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Abstract 

 

 

 

 

As physical systems of chemical interest are rarely isolated, molecular processes should always be intended 

within the framework of open system dynamics. Notable examples are charge and energy transfer in molecular 

networks, for which intense theoretical and experimental research has highlighted the central role of the 

interplay between the system Hamiltonian and decoherences due to the interaction with the environment. At 

intermediate system-environment interaction strengths, the cooperation between coherent and incoherent 

dynamics can result in a prototypical effect called environment-assisted quantum transport (ENAQT), which 

consists of the enhancement of transport efficiency. ENAQT is believed to play a primary part in the high 

efficiency of natural light-harvesting complexes. A comprehensive understanding and powerful simulation 

strategies for these dynamical phenomena could help us, for example, in the design of artificial devices, based 

on the engineering of materials and their environment, for high-performance cells for photovoltaic 

applications. However, the simulation of open quantum systems poses the theoretical challenge of devising an 

adequate equation of motion for the dynamics and a computational strategy for its solution, which becomes 

prohibitively difficult for classical computers when handling large quantum systems. 

Thanks to the theoretical and experimental scientific advances of the last decades, we are now at the dawn 

of the so-called second quantum revolution that promises novel technological tools based on harnessing 

quantum coherence. Quantum computers, i.e., physical systems manipulated at the quantum level with high 

precision, are concrete examples. In recent years, quantum computers have already demonstrated they can 

tackle some complex problems considered intractable by classical computers: the so-called quantum 

advantage. The simulation of quantum systems has always been a strong motivation behind the development 

of quantum computers, as they are expected to provide advantages in dealing with large systems based on their 

huge computational space. However, despite its importance, the simulation of open system dynamics has 

received relatively little attention. One of the reasons is the non-trivial challenge of reproducing the evolution 

of open quantum systems in the framework of quantum circuits. 



2 Abstract  

In this thesis, we approach the study of open system dynamics by drawing two parallel paths. On the one 

hand, we intend to explore in detail some salient features of quantum transport in molecular networks. To do 

so, we will critically analyse existing models for open system dynamics, ranging from Markovian to non-

Markovian regime, from weak to strong coupling and from infinite to finite temperature. On the other hand, 

we consider the problem of simulating the dynamics underlying ENAQT with digital quantum computers. An 

algorithmic package is developed to implement the dynamics in different conditions. The algorithms are 

designed with two different strategies, the first one based on stochastic Hamiltonians and the second one based 

on a collision model. We discuss the algorithmic quantum trajectories generated during the execution of the 

algorithms showing that they realize distinct unravellings of the dynamics of the open system. We demonstrate 

the potentiality of our algorithms by simulating ENAQT on a quantum computer emulator and provide a 

comparative analysis of the two approaches. Both algorithmic strategies can be implemented in a memory-

efficient encoding with the number of required qubits scaling logarithmically with the size of the simulated 

system, while the number of gates scales polynomially depending on the target environmental conditions. The 

potential quantum advantage over classical simulations stems from the efficient memory encoding and from 

the possibility to efficiently implement quantum dynamics of many-body local systems (multiple excitons), 

unleashing the inherent power of the quantum simulation. 
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Chapter I 

Introduction 
 

 

 

 

Since its introduction about a century ago, quantum mechanics has proven to be a powerful theory capable 

of explaining the behaviour of matter at the nanoscale and beyond. It has enabled us to better understand natural 

phenomena, such as the interaction between atoms or molecules, and, consequently, to use the knowledge to 

design technologies that have now come into common use, like lasers, semiconductors, GPS 

and magnetic resonance imaging. This is often referred to as the first quantum revolution. Now scientific and 

technological progress has paved the way for the direct manipulation of quantum systems, which combined 

with the interpenetration of quantum theory and information science brings us to the dawn of a second quantum 

revolution [1], promising a new generation of quantum technologies capable of outperforming current 

solutions in selected fields. These include for example advanced quantum sensors, quantum cryptography, 

quantum internet and quantum computing. Quantum computers (QCs) are believed to have disruptive power 

for solving certain classes of problems, and this has been recently supported by experimental demonstrations 

[2–5]. One of the areas thought to benefit from the use of QCs is the simulation of quantum systems, a 

notoriously difficult problem for classical computers when the size of the system under consideration is large. 

This is true for the dynamics of isolated systems but is especially valid for open quantum systems, where the 

effects of the environment must be included in the computation. 

The broad scope of the present work is to test the paradigm of quantum computation for the simulation of 

non-trivial quantum dynamics in molecular processes, including the effects of the interaction with the 

environment. Therefore, our first goal is to start from specific models and design quantum algorithms to 

simulate them (from models to algorithms). As a case study, we have selected the dynamics of energy transport 

in multi-chromophore complexes, which is also an important process involved in the light-harvesting step of 

photosynthesis. In these systems, photoexcitation populates partially delocalized states, known as excitons, 

which must reach a reaction centre to initiate the series of chemical reactions involved in photosynthesis. A 

decade of theoretical and experimental research in the field has highlighted that the presence of the 
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environment, represented by the molecular vibrational surrounding, plays a role that is not only non-negligible 

but fundamental for the efficiency of the transfer. Consequently, the system must be described in the 

framework of the open system dynamics, which poses important theoretical challenges. In particular, although 

nowadays the dynamics of not too large systems can be solved by “numerically exact” techniques, we are still 

far from a complete understanding of how the transport properties of these molecular systems are influenced 

by particular combinations of  local or non-local environmental fluctuations, their temporal and spatial 

correlations, the spectral properties of the system, the vibrational structure, the coupling pattern in the multi-

chromophore network, the coherence lifetime and the thermal relaxation, to name a few. To reach such an 

understanding, reduced models for the dynamics which are able to highlight the effect of selected feature are 

highly valuable. In this sense, this thesis hits a second goal, which is to critically reconsider several existing 

models of exciton transfer dynamics to point out the relation between their basic assumptions and the resulting 

dynamics (in some sense starting from the quantum algorithm to go back to the assessment of the model). We 

want to stress that having theoretical models for describing the dynamics and algorithms for their simulation 

is the key to understanding the properties of natural and artificial systems, making predictions, and designing 

functionalized materials for synthetic light-harvesting and photovoltaic applications [6].  

In the following, we discuss some background notions that will be useful for the rest of the work. Section 

I.1 is intended to provide a brief introduction to quantum simulators. In section I.2, we start by discussing the 

dynamics of quantum systems and in particular we introduce two cornerstones of the theory of open quantum 

system: the Lindblad equation for Markovian dynamics and the Redfield theory of relaxation. We also provide 

an overview of previous results about the quantum simulations of open system dynamics. In section I.3, we 

cast the exciton dynamics in a multi-chromophore aggregate as a quantum walk over a molecular network. 

This idea will be used also in the rest of the thesis. We will also introduce the phenomenology of the 

environment assisted quantum transport (ENAQT) and present the state of the art about its quantum simulation 

in digital QCs. We briefly present the main theoretical approaches we will use for the formulation of our 

quantum algorithms in section I.4. Finally, the structure of the thesis is detailed in section I.5. 

I.1 Quantum simulators 
The idea of QCs originated in the last decades of the 20th century, thanks to the works of Benioff [7], 

Feynman [8] and Deutsch [9], among others.1 Feynman, in particular, was concerned with the inherent 

difficulty of dealing with the complexity of quantum systems using classical computers [8]. A striking example 

is an exponential demand of computational resources for the simulation of many-body systems, which becomes 

harder as the size of the problem increases. This is not only related to the storage space, but also to the number 

 
1 For the reader interested in quantum computing, we recommend the textbook by Nielsen and Chuang [59], 

over 20 years old, but still the bible of quantum computing, and the well-designed and constantly-updated 

webpage of Qiskit [156]. Other interesting sources are textbooks in refs [157,158]. While, for more curious 

readers, we indicate Shor's recently released memoirs on the early days of quantum computing [159]. 
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of operations required to perform the computation. Feynman, therefore, wondered whether an exact simulation 

of nature was possible, in which the computer follows the same laws as the simulated system, leading to the 

birth of a new and successful idea: quantum simulators. 

Using a quantum system to efficiently simulate another quantum system is the idea behind quantum 

simulation. To do this, the state and Hamiltonian of a target system must be accurately mapped into the ones 

of the simulator. Then, after a certain evolution, the quantities of interest are measured and traced back to the 

reference system with an inverse mapping. There exist essentially two ways to achieve the task, i.e., using 

analogue or digital quantum simulators [10]. 

An analogue quantum simulator (AQS) is a highly controllable quantum system whose dynamics can be 

tuned to reproduce the dynamics of the target system. For example, recently, energy transport in molecular 

networks has been simulated with analogue quantum devices using photonic setups [6,11] ultracold atoms 

[12], superconducting circuits [13–15], nuclear spin systems [16] and trapped atoms [17]. The power of AQSs, 

in this case, is to offer a controlled environment to test the effects of noise and interactions in quantum 

transport. As a drawback, AQSs can simulate only a restricted class of problems according to the possibility 

of designing a mapping between the system and the simulator, and their accuracy depends on the degree to 

which the simulator is able to reproduce the target dynamics. Until a few years ago, AQSs were the most 

advanced type of simulator, as they were built on an extensive body of knowledge developed during decades 

of research. However, thanks to rapid technological advancement (also due to substantial funding) and the 

possibility of using devices via the cloud, the creation and use of digital quantum simulators (DQSs) is 

constantly growing. 

DQSs are usually composed of independent two-level systems, called qubits, implemented with various 

physical systems: superconducting circuits [18], photons [19], trapped ions [20] and Rydberg atoms [21] are 

some of the most common. Running a quantum simulation requires several steps, as depicted in Figure 1. The 

first point is to set the target of the simulation by identifying the quantity of interest and developing a physical 

model of the system. What a DQS does, is transform its initial state 0  into a final state f  through a 

series of operations (the quantum gates) dictated by a suitable quantum algorithm. The ordered sequence of 

gates applied to the qubits takes the name of quantum circuit, in analogy with classical computing. In digital 

quantum simulation, a strategy has to be found to encode the state of the target system into the quantum register 

(i.e., an ensemble of qubits used for the computation) and the algorithm has to be designed inspired by the 

physical model, so that the final state contains the information about the relevant properties of the target 

system. Once the algorithmic strategy is defined, a code is prepared on a local machine with the instructions 

to build the quantum circuit. Unlike classical computing, for which one is used to programming at a high level, 

the programming of DQS is done similarly to assembly language, in which one specifies the individual 

operations (gates) to be performed by the quantum processor. Various libraries can be used for the scope, 

among the most popular are Qiskit [22] (which has been used for this thesis) and Cirq [23]. Using online 

platforms, the user selects a quantum machine on which to run the circuit. Before the data is sent, the circuit 
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must be transpiled, i.e., the quantum gates must be decomposed into simple 1- or 2-qubit operations from a 

universal gate set that can be physically implemented by the required device. A control apparatus receives the 

instructions and prepare the experiment that will be executed on the quantum processor. Finally, the state of 

the quantum register is measured and it represents the solution of the algorithm. Differently from AQSs, DQSs 

are universal simulators, i.e., by choosing the right mapping and algorithm, a DQS can simulate any other 

quantum system. 

 
Figure 1. Picturing digital quantum simulation. From the study of a physical system, we extract a theoretical 

model to describe its properties. An algorithmic strategy is designed to reproduce the system using only 

unitary operations and measurement: this is the quantum algorithm. The algorithm is translated into a code 

using dedicated libraries, and run on our local PC. The instructions pass via the cloud to a control apparatus 

that interprets and translates them into physical operations performed on a quantum register inside the 

quantum processor. The state of the qubits is sampled through measurements and sent back to the user, 

where it is elaborated to obtain the results of the simulation. 

 

Quantum algorithms are not limited to simulation but have been proposed for various applications in 

science, economy, cryptography and informatics. In this case, we refer generically to digital QCs (or just 

QCs).2 Today’s QCs are known to be noisy intermediate-scale quantum (NISQ) devices [24], as they are 

characterized by a limited size (up to a few hundreds of qubits) and a non-negligible interaction with their 

environment, which limit the coherence time of the quantum processor. For this reason, only short circuits can 

be successfully executed. To test quantum algorithms that are too demanding for current QCs, one can use 

quantum computer emulators, i.e., classical software that emulates the execution on a QC. Clearly, the 

computational space of the emulators is limited by their classical hardware and therefore the test must be 

 
2 An alternative paradigm is offered by analogue quantum computing, that exploits the mathematical 

similarities between the problem to be solved and the physical evolution of the QC [160]. Examples are 

adiabatic quantum computing and quantum annealing [161,162]. In this thesis, we do not consider this form 

of quantum computing. 
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performed on small systems. In this thesis, we will use Qiskit QASM simulator and Qiskit statevector simulator 

[22] for this purpose. 

Albeit their limitations, NISQ devices have already shown some notable results. In 2019, for example, Google 

announced the first implementation of a computational problem which is not tractable by classical computers 

[2], the so-called quantum supremacy or quantum advantage [25,26]. Quantum supremacy was claimed for 

the execution of a random quantum circuit of a size infeasible for simulation with any available classical 

computer. The problem was solved with Sycamore, a 53-qubit superconducting processor, that allows a 

computational space of 253 states. Google argued that, to sample the output of the quantum circuit, the best 

classical computer (IBM Summit) would need 10 thousand years, whilst Sycamore took only 200 seconds. 

Although the task was admittedly of not much use and IBM (Google’s main competitor in the field) expressed 

perplexities on the significance of the result [27], Google's demonstration accelerated both hardware and 

algorithm research in the last years. Now the demand for algorithms for a new generation of quantum 

computers is constantly growing. 

Chemistry has long been considered among the fields that will benefit the most from the use of QCs [28–

33]. A prominent example is quantum chemistry, where the many-electron wavefunction of molecules 

becomes quickly intractable for classical computers. Currently, electronic structure calculation is one of the 

most studied problems in quantum computing, and quantum algorithms have been proposed that have also 

demonstrated their potential in real hardware implementations [34–45]. Quantum algorithms for chemical 

applications have also been presented for elucidating reaction mechanisms [46], drug discovery [47,48], 

simulation of material properties [49–52], molecular vibrations [53,54], protein folding [55,56] and even for 

the solution of classical stochastic processes [57]. 

Despite its importance, the simulation of dynamical molecular processes has received relatively less 

attention than the electronic problem. This is related to some non-trivial aspects in the implementation, that 

will be analysed in the following. 

I.2 The dynamics of quantum systems 

I.2.1 Hamiltonian dynamics 

The state of isolated or closed quantum systems3 can be described by a pure state ( ) ( )t c t
 =  

that is a linear combination of states of a basis set that composes the Hilbert space  of the system. The 

dynamics of such systems is driven by the Hamiltonian H  and ruled by the Schrödinger equation [58], which 

reads 

 
3 Here, we refer to an isolated quantum system when there is no exchange of information (energy and 

matter) with any other system. Isolated systems have time-independent Hamiltonians. Closed quantum systems 

can be driven by a classical field in a known way and thus can have time-dependent Hamiltonians. 



8 Chapter I  

 
( )

( )i
d t

H t
dt


= − , (I.1) 

where we have set 1= . When the Hamiltonian is time-independent, the evolution of the statevector has an 

analytical solution in the form4 

 ( ) ( ) ( ) ( ) ( )0i
0 0 0

H t tt e t U t t t  
− −

= = − , (I.2) 

where ( )0U t t−  is the Hamiltonian propagator with initial condition ( )0U = , where  the identity operator. 

The Hamiltonian propagator has the special property of being a unitary operator, which means that its inverse 

( )1
0U t t− −  exits and corresponds to the adjoint operator ( )†

0U t t− , so that the relation 

( ) ( )†
0 0U t t U t t− − =  holds. Because of this, the evolution described by the Schrödinger equation can 

always be inverted to recover a valid past state, i.e., it is time reversible. 

The qubits of a QC form, in ideal conditions, a closed quantum system that communicates only with the control 

apparatus. The user, by choosing the quantum gates to apply, modifies the Hamiltonian of the quantum register, 

and controls the Schrödinger evolution of the qubits. Therefore, we have to keep in mind that quantum gates 

correspond to Hamiltonian propagators and are thus unitary operations.5 Interestingly, the relation applies also 

in the other direction, i.e., every unitary operation represents a valid quantum gate [59]. 

The Schrödinger equation (I.1), which can be taken as a postulate of quantum mechanics (like Newton’s 

laws for classical mechanics) [60], gives a deterministic description of the time behaviour of the statevector: 

if I know the state of the system and the Hamiltonian, I know the evolution. The inherently probabilistic nature 

of quantum mechanics is related to the interpretation of the squared norm of the coefficients ( )c t . Because 

of this, the observables of the quantum system can be accessed only as a statistical average of measurements 

carried out on an ensemble of independent systems described by the same state [61]. 

This also happens in QCs, where to read the state of the qubits, that correspond to the output of the quantum 

algorithm, it is necessary to repeat the execution of the circuit many times and accumulate statistics. 

Sometimes, however, the state of a system is not perfectly known, or, following another vision, individual 

systems composing an ensemble can assume different states [62,63]. So let us say the state ( )t  is not certain 

but is ( )k t  with the (positive) probability kp . The sum of the probabilities is taken normalized to 1. Then, 

 
4 The solution for time-dependent Hamiltonian reads ( ) ( )

0
0 exp i ' '

t
t

U t t H t dt 
− = −

  
 , where  is the 

chronological time-ordering operator [61]. 

5 The measurement and reset gates represent exceptions to this rule since the collapse of the wavefunction 

is involved.  
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we can write what is known as the density matrix of the system as the appropriate weighted sum of the matrix 

for each state k  [61]: 

 ( ) ( ) ( )k k k
k

t p t t  = . (I.3) 

If 1kp  , the state of the system is said to be mixed, and the evolution is described by the so-called von 

Neumann (or Liouville-von Neumann) equation, which derives directly from the Schrödinger equation and 

reads 

 ( )
( )i ,

d t
H t

dt


= −    , (I.4) 

where  ,A B AB BA= −  is the commutator. Eq. (I.4) has the formal solution 

 ( ) ( ) ( ) ( ) ( )
0

†
0 0 0 0t tt U t t t U t t t  −  = − − =   , (I.5) 

where 
0t t−  is called the dynamical map of the evolution [61]. Since the von Neumann equation is the 

equivalent of the Schrödinger equation for the density matrix, it retains all the aforementioned properties. 

When we study molecular processes, most of the time, we are only interested in a small portion of a large 

system that includes all the molecular plus solvent degrees of freedom and external fields with which the 

molecules interact. In this case, we refer to the portion of interest as the open system (or reduced system), while 

the remaining part takes the name of the environment. The whole system, composed of the open system and 

its environment, is called the universe system and can, in principle, be taken large enough to include all the 

interactions involving its components. So, the universe system can be regarded as an isolated or closed system, 

and thus its dynamics is generically dictated by the von Neumann equation. The upper path in the commutative 

diagram in Figure 2 represents the evolution of the system: starting typically (but not necessarily) from an 

initial separated state of the open system ( )S 0  and environment ( )E 0 , the unitary dynamical map t  

produces the state of the universe system ( )SE t  at time t . Then, the state of the reduced system can be 

obtained as a trace over the environmental degrees of freedom 

 ( ) ( )  ( ) ( ) S E SE E S ETr Tr 0 0tt t   = =     . (I.6) 

  



10 Chapter I  

 
Figure 2. Commutative diagram of the dynamics of an open system. The initial state of the reduced system 

( )S 0  is usually assumed to be separated from the state of the environment ( )E 0 . Then, two paths are 

shown: the Hamiltonian evolution of the universe system t , followed by the trace over the environmental 

degrees of freedom, or the evolution t  of the reduced system alone parametrically influenced by the 

environment.  

 

I.2.2 The quest for a quantum master equation for the dynamics of open systems 
In realistic situations, however, the environment is often composed of a huge number of degrees of freedom, 

so even if one knows the initial state and the interactions occurring between the subparts, the simulation of the 

universe system dynamics proves intractable. For this reason, theoretical and computational physicists and 

chemists have developed, over the years, several techniques to circumvent the problem and allow an effective 

description of the underlying dynamics of open systems. Among these methods, Quantum Master Equations 

have found fertile ground, especially in the interpretation of the response of optical and magnetic 

spectroscopies. The strength of master equations is that one only focuses on the subsystem of interest, while 

the environment enters through some effective parameters. The equation of motion of the reduced density 

matrix generally reads 

 ( )
( ) ( )S

S S Si ,
d t

H t t
dt


 = −   +      , (I.7) 

and includes the contributions that characterize the evolution of the reduced dynamics, i.e., the coherent 

evolution, dictated by the self-Hamiltonian of the open system SH , which reflects the dynamics of the 

isolated/closed system (cf. eq. (I.4)) and the relaxations and dephasings due to the interaction with the 

environment, represented by the superoperator [64]  known as the dissipator. Because of the dissipator, 

information initially contained in the open system is constantly exchanged with the environment and dispersed 

as time proceeds. As a consequence, the solution of eq. (I.7) results in a non-unitary dynamical map 

( ) ( )S S 0tt =     (lower path in the commutative diagram in Figure 2), and the dynamics is no longer time 

reversible. Striking evidence is that the final equilibrium state of the system is often completely independent 

of the initial state, which cannot be recovered by inverting the map. 

Quantum master equations can be roughly divided into two groups depending on the approach taken for 

their definition, whether phenomenological or constructive. In phenomenological master equations, the 

operatorial form of the dissipator is usually assumed ad hoc, based on physical intuition, or seldom can be 

somehow justified by the microscopic interactions with the environment, while the parameters defining the 
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relaxation processes are chosen phenomenologically by fitting experimental data [65–71]. Under the 

assumption of a Markovian environment, the reference equation for the open system dynamics is described by 

the celebrated Gorini-Kossakowski-Sudarshan-Lindblad (or just Lindblad) master equation [72,73]. In the 

Lindblad form, it reads 

 
( )

( ) ( ) ( )S † †
S S S S

1i , ,
2k k kk k

k

d t
H t L t L L L t

dt


   
+

  = −   + −     
 , (I.8) 

where 0k   are the relaxation rates, kL  are the so-called Lindblad operators and  ,A B AB BA
+
= +  is the 

anticommutator.6 The advantage of dealing with a Lindblad dissipator is that the associated dynamical map t

satisfies the semigroup property ( ) ( )
2 1 1 2S S0 0t t t t +
   =      

, and it preserves the trace, Hermiticity and 

positivity of the reduced density matrix at any time, i.e., it always guarantees physical evolutions [61]. Eq. 

(I.8) stems from an axiomatic approach, it represents the most general evolution equation ensuring well-

behaved dynamics in the Markovian limit.  

On the other hand, one can derive an equation of motion for the reduced density matrix of the system by 

following a constructive route starting from first principles [60,61]. To do this, a microscopic model is 

necessary for the description of the system-environment interaction. Then, by taking assumptions on the 

environment, typically treated as a large reservoir described by a thermal equilibrium state (commonly called 

a bath), and tracing over its degrees of freedom, a master equation is derived with solid theoretical foundations. 

Using sophisticated techniques, like the Nakajima-Zwanzig projection formalism [74,75], quantum master 

equations can in principle be derived at any order of the system-environment interaction. However, their 

structure is usually prohibitive to tackle, such that obtaining an exact description is a challenging task. For this 

reason, frequently, quantum master equations are derived under the assumption of perturbative interactions 

and often rely on the Markovian approximation, which excludes any memory effect of the environment. In this 

pool of equations, the Redfield master equation, independently developed by Redfield and Bloch in 1957 

[76,77], is one of the most used and useful. Within Redfield theory, the environment influences the dynamics 

of the system through its spectral function and relaxations occur on the basis of the system eigenstates. The 

microscopically derived master equation maintains the Hermiticity and trace of the reduced density matrix, 

however, it cannot be written in the Lindblad form, which means that it does not guarantee positivity. It is 

commonly accepted that non-positivity is not an issue when the Redfield equation is used inside its regime of 

validity (i.e., when the weak coupling and Markovian approximations are valid), but clear boundaries can be 

difficult to establish. For this reason, often further approximations are applied to the Redfield equation that can 

influence the outcome of the simulations, which will be detailed in a dedicated section of the thesis (Chapter 

IV). 

 
6 The system Hamiltonian can also present some kind of modulation, but it is not relevant for the discussion. 
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Both the Lindblad and the standard form of the Redfield master equations are confined to the realm of 

Markovian dynamics, meaning they underlie the assumption that the environment is able to relax quickly on 

the timescale of the system dynamics. Although this is undoubtedly a strong assumption, it can be met by a 

careful choice of the boundary defining the system-environment separation (which may require redefining the 

system by including all the “slow” coordinates). The alternative approach is to enter the difficult landscape of 

non-Markovian or post-Markovian master equations, see e.g. [67,71,78–80], characterized by “memory 

kernels” that bring into the evolution the dependence on previous states of the dynamics. Although a 

comprehensive analysis of non-Markovian effects is not amongst our intentions, we do face a particular 

instance of this problem in Chapter III. 

From a computational point of view, a common characteristic of all master equations is that they propagate 

the density matrix, whose dimension is quadratic in the number of states of the system N , and therefore the 

representation of the dynamical maps scales as 4N . For large systems, this can result in a resource-demanding 

simulation for classical computers, and that is where QCs could help with their large computational space. 

However, as we have highlighted before, QCs only allow for the implementation of pure states and unitary 

quantum gates, which poses the problem of designing quantum algorithms to simulate the dynamics of the 

quantum master equation. 

I.2.3 Quantum algorithms for open system dynamics: an overview 
Two main aspects may explain the relatively little attention given to the simulation of open quantum system 

dynamics using QCs. One is common to many other applications and stems from the technical limitations of 

NISQ devices in executing long circuits usually required to simulate any dynamical process. The second is 

specific to the simulation of open quantum systems, and it is the inherent difficulty of mapping non-unitary 

evolutions into the framework of unitary gates. Nevertheless, several approaches to this problem have been 

developed and here we give an overview of them. 

The first theoretical demonstration of Feynman’s intuition [8] that quantum computers can efficiently 

simulate the dynamics of locally interacting physical systems was given by Lloyd in ref [81]. In this seminal 

work, Lloyd shows that the Hamiltonian dynamics of isolated systems can be decomposed in simpler 

operations via the Trotter decomposition [82,83], ( )0 1i iii lim ... n
mH t m H t mH t mHt

m
e e e e− −−−

→
=  (see Chapter II 

for more details), so that it can be directly translated into the gates of the QC, resulting in an efficient 

implementation when each term represents local interactions. Even if his primary focus was the simulation of 

unitary quantum dynamics (isolated/closed systems), already in this work the importance of an extension to 

open systems was discussed. For open quantum systems, Lloyd suggested the use of Hilbert space dilation to 

circumvent the problem of non-unitary operators. In fact, according to the Stinespring dilation theorem [84], 

any completely positive and trace-preserving dynamical map can always be embedded in a Hamiltonian (i.e., 

unitary) dynamics on a larger Hilbert space. This is done by introducing an ancillary system whose dimension 

is the square of the system size in the general case. After propagation, which can be performed with 
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Trotterization, the (generally mixed) state of the open system is then obtained by tracing over the ancillary 

degrees of freedom. This original idea was successively developed by several authors. Recently, it was shown 

that other dilation theorems, such as the Sz.-Nagy dilation, can be used to further reduce the dimension of the 

ancillary system, reducing also the computational cost [85]. Since the enlarged system is always in a pure state, 

these techniques are also known with the name of purifications and still represent one of the main strategies 

for addressing the problem both for Markovian and non-Markovian dynamics [85–91]. The weak points of 

these approaches are the necessity of a computational space that is larger than what is required by the system 

alone, and, more importantly, that the global unitary dynamics is not necessarily ruled by a physical (i.e., local) 

Hamiltonian and therefore it may not be simulated efficiently. 

Another general strategy for open system simulation relies on time-dependent variational principles [92–

94]. Instead of solving explicitly the dynamics, one assumes that the solution at a certain time can be written 

as a parametrized function. Then, using a class of algorithms called variational hybrid algorithms [93,95], one 

decomposes the problem in two parts: a variational routine that generates the parameters for the minimization 

of a cost function, which is in charge of a classical computer, and the preparation of the trial states and 

computation of the cost function, assigned to a quantum computer. As they usually rely on shallow circuits, 

variational algorithms are promising for the implementation on NISQ devices, however, they are heavily 

affected by the quality of the classical optimization [96]. 

A third interesting approach, which is also close to the view expressed in this thesis, aims at encoding 

explicitly the quantum environment into the quantum computer by an effective representation. The idea was 

pioneered by Nori et al in ref [97] who proposed a procedure directly inspired by the microscopic derivation 

of the master equation. 

In addition, efficient quantum circuits have been devised for the simulation of quantum channels with the 

potential of representing general open quantum system dynamics [98–105]. In any case, these methods give a 

framework for the evolution of generic physical systems, and, they need to be revised and adapted to the 

particular case, for which specific algorithms can be designed to provide some benefits based on the 

characteristics of the system under consideration. 

I.3 Our case study: a quantum walk on molecular networks 
It is now time to say something more about the process that will be the target of this thesis investigation. 

During the light-harvesting process, specialized antenna chromophores present in photosynthetic organisms 

absorb the sunlight, creating partially delocalized excited states, known as excitons, which are formed by an 

(excited) electron-hole pair [106]. To lead to the formation of biochemical energy reservoirs, excitons must 

traverse networks of coupled chromophores to reach a reaction centre where the charge separation occurs, 

initiating the series of chemical reactions involved in photosynthesis. A prototypical example of a molecular 

network involved in the process is the Fenna-Matthews-Olson (FMO) complex of green sulfur bacteria. The 

FMO complex is composed of three identical subunits in which a set of pigments is embedded in a protein 
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scaffold as depicted in Figure 3. Pigments are coupled each other via Coulomb interactions, enhanced by the 

presence of a dielectric environment [107]. Despite the natural variety in the structure and composition of the 

chromophoric networks connecting the antennae to the reaction centre in photosynthetic bacteria, algae and 

plants [116–124], the exciton transport is generally known to be universally highly efficient [111–115]. It is 

precisely because of its efficiency that the transport process is much studied for applications in artificial 

photosynthesis and photovoltaics. 

 
Figure 3. The spatial structure of one of the three identical pigment-protein subunits forming the Fenna-

Matthews-Olson (FMO) molecular trimer is reported. Chromophores, that are immerse in the protein 

environment (grey line), act as a molecular wire for the energy transfer from the chlorosome to the reaction 

centre of green sulfur bacteria. The numbering of the chromophores corresponds to the Fenna original 

numbering [108]. Figure is obtained using open data from ref [109,110] (PDB ID: 3ENI).  

 

Thinking about molecules and excitons is part of the chemist's intuition. However, in the following, we will 

discuss how such a process can be translated in terms of a random walk on a network. This more abstract 

picture will prove useful to visualise the problem and defining its algorithmic implementation. 

A large variety of mathematical and physical problems can be translated into a graph and solved by a walker 

moving randomly from one node to another connected node. Energy and charge transfer processes in molecular 

networks are prominent examples. A graph is a mathematical structure made of a set of vertices connected by 

edges according to a certain topology, which can be described by the Laplacian matrix 

 ( )
1 , '

' '
N

j
j j j

L d j j j j j j
=

= − +  , (I.9) 

where N  is the number of vertices of the graph represented by the basis j , jd  is the number of links to 

other vertices (the degree of vertex j ) and , 'j j  indicates an edge between two connected vertices. Random 

walks define a family of probabilistic models providing a general paradigm for sampling and exploring 

extended networks by using a sequence of simple local transitions [125–128]. Notably, the Continuous-Time 
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Quantum Walk (QW) was introduced by Farhi and Gutmann as the quantum analogue of the classical random 

walk algorithm [129] and it assures a quantum advantage with respect to the classical counterpart in several 

computational tasks like traversing decision trees [129,130], searching unstructured databases [131,132] and 

solving hard satisfiability problems [133]. The continuous-time QW is defined by building a quantum 

Hamiltonian according to the topology of the underlying graph H L= − , where the coefficient   set the rate 

of transport in the network. Then the walker placed at node j  moves among the other nodes following the 

rules of quantum dynamics dictated by the Schrödinger equation 

 ( ) ( )i i0Ht Ltt e e j −= = . (I.10) 

By its definition, QW computation is intimately related to the dynamics of quantum transport and it offers an 

efficient simulation routine for the coherent transport over a network of quantum states [134]. The relation 

also applies in the opposite direction, and any physical system whose Hamiltonian can be cast in the required 

form can implement an analogue quantum simulation of the QW algorithm. A straightforward analogy with 

eq. (I.9) can be found in the tight-binding Hamiltonian used in solid-state physics [135] and the Hückel model 

for molecular orbitals [136], but also with the Frenkel exciton Hamiltonian used to model excitation on 

chromophore networks [137] and in general with the model Hamiltonians built to describe charge and energy 

transfer in weakly interacting molecular aggregates and nanostructures [138]. In all these cases, we define a 

set of quantum sites  j  and, when there is one quantum state at each site, the Hamiltonian can be written as 

 ( ), '
1 , '

' '
N

j j j
j j j

H j j V j j j j
=

= + +  , (I.11) 

with j  being the site energy and , 'j jV  the coupling constant between two sites. 

Because the exponential speedup in traversing certain graph topologies arises from constructive 

interference effects, one might expect that the purely unitary quantum transport described by the QW algorithm 

is the fastest and the most efficient way to propagate through a network of quantum sites. However, such an 

expectation turns out to be wrong. Indeed, a rather general scenario is that the presence of a dephasing 

environment coupled to the system can enhance quantum transport, in a phenomenon named Environment-

Assisted Quantum Transport [139] (ENAQT). Although ENAQT can occur on ordered lattices [139,140], 

transport enhancement was first characterized in disordered systems in the context of exciton transfer in light-

harvesting complexes where the process of site-decoherence is physically motivated by the interaction of the 

electronic states of the chromophores (i.e., the quantum sites) with the vibrational environment. The high 

efficiency of the energy transfer and the long-living coherent beatings that were experimentally measured with 

advanced (two-dimensional) electronic spectroscopies (see for example refs [141–143] and references therein), 

triggered a lively debate on the interplay between Hamiltonian dynamics, static disorder and decoherence in 

affecting the energy transport dynamics. Substantial theoretical work demonstrated that an intermediate level 

of environmental-induced dephasing can indeed explain the high efficiency and partial coherent character of 

the transport [144,145].  
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The basic phenomenology of ENAQT is described by a Lindblad master equation in which the Hamiltonian 

describes the coupling between different quantum sites and local dephasing terms account for the decoherences 

induced by the surrounding environment with  -approximated correlation functions. However, contributions 

from memory time and the temperature of the environment can play a non-trivial role as well. For this reason, 

it is necessary to have a pool of algorithms that can simulate the dynamics of the open system in the widest 

possible range of scenarios. 

I.3.1 Quantum algorithms for ENAQT: state of the art 
 Taking advantage of the favourable scaling of memory requirements, quantum simulations of mesoscopic 

chromophore networks might be possible on quantum computers. At the moment, only a few quantum 

algorithms have been proposed for the simulation of environment-assisted quantum transport in molecular 

networks: in reference [86], Kais and coworkers implemented the aforementioned dephasing Lindblad master 

equation (also adding recombination of the exciton to ground state and transfer to the reaction centre) by means 

of the Sz.-Nagy dilation approach they introduced in [85]. In [146], Mahdian and Yeganeh analysed the same 

master equation by decomposing the unitary and non-unitary parts of the Lindblad generator into generators 

belonging to the universal set discussed in [105], and propose a circuital implementation on an NMR quantum 

computer [147]. Gupta and Chandrashekar cast the solution of a secular Redfield equation, which can be 

written as a Lindblad master equation, in the form of an operator sum representation for the evolution of the 

density matrix during discrete time steps and sketched a quantum algorithm that implements the coherent 

dynamics and the transitions between different excitonic states [148]. 

As far as we know, all the proposed quantum algorithms are able to handle only the Markovian dynamics, 

while quantum algorithms simulating ENAQT in the presence of memory effects have not been proposed yet. 

I.4 Methodologies 
To simulate ENAQT in a vast range of conditions of the environment, we propose a quantum algorithmic 

package for the simulation of the dynamics of the open system based on stochastic Hamiltonian propagation 

[149] or the recently emerging collision models [150]. The peculiarity of both methods is that they rely on an 

effective representation of the environment, which we will exploit to overcome the problem of mapping the 

non-unitary dynamics into quantum gates. In the thesis, we will demonstrate that both approaches can be 

implemented efficiently on a quantum computer and that their execution realizes different unravellings of the 

open system dynamics in terms of trajectories of pure states. 

