision Making.
Furthermore, we have shown that the learning capabilities of Multilayer
Feedforward Neural Networks can be very effective in providing Cognitive
Radios and Networks with the ability to characterize the surrounding envi-
ronment, enabling them to understand how the changes in the configuration
of the communication system affect its performance, and therefore to be
able to choose the configuration which is expected to provide the best ser-
vice quality to the user.

Of course, we cannot claim that, thanks to our contribution, Cognitive
Radios and Networks have now become practical; many aspects are still left
to be investigated. We would like to stress, in particular, that while each of
the discussed techniques has its own merits, none of them can actually be
considered to be sufficient alone for the realization of Cognitive Radio and
Networks systems. One example for this is the application of Fuzzy Logic to
Wireless Network Access that we presented in Section 3.6.3: in this section,
in order to implement the design that we had introduced in 3.6.2, we have
been forced to rely massively on analytical models, thus introducing in our
implementation the drawbacks that we discussed later on in Section 4.2, and
that could have been overcome by the use of Neural Networks for system
modeling. Another example is in our implementation of the Neural Network
based cognitive system that we discussed in Chapter 4. The point here
is that the considered optimization problems (Rate Adaptation, Channel
Selection) are characterized by a solution space which is monodimensional,
discrete and has very low cardinality. It would not be straightforward to
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extend this work to problems with more complex solution spaces without
introducing adequate search strategies. To summarize, our understanding is
that the simultaneous adoption of several Artificial Intelligence techniques –
not only of Fuzzy Logic and Neural Networks, but also of other techniques,
such as Genetic Algorithms, Learning Automata, Bayesian Networks – is
the way to go for the realization of Cognitive Radio and Network systems.

Finally, we would lik to stress that we are convinced that Dynamic Spec-
trum Access is a very promising research area, even though in this thesis we
did not propose any advancement explicitly addressed to it. For this reason,
we believe that the application to the field of Dynamic Spectrum Access
of the AI techniques that we investigated in our work would be extremely
interesting as a future line of research.
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Appendix A

Other research activities

We hereby briefly describe other research activities carried out during the
Ph.D. which were not explicitly related to Cognitive Radio and Networks.

A.1 Cross-layer Optimization for IEEE 802.11 com-

munications

This activity was carried out as part of a research project involving the Uni-
versity of Padova and STMicroelectronics. The objective of this study is
to design and test suitable optimization techniques for multimedia commu-
nications over 802.11 WLAN which can be implemented on an embedded
device. The work was done under supervision by prof. Michele Zorzi and in
collaboration with Andrea Zanella, Federico Maguolo and Simone Merlin;
the contribution of the author of this thesis spanned across all aspects of
the project, from system design to performance evaluation.

With this respect, we designed an optimization framework consisting of
two separate components: a network status estimator, which has the role of
assessing the performance of the 802.11 wireless link, and a parameter opti-
mization block, which evaluates the impact of different parameter settings
at the various layers (e.g., PHY rate, MAC retransmission limit, application
packet size) on end-user perceived quality, thus allowing the selection of the
settings expected to yield the best performance.

The proposed solution has been applied in two different use cases: opti-
mal PHY Rate Adaptation for throughput-intensive applications, and PHY
and MAC optimization for VoIP communications. Both these studies have
been published [C4,C5].

A.2 Underwater Acoustic Communications

Radio signals cannot be used effectively underwater, and therefore underwa-
ter communications are commonly performed by means of acoustic waves.
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Underwater Acoustic Communications, however, are very challenging due to
the long propagation delay of acoustic signals, the scarce bandwidth avail-
able for communication, and the complex dependency on frequency of both
propagation and noise.

Our research activities in this area focused on the design of MAC and
Routing schemes which are effective in these challenging conditions. In
particular, Cognitive1 FDMA medium access techniques have been investi-
gated, in order to overcome the delay issues that make TDMA-based and
contention-based techniques scale poorly with the size of the network; this
study has been already published in [C3]. At the routing layer, energy-
efficient routing algorithms have been designed; the results of this work
have been accepted for publication [J2]. These activities were carried out
under supervision by prof. Michele Zorzi and in collaboration with Paolo
Casari. The author’s contribution was the design of the Cognitive FDMA
system, and the performance evaluation by means of network simulation for
both the Cognitive FDMA system and the energy-efficient routing schemes.