The stochastic Hamiltonian propagation consists of devising an effective Hamiltonian for the dynamics, 

which is composed of the Hamiltonian of the isolated system and a fluctuating term due to the interaction with 

the environment, which acts as a classical field. A single stochastic propagation is called a trajectory and 

evolves through the Schrödinger equation equivalently to the dynamics of a closed system. Then, the exact 

dynamics of the open system is obtained as the average over an infinite number of trajectories. For white noise 

fluctuations, it can be shown that the resulting averaged dynamics reproduces a Lindblad master equation. 
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Differently, with coloured fluctuations, a correspondent master equation cannot be always derived explicitly. 

Thus, the method can be used to “perform experiments” through the quantum computer, meaning to simulate 

open system dynamics which are not known a priori but rather generated in the computer by explicitly 

controlling the features of the effective environment. On the other hand, it is known that dynamics generated 

as the average of a stochastic Hamiltonian propagation corresponds to the simulation of infinite temperature 

quantum environments [151]. 

To go beyond this limit, we also propose quantum algorithms based on collision models. Collision models 

offer a framework for the simulation of open system dynamics which is obtained through repeated interactions 

with a minimum model of environment, often represented by a single qubit. After the interaction, the 

environment is traced out and the state of the reduced system is recovered. In the quantum transposition of this 

method, the trace procedure can be substituted with a measure of the ancillary qubit. To the best of our 

knowledge, the first proposal of a quantum simulation algorithm that could be interpreted as a collision model 

has been presented in ref [97] for Markovian dynamics. Notably, the authors also illustrate a tentative extension 

to embed memory effects, without however giving a rigorous framework. Recently, collision model 

implementations have been tested on real quantum hardware for small systems [152,153]. More details on 

collision models will be given in the thesis. 

In the Chapters, we will compare and discuss the differences between our algorithm and the previous 

proposals both in terms of the approach and in terms of scalability. Thanks to the effective representation of 

the environment, we will demonstrate that our algorithms can cover a wide spectrum of situations. In particular, 

we will propose quantum algorithms valid in the following environmental conditions: 

1. A Markovian environment with  -approximated time correlation functions, in all the range of system-

environment coupling strengths (Chapter II); 

2. An environment with classical correlation functions with finite memory time, in all the range of 

system-environment coupling strengths (Chapter III); 

3. An environment with quantum correlation function, in the Markovian and weak-coupling regime 

(Chapter V). 

Being described by classical correlation functions, the first two classes of algorithms correspond to the case of 

a quantum environment at infinite temperature. 

We would like to anticipate few ingredients of our work by briefly discussing an example of exciton 

transport dynamics on the FMO molecular complex, also used as a prototypical example in Chapters IV and 

V, and depicted in Figure 3. The importance of the FMO stems from the fact that it was one of the first light-

harvesting complexes for which long-living (electronic and/or vibronic) coherences were experimentally 

measured [141]. For this reason, it is often used as a prototypical model to test which are the most relevant 

ingredients of a (vibrational) environment that affects exciton transport. The excitation is assumed to enter the 

complex from chromophore 1 and we pose in a (theoretically) difficult regime of non-negligible memory time 
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and non-perturbative coupling strength of the system-environment interaction. The reference dynamics (Figure 

4a) is obtained using a numerically exact method, namely HEOM [154] (see Chapter III), which can be used 

to calculate the time evolution exactly, at the expense of a high computational cost. In Figure 4b, we 

approximate the correlation functions of the environment as classical and use, as an example, the quantum 

algorithms based on the stochastic Hamiltonian propagation devised in Chapter III to solve the dynamics. 

While in Figure 4c, we neglect the memory of the environment and use the quantum algorithm of Chapter V 

to implement the secular Redfield dynamics by means of a collision model. 

Our algorithms are not meant to reproduce the exact dynamics in this regime. However, it is interesting to 

point out how each dynamical model can be considered a “good” or “bad” approximation of the reference 

dynamics depending on the aspect of interest. For example, the stochastic Hamiltonian model in Figure 4b 

well reproduces the coherent oscillation of the population at early time failing the long-time thermal 

distribution. Conversely, the weak coupling master equation in Figure 4c underestimates the coherent 

oscillation at early times, but become accurate at longer time. So, we are confident that by combining the 

results of our algorithms, one will be able to recover much of the information about the exact dynamics. 

Furthermore, for small systems there are exact methods to compute the dynamics, but what happens when the 

system is a mesoscopic aggregate formed by dozens of chromophores? We think that this could be the area of 

application where our quantum algorithms could provide an advantage over classical methods and give 

information that is otherwise difficult to obtain. 

 
Figure 4. Exciton transport between the chromophores of the Fenna-Matthews-Olson molecular complex. 

Y-axis represents the probability to find the excitation on a certain chromophore. The reference dynamics 

of the open system is obtained with a computationally-demanding numerically-exact method (a). Alternative 

computational strategies presented in this thesis are reported in (b) and (c). Both strategies can reproduce 

some salient aspects of the exact dynamics while sacrificing others. 

 

I.5 Structure of the thesis 
This work couples a systematic analysis of open system dynamics applied to exciton transfer to the 

implementation of the corresponding algorithms suitable for quantum computers. The landscape is rather wide 

and rich of assumptions defining the significance of different dynamical models. Figure 5 reports a  conceptual 
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map presenting an overview of the theoretical models used in the thesis, their assumptions, results, and 

connections. Inside the circles, different dynamical models are defined based on how they describe the 

environment which in turn characterizes the resulting master equation (Markovian, non-Markovian, weak-

coupling results etc..). The blue arrows denote the main connections between the theoretical models. The 

dashed grey line divides the models in two groups: above the line we find theories that can describe the whole 

range of coupling-strength but cannot account for finite temperature effects. Below we find dynamical models 

that rely on the weak-coupling assumption but include thermal effects leading to correct detailed balance 

solutions at finite temperature. Finally, orange and blue borders enclose the theoretical models which can be 

simulated by quantum algorithms based on a classical noise (orange) or collisional (blue) approach.   

The thesis is organized according to such conceptual categorization of the different dynamical models, 

indeed each circle of figure 5 is also the subject of a specific Chapter. 

In more details: in Chapter II (adapted from our publication [155]), we formally introduce the transport 

problem in the simple case of a Markovian environment with no temporal correlations and define the efficiency 

of transport. The mapping of the network to the states of a quantum computer and the two quantum algorithmic 

strategies are described in detail. We will then demonstrate that this minimal model of the environment is 

already sufficient to describe the characteristic timescales of the relaxation and the effect of ENAQT. Since 

the simulation of our algorithms is still prohibitive using the quantum computers at our disposal, we will give 

a proof of concept of their performance using a quantum computer simulator, namely Qiskit QASM simulator 

[22]. 

Thanks to the effective representation of the environment in our algorithmic strategies, in Chapter III, we 

will be able to introduce non-Markovian effects in the simulation of the open system dynamics. This is 

particularly interesting because we will be able to explore the dynamics in environmental conditions in which 

an explicit master equation is not easy to derive (e.g., for strong coupling). We will give an outlook of the 

effects of non-Markovianity in the evolution of the open system, finding, for example, that the memory time 

of the environment can help sustain the coherences of the system. 

In Chapter IV, we will momentarily pause the development of algorithms to devote ourselves to a review 

of the description of exciton transport in molecular systems in terms of the Redfield equation. Often acclaimed, 

the Redfield equation is a powerful tool for describing the dynamics of open systems in perturbative regimes 

of coupling with the environment. However, the Redfield approach has also been criticised for not guaranteeing 

the positivity of the density matrix of the system during the dynamics, and is often used with further 

approximations that can modify its behaviour. In the Chapter, we will discuss its use and limitations in light-

harvesting molecular systems starting from a microscopical derivation. 

The algorithms introduced in Chapters II and III cover the entire spectrum of coupling strength and can be 

used for Markovian and non-Markovian situations. However, they correspond to infinite temperature situations 

of a quantum environment. To cover this gap, in Chapter V, we will propose a version of the collision algorithm 
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that accounts for the finite temperature, but is restricted to the Markovian and weak-coupling regime. In this 

case, we will need to define some target equations to be reproduced. Although the Redfield equation would be 

the perfect reference, its possible non-positivity is not suited to a quantum implementation. We will therefore 

refer to a set of other equations that preserve positivity by giving similar results to Redfield in its same range 

of validity. 

To the best of our knowledge, the quantum algorithms discussed in this work have not been previously 

analysed. In Chapter IV, the first two sections recall well-known derivations and models for exciton dynamics 

in the presence of molecular vibrations, while the comparative analysis presented in the third section is an 

original result of the research conducted during the doctoral period. 

Although all the Chapters are interconnected, each one is designed to be as self-explanatory as possible and 

can be consulted separately. The conclusions are separately reported at the end of each Chapter together with 

the dedicated bibliography. 

 
Figure 5. Conceptual map of the topics covered and links between the chapters of this thesis.  
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Chapter II 

Quantum algorithms for dephasing-
assisted dynamics in the Markovian 

limit  
 

 

 

 

In this Chapter, we consider the problem of simulating dephasing environment-assisted quantum transport 

(ENAQT) [1] on a gate-based (i.e., digital) quantum computer and we explicitly formulate, discuss and test 

two different algorithms. ENAQT represents a moderately sophisticated quantum dynamical process, and the 

comparison of different quantum simulation algorithms offers a fresh view of the underlying mechanism. In 

particular, we will discuss how different algorithms provide different unravellings of the average evolution 

corresponding to the solution of the site-dephasing master equation. The design of the algorithms is inspired 

by the underlying idea of devising effective representations of the environment.  

Following the stochastic approach to exciton dynamics pioneered by Haken and Strobl [2], in the first 

algorithm the environment is represented by a stochastic noise in the Hamiltonian of the system, we will refer 

to this scheme as the classical noise algorithm. The second algorithm is based on a quantum collisional model 

[3] and we will show how a single ancilla qubit is sufficient to encode the dephasing role of the environment, 

we will refer to this implementation as the collision algorithm. We test both algorithms by demonstrating 

ENAQT in a system of four sites with nearest-neighbour interactions (cyclic topology network).  

The Chapter is organized as follows: in section II.1, we introduce ENAQT in terms of a Lindblad master 

equation corresponding to the Haken-Strobl model for exciton diffusion. The Hamiltonian part of the model 

accounts for the coupling between different quantum sites while the role of the environment is to induce 

decoherence between different sites. We define the transport efficiency and discuss how the molecular network 

can be encoded in the quantum computer. Section II.2 is dedicated to the development of the classical noise 

algorithm based on a stochastic Hamiltonian with diagonal disorder. The solution of the master equation is 
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obtained by an explicit average of the Schrödinger dynamics corresponding to different realizations of the 

noise. In section II.3, we discuss an algorithm based on a collision model and we demonstrate how a single 

ancilla qubit is sufficient to encode the effect of the environment.  Both algorithms can be run encoding each 

site of the network in a qubit (physical mapping) or by encoding each site of the network into an element of 

the computational basis (algorithmic mapping). A comparative analysis of the computational resources 

required by the two algorithms using the two mappings is detailed in section II.4. The analysis is supplemented 

with the results obtained by running the algorithms on a quantum computer emulator, namely the IBM Qiskit 

QASM simulator [4]. Because of the necessity of repeating the quantum circuit to accumulate measurement 

statistics, each execution of the circuit realizes a quantum trajectory, which we analyse in section II.5, followed 

by conclusions and perspectives. 

II.1 Dephasing-assisted quantum transport with a quantum 

computer 
We have seen in Chapter I that systems described by a tight-binding Hamiltonian realises an instance of the 

Quantum Walk (QW) scheme [5]. Such an Hamiltonian reads 

 ( ), '
1 , '

' '
N

j j j
j j j

H j j V j j j j
=

= + +  , (II.1) 

where we have a set on quantum sites  j , with site energy j  and coupled to the nearest-neighbour, according 

to a certain topology, with strength , 'j jV . By looking at the Hamiltonian structure in eq. (II.1), in principle, we 

can implement a Quantum Walk on, e.g., a cyclic lattice by considering a ring of tunnel coupled quantum dots 

[6] or a chromophore ring of the LH2 antenna complex [7]. However, since nanostructures are rarely free of 

imperfections and molecular systems have a multitude of degrees of freedom, the effects of static and dynamic 

disorder on the dynamics of the quantum walk become of central interest. A common feature is the presence 

of (static) energy disorder in the diagonal terms of the Hamiltonian. If disorder is high, quantum transport can 

be suppressed by Anderson localization with detrimental effects on the quantum advantage provided by the 

QW algorithm respect to the classical counterpart [8–10]. Localization is destroyed in the presence of a 

dephasing environment which in this case acts by enhancing transport efficiency. To give an intuition on the 

mechanisms underlying the enhancement in ENAQT, a good example is an environment that acts on the system 

by causing fluctuations ( )j t  in the site energies.  We assume ( )j t  to be independent white noise on each 

site, that is 

 ( ) 0j t = , (II.2) 

 ( ) ( ) ( )' , '' 'j j j j jt t t t    = − , (II.3) 
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where the overbar indicates the average over the noise realizations, j  is the variance of the noise, , 'j j  and 

( )'t t −  are respectively the Kronecker and Dirac delta functions, meaning that noise is spatially and 

dynamically uncorrelated. Under these assumptions, we define a stochastic time-dependent Hamiltonian as 

 ( ) ( ) ( )( ) ( )HS fluc , '
1 , '

' '
N

j j j j
j j j

H t H H t t j j V j j j j 
=

= + = + + +   . (II.4) 

This model was introduced by Haken and Strobl [2] to describe the effects of the phonons on the dynamics of 

triplet excitons in molecular crystals. When the exciton bandwidth is smaller than the phonon bandwidth, the 

coupling with the phonon can be modelled by Gaussian white-noise modulation of the site energies, specified 

by the statistical properties in eqs. (II.2)-(II.3). The fluctuations cause instantaneous and stochastic resonances 

of the site energies, overcoming localization and facilitating exciton transport. The state of the system acquires 

a random character, and the density matrix is recovered as the average over the noise realizations, 

( ) ( ) ( )t t t  = . The following master equation in the Lindblad form [11] is derived for the time evolution 

 ( ) ( ) ( ) ( ) ( )† † †

1

1 1i ,
2 2

N

j j j jj j j
j

t H t L t L L L t t L L     
=

 
= −   + − −  

 
 , (II.5) 

where the Lindblad operators are simply the projectors on the site basis, jL j j= , and the dissipation rates 

describing decoherence between different sites are controlled by the (positive) fluctuation amplitudes, j . It 

was shown that the simple site-dephasing dynamics as described by eq. (II.5) captures qualitatively the 

transition from a purely coherent to an incoherent regime of energy transfer as a function of the dephasing 

rates [12] and allows studying how the transport efficiency may be enhanced in the presence of a dephasing 

environment [1,13,14]. On the other hand, eq. (II.5) corresponds to the high-temperature limit of dephasing 

quantum dynamics. Indeed, the long-time asymptotic solution implies an equal occupation of all quantum sites 

(and all eigenstates) independently of their energy (cf. Chapter IV). 

II.1.1 Transport efficiency 

The common setting to evaluate the effect of dephasing on quantum transport is to consider the dynamical 

evolution of an initially localized state. In the network, a target site is identified, and the transport efficiency 

depends on the probability of the quantum walker visiting the target site. Often, non-Hermitian contributions 

to the Hamiltonian are included to model recombination of the exciton (loss of the walker) and the trapping of 

the exciton at the target site [15,16]. Because here we want to consider the simplest model where decoherence 

is the only non-unitary dynamics included in the system evolution, we define the transport efficiency like in 

Maier et al. [17], as the cumulative probability of finding the walker at the target site j  within a finite time T  

 ( ) ( )00
, |

T
j T p j t j dt   , (II.6) 
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where ( ) ( )0, |p j t j j t j=  is the probability to find the walker at site j  at time t  if the dynamics started 

at site 0j  at time 0t = . If the walker represents the exciton transport in molecular complexes, T  should be 

chosen long enough to observe ENAQT, but shorter than the typical lifetime of the exciton as recombination 

is not included in the dynamics. 

Because the digital simulation requires discretizing the dynamics in time steps t , we will approximate the 

integral in eq. (II.6) with the sum 

 ( ) ( )0
0

, |
S

j
s

T p j s t j t
=

   , (II.7) 

where s  is an integer indexing the time step of the simulated dynamics ranging from zero to S , where S  

indicates the maximum number of time steps and T S t=  . Below, we will calculate the transport efficiency 

through different quantum algorithms by starting from an initially localized state. However, the algorithms are 

general, and they may be used to simulate the dynamics of any localized or diffuse, pure or mixed, initial state. 

II.1.2 Mappings 

The problem of simulating the quantum dynamics of a quantum molecular network as described above can 

be mapped in two different ways into a quantum register. We call them the physical mapping and the 

algorithmic mapping. Let us assume we want to simulate a chromophore network with N  sites. The physical 

mapping is inspired by the direct representation of each chromophore by a qubit of the register and it is 

commonly employed in analogue quantum simulators [17–23]. In the simple case where each chromophore is 

modelled as a two-level system, the mapping on a digital quantum computer is straightforward since each 

chromophore corresponds to a qubit of the register. The Frenkel exciton Hamiltonian of eq. (II.1) is written in 

terms of the qubit Hamiltonian as 

 ( ), ' ' '
ex

1 , '2 2

N j j jj j j j j
z x x y y

j j j

V
H


    

=

= − + +  , (II.8) 

where j  is the energy gap between the ground and the excited state of the chromophore j  when it is isolated, 

and 1 jj j N
   −  −=   denotes a Pauli operator acting on the qubit in position j , with  the two-

dimensional identity matrix. The populations of the states of a qubit correspond to the populations of the 

chromophores, and the coupling between two chromophores is realized by coupling the qubits. Within this 

mapping, the master equation in eq. (II.5) is written as 

 ( ) ( ) ( ) ( )( )ex
1

i ,
N

j j
j z z

j
t H t t t     

=

= −   +  −   , (II.9) 

where 4j j = . In this case, we identify the basis vector j  in eq. (II.1) as the state where all the qubits 

are in the ground state, except qubit j  that is excited, namely 
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 1 20 0 ... 1 ... 0 00...1 ...0jj Nj        . (II.10) 

The number of qubits required for this encoding scales linearly with the size of the system N , but the vectors 

that correspond to useful states of the system are only a small subset of the entire computational basis. Although 

this mapping offers a vivid physical representation, it is not advantageous in terms of memory requirements. 

Indeed, the Hamiltonian (II.8) and the site-dephasing master equation (II.9) do not mix different exciton 

manifolds, and therefore to represent the single-exciton manifold a Hilbert space of dimension N  is sufficient, 

much smaller than the 2N  dimensional Hilbert space which is generated by the physical mapping. The 

exponential scaling of the computational space can be harnessed by adopting the algorithmic mapping which 

is usually required for a resource-efficient implementation of the quantum walk algorithm. A graph with N  

nodes can be encoded by using only ( )2log N    qubits by using the binary representation of the node index 

in the computational basis, that is ( )bin 1j j= −  for j  running from 1 to N . For example, a four-site 

network is efficiently encoded by two qubits as 

 1 00 2 01 3 10 4 11     (II.11) 

From the perspective of a chromophore network, this mapping only represents the single-exciton manifold. 

Because of the exponential saving in memory obtained by encoding the position as a binary number in a 

quantum computer, the algorithmic mapping will always win eventually as the molecular network we want to 

simulate gets larger. On the other hand, because each site of the network is represented by multiple qubits, the 

Hamiltonian evolution requires the implementation of unitary operations over multiple qubits (eventually 

decomposed in a series of elementary gates) and reading the population of a single site requires measuring all 

the qubits. The interplay between memory advantage and circuit complexity is a key factor for estimating the 

scaling of the algorithmic efficiency with the size of the simulated system. The algorithms we present below 

can be realized by using both mappings. To illustrate both possibilities, we will discuss explicitly the classical 

noise algorithm in an algorithmic mapping while we will move to a physical mapping to present the collision 

algorithm. In section II.4.1 the algorithmic scaling in the two cases will be analysed in detail. 

II.2 Classical noise algorithm 
The non-unitary time evolution described by eq. (II.5) physically arises from tracing out degrees of freedom 

which are part of the global system evolving unitarily. However, the same incoherent dynamics can also arise 

as a consequence of an averaging procedure over distinct autonomous evolutions (i.e., trajectories). This point 

of view was taken by Haken and Strobl to model the effect of the phonon coupling on the excitonic transport 

in molecular crystals. The dephasing master equation is then obtained by averaging over the noise realizations. 

The first algorithm we consider is based on the simulation of the unitary dynamics ruled by the Haken-Strobl 

stochastic Hamiltonian in eq. (II.4), where the stochastic part is a classical Gaussian stochastic process 

specified by eqs. (II.2)-(II.3). The non-unitary evolution is then recovered by averaging over the different 

realizations of the circuit. 
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For the numerical solution of the Schrödinger equation, we first discretize the evolution time from 0t =  to 

T  into S  small time intervals t T S = .  A trajectory   is obtained by evolving the initial state through the 

time-ordered propagator  

 ( ) ( ) ( )HS
10

,0 exp i ,( 1)
t S

s
U t H d U s t s t  

=

 
 = −   − 
  

 , (II.12) 

where  is the time-ordering operator [24]. On the right-hand side, the operator is evaluated as the product 

of short-time evolutions governed by the average Hamiltonian in the corresponding time interval, i.e., 

 ( )( ) ( )
( )

( )
( )

HS fluc,
1 1

, 1 exp i exp i i
s t s t

s t s t
U s t s t H d H t H d    

 

−  − 

   
    −  = − = −  −
   
   

  . (II.13) 

The integral of the fluctuating part of the Hamiltonian requires some care because it implies integrating 

Gaussian white noises 

 ( )
( )

( )
( )

fluc, ,
11 1

s t s tN

j
js t s t

H d j j d     

 

=−  − 

=  . (II.14) 

Each integral is a Gaussian random variable with zero mean and variance j t   [25]. By defining the 

fluctuating Hamiltonian for each time interval s  by a set of normally distributed energies , ,j s  with zero 

mean and variance j  

 fluc, , , ,
1

N

s j s
j

H j j 
=

= , (II.15) 

the short-time evolution operator (II.13) explicitly reads 

 ( )( ) fluc, ,, 1 exp i i sU s t s t H t H t 
  −  = −  − 
 

. (II.16) 

In Appendix A, we show that the dephasing master equation (II.5) can be recovered from the average of 

the trajectories generated by the evolution operator (II.12) for different realizations of the noise   in the limit 

of vanishing time step 0t + →  and for an infinite number of trajectories, i.e., → . 

 

Before running the algorithm, the following parameters need to be set: the time step t , the number of 

trajectories  , the fluctuation amplitude at each site j  and the number of samples (shots) that are taken 

during measurement. In the following, we detail the algorithmic steps to propagate the dynamics and to 
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calculate the transport efficiency, eq. (II.7). Figure 1 depicts the structure of the algorithm using three qubits 

which can encode a network with a maximum of 32 8=  sites: 

1. Initialize the quantum register to the initial state of the dynamics 0j ; 

2. Draw N  independent real random numbers from a Gaussian distribution with zero mean and variance 

j . Each random number represents the site-energy fluctuation , ,j s ; 

3. Apply the unitary gate corresponding to the operator ( )( ), 1U s t s t  −  , eq. (II.16); 

4. Create a copy of the circuit, so that one has two identical objects: a quantum circuit  that will be the 

lead and its copy  to which the measurement gates will be appended; 

5. Add measurement gates to circuit  and execute it to obtain a finite-sampling estimator ( )0, |j s t j   

of ( )0, |p j s t j  , which is the probability of being at the target site during the trajectory generated by 

 ; 

6. Discard circuit  and continue with circuit ; 

7. Repeat steps 2-6 for  0,1,...,s S . In the end, a trajectory is embedded in the gates of circuit . Each 

time point of the trajectory is recorded in ( )0, |j s t j  ; 

8. Repeat steps 1-7 for  1,2,...,    to obtain a swarm of trajectories; 

9. Estimate the transport efficiency as 

 ( ) ( ) ( ) ( )0 0 0
0 0 1 0 1

1 1, | , | , |
S S S

j
s s s

T p j s t j t p j s t j t j s t j t 
 

 
 

= = = = =

        
 

   , (II.17) 

where each term in the equation evidences an approximation made in the estimation. Namely, the 

discretization of time into intervals t , the finite number of trajectories   and the finite number of 

sampling shots in the final measurement of the qubits. 

 

Notice that the initialization, evolution and measurement gates act in general on the whole quantum register 

as a consequence of the algorithmic mapping. Executing and measuring a clone of the circuit (step 4 of the 

algorithm) is important to guarantee the correct evolution of the unitary trajectory. In fact, applying 

measurements after every evolution gate would destroy the quantum coherence of the register, resulting in our 

case in a localization of the walker at some site at each time step. In step 5, a good estimator of the site 

population ( )0, |p j s t j   is obtained by collecting a large statistical sample. However, if one is not interested 

in individual trajectories but only in the simulation of the master equation, it is fair to set the number of 

sampling shots equal to 1 to lower the execution time. 
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Figure 1. Scheme of the classical noise algorithm to simulate the dephasing dynamics of a molecular 

network with a maximum of 8 sites (algorithmic mapping). The circuit generates the state corresponding to 

( )0 0bin 1j j= −  with the initialization gate, then the evolution gate propagates the dynamics up to the 

time t s t=   before measuring the state of the system. The gate decomposition of the evolution gate depends 

on the specific realization of the stochastic Hamiltonian. We refer to the main text for further details.  

 

II.2.1 Stochastic trajectories and average evolution 

The classical noise algorithm is implemented for the simulation of the dynamics in a 4N =  cyclic network 

with diagonal static disorder. The site energies were obtained from a Gaussian distribution centred at zero and 

parametrized by its standard deviation 2V = , where we assume the nearest-neighbour interaction strength 

V as the energy unit.  The result is the following set of energies: 1 / 0.44V , 2 0.24V , 3 3.22V −  

and 4 0.36V , which is used for all the simulations discussed hereafter. The dynamics was initialized at 

the site 0 1j =  and we set the target site at 3j =  so that we aim at computing the probability of finding the 

walker at the target site as a function of time. The amplitudes of the stochastic fluctuations in the Haken-Strobl 

Hamiltonian were set equal for every site resulting in a (scaled) dephasing rate of 1 110j V V  − −= = . 

First, let us look at a single stochastic trajectory, this can be obtained by setting 1 =  in the algorithm and 

by choosing an appropriate number of shots in step 5 to determine the average population of the target site. 

Figure 2a shows such a stochastic trajectory (blue line) compared with the dynamics of the isolated system 

(green line), that is in the absence of white noise. Note how the single trajectory evolves differently from the 

isolated system from the very beginning of the dynamics. However, as for the isolated system, the single 

trajectory never reaches an equilibrium constant value. A swarm of 200 =  unitary stochastic trajectories 

obtained from different realizations of the noise is reported in Figure 2b (blue lines in transparency). The 

trajectory of the open system is then obtained as an average of them (solid blue), and it is in very good 

agreement with the direct solution of the master equation (orange dotted line).  The decay of the site coherences 

and the emergence of a constant equilibrium value for the site population are not a direct consequence of the 

presence of the noise, but rather emerge because of the averaging procedure. 
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Figure 2. Time evolution of the population at site 3j =  on a disordered four-site cyclic network initially 

populated at site 0 1j = . The dynamics of a single stochastic trajectory obtained with the classical noise 

algorithm (blue) is compared with the dynamics of the isolated system (green) in panel (a). A swarm of 

200 =  different stochastic trajectories (blue lines in transparency) is reported in panel (b). Their average 

(solid blue) approximates the open system dynamics obtained with an exact propagation of the Lindblad 

equation (orange). All the trajectories are obtained by running the classical noise algorithm in the Qiskit 

Statevector simulator, the Statevector mode corresponds to a single execution of the circuit and returns the 

statevector of the quantum register. The time step for the algorithmic evolution is 210t V− = , and the 

(scaled) dephasing rate is 1 110V − −= . 

 

As we will show in the next Chapter, the classical noise algorithm can be readily adapted to other models 

of stochastic modulation of the Hamiltonian (coloured noise) to investigate the role of the environment 

correlation time in the decoherence dynamics and energy transfer rates in molecular systems. In this case, the 

average dynamics is not known a priori because stochastic modulations different from white noise do not lead 

in general to a Lindblad form of the master equation [26–28]. 

II.3 Collision algorithm 
Quantum collision models have recently emerged as a powerful and versatile tool to describe the dynamics 

of open quantum systems. The basic idea is to induce decoherence and relaxation in the dynamics of an open 

system by repeated interactions (collisions) between the system and a set of ancillae that represents an effective 

environment. Currently, collision models are used in the study of quantum thermodynamics [29–31], quantum 

non-Markovian dynamics [32–34], quantum optics [35] and foundational issues such as quantum Darwinism 

[36]. Ref. [37] gives a perspective on the application of collision models in quantum physics. Recently, a 

stochastic version of a collision model has been applied to the study of ENAQT [38]. Besides being widely 
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used both for theoretical investigations and simulations on classical computers, collision models are 

particularly suitable to be translated into quantum algorithms. Literature in this sense is very recent and limited 

to the dynamics of few qubits [39,40]. In this section, we discuss a quantum algorithm for the simulation of 

dephasing-enhanced quantum transport based on collisions between the system and the ancillae representing 

the environment. 

To introduce the underlying idea, imagine we associate at each site of the molecular network a reservoir of 

ancilla systems. As in the classical noise algorithm, we first discretize the evolution time. During each time 

step t  (collision time), each site interacts with one ancilla of its reservoir. The dynamics proceeds through 

successive pairwise collisions between the system and the bath ancillae, each collision involving a unitary 

evolution of the system and the colliding ancilla. If the ancillae are initially uncorrelated and each of them 

collides with the system only once, then it can be shown that the dynamics of the system is described by the 

solution of a Lindblad master equation in the continuous-time limit [3,41]. 

The concept of a reservoir of independent ancillae is used in the framework of collision models and we will 

use it to give the theoretical basis of the algorithm. However, we will show later that for the algorithm a single 

ancilla-qubit is sufficient to represent the whole environment. 

We will work in a physical mapping of the system, where each qubit represents a site of the network and 

the system Hamiltonian is translated into the qubit Hamiltonian of eq. (II.8). During a time interval t , we 

define the Hamiltonian of the collision model acting on the system-ancillae state as 
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 (II.18) 

where intH  is the interaction Hamiltonian between the sites and the corresponding ancillae and ja
x  is the 

Pauli X-operator acting on the environment ancilla assigned to site j . We emphasise the separation between 

the system  and the ancillary a  subspaces by the explicit tensor product  . The choice of the interaction 

Hamiltonian is crucial to recover a specific dynamics of the system . By assuming a jaj
z x   form of the 

interaction, we obtain the dephasing dynamics described by eq. (11) when the initial state of the ancilla system 

is any state which is diagonal in the computational basis (see eq. (34) in Appendix B). For convenience, we 

set the initial state of each ancilla as the qubits’ ground state, ( )0 0 N
a


= . After the interaction, the 

ancillae are discarded and no longer affect the dynamics of the system, therefore we trace over their degrees 

of freedom to obtain the reduced density matrix of the system. Thus, the dynamical map of a collision event 

can be written as 

 ( ) ( ) ( )( ) †Tra at t t U t U   +  =  =   , (II.19) 
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where Tra  is the trace over the ancillary degrees of freedom and ( )CMexp iU H t= −   is the evolution operator. 

By sequentially repeating the interaction step with new ancillae from the reservoir, the reduced dynamics of 

the system at later times is obtained 

 ( ) ( ) ( )0 ... 0 ...ss t     =    =         
. (II.20) 

In Appendix B we show that, in the limit 0t + → , the dynamical map of eq. (II.20) approximates the solution 

of the target master equation (II.9) with dephasing rates 2
j jc t =  . The dephasing rates are therefore 

determined by the strength of the interaction and the collision time, conveying the intuition that the system 

undergoes decoherence when it interacts strongly for a short time as well as when the interaction is weaker, 

but it lasts longer. Note that the dependence of the interaction strength on the collision time j jc t=    is 

a typical relation in quantum collision models [35,42]. 

We are now in the position of translating the collision model described above into an algorithm that 

simulates the site-dephasing master equation.  Given the decoherence rate, the user must choose the time step 

t  and the coupling strengths with the ancillae jc  accordingly. Let us first translate the model into an 

algorithm that uses two quantum registers of the same size to represent the system and the ancillae in a physical 

mapping; keeping in mind that we will then shrink the register of the ancillae to a single qubit.  The algorithm 

implements the following steps, graphically represented in Figure 3a: 

1. Initialize the system quantum register to the initial state of the dynamics 0j  (i.e., apply an X-gate to 

the qubit representing the initial site of the dynamics in the physical mapping); 

2. Apply the gates corresponding to the evolution operator U  of the collision model Hamiltonian eq. 

(II.18) to both the system and environment quantum registers; 

3. Reset the environment quantum register; 

4. Create a copy of the circuit, so that you have two identical objects: a quantum circuit  that will be the 

lead and its copy  to which the measurement gate will be appended; 

5. Add a measurement gate to circuit , in correspondence with the qubit encoding the target site and read 

the population of state 1  to obtain the estimator ( )0, |j s t j   of ( )0, |p j s t j ; 

6. Discard circuit  and continue with circuit ; 

7. Repeat steps 2-6 for  0,1,...,s S ; 

8. Approximate the transport efficiency as ( ) ( ) ( )0 0
0 0

, | , |
S S

j
s s

T p j s t j t j s t j t 
= =

       . 

 

The evolution operator in step 2 which identifies the evolution gate in Figure 3a needs to be decomposed 

into elementary (one and two-qubit) gates. A generic unitary operation on n  qubits may imply an impractical 



40 Chapter II  

exponential scaling of the length of the circuit. However, the physical mapping suggests the implementation 

of a Trotter-Suzuki decomposition which at the first order in the interaction reads  
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with m .  The unitary operator is eventually approximated by the sequential application of one and two-

qubit operators, where the approximation improves for large m . We note that this form of the evolution 

operator is particularly convenient because each site-ancilla interaction occurs as a standalone process and 

therefore one ancilla qubit which is reset after each interaction suffices to implement the whole environment 

(as represented in Figure 4). Moreover, as the collision model is shown to converge to the solution of the 

Lindblad master equation in the limit of small collision time t , a suitable choice of the time step can be made 

to ensure the approximation of eq. (II.21) is already satisfactory for 1m = . The effects of the time step will be 

discussed later in section II.4. The application of the Trotter-Suzuki decomposition allows us to further specify 

the circuit of the evolution gate in step 2 by reducing the ancilla system to a single qubit, as follows:1  

2a.  Apply the ( )RZ j t m−   gates to all the qubits of the system quantum register; 

2b.  Apply the ( ), 'RXX j jV t m  and ( ), 'RYY j jV t m  gates to all the system qubits representing coupled 

sites of the network; 

2c.  Apply the ( )RZX 2 jc t m  to the j -th system qubit and the ancilla; 

2d.  Reset the state of the ancilla; 

2e.  Repeat steps 2c-2d for  1,2,...,j N ; 

2f. Repeat steps 2a-2e m  times. 

 

1 Brief guide to the reported gates: the 1-qubit gate is defined by ( ) ( )RZ exp i 2z = − , where z  is the 

Pauli Z-operator, while a 2-qubit gate is, for example, ( ) ( )RXX exp i 2a b
x x  = − , where the Pauli X-

operators act on two different qubits a  and b . The other 2-qubit gates RYY  and RZX  are defined 

accordingly. 
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The circuit which realizes the evolution operations by employing a single ancilla qubit is reported in Figure 3b 

for 1m = . As mentioned before, the collision algorithm can be applied also when the system is encoded in the 

quantum computer through an algorithmic mapping. In that case, the most convenient form of the interaction 

Hamiltonian and the state of the ancilla are different and are discussed in Appendix C. 

 

 

Figure 3. Scheme of the collision algorithm for a system with 3 sites (physical mapping) (a). The initial state 

is generated with an X-gate on a qubit, site1 in the example, then the evolution-reset gates propagate the 

dynamics up to the time t s t=   before measuring the population of the target qubit, site3. In the limit of a 

small collision time, the evolution gate can be decomposed into one and two-qubit gates (b) using only one 

ancilla qubit. 

 

 
Figure 4. Schematic representation of the sequential interaction between a single ancilla and a four-site 

network (in the physical mapping) resulting from a first-order Trotter-Suzuki decomposition. The ancilla is 

reset after each interaction. When the algorithm is formulated in the algorithmic mapping, the reset is 

followed by reinitialization of the ancilla to a suitable state (see Appendix C). 
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II.4 Comparative analysis of the two algorithms 
We now test both the classical noise algorithm and the collision algorithm by simulating the open system 

dynamics of the disordered four-site network already introduced in section II.2.1. The implementation of the 

classical noise algorithm in the algorithmic mapping requires two qubits, which are sufficient to encode the 

four states of the network. In contrast, the collision algorithm is run on five qubits, four qubits to encode the 

network in the physical mapping and one ancilla qubit encoding the dephasing environment.  By comparing 

the circuits shown in Figure 1 (classical noise algorithm) and Figure 3 (collision algorithm), first note the 

differences imposed by the different mappings. The algorithmic mapping requires the preparation of the initial 

state (initialization of the circuit) and the readout of the population of the target site to be implemented by 

multiple qubit gates. In the physical mapping, the same operations are performed by simpler single-qubit gates.  

Starting from site 0 1j = , the population of the target site 3j =  is calculated as a function of time and the 

results are shown in Figure 5 together with the numerical solution of the Lindblad dynamics for the set of 

parameters specified in the legend. For the classical noise algorithm (Figure 5a) we generated 8000 =  

trajectories, measuring each one with a single shot for each time point of the dynamics. The results for the 

collision algorithm (Figure 5b) were obtained with 8000 shots from the same circuit for each time point. For 

both algorithms, we used a time step 210t V− = . The algorithms were executed on the noiseless Qiskit 

QASM simulator. 

 

Figure 5. Time evolution of the population at site 3j =  on a disordered four-site cyclic network initially 

populated at site 0 1j = . Exact numerical solution (blue line) refers to the solution of the Lindblad master 

equation. Results for the classical noise algorithm (a) and collision algorithms (b) are acquired by running 

the algorithms with the Qiskit QASM simulator. The time step for the algorithmic evolution is 
210t V− = , and the (scaled) dephasing rate is 1 110V − −= . 
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By simulating the dynamics changing the decoherent environment, we then recover the phenomenology of 

ENAQT in terms of transport efficiency. Figure 6 reports the transport efficiency ( )3 40j T V = =  obtained 

from the quantum simulations as a function of the ratio between the decoherence rate and the site coupling, 

V . Simulations were performed under the same conditions already described in Figure 5, only tuning the 

fluctuation amplitudes in the classical noise algorithm and the strength of the site-ancilla interaction in the 

collision algorithm. The results are in very good agreement with the curve obtained by solving the Lindblad 

master equation (blue line), with errors ranging from 0.027% to 2.7% for the classical noise algorithm and 

from 0.086% to 1.6% for the collision algorithm. The transport efficiency as a function of the decoherence rate 

presents a maximum in the intermediate regime of coupling with the environment, which is the hallmark of 

ENAQT. Low transport efficiency in the weak decoherence limit can be understood as the prevailing of the 

static disorder, indeed the average population on the target site would be very low in the absence of 

decoherence. The walker tends to be trapped in the initial site and the efficiency drops also in the strong 

decoherence limit, although the mechanism is different. In this case, the coherent transfer from site to site 

(induced by the system Hamiltonian) is suppressed by the fast decay of the site coherences. In the limit of an 

infinite decoherence rate, the walker would never leave the initial site and the efficiency would be zero, a limit 

that is often associated with the quantum Zeno paradox [43]. 

 

Figure 6. Transport efficiency on a disordered four-site cyclic network as a function of the ratio between the 

dephasing rate and the site coupling. The excitation is initially localized at site 0 1j =  and we measure the 

population at the target site 3j =  within the fixed reference time 40T V= . The algorithmic time step is 

210t V− = .  The results obtained with the classical noise algorithm (circles) and collision algorithms 

(crosses) using the Qiskit QASM simulator are compared with the expected result obtained by solving 

directly the master equation (blue dashed line).  
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The accuracy of the simulations performed with both the algorithms critically depends on the time step t  

chosen to discretize the continuous dynamics. As the time interval decreases, the simulated dynamics 

approximates the exact solution of the master equation with increasing accuracy (cf. Appendix A and B). On 

the other hand, the execution time of the circuit grows significantly and a reasonable trade-off between 

accuracy and simulation time must be found also considering the specific parameters of the simulated system 

(Hamiltonian spectrum, decoherence rate and simulation length T ). For example, it is worth noting that as the 

dephasing rate increases, smaller time steps are required to maintain the accuracy of the simulated dynamics. 

In general, a reasonable guess is to use a t  which is at least one order of magnitude smaller than any 

characteristic timescale of the system dynamics. Operationally, the obtained result can be validated by 

checking that the observable of interest remains practically unchanged by halving the time step. 

Another parameter to consider is the number of circuit repetitions, which assume a different meaning in the 

two algorithms. For the classical noise algorithm to reproduce the dynamics of the master equation, the 

statistics must be accumulated from different trajectories. This means that to accumulate a given number of 

shots, e.g. 8000 shots as used for the dynamics of Figure 5 and Figure 6, one needs to generate the same number 

of quantum circuits and perform a single-shot measurement on each of them. Each circuit is composed of 

different gates depending on the specific sequence of random numbers characterizing the noise of the specific 

trajectory. In contrast, with the collision algorithm, the same circuit is executed and measured 8000 times (i.e., 

8000 shots). For both algorithms, the finite number of circuit repetitions introduces a statistical error in the 

estimation of populations that is expected to decrease with the square root of the inverse of this number. 

Therefore, more trajectories/shots will lead to a more accurate estimate of the site population. It is also worth 

noting that once the results of the algorithms have been obtained, if we want to further improve accuracy, it 

will be sufficient to submit new circuits and mediate the new data with those already collected. 

Although this difference in the statistic accumulation of the two algorithms does not affect the analysis of the 

scaling of the resources presented in the next section, one should consider that the generation of multiple 

circuits implies a (classical) computational overhead in the transpilation procedure, which is the 

decomposition of the circuit in elementary (1- and 2-qubit) gates. 

II.4.1 Scaling of memory and algorithmic resources 

In this section, we will analyse how the number of qubits and gates required by the algorithms scale with 

the size of the simulated system N  when using the algorithmic and the physical mappings. Since actually the 

number of gates strictly depends on the specific machine one is using and which gates can physically 
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implement, the established procedure is to count the number of 2-qubit operations (e.g., the CNOT gates)2 

required by the circuit. The results are summarized in Table 1. 

As already reported above, the algorithmic scaling implies an exponential advantage in terms of memory 

resources as the number of qubits required to encode the system scales only logarithmically with its size, 

2logn N=    . However, this mapping complicates the gate decomposition of the simulation procedure. The 

classical noise algorithm in the formulation of an algorithmic mapping consists of two operations that 

potentially act on the whole quantum register of size n : the initialization and the evolution (see Figure 1). If 

the initial state is completely localized on one site, the initialization process translates into a series of X-gates, 

whose impact on the scaling analysis is negligible. This is not the case for the evolution gate. Consisting in a 

unitary transformation acting on 2log N    qubits, in the general case it requires a number of CNOT gates that 

scales exponentially with the number of qubits of the register, and therefore quadratically with the size of the 

network: ( ) ( )2log 24 N N    . Since the dynamics is obtained by a series of different evolution gates 

(because the system is subject to random fluctuations), each gate requires a dedicated decomposition. Although 

this does not compromise quadratic scaling, it involves a classical computational effort in transpilation which 

adds up to the effort already required to simulate different trajectories. This overhead can be slightly mitigated 

by adopting a suitably small time step for the dynamics. Indeed, in the limit of a vanishing time step, we can 

assume 

 ( )fluc, fluc,i ii

0
lim s sH t H t H tH t

t
e e e

+

−  +  − − 

 →
 . (II.22) 

The first term on the right-hand side is common for the evolution at each time step and for each trajectory and 

therefore it can be decomposed once for all. The second term, which changes in each evolution operator, is a 

diagonal unitary, therefore admitting a more performant gate decomposition scaling linearly with the size of 

the problem, which is ( ) ( )2log2 N N     gates. Overall, the leading term in the scaling remains quadratic. 

The analysis of the collision algorithm in the algorithmic mapping is reported in Appendix C. It turns out that 

 
2 The CNOT (which is read controlled-not) gate is the most popular 2-qubit operation. The first qubit takes 

the name of the control, while the second is the target qubit. Its effect is the following: if the state of the control 

is 0  then nothing happens, if the state of the control is 1  then an X gate is applied to the target, which 

corresponds to the NOT gate for classical computing. For example, it transforms a state 00 10a b+  into 

00 11a b+ . Since 2-qubit gates take more time and introduce more errors in the computation than 1-qubit 

gates, they are used as a metric for circuit complexity. 
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the depth of the circuit grows also quadratically with the size of the system, while it requires 2log N    qubits 

and an extra ancilla qubit to represent the environment. 

The physical mapping, on the other hand, is not memory efficient as it requires a number of qubits that 

grows linearly with the size of the network, that is N  for the classical noise algorithm and 1N +  for the 

collision algorithm. On the other hand, it greatly simplifies the gate decomposition procedure. As we have 

shown in section II.3, it is possible to perform the initialization of the circuit by the application of a single X-

gate, while the evolution gate, which is repeated during the algorithm, can be easily reduced to 1- and 2-qubits 

gates. In this case, the interaction Hamiltonian between adjacent sites gives the leading term for the scaling of 

the algorithm: in a network where all sites are coupled, ( )2N  two-qubit gates are required to account for 

the unitary evolution. When the connectivity is restricted (as in tight-binding graphs), the resulting scaling is 

usually sub-quadratic (e.g., linear for a cyclic topology). 

Although the scaling with the size of the network results similar for the two mappings, the classical effort 

required by the algorithmic mapping for gate decomposition partially contrasts the stunning advantage in terms 

of memory. This “classical” overhead is further amplified in the classical noise algorithm by the need of 

creating a different circuit for each time step of each trajectory. 

Let us now compare the scaling of the algorithms discussed above with the other quantum algorithms 

discussed in literature for the simulation of environment-assisted quantum transport. We find a slightly more 

favourable scaling than the algorithmic strategy proposed by Gupta and Chandrashekar in ref. [44], which 

provides a scaling of ( )2
2logN N  by employing an algorithmic mapping with some extra ancillae. On the 

other hand, the model of ref. [44] allows the introduction of the effect of the temperature at the cost of working 

in the exciton basis, thus requiring a preparatory step involving the diagonalization of the Hamiltonian. The 

algorithm discussed by Hu et al. in ref. [45], which is based on a dilation approach, is characterized by a 

remarkable sub-polynomial scaling of ( )2
2log N . However, the authors also discuss an exponential scaling 

with the number of time steps of the dynamics which can be probably reduced by circuit optimization in the 

simulations of specific systems.  

 

Table 1. Comparative analysis of the scaling of the memory resources and circuit depth for the classical noise 

and the collision algorithm with the size N  of the simulated system in the two different mappings. The first 

term refers to the number of qubits needed for the simulation while the second term refers to the gate count.  

 Classical noise algorithm Collision algorithm 

Physical mapping N , ( )2N  1N + , ( )2N  

Algorithmic mapping 2log N   , ( )2N  2log 1N +   , ( )2N  
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II.5 Algorithmic quantum trajectories  
Unravelling the master equation for the system density matrix amounts to considering an ensemble of pure 

states whose average gives the desired dynamics. Each system, described by a wavefunction, evolves 

stochastically in time defining a so-called quantum trajectory [46]. Unravelling approaches originate from the 

quantum optics community [47,48], when technological advancements allowed for monitoring individual 

quantum systems. Quantum trajectories were proved to be tightly connected with the measurement protocol 

used to monitor quantum states [49] providing an effective framework to describe different detection schemes, 

as photon-counting and homodyne detection, for which ensemble descriptions based on the density matrix 

does not offer a straightforward interpretation. Subsequently, quantum trajectories have been used in many 

other fields as a numerical technique to solve the open system dynamics with the number of variables being 

linear with the dimension of the Hilbert space rather than quadratic as the dimension of the density matrix [50–

53]. In this section, we want to characterize the algorithmic quantum trajectories, which are quantum 

trajectories generated by a given algorithm in a quantum computer as the result of the different operations on 

the computer state, both in terms of gates (classical noise algorithm) and measurements on the ancillae 

(collision algorithm). 

The very working principle of digital quantum simulations requires the accumulation of measurement 

statistics to evaluate the expectation value of interest, which for our purpose is the population of the target site 

at different times, i.e., ( ) ( )0, |p j t j j t j= . This implies that the quantum circuits must be executed many 

times and the simulated open system dynamics can be naturally understood as the average of different 

realizations of underlying stochastic dynamics. This observation implies that different quantum algorithms 

realize different unravellings of the master equation. 

The classical noise algorithm is based on an explicit average over trajectories which are generated by the 

stochastic terms in the Hamiltonian which are mapped into the gates of the quantum circuit. When the 

algorithmic time step is small enough each trajectory is a good approximation of a stochastic Schrödinger 

equation where the stochastic part is given by a Wiener increment [25] 

( ) ( ) ( ) ( )†

1 1

1i i
2

N N

j j j j jj
j j

d t H L L t dt L t dW t    
= =

 
 = − − −
 
 

  , 

where jL j j= , ( ) 0jdW t =  and ( )
2

jdW t dt= . The stochastic differential introduces small but frequent 

deviations from the evolution of the isolated system ruled by the average Hamiltonian, resulting in the noisy 

trajectories already shown in Figure 2.  

Trajectories obtained by the collision model algorithm are qualitatively different. In this case, the stochastic 

nature of the evolution can be more easily understood as resulting from the quantum probabilities for the 

outcomes of measurements performed on the ancilla environment. Indeed, at each time step after the interaction 
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with the system, the state of the ancilla is reset. The reset gate acts as a measurement of the ancilla qubit and 

its subsequent reinitialization to state 0a . One thus goes from an entangled system-ancilla state 

0 0, 1 1,0 1a ac c  =  +   to a product state that is 0, 0a   with probability 2
0c  or 

1, 0a   with probability 2
1c . Performing this operation multiple times reproduces the effect of tracing 

out the ancilla's degrees of freedom, resulting in a statistical density matrix for the system 
2 2

0 0, 0, 1 1, 1,c c    = + . However, a single run of the circuit of the collision algorithm 

realizes a single quantum trajectory. The specific character of the trajectory depends on the form of the 

interaction between the system and the ancilla environment. Let us look closer into the algorithm steps 

discussed in section II.3 and reported in Figure 3: suppose we have initialized the state and executed the first 

block of RZ, RXX and RYY in the system register. After this evolution block, the state of the quantum register 

will be generically 0a =  . The interaction between the first qubit of the system, 1j = , and the 

ancilla is through an RZX gate, which is 

 ( ) ( ) ( )1 1 1
1 1 1exp i cos isina a a

z x z xc t c t c t   −   =   −   . (II.23) 

By applying it to the state   we explicitly get 

 

( ) ( )

( ) ( )

( ) ( )

1 1
1 1

1
1 1

1
1 1
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cos 0 isin 0

cos 0 isin 1

a a
z x
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a z x a

a z a

c t c t

c t c t

c t c t

    

   

  

=   −  

=   −  

=   −  

 (II.24) 

The next step of the algorithm is the reset, i.e., measure and reinitialization of the ancilla. Since the ancilla and 

the system are in an entangled state, the measurement of the ancilla affects the state of the system. In particular, 

if state 0 is measured, then the system will be in state  , while if state 1 is measured the system will be in 

1
z  . These states correspond respectively to an avoided collision, in which the system remains in the 

same state, or an occurred collision, in which the phase of the interacting qubit (site) is flipped. In practice, 

the operation “interaction and reset” acts on the system-qubit as a probabilistic Z-gate which reverses the phase 

of the system-qubit with probability ( )
2

sin jc t . Notice that for 1t , which is a condition to approximate 

the Lindblad master equation, the collision event is unlikely and most of the reset gates have the only effect of 

erasing the correlation created between the system and the ancilla qubit. Because the result of the measurement 

on the ancilla is stochastic at each repetition of the circuit, we devise a modified algorithm that replicates a 

single quantum trajectory. To do this, we simply save on a separate classical register the sequence of the 

outcomes obtained from the measurement of the ancilla. This is a string, let us say b , of NSm  bits, where N  

is the number of sites, S  is the number of time steps and m  is the number of Trotter steps.  Once the history 

of the outcomes is accessible, the same trajectory can be generated multiple times by using only the quantum 
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register encoding the system. In the execution circuit of Figure 3b, the 2-qubit gates involving system and 

ancilla are then replaced with the I-gate (identity-gate), if the corresponding bit in string b  is 0, and with the 

Z-gate if the bit is 1; this is shown in Figure 7. 

 

Figure 7. Upper panel: single execution of a circuit (here we report only the evolution circuit) and the output 

of the measurements of the ancilla for a trajectory. Lower panel: corresponding circuit to recreate the 

specific trajectory. Gate I is the identity gate. 

 

Figure 8a shows a single trajectory (blue line) generated by the procedure described above together with 

the dynamics of the isolated system (green line). Because the probability of the system-ancilla collision is low, 

the two dynamics coincide for the initial time interval until an effective collision happens. The waiting time 

until the first effective collision has naturally a random character as we can see by looking at the swarm of 

trajectories reported in Figure 8b. Initially, the dynamics of the isolated system is clearly reproduced by the 

overlay of multiple trajectories (blue lines in transparency) and gradually fades as the probability to have 

observed an effective collision increases with time. The solid blue line represents the dynamics of the open 

system obtained as an average of 200 trajectories while the orange dotted line is the solution of the 

corresponding master equation. By comparing the trajectories of the collision algorithm in Figure 8 with those 

of the classical noise algorithm shown in Figure 2, it is evident that they generate a different distribution of the 

observable despite providing the same average value. Other algorithms can be devised based on a different 

unravelling of the master equation, for example by realizing the trajectories obtained with the traditional 

quantum jump approach to open system dynamics as used by Govia et al. in ref. [54]. 
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Figure 8. Time evolution of the population at site 3j =  on a disordered four-site cyclic network initially 

populated at site 0 1j = . The dynamics of a single trajectory is obtained with the collision algorithm (blue) 

and it is compared with the dynamics of the isolated system (green) in panel (a). A swarm of 200 =  

different trajectories (blue lines in transparency) is reported in panel (b). Their overlay allows observing the 

shade of the dynamics of the isolated system fading as simulation time increases. The average of the 

trajectories (solid blue) approximates the open system dynamics obtained by the solution of the Lindblad 

master equation (orange). All the trajectories are obtained by running the algorithms in the Qiskit Statevector 

simulator, the Statevector mode corresponds to a single execution of the circuit and returns the statevector 

of the quantum register. The time step for the algorithmic evolution is 210t V− = , and the (scaled) 

dephasing rate is 1 110V − −= . 

 

II.6 Conclusions 
Simulating quantum dynamics in molecular networks necessarily requires taking into account the role of 

the environment in an effective way as it induces qualitatively different phenomena as the environment-

assisted quantum transport. We have analysed in detail two different quantum algorithms for the simulation of 

dephasing-assisted quantum transport in digital quantum computers, focusing on the solution of the Lindblad 

master equation where site decoherence is included in the dissipator. The first algorithm is based on an explicit 

average over dynamics obtained by solving the Schrödinger equation with a stochastic Hamiltonian while the 

second algorithm is based on a collision scheme. Both algorithms can be applied with a physical mapping of 

the network, where each site is encoded in a qubit, and with an algorithmic mapping in which each site is 

encoded in an element of the computational basis. The circuit complexity is the same in the two cases and for 

both algorithms, and it scales quadratically with the number of quantum sites in the network.  The two 

encodings provide different advantages: the algorithmic mapping allows an exponential saving of memory 
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resources as it requires only 2log N    qubits to represent an N -site network. On the other hand, it entails a 

larger computational effort for the gate decomposition of the Hamiltonian part of the dynamics. The physical 

mapping does not bring a memory advantage for simulations confined to the single exciton manifold, but it 

can straightforwardly accommodate more excitons unleashing the quantum advantage of simulating many-

body dynamics.   

We test the algorithms on the Qiskit QASM simulator by calculating the dynamics and the transfer 

efficiency in a disordered four-site ring with different strengths of the environment-induced site decoherence. 

Our simulations find that an intermediate level of decoherence enhances the transport efficiency which is the 

hallmark of environment-assisted quantum transport. We have further analysed the two algorithms in the 

framework of quantum trajectories and found that quantum computers are versatile testbeds for unravelling-

based implementations. In fact, while the approaches based on quantum trajectories in classical computers 

imply the overhead of generating a statistical sample which is not necessary in principle, quantum trajectories 

appear a natural tool to analyse quantum dynamical simulations because of the inherent necessity of repeating 

the circuit to extract expectation values. 

We should point out that the specific type of open system dynamics considered in this contribution is a 

simple instance of the possible effect of the environment, only considering decoherence between different 

sites. Because of its structure, the site-dephasing master equation does not describe the effects of the 

temperature (indeed it corresponds to a high-temperature limit) and being in the Lindblad form, it cannot 

describe environments beyond the Markovian assumption underlying the semigroup theory. However, both 

the algorithms have been designed to include an effective representation of the environment, in the form of a 

stochastic process (classical noise algorithm) or additional degrees of freedom (collision algorithm). This is 

because we aim at algorithmic strategies which allow building different environments to simulate their effects 

on the dynamics of a target system. For example, in the next Chapter, we will expand the current algorithms 

to coloured noise environments, for which an equation for the average dynamics is not analytically available 

in general. Moreover, in Chapter V the collision scheme allows us to include temperature effects [55], by 

designing the states of the ancillae and the interaction with the system’s subunits [33,56]. Therefore, this work 

serves as a benchmark of these algorithmic strategies by demonstrating their reliability in the simulation of a 

well-defined open-system dynamics whose master equation is known. 

II.7 Appendix A 
We show that the classical noise algorithm approximates on average the site-dephasing master equation. 

The state of the system at time s t  is obtained by applying the evolution operator 

( )( ) ( ), fluc, ,, 1 exp i is sU s t s t H t H t  −  = −  −   to the state at ( )1s t−  , 

 ( ) ( ) ( )( ) ( ) ( ) ( )( )†
, ,, 1 , 1s st t t t U s t s t t t U s t s t    +  +  =  −   −  , (II.25) 
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where t t s t+  =   for simplicity. By assuming the integration step t  to be small enough, we can expand the 

evolution operator to the first order in t , 

 ( )( ) 2log 2
, fluc, , fluc, ,

1, 1 i i
2

N
s s sU s t s t H t H t H t  

   −   −  −  −  . (II.26) 

Thus, eq. (II.25) can be written as 
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where we have used †
fluc, , fluc, ,s sH H =  to simplify the notation. 

Recalling that fluc, , , , , ,1 1
N N

s j s j s jj jH j j L   
= =

= =   and ( ) ( ) ( )t t t  = , by taking the 

average over the realizations of the stochastic process, one obtains 
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Because of the statistical properties of the white noise, the following relations hold 

 ( ) ( ) ( ) , , , , 0j s j st t t     = = , 

 ( ) ( ) ( ) ( ) 
2 2
, , , ,j s j s jt t t t       = = .  

Thus, eq. (II.28) reduces to the following difference quotient 
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 , (II.29) 

that gives the master equation (II.5) in the limit of 0t + → . 

II.8 Appendix B 
In its most common microscopic derivation, the Lindblad dynamics of an open quantum system is generated 

by a weak interaction with a fast thermal environment [14]. The environment is assumed to be large enough 

so that the thermal state is not affected by the interaction with the system and its relaxation time is assumed to 

be shorter than the typical evolution of the system due to the interaction with the bath. All microscopic 
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derivations of Markovian master equations implicitly set a characteristic time under which the needed 

assumptions are violated. As such quantum Markovian dynamics imply a coarse-graining of time. To derive 

the master equation from a collision scheme, we identify the time scale of the coarse-graining t  with the 

collision time. In the limit of small t , we can expand the time evolution operator ( )exp CMU iH = −  as 

 2 2
ex int int

1i i
2

N N NU H t H t H t    −   −  −  . (II.30) 

The need of expanding the interaction Hamiltonian to second-order will become clear in the following. By 

substituting the above expression into the dynamical map in eq. (II.19) and keeping linear terms in ex
NH   

and quadratic terms in intH , one gets 
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By assuming that the density matrix of the ancilla subspace is diagonal in the computational basis, the 

following equalities hold  

 
 

 '

Tr 0

1 '
Tr

0 otherwise

j

j j

a
a x a

a a
a x x a

j j

 

  

=

=
= 


 (II.32) 

and eq. (II.31) can be written as 

 ( ) ( ) ( ) ( ) ( )( )2 2
ex

1
i ,

N
j j

j z z
j

t t t H t t c t t t      
=

+   −   +  −   , (II.33) 

By transforming into a difference quotient during the collision time one obtains 

 
( ) ( )

( ) ( ) ( )( )2
ex

1
i ,

N
j j

j z z
j

t t t
H t c t t t

t
 

    
=

+  −
 −   +  − 

 . (II.34) 

To recover the master equation, the next step is to apply the limit 0t + → . However, if the coupling 

constants jc  are assumed independent of t , the summation on the right-hand side of eq. (II.34) vanishes in 

the limit. It is, therefore, appropriate to define the coupling terms as 2
j jc t=   , where j  are constants. In 

this way, eq. (II.9) is obtained. Note that, with this definition of jc , the second-order expansion in eq. (II.30) 

corresponds to a first-order term in t . 
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II.9 Appendix C 
In this Appendix, we briefly discuss the collision algorithm for an algorithmic mapping. The algorithmic 

mapping should be applied only to the quantum register of the system since it is not advantageous in the single 

ancilla register. In this framework, the Hamiltonian of the system is the same as in eq. (II.1), while for the 

interaction of each site j  with the ancilla, the form a
j zc j j   can be assumed, where the first operator 

acts on the site of the system and the second on the ancilla. Note that this form of interaction differs from what 

we used for the algorithm in the physical mapping, eq. (II.18), because of the z  on the ancilla qubit. This 

form is convenient because the operator associated with the site-ancilla interaction Hamiltonian becomes 

diagonal on the computational basis, and thus it can be decomposed into a smaller number of gates (see section 

II.4.1). However, to simulate the site-dephasing master equation with this form of interaction, the ancilla 

system must be prepared in the state ( )0 0 1 1 2a = + . Although this mixed state cannot be directly 

implemented on a quantum computer, the same effect is obtained by randomly initializing the ancilla to state 

0  or 1  with probability 1 2 . 

The algorithm can be divided into two main parts: the initialization of the system which is typical for the 

algorithmic mapping, and the dynamics through evolution gates. Assuming a small collision time t , each 

evolution gate can be factorized into an evolution acting only on the system, ( )exp iH t−  , which is 

decomposed into ( ) ( )2log 24 N N     CNOT gates (see section II.4.1), and N  interactions between the 

sites and the ancilla, driven by the gate associated with operator ( )exp i a
j zc j j t−   , each one followed 

by the reset and reinitialization of the state of the ancilla. The (diagonal) evolution operator of the interaction 

can be decomposed into ( )N  CNOT gates. The number of CNOT gates thus scales as ( )2N  when all the 

interactions are taken into account. The collision algorithm in the algorithmic mapping thus scales 

logarithmically in the number of qubits required for the implementation of the system 2log N    with the 

addition of one ancilla qubit, and it scales quadratically with respect to the number of CNOT gates.  
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Chapter III 

Quantum transport assisted by a 
coloured environment: 

Algorithms and phenomenology 
 

 

 

 

In the previous Chapter, we focused on quantum transport mediated by a memoryless environment causing 

dephasing of inter-site coherences in the dynamics of the open system. For their simple but non-trivial 

formulation, the quantum algorithms we proposed can be used as a good starting point to demonstrate the 

enhancement of transport efficiency in the dynamics assisted by a dephasing environment. However, because 

of the Markovian assumption, the underlying model is not sufficient to describe the effects induced by an 

environment whose relaxation is comparable with the characteristic timescale of the system evolution. 

Here, we cover this part by studying the phenomenology of more structured environments with a finite 

correlation time, in order to include non-Markovian (memory) effects into the quantum dynamics. In section 

III.1, we present the Ornstein-Uhlenbeck process for describing the site-energy fluctuations of the network. 

This process has been proposed for example in [1,2] to describe the effects of the overdamped vibrations in 

the exciton transport on chromophoric networks. The peculiarity of non-Markovian models is that, outside the 

weak-coupling regime, it is not always possible to derive a master equation for the dynamics of the open 

system. So, alternative techniques must be used. Here, we address this problem by proposing quantum 

algorithms based on the same principles as the classical noise algorithm (section III.2) and collision algorithm 

(section III.3). The result of the algorithms as well as the study of the transport efficiency in presence of a 

coloured environment are discussed in section III.4. Finally, we give our conclusions in section III.5. 
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III.1 The Ornstein-Uhlenbeck process for energy fluctuations 
Let us take the classical noise algorithm introduced in the previous Chapter. In this case, the evolution of 

the open system is obtained as an ensemble average over unitary Schrödinger dynamics with a stochastic 

Hamiltonian. We have seen that white noise fluctuations of the site energies ( )j t  generate a dynamics that 

can be described by a Lindblad master equation. A simple generalization to correlated noise is offered by the 

stationary Ornstein-Uhlenbeck (OU) process [3,4], a Gaussian-Markovian process with exponential damping 

of correlations (see Appendix A) 

 ( ) ( ) ( ) ( )OU ' , '0 expj j j jc t t t   = = − , (III.1) 

where the overbar indicates the average over noise realizations,   is the fluctuation amplitude, , 'j j  is the 

Kronecker delta function and   is the correlation time of the fluctuations. Such a correlation function is related 

to a Lorentzian spectral density in the form 

 ( ) ( ) i
OU OU 2 22tJ c t e dt 





−


= =

+
 , (III.2) 

where 1  =  is the inverse of the characteristic memory time   of the environment, and   is in the 

frequency range of the open system. 

In Figure 1, we report an example of the trajectories generated by the OU process with 1 ps = , as well as 

the exponentially-damped correlation function calculated from the trajectories, compared with the theoretical 

one given in eq. (III.1). 

 
Figure 1. Left panel: a single realization (trajectory) of the stochastic energy fluctuation generated by the 

Ornstein-Uhlenbeck process. Right panel: the correlation function of the energy fluctuations calculated as 

the ensemble average over 104 trajectories (blue line) is compared with the theoretical one given in eq. (III.1) 

(yellow line). 
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When the fluctuations are very slow, i.e., in the limit of  → , the effect is that of a static disorder on the 

energies of the network. The effects of this disorder have been studied for example in [5–11]. On the other 

hand, in the limit of vanishing correlation time 0 → , that is when the environment relaxation time is way 

faster than the system evolution, the correlation function approaches the white noise limit 

 

( ) ( )

( )

( )

w , '
0

, '
0

, '

lim exp

exp
2 lim

2
2

j j

j j

j j

c t t

t

t





 






 

→

→

= −

−
=

=

 (III.3) 

where for the second equivalence the product   must be kept constant, and in the last equivalence we used a 

definition of the Dirac delta function ( )t . The spectral density, in this case, becomes constant (flat) in the 

frequency range of the system 

 ( )w 2J  = . (III.4) 

Note that this type of Markovian environment is the one we studied in the previous Chapter (it produces 

eq. I.7 by identifying the relaxation rates with 2 ) and can be obtained as a limiting case of the more general 

OU process. In section III.4.1, parameter   will allow us to compare the efficiency of transport mediated by 

the white noise and OU processes. Because of its role as a comparison quantity, we will call it the equivalent 

noise strength (where the word “equivalent” refers to the white noise case). 

We report in Figure 2 a stochastic trajectory generated by the white noise process, and the correlation 

function generated as the ensemble average over various realizations of the process, along with the theoretical 

one given in eq. (III.3). Form a qualitative comparison with the OU process, one can appreciate how the 

complete absence of correlation in the values at close time instants influences the trajectory. 
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Figure 2. Left panel: a single realization (trajectory) of the stochastic energy fluctuation generated by the 

white noise process. Right panel: the correlation function of the energy fluctuations calculated as the 

ensemble average over 104 trajectories (blue line) is compared with the theoretical one given in eq. (III.3) 

(yellow line). 

 

In general, it can be demonstrated that when site energy fluctuations follow an OU process with a finite 

correlation time, the average dynamics of the open system becomes non-trivial and clearly displays non-

Markovian signatures, as proved in Appendix B. If the interaction with the environment is perturbative and 

the correlation time of the fluctuating environment is short compared to the system timescale, one can use the 

Redfield treatment to obtain a Markovian master equation for the reduced open system (see Chapters IV). In 

another case, when only the perturbative interaction holds, one can derive, under the Born approximation, a 

master equation with a memory kernel describing the effects of the correlated environment fluctuations on the 

dynamics of the reduced system [12,13]. However, there is not a general form of quantum master equation 

describing the average dynamics resulting from such a process [14,15]. 

Since our algorithms aim to reproduce the full range of interaction strengths, including intermediate and strong 

coupling, this poses the problem of an external benchmark to validate the results of our algorithms, that, even 

if they rely on theoretically exact methods, are still subjected to a numerical (i.e., approximated) 

implementation. 

Exact numerical methods exist for the solution of open quantum system dynamics in the intermediate, or even 

strong, coupling regimes such as the Quasi Adiabatic Path Integral method (QUAPI) [16,17], the Time-

Evolving Density matrix using the Orthogonal Polynomials Algorithm (TEDOPA) [18,19] or the Hierarchy of 

stochastic Pure States (HOPS) [20–22]. In our case, we opt for the Hierarchical Equation Of Motion (HEOM), 

introduced by Tanimura and Kubo [23]. The method is based on a stochastic Liouville approach in which the 

system density matrix is coupled to an infinite hierarchical series of density matrices that accounts for the non-

Markovian interactions with the environment. In the last decade, HEOM gained a lot of attention in the study 

of exciton transport in molecular aggregates, becoming the “gold standard” method to study such dynamics 

[1,24–28]. For the implementation of HEOM, we used the BoFiN-HEOM package [29,30] integrated with the 
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popular QuTip library for Python [31,32]. The HEOM solver requires to know only the system Hamiltonian, 

the system interaction operator with the environment and the correlation functions of the environment, which 

makes it a perfect candidate to be the benchmark. For the results shown in this Chapter, we adopted an iterative 

procedure to truncate the hierarchy depth once convergence was found (truncation is required for the numerical 

implementation since an infinite series is impossible to handle). It must be stressed that even if these exact 

approaches exist, they are computationally expensive and their use is limited to small systems. 

III.2 Classical noise algorithm 
For the classical noise algorithm, the generalization to the new environment is straightforward. The idea is 

to propagate a stochastic Schrödinger equation where the stochastic process is no more a white-noise 

fluctuation of the site energies of the network but follows an OU process [33]. 

We need a method for the propagation of a trajectory   described by the time-dependent Hamiltonian 

 ( ) ( ) ( )( ) ( )OU fluct, , '
1 , '

' '
N

j j jj
j j j

H t H H t t j j V j j j j  
=

= + = + + +  . (III.5) 

The Schrödinger equation for the evolution has the formal solution 

 ( ) ( ) ( ),0 0t U t = , (III.6) 

where the exact propagator can be formally written by mean of the time ordering operator  

 ( ) ( )OU
0

,0 exp i
t

U t H t dt

 
 = −
  
 . (III.7) 

This formal solution must be implemented numerically to simulate the dynamics of the system. Here we 

proceed as in the previous chapter by dividing the dynamics into small time steps t , so that the propagator 

to time t S t=   can be approximated as 

 ( ) ( )( ) ( )
( )

OU
1 1 1

,0 , 1 exp i
s tS S

s s s t
U t U s t s t H t dt 



= = − 

 
   −  = −
 
 

   . (III.8) 

This method corresponds to a first-order Magnus expansion [34–37]. 