A.3 Network Simulation Tools

This activity is centered around the development of NS-Miracle, which is
a set of libraries designed to enhance the functionalities provided by the
Network Simulator ns-2. NS-Miracle provides an efficient and embedded
engine for handling cross-layer messages and, at the same time, enables the
coexistence of multiple modules within each layer of the protocol stack. For
instance, multiple IP, link, MAC or physical layers can be specified and used
within the same node, and can exchange arbitrary control information using
cross-layer messages. In addition, dedicated modules and APIs provide an
enhanced support for the development of PHY, MAC and Routing imple-
mentations. Overall, the NS-Miracle framework facilitates the simulation
of modern communication systems in ns2; moreover, due to its modularity,
the code is portable, re-usable and extensible. The features of the NS-
Miracle simulator are described in two conference papers [C1,C7]. Finally,
NS-Miracle also features detailed implementations of the 802.11, UMTS and
WiMAX radio technologies, as well as a set of modules for the simulation
of Underwater Acoustic Communications. The author of this thesis had a
major role in the design and development of NS-Miracle, and of several of
its extension modules. It is to be noted that all the performance evaluation
carried out by means of simulation which is reported in this thesis has been
done with NS-Miracle, and in most cases it would have not been straight-
forward or even possible to do it with other network simulators due to their
limitations.

1We note that the term “cognitive” in this case refers to the intelligent usage of the
available spectrum.
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Full list of publications

Papers published on journals

[J1] Nicola Baldo, Michele Zorzi, “Fuzzy Logic for Cross-layer Optimiza-
tion in Cognitive Radio Networks”, IEEE Communications Magazine,
April 2008.

[J2] Michele Zorzi, Paolo Casari, Nicola Baldo and Albert F. Harris III,
“Energy-efficient routing schemes for underwater acoustic networks”,
IEEE Journal on Selected Areas in Communications, accepted for pub-
lication.

Papers published on conference proceedings

[C1] Nicola Baldo, Federico Maguolo and Marco Miozzo, “A new approach
to simulating PHY, MAC and Routing”, ACM Second International
Workshop on NS-2, Athens, October 2008

[C2] Nicola Baldo, Paolo Casari, Paolo Casciaro, Michele Zorzi, “Effec-
tive Heuristics for Flexible Spectrum Access in Underwater Acoustic
Networks”, MTS/IEEE Oceans 2008, Quebec City, September 2008

[C3] Nicola Baldo, Paolo Casari, Michele Zorzi, “Cognitive Spectrum Access
for Underwater Acoustic Communications”, IEEE CogNet Workshop,
Beijing, China, May 2008

[C4] Nicola Baldo, Federico Maguolo, Simone Merlin,Andrea Zanella, Michele
Zorzi, Diego Melpignano, David Siorpaes, “GORA: Goodput Optimal
Rate Adaptation for 802.11 using Medium Status Estimation”, IEEE
International Conference on Communications, Beijing, China, May
2008
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[C5] Nicola Baldo, Federico Maguolo, Simone Merlin,Andrea Zanella, Michele
Zorzi, Diego Melpignano, David Siorpaes, “APOS: Adaptive Parame-
ters Optimization Scheme for Voice over IEEE 802.11g”, IEEE Inter-
national Conference on Communications, Beijing, China, May 2008

[C6] Nicola Baldo, Michele Zorzi, “Learning and Adaptation in Cognitive
Radios using Neural Networks”, 5th IEEE Consumer Communications
and Networking Conference, Las Vegas, USA, January 2008, accepted
for publication.

[C7] Nicola Baldo, Federico Maguolo, Marco Miozzo, Michele Rossi, Michele
Zorzi, “NS2-MIRACLE: a Modular Framework for Multi-Technology
and Cross-Layer Support in Network Simulator 2”, ACM NSTools,
Nantes, France, 22 October 2007, accepted for publication.