As for the white noise case, the integral in eq. (III.8) can be decomposed into two contributions 

 ( )
( )

( )
( )

OU fluc,
1 1

s t s t

s t s t
H t dt H t H t dt

 

−  − 

=  +  , (III.9) 

where in the stochastic part, 

 ( )
( )

( )
( )

fluc, ,
11 1

s t s tN

j
js t s t

H t dt j j t dt 

 

=−  − 

=  , (III.10) 
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it appears the time integral of the OU process, defined as the process that satisfies 

 ( ) ( ) ( ), , ,j j jY t dt Y t t dt  + = + . (III.11) 

( ),jY t  is known to be a Gaussian random variable [3,4] whose statistical properties are different from the 

Wiener process seen in the previous Chapter, i.e., 

 ( ) ( ) ( ) ( )0
, , 0 , 0

t t
j j jY t Y t t e 
  

− −
= + , (III.12) 

 ( )  ( )( ) ( )( )0 022 0
,

1var 2 2 1 1
2

t t t t
j

t tY t e e 
 



− − − −− 
= − − + − 

 
, (III.13) 

 ( ) ( )  ( ) ( )( )0 02
, ,cov , 1 2 t t t t

j jt Y t e e 
  

− − − −
= − + . (III.14) 

In order to solve integral in eq. (III.10), we look for an updating formula that gives ( ),jY s t   from 

( )( ), 1jY s t −  , so that 

 ( ) ( )( ) ( )
( )

, , ,
1

1
s t

j j j
s t

Y s t Y s t t dt  



− 

 − − =  . (III.15) 

A first-order approximation of such an updating formula can be obtained by replacing the infinitesimal dt  

in eq. (III.11) with the finite time step t  [3] 

 ( ) ( )( ) ( )( ), , ,1 1j j jY s t Y s t s t t    −  + −   . (III.16) 

This equation must be propagated together with the updating formula for the OU process [3], which is 

known to be 

 ( ) ( )( ) ( ) ( )1 2
, , , ,1 1t t

j j j ss t s t e n e 
    − −  = −  + − , (III.17) 

where ( )1
, ,j sn   is a random number sampled from a normal distribution with mean zero and unit variance. The 

initial condition corresponds to ( ) ( )1
, , ,00j jn  =  (cf. Appendix A). Note that this first-order approximation is 

equivalent to not solving the integral and simply assuming that ( )( ), 1j s t −   remains constant during the 

time interval t , as done for example in the Numerical Integration of the Schrödinger Equation (NISE) method 

proposed by Jansen et al [1,38,39]. 

An exact update formula is also known for ( )Y t  [3,4] 
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 (III.18) 

that must be propagated together with eq. (III.17). In this case, ( )1
, ,j sn   is the same number in both updating 

formulas, while ( )2
, ,j sn   is another normal random number independent from ( )1

, ,j sn  . 

Eq. (III.18) should give more accurate results for the integral (III.15). However, since the time step t  

must be kept small to satisfy equation (III.8), we did not notice any benefit in using the exact update formula, 

so for the rest of the Chapter, we will use the first-order approximation to propagate the dynamics. 

The algorithmic scheme of the Classical Noise algorithm is equivalent to the one already introduced in the 

previous Chapter, so we will not repeat the instructions of the algorithm here. The results of the quantum 

algorithm and the effect of non-Markovianity, due to the finite memory of the environment, on the dynamics 

of the walker will be analysed in detail in section III.4. 

III.2.1 Stochastic trajectories and average evolution 
Before moving to the next method, it is worth investigating the trajectories obtained by a (classical) 

numerical computation of the Schrödinger dynamics. To do so, we start with the simplest system, i.e., a 

network composed of two linked sites. Such a network can model for example the single exciton manifold of 

an excitonic dimer. We use the following parameters for the system: an homodimer with site energy 

1 2 0 = = , coupling 11 psV −= , fluctuation amplitude 21 ps −=  and memory time of the environment 

fluctuations 1 ps = . The Schrödinger equations were propagated with a time step 50 fst = , that must be 

lower than the timescale of the system and the environment dynamics. In Figure 3, we show the results obtained 

by the algorithm. In the left panel, we report a single random trajectory for the population of the initial site of 

the dynamics. As can be noted, the population smoothly change in time without presenting any sudden 

variation or discontinuity (jump). This evolution resembles the one observed in the previous Chapter for the 

trajectory of the classical noise algorithm for the white noise. In the right panel, we show the population of the 

initial site obtained for a swarm of 104 trajectories (here we represent 200 of them as green lines in 

transparency) generated by solving different Schrödinger equations for each one of them. The ensemble 

average (solid blue line) is a population with damped oscillations that relaxes to the equilibrium value, 
eq

1 0.5P = , at around 15 ps . 
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From a comparison with HEOM, we can confirm that the classical noise method can successfully reproduce 

the non-Markovian dynamics when the coloured spectral density used. We conclude with a remark. For this 

simple system, the HEOM solver was faster in the computation than the generation of 104 stochastic unitary 

trajectories. However, we noted that a HEOM treatment becomes soon intractable in terms of computational 

time when the dimension of the system increases or the environment has long correlations [40]. Moreover, 

HEOM is known to have a very bad scaling with the system-environment coupling strength. 

 
Figure 3. Left panel: the stochastic dynamics of a single trajectory obtained monitoring the initially 

populated site of a dimeric open system obtained by the classical noise algorithm. Right panel: an ensemble 

of 200 trajectories (green). The average dynamics over 104 trajectories (blue) fits precisely the result by 

HEOM (yellow). 

 

III.3 Collision algorithm 
Collision models for non-Markovian processes have been proposed in various forms using ancilla-ancilla 

interactions [41,42], correlating the initial states of the ancillae [43,44], generating collisions at stochastic times 

[45,46], allowing multiple collisions between the ancillae and the system [47] or dressing the system with 

permanent ancillae [48,49]. In all these models, the common idea is to have the system interact with ancillae 

that have "memory" of the collisions that occurred at past times. For those who would like to learn more about 

collision models, we recommend the extensive review of ref. [50]. Here, we propose an implementation 

inspired by the composite collision model of ref. [48], which was proved to be efficient for the simulation of 

the (Markovian) dynamics of a dressed system [51]. To do so we will introduce the pseudomodes method 

[48,52–57], adapt it to our transport problem and propose the corresponding collision algorithm that can be 

used for a quantum computer simulation. To the best of our knowledge, this implementation scheme for 

quantum algorithms involving pseudomodes has not been presented in the literature so far. 
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Figure 4. Interaction of a two-site system with various forms of environment gives the same reduced 

dynamics. (a) Each site of the network interacts with a bosonic reservoir characterized by a Lorentzian 

spectral density causing site dephasing. The reduced dynamics of the system is non-Markovian. (b) 

Pseudomodes, one for each site of the network, are inserted between the open system and the bosonic 

reservoir, whose spectral density becomes flat (white noise). The dynamics of the enlarged system composed 

of the network plus the pseudomodes becomes Markovian. The reduced dynamics of the open system is 

obtained by tracing over the pseudomodes degrees of freedom. (c) In the collision model implementation, 

the reservoir with flat spectral density is substituted by ancillae qubits that interact with the pseudomodes at 

different time instants. 

 

So let us take a step back and look at the problem from a different perspective. We anticipate that in the 

next Chapter, we will introduce a model for the study of the exciton transport mediated by molecular vibrations 

in the Fenna-Matthews-Olson complex that recall several aspects of the treatment discussed in the following. 

Let us consider the case of a network where sites are coupled to each other and (individually) with a collection 

of harmonic oscillators, i.e., a bosonic bath (Figure 4a) 

 ( )† †s+e

1 0 1 0

N N

k jk jkjk jk
j k j k

H H b b j j b b 
 

= = = =

= + + +   . (III.19) 

Here,   is the strength of the coupling between the sites and the modes of its environment [56], k  is 

the frequency of the mode and †
jkb  ( jkb ) represents the creation (annihilation) operator for the harmonic 

oscillator in second quantization, defined as 

 ( ) ( )
b b† b b1 1 , 1jk jk jkjk jk jkb n n n b n n n= + + = −  (III.20) 

with b
jkn  denoting the presence of an excitation on the n -th level of mode k . 
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To implement the same open system dynamics that we have seen with the fluctuating environment, it is 

necessary for the baths relative to different sites to be uncorrelated and for the correlation function of the bath 

interacting operators, ( )†
jk jkb b+ , to have an exponential decay (see Chapter IV for a more detailed 

discussion). Then, the solution of the Von Neumann equation with Hamiltonian (III.19) gives the exact 

(desired) dynamics of the universe system (open system plus environment) when the initial state corresponds 

to the factorized state ( ) ( ) ( )s+b b0 0 0  =  , and ( )b 0  is Gaussian. In our case for simplicity, we can 

take it in the vacuum state [56] 

 ( )b b b
1 00 0 0N

j k jk jk 
= ==  . (III.21) 

However, it is clear that the computational resources required for the simulation of the complete model are 

not available as the Hilbert space of each oscillator is formally infinite, as infinite is the number of oscillators 

per site. To use this framework for a numerical simulation, it is thus imperative to reduce the size of the 

problem. Two main questions need to be faced: how many oscillator per site sufficiently describe a 

“continuum” environment? And what is an effective truncation of the oscillator Hilbert space? This 

observation explains why the theory of open quantum systems has so much success. In fact, most of the 

universe system is composed of the degrees of freedom of the environment, which give us extra information 

that we do not need to know for our purposes. Therefore, the opportunity to focus only on a master equation 

for the reduced system (with some approximations), by incorporating the effects of the environment on some 

effective parameters, has a potentially great computational advantage. Unfortunately, as already mentioned, 

writing an explicit master equation for the reduced system alone is not easy (or even possible) in all the range 

parameters we want to explore in this Chapter. 

Here, we use the so-called pseudomode method [52,53] to overcome the problem. The first step is to insert 

a fictitious layer that separate the bosonic bath from the system. This layer is represented by some harmonic 

modes (the pseudomodes [53]) associated to the sites. The pseudomodes act as an intermediate system, 

interacting both with the open system and with external bosonic reservoirs. One might ask why we are 

increasing the size of the universe system instead of reducing it. But here is the point. We can use the 

pseudomode as a memory kernel and treat the bosonic reservoir as a bath with vanishing correlation time 

( ) ( )a 2c t t=   [52] (Figure 4b). In this way, the dynamics of the enlarged open system plus pseudomodes 

can be described by a Markovian Lindblad master equation, which can be conveniently implemented with a 

collision model.1 Then, it can be demonstrated [52,53] that, after tracing over the pseudomode degrees of 

freedom, each site experiences an effective spectral density composed of a combination of Lorentzian functions 

centred at the oscillation frequency of the pseudomodes with which it interacts. Since our target spectral density 

 
1 Note that this does not contradict our previous statement that it is not possible to derive a general master 

equation for the reduced system, since in this case we are expanding the system with additional terms. 
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is made of a single Lorentzian centred at 0 = , we will need only one pseudomode for each site with zero 

oscillation frequency. 

The new Hamiltonian reads 

 ( )† † †s+p

1 0 1 0

N N

k jk jk jjjk jk
j k j k

H H a a c a c a


 

= = = =


= + + +   (III.22) 

where 

 ( )†s+p

1

N

j j
j

H H j j c c
=

= + +  (III.23) 

is the system plus pseudomodes Hamiltonian, and   is the coupling strength of the interaction between 

a pseudomode and the k -th mode of the related external reservoir [56]. jc  and jka  represent the annihilation 

operators of the pseudomodes and the reservoirs, respectively. 

In the case of exciton transport in a molecular network, a pseudomode can be seen as an effective phonon 

mode dressing the electronic level of a chromophore [52,58]. Fixing the initial condition 

( ) ( ) ( ) ( )s+p+a p0 0 0 0a   =   , where 

 ( ) ( )p pp a a a
1 1 00 0 0 , 0 0 0N N

j j k jk jkj j  
= = == =    (III.24) 

(cf. eq. (III.21)), the global exciton plus phonon (polaron [52]) density matrix ( )s+p t  can be demonstrated 

to evolve according to an exact Markovian master equation in Lindblad form [56] 

 ( )
( ) ( ) ( ) ( )( )
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† † †s+p s+p s+p s+p s+p

1
i , 2

N

j j jj j j
j

d t
H t c t c c c t t c c

dt


   
=

 = − + − −
   . (III.25) 

At this point, to recover the equation of motion for the open system it is sufficient to trace out the 

pseudomode degrees of freedom ( ) ( )( )s+p
pTrt t = . 

III.3.1 Collision algorithm and mapping for digital quantum computers 
Eq. (III.25) will be our reference master equation for the implementation of the Markovian collision model 

of the enlarged system (Figure 4c). For this purpose, the dynamics is divided into time intervals of length t , 

during which the evolution of s+p  occurs according to the following dynamical map 

 ( ) ( )( ) s+p s+p a †
aTr 1s t U s t U   = −   . (III.26) 

At every instant of time, a group of N  ancilla qubits, always initialized in the uncorrelated state 

 a a a
1 0 0N

j j j ==  (III.27) 
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(cf. eq. (III.24)), interacts pairwise with the pseudomodes. The interaction Hamiltonian specific for the 

evolution is described by 

 ( )p+a †2
j j jj jH c c

t
 − +

= +


, (III.28) 

where j +  ( j − ) is the raising (lowering) operator for the ancilla qubit associated with pseudomode j , and 

for the collision model to be valid, it must hold that ( )
12 2t 
−

  =  (perturbative pseudomode-ancilla 

interaction during time-step evolution). 

Finally, the unitary evolution operator of eq. (III.26) reads 

 p+as+p

1
exp i

N

j
j

U H H t
=

   
 = − +  
    

 . (III.29) 

In a quantum computer implementation, the operator (III.29) is translated into a multiple-qubit gate acting 

simultaneously on three quantum registers encoding the system, the pseudomodes and the ancillae, 

respectively. This large gate must be transpiled into smaller one- or two-qubits operations depending on the 

physical gates available on the device and its topology. The process of decomposing the multi-qubit gate can 

produce some overhead that can easily be reduced. Before doing it, let us say something more about the 

quantum registers involved in the algorithm. The register of the system will contain information about the state 

of the sites of our network and consists of q  qubits, which can be either 2logq N=     or q N= , depending 

on the type of mapping chosen (algorithmic or physical, respectively. Cf. section II.1.2 of the previous 

Chapter). For the simulations in this Chapter, we will always use the more performing algorithmic one. The 

system register must be initialized at the beginning of the circuit to the desired initial state of the system; we 

choose 0 1j =  in the examples reported in this Chapter. Then, there must be a register where the states of the 

pseudomodes are stored. It is clear at this point that we need to build a finite dimensional approximation for 

the pseudomodes. To do so, we approximate each pseudomode with 2p  levels (states), where p  is the number 

of qubits dedicated to a specific pseudomode, so that the state jn  of the j -th pseudomode is mapped into 

state ( )bin jn  of the j -th “partition” in the pseudomode quantum register. Thus, the total number of qubits 

for the pseudomode register is pN , that is N  pseudomodes implemented by p  qubits each. Accordingly, the 

pseudomode creation and annihilation operators must be properly adapted to the truncation of the proper 

Hilbert space. For better visualization, we report here the finite-dimensional matrices implementing the 

redefined operators 
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. (III.30) 

Then, in the last quantum register, we store the state of the ancillae. In principle, this is composed of N  

qubits that should be reset after every interaction to guarantee the Markovianity of the evolution of the system 

plus pseudomodes state. However, it is possible to reduce the size of the ancilla register to a single qubit by 

adopting a proper decomposition of the propagator. In fact, as we have shown in the previous Chapter, for a 

small enough t  we can apply Trotterization to (III.29) that reads 

 ( )† p+ai i s+p p+ai s
0 1 1

lim j j j
N Nj j c c t H tH t

j jt j j
U e e e U U U

− +  − − 

 →
= =

 =  , (III.31) 

where we have separated the free-evolution of the system, the system-pseudomode interaction and the 

pseudomode-ancilla collision. Now every collision event occurs as an individual process, so a single qubit 

(opportunely reset after every interaction) is sufficient to implement the whole ancilla space. Trotterization has 

another advantage, namely, it allows for easier transpilation. Indeed, because the dimension of the unitary 

operators in (III.31) is smaller than the full propagator (III.29), the decomposition into the basis-gate set is 

facilitated. The steps of the resulting collision algorithm are reported in Appendix C. 

III.3.2 Setting the pseudomode representation 
To discuss the trajectories and results obtained by the collision algorithm, we need first to discuss the crucial 

issue of setting an effective representation of the pseudomodes. The key parameter here is the number of qubits 

p  used to approximate each pseudomode. In Figure 5, we show the results obtained for the dynamics of a 

dimer system using 1,2p = qubits (blue and green lines, respectively) to implement the pseudomodes in the 

quantum register. HEOM is used as the benchmark method to compare the results (yellow line). The system 

is described by site-energy 1 2 0 = =  and coupling strength 11 psV −= , while we show the results of several 

values of the memory time and fluctuation amplitude. By looking at the results, the factor that most influences 

the quality of the finite-state approximation of the pseudomodes is the (dimensionless) product   .  In 

particular, we observed that when 1   for 1p =  and 2   for 2p =  the results of the collision 

model well reproduce the exact dynamics. A simple justification of this rule can be derived on a physical 

ground. The square of the fluctuation amplitude   regulates the interaction between the system and the 

pseudomodes, see eq. (III.23). This interaction promotes population in the states 0n   of pseudomodes, 

initially in state 0 . Stemming from the Hamiltonian contribution to the dynamics, the characteristic transfer 
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frequency is proportional to the coupling strength  . In contrast,   represents the relaxation time of the 

pseudomodes due to the collisions with the Markovian environment. Its effect is to transfer back population to 

states with low n , with a characteristic time  . When    is sufficiently small, the pseudomode relaxation 

is fast enough to maintain non-negligible populations only in the first 12 2p= =  or 22 4p= =  states of the 

pseudomodes. 

 
Figure 5. Dynamics of a homodimer system in a wide range of environment parameters. The results of the 

collision model with 1p =  (blue) and 2p =  (green) approximations for the pseudomodes are compared 

with the solution of HEOM (yellow). 

 

We report Figure 6 to illustrate the populations of the energy levels of the approximated pseudomode 

coupled to site 1 in the case of 21 ps −=  and 1 ps = . As can be seen, in this case, the addition of 2 extra 
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states in the approximation, i.e., passing from 1p =  (left panel) to 2p =  (right panel), has an overall small 

reorganization effect. That is why the 1p =  approximation still works with these parameters. 

On the other hand, as    grows there are increasingly discrepancies in the results of Figure 5, showing 

the limit of the finite-dimensional approximation. In this regard, concerning the dynamics with parameters 

10 ps =  and 20.1 ps −= , it is worth noting that similarities between the HEOM solution and the collision 

model with 1p =  are only fortuitous. The situation can be improved by increasing the dimension of the Hilbert 

space of the implemented pseudomodes, that is, by using more states. This poses limitations in the case of a 

simulation on a classical computer in terms of the resources required. However, from the perspective of a 

quantum computer, each time we add a qubit for implementing a pseudomode, the number of available states 

doubles, leading to the well-known and desirable exponential scaling. 

Because a rigorous guide for an optimal choice of the parameter p  is still lacking, a practical procedural 

solution is to check for the convergence of the dynamics in the presence of an additional pseudomode qubit on 

a minimal model. 

 
Figure 6. Populations of the pseudomode that is associated to site 1 of a homodimer system. The dynamics 

is obtained with a collision model with 1p =  (left panel) and 2p =  (right panel) approximations for the 

pseudomodes. 

 

III.3.3 Collisional trajectories and average evolution 
Now that we have explored the implementational aspects of the method, let us look closer at the trajectories 

generated by the collision algorithm. Again, for this purpose, we take the homodimer system with environment 

parameters 21 ps −=  and 1 ps = , in order to compare the results with the classical noise algorithm. The 

algorithm was propagated with a time step 50 fst =  and we approximated every pseudomode with only one 

qubit, 1p = . The procedure is tested through a classical simulation of the quantum algorithm. 
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In Figure 7, we report in the left panel a single random trajectory for the population of the initial site of the 

dynamics. Unlike the smooth trajectory of the classical noise algorithm, the population dynamics generated by 

the collision algorithm has various discontinuities at random times, e.g., at 5 pst  . At first glance, one might 

think that these kinds of jumps are the same as those observed in the previous Chapter for the collision 

algorithm for the Markovian dynamics of the open system. However, since the collision schemes are 

completely different in the two cases, the resulting similarities are not obvious at all. In the first place, the 

collision does not occur directly between the system and the ancilla as in Chapter II, but it is mediated by the 

pseudomode, and the system is affected only because of the coherent interaction with the latter. Secondly, the 

interaction operators with the ancillary Markovian environment are completely different. We do not want to 

go into too much detail here in order not to get off topic. Therefore, we refer the interested reader to Chapter 

V, where we offer a more in-depth analysis of how this type of interaction method works. 

Coming back to the comparison with the classical noise algorithm, consequently to the difference of the 

trajectories, also the swarm of 200 trajectories of the collision algorithm (green lines in transparency), reported 

in the right panel, has a completely different distribution. Therefore, in straight analogy with what we have 

shown in the previous Chapter, we can state that the two algorithms implement different unravellings of the 

same open dynamics, obtained as the ensemble average over the trajectories.2 

 
Figure 7. Left panel: the stochastic dynamics of a single trajectory obtained monitoring the initially 

populated site of a dimeric open system obtained by the collision algorithm with a 2-level approximation 

for each pseudomode. Right panel: an ensemble of 200 trajectories (green). The average dynamics over 104 

trajectories (blue) fits precisely the results by HEOM (yellow). 

 
2 Note that there is a slight detuning of the coherent beatings between the dynamics produced by the 

collision algorithm and the one originating from HEOM. As discussed above, this is due to the finite-state 

approximation of the pseudomodes (see Figure 5). 
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III.4 Results and discussion 

III.4.1 Effects of the memory time 
We have seen so far that coloured noise can be implemented in simulation algorithms to account for the 

memory time of the environment. Now, by exploiting the simulation routines and the HEOM reference, we 

examine the effects of the resulting non-Markovianity on the dynamics of an open system and in particular on 

the efficiency profile. The equivalent noise strength   will be here the control parameter, as it defines the 

Markovian evolution and all the shades of non-Markovian dynamics through eqs. (III.1) and (III.3). Our case-

study for this section will be the 4-site cyclic network used in the previous Chapter. For completeness, we 

recall the site energies 1
1 0.44 ps − , 1

2 0.24 ps − , 1
3 3.22 ps − −  and 1

4 0.36 ps − , and coupling 

between adjacent sites 11 psV −= . The dynamics starts with the excitation localized at site 1,  and we monitor 

the population at site 3 to calculate the transport efficiency, defined as (cf. Chapter II) 

 ( ) ( )3 33
0

' '
t

j t t dt = =  , (III.32) 

where ( )33 t  is the value of the third diagonal entry of the system density matrix (i.e., the population at site 

3). 

In Figure 8, we report the transport efficiency at time 40 pst =  as a function of the equivalent noise strength 

 . The various curves have been calculated for growing memory time of the environment, from 0 →  

(Markovian limit) to 1 ps =  (where the environment has a relaxation time comparable with the site coupling). 

The Markovian transport efficiency is simulated by solving the relative Lindblad master equations (see the 

previous Chapter), while continuous lines are the results of HEOM computations for finite correlation times. 

We set 120 ps −=  as the upper limit of the equivalent noise strength, as deep hierarchical series and long 

computational time are required for higher values, especially when   increases. Results from simulations of 

our quantum algorithms using Qiskit QASM simulator [59] are also shown for 1 ps =  (circles), and will be 

discussed in a dedicated paragraph below. 
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Figure 8. The efficiency of transport in a 4-site cyclic network. Lines represent different memory times of 

the environment ranging from 0 →  (Markovian limit, obtained solving a Lindblad master equation) to 

1 ps =  (calculated using HEOM). For 1 ps = , we also report the transport efficiency computed by a 

Qiskit QASM simulation of our Classical Noise Algorithm (CNA, orange circles) and Collision Algorithm 

(CA, violet circles). Each circle is the ensemble average over 104 samples. For the CA, we used a single 

qubit to approximate a pseudomode. The time step for the simulations was set at 50 fst = . 

 

The first thing to notice is that in all cases the efficiencies of transport exhibit a phenomenology similar to 

the Markovian one, first increasing thanks to the interaction with the environment and finally dropping in a 

slow diffusion regime, which is the hallmark of ENAQT. At low values of  , i.e., when the interaction with 

the environment is weak and the relaxation dynamics is slow, we have low efficiency. This is because our 

network has an energetic static disorder, due in particular to a prominent energy gap between site 3 and its 

neighbours. So, a weak interaction with the environment is not sufficient to overcome localization in the system 

within the time limit chosen to measure efficiency. 

Then, there is an intermediate range of parameters where the noise and the coherences of the system cooperate 

to enhance transport. Here,   is strong enough for the decoherence effect to play a role. We observe that 

longer correlation times, therefore slower environments, requires a higher equivalent noise strength to induce 

the enhancement. This is shown by the drift of the efficiency profile going from the violet line (Markovian) to 

the yellow line (slowest environment) in Figure 8. 

Enhanced efficiency stems from a balance between the coherent and incoherent contributions to the overall 

quantum dynamics. Therefore, to rationalize the effect of a finite correlation time, let us analyse the population 

dynamics at site 3 for an equivalent noise strength of 10.1ps −=  and 11 ps−  for various   (Figure 9). From 

Figure 8, we can see that in these cases the Markovian dynamics is closed to the maximum efficiency, while 

the efficiency decreases as the environment gets slower. Interestingly, for the same  , longer memory times 
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of the environment have the effect of sustaining the system coherences, as reflected by the persistent coherent 

beating of the site population (see green and yellow traces). Notice that such coherent beating will necessarily 

die out following the complete relaxation of the dynamics which admit equally distributed site populations as 

stationary solution. 

By comparing dynamics with similar efficiency (Figure 10), we notice that the beatings are damped faster for 

longer correlation times  , while the relaxation to the asymptotic population is comparable between 

Markovian and non-Markovian dynamics. This suggests that, for the considered system, the efficiency is 

primarily determined by the timescale of the relaxation. A striking evidence that longer living coherences does 

not imply higher transfer efficiency. Figure 9 shows that this timescale of the relaxation is heavily dependent 

on the environment correlation time. Indeed, the coherence between different sites, sustained by  , keeps the 

system far from the asymptotic solution. An higher equivalent noise strength is thus needed to get the same 

efficiency, which is the cause of the right-drift of the transport efficiency curve with increasing memory time 

 .  

 

 
Figure 9. Comparison of the dynamics of the target site population for environments with equivalent noise 

strength 10.1 ps −=  (left panel) and 11 ps −=  (right panel). Differences in the memory time of the 

environment, 0.1 ps =  (violet), 0.2 ps =  (blue), 0.5 ps =  (green) and 1 ps =  (yellow), lead to different 

damping of the coherent beating and relaxation. 
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Figure 10. Comparison of the dynamics of the target site population for efficiency ( )3 40 ps 5.00t =  (left 

panel) and ( )3 40 ps 7.80t =   (right panel). Differences in the correlation time of the environment, 

vanishing (blue line) and 1 ps =  (yellow line), lead to the same thermalization rate but different dephasing 

rates. 

 

The last regime to consider is when ENAQT is suppressed by the strong decohering effect of the 

environment, i.e., in the limit of large  . It is known that in this limit the dynamics is largely controlled by 

the dissipative dynamics and transport becomes incoherent. In this conditions, the coupling jlV  between sites 

can be treated as a perturbation and the evolution of the site populations is well-described by a hopping 

mechanism where the transfer rates are calculated via the Fermi golden rule (leading to Förster theory in 

exciton transport, see Appendix B of Chapter IV for further details) [2,24,60–62]. In our case, the kinetic 

equation reads 

 
( )

( )
j

jl l
l

dP t
P t

dt
= , (III.33) 

where ( ) ( )j jjP t t=  are the site populations and the transfer rates can be demonstrated to be [2,60] 

 ( ) ( )( )2 2

0
2 Re exp i 2 2 1 exp ,j l jl j l jj jl

l j
V t t dt       







   = − − + − − = −  
  

 . (III.34) 

The transfer rates are suppressed in the limit  → , causing the decrease of the efficiency (as in the 

quantum Zeno effect discussed in the previous Chapter). Moreover, eq. (III.34) suggests that there should be 

a threshold value of   over which the differences of the site energies become irrelevant. Above such a critical 

value, we expect that the topology of the network, ijV ,   and   become the only significant parameters for 

the dynamics. To prove this point, we generate a representative ensemble of Hamiltonians for a 4-site cyclic 

topology. Hamiltonians present static disorder on the site energies with standard deviation 12 ps−  (cf. Chapter 
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II). In Figure 11, we show the profile of the transport efficiency generated by the ensemble for different 

memory times of the environment, from memoryless to 1 ps = . To obtain the profiles, we solve the dynamics 

with HEOM for points up to 150 ps −=  (except for the Markovian case, for which we used the correspondent 

Lindblad equation), while for higher values of the equivalent noise strength we solve directly the incoherent 

master equation for the dynamics of the populations. As can be noted, the two parts match smoothly. However, 

to have further proof that the incoherent hopping gives a reliable description, we also report some values of 

the transport efficiency at high   for 1 ps =  obtained by a classical simulation of the classical noise 

algorithm (average over 104 trajectories). Contrary to HEOM, whose hierarchical depth becomes intractable 

in this regime, the classical noise algorithm maintains the same computational scaling allowing for a 

comparison with the incoherent master equation. 

The results verify both the transport suppression at high   and the predicted convergence of the profiles in 

the same limit due to the vanishing influence of the static disorder. 

Besides confirming the independence of the transport efficiency from the particular realization of the site 

energies in the incoherent regime, Figure 11 offers another interesting evidence. In most cases, the maximum 

value of the efficiency, for this molecular network topology, is not much affected by the non-Markovianity of 

the environment (even if the maximum is shifted toward an higher value of the equivalent noise strength as 

noted above). However, in some cases (see for example the curve with a pronounced peak at 10.3 ps −=  for 

1 ps = ), longer environment correlation times can result in a significant improvement of the efficiency, with 

clear advantages over the Markovian situation. This phenomenology is clearly linked to spectral features 

realized in that particular instance of the static disorder, but a full rationalization is still missing and will be 

the object of future investigations. 

We conclude this part with a final remark. The incoherent equation (III.33) is evidently Markovian and this 

might seem bizarre given that we were starting from dynamics with clear non-Markovian signatures. However, 

this is absolutely in line with what is shown in Appendix B, where the degree of non-Markovianity goes to 

zero in the limit of  → .  
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Figure 11. Transport efficiency generated by a representative ensemble of 4-site cyclic networks with 

different static disorders on the site energies. Results have been obtained by solving the correspondent 

dynamics using the Lindblad master equation ( 0 → , blue lines) or HEOM ( 0.1 ps = , green lines, and 

1 ps = , yellow lines) for 150 ps − , while the incoherent master equation (III.33) was used for the rest. 

As a benchmark for the incoherent master equation, some values of transport efficiency at high   have 

been computer with a simulation of the classical noise algorithm (violet circles for 1 ps = ). 

 

III.4.2 Qiskit QASM simulations and comparison of the algorithms 
In the previous paragraph, we showed that a finite memory time for the environment can strongly affect the 

dynamics of the system and change some fundamental quantities such as the dephasing time and transport 

efficiency. This requires reliable algorithms that can simulate the dynamics of even large systems, preferably 

with short computational times. The quantum algorithms we propose are designed with this aim. 

However, quantum computers are not yet ready for interesting simulations of non-trivial quantum 

dynamics. Tentative implementations of collision models on real (noisy) digital quantum devices have been 

recently reported in refs. [44,63] for small systems. In particular, Cattaneo et al report a collision model to 

study the super- and sub-radiance between two qubits emitting in the same environment, showing theoretical 

and experimental error bounds [63]. From their “experiments” it is evident that, even if their collision model 

is propagated for a few time steps, the amount of noise from gate error is still considerably high. Furthermore, 

in their implementation, they had to replace the ancilla qubits with a new qubit after every interaction, as they 

found that the use of the reset gate introduces too many decoherences in today’s quantum computer.  

While waiting for a new generation of more noise-resilient quantum computers, which would actually allow 

the execution of interesting circuits, we simulate our algorithms with the IBM Qiskit QASM simulator. The 

dynamics are executed for 1 ps =  with time step 50 fst =  and using 1p =  qubit to implement each 
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pseudomode in the collision algorithm. For the classical noise algorithm, the results are the average over 104 

independent circuits, each one representing a unique realization of the noise trajectories and sampled with a 

single measure (single shot). For the collision algorithm, we run and measure 104 times the same circuit, 

because the trajectories naturally emerge from the reset of the ancilla qubit. Results of the transport efficiency 

are shown in Figure 8 as circles. The classical noise algorithm fits very well the transport efficiency calculated 

by HEOM in all the range of parameters, while the collision algorithm underestimates the values at 1 ps =  

and 110 ps −= . However, this is in complete accordance with the analysis reported in section III.3.2 related 

to the number of states included in pseudomode representation. 

For completeness, in Figure 12, we show the output of the algorithms for the dynamics with 11 ps −= . 

Yellow dots represent the population measured at site 3. Despite some noise due to finite sampling, here we 

see that the classical noise algorithm faithfully follows the exact dynamics, as expected. On the other hand, the 

collision algorithm displays a slightly underestimation of the average population which explains the small 

deviation in the efficiency. 

 
Figure 12. Time evolution of the population at site 3. Results for the Classical Noise Algorithm (CNA, left 

panel) and Collision Algorithm (CA, right panel) are obtained with Qiskit QASM simulator. The exact 

numerical solution is calculated with HEOM (blue line). The time step for the algorithmic evolution is 

50 fst = , and the environment parameters are 11 ps −=  and 1 ps = . Pseudomodes in the collision 

algorithm are implemented using one qubit. 

 

Unlike the Markovian dynamics seen in the previous Chapter, in which the quantum versions of both the 

classical noise and collision algorithms gave comparable results and scaling, in this case, the differences are 

such that the choice should be directed toward the classical noise algorithm for most applications. Indeed, this 

algorithm allows accurate results to be obtained over a wide range of parameters, without the need to expand 

the quantum register beyond the number of qubits required for the system. Moreover, it maintains the same 
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algorithmic scaling of ( )2N  found for the white noise implementation. In contrast, for the collision 

algorithm, it is necessary to include a quantum register for the pseudomodes and one for the ancilla. In addition, 

to achieve the same results as the classical noise algorithm at high   , it may be necessary to further expand 

the pseudomode register, i.e., add more qubits. 

Although these inconveniences, the collision algorithm has great potential as it offers the possibility to 

study entanglement and thermodynamic quantities affecting the open system and its environment (see for 

example [64]). In this regard, running the collision algorithm on a quantum computer is expected to give 

advantages over a classical simulation. In fact, the collision model presented here requires 2 pN  degrees of 

freedom for the implementation of the N  pseudomodes approximated with 2p  levels each. On a classical 

computer, the problem becomes soon expensive for large N  (also in the case of 1p = ), due to the exponential 

scaling. But a quantum computer requires only pN  qubits for the pseudomodes, which is an exponential saving 

of resources. Regarding the circuit depht, the number of gates required to solve the problem scales 

polynomially with N  and with the number of states of each pseudomode (see Appendix C). This means that 

quantum computers could in principle efficiently manage the problem and offer a quantum advantage with 

respect to classical computation. 

III.5 Conclusions 
In this Chapter, we have explored the phenomenology of quantum transport on networks assisted by a 

coloured environment. We showed that a site-dephasing environment with exponentially damped time- 

correlations can lead to non-negligible non-Markovian signatures in the dynamics of the open system. 

At the same equivalent noise strength  , non-Markovian dynamics were found to have more persistent 

coherences in the examined situations. This observation is in line with what is found in refs. [24,65,66] for the 

Drude-Lorentz spectral density and in ref. [65] for an Ohmic spectral density with an exponential cutoff. 

Non-Markovianity also affects some important quantities such as the transport efficiency. However, the effect 

of a slower environment can be both detrimental or beneficial depending on the specific realization of the 

Hamiltonian, confirming a non-trivial interplay between the coherent and the incoherent contributions to the 

quantum dynamics in determining the overall efficiency. A general rationalization of such an interplay is still 

missing to the best of out knowledge and it is an intriguing issue which is left for future works. 

At high  , we found that the dynamics of the open system becomes incoherent and can be described by a 

kinetic master equation where the transfer rates are calculated via the Fermi golden rule assuming perturbative 

coupling between sites. In this regime, at certain values of  , the static disorder in the site energies of the 

network becomes irrelevant and all the networks with the same topology and coupling strength have similar 

dynamics. 

As finite memory time for the environment can strongly affect the dynamics of the open system we 

expanded the quantum algorithmic package introduced in the previous Chapter in order to account for the non-
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Markovian effects. Both algorithms rely on an effective representation of the environment for their 

implementation. For the classical noise algorithm, the generalization is straightforward, while for the collision 

algorithm we opted for the inclusion of external degrees of freedom (the pseudomodes) to account for the 

memory effects. In straight analogy with what we have shown in the previous Chapter, the two algorithms 

implement different unravellings of the same open system dynamics. 

The resource and algorithmic scaling of the classical noise algorithm proved to be advantageous with respect 

to the collision one. However, the collision algorithm offers the possibility to analyse the thermodynamics of 

the interaction with the environment with a quantum advantage over a classical simulation of the same 

algorithm. 

In our proposal, the algorithms are designed to simulate the effect of an environment with a Lorentzian spectral 

density centred in 0 = . However, both algorithms can be easily adapted to simulate more general spectral 

densities that can be decomposed as a sum of non-negative Lorentzian contributions. In one case, this can be 

done by adding more fluctuations as reported in [2]. In the other case, it is sufficient to insert new pseudomodes 

that are harmonic oscillators whose frequencies correspond to the central frequencies of the Lorentzian peaks 

[52–54]. 

III.6 Appendix A 
Here we revise the statistical properties of the Ornstein-Uhlenbeck process by adapting Gillespie notation 

[3,4] for our purposes. The mean of the fluctuations describing the process is defined as 

 ( ) ( ) ( ) ( ) ( )( )0 0
0 1t t t t

j j jt t e t e 
  

− − − −
= + → − , (III.35) 

where ( )0j t  is the initial value of the fluctuation at time 0 0t = ,   is the correlation time of the fluctuation, 

while ( )j t →  is the mean value at long times, t  . Here, we assume fluctuations to oscillate around 

zero at long times, i.e., ( ) 0j t → = . 

The variance of the fluctuation is given by 

 
( )  ( ) ( )

( )( )0

22

2
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1

j j j

t t

t t t

e 

  


− −

= −

= −
 (III.36) 

where   is the fluctuation amplitude, and the auto-covariance is 
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     


− + −− −

= − 

= −
 (III.37) 

The process, as introduced above, depends on the specific initial condition ( )0j t , which has no particular 

meaning in our case as there is no reason why our system should be initialized to a specific value of the 
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fluctuation at the beginning of the dynamics. This problem is solved when the process becomes stationary, that 

is in two cases: for long times, so that 

  2 1 0min ,t t t − , (III.38) 

or by randomly sorting the initial value ( )0j t  for every different realization of the process. The first case 

reconducts to the second if one takes an initial time of the fluctuations 0t →−  different from the initial time 

of the dynamics 0t = . In this way, the condition (III.38) is always valid for 1 2, 0t t  . For the stationary 

process, the moments become independent on t  

 ( ) ( ) ( ) 0, varj j jt t t   = → = =  (III.39) 

and the covariance becomes equal to the correlation function 

 ( ) ( )  ( ) ( ) 2 1
2 1 2 1cov , t t

j j j jt t t t e 
    

− −
= = . (III.40) 

III.7 Appendix B 
In ref. [67], Breuer and coworkers proposed an indicator for the degree of non-Markovianity in the 

dynamics of open quantum systems. They pointed out that all positive and trace-preserving dynamical maps 

( )t  are contractions [68] for the trace distance [69] 

 ( )1 2 1 2
1, Tr ,
2

D    = −  (III.41) 

with †A A A= , measuring the distinguishability of two quantum states 1  and 2 . Practically, the condition 

 ( )  ( ) ( ) ( )1 2 1 2, ,D t t D       (III.42) 

holds for Markovian master equations as Lindblad-form master equations, even with time-dependent Lindblad 

operators and relaxation rates (as long as they are 0  at all times). Time intervals in which eq. (III.42) is not 

valid are interpreted as a backflow of information from the environment to the system, enhancing the 

distinguishability of the states. Looking at the slope of D , i.e. 

 ( )( ) ( ) ( )( )1,2 1 2, 0 ,dt D t t
dt

   = , (III.43) 

these time intervals are characterized by ( )( )1,2, 0 0t   . The degree of non-Markovianity  of the process 

( )t  is then defined as 

 
( )

( )( )
1,2

1,200
max , 0t dt


 


=  , (III.44) 

where the time integral is over all the time intervals satisfying ( )( )1,2, 0 0t   , and the maximum is taken 

over all pairs of pure and mixed initial states ( )1 0  and ( )2 0 . 
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In Figure 13, we tested the non-Markovianity in the dynamics of a dimer system with site-energy 

fluctuations described by OU processes. The dynamics were simulated with HEOM (see section III.2) using 

the following parameters for the dimer system: 1 2 0 = =  and 11 psV −= . In the left panel, we keep 

21 ps −=  fixed and vary the memory time. As one could expect, non-Markovianity  increases with  , 

meaning that the longer the memory time of the environment, the more the backflow of information to the 

system [67]. The increase seems to be exponential for high  . In the right panel, we do the opposite by fixing 

1 ps =  and changing  . Here, we identify three different behaviours. In the limit of 0 →  we see vanishing 

non-Markovianity. This is expected since small values of   mean weak interactions with the environment. At 

high  , transport becomes incoherent and it can be described approximated by a proper Pauli master equation 

as discussed in section III.4.1. As Pauli master equations are Markovian,  decrease until it vanishes as 

 → . Consequently, in the intermediate region, the expected increase and decrease are observed, leading to 

a maximum degree of non-Markovianity in the region 2 20.1 ps 1 ps− −  . 

Similar results were observed by Rebentrost and Aspuru-Guzik for the Drude-Lorentz spectral density [70]. 

However, caution must be observed in generalizing the results to other forms of Hamiltonian. For example, it 

is known that for a diagonal Hamiltonian with OU fluctuations, i.e., by assuming no coupling between sites, 

the dynamics is purely Markovian [71]. 

It is worth mentioning that the definition of witnesses of non-Markovianity is still an open problem. This 

type of measure of non-Markovianity is limited to some classes of non-Markovian maps and it excludes, for 

example, non-Markovian dynamics that represent a contraction of trace-distance, such as those reported in ref. 

[72]. Other metrics have been designed based on the refinement of the degree of non-Markovianity (see for 

example [73]), but the topic is beyond the scope of this thesis. 
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Figure 13. Measures of non-Markovianity in the dynamics of a dimer system as a function of the memory 

time of the environment   (left panel) and fluctuation amplitude   (right panel). For each set of parameters 

( ),  , we sampled 500 randomly-drawn pairs of initial states whose values of non-Markovianity are 

represented as dots in the figures. 

 

III.8 Appendix C 
Steps of the collision algorithm for the quantum simulation of transport in a network with an exponentially 

correlated site-dephasing: 

a) Initialize the system quantum register to the initial state of the dynamics 0j ; 

b) Apply gate corresponding to operator sU  to the system register; 

c) Sequentially apply gates corresponding to operators s+p
jU  and p+a

jU  to the system plus pseudomode 

registers and to the pseudomode plus ancilla register, respectively; 

d) Reset the ancilla; 

e) Repeat steps c) and d) for  1,2,...,j N ; 

f) Create a copy of the circuit, so that you have two identical objects: a quantum circuit  that will be 

the lead and its copy  to which the measurement gate will be appended; 

g) Add measurement gates to the clone of the system register in circuit  to read the populations of the 

system; 

h) Discard circuit  and continue with circuit ; 

i) Repeat steps from b) to h) for  0,1,...,s S t t =  , where t  is the final time of the dynamics. 

We now briefly discuss the scaling of the collision algorithm for both mappings presented in the previous 

Chapter. In the algorithmic mapping, the system quantum register contains 2log N    qubits, so that the system 
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operator sU  is decomposed using ( ) ( )2log 24 N N   =  CNOT gates. Then, each interaction operator s+p
jU  

acts on a Hilbert space that includes the system plus a pseudomode, leading to a gate count of 

( ) ( )2log 24 4N p pN+   =  CNOT gate. The last element is the pseudomode-ancilla interaction, 

implemented with ( ) ( )14 4p p+ =  CNOT gates for each p+a
jU  operator. Since there are N  system-

pseudomode and pseudomode-ancilla interactions, we have a ( )34pN  and ( )4 pN  scaling, respectively. 

Thus, the final CNOT gate count is ( )34pN , i.e., cubic with respect to the system dimension and quadratic 

with respect to the number of states for the implementation of a pseudomode (which we recall to be 2p ). 

In the physical mapping, every site of the network is mapped as the state 1  of a qubit, requiring N  qubits 

for the implementation of the system. The system Hamiltonian and the system-pseudomode interaction must 

be redefined accordingly. See the previous Chapter for the details. The new system operator sU  scales 

differently based on network connectivity, from ( )2N  for fully connected systems to ( )N  for linear or 

cyclic chains. The system-pseudomode operator p+a
jU  becomes an interaction between a single qubit 

implementing a site and the pseudomode qubits, needing ( ) ( )14 4p p+ =  CNOT gates for the 

implementation. Since there are N  system-pseudomode interactions, the count is ( )4 pN  CNOTs, exactly 

the same as for the interactions between the pseudomodes and the ancilla. Therefore, for the physical mapping, 

we have a polynomial scaling ( ( )2N  in the worst case) with the system dimension and quadratic with the 

number of states for the implementation of a pseudomode. 

In addition, with both types of mapping, we need to apply N  times the reset gate to the ancilla per time 

step (i.e., after every interaction). 
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Chapter IV 

A microscopic model for the 
environment: the Redfield master 

equation 
 

 

 

 

In the vast panorama of quantum master equations, it is hard to overstate the conceptual and practical 

importance of Redfield derivation [1,2]. It provides a route to open system dynamics starting from the full 

specification of the system-environment Hamiltonian with the possibility of specifying the conditions of 

validity for each assumption made on the way. From a more practical point of view, it gives a receipt to 

completely characterized the dissipative part of the system evolution solely based on the spectral density of 

the environment. In the standard derivation, also used in this Chapter, the Redfield equation stems from a 

second-order truncation on the system-environment interaction and the Born-Markov approximation. The price 

to pay at the end, is the requirement of complete positivity, because the Redfield equation may generate non-

physical negative probabilities during time evolution. The adequacy of the Redfield equation for describing 

excitonic transport dynamics in light-harvesting complexes is a long-standing debate in the literature. On the 

one hand, by emphasising its weak-coupling nature, some authors seem to advise against its use in favour of 

more computationally demanding exact equations [3]. On the other hand, other authors approve of its conscious 

use, meaning being aware of its range of validity and thus employing a physically grounded definition of the 

environment [4]. Some papers see non-positivity as a problem [5], while others suggest that, since it happens 

only outside the range of validity of the approach, non-positivity should be regarded as a powerful indicator 

[6]. The debate is further complicated by the use of the equation with additional approximations, like the often-

invoked secular form of the Redfield tensor. 

We believe that, although this equation cannot describe the full spectrum of coupling regimes and it is 

limited to Markovian conditions, it is nevertheless extremely useful for providing information on the dynamics 
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that can then be refined using more advanced methods. With this in mind, in section IV.1 we first give a 

derivation of the Redfield equation for a generic system in contact with its environment. The purpose of the 

section is to establish the language used thereafter and to highlight the approximations introduced and the 

limitations they pose. Once we get the equation, we discuss two well-known "variants" often used for the 

excitonic dynamics: the secular equation and the equation for  -correlated environments. 

In section IV.2, the derivation is contextualised for a light-harvesting system interacting with its 

overdamped vibrational environment. We assume a Drude-Lorentz spectral function for the environment, 

corresponding to the overdamped Brownian oscillator model, and study how it depends on the three 

characterising parameters (reorganization energy, cutoff frequency and temperature), finding the limiting cases 

that reproduce the classical spectral densities used in Chapters II and III. 

In the last section IV.3, we use the established framework to conduct an original comparative analysis on 

the dynamics produced by the Redfield equation and some variants used in the literature. In particular, we will 

test the behaviour, validity limits and effectiveness of the Redfield treatment over a wide range of parameters. 

Although the Redfield equation is much studied in the literature, we are not aware of an extensive comparative 

analysis as the one presented in this chapter. The Fenna-Matthews-Olson molecular complex will be our 

testbed. As a result, we find that, where the Born-Markov approximation is valid, there are no substantial 

differences between the dynamics produced by the Redfield equation, its secular version or Redfield equation 

without imaginary part (where the contribution of the dispersion function is neglected). On the contrary, where 

the approximation fails there can be large differences in the dynamics of both populations and coherences. We 

also explicitly show cases where the non-positivity issue becomes relevant. Although this problem is well 

known and much analysed from the theoretical point of view, it is not common to encounter concrete 

simulation cases in which it occurs. In this regard, we verified that the positivity of the density matrix, not 

guaranteed by the Redfield equation, is a useful indicator of the range of validity of the equation itself, in 

agreement with [6].  

We conclude in section IV.4 with some remarks. 

IV.1 A microscopic derivation of the equation of motion 
Consider an open quantum system with a time-independent Hamiltonian sH  and an environment described 

by bH  coupled together via an interaction Hamiltonian sbH , that we assume to be in the form 

 sb i i
i

H S B= , (IV.1) 

where iS  and iB  are operators acting on the system and environment subspace, respectively. The Hamiltonian 

for the universe system reads 

 0 sb s b sbH H H H H H= + = + + , (IV.2) 

with 0H  the Hamiltonian of the non-interacting systems. 
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The Von Neumann equation that regulates the dynamics of the universe system density matrix ( )sb t  in 

the interaction picture reads 

 ( )
( ) ( )sb

sb sbi ,
d t

H t t
dt


 = −   , (IV.3) 

where the interaction picture is related to the Schrödinger picture by the unitary transformation 

 ( ) ( ) ( )†
00O t U t OU t= , (IV.4) 

with ( ) ( ) ( ) ( )0 0 s bexp i exp i exp iU t H t H t H t= − = − − , that is the free-evolution operator of the global non-

interacting system. In the following, we set 1=  for simplicity. 

Integrating eq. (IV.3) leads to 

 ( ) ( ) ( ) ( )sb sb sb sb
0

0 i ' ' , '
t

t dt H t t   = −   , (IV.5) 

where we have used the identity ( ) ( )sb sb0 0 = . 

Now we substitute eq. (IV.5) in the right-hand side of the Von Neumann eq. (IV.3) and trace over the bath 

degrees of freedom since we are interested in an equation of motion for the reduced density matrix of the open 

system, defined as ( ) ( ) s b sbTrt t  . The result reads 

 
( )  ( )

( ) ( ) ( ) ( ) ( )
b sb s

b sb sb b sb sb sb
0

Tr
iTr , 0 'Tr , ' , '

td t d t
H t dt H t H t t

dt dt
 

     = = − −     . (IV.6) 

As we have not made any approximation yet, this equation is an exact equation of motion for the density matrix 

of the system. 

IV.1.1 Mean-field effect 

The first assumption, common to nearly all the developments in open system theory, is that at time 0t =  

the system and the environment are in a product state ( ) ( ) ( )sb s b0 0 0  =  . Although there is not a truly 

valid justification of this assumption, one may argue that the system and the environment are initially non-

interacting, and then a Hamiltonian quench occurs turning on the coupling. Alternatively, one may argue that 

the uncorrelated state stems from a rapid variation of the state of the system, as in the case of a photon excitation 

of the electronic degrees of freedom of a molecule surrounded by a vibronic environment. 

In addition, we make another common assumption that is that the environment is initially in its thermal 

(Gibbs) state, ( ) eq
b b0 = , associated with bH , that is 

 ( )
( )beq

b b
exp

0
H

Z


 
−

= = , (IV.7) 
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where ( ) b bTr expZ H = −  is the partition function, ( )
1

Bk T
−

=  the inverse temperature, Bk  the 

Boltzmann constant and T  the temperature of the environment. As a consequence, we have that the 

commutation relation eq
0 b, 0H   =

 
 holds, and thus ( ) ( )eq eq†

00 b bU t U t = . 

Now, we look at the first term on the right-hand side of eq. (IV.6). For initially separated states, this can be 

written as 

 
( ) ( ) ( ) ( ) ( ) 

( ) ( )

eq
b sb sb s b b

s eq

Tr , 0 , 0 Tr

, 0

i i
i

i i
i

H t S t B t

S t B

  



   =   

 =  




 (IV.8) 

where we have defined the expectation value of the environment interacting operators at the equilibrium as 

( ) eq
b beq Tri iB B t = . Often, one naturally gets that eq 0iB = . However, in general, the first-order term 

gives a so-called mean-field effect that can be taken into account by simply redefining the system and 

interaction Hamiltonians as 

 s s eqi i
i

H H S B= + , (IV.9) 

 ( )sb eqi i i
i

H S B B= − . (IV.10) 

In the end, eq. (IV.6) can thus be rewritten as 

 
( )

( ) ( ) ( )s
b sb sb sb

0
'Tr , ' , '

td t
dt H t H t t

dt


  = −    . (IV.11) 

IV.1.2 Born approximation 

Eq. (IV.11) depends on the universe density matrix ( )sb t , which is in general a mixed state difficult to 

handle. However, if the environment can be treated as a large reservoir and the coupling with the open system 

is small enough1 (weak coupling approximation, see [7–9] for some definitions), then the Born approximation 

can be applied. This consists in neglecting the entanglement between the system and the environment, with 

the justification that the environment is negligibly perturbed by the interaction, resulting in a density matrix 

for the universe system that is always described by the product state ( ) ( ) ( )sb s bt t t  =  . Now, as a further 

step of the approximation, we assume the bath relaxation b  to be fast compared to the time scale t  we use 

 
1 The strength of the interaction can be evaluated through the operator 1-norm of the interaction 

Hamiltonian, which is defined as ( )sb sb1 maxH H


 , where the maximum is taken over the eigenvalues 

  of the matrix † 2
sb sb sbsbH H H H = , where in the last equivalence we use the Hermiticity of sbH . 
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to look at the system evolution (i.e., bt  ). In this case, the state of the environment always results relaxed 

in its equilibrium state, i.e., ( ) ( ) eq
sb s bt t  =  .  

The new integrodifferential equation of motion for the density matrix under Born approximation reads 

 
( )

( ) ( ) ( ) eqs
b sb sb s b

0
'Tr , ' , '

td t
dt H t H t t

dt


   = −
    . (IV.12) 

Note that, although the validity of the Born approximation is strictly related both to the weak coupling and 

to the existence of a coarse-grained timescale t , whose limit is dictated by b , the only visible effect in eq. 

(IV.12) is the state separation, while the coarse-graining remains implicit in the derivation. 

IV.1.3 The correlation functions of the environment 

Since we are interested in the evolution of the reduced system, it would be convenient to condensate all the 

information regarding the environment into some effective functions. To do this, let us expand the nested 

commutators inside the time integral of eq. (IV.12) as 

 

( ) ( ) ( ) ( ) ( ) ( ) 
( ) ( ) ( ) 

eq eq
b sb sb s b sb sb sb b

eq
b sb s sbb

Tr , ' , ' Tr ' '

Tr ' '

h.c.

H t H t t H t H t t

H t t H t

   

 

   =
   

−

+

 (IV.13) 

Now we want to write explicitly the interaction Hamiltonian sbH  is terms of operators iS  and iB . Here, 

we assume for simplicity that they are Hermitian, however, if they are not, it is always possible to redefine 

them as Hermitian (see the appendix of ref. [10]). For Hermitian operators, the identity 
† †

sb i i i i
i i

H S B S B= =   holds, and it holds also in the interaction picture. Making use of it, we write the trace 

in eq. (IV.13) by inserting ( )'iS t  and ( )'iB t  for ( )sb 'H t , while ( )†
iS t  and ( )†

iB t  for ( )sbH t  

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 

( ) ( ) ( ) ( ) ( ) 

eq eq† †
b sb sb s s bb b

,

eq† †
s b b

,

Tr , ' , ' ' ' Tr '

' ' Tr '

h.c.

j ji i
i j

j ji i
i j

H t H t t S t S t t B t B t

S t t S t B t B t

   

 

   =
   

−

+



  (IV.14) 

Since iS  and iB  are Hermitian operators, this choice does not affect the result, but the dagger sign will help 

us identify the terms in the following. 

We recognize that the equilibrium two-point correlation functions of the environment appear in eq. (IV.14) 

 ( ) ( )  ( ) ( ) ( ) ( )eq† † †
b b eq eq

Tr ' ' ' 'j j j iji i iB t B t B t B t B t t B c t t = = − = − . (IV.15) 



96 Chapter IV  

For a quantum environment, the correlation functions of Hermitian operators are in general complex, and 

satisfy both the symmetry relation 

 ( ) ( ) ( )( ) ( ) ( )  ( )
†eq eq† †*

b bb b' Tr ' Tr ' 'ij j i jii jc t t B t B t B t B t c t t 
 

− = = = − 
 

, (IV.16) 

and the Kubo-Martin-Schwinger (KMS) condition that ensures the detail balance at finite temperature2 

 ( ) ( )* ' ' iij ijc t t c t t − = − − . (IV.17) 

Using the new notation for the correlation functions, eq. (IV.12) can be written in terms of the system 

operators only, as 

 
( )

( ) ( ) ( ) ( )s †

,0
' ' , ' ' h.c.

t

ij j si
i j

d t
dt c t t S t S t t

dt


 = − − +
  . (IV.18) 

IV.1.4 Markov approximation 

It is convenient to introduce the time difference 't t = −  to facilitate the writing of the bath correlation 

functions. As already mentioned, for the Born approximation to be valid, we need a coarse-graining of time, 

so that the time step t  we use to resolve the dynamics is longer than the typical decay time of the bath 

coherences b . Since in general t  will be a multiple of t , the time difference   will be as well. Thus, except 

for the trivial case 0 = , the coarse-graining applies also to  , i.e., bt   . This tells us that, during the 

time scale used to look at the open system, the correlations of the environment should have mostly decayed, 

( ) 0ijc  . Therefore, the contribution to the integral in eq. (IV.18) will be negligible for b  . Here enters 

the Markov approximation. As a first step, we assume that for such a brief time interval defined by the memory 

of the environment ( b ) the value of the system density matrix in the interaction picture remains approximately 

constant, such that we can substitute ( )'t  with ( )t . The equation we obtain is now a time-local master 

equation known as the Redfield equation with time-dependent coefficients [11] 

 
2 The important relation in eq. (IV.17) can be demonstrated by recalling the definition of the equilibrium 

density matrix of the environment at inverse temperature  , eq. (IV.7), and using the cyclic property of the 

trace: 

 

( ) ( )  ( ) 
( ) 

( )  ( )  ( ) ( )

b b

b b b

eq eq† †
b bb b

†
b

eq eq† † *
b bb b

' i Tr ' i Tr '

Tr '

Tr ' Tr ' ' '

H H
ij j ji i

H H H
ji

j j ji iji i

c t t B t t B e B t t e B

e B t t e B e Z

B t t B B B t t c t t c t t

 

  

   

 

−

− −

− − = − − = −

= −

= − = − = − = −
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( )

( ) ( ) ( ) ( )s † †
s

,0
, h.c.

t

ij i j
i j

d t
d c S t S t t

dt


    = − − +
  . (IV.19) 

At this point, the equation is local in time, but not yet Markovian, since it explicitly depends on the initial 

state of the dynamics [12]. To obtain the Markovian version, we extend the upper limit of the time integral to 

infinity, obtaining what is normally intended as the Redfield equation 

 
( )

( ) ( ) ( ) ( )s †
s

,0
, h.c.ij ji

i j

d t
d c S t S t t

dt


   



 = − − +
  . (IV.20) 

If b  , this should not have much influence since, as already said, the integral is expected to become 

approximately constant. 

Both forms of the Redfield equation, eqs. (IV.19) and (IV.20), are known to give non-completely positive 

dynamical maps, which means that they do not ensure the density matrix of the open system stays positive (a 

necessary condition for a physical evolution3). Thus, in general, the Redfield equation cannot be written in 

Lindblad form. One of the most common problems using eq. (IV.20) is the non-positivity during the first 

instances of the dynamics. This happens for example when the dynamics is resolved with a time step t  

smaller than or comparable to the relaxation time of the environment (see section IV.3.5.2), a regime where 

the Redfield equation does not guarantee any accurate result [13,14]. In the same range of small times, eq. 

(IV.19) is known to give better results [6,15]. The application of a “slippage” superoperator which describes 

the intrinsically non-Markovian dynamics of the open system during the initial relaxation of the bath was 

proposed in ref. [10] to correct for this inconvenience.  

It is worth noting that when the system and the environment evolves with different time scales and a 

sufficiently large t  is chosen to resolve the dynamics, the Markovian approximation is valid, and the problem 

mentioned above does not occur. 

IV.1.5 Eigenstate basis 

The Redfield equation can be solved as presented above but, both for an easier computation and to introduce 

further approximations, it is usually rewritten in the eigenstate basis of the system Hamiltonian 

sH E
 = . We will use Greek letters to identify the eigenstate basis   and their corresponding 

eigenvalues E . System interaction operators can be decomposed into a linear combination as follows 

 ( )
,

i i iS S S
  

    = =  , (IV.21) 

 
3 However, the other necessary conditions for a physical result, i.e., the Hermiticity and norm of the density 

matrix, are always preserved by the Redfield evolution. 
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where E E  = −  are the frequencies of the system Hamiltonian spectrum and ( )iS   are the system 

interaction operators evaluated at frequency  , that is the sum over all the states whose eigenvalue difference 

corresponds to the given frequency, i.e., 

 ( )
,

i i

E E

S S

 

 


    

− =

=  . (IV.22) 

In the interaction picture, the system operators ( )iS t  can be decomposed as 

 ( ) ( )s si i iH t H t t
i i iS t e S e e S



− −= = . (IV.23) 

Note that, since iS  is Hermitian, it holds the symmetry relation 

 ( ) ( )†
iiS S = −  (IV.24) 

in the Schrödinger picture, and 

 ( ) ( ) ( ) ( )† †i it t
i i i iS t e S e S S t 

 

 −= = =   (IV.25) 

in the interaction picture. 

On the system eigenstate basis, eq. (IV.20) reads 

 ( )
( ) ( ) ( ) ( ) ( )i 's †

s
, , '

' , ' h.c.t
ij ji

i j

d t
S S t e

dt
 

 


   

− = −  +
    (IV.26) 

where we have introduced 

 ( ) ( ) i

0
ij ijd c e   



 =   (IV.27) 

to account for the remaining terms in the time integral. Note that ( )ij   has the form of the Fourier-Laplace 

transform of the correlation function of the environment evaluated at the system frequency  . 

IV.1.6 Spectral and dispersion functions of the environment 

As we have already seen, all the information about the environment was reduced to its correlation functions. 

However, for practical reasons, it is convenient to define the Fourier transform of the correlation functions of 

the environment, which will be called the spectral functions here4 

 ( ) ( ) ( ) ( ) ( ) ( )i i * i *

0
ij ij ij ji ij jiC d c e d c e c e         

 
−

−

 = = + =  + 
   . (IV.28) 

 

4 The correlation functions are then obtained as ( ) ( ) i1
2

t
ij ijc t d C e  




−

−

=  . 
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Due to the symmetry relation of the correlation functions, we have that ( ) ( )*
ij jiC C = , i.e., the matrix 

( )C   is Hermitian. Furthermore, being the Fourier transform of positive functions, Bochner’s theorem 

ensures that the matrix ( )C   is always positive defined [11,16]. 

As for the correlation functions, a relevant feature of the spectral function is that it satisfies the KMS 

condition, which in the frequency domain reads 

 ( ) ( )ji ijC e C −− = . (IV.29) 

We remind the reader that this relation plays an important role in maintaining the detailed balance [11,17]. 

Due to the KMS condition, the spectral function is not symmetric with respect to  , so it can be split into 

a symmetric ( ) ( )sym sym
ij jiC C − =  and an antisymmetric ( ) ( )asym asym

ij jiC C − = −  component, such that 

 ( ) ( ) ( )sym asym
ij ij ijC C C  = + , (IV.30) 

where 

 ( )
( ) ( )

( )sym 1
2 2

ij ji
ijij

C C eC C
 

 
−+ − +

= = , (IV.31) 

and 

 ( )
( ) ( )

( )asym 1
2 2

ij ji
ijij

C C eC C
 

 
−− − −

= = . (IV.32) 

The antisymmetric part is also known as the spectral density ( )ijJ   of the environment 

 ( ) ( )asym
ij ijJ C = . (IV.33) 

The above relations are very useful for practical applications. In fact, the direct measure of the correlation 

function of a quantum environment with an experimental setup is often very difficult, so in most cases, the 

spectral density is assumed or computed from quantum mechanics/molecular mechanics (QM/MM) or 

molecular dynamics (MD) approaches [17]. In this second case, the obtained spectral density is classical 

( )cl
ijJ   and needs to be carefully converted a posteriori to ( )ijJ  . Then, the spectral function is recovered 

using eq. (IV.32). See for example [18] for more details.  

In our derivation, ( )ijc   has emerged as the correlation functions of a quantum environment, but the same 

results apply also in the case of classical correlation functions. In this easier case, we have 

( ) ( ) ( )
eq

0ij i jc B B = , where ( )B   is a classical (stochastic) process and the angular brackets denote the 

ensemble (statistical) average at equilibrium (see previous Chapters)5. Since classical correlation functions are 

 
5 Note that we used the overbar to indicate the same ensemble average in the previous Chapters. 
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real and even, the spectral function will be real and even too, that is ( ) ( )ij ijC C = − , and corresponds 

directly to the spectral density of the classical processes ( )cl
ijJ  . In this regard, note that the spectral function 

of a general quantum environment becomes symmetric with respect to   in the limit of high temperature, 

0 →  (cf. eq. (IV.29)). 

 

The spectral function is connected through the Kramers-Kroning relation to the dispersion function of the 

environment 

 ( )
( )'1 '

2 '
ij

ij
C

d


 
  



−

 =
− , (IV.34) 

where  denotes the principal value of the integral6. Again, it holds the symmetry relation ( ) ( )*
ij ji  =   

that guarantees the Hermiticity of the matrix ( ) . It could also be shown that ( )ij   is related to ( )ij   

through 

 ( ) ( ) ( )
( ) ( )*

i * i

0

1
2i 2i

ij ji
ij ij jid c e c e   
   


−

 −
  = − =
  . (IV.35) 

As we will later see, the dispersion function is primarily related to the renormalization of the energetics of 

the system because of the interaction with the environment. Although it is evaluated at the system frequencies 

 , the values of the dispersion functions depend explicitly on the entire spectral function, eq. (IV.34). This 

means that it includes the contribution of the high-frequency modes and the cutoff of the environment. Still, 

in most situations, when the Born-Markov approximation is valid the dispersion function slightly affects the 

dynamics. For this reason, it is completely disregarded in most applications of the Redfield theory and related 

algorithmic routines (e.g., in the popular QuTiP Python library [19,20]). However, few work discuss the critical 

role of this term in the dynamics. Notably, Ishizaki et al have shown that the exclusion of these terms from the 

Redfield equation significantly change the transfer dynamics in a molecular dimer as the system-bath coupling 

increases [3]. On the other hand, Alicki emphasized that the renormalization implies some consistency 

problems in the theory, as the thermal equilibrium dictated by the KMS condition, eq. (IV.29), is based on the 

system Hamiltonian and not on the renormalized one [21]. In the following, we will pay special attention to 

the role of this imaginary contribution to the Redfield tensor. 

 

 
6 To avoid divergence in the numerical computation of the principal value, it could be convenient to use the 

relation 
( ) ( ) ( )

0

h h

h

f x f x f x
P dx dx

x x
−

− −
=  . 
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With the new definitions, we can write ( )ij   as a combination of the spectral and dispersion functions 

 ( ) ( ) ( )
1 i
2ij ij ijC   = +  , (IV.36) 

and its conjugated complex 

 ( ) ( ) ( ) ( )* 1 -i
2ij ji ji jiC    =    . (IV.37) 

This last inequality shows that the matrix ( )  is not Hermitian.  

IV.1.7 Back to the Schrödinger picture 

Eq. (IV.26) still relies on the interaction picture. So, for better readability, it is worth converting it into the 

Schrödinger picture through the transformation  

 

( )
( ) ( )

( )

( )
( )

s s
s s s s

s s

i i
i i i is s

s s

i is
s si ,

H t H t
H t H t H t H t

H t H t

d t d tde det e e t e e
dt dt dt dt

d t
H t e e

dt

 
 




−
− −

−

= + +

= −   + 

 (IV.38) 

In this way, one obtains the most common form of the Redfield equation, that is 

 

( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

s †
s s s

, , '

†
s s s s

,

i , ' , ' h.c.

i , , ,

ij ji
i j

i ij iij
i j

d t
H t S S t

dt

H t S Q t t Q S

 


    

  

 = −   −  +   

  = −   − +     

 


 (IV.39) 

where to get the last line, we need to recall that iS  is Hermitian and define the operator 

 ( ) ( )
'

' 'ij ij jQ S


 =  , (IV.40) 

which is not usually Hermitian. Even if it is possible to rewrite the Redfield equation in a formal structure that 

is similar to the Lindblad form [15], it is impossible to guarantee a priori the positivity of the relaxation rates, 

leading to the already mentioned positivity problem. So, to force the conversion into a Lindblad equation 

further approximations must be applied. There is a rich literature about Lindblad forms mimicking Redfield 

evolution (see for example Chapter V). In the following, we discuss two particular cases where the Redfield 

equation naturally assume a Lindblad form. 

IV.1.8 Secular approximation 

The secular approximation (also known as the rotating wave approximation), introduced by Davies in 1974 

[22], is probably the first attempt to take the Redfield equation to Lindblad form. Differently from the 

phenomenological Lindblad equation, the result of the secular approximation is a master equation that still 

presents the characteristic quantities of a microscopic derivation, and is usually named the Davies-Lindblad or 

quantum optical or secular Redfield master equation. 
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When the time scale used to look at the dynamics is larger than the inverse of system frequency separation, 

i.e., 1 min 't   −  with '  , the rapid oscillating terms in the interaction picture (eq. (IV.26)) 

typically cancel out during integration due to destructive interference [17]. So, the strongest approximation 

one can do,  sometimes referred to as the full secular approximation, consists in neglecting any contribution 

from terms that have '  . This strong approximation is justified in principle only for large t . It is easy 

to show that the resulting equation is in Lindblad form. However, if the system does not have accidental 

degenerations, the effect of the full secular approximation is to completely decouple the relaxation of the 

population from the coherences [17]. 

There exist other (softer) definitions of the secular approximation in which the contribution of frequencies 

satisfying 1 min 't    −  is maintained. Here, we call this category the partial secular approximation. An 

example of partial secular approximation is to consider clusters of frequencies   for which a constant spectral 

function is assumed ( )ijC   [23]. Usually, the value of the spectral function is taken at the average frequency 

of the cluster. Then a full secular approximation is applied at the cluster level. Eq. (IV.39) then becomes 

( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )s † †

s LS s s s
,

1i , ,
2ij j ji i

i j

d t
H H t C S t S S S t

dt



       

+

  = −  +  + −     
 , (IV.41) 

where 

 ( ) ( ) ( )†
LS

,
ij ji

i j
H S S



  =   (IV.42) 

is the so-called Lamb shift Hamiltonian involving the dispersion functions at cluster frequencies   and the 

operators ( ) ( )i iS S
 

 


= . In [24], Davidović calls the partial secular approximation by the evocative 

name of frequency coarse-graining. Note that, the partial secular approximation is reduced to the full one when 

the frequency width of the clusters is smaller than the minimum distance between the open system frequencies. 

Within the secular approximation, the role of the dispersion function, entering the Lamb shift Hamiltonian, 

is to renormalize the system energies (eventually also changing the system eigenstates) due to the interactions 

established with the environment. 

IV.1.9 Redfield with a δ-correlated environment 

As mentioned in the derivation, in the Redfield equation we assume the environment to have very fast 

correlation times with respect to the system evolution. So, one can in principle enforce this assumption and 

treat the environment correlations functions as instantaneous, ( ) ( )ijc t t . In this case, the relative spectral 

function is real, ( ) ( )ij jiC C = , and completely flat on the whole frequency domain, ( ) ( )0ij ijC C = . Thus, 

the spectral function is symmetric with respect to  , ( ) ( )ij ijC C − = , which means that the equilibrium 

condition will be at infinite temperature, 0 → . We recall that this case corresponds to a classical reservoir 

with a white noise spectrum, which is exactly the case we considered in Chapter II. 
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Using a  -correlated environment, the dispersion function of the environment vanishes (cf. eq. (IV.34)), 

so we do not have any Lamb shift in this case. The corresponding equation is 

 

( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

s † †
s s s s

, , '

† †
s s s s

,

1i , ' ' ,
2

1i , ,
2

ij j ji i
i j

ij j ji i
i j

d t
H t C S t S S S t

dt

H t C S t S S S t

 


      

  

+

+

  = −   + −     

  = −   + −     

 



 (IV.43) 

where we used a more compact notation for ( )0ij ijC C= . 

One of the main advantages of using eq. (IV.43), instead of the Redfield or the secular Redfield, is that 

there is no need to diagonalize the system, so that one can work in the original basis without spending time in 

diagonalization routines. 

IV.2 Exciton transport in an overdamped vibrational environment 
 For a long time, exciton transport in light-harvesting chromophoric systems has been described with 

incoherent hopping models (Förster theory). However, about a decade ago, the use of new instrumentation and 

more advanced spectroscopic techniques made it possible to measure long-lived coherences in exciton 

transport of light-harvesting complexes [25–27]. This observation conflicted with the incoherent models 

proposed for transport up to that time and triggered intense research aimed at proposing more accurate 

descriptions of the coherences and reliable estimations of transport efficiency (there is a vast literature on the 

subject, see for example [3,4,28–36]). 