[C8] Nicola Baldo, Michele Zorzi, “Cognitive Network Access using Fuzzy
Decision Making”, IEEE CogNet 2007 Workshop, Glasgow, June 24th,
2007.

[C9] Nicola Baldo, Michele Zorzi, “Fuzzy Logic for Cross-layer Optimization
in Cognitive Radio Networks” 4th IEEE Consumer Communications
and Networking Conference, Las Vegas, USA, January 2007

Papers submitted for publication

[S1] Nicola Baldo, Michele Zorzi, “Cognitive Network Access using Fuzzy
Decision Making”, IEEE Transactions on Wireless Communications,
submitted for publication.

[S2] Nicola Baldo, Bheemarjuna Reddy Tamma, Paul Baumgart, B. S.
Manoj, Ramesh Rao, and Michele Zorzi “A Neural Network based Cog-
nitive Controller for Dynamic Channel Selection”, IEEE International
Conference on Communications, May 2009

[S3] Nicola Baldo, Bheemarjuna Reddy Tamma, Paul Baumgart, B. S.
Manoj and Ramesh Rao, “Multi-Channel Wireless Traffic Sensing and
Characterization for Cognitive Networking”, IEEE International Con-
ference on Communications, May 2009

[S4] Nicola Baldo, Bheemarjuna Reddy Tamma, Paul Baumgart, B. S.
Manoj and Ramesh Rao, “A Cognitive Network Architecture for Au-
tonomic Control of Wireless Networks”, IEEE Transactions on Com-
puters
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Papers published prior to Ph.D.

[R1] Nicola Baldo, Andrea Odorizzi, Michele Rossi, “Buffer Control Strate-
gies for the Transmission of TCP Flows over Geostationary Satel-
lite Links Using Proxy-Based Architectures”, IEEE VTC Spring 2005.
Stockholm, Sweden, May 2005

[R2] Markus Kampmann, Nicola Baldo, “Adaptive Wireless Video Stream-
ing Using Transmission Rate Control and Packet Scheduling”, Packet
Video Workshop 2004, California, USA, December 2004

[R3] Nicola Baldo, Uwe Horn, Markus Kampmann, Frank Hartung, “RTCP
feedback based transmission rate control for 3G wireless multimedia
streaming”, IEEE International Symposium on Personal, Indoor and
Mobile Radio Communications, Barcelona, Spain, September 2004

Patents

[P1] Method, apparatus and computer program product for controlling data
packet transmissions

• Patent number: WO2005081465

• Publication date: 2005-09-01

• Inventors: Kampmann Markus (DE); Horn Uwe (DE); Hartung
Frank (DE); Baldo Nicola (IT); Lundberg Jonas (SE); Westerlund
Magnus (SE); Stille Mats (SE)

• Applicant: Ericsson Telefon Ab L M (SE);

• International classification: H04L12/56; H04L12/56; (IPC1-7):
H04L12/56
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[72] L. Giupponi, R. Agusti, J. Pérez-Romero, and O. Sallent, “Joint ra-
dio resource management algorithm for multi-RAT networks,” IEEE
Globecom, 2005.

[73] M. Abdul-Haleem, K. Cheung, and J. Chuang, “Aggressive fuzzy dis-
tributed dynamic channel assignment algorithm,” IEEE International
Conference on Communications (ICC), vol. 1, 1995.

[74] P. Chan, R. Sheriff, Y. Hu, P. Conforto, and C. Tocci, “Mobility
management incorporating fuzzy logic for heterogeneous aIP environ-
ment,” IEEE Communications Magazine, vol. 39, no. 12, pp. 42–51,
2001.



100 Bibliography

[75] S. Ghosh, Q. Razouqi, H. Schumacher, and A. Celmins, “A survey
of recent advances in fuzzy logic in telecommunicationsnetworks and
new challenges,” IEEE Transactions on Fuzzy Systems, vol. 6, no. 3,
pp. 443–447, 1998.