Although a complete study of the coherent properties has been shown to require the inclusion of non-

Markovian effects, using time convolution [37,38] or convolutionless equations [39] or numerical exact 

methods [40,41], the Redfield equation is not of little use. In fact, in its simplicity (compared to more 

sophisticated approaches) it gives accurate insights into the dynamics in its range of applicability, which can 

be used as the starting point for more advanced descriptions. 

The target of this section is thus to obtain a Markovian perturbative equation for the dynamics of the exciton, 

paying attention to its microscopic environment composed of the vibrational degrees of freedom of the 

chromophores. For the moment, we will follow a generic derivation for a prototypical system made of N  

molecules. Then, in the next section, we will contextualize the case of the Fenna-Matthews-Olson protein 

complex.  

IV.2.1 Born-Oppenheimer approximation 

We start by assuming the Born-Oppenheimer approximation, so that the electronic and vibrational degrees 

of freedom of each chromophore are separated. We further limit our molecules to only two accessible 

electronic levels: the ground state 0  and the excited state 1 . The Hamiltonian of the complex system then 

reads 
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 I II

1 ,

N

i ij
i i j

H H H
=

= +  , (IV.44) 

where the first sum on the right-hand side is over the single-molecule Hamiltonians 

 ( ) ( )I nuc,0 nuc,10 0 1 1i i i i i i ii iH H q H q= + , (IV.45) 

while the second one, which runs over all the interacting pairs of molecules, regulates the electronic coupling 

between two different molecules 

 ( )II 1 0 0 1 0 1 1 0ij ij i j i j i j i jH V= + . (IV.46) 

In our model, we assume it to be independent of the nuclear degrees of freedom. 

In eq. (IV.45),  nuc1, 3 ,,...,
i

i i N iq q q=  are the (dimensionless) coordinates associated with the nuc3 iN  phonon 

modes of molecule i , being nuc
iN  the number of nuclei for that molecule. Then, 

( )nuc,0/1 nuc nuc,0/1
i ii iH T V q= +  is the nuclear Hamiltonian for the chromophore in its ground/excited state, and 

it is composed of the kinetic nuc
iT  and potential ( )nuc,0/1

iiV q  energies of the nuclei. The potential is itself the 

sum of two contributions: the nuclei-nuclei interaction ( )nuc-nuc
i iV q  and the potential energy ( )0/1

i iE q  due to 

the electrons, so that 

 ( ) ( ) ( )nuc,0/1 nuc-nuc 0/1
i i i i iiV q V q E q= + . (IV.47) 

IV.2.2 The displaced harmonic oscillator model 

At this point, we assume the potential energy ( )nuc,0/1
iiV q  in the ground and excited states to be described 

by a harmonic potential centred at the respective equilibrium configurations  nuc
eq,0/1 eq,0/1 eq,0/1

1, 3 ,
,...,

i
i i N i

q q q= . To 

account for the difference between the equilibrium coordinates of the two states, we introduce the 

(dimensionless7) displacement  nuc1, 3 ,,...,
i

i i N id d d= . This formalism is known as the displaced harmonic 

oscillator model. Furthermore, we assume the k -th phonon mode to have the same frequency ,k i  in both the 

ground and excited state, which means, the harmonic potentials are identical but shifted. Eq. (IV.47) now takes 

the form 

 
7 Both the position q  and displacement d  are here assumed to be dimensionless to simplify the discussion. 

One can recover the original quantities by multiplying the reduced ones by a factor ( )m , where m  is the 

mass of the harmonic oscillator. 
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 ( ) ( ) ( )
nuc3 2eq,0/1 eq,0/1nuc,0/1 0/1

, , ,
1
2

iN

i i k i k ii i k i
k

V q E q q q= + − , (IV.48) 

where ( )eq,0/10/1
i iE q  is the energy of the electronic ground and excited states in their equilibrium 

configurations. To simplify the notations, we define the zero of the coordinates to be the equilibrium 

configuration of the ground state, that is eq,0
, 0k iq = . As a direct consequence, eq,1

,, k ik iq d=  and in order to avoid 

redundancy, we will omit the explicit dependence from the equilibrium coordinates in the following, i.e., 

( )eq,0/10/1 0/1
i i iE E q= . Furthermore, since the energy difference between the equilibrium configurations in the 

ground and excited state is the only thing that matters, we can arbitrarily choose a common value for the ground 

state for every molecule 0E , and shift the excited state accordingly.  

By separating the different contributions, Hamiltonian in eq. (IV.44) becomes 

 sys reorg ph exc-phH H H H H= + + + , (IV.49) 

where we have a term that regulates the electronic energy and the coupling between the chromophores (it is 

responsible for the exciton transport through the system network even in absence of interactions with the 

vibrations) 

 

( )

sys ground exc

0 1 II

1 1 ,

0 1

1 1 ,

0 0 1 1

0 0 1 1 1 0 0 1 0 1 1 0

N N

i i i i i ij
i i i j

N N

i i i i i ij i j i j i j i j
i i i j

H H H

E E H

E E V

= =

= =

= +

= + +

= + + +

  

  

 (IV.50) 

a correction to the exciton site energies due to the displacement between ground and excited state 

configurations 

 
nuc3

reorg 2
, ,

1 1 1

1 1 1 1 1
2

iNN N

k i k i i i i i i
i k i

H d 
= = =

= =   , (IV.51) 

the phonon Hamiltonian 

 
nuc3

ph nuc 2
, ,

1 1

1
2

iNN
i k i k i

i k
H T q

= =

 
 

= + 
  

  , (IV.52) 

and the Hamiltonian that regulates the interaction between the electronic degrees of freedom and the vibrational 

ones 

 
nuc3

exc-ph
, , ,

1 1
1 1

iNN

k i k i k i i i
i k

H d q
= =

= −  , (IV.53) 

The characteristic feature of this model is that the coupling is linear both in the oscillator coordinate and the 

system operators. 
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In the view of a Redfield equation, the system operators of the interaction are represented by 1 1i i iS = , 

while the environment operators are 
nuc3

, , ,1
iN

i k i k i k ikB d q
=

= − . Please note that when eq. (IV.52) and 

(IV.53) are written in second quantization they take exactly the form we have used in section III.3 of Chapter 

III for the derivation of the pseudomode theory. 

In eq. (IV.51), we have defined the so-called reorganization energy i  of the phonons of the i -th molecule 

as 

 
nuc nuc3 3

2
, , ,

1 1

1
2

i iN N

i k i k i k i
k k

d  
= =

= =  , (IV.54) 

with ,k i  the reorganization energy of a single harmonic mode. The reorganization energy, that will play a 

central role in the following, corresponds to the amount of extra energy one has to account for a Franck-Condon 

transition, i.e., a vertical transition starting from the equilibrium configuration, from the ground to the excited 

electronic state (see Figure 1). 

For our present study, we will always consider a single excitation as the starting point, ignoring the 

(unlikely) case of double excitations or double-excited states. To simplify the notation above, we define the 

collective ground state as the tensor product between molecules in their ground states 10 0N
i i== , and the 

state with a single excitation localized at molecule i  as 10 ... 1 ... 0i Ni =   . 

 
Figure 1. Schematic representation of a Franck-Condon (vertical) transition (red arrow) from the ground 

(blue line) to the excited (light blue line) electronic state of a chromophore coupled to a phonon environment. 

The final state is not the equilibrium position in the excited states, since the two potentials are displaced by 

id . The extra energy for the transition is known as the reorganization energy i  of the phonons. 
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IV.2.3 From discrete modes to continuous spectrum 

As we have seen in the derivation of the Redfield equation, the correlation function of the environment 

interaction operators ( )
eqi jB t B  is a fundamental quantity for the dynamics of the reduced system. Here, for 

the sake of simplicity, we will consider the oscillations between different sites to be uncorrelated, i.e., 

( ) ( ) eqeqi j i i ijB t B B t B = , although this assumption can be easily relaxed. 

In the case study we are considering, the calculation of the correlation functions of operators B  reduce to 

the evaluation of the correlation function of the configurations of the harmonic oscillators 

 

( ) ( )

( )

nuc nuc

nuc

3 3
2

, , , , , , eqeq
1 1

3
2 2 2

, , , , eq
1

i i

i

N N

i i k i l i k i l i k i l i
k l

N

k i k i k i k i
k

B t B d d q t q

d q t q

 



= =

=

=

=

 



 (IV.55) 

where, with the second equivalence, we remarked the fact that different phonon modes are independent of each 

other. To have a physical interpretation of the meaning of the exciton-phonon coupling, one can think about 

the presence of the phonons as an external agent that causes a (generally quantum) fluctuation ( )1
iE t  in the 

energies of the exciton levels (see previous Chapters), of which we know the mean eq 0iB =  and the 

correlation function ( ) eqi iB t B  [42].  

At this point, we have to model the correlation function. As anticipated, it can be done in different ways, 

from experimental data [43–46], by running QM/MM or MD calculations [18,28,47–55] or 

phenomenologically assuming a certain model. For example, in the past Chapters, we used  -correlation and 

exponential decay that allowed for a (classical) stochastic implementation of dephasing assisted transport in 

generic networks. Here, we will use a quantum environment which allows us to account for the finite 

temperature effect in the dynamics. To do it, it is useful to introduce the spectral density of the exciton-phonons 

interaction [56] 

 ( )
( )

( )
nuc 23

, ,
,

12

iN
k i k i

i k i
k

d
J


   

=

= − , (IV.56) 

where ( ),k i  −  denotes the Dirac delta function. 

The spectral density gives us the combined information about the strength of the coupling between the 

system (the exciton) and the environment (the phonons), and the density of environmental modes, 
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( ) ( )
nuc3

,1
iN

i k ikW    
=

= − .8 From the spectral density, one can recover the reorganization energy through 

the relation 

 
( ) ( )

nuc nuc2 23 3
,, , 2

, ,
1 10 0

1 1
2 2

i iN N
k ik i k ii

i k i k i
k k

dJ
d d d

  
   

  

 

= =

−
= = =   . (IV.57) 

From eq. (IV.56), one may think of the spectral density as a discrete function of the frequency. However, 

if the number of normal modes is very high (formally nuc
iN → ), we can assume the spectral density to be a 

continuum [57], and the environment becomes actually a bath.9 Since the number of nuclei is fixed, this can 

seem an unrealistic situation. However, there are at least two valid reasons to do it: The first one is that in 

solution, the number of modes is increased by the presence of solvent modes, which can be treated in the same 

way as we did for the nuclear ones. The second one is that, even if there are no other modes to add to the count, 

this is a way to obtain a reduced equation for the dynamics of the sole system (easy to handle), that can then 

be compared with the results obtained explicitly considering environment (on this topic see for example [57]). 

We set as our target a Drude-Lorentz spectral density, i.e., an Ohmic spectral density ( )iJ    with 

Lorentzian cutoff at high frequencies [3,31,40]. This spectral density corresponds to the so-called overdamped 

Brownian oscillator model of the vibrational modes [31,58]. The presence of a cutoff is natural in a realistic 

model of an environment, and it is formally required to prevent certain integrals from diverging, e.g., the 

dispersion function. 

To get our continuous spectral density, it is convenient to assume also a continuous density of modes 

 ( ) ( )
continuum

i iW w ⎯⎯⎯⎯⎯→ . (IV.58) 

This allows redefining the other quantities with the generic procedure 

 ( ) ( ) ( ) ( )
,

continuum
, , ,

0k i

k i i k i i k i i i
k

f f W d f w


    



= ⎯⎯⎯⎯⎯→   , (IV.59) 

where we passed from a discrete sum over all the mode frequencies of the environment, to a continuum of 

modes. 

Using eq. (IV.59), the reorganization energy can then by written in terms of ( )iw   as 

 
8 Note that, as expected, its integral gives the number of harmonic modes 

( ) ( )
nuc nuc3 3 nuc

,1 10 0
1 3i iN N

i k i ik kd W d N    
 

= =
= − = =   .  

9 We obtain something equivalent to the so-called spin-boson model [56] used to study the dynamics of 

spin-½ systems coupled to a quantum harmonic bath. 
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 ( ) ( ) ( ) ( )
,

continuum
, , ,

0k i

i k i i k i i k i i i
k

W d w


       



= = ⎯⎯⎯⎯⎯→   , (IV.60) 

while the spectral density becomes 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

,

2 2
, , , , , ,

continuum
, , , , ,

0

2
k i

i k i k i k i i k i k i k i i
k

k i i k i k i k i i k i i i

J d W

d w w




            

            


= − = −

⎯⎯⎯⎯⎯→ − =

 



 (IV.61) 

where in the second equivalence we made use of the definition of the reorganization energy of a single mode. 

This equation gives us an explicit expression for the two contributions that characterize the spectral density: 

the strength of the coupling, ( )i   , and the distribution of modes, ( )iw  . To obtain our desired Drude-

Lorentz spectral density, we need to impose their product to be 

 ( ) 2 22 i
i i

i
J  




=

+
. (IV.62) 

A possible condition that satisfies the above spectral density is a Lorentzian density on modes 

 ( ) 2 2
2 i

i i
i

w N
 


=

 +
, (IV.63) 

with an Ohmic coupling with the system 

 ( ) i
i

iN


   = , (IV.64) 

where iN  is the number of harmonic modes (nuclear + extra). Note that in this example ( )i   is assumed to 

be constant for every mode. 

In eq. (IV.62), i  is called the cutoff frequency and corresponds to the inverse of the characteristic 

relaxation time of the phonons ph 1 ii =  . It is thus a measure of the memory time of the environment, i.e., 

we have an indicator for the Markovianity of the process. The cutoff frequency also gives us a parameter for 

the identification of the weak coupling regime that is crucial for the correct application of the Redfield 

equation. In general, for Markovian cases, the cutoff frequency should be larger than the relevant frequencies 

of the system, that is  . 

IV.2.4 Details of the spectral function 

Differently to the spectral density defined in eq. (IV.33), the one we have introduced above is defined only 

in the positive semiaxis (see for example the extremes of integration in eq. (IV.61)). It has come out naturally 

as the frequencies of the harmonic modes are positives. To make them coincide, since we know that the spectral 

density is equal to the antisymmetric part of the spectral function, it is sufficient to impose the condition 
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( ) ( )i iJ J − = − , which incidentally, in the case under consideration, leaves eq. (IV.62) unchanged but 

extends its limits to the entire real axis. 

Now that the antisymmetric part of the spectral function is known, we can easily obtain the spectral function 

( )iC   as 

 ( ) ( ) ( )asym
2 2

2 2 14
1 1 1

i
i i ii

i
C C J

e e e  
   

− − −


= = =

− − + −
. (IV.65) 

This expression contains all that we need to know about the environment-system coupling for the 

construction of our Redfield equation: the reorganization energy i  of the phonons, the cutoff frequency i  

of environment correlation functions and the (inverse) temperature   that we assume to be constant for all the 

environments. The most important range of values of the spectral function is in the region that comprehends 

the relevant frequencies of the system,  max max, − , since they are directly connected with the relaxation 

operators in the Redfield equation. 

In the following, we analyse the role of each of the three parameters characterising the spectral function 

determined by the Drude-Lorentz spectral density. 

IV.2.4.1 Reorganization energy 

The contribution to the spectral function due to the reorganization energy is the easiest to understand. Figure 

2 reports the spectral functions for three different values of this parameter while maintaining constant the 

temperature and cutoff frequency. Notice how the reorganization energy controls the slope of the spectral 

function in the low-frequency range of the positive semiaxis. At higher reorganization energy correspond 

higher value of the curve, while the overall profile is only slightly perturbed. We can conclude that the 

reorganization energy is mostly involved in regulating the amplitude of the relaxation coefficients 

( )iC E E  = − , where E  and E  are two eigenenergies of the system. In other words, higher 

reorganization energies imply a quicker dephasing and relaxation dynamics.  
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Figure 2. Left panel: Spectral function at different reorganization energies: 110 cm −=  (blue), 

150 cm −= (orange) and 1100 cm −=  (green). The reorganization energy primarily influences the slope 

of the curve and the value of the maximum. Right panel: Dependence of the spectral function (colour 

gradient) on the reorganization energy  . The other parameters are: 15300 cm− =  ( ph 1 fs  ) and 
1 1241 cm − −  ( 347 KT = ). We have set 1= . 

 

IV.2.4.2 Temperature 

The variation of the temperature leads to two interesting limits of eq. (IV.65), that we can evince by looking 

at Figure 3. At low temperatures,  → , we have 

 ( ) 2 2
2 2

0 0
1lim lim 4 4 01

i
ii i

ii
i

C
e  



 
 


−→ →


 

= =  + −  +

 (IV.66) 

where the spectral function vanishes in the negative semiaxis, while is identical to the spectral density in the 

positive one. This completely asymmetrical situation is highly critical for the Redfield equation (note for 

example that the dispersion function, eq. (IV.34), tends to diverge). As a matter of fact, it is known that the 

Born-Markov approximation does not hold in this regime [3,13,41,59], therefore the master equation should 

not be used to describe the dynamics at extremely low temperatures. 

On the other hand, in the high-temperature regime, 0 → , we have that the spectral function becomes 

classical and approaches the Lorentzian shape also used in Chapter III 

 ( ) 2 2 2 20 0

1lim lim 4 4
1

i i i
i i

i i
C

e  


 

 −→ →

 
= =

+ − +
. (IV.67) 

Note that, keeping the reorganization energy and the cutoff frequency fixed, at very high temperatures the 

spectral function can assume large values and the weak-coupling approximation can consequently fail in this 

case [13]. 
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In essence, the primary role of the temperature is to influence the symmetry of the spectral function of the 

quantum environments, by increasingly damping the values at negative frequencies for decreasing 

temperatures. This results underline the temperature dependence of the populations of the eigenstates at 

equilibrium, namely, the detailed balance. 

 

Figure 3. Left panel: Spectral function at different temperatures 1 153.5 cm − −  ( 77 KT = , blue), 

1 1241 cm − − ( 347 KT = , orange) and 1 16945 cm − −  ( 410  KT = , green). The temperature primarily 

influences the symmetry of the curve, that is connected to the detailed balance, and the value in 0 = . Right 

panel: Dependence of the spectral function (colour gradient) on the temperature  . The other parameters 

are: 110 cm −=  and  15300 cm− =  ( ph 1 fs  ). We have set 1= . 

 

IV.2.4.3 Cutoff frequency 

The last parameter entering the definition of the spectral function is the cutoff frequency, whose influence 

is reported in Figure 4. Notice that the cutoff frequency influences the position, the value and even the width 

of the maximum of the spectral function. Incidentally, in the reported cases, the position of the maximum 

occurs in the proximity of the cutoff frequency, so one may wrongly think that in general there is a direct 

correlation between the position of the maximum and the Markovianity of the environment. However, this is 

not true, as the position of the maximum is also influenced by the temperature (see for example the spectral 

function represented as a green line in Figure 3 that has the same cutoff frequency as the others). 

The cutoff also influences the spectral function in the low frequency range of the positive semiaxis. In fact, 

in the limit i → , that corresponds to the Markovian situation in which max i  , we have 

 ( ) 2 2
1 1lim lim 4 4

1 1i i

i i
i i

ii
C

e e 

 
 

 − − →  →


= =

+ − −
. (IV.68) 
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Here it is evident that the relaxation coefficients increase linearly both with the reorganization energy and the 

correlation time of the bath. Sometimes the ratio i i   is treated as a single term which gives the effective 

coupling strength in Ohmic spectral densities (cf. Chapter III). 

In this situation, when the temperature is sufficiently low ( 1
i −  ), we can distinguish three regions of 

the spectral function depicted in Figure 5. For 1  −−  (negative semiaxis), we have the exponential 

suppression of the spectral function 

 ( ) 1lim 4 4
i

ii
i

i i
C e e  

 

  
 −

−

− →
= − =

 
. (IV.69) 

In the region 1 1  − −− , that is around 0 = , the temperature term diverges hyperbolically as 

( )1  , but because of the linear coupling strength, the spectral function becomes constant 

 ( ) ( )1 1lim 4 0
i

i
i

i
C C

  


 


− −− →

= = =


. (IV.70) 

When the system frequencies fall within this high-temperature and strongly Markovian regime, the correlation 

functions of the environment are well approximated by Dirac  -functions (see also Chapter II). 

The last region is 1 − , where we have that the spectral function is linear with the frequency and 

independent of the temperature 

 ( )
1

4
lim
i

i
i

i
C

 

 


− →
=


. (IV.71)  

 

Figure 4. Left panel: Spectral function at different cutoff frequencies: 1530 cm− =  ( ph 10 fs  , blue), 

12650 cm−= ( ph 5 fs  , orange) and 15300 cm− =  ( ph 1 fs  , green). The cutoff frequency 

influences the slope of the curve and the position and value of the maximum. Right panel: Dependence of 

the spectral function (colour gradient) on the cutoff frequency  . The other parameters are: 110 cm −=   

and 1 1241 cm − −  ( 347 KT = ). We have set 1= . 
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Figure 5. Detail of the spectral function ( )C   (red) in the region    (Markovian regime). We have 

separated the linear term (blue) from the temperature-dependent one (orange). Parameters are: 

110 cm −= , 15300 cm− =  ( ph 1 fs  )  and 1 1241 cm − −  ( 347 KT = ). We have set 1= . 

 

IV.3 Different shades of the Redfield equation 
IV.3.1 Details of the system: the FMO protein complex 

At this point, it is time to introduce the open system whose dynamics will be taken as the case-study for 

this Chapter and the next one. We choose the popular Fenna-Matthews-Olson (FMO) complex [60], a protein 

trimer composed of 8 bacteriochlorophylls (BChl) a per subunit, involved in the photosynthesis process of 

green sulfur bacteria. The spatial structure of a monomer of the FMO is reported in Figure 3 of Chapter I. The 

FMO complex is physically located between the chlorosome/baseplate, responsible for the light-harvesting 

process, and the bacteria reaction centre located on the membrane. FMO acts like a very efficient wire that 

transfers the excitation from the antenna pigments to the reaction centre in the very first instances of 

photosynthesis [61]. The FMO is one of the most studied complexes for exciton transport, and its fame is due 

to the fact that it has been the first protein where coherent oscillations were observed using optical 

spectroscopies [25,26,62]. 
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The FMO complex is divided into three identical and well-spaced monomers so that there is not exciton 

exchange between different subunits during the dynamics. Each monomer can thus be considered an 

independent system. For about 20 years, since the first determination of the crystallographic structure of the 

FMO, each monomer was believed to consist of 7 BChl a, with  BChl a 1 oriented toward the baseplate, and 

BChl a 3 interacting with the reaction centre [63,64]. The numbering we use has been chosen according to 

Fenna’s original one reported in [60]. Now, we know the presence of an eighth chlorophyll placed between 

BChl a 1 and the baseplate that seems to be the contact point for the exciton transfer to the network [63]. Since 

BChl a 8 is far from the rest of the chlorophyll, its effect on the dynamics is negligible and it is usually ignored 

[65]. For this reason, and in order to be able to compare our results with those published, we will only consider 

the 7-chlorophyll model of the FMO complex in our analysis. We will refer to the electronic excited states of 

each BChl as the sites where the excitation can be found. Following this route, we take the Hamiltonian of the 

system in the site basis given by Adolphs and Renger in [64] for the FMO of the Chlorobium tepidum bacterium  

 exc

200 96.0 5.0 4.4 4.7 12.6 6.2
96.0 320 33.1 6.8 4.5 7.4 0.3
5.0 33.1 0 51.1 0.8 8.4 7.6
4.4 6.8 51.1 110 76.6 14.2 67.0

4.7 4.5 0.8 76.6 270 78.3 0.1
12.6 7.4 8.4 14.2 78.3 420 38.3
6.2 0.3 7.6 67.0 0.1 38.3 230

H

− − − −

− −
 − −


= − − − − −
 − −

− − −

− − − −

1 cm−











 


. (IV.72) 

The Hamiltonian diagonal terms 1
iE  are shifted in order to match the zero of the energetics with site 3 (the 

lowest in energy). In this case, the ground state energy is estimated to be 0 112210 cmE −= − . A graph-like 

representation of the above Hamiltonian is reported in the left panel of Figure 6, where the width of the edges 

is proportional to the coupling between the chromophores. From the coupling strength, a defined structure 

emerges that can be expected to be the favoured path for coherent energy transport in absence of interactions 

with the environment. This path corresponds to a linear chain connecting site 1 to site 4 and a cyclic network 

comprehending sites from 4 to 7 (see the right panel of Figure 6). This simplified graph has been used, for 

example, by Hoyer et al to compare the differences in the quantum speedup in the presence or absence of 

environmental interactions [66]. 
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Figure 6. Left panel: The FMO connectivity is represented as an undirected graph. The width of the edges 

is proportional to the coupling strength between the BChls. Right panel: Only the main couplings (orange 

lines) are reported and the vertical position of the vertex of the graph is in relation to the exciton energy on 

that site. Every energy is reported in units of cm-1. 

 

In the FMO Hamiltonian, the standard deviation of the site energies is  1 1var 127 cmiE − , greater than 

the maximum coupling strength of the network, i.e., 1max 96.0 cmijV −= . Moreover, in general, the coupling 

between different chromophores is always smaller than the energy difference between them. With these 

observations, it is natural to expect that the eigenstates of the excitonic Hamiltonians will be mostly localized, 

i.e., extended to a very limited number of sites. We briefly report and visualize them in Appendix A. 

IV.3.2 Additional relaxation channels 

To complete the characterization of our system, we add extra relaxation channels to describe the exciton 

recombination R  and the trapping from site 3 to the reaction centre T . We will treat these terms 

phenomenologically, i.e., we express them as dissipative contributions in the Lindblad form, namely 

 ( ) ( ) ( )R R

1

10 0 ,
2

N

i
t i t i i i t   

+
=

 
   = −    

 
 , (IV.73) 

 ( ) ( ) ( )T T 1r.c. 3 3 r.c. 3 3 ,
2

t t t   
+

 
   = −    

 
 (IV.74) 

where R  is the (radiative + non-radiative) recombination rate that we assume to be the same for every 

chromophore, and T  is the trapping rate to the reaction centre r.c. . In this case, with ( )t  we indicate the 

density matrix of the (open) exciton system plus the ground state and reaction centre. 

We consider both processes (IV.73) and (IV.74) as unidirectional. For the trapping, this is natural since the 

excitation is assumed to never come back from the reaction centre. For the recombination, it is justified by the 
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optical separation in energy ( 112210 cm− ) that is widely larger than the typical temperature range of the 

environment ( 153.5 241 cm− ). If we exclude extra sources for radiative-induced excitations, at thermal 

equilibrium most of the population will be on the ground state. For the rest of the Chapter, we will assume 
R 11 ns −=  and T 11 ps −=  as estimated, for example, in ref [67]. 

As the FMO acts like a bridge to carry the photoinduced excitation from the antenna chromophore to the 

reaction centre the goal of the complex is to transfer the greatest amount of energy to the final destination. So, 

we can define the efficiency   of the light-harvesting process as the amount of population that has been 

transferred to the reaction centre at the end of the process (formally at time t → ) [67,68]10 

 ( )lim r.c. r.c.
t

t 
→

= . (IV.75) 

However, since the reaction centre is connected to site 3 only, we can also write the efficiency as 

 ( )T

0
3 3dt t  



=  , (IV.76) 

which very much resembles the definition of the efficiency of transport given in Chapters II and III. 

Since the population of the excited states of the FMO can be lost only through recombination or trapping, 

  will be determined by the kinetic competition between these two processes. To highlight this concept, the 

efficiency of trapping can be written in terms of the “efficiency of recombination” as 

 ( ) ( )R

1 0
1 lim 0 0 1

N

t i
t dt i t i   



→
=

= − = −  . (IV.77) 

Thus, high efficiency is not possible if the trapping time is slow compared to the recombination time. To 

extend our look at the problem, we introduce also this companion indicator that gives us a measure of the 

average transfer time it takes to populate the reaction centre [67,68], defined as 

 
( )

( )
T

0 0

r.c. r.c.1 3 3
d t

dt t dt t t
dt
 

 
 

 

= =  . (IV.78)  

 
10 In the references, authors use non-Hermitian terms in the Hamiltonian to account for the recombination 

and trapping, while we decide to include both explicitly, so that we can easily look at the ground and reaction 

centre states. 
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IV.3.3 Redfield forms for the exciton dynamics in the FMO 

As a modelling choice, in the following, we will always assume that all the molecules of our network have 

equal reorganization energy i =  and cutoff frequency i = . Moreover, we will assume the phonons of 

a chromophore to be uncorrelated from the phonons of the others, that is ( ) ( )ij ijC C  = . 

Now that we have the Hamiltonian and the eigenstates of the system, a model to describe the effects of 

exciton-phonon coupling and the extra relaxation channels, we can finally write the master equation that 

governs the transport in the FMO network as 

 ( )
( ) ( ) ( ) ( ) ( )H R Td t
t t t t t

dt


    =   =   +   +   +            , (IV.79) 

where ( ) ( )H sys reorgi ,t H H t    = − +   
 and ( )t    is the Redfield superoperator. We will consider 

four variants of this operator to investigate the corresponding dynamics: the original Redfield superoperator 

(sometimes called “full” Redfield here) 

 ( ) ( ) ( ) ( ) ( )R

, '
' , ' h.c.i i

i
t S S t

 

      =    +     , (IV.80) 

the secular Redfield superoperator, where we neglect the elements of the Redfield tensor connecting transitions 

with different frequencies '  , 

 ( ) ( ) ( ) ( ) ( )sec , h.c.i i
i

t S S t


      =    +    , (IV.81) 

the Redfield “without imaginary part” (R-imag) [3] superoperator, that we use to study the effects of the 

dispersion function ( ) ,11 

 ( ) ( ) ( ) ( ) ( )R-imag

, '

1 ' , ' h.c.
2 i i

i
t C S S t

 

      =   +     , (IV.82) 

and the  -correlated Redfield superoperator, that we will call the Haken-Strobl (HS) superoperator as it 

coincides with the Lindblad dissipator obtained in Chapter II for the Haken-Strobl model, 

 ( ) ( ) ( )HS 1 ,
2i i i i

i
t C S t S S S t  

+
  = −      . (IV.83) 

In this last case, we set ( )0 4C C   = = =   in eq. (IV.83), so that the spectral function is determined by 

the parameters used in the spectral density of the full Redfield. 

In all the above equations, the system operators are 

 

11 The name “Redfield without imaginary part” originates from the fact that we impose here ( ) 0 = , 

neglecting the imaginary contributions from ( ) ( ) ( )2 iC   = +  . 
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 iS i i= . (IV.84) 

Note that in this section we reintroduced 1=  and we will maintain this choice from now on. 

In the following, we will investigate how the above equations behave, when they fail to reproduce the 

system dynamics and why it happens. The ranges of parameters we will use are reported in Table 1 and includes 

the typical values used for multichromophore systems in physiological environments. 

 

Table 1. Ranges of parameters we used in our investigation. 

Parameter Range 
R  1 ns−1 

T  1 ps−1 

  0÷1000 cm−1 

ph /   80÷5300 cm−1 / ~66÷1 fs 

1  / T −  ~53.5÷241 cm−1 / 77÷347 K 

 

IV.3.4 Efficiency and trapping time 

As a first analysis, we investigate the effects of changing   and   on the efficiency and trapping time. To 

do so, we keep the temperature fixed at 1 1241 cm − −  ( 347 KT = ), and propagate the dynamics with a 

coarse-graining in time of 10 fst =  for a total time of max 1 nst = . We choose an initial state localized at site 

1, which is the site closest to the injector. The efficiency   is quantified by the value of the population of the 

reaction centre at the end of the simulation. The value of the transfer time   is calculated numerically through 

a trapezoidal integration. 

Results are reported in Figure 7 (Redfield), Figure 8 (secular Redfield), Figure 9 (Redfield without 

imaginary part), and Figure 10 (Haken-Strobl). On the left panel, we have the surface of efficiency and transfer 

time to the reaction centre versus the reorganization energy   and the cutoff frequency   of the environment 

varying independently. On the right panel, we show the calculated efficiencies corresponding to a particular 

ratio   . This is because the ratio represents in this context an analogous of the equivalent noise strength 

that we used in Chapter III. Note that, the same ratio can be realized by different combinations of the 

reorganization energy and cutoff frequency, leading to a range of efficiencies corresponding to the same value 

of   . Nevertheless, Figures 7-10 clearly show that it remains a good control parameter for the transport 

efficiency. The colour gradient is such that regions with high efficiency and fast transport are yellow, while 

non-efficient transport fades to purple. Although the trapping time and the efficiency  quantify slightly different 
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aspects of the transport, both have similar profiles (inverse to each other) that are favoured approximately in 

the same areas. 

 

  

Figure 7. Results of the Redfield dynamics on the FMO complex at 1 1241 cm − −  ( 347 KT = ). Left 

panel: Efficiency (a)(b) and transfer time (c)(d) to the reaction centre versus the reorganization energy   

and the cutoff frequency  . Favourable values (high efficiency and fast transport) are yellow, while 

unfavourable ones are purple. Right panel: Efficiency of the transport to the reaction centre versus the ratio 

   (e). 

 

  

Figure 8. Results of the secular Redfield dynamics on the FMO complex at 1 1241 cm − −  ( 347 KT = ). 

Left panel: Efficiency (a)(b) and transfer time (c)(d) to the reaction centre versus the reorganization energy 

  and the cutoff frequency  . Favourable values (high efficiency and fast transport) are yellow, while 

unfavourable ones are purple. Right panel: Efficiency of the transport to the reaction centre versus the ratio 

   (e). 
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Figure 9. Results of the dynamics of the Redfield without imaginary part on the FMO complex at 

1 1241 cm − −  ( 347 KT = ). Left panel: Efficiency (a)(b) and transfer time (c)(d) to the reaction centre 

versus the reorganization energy   and the cutoff frequency  . Favourable values (high efficiency and fast 

transport) are yellow, while unfavourable ones are purple. Right panel: Efficiency of the transport to the 

reaction centre versus the ratio    (e). 

 

  

Figure 10. Results of the Haken-Strobl dynamics on the FMO complex at 1 1241 cm − −  ( 347 KT = ). 

Left panel: Efficiency (a)(b) and transfer time (c)(d) to the reaction centre versus the reorganization energy 

  and the cutoff frequency  . Favourable values (high efficiency and fast transport) are yellow, while 

unfavourable ones are purple. Right panel: Efficiency of the transport to the reaction centre versus the ratio 

   (e). 

 

From the study of the transport efficiency as a function of the spectral density parameters, we should 

highlight two main conclusions: 

i. In the low    region, the secular approximation and the omission of the imaginary contribution 

of the Redfield tensor do not significantly change the efficiency nor the typical trapping time. In 
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particular, all the versions of the dynamics produce an increasing sigmoidal trend in the plot of the 

efficiency versus   , predicting a positive contribution of the environment to an efficient 

transport. The value of the efficiency at vanishing coupling is 91%  , achieved by the dynamics 

of the isolated system, and it reaches a maximum of  99.6%   in the moderately strong coupling 

regime. Such a maximum is approached when the dephasing rate due to the phonons is around the 

same order of magnitude of the coupling strength between sites: 4V    , this is the condition 

in which the Hamiltonian and the dissipations cooperate to optimize the transport [37]. 

ii. The second important point to make is the profile of the transfer efficiency approaching the strong 

coupling limit. In particular, as already discussed in Chapters II and III, it is well known that, in 

the strong coupling regime, the transport is expected to be approximated by a hopping mechanism 

between the sites of the molecular network whose rates decreases as the coupling increases [3,69]. 

This slower transport should be reflected in a lower efficiency that is not correctly predicted by 

neither the full nor the secular form of the Redfield master equation. By omitting the imaginary 

part of the Redfield tensor, we recover the bell shape of the efficiency which is typical of ENAQT 

(see Figure 9). The issue of the behaviour of the transfer rates at high coupling and in particular the 

crucial role of the commonly neglected imaginary contribution to the Redfield tensor has been 

raised in a seminal paper by Ishizaki and Fleming [3] considering a molecular dimer. Here we 

recover the same phenomenology in a multichromophore setting. 

The overall profile of the Redfield without imaginary part resembles that obtained with the Haken-Strobl 

equation, which differs from the others because of its narrow shape. This should not be surprising since from 

its definition in eq. (IV.83), HS equations that have a constant    ratio give the same dynamics. Differently 

from the other variants, the HS equation is exact in all the range of parameters, since the Markov and Born 

conditions are always valid.12 This is not true for the other equations, for which there are values of   and   

that cause the Born-Markov approximations to be violated and the predictions made to be no longer consistent 

with the underlying theory. We will come back to this issue in section IV.3.5.4 below. On the other hand, 

unfortunately, Haken-Strobl only represents a limiting case, and its assumptions are more stringent compared 

to the omission of non-secular terms or setting ( ) 0 = . 

IV.3.5 Results from the observation of the dynamics 

We will now discuss the features of the dynamics obtained for the different equations as the  ,   and   

parameters vary. In general, we will change only one parameter at a time to see how it affects the dynamics. 

 
12 By definition, the HS equation has correlation function that decays instantaneously (Markovian). 

Consequently, the environment is always relaxed in its thermal state and there is not entanglement with the 

state of the system (Born condition is naturally satisfied).  
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When they do not change, parameters are kept fixed at: 135 cm −= , 1150 cm− =  ( ph 35.4 fs  ) and 
1 1241 cm − −  ( 347 KT = ). The values of   and   have been chosen by taking as a reference the 

estimations of Adolphs and Renger [64] for a realistic environment for the FMO complex [32,68]. Incidentally, 

this also reveals to be the most interesting position in the parameter space, as it allows us to see where the 

Redfield equation succeeds and fails. The temperature has been chosen from [4], which served us to initially 

benchmark the results of our software routine; however, we noted that comparable effects on the dynamics are 

obtained at room temperature. 

For all the simulations, we set 10 fst =  the time we use to observe the dynamics. In some cases, the choice 

of t  could produce artefacts in the observed dynamics (as introduced in the derivation of the Redfield 

equation) that will be discussed. Plots of the dynamics discussed in this section are reported in the 

Supplementary Information at the end of the thesis. 

IV.3.5.1 The effects of the reorganization energy 

We start our discussion by commenting on the dynamics of the populations of the density matrix at the 

variation of the reorganization energy  . In most of the works focusing on the efficiency of transport, the 

discussion is only based on the dynamics of the site populations, which describe how the excitation moves 

through space, starting with an excitation localized at site 1. We take a more comprehensive approach by 

looking also at the exciton basis (i.e., the eigenstates of excH ), since it is the natural representation to interpret 

the different processes represented in the Redfield tensor. Moreover, we argue that the eigenstate population 

also allows identifying unphysical situations that may be hidden by looking at site populations only, indeed 

we could observe how the positivity issue clearly emerged in the energy representation while still generating 

legitimate positive site populations. 
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Figure 11. Dynamics of the site and exciton populations of the FMO molecular complex. The full Redfield 

dynamics is represented in panel A (surrounded by a blue contour), in panel B we drop the imaginary 

contribution in the Redfield tensor, the effect of secular approximation is reported in panel C, while in panel 

D we show the Haken-Strobl limit. Every panel is composed of four plots, two for the site populations and 

two for the exciton populations, in the small and high reorganization energy regime. For the Redfield 

equation with and without imaginary contributions, the emergence of negative exciton populations at high 

  is a typical alarm bell that we are using the equations outside their range of validity, and is marked with 

an alert signal. 

 

Figure 11 shows the time evolution of site and energy populations, in the case of small and high 

reorganization energies, calculated with the full Redfield equation, dropping the imaginary part of the Redfield 

tensor, applying the secular approximation and in the HS limit.  Several observations are in order: 

i. Let us first explain the general features of the dynamics by referring to the case of small reorganization 

energy (first line of panel A). The initial condition of the simulation is a state fully localized in 

chromophore 1 (blue line). As site 1 in mainly coupled to site 2 (orange, see Figure 6 for the coupling 

pattern), the initial dynamics is characterized by a coherent exchange between these two sites. 

According to the structure of the eigenstates shown in Figure 18, the dynamics starts with a significant 

initial population on the third (green) and the sixth (aquamarine) energy eigenstates. We can see that, 

when the dynamics escapes the “coherent trap” of sites 1-2 and spreads over the other sites (and 

eigenstates), reaching in particular site 3, the excitation starts to be captured by the reaction centre 

(pink line). 

ii. Comparing the results generated by the different versions of the Redfield equations in the limit of 

small reorganization energy, we can appreciate some differences even though they predict practically 

the same transport efficiency. In particular, the secular form of the equation (panel C) does not 
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reproduce the small oscillations on the population of the eigenstates that are visible in the full Redfield 

equation and that persist by dropping the imaginary contribution on the Redfield tensor (panel B) and 

in the HS limit (panel D). This is the effect of the decoupling between populations and coherences (see 

section IV.1.8). For the specific FMO Hamiltonian model, the effect is small and leaves practically 

unaffected the pattern of the population dynamics on the site representation. This is because the 

eigenenergies of the model are well separated. However, it appears clear that when the model admits 

eigenstates that lie close in energy, the omission of non-secular contributions can deeply affect the 

dynamics. The other, even more visible, difference is observed in the HS limit, where the tendency 

toward the equalization of all the populations, corresponding to the infinite temperature condition, is 

clearly visible both in the site and in the energy representation. 

iii. By increasing the value of the reorganization energy, we encounter a more complex scenario where 

the different approximations to the Redfield dynamics behaves differently. Let us take the 

depopulation rate of the initial state as representative of the rate at which the excitation is transfer from 

site-to-site. While all the equations describe an initial increasing of such transfer rate with increasing 

reorganization energy  , in the intermediate regime (say   between 10 cm−1 and 100 cm−1) the full 

Redfield equation reach a maximum transfer rate which become independent on the value of  . On 

the contrary, the secular version of the Redfield equation predicts a transfer rate which continues to 

increase linearly with the reorganization energy while by dropping the imaginary contribution and in 

the HS limit we assist to a lowering of the transfer rate. 

These different behaviours can be observed in the second line of panels A-D in Figure 11, which shows 

the dynamics in a strong coupling regime ( 1500 cm −= ), by looking at the depopulation of the initial 

state in chromophore one (blue line). The depopulation rate has reached a plateau in the full Redfield 

description, it is very fast when the secular approximation is applied, and it is slower in panel B and 

D.  While the slow transfer rate predicted by the R-imag and HS equation reflects on a lower transport 

efficiency in the strong coupling regime as discussed in the previous section (see Figure 9 and Figure 

10), the different dynamics predicted by the secular form does not imply a difference in the calculated 

efficiency compared to the full Redfield solution (see Figure 7 and Figure 8). This happens simply 

because in this regime the intersite redistribution rate is much higher than the trapping rate 
T , which therefore become the bottleneck for the process of transfer to the reaction centre. 

iv. Notice that while the site populations predicted by the full Redfield equation do not look “suspicious” 

even in this high coupling condition, by switching to the energy representation we quickly discover 

that something is wrong, as exciton 3 features a population exceeding 1 while other eigenstates are 

assigned a negative population. This is a warning that we are applying the theory outside its range of 

validity. The same warning pops up even by dropping the imaginary part (panel B). On the contrary, 

it will never happen by using the secular form (panel C) or in the HS limit (panel) D because these 

master equations have a Lindblad form (therefore preserving complete positivity by construction).  
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Before moving on, we are now in the position to summarize some important observations on the role of the 

non-secular contributions and imaginary contribution to the Redfield tensor: we can state that the secular terms 

in the Lamb-shift, present both in the full Redfield and the secular Redfield, do not give significant 

contributions to the dynamics in any regime. On the contrary, the secular relaxation terms play a predominant 

role in the low-coupling regime, increasing transport between sites as   increases. Outside this regime, the 

inclusion of nonsecular terms in the real part of the relaxation superoperator (as in the Redfield without 

imaginary part) creates relevant connections between populations and coherences. This has the effect of 

slowing down the transport between sites of the FMO. In the full Redfield equation, the effect is compensated 

by the imaginary nonsecular terms. To better understand this, we report in Figure 12 heat maps of the real and 

imaginary parts of the tensor H R+  in the eigenstate basis at various values of  .13 As can be noted, the 

structure of the real part, i.e., the relative weights of the tensor terms, remains fixed for different  , while their 

value increases linearly. This is because only  RRe  contributes to the real part, which is influenced by 

( )C  . Differently, the imaginary part changes its structure with  , passing from a (mostly) diagonal matrix 

to a structured one. This is due to the fact that it comprehends both the Hamiltonian contribution H , that is 

independent on  , and the imaginary contribution  RIm , that is linear with   due to ( ) . The 

differences in the behaviour of the Redfield equation with and without the imaginary part of R  can thus be 

understood based on this observation: At low   values, the imaginary part of Redfield is dominated by the 

H  terms and behaves like R-imag equation, while at higher   the emergence of R  contributions affects 

the dynamics. But what is the role of the imaginary terms  Im R ? In ref. [3], Ishizaki and Fleming argue 

they are responsible for the dissipation process of the environment. Because of the Markov approximation, the 

phonon modes of the environment are required to be always relaxed to their equilibrium state and the imaginary 

part of the Redfield superoperator is responsible for this equilibrium. At low   , this approximation is valid. 

However, as the ratio increases, this implies that the mechanism of energy transfer between two chromophores 

(de-excitation of the donor and excitation of the acceptor), involves only the equilibrium states of the phonons, 

in a process that is thus independent of the reorganisation energy [3]. For this reason, the results of the Redfield 

dynamics are independent of   in the strong coupling regime. 

 
13 To do so, we have to represent superoperators as matrices. This is possible by passing from the Hilbert 

space to the Liouville space [75]. When this change in space is applied, the density matrix in Hilbert space is 

represented as a vector in Liouville space, through a process known as vectorization. This technique is 

particularly useful for the numerical computation of the dynamics. 
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Figure 12. Heat maps of the terms of the tensor H R+  in the exciton basis. The absolute values (units 

of cm-1) of the real component are reported in (a, c, e, g), while the absolute values (units of cm-1) of the 

imaginary terms are in (b, d, f, h). Tensors have been calculated for the following values of the 

reorganization energy: 11 cm −=  (a, b), 110 cm −=  (c, d), 1100 cm −=  (e, f) and 11000 cm −=  (g, 

h). Other parameters are: 1150 cm− =  and 1 1241 cm − − . 

 

IV.3.5.2 The effects of the cutoff frequency 

What happens to the dynamics as the cutoff frequency changes is more complex. For this study, we will 

limit ourselves to investigating the effects this parameter has on the (Markovian) Redfield dynamics, leaving 

a reference to Chapter III for a more complete analysis of the effects of non-Markovianity on the dynamics of 
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a system. In the derivation of the Redfield equation, we introduced a series of conditions for the Born-Markov 

to be valid. In particular, it is required that the time step t  with which we look at the dynamics must be 

greater than the coherence time ph  of the environment, which we recall is the inverse of the cutoff frequency 

 . If this is not the case, memory effects come into play in the first few instants of the dynamics that must be 

considered explicitly [10,13], and the Redfield equation, which in general never guarantees the positivity of 

the density matrix, can easily return unphysical situations. We can observe examples of this phenomenon in 

the Redfield (and R-imag) dynamics when the relaxation time of the environment becomes longer than the 

chosen time step 10 fst =  (figures in Sup. Info.). In Figure 13, we follow the dynamics of the smallest 

eigenvalue of the density matrix, which should be positive semi-definite for valid physical systems, at values 

of ph 10 fs  , 35.4 fs and 66 fs. As we can see, times pht   result in an invalid eigenvalue, and the non-

positivity gets worst as the correlation time increases. The effect is of course absent when the secular 

approximation is applied since the corresponding equation is in Lindblad form (so it always implements a 

positive map). The HS equation is also immune because of its  - correlated environment. 

 

Another feature related to the cutoff frequency is that, as we know, the ratio    is very important for the 

dynamics. So we can expect to obtain the same trends observed in the previous paragraph by changing  , and 

in practice, it is exactly what we observed. However, since we have set 135 cm −=  and a threshold of 

180 cm− =  to have not relevant problems with non-Markovianity, we cannot see the typical trend inversion 

in transport rate in the R-imag and HS dynamics, as we never reach the turning point. Furthermore, while 

reorganization energy acts only as a multiplicative factor for spectral function, a variation of the cutoff modifies 

the shape of ( )C  , as seen in the previous section. Dynamics with different   will therefore exhibit 

differences between them due to the different mutual weights of the relaxation channels at the various 

frequencies   of the system. This difference is responsible for the broadening of the efficiency profiles in 

Figure 7e, Figure 8e and Figure 9e. So we have one more element to understand those efficiency profiles: for 

small    the profile is narrow because the environment only perturbs the dynamics, which then behaves 

similarly to what Schrödinger predicts. Where there is maximum efficiency, the profile is again narrow 

because, as seen previously, the transfer to the reaction centre becomes the bottleneck. In the remaining zones, 

the shape of the spectral function, influenced by the value of the cutoff frequency, results in differences in the 

relaxation process that are reflected in the broadening of the efficiency profile. 
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Figure 13. Redfield dynamics of the lowest eigenvalue of the density matrix ( )t  for 1530 cm− =  

( ph 10 fs  ) (a), 1150 cm− =  ( ph 35.4 fs  ) (b) and 180 cm− =  ( ph 66 fs  ) (c). For time steps less 

that the environment correlation time ph  (vertical lines), the Redfield equation does not guarantee that the 

dynamics are physically acceptable.  

 

IV.3.5.3 The effects of the temperature 

The FMO complex of green sulfur bacteria can operate in a very large range of temperatures in nature, from 

a hundred meters deep in the Black Sea to the hot springs in New Zealand (e.g., the Chlorobium tepidum) [70]. 

Moreover, under experimental conditions, it can be cooled down to 77 K or work at room temperature. In the 

Sup. Info., we report the dynamics of the populations of the Redfield variants for temperatures in the range 

77 347 KT =  . The other parameters are kept fixed at 135 cm −=  and 1150 cm− = . 

From the dynamics, we note that as temperature decreases the initial coherent beatings are maintained for 

a longer time. Since this phenomenology is also evident for the Haken-Strobl case, for which temperature is 

merely a fictitious parameter that changes the strength of dephasing, the explanation lies in the fact that as the 

temperature decreases, the ( )C   coefficients that regulate the inter-site equilibration in the FMO also 

decrease. In other words, environmental fluctuations diminish with decreasing temperature. Note that, since 

the Hamiltonian is not temperature dependent, the frequency of the beatings is not affected. 

All the dynamics of the Redfield with and without the imaginary part are very similar, suggesting that the 

temperature gives a small contribution to the dispersion function in this range. They are also very similar to 

the secular Redfield results, with the only difference being that it overestimates the initial site beatings with 

respect to Redfield, and neglects the rapid oscillations of the exciton populations. 

In the examined cases, the efficiencies and trapping times are very similar in all the temperature ranges, 

suggesting that temperature plays a little role under these conditions of reorganization energy and cutoff. 

Temperature can also cause problems with non-positivity (see section IV.2.4.2). In fact, besides the 

impossibility of correctly reproducing the dynamics in the first instants (due to the finite memory time of the 

environment), the Redfield equation faces difficulties in guaranteeing fully physical evolution at very low 
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temperatures. In Figure 14, the lowest eigenvalue of the density matrix ( )t  is evolved via Redfield equation 

at the temperature of 77 K. To verify that the problem is not dependent on the initial condition, the reported 

dynamics start from a localization on site 1 and from the 5th eigenstate of the FMO Hamiltonian (the most 

delocalized on sites, see Appendix A). In both cases, the non-positivity persists for all, or nearly all, of the 

duration of the dynamics, returning to an acceptable value (i.e., to zero) only at long times when the population 

has been transferred to the reaction centre and the ground state. Curiously, the omission of the Lamb-shift 

seems to solve the problems associated with this non-physical behaviour, which in any case turns out to be 

quite small with peaks in the order of 10-3. 

 

Figure 14. Redfield dynamics of the lowest eigenvalue of the density matrix ( )t  for 1 153.5 cm − −= , 

i.e., 77 KT = . Initial state localized at site 1 (a), or at the eigenstate 5 (b). At this low temperature, Redfield 

has problems in the predicting a physical evolution also at times that are longer than the environment 

correlation time ph  (vertical lines). 

 

IV.3.5.4 Physical and non-physical dynamics in the strong-coupling regime 

In sections IV.3.4 and IV.3.5.1, we have noted that the Redfield without imaginary part seems to reproduce 

the trend of the Haken-Strobl equation at high  . However, so far, we have only discussed the dynamics of 

the populations, but, since quantum states are defined by the presence of coherences, it is also fundamental to 

look at their behaviour to understand something more about the undergoing processes. 

We need to highlight that four factors regulate the dynamics: the Hamiltonian, that is responsible for the 

coherence modulation, the phonon relaxation, that is the main source of dissipations in both bases, the trapping, 

which acts as a damping term for the coherences involving site 3, and the recombination that damps all the 

coherences in the site basis, but with a longer time scale. In Sup. Info., we report the dynamics of the 

coherences at different reorganization energies   starting with localization at site 1. We keep the other 

parameters fixed at 1150 cm− =  and 1 1241 cm − − . 

In ref. [3], Ishizaki and Fleming (implicitly) suggest that the similarities between the R-imag and HS results 

are due to the lack of ( )  contributions in both equations, associated with the dissipation of the environment. 
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However, a part from some similarities, the two equations have some fundamental differences. The first reason 

is that in the case of the R-imag equation, the absence of such terms is the result of a user’s choice (we are 

neglecting terms that appear in the original Redfield equation), while for the Haken-Strobl it is a natural 

consequence of its  -correlated environment. The second reason stays in the observation of the behaviour of 

the coherences. In fact, differently from the populations, where the main discrepancies can be traced to the 

effects of finite temperature, the coherences differ remarkably in the two cases. For example, let us look at the 

formation of the site coherences in the first instances of the dynamics. In both cases, the maximum value is 

reached more quickly as   increases in the strong coupling regime. However, if for Haken-Strobl it diminishes 

with increasing  , for the R-imag the amplitude remains constant. This sounds particularly strange if one looks 

at the site populations. In fact, in the strong coupling regime, populations remain practically unchanged in the 

first instances of the dynamics, so how is such a fast and intense formation of coherences possible? By looking 

at numbers, it becomes clear that some of the coherences exceed the threshold value fixed by the populations 

(i.e., it must always hold that ij ii jj   ). In practice, this confirms once again that we cannot trust the 

evolution of the equation in large reorganization energy regions. 

Another proof of the difference between R-imag and HS equations is in the passage from quantum to 

classical transport. It is well known that, when the electronic coupling ijV  becomes perturbative in comparison 

with the dissipations, the dynamics of the transport can be described with a good approximation by the Förster 

theory [3,17,40,71], which predict an incoherent jumping process whose kinetic rates get smaller for large 

reorganization energies (cf. Chapter III). In [3,40], Ishizaki clearly shows that the Redfield transfer rates, 

whether in the secular or non-secular form, with or without the ( )  contributions, are never compatible 

with the Förster ones. This is emblematic of the fact that, although the R-imag equation has “acceptable” 

phenomenological profiles for the efficiency, the trapping rate and the dynamics of the site populations, it 

predicts (for the large  ) unphysical coherences and does not match with Förster predictions. 

The case is very different for the Haken-Strobl equation. In [66], Whaley and co-workers demonstrate that the 

Haken-Strobl dynamics on an infinite linear chain reduces to a classical diffusion transport in the asymptotic 

limit of large dephasing rates ( →  in our analysis). In general, by calculating the fluxes between sites [65], 

it is possible to see that in the strong coupling regime the local currents derived from the off-diagonal elements 

of the density matrix (coherences), i.e., quantum fluxes [65] 

 ( ) ( ) Q 2 Imij iji jJ t V t = − , (IV.85) 

matches the classical ones calculated using just the diagonal elements (populations) [65] 

 ( ) ( ) ( )( )C F
i j ij ii jjJ t t t   = − , (IV.86) 

where F
ij  is the Förster rate between sites i  and j  [71–73] (see Appendix B for more details). We give an 

example of the excellent agreement for 11000 cm −=  in Figure 15. This demonstrates that the HS results are 

consistents also when the process passes from quantum to classical-like transport. 
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In conclusion, one might ask why, if the transport becomes classical-like, we still see coherences in the 

dynamics of the Haken-Strobl. The answer stays in the form of the dissipator. A classical master equation 

(Förster) is made of real terms that directly connect site populations with other site populations. In the HS 

equation (excluding trapping and recombinations), these terms do not exist since the dissipator acts only on 

the site coherences. On the other hand, coherences mediate the populations to populations transport 

orchestrated by the Hamiltonian. Thus, in non-equilibrium situations, there is an interplay between the creation 

and the damping of the coherences that is responsible for the actual transport. However, in the strong coupling 

regime, coherences do not add any additional information to that already provided by populations, as can be 

seen from the equivalence between quantum and classical fluxes [29].  

 
Figure 15. Quantum (a) and classical (b) fluxes and their difference (c) for a Haken-Strobl dynamics. The 

difference is three orders of magnitude smaller than the fluxes, demonstrating excellent agreement. 

Parameters of the simulation are: 11000 cm −= , 1150 cm− =  and 1 1241 cm − − . 

 

IV.3.5.5 Inverse participation ratio, purity of the state and the efficiency of transport 

We conclude our investigation with some observations we made about the correlation between the 

efficiency and some dynamical indicators, namely, the dynamical inverse participation ratio (dynamical IPR) 

and the purity of the density matrix. 

IPR is commonly used as a measure of how much delocalized an eigenstate   of the Hamiltonian is on the 

sites. The definition reads 

 ( )
4IPR

i
i = . 
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The result is a real number between 1, when the eigenstate is localized only on one site, and 1 N , when it is 

equally delocalized over the entire network. Here, we use an extension of the IPR, according to [74], to use it 

as a dynamical quantity that can test the number of states that participate to the density matrix at time t . We 

define it as 

 ( ) ( ) ( ) ( )2IPR Tr ii
i

t t t t  =   =   , (IV.87) 

where  denotes the Hadamard (elementwise) product. Note that, by definition, the dynamical IPR strictly 

depends on the basis set used to expand the density matrix. Differently from [74], where they express it on the 

site basis, we will take it on the exciton basis, including in the density matrix also the reaction centre and the 

ground state. The reason for our choice is that, in our case study, the two bases behave quite similarly, but the 

dynamical IPR on the site basis sometimes has disturbing fluctuations, while on the eigenstates the profile is 

always smooth. 

The question is, how do we expect the IPR to behave during dynamics? According to what we have already 

seen in the previous paragraphs, we expect an initial transient in which the number of excitons involved in the 

system state increases (IPR decreases) because of the redistribution due to the interaction with the vibrational 

environment. Subsequently, the trapping and the recombination processes localize the population into 2 states 

(reaction centre, mainly, and ground state), leading to an increase in the IPR. 

The other quantity we will use, is the purity the system that is defined as 

 ( ) ( ) ( )
22

,
purity =Tr ij

i j
t t t   =

   . (IV.88) 

The purity has a value of 1 for pure states that can be described by a statevector, and intermediate values 

between 1 and 1 N  for mixed states. Differently from the dynamical IPR, the purity is base-independent. Its 

meaning is usually associated with the measure of the degree of entanglement between a system and its 

environment. However, because of the Born assumption, it would be improper to speak about entanglement in 

our case, as the system and the environment are assumed to be always separable. So, in our simulation, it 

represents more generically a measure of the level of decoherence in the system state. We expect its value to 

start from 1 when the dynamics is in the initial pure state (localization at site 1), diminishing as the environment 

introduces decoherences in the system, and then rising as the population gets transferred (mainly) on the 

reaction centre. While the descending part is quite intuitive, since the density matrix loses its coherences, the 

turnover may be difficult to understand. However, it is just a consequence of the relaxation channels we are 

using. At the end of the dynamics, the density matrix will be an incoherent state with population present only 

at the reaction centre and the ground state of the FMO complex. In this case, the purity could take every value 

between 1, when the final state is localized on one of them, and 1/2, when the population is equally parted. 

Since, as we have seen so far, the population of the reaction centre at the end of the dynamics is usually >90%, 

it is very intuitive that the purity will be high. 
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By looking at eqs. (IV.87) and (IV.88), one can notice the similarity between the two definitions that differ 

only in the way one takes the product between the density matrix and itself. So, it is natural to imagine that in 

some cases the two indicators can give the same results. In particular, we noted that when the coherences in 

the exciton basis get mostly damped, the purity approaches the IPR (see Sup. Info. for the dynamics). This is 

because purity contains the same contributions due to exciton populations as IPR, with the addition of extra 

terms related to the squared norm of the coherences. 

From the dynamics reported in the Sup. Info., we observe that the position (time and value) of the minima 

of the purity and the IPR change with the reorganization energy. Such minima represent the turning point 

between the part of the dynamics mostly characterized by the redistribution of the excitation in the exciton 

manifold and the subsequent part characterized by the trapping and recombination. In Figure 16 and Figure 

17, we show how the value of the minimum and its time position are correlated with the efficiency in the case 

of the IPR and the purity, respectively. Every dot represents a result obtained for a different reorganization 

energy from 0 =  (no coupling with dephasing environment) to 11000 cm −= . The cutoff was set at 

1150 cm− =  and temperature 1 1241 cm − − . The dynamics have been initiated with an excitation at site 

1, but we obtained similar results starting from eigenstate 5, proving the robustness of observations. The results 

with both parameters give a comparable trend. In particular, in the region of high efficiency, they superpose 

very well because in this regime in the dynamics the purity and IPR match before getting the minimum. The 

most important observation is that both the value and the time required to reach the minimum of both indicators 

is inversely correlated to the trapping efficiency. For all kinds of equations, IPR ranges from a value of 0.35  

(delocalization on 3  states)14 and a time of 30 ps  for an efficiency of 0.91 0.92   , to value of 0.15  

(delocalization on 7  states) and times on the order of picosecond for efficiencies close to unity. Purity 

maintains the same trends with a slight difference in the right side of the graphs, which means that at small 

reorganization energies, IPR reaches a lower minimum in a shorter time than purity, i.e., delocalization on 

states occurs faster than the loss of coherences. But why is it convenient for the system to delocalize? Let us 

start with an intuitive consideration: since efficiency is a race between trapping and recombination, the faster 

the phenomena that bring population to site 3 occur, the greater the transfer to the reaction centre will be, and, 

with it, the efficiency. Given this, it seems to be clear that delocalization is a way for the system to consistently 

bring and maintain population to site 3. Presumably, if we imagined the existence of other types of relaxation 

channels that transfer population from the initial sites directly to site 3, delocalization to the whole network 

may play a negative role in the equation. Or, in another scenario, if the network were really very large, but the 

initial state is close to the site responsible for transfer to the reaction centre, it would be probably not needed 

 
14 Please note that we used the generic term states and not excitons because the density matrix also includes 

the reaction centre and ground state, which are not excitons but are nevertheless included in the state count 

operated by the IPR. 
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to delocalize the excitation over the whole complex, but, on the contrary, to localize over a particular portion 

of it. 

As a final note, as we know, the Redfield without imaginary part and the Haken-Strobl exhibit a bell-shaped 

profile for the trapping efficiency. This can be noted also in Figure 16 and Figure 17 by the presence of a 

turnover: when the maximum efficiency is reached, for larger values of reorganization energy the minima of 

the IPR and purity are increased and the time to reach them gets longer. 

 
Figure 16. Efficiency of trapping as a function of the minimum of the dynamical IPR on the exciton basis 

(a) and the time needed to reach the IPR minimum (b). Each point is taken from a simulation at different 

values of reorganization energy from 0 =  to 11000 cm −= . Other simulation parameters: 1150 cm− =  

and 1 1241 cm − − . Initial state localized at site 1. 

 

 
Figure 17. Efficiency of trapping as a function of the minimum of the purity of the density matrix (a) and 

the time needed to reach the purity minimum (b). Each point is taken from a simulation at different values 

of reorganization energy from 0 =  to 11000 cm −= . Other simulation parameters: 1150 cm− =  and 
1 1241 cm − − . Initial state localized at site 1. 
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IV.4 Conclusions 
In this Chapter, we have discussed the results of simulating excitonic transport in molecular networks using 

the Redfield equation in a wide range of environmental conditions, examining what it predicts, when it fails 

and (possibly) why. To do this, we started with a careful derivation of the Redfield equation, paying attention 

to the implications of the Born-Markov approximations, like the weak coupling and the coarse-graining in 

time. We also introduced the definitions of the spectral and dispersion function, quantities that emerge from 

the system-environment interaction and of fundamental importance for the interpretation of the dynamics. 

The formalization of the exciton-vibration interaction in light-harvesting complexes has been presented 

under the Born-Oppenheimer and displaced harmonic-oscillator approximations. To better understand the 

features of the Redfield equation, and to compare it with some variants usually adopted in literature, we have 

studied the dynamics of the FMO molecular complex over a large set of environmental conditions and reported 

our observations on the Redfield, secular Redfield, Redfield without imaginary part and Haken-Strobl 

equations.  

We have observed an interesting behaviour for the efficiency of transport to the reaction centre as the ratio 

   changes. If at low ratios all the equations predict the same results, at intermediate and high values a 

sigmoidal shape is observed for the Redfield and secular Redfield equations, while a bell-shaped profile is 

obtained in the case of the Redfield without imaginary part and Haken-Strobl equations. As seen, this is due 

to the population dynamics in the strong coupling regime, where the rate of thermalization in the excitonic 

manifold has completely different behaviour for the various equations: accelerated in the case of secular 

Redfield, constant in the case of full Redfield and slowed down in the case of Redfield without imaginary part 

and Haken-Strobl. 

We have demonstrated the problems of non-positivity when choosing a time step for the propagation of 

dynamics that is smaller than the relaxation time of the environment, and eventually when the Redfield 

equation is propagated at low temperatures. 

Since in literature, sometimes, it is said that the Redfield without imaginary part and Haken-Strobl 

equations are similar except for the temperature effects, we have investigated the similarity and provided 

evidence of significant differences. In fact, while the populations behave similarly, the dynamics of the 

coherences as reorganization energy changes are not comparable at all. This is at the base of the impossibility 

of the Redfield without imaginary part to reach the correct Förster-like transport in the strong coupling regime. 

The regime is instead correctly reproduced by the Haken-Strobl equation. 

Finally, we found a correlation between the transport efficiency towards the reaction centre and the 

minimum of two indicators: the dynamical IPR and the purity of the density matrix. 
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IV.5 Appendix A 

In Table 2, we report the composition of the eigenstates 7
,1 ii c i

=
=  and their respective 

eigenenergies for the FMO Hamiltonian in eq. (IV.72). Then, in Figure 18, we show the contribution 2
,ic   

of each excited state (site) on the eigenstates of the FMO Hamiltonian. 

 

Table 2. Eigenenergies and eigenstates of the FMO complex Hamiltonian excH . 

 1 =  2 =  3 =  4 =  5 =  6 =  7 =  

( )exc 1cmE
−  ≈ -28.6 ≈ 74.2 ≈ 148.5 ≈ 244.1 ≈ 269.0 ≈ 374.1 ≈ 468.6 

1,c   0,0567 0,0931 0,8682 -0,0573 -0,0404 -0,4739 -0,0697 

2,c   0,1093 0,0701 0,4607 -0,0490 -0,0691 0,8686 0,0958 

3,c   -0,8833 -0,4239 0,1366 0,0455 -0,1227 0,0646 0,0109 

4,c   -0,4308 0,7455 -0,0239 -0,1444 0,4589 0,0522 -0,1546 

5,c   -0,1096 0,3268 -0,1053 -0,5181 -0,6566 -0,0828 0,4046 

6,c   -0,0041 -0,0926 0,0601 0,0367 0,4648 -0,0812 0,8739 

7,c   -0,0836 0,3682 0,0070 0,8376 -0,3475 -0,0238 0,1856 
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Figure 18. Composition of the eigenstates for the isolated FMO complex. The dimension of the node is 

proportional to the weight (squared norm of the amplitudes in Table 2) of the site in the eigenstate. The 

phases are represented in red (positive) and blue (negative). 

 

IV.6 Appendix B 
The Förster rates for exciton transport correspond to the Fermi-golden-rule rates when the perturbation is 

the Coulombic interaction between the sites (i.e., the off-diagonal terms of the exciton Hamiltonian ijV ) 

[65,71,72]. They can be written as 
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 ( ) ( )
2F *

0
2 Rei j ij i jV dtF t A t



 =   (IV.89) 

where ( )iF t  and ( )iA t  are the fluorescence and absorption correlation functions of chromophore i  (their 

Fourier transforms are known as the line-shape functions) [71]. For the displaced harmonic oscillator, 

including recombination and trapping contributions, we have [65] 

 ( ) ( ) ( ) ( )1 1 * T R3 3i2 2F

0
2 Re i j i j i jE E t g t g t t t

i j ijV dte e e e   
  − − + + 

 =   (IV.90) 

where ( )ig t  the line-broadening function [71] 

 ( ) ( )
0 0

' '
t s

i iig t ds ds c s=   , (IV.91) 

with ( )iic t  the correlation function of the environment interacting operators for site i . In general, ( )ig t  is not 

easy to calculate, but in Haken-Strobl conditions, it is analytical [65] 

 ( )
2

ig t t


=


, (IV.92) 

so that we obtain [65] 
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( )
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+ + + − 
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. (IV.93) 
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Chapter V 

Collision models for Markovian 
dynamics in the weak-coupling regime 
 

 

 

 

In this Chapter, we aim at formulating collision models for an efficient simulation of the Markovian 

dynamics of an open system in the weak coupling limit with a quantum environment. The reference equation 

in this regime is the Redfield master equation whose properties and validity range has been investigated in the 

previous Chapter, together with the explicit form that can be used to model energy transfer in a molecular 

network [1–7]. However, it turns out that the general Redfield description cannot be reproduced by a collision 

scheme and this is intimately connected to the positivity issue [8–10]. Therefore the first step is to select a 

master equation which is based on the same microscopic description of the system-environment but can be 

reduced to the Lindblad form which guarantees the preservation of positivity. Several Born-Markov master 

equations in Lindblad form have been proposed to offer alternatives to Redfield, while hopefully maintaining 

similar accuracy in the same range of applications (Markovian and weak coupling conditions) [11–20]. Many 

of these equations still rely on the Redfield theory introduced in Chapter IV, proposing modifications to the 

final structure of the relaxation tensor based on different motivations. Thanks to the analysis performed in the 

previous Chapter, we can conclude that several approaches can lead to the same dynamics if the environment 

is chosen in agreement with the assumptions of the theory. Starting from this evidence, we here present the 

relative collision algorithms. The collision algorithms have been developed having in mind their 

implementation as quantum circuits, however, they offer an alternative numerical route to compute the open 

system dynamics also in a classical setting, with the advantage of requiring a set of calculations on the system 

wavefunction (of dimension N ) rather than solving for the density matrix (of dimension 2N ). 

The Chapter is organized as follows. A very brief recall of the system Hamiltonian and the spectral function 

of the environment is given in section V.1. Section V.2 will be devoted to the introduction of a generic scheme 

for implementing Lindblad-type master equations and use some of the aforementioned Born-Markov equations 
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as the target of our models. In section V.3, we will analyse the results of a classical implementation of the 

proposed models, finding excellent agreement with the target equations. Then, we will introduce the quantum 

algorithmic version of the collision models and discuss the scaling of the algorithmic complexity. As already 

seen in Chapters II, we will make use of the reset gate to reinitialize the state of the qubit ancilla after every 

interaction to guarantee the Markovianity of the dynamics and preserve the purity of the state. This will result 

once again in an unravelling of the target equations into trajectories of pure states similar to the Monte Carlo 

wavefunction methods [21–27]. Since the impossible direct implementation of this famous computational 

strategy on a quantum computer, here we suggest that our collision scheme can be used as a vehicle to 

implement already existing algorithms. We conclude in section V.4 giving some perspective for future work. 

V.1 A brief recap of the FMO 
As a case study for this Chapter, we take the exciton transport between the chromophores of one of the 

three subunits of the Fenna-Matthews-Olson (FMO) molecular complex. The system has been extensively 

characterized in the previous Chapter, here we briefly summarize the fundamental quantities useful for the 

development of the collision model. 

Site energies and electronic coupling have been calculated by Adolphs and Renger in [2] for the FMO 

complex of the Chlorobium tepidum bacterium. Here, we will use their data as the reference for the system 

Hamiltonian 

 exc

200 96 5 4.4 4.7 12.6 6.2
96 320 33.1 6.8 4.5 7.4 0.3
5 33.1 0 51.1 0.8 8.4 7.6
4.4 6.8 51.1 110 76.6 14.2 67

4.7 4.5 0.8 76.6 270 78.3 0.1
12.6 7.4 8.4 14.2 78.3 420 38.3
6.2 0.3 7.6 67 0.1 38.3 230

H

− − − − 
 
− − 

 − −
 

= − − − − − 
 − −
 
− − − 
 − − − − 

1cm− . (V.1) 

The environment is represented by the vibrational degrees of freedom of the protein scaffold. Under the 

Born-Oppenheimer approximation, and using the displaced harmonic oscillator model to describe the state of 

the phonons, a linear Hamiltonian can be derived to describe the exciton-phonon coupling. Such Hamiltonian 

reads int
1

N
i iiH B S

=
=  (cf. Chapter IV), where iB  is the environment operator and iS i i= is the system 

interacting operator corresponding to the projector operator to site i .  