[76] D. Clark, C. Partridge, J. Ramming, and J. Wroclawski, “A knowl-
edge plane for the internet,” Proceedings of the 2003 conference on
Applications, technologies, architectures, and protocols for computer
communications, pp. 3–10, 2003.

[77] R. Saracco, “Forecasting the future of information technology: how
to make research investment more cost-effective?” Communications
Magazine, IEEE, vol. 41, no. 12, pp. 38–45, 2003.

[78] P. Mahonen, J. Riihijarvi, M. Petrova, and Z. Shelby, “Hop-by-hop to-
ward future mobile broadband IP,” Communications Magazine, IEEE,
vol. 42, no. 3, pp. 138–146, 2004.

[79] R. Thomas, L. DaSilva, and A. MacKenzie, “Cognitive networks,”
New Frontiers in Dynamic Spectrum Access Networks, 2005. DyS-
PAN 2005. 2005 First IEEE International Symposium on, pp. 352–
360, 2005.

[80] S. S. Lake, “Cognitive networking with software programmable intel-
ligent networks for wireless and wireline critical communications,” in
Military Communications Conference (MILCOM), 2005.

[81] B. Manoj, R. Rao, and M. Zorzi, “Architectures and Protocols for Next
Generation Cognitive Networking,” in Cognitive Wireless Networks:
Concepts, Methodologies and Visions, M. Katz and F. Fitzek, Eds.
Springer, 2007.

[82] T. Dietterich and P. Langley, “Machine Learning for Cognitive Net-
works: Technology Assessment and research Challenges,” 2003.

[83] C. Politis, T. Oda, S. Dixit, A. Schieder, H. Lach, M. Smirnov,
S. Uskela, and R. Tafazolli, “Cooperative networks for the future wire-
less world,” Communications Magazine, IEEE, vol. 42, no. 9, pp. 70–
79, 2004.

[84] S. Balasubramaniam, K. Barrett, J. Strassner, W. Donnelly, and
S. van der Meer, “Bioinspired Policy Based Management (bioPBM) for
Autonomic Communication Systems,” 7th IEEE workshop on Policies
for Distributed Systems and Networks, 2006.

[85] M. Lopez-Nores, J. J. Pazos-Arias, and J. Garcia-Duque, “KEP-
PAN: Towards Autonomic Communications in Mobile Ad-hoc Net-



Bibliography 101

works,” IEEE Consumer Communications and Networking Conference
(CCNC), January 2007.

[86] C. Lee and J. Suzuki, “Autonomic network applications designed after
immunological self-regulatory adaptation,” International Conference
on Integration of Knowledge Intensive Multi-Agent Systems (KIMAS),
2007.

[87] J. Mitola, “Cognitive radio: an integrated agent architecture for soft-
ware defined radio,” Ph.D. dissertation, Royal Institute of Technology
(KTH), 2000.

[88] R. Winter, J. Schiller, N. Nikaein, and C. Bonnet, “CrossTalk: cross-
layer decision support based on global knowledge,” IEEE Communi-
cations Magazine, vol. 44, no. 1, pp. 93–99, 2006.

[89] X. Xia and Q. Liang, “Bottom-Up Cross-Layer Optimization for Mo-
bile Ad Hoc Networks,” IEEE Military Communications Conference
(MILCOM) 2005, pp. 1–7, 2005.

[90] B. Otal and L. Alonso, “A cross-layer energy-saving mechanism for an
enhancement of 802.11 WLAN systems,” IEEE 59th Vehicular Tech-
nology Conference (VTC 2004-Spring), vol. 3, 2004.

[91] G. Klir and B. Yuan, Fuzzy sets and fuzzy logic: theory and applica-
tions. Prentice-Hall PTR, 1995.

[92] L. Zadeh, “Similarity relations and fuzzy orderings,” Information Sci-
ences, vol. 3, no. 2, pp. 177–200, 1971.

[93] R. Moore, Interval analysis. Prentice-Hall Englewood Cliffs, NJ, 1966.

[94] C. Fu and S. Liew, “TCP Veno: TCP Enhancement for Transmission
Over Wireless Access,” IEEE Journal of Selected Areas in Communi-
cations, vol. 2, no. 21, feb 2003.

[95] K. Sundaresan and K. Papagiannaki, “The need for cross-layer in-
formation in access point selection,” in Proceedings of the Internet
Measurement Conference (IMC), Rio De Janeiro, Brazil, Oct 2006.

[96] A. Nicholson, Y. Chawathe, M. Chen, B. Noble, and D. Wetherall,
“Improved access point selection,” in Proceedings of the 4th Inter-
national Conference on Mobile Systems, Applications and Services.
ACM Press New York, NY, USA, 2006, pp. 233–245.

[97] V. Mhatre and K. Papagiannaki, “Using smart triggers for improved
user performance in 802.11 wireless networks,” in 4th International
Conference on Mobile Systems, Applications and Services. ACM
Press New York, NY, USA, 2006.



102 Bibliography

[98] D. Deng and H. Yen, “Quality-of-service provisioning system for mul-
timedia transmission in IEEE 802.11 wireless LANs,” IEEE Journal
on Selected Areas in Communications, vol. 23, no. 6, 2005.

[99] M. Matsumoto and T. Itoh, “QoS-guarantee Method for Public Wire-
less LAN Access Environments,” in International Conference on Wire-
less Networks, Communications and Mobile Computing, vol. 1, June
2005.

[100] J. Al-Karaki and J. Chang, “A simple distributed access control
scheme for supporting QoS in IEEE 802.11 wireless LANs,” in IEEE
Wireless Communications and Networking Conference, vol. 1, March
2004.

[101] R. Koodli and M. Puuskari, “Supporting packet-data QoS in next gen-
eration cellular networks,” IEEE Communications Magazine, vol. 39,
no. 2, pp. 180–188, 2001.

[102] S. Baey, M. Dumas, and M. Dumas, “QoS tuning and resource shar-
ing for UMTS WCDMA multiservice mobile,” IEEE Transactions on
Mobile Computing, vol. 1, no. 3, pp. 221–235, 2002.

[103] R. Chakravorty, I. Pratt, and J. Crowcroft, “A framework for dynamic
SLA-based QoS control for UMTS,” IEEE Wireless Communications,
vol. 10, no. 5, pp. 30–37, 2003.

[104] K. Knight and E. Rich, Artificial Intelligence. McGraw-Hill, 1994.

[105] H. R. Berenji, “Fuzzy logic controllers,” in An Introduction to Fuzzy
Logic Applications in Intelligent Systems, R. R. Yager and L. A. Zadeh,
Eds. Boston: Kluwer, 1992, pp. 69–96.

[106] S. Choi, K. Park, and C. Kim, “On the performance characteristics
of WLANs: revisited,” International Conference on Measurement and
Modeling of Computer Systems, 2005.

[107] Wireless LAN Medium Access Control (MAC) and Physical Layer
(PHY) Specification, Amendment 1: Radio Resource Measurement
(Draft Standard), IEEE Std. 802.11k, 2006.

[108] Wireless LAN Medium Access Control (MAC) and Physical Layer
(PHY) Specification, Amendment 8: Medium Access Control (MAC)
Quality of Service Enhancements, IEEE Std. 802.11e, 2005.

[109] H. Holma and A. Toskala, WCDMA for UMTS. John Wiley and
Sons, 2004.



Bibliography 103

[110] M. Rossi and M. Zorzi, “Analysis and heuristics for the characteriza-
tion of selective repeat ARQ delay statistics over wireless channels,”
IEEE Transactions on Vehicular Technology, vol. 52, no. 5, pp. 1365–
1377, 2003.

[111] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling TCP
Reno performance: a simple model and its empirical validation,”
IEEE/ACM Transactions on Networking (TON), vol. 8, no. 2, pp.
133–145, 2000.

[112] S. McCanne and S. Floyd, “NS-2 Network Simulator.” [Online].
Available: http://www.isi.edu/nsnam/ns/

[113] T. R. Newman, B. A. Barker, A. M. Wyglinski, A. Agah, J. B. Evans,
and G. J. Minden, “Cognitive engine implementation for wireless mul-
ticarrier transceivers,” Wiley Wireless Communications and Mobile
Computing, Sept. 2006.

[114] C. Clancy, J. Hecker, E. Stuntenbeck, and T. O’Shea, “Applications
of Machine Learning to Cognitive Radio Networks,” Wireless Com-
munications, 2007.

[115] M. van der Schaar and S. Shankar, “Cross-layer wireless multime-
dia transmission: challenges, principles and new paradigms,” Wireless
Communications Magazine, aug 2005.

[116] M. Nørgaard, O. Ravn, N. K. Poulsen, and L. K. Hansen, Neural
Networks for Modelling and Control of Dynamic Systems. Springer–
Verlag, 2000.

[117] D. J. C. MacKay, Information Theory, Inference and Learning Algo-
rithms. Cambridge University Press, 2003.

[118] M. M. Gupta, N. Homma, and L. Jin, Static and Dynamic Neural
Networks: from fundamentals to advanced theory. Wiley, 2003.

[119] H. Feng and Y. Shu, “Study on network traffic prediction techniques,”
in Proc. of the International Conference on Wireless Communications,
Networking and Mobile Computing, 2005.

[120] A. Moursy, I. Ajbar, D. Perkins, and M. Bayoumi, “Building empiri-
cal models of mobile ad hoc networks,” in Proc. of the International
Symposium on Performance Evaluation of Computer and Telecommu-
nication Systems (SPECTS), July 2007.

[121] ——, “Building Empirical Models of Mobile Ad Hoc Networks,” In-
ternational Symposium on Performance Evaluation of Computer and
Telecommunication Systems (SPECTS 2007), 2007.



104 Bibliography

[122] C. Bishop, Neural Networks for Pattern Recognition. Oxford Univer-
sity Press, USA, 1995.

[123] G. Bianchi, “Performance analysis of the IEEE 802.11 distributed co-
ordinationfunction,” Selected Areas in Communications, IEEE Jour-
nal on, vol. 18, no. 3, pp. 535–547, 2000.

[124] G. Bianchi and I. Tinnirello, “Kalman filter estimation of the number
of competing terminals in an IEEE 802.11 network,” IEEE INFOCOM
2003, April 2003.

[125] Z. Hadzi-Velkov and B. Spasenovski, “Saturation throughput-delay
analysis of IEEE 802.11 DCF in fading channel,” IEEE International
Conference on Communications (ICC 2003), vol. 1, 2003.

[126] A. Kamerman and L. Monteban, “WaveLAN-II: A high-performance
wireless LAN for the unlicensed band: Wireless,” Bell Labs Technical
Journal, vol. 2, no. 3, pp. 118–133, 1997.

[127] D. Qiao, S. Choi, and K. Shin, “Goodput analysis and link adapta-
tion for IEEE 802.11a wireless LANs,” IEEE Transactions on Mobile
Computing, vol. 1, no. 4, pp. 278–292, 2002.

[128] B. Hassibi, D. Stork, and G. Wolff, “Optimal Brain Surgeon and gen-
eral network pruning,” IEEE International Conference on Neural Net-
works, pp. 293–299, 1993.

[129] http://madwifi.org/.

[130] K. Leung and B. Kim, “Frequency assignment for IEEE 802.11 wireless
networks,” Proc. of the 58th IEEE Vehicular Technology Conference
(VTC 2003-Fall), vol. 3, 2003.

[131] B. R. Tamma, B. S. Manoj, and R. R. Rao, “Time-based sampling
strategies for multi-channel wireless traffic characterization in tactical
cognitive networks,” in Proc. of the IEEE Military Communications
Conference (MILCOM), October 2008.

[132] http://linux.voyage.hk/.

[133] D. Mills, “Network time protocol,” RFC 1305, March 1992.

[134] http://www.hpl.hp.com/personal/Jean Tourrilhes/Linux/Tools.html.

[135] http://dast.nlanr.net/Projects/Iperf/.

[136] http://leenissen.dk/fann/.