Under the Born-Markov approximations, the fine details about the environment are lost, and the fluctuations 

of the protein environment that surrounds the chromophores are described by means of a spectral function. 

Here, we assume it to be a Drude-Lorentz spectral function ( )C  , equally parametrized for all the sites. The 

expression reads ( 1= ) 
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 ( ) 2 2
14

1
C

e 
 

 −


=

+ −
, (V.2) 

where   is the reorganization energy of the environmental phonons,   is the cutoff frequency of the 

environment (the reciprocal of the relaxation time) and   is the inverse temperature. The values of the spectral 

function at the system frequencies   correspond to the relaxation rates of the dynamics of the exciton transfer. 

On the contrary, the renormalization of the Hamiltonian due to the interaction with the environment is 

described by the dispersion function ( ) , which is defined in terms of the spectral functions as 

 ( )
( )'1 '

2 '
i

i
C

d


 
  



−
 =

− , (V.3) 

where  denotes the principal value of the integral. 

For the present Chapter, we will omit the presence of extra relaxation channels (like recombination and 

trapping) to focus on the dissipations in the exciton manifold. However, simple implementation strategies for 

these processes are available and they are reported in Appendix B. 

V.2 The collision model 
Differently from Chapters II and III, where we implemented algorithms for environments with classical 

correlation functions, here the collisions must take into consideration the quantum character of the 

environment, in particular the effect of the finite temperature. In the following, we will introduce a generic 

scheme to implement Markovian collision models and discuss a proposal for the implementation of trajectories 

of collisions. Then, we will select two categories of Lindblad-type master equations and propose a collision 

model for their simulation. 

V.2.1 A generic scheme for Markovian collision models 
A general framework for Markovian collision models has been proposed by Cattaneo et al in ref. [28]. 

Here, we provide an overview of the method to establish the basic ingredients which will be useful to build 

and discuss of our algorithmic implementations. Let us consider the evolution of an open system, by neglecting 

for the moment the self-Hamiltonian, and discretize the dynamics into time steps of length t . During each 

time step, to reproduce the effect of the environment, we allow the system to interact with an ancilla under a 

certain Hamiltonian, we call this interaction a collision. The collision event is represented by a unitary operator 

( )U t  acting both on the system (or subsystem) and the ancilla degrees of freedom 

 ( ) ( ) †coll coll * †exp i ,U t H t H cS A c S A = −  =  +  , (V.4) 

where collH  is the (Hermitian) collision Hamiltonian, c  is the strength of the collision, S  is an operator 

acting on the system and A  is an operator acting on the ancilla. For Markovian evolutions, the state of the 

ancilla before the collision must be uncorrelated with the system. Moreover, an ancilla can interact only once 
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with the system to ensure there are no backflows of information (non-Markovianity). Given these conditions, 

each collision must have its dedicated ancilla. In this way, a memoryless collision model is obtained that 

reproduces the dynamics of a Lindblad master equation in the limit 0t + →  as proved in ref. [28]. When this 

is the case, after the collision, the degrees of freedom of the interacted ancilla can be traced out since they are 

no more useful for the computation, and the resources devoted to storing its state can be used for a new ancilla 

that must be initialized to the correct initial state (reset of the ancilla) [29]. 

The state of the open system after the collision is given by the dynamical map 

 ( ) ( ) ( ) ( )( ) ( ) anc †
ancTrt t t U t t U t   +  =   =     . (V.5) 

Then, the dynamics of the open system emerges as a consequence of the repeated interactions 

 ( ) ( ) ( )0 ... 0 ...nn t    =    =        . (V.6) 

The state of the ancillae can be generally different at every time step (for example to simulate a time-

dependent state of the environment), but this will not be the case considered here. 

To see how collision models reproduce the Lindblad equation, we make an example. Let us assume the 

ancilla is a qubit described by a diagonal density matrix anc anc anc anc anc anc anc
0 10 0 1 1p p = +  and the 

ancilla operator is simply anc anc anc
+ 1 0A = = . When the collision is perturbative, 1c t , i.e., for weak 

collision strengths and/or for short interaction times t , we can expand the collision operator up to second 

order in t  

 ( ) ( )
2coll coll 211 i

2
U t H t H t  −  −  . (V.7) 

By substitution in eq. (V.5) and considering only terms up to 2t , one gets 

 

( ) ( ) ( )   ( )  ( )

  ( ) ( )

  ( ) ( )

  ( ) ( )

†anc * † anc
anc anc

2 2 anc
anc

† †*2 2 anc † † † †
anc

2 †2 anc † †
anc

2 †2 a
anc

i , Tr i , Tr

1Tr ,
2

1Tr ,
2

1Tr ,
2

Tr

t t t t cS t A c S t A

c t A A S t S SS t

c t A A S t S S S t

c t A A S t S S S t

c t A

     

  

  

  



+

+

+

 +  = −    +   

 
+  −    

 

  +  −   

  +  −   

+    ( ) ( )nc † †1 ,
2

A S t S SS t 
+

  −   

 (V.8) 

Now, by inserting the state of the ancilla and the definition of the operator A , the evolution of the density 

matrix of the open system can be written as 
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( ) ( )
( ) ( )

( ) ( )

2anc † †
0

2anc † †
1

1 ,
2
1 ,
2

t t t
p c t S t S S S t

t

p c t S t S SS t

 
 

 

+

+

+  −   =  −    

  +  −   

 (V.9) 

By defining 2 2c c t=   and taking the limit 0t + → , the above equation approximates a Lindblad 

equation  

 

( ) ( ) ( )

( ) ( ) ( ) ( )

0

† † † †
0 1

lim

1 1, ,
2 2

t

t t t d t
t dt

S t S S S t S t S SS t

  

     

+ →

+ +

+  −




      = − + −         

 (V.10) 

with rates 2anc
0 0p c =  and 2anc

1 1p c = . Note that we have not imposed particular constraint to the form of 

the system collision operator. Therefore, this is a generic and powerful procedure to reproduce general master 

equations in Lindblad form. 

V.2.2 Collision model from trajectories 
By starting from the above idea, we now discuss an original collision model that does not rely on the density 

matrix formalism, rather the dynamics of the open system emerges as the average of pure states trajectories. 

This is obtained by adopting a suitable collision scheme at the level of the system-ancillae wavefunction and 

by measuring the ancillae state (collapsing their state) after every interaction. In Appendix A, we show that 

measuring the state of the ancillae after a single collision is equivalent to tracing over the ancillary degrees of 

freedom. In fact, by preparing the state ( ) ( )( ) ( )anc †U t t U t     multiple times and measuring the ancilla 

after every preparation, the statistical density matrix of the system obtained as the ensemble average over 

different realizations approaches the one expected from eq. (V.5). Moreover, in Appendix A we show that also 

different realizations of the entire dynamics (trajectories) reproduce on average the dynamics of the open 

system. 

The advantage of a trajectory approach is twofold: on the one hand, it is well-known that trajectory 

approaches on Hilbert space have a more favourable resource scaling of ( )2N  with respect to Liouville 

evolutions such as the Lindblad one that scales with ( )4N . On the other hand, compared to other trajectories 

approaches, this implementation based on unitary operations can be easily implemented both on classical and 

quantum computers without any need to modify the proposed algorithm. Indeed, we stress once again that for 

their formulation in terms of system and ancillae evolving under unitary interactions, collision models suit the 

idea of a digital quantum computer implementation, as also demonstrated in Chapters II and III, and refs. [29–

31]. 
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To work with pure states only, we prepare our collision model in a way that the initial state of the ancilla 

qubits is the ground state in the computational basis of the quantum computer, i.e., anc anc0 = . As the 

initial state of the system, we consider an excitation localized at site 1, that is 1 =  (we will assume here 

to work under the algorithmic mapping proposed in Chapter II for simplicity). In the spirit of a collision model, 

we decompose the time evolution in small time steps t , so that we can write the unitary evolution operator 

as 

 ( ) ( ) ( )exc-phHU t U t U t =   , (V.11) 

where  

 ( ) ( )exc LSexp iHU t H H t  = − + 
  

 (V.12) 

denotes the unitary evolution of the system governed by the exciton Hamiltonian excH , eventually 

renormalized by the Lamb shift LSH . Note that it does not involve any collision with the ancillae. Then, 

( )exc-phU t  represents the evolution due to the interaction with the phononic environment. This is driven by 

collision Hamiltonians for the system-ancillae interaction that have different forms depending on the Lindblad 

equation and on the collision scheme we want to implement. In our case, we will Trotterize it into many 

contributions by implementing the various relaxation channels acting on the system. In this way, we will be 

able to use only one ancilla qubit, reducing the resource requirements, with the reset technique already 

mentioned. 

The collision model is very flexible, so further collisions can be added at will to implement extra relaxation 

channels. In Appendix B, we show the collision operators that one can add to take into account the exciton 

recombination and the trapping to the reaction centre. However, these extra channels will not be considered in 

the rest of the Chapter. 

V.2.3 Target dynamics 
Our aim  in this section is to contextualize the collision model depicted above to simulate the dissipative 

dynamics of a chromophore network as discussed in the previous Chapter, according to the Redfield equation. 

However, it turns out that the general Redfield description is not suited to be reproduced by a collision scheme. 

In fact, a correct algorithmic scheme for the Redfield dynamics should be able to return also the (eventually) 

non-positive density matrices that can be generated during the evolution. Contrarily, collision models are the 

result of unitary operations and measurements, which makes it impossible to obtain non-positive density 

matrices from positive initial states. So, the general Redfield tensor cannot be cast into a collision model. 

Therefore, the first step is to select a master equation which is based on the same microscopic description 

of the system-environment but can be reduced to the Lindblad form which guarantees the preservation of the 
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positivity. This problem has been long considered in the literature and many different techniques have been 

proposed over the years, based on various approaches like the use of secular approximation [32],  -correlated 

environments [12], explicit coarse-graining [13–16], different Markovian approximations [17], a geometrical 

average of the relaxation rates [18] or phenomenological assumptions [19,20]. Without the ambition of 

choosing the best method to reproduce the accuracy of Redfield results (see for example the discussions in refs 

[9,18]), we will select two different categories of master equations and present the collision operators that can 

be used to propagate them.  

V.2.3.1 The secular Redfield equation 
The secular Redfield equation has been already introduced and examined in the previous Chapter. We recall 

here that it is obtained by neglecting rapid oscillating terms in the Redfield tensor in the interaction picture. 

This can be done by a complete cancellation (full secular approximation) of terms connecting transitions with 

different frequencies, '  , or by creating clusters of frequencies   in which the mixing is allowed and the 

separation is imposed at the cluster level (partial secular approximation). In any case, the equation can be 

written as 

( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )† †exc LS,sec

1

1i , ,
2

N

i ii i
i

d t
H H t C S t S S S t

dt 


       

+
=

   = − + + −     
 , (V.13) 

where ( ) ( ) ( )†LS,sec

1

N

ii
i

H S S


  
=

=   is the Lamb shift Hamiltonian involving the dispersion functions 

at cluster frequencies   and ( ) ( )i iS S
 

 


= . The spectral function ( )C   is usually evaluated at the 

average frequency of the cluster, but there is some freedom in the definition. 

When the full approximation is used there is only one frequency per cluster, and the total number of clusters 

is ( ) ( )2# N = . On the other hand, by changing the number of clusters, the number of terms in the sum 

decreases. However, as we are going to see, this does not necessarily imply a computational advantage in the 

case of the collision model we propose. Note that, in the extreme case of a single cluster, eq. (V.13) becomes 

identical to the Haken-Strobl equation, for which a dedicated collision model has been presented in Chapter 

II. 

 

For the partial secular Redfield, we propose a collision model that implements each one of the dissipation 

processes in eq. (V.13) as a stand-alone collision. The collision operators and Hamiltonians read in this case 

 ( ) ( )( ) ( )
( )

( ) ( )( )p-sec p-sec p-sec †anc anc

1
exp i ,

N

ii i i
i

C
U t H t H S S

t



     + −

=

 = −  = +


 . (V.14) 
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Note that the number of collisions in a single time step is determined by the number of clusters, ( )#  , 

multiplied by the number of molecules in the network, i.e., a total of ( )# N  collisions. 

In principle, we could implement also the full secular Redfield with the collision operators defined above. 

However, it would result in a scaling of ( )3N  collision operators to apply for each time step. Since the FMO 

Hamiltonian has no accidental frequency degeneration, it is convenient to rewrite the full secular Redfield 

equation as (see Appendix C for the details) 

 

( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

exc LS,sec

1

,

1i , 0 0 0 0 0 ,
2

1 ,
2

N

i i i i
i

d t
H H t C S t S S S t

dt
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
  

         

+
=

+



  = − + + −       

 
 + − −  

 




 (V.15) 

where 
1

N

i i
i

w S S    
=

= , in order to reduce the number of collisions from ( )3N  to ( )2N . 

Then the collision operator for the system-environment interaction can be defined as 

( ) ( ) ( )f-sec f-sec,II f-sec,IU t U t U t =   , where 

 ( ) ( ) ( )
( )( )f-sec,I f-sec,I f-sec,I anc

1

0
exp i , 0

N

i xi i
i

C
U t H t H S

t


=

 = −  =


  (V.16) 

are the collision operators and Hamiltonians for the 0 =  frequencies and  

( ) ( )
( )

( )f-sec,II f-sec,II f-sec,II anc anc
+

,
exp i ,

C w
U t H t H

t
  

 
 
 

 
     −



−
 = −  = +


  (V.17) 

are the collision operators and Hamiltonians for the remaining terms of eq. (V.45). In the above eq. (V.16), 

x  + −= +  is the Pauli x-operator. The two classes of collision operators in (V.16) and (V.17) corresponds 

to different incoherent processes, indeed (V.16) causes pure dephasing in the system, which is an adiabatic 

incoherent process, while (V.17) induces transitions between the eigenstates of the system thus introducing 

energy dissipation. 

V.2.3.2 Geometric mean master equations 
Surprisingly, in the attempt to derive Lindblad-form equations that could compete with the Redfield results 

within its range of validity, several authors, following very different approaches, arrived at a similar result 

[17–19], that reads 
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( )
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 

 (V.18) 

The dissipation terms of this equation are similar but not equivalent to the original Redfield tensor. The 

difference is that the relaxation rates ( )C   of the Redfield equation relative to the operator pair ( )iS   and 

( )† 'iS   are replaced by the geometric mean ( ) ( )'C C  . The mathematical structure induced by this 

simple substitution ensures that the resulting equation is always writable in Lindblad form with positive 

Lindblad rates. Because of the curious form of the relaxation rates, here we identify this group of equations 

under the name of geometrical-mean master equations (GMME). Different GMMEs characterize themselves 

only in the way the Lamb shift Hamiltonian is defined. 

The first appearance of a GMME, namely the position and energy resolving Lindblad equation (PERLind) 

[19], is due to Kiršanskas et al. who phenomenologically assumed this form on the base of a heuristic argument 

in an attempt to reproduce Redfield results, beyond the secular approximation, with a completely-positive 

master equation. In their original paper, the Lamb shift is completely neglected, so we set LS,PERLind 0H =  

for the PERLind master equation. 

Another GMME is the universal Lindblad equation (ULE). In this case, Nathan et al propose a formal 

microscopic derivation similar to the Redfield one, but with a different definition of the Markovian 

approximation [17,33].  From the derivation, the Lamb shift Hamiltonian for ULE results in 

 ( ) ( )
( ) ( )†LS,ULE

1 , '

'' ' ''1 ' ''
2 ''

N

ii
i

C C
H S S d

 

   
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 



−
=

− −
=    . (V.19) 

Since it is based on a formal derivation, authors of the ULE claim the universality of this equation in low 

coupling and Markovian regime, having the same accuracy and range of applicability as the Redfield equation 

[17,33]. However, the question of whether microscopically derived Lindblad-type equations can take the place 

of the Redfield equation is still under debate [34,35]. 

Finally, we mention also the geometric-arithmetic master equation (GAME) introduced in [18] by 

Davidović. The equation is obtained in a quite sophisticated approximation procedure in which terms that 

average out over a time scale typical of the quantum system are eliminated from the Redfield equation. The 

Lamb shift Hamiltonian of GAME in this case reads 

 ( )†LS,GAME

1

i
2

N

i i ii
i

H S K K S
=

= − − , (V.20) 
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where ( ) ( )( ) ( )2i iK C S


  =  + .1 In Ref. [18], Davidović also shows a comparison of the results of 

the GMME and other Lindblad equations, finding the best agreement with Redfield dynamics for the GAME 

and ULE. Curiously, when the secular approximation is adopted, both the ULE and GAME reduce exactly to 

the secular Redfield equation, which means that they include all the typical contributions of that equation. 

 

The collision operators for the GMMEs have the same form for all the various equations since the only 

difference between them is in the Hamiltonian evolution carried out by the operator (V.12). To reduce the 

computational effort of our collision model, it is convenient to diagonalize the dissipator of eq. (V.18) as 

 ( )
( ) ( ) ( )† †exc LS,

1

1i , ,
2

N

i ii i
i

d t
H H t Q t Q Q Q t

dt

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+
=

   = − + + −     
 , (V.21) 

where the Lindblad jumps operators are defined as ( ) ( )i iQ C S


 = . Now, the collision operator and 

Hamiltonian can be defined as  

 ( ) ( ) ( )†GMME GMME GMME anc anc
+

1

1exp i ,
N

i i i i
i

U t H t H Q Q
t

 −

=

 = −  = +


 . (V.22) 

Note that we need here only N  collisions per time step. 

V.3 Results and discussion 

V.3.1 Results of the collision model 
In light of what has been observed in the previous Chapter, we test our collision model within the regime 

of validity of the Born-Markov condition, i.e., 135 cm −= , 1 1 fs− =  and 347 KT = , so that the 

reproduced dynamics can be considered physically reliable. In this regime, the strength of coupling with the 

environment is sufficiently weak, the decay of the correlations is fast compared to the frequency of the system 

and the spectral function has a perfect Ohmic behaviour in the range of frequencies typical of the FMO 

Hamiltonian. However, as should be expected, the proposed collision schemes would correctly reproduce the 

target equations in all the possible range of parameters, also outside the validity region of the equations 

themselves. This is possible because, differently from the Redfield equation that usually becomes negative 

outside the Born-Markov boundaries, these Lindblad equations do not. 

 
1 Interestingly, in the GAME equation the Lamb shift that renormalize the system Hamiltonian depends not 

only on the dispersion function, but also in the spectral function. This is the only case in which we have 

observed this. 
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In Figure 1, we present the master equation results and the dynamics generated by the collision models of 

the full secular Redfield, PERLind, ULE and GAME. The simulation started with an excitation localized at 

site 1. For the collision models, we average over 104 trajectories propagating the algorithms using a time step 

of 1 fst = . We first observe as the dynamics generated by the different master equations are practically 

indistinguishable for the chosen spectral density and system. On the basis of the analysis presented in the 

previous Chapter, we also know that such dynamics is the same generated by the full Redfield equation.2 

The second point is to assess the capability of the collision algorithm to reproduce the average dynamics. 

As proof of the excellent agreement obtained by our dynamics, we also report in the last column of Figure 1 

both the fidelity ( )target collF ,   and the trace distance ( )target collT ,   between the target ( target ) and the 

simulated ( coll ) density matrices at each time step. These quantities, defined as 

 ( )
2

target coll target coll targetF , Tr    
  

=   
  

, (V.23) 

 ( ) ( )
2target coll target coll target coll

1

1 1T , Tr
2 2

     
  

= − = − 
  

, (V.24) 

measure the degree of distinguishability of two density matrices. Results can be read by remembering that the 

two indicators have the same boundaries ( ) ( )target coll target coll0 F , ,T , 1      but with the opposite 

meaning, i.e., the fidelity and trace distance of two identical states are ( )F , 1  =  and ( )T , 0  = , 

respectively. Results show an optimally high fidelity and low trace distance, confirming the goodness of our 

collisional models. However, the agreement between the result of the collision algorithm and the resolution of 

the master equation could be further improved by increasing the number of trajectories and diminishing the 

time step of the simulation (in our case the time step was small enough and could even have been increased). 

 
2 Based on the comparison between the original Redfield form and the secular Redfield in this range of 

parameters. 
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 Figure 1. Results of the collision model (central column) compared with the target dynamics (left column). 

The fidelity and trace distance between the dynamics of the target density matrix and the collision (right 

column) show excellent agreement, proving the goodness of our collision algorithms. Parameters of the 

simulation: 135 cm −= , 1 1 fs− = , 347 KT = , 1 fst = , 104 trajectories. 
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V.3.2 Scaling of the algorithms on a digital quantum computer 
Here we briefly discuss the possible implementation of the algorithms on a digital quantum computer. The 

first aspect to be decided is the mapping of the states of the system into the qubits of the quantum register. 

Since the dynamics we want to implement does not involve multi-excitons, the most efficient and simple 

mapping on a quantum computer is in this case the binary mapping. The binary mapping allows for the 

implementation of the N  sites of the simulated open system on N  states of the computational basis, requiring 

a number of qubits that scales logarithmically, ( )2logq N=    .3 For the FMO complex, 3q =  qubits are 

sufficient. Another aspect is how to implement the ancillae that are necessary for the dynamics. There are two 

possible ways to do it. One way, which is the most expensive, requires mapping the ancilla of each collision 

as a qubit of the quantum register. The other way is to dedicate only one qubit of the register as the ancilla 

qubit, which must be reset after every interaction. The advantage of using the second method is evident, but, 

it can be argued that, in the current generation of quantum computers, the noise introduced for a reset gate is 

so high that the computation quickly loses coherence [31]. This motivation was used for example by Cattaneo 

et al. used to justify the use of the first approach in their recent simulation of a collision model on (noisy) IBM 

quantum computers. However, we must say that current quantum computers are not the target of our proposed 

collision models, as the noise is so high that simulations would fail to correctly reproduce dynamics also for 

small systems [31]. Depending on the technical characteristic of the future quantum hardware, it is an open 

question whether better results will be obtained by using a larger quantum register with few reset operations 

or with a single ancilla qubit undergoing multiple reset operations. Here, we decide to stay with the option 

requiring less controllable qubits and therefore we repeatedly reset a single ancilla qubit. 

 

The algorithmic steps are similar to the ones we have already reported in Chapters II and III. A schematic 

example of the circuit is reported in Figure 2. The system must be initially prepared in order to reproduce the 

presence of an excitation in the chromophoric network. Because of the algorithmic mapping, this can require 

a gate that operates on the whole quantum register of the system, i.e., that can be implemented in the worst 

case with ( ) ( )24q N=  CNOT gates. However, for simple initial states (like initial localization on a single 

site) very few operations are needed without requiring any CNOT.4 

Then, since the collision Hamiltonians of our algorithms rely on the system operators on the exciton basis, it 

is convenient to apply a gate D  to change the state of the system quantum register from the site basis to the 

 
3 The number of states becomes 2N +  if we insert also the reaction centre and the ground state. However, 

the scaling analysis reported here is still valid also in that case. 

4 If the dynamics starts with an excitation at site 1, and we map that site as 000 , we do not even need to 

apply any gate. 
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excitons basis. This approach has also been used by Gupta and Chandrashekar in [36] and requires up to 

( ) ( )24q N=  CNOT gates. At the end of the circuit, the inverse operator †D  can be implemented if one 

desires to read the results on the site basis. 

The central part of the circuit is occupied by the repetition of gates implementing the Hamiltonian free-

evolution (on the exciton basis) ( )HU t  and the collisions ( )exc-phU t . In general, to obtain the populations 

at time t n t=  , it will be necessaire to repeat the block of instructions for n  times.  

( )HU t  is a unitary operation acting on the system quantum register that can be transpiled in general using 

( ) ( )24q N=  CNOT gates. However, since excH  is diagonal in the exciton basis, if the Lamb shift is null 

or diagonal as well, then it requires only ( ) ( )2q N=  CNOT gates for the decomposition. 

The decomposition of the circuit block implementing ( )exc-phU t  is the one that characterizes the different 

collision models proposed and gives the overall scaling of the quantum circuit. In Figure 3, we show that it is 

composed of gates implementing the collision operators, followed by a reset gate on the ancilla qubit. A single 

collision operator can be implemented by ( ) ( )24q N=  CNOT gates. Thus, the final scaling must take 

into account the number of these collision operators reported in the previous section for the partial/full secular 

Redfield and the GMMEs. Results are reported in Table 1 along with the scaling of the Haken-Strobl equation 

found in Chapter II. We can see that the quantum algorithm for the collision model of the partial secular 

equation has a scaling that depends on the number of frequency clusters used. It ranges from ( )5N  if we 

use one cluster per frequency or ( )3N  if we use only one cluster that comprehends all the frequencies. Note 

that these limit situations correspond to the full secular Redfield and the Haken-Strobl cases respectively, for 

which we have proposed alternative algorithms resulting in a better scaling. It is precisely the collision 

algorithm for Haken-Strobl that presents the best scaling for the Markovian equations examined in this thesis. 

The algorithm for GMME is the best performing of those presented in this chapter. However, all the proposed 

algorithms scale better than the ( )6N  often required by the Stinespring dilation [37]. In [36], the algorithm 

proposed by Gupta and Chandrashekar for the full secular Redfield requires ( )2
2logN N  CNOTs to be 

executed. This is definitely a better scaling compared to our collision algorithm for the secular Redfield. 

However, in their derivation, they assumed a particular form for the interaction between the bath of each 

chromophore (we assumed separated baths instead). Counter-intuitively, this makes the number of independent 

dissipation channels an order of magnitude smaller than the one we considered, which is probably the reason 

for their advantage.  
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To conclude, we highlight that also for the collision algorithms proposed in this Chapter, by exploiting the 

correspondence between measurement and trace, the demand for trajectories into which the algorithms are 

decomposed is naturally satisfied by the need for a digital quantum computer to run a circuit several times to 

obtain information on qubit populations (cf. Chapters II and III). 

 

Figure 2. Scheme of the quantum circuit for the execution of the proposed algorithms. The quantum register 

of the system is mapped on the FMO states on the site basis. The first gate initializes the register. D  and 
†D  change the basis from site to exciton and vice versa. The circuit between the barriers must be repeated 

n  times to get the result at time n t . To save resources of the quantum device, the ancilla qubit is reset 

after every execution of the gates involving it. 

 

 

Figure 3. ( )exc-phU t  circuit block ( ( )GMMEU t  in this figure) represent in a compact notation the 

sequence of gates (collision operators followed by a reset of the ancilla) that implements the various 

dissipation channels. The decomposition of the collision operator in 1- and 2-qubit gates is not univocal and 

depends on the device used for the execution. 

 

 



158 Chapter V  

Table 1. The algorithmic complexity of the Markovian collision algorithms proposed in this thesis. 

Algorithm # CNOT gates, # reset gates 

Full secular Redfield equation ( )4N , ( )2N  

Partial secular Redfield equation ( ) ( )( ) ( )3 3 5#N N N  , ( )( )# N  

GMMEs ( )3N , ( )N  

Haken-Strobl (Chapter II) ( )2N , ( )N  

 

V.3.3 Trajectories and similarities with Monte Carlo wavefunction methods 
In this last part, we discuss the trajectories that are produced by our algorithms. In Figure 4, we take as an 

example the dynamics of the full secular Redfield equation simulated with our collision model at an increasing 

number of trajectories (results for the other equations are similar). To appreciate better the results, we show 

both the population of site 1 and site 3 during time. The purple line represents the dynamics of a single 

(random) trajectory produced by the collision model we propose. Focusing on this line, it can be clearly seen, 

especially looking at site 1, that at time 1 pst   the dynamics change unexpectedly. A phenomenological 

explanation for this observation is that a collision has occurred between the system and the ancilla. By 

increasing the number of trajectories, the probability to see a collision increases (it is very clear for example 

from the dynamics originated by the average of 10 trajectories). Then, when the number of trajectories is very 

high, the collision spots of the individual trajectories can no longer be distinguished by looking at the average 

dynamics, and the result of the master equation is asymptotically recovered. 
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Figure 4. Simulation of the populations of site 1 (left panel) and site 3 (right panel) obtained by the collision 

model for the full secular Redfield are compared with the master equation results (dashed black line). The 

violet line corresponds to a single trajectory. Red, green, orange and blue lines are computed as the average 

of 10, 100, 1000 and 10000 trajectories, respectively. Parameters of the simulations are 135 cm −= , 

1 1 fs− = , 347 KT =  and 1 fst = . 

 

The argument that a collision occurred is certainly plausible and, for certain collision models, it is also 

exact (see Chapter II). In the following we will substantiate this intuition by looking closer at a single trajectory 

and its probabilistic measure. Without complicating things too much, let us take a simple target equation, where 

we have only one Lindblad operator in the dissipator, that reads 

 ( )
( ) ( ) ( )2 † †1i , ,

2
d t

H t c O t O O O t
dt


  
+

  = −   + −     
, (V.25) 

so that propagator (cf. eq. (V.11)) can be written as the product of system Hamiltonian propagation and a 

collision operator 

 ( ) ( ) ( ) ( ) ( )coll H collexp i exp iU t U t U t H t H t =   = −  −   (V.26) 

where ( )†
coll anc ancH c t O O + −=  + . The initial state of the ancillae is the desired state anc0 . Let us 

follow the system state evolution step by step. We recall that in Appendix A, we demonstrated the parallelism 

between repeated measures and trace of the ancillae, so the evolution 

 ( ) ( ) ( )
( ) ( )

( )H coll1) 
2) trace anc

0 0 0 'U t U t t    
 

= ⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯→   

can be approximated by averaging over different trajectories of pure states 
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 ( )
( ) ( )

( ) ( )H coll1) average over trajectories
2) measure anc

0 'U t U t
k t t   

 
⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯⎯→  ⎯⎯⎯⎯⎯⎯⎯⎯⎯→  . 

The first step is Hamiltonian propagation. This transforms the initial state into 

 ( ) ( ) ( ) ( ) ( )2
H' 0 0 i 0U t tH t   =  = −  +  . (V.27) 

Then we have the collision event and subsequent measure of the ancilla resulting in state anc
k  with 0k =  

or 1 with probability anc
0kp =  and anc

1kp = , respectively. The system statevector results in 

 

( )
( )

( ) ( )

( ) ( )

anc anc
coll

anc

2 † 2 anc anc

anc
0

3 2 anc anc
anc

1

' 0

1 11 i 0 , 0
2

i 0 , 1

k
k

k

k
k

k
k

U t
t

p

tH tc O O t
p

tcO t
p

 


 

 

=

=

 
 =

  
−  −  +  = 

 
= 
 −  +  =



 (V.28) 

where anc anc
0 11k kp p= == −  and ( )anc 2 2

1kp c t t= =  +  . Averaging over trajectories, one obtains the density matrix 

( )t   that is 

 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

anc

0,1

2 † † 210 i , 0 0 , 0
2

k k k
k

t p t t

t H c t O O O O t

  

   

=

+

 =  

  = −    +  − +      


 (V.29) 

It is easy to show that the corrections of order ( )3 2t  vanish in the averaging step. Now writing the 

equation as 

 ( ) ( )
( ) ( ) ( ) ( )2 † †0 1i , 0 0 , 0

2
t

H c O O O O t
t

 
  

+

 −   = −   + − +       
 (V.30) 

and taking the limit of 0t + →  the desired target eq. (V.25) is obtained. Note that the fundamental condition 

2 1c t  for deriving a valid collision model (cf. section V.2) reflects here in a remote probability of 

measuring the state 1 of the ancilla. It follows that in presence of a more complex collision scheme than the 

ones we have analyzed here, the probability of multiple samplings of state 1 of the ancillae during the same 

time interval t  must be very small. 

Eq. (V.28) closely resembles the typical propagation scheme of a Monte Carlo wavefunction method (also 

known as quantum jump algorithm) [21–27]. In that algorithm, the evolution of the trajectory is based on the 
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calculation of a (jump) probability (the equivalent of our anc
1kp = ), and then a Monte Carlo sampling decides if 

the system evolves under a “non-Hermitian Hamiltonian” [27] (corresponding to measuring state 0 of the 

ancilla in our case) or if a jump has occurred (corresponding to measuring state 1). After applying the respective 

operator, the state of the system must be renormalized. Because of the use of non-unitary operators, that require 

to force renormalization, Monte Carlo wavefunction methods cannot be directly implemented as quantum 

algorithms for digital quantum computers. On the contrary, our collision scheme is completely based on unitary 

operations and measurements. So, incidentally, our collision model is an interesting and immediate alternative 

for the application of quantum jump algorithms on digital quantum devices, with the extra cost of a single 

ancilla qubit. 

V.4 Conclusions and perspectives 
In this last Chapter of the thesis, we have introduced some strategies based on collision models to reproduce 

the dynamics of the FMO molecular complex using the secular Redfield equation (both in the full or partial 

approximation) and the GMMEs (namely, the PERLind, the ULE and the GAME). These Lindblad-form 

equations offer an alternative to the original Redfield equation for the description of the dynamics of an open 

quantum system in contact with a perturbative environment at finite temperature. The resulting collision 

models are defined in terms of microscopic quantities like the spectral and dispersion functions of the 

environment, besides the system Hamiltonian. 

In our derivation, we pose particular attention to proposing collision models that generate trajectories of 

pure states, in order to permit an efficient classical and quantum simulation. The results of a classical 

simulation of the collision algorithms for the dynamics of the FMO have been shown, and the high accuracy 

of our collision models has been assessed using the fidelity and the trace distance as indicators of the 

indistinguishability of the obtained states from the target states. 

We have presented the circuit for a possible quantum implementation of the proposed algorithms and 

discussed their algorithmic complexity. The GMMEs result in better scaling, ( )3N , with respect to both 

variants of the secular Redfield form. Combined with the fact that benchmarks in the literature show they can 

reproduce Redfield dynamics beyond the possibility of the secular equations [18], GMMEs are probably the 

best alternative offered in this Chapter. 

In the final part, we showed that the particular formulation of the collision model leads to a propagation 

scheme that is very similar to the well-known Monte Carlo wavefunction methods (i.e., the quantum jump 

unravelling of the master equation). Since these methods require the use of non-unitaries operators, it is not 

possible to implement quantum jump schemes directly on a quantum computer. So incidentally, our collision 

schemes offer a platform to translate Monte Carlo wavefunction methods to quantum algorithms. 

We noted that in literature there exists also some quantum jump models that implement the full Redfield 

equation [38,39]. A correct unravelling scheme in this case has to be able to follow also the (eventual) 
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nonphysical behaviour, i.e., the ensemble average over the trajectories should correctly reproduce the solution 

of the target equation, and also its pathological situations. However, an average over (physically acceptable) 

pure states will never result in negative populations. In [39] (and similarly in [38]), the problem of dealing 

with non-positivity is handled by using two distinct wavefunctions   and  , whose total dimension is 

twice the Hilbert space of the open system, to represent the trajectories. Then the density matrix is obtained as 

the ensemble average     = + , which can assume negative values. Whether it is possible to 

implement collision models that can carry out the same kind of unravelling is still unknown to us, and could 

be the object of future investigations. 

V.5 Appendix A 
Here we demonstrate that the dynamics of the density matrix of the open system, computed as the average 

over the trajectories obtained by measuring the ancillae after every interaction, corresponds to the one obtained 

by tracing over the ancillary degrees of freedom. 

The first step is to show the density matrix of the open system at time t t+   in eq. (V.6) can be obtained 

by repeated measurements of the state ( ) ( )( )tot anc †t t U t U  +  =  . For this purpose, we call 

 anc anc anc0 , 1k =  the states on which we measure the ancillae, and we remove the time dependency 

from ( )U t U =  to simplify the notation. Every ancilla state will have a probability 

 ( ) anc anc tot ancTrk k kp t  =  (V.31) 

to be measured after the collision with the system. Now, let us suppose that state anc
l  is observed. The total 

state (system + ancillae) becomes the normalized product state 

 ( )
( )anc tot anc anc anc

tot
anc

l l l l
l

l

t
t t

p

    



+  = , (V.32) 

from which it is easy to see that the state of the open system is 

 ( )
( )anc tot anc

anc
l l

l
l

t
t t

p

  
 +  = . (V.33) 

If one prepares and measures many times the initial state ( )tot t t +  , the resulting average state for the 

system will be 
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( ) ( )

( ) ( )( )

( )( ) 

anc
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anc †
ancTr

k k
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k k k k
k k

t t p t t

t U t U

U t U

 
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 

+  = + 

= = 

= 



   (V.34) 

where in the last equivalence we used the definition of trace. 

Now, we show that the result is valid at all times by demonstrating the validity at 2t t+  . Using the same 

formalism of eq. (V.34), we can write 

 ( ) ( )anc anc2 2l lk lk
k l

t t p p t t +  = +  , (V.35) 

where anc
lp  is the probability of measuring anc

l  at time t t+  , anc
lkp  is the conditional probability of 

measuring anc
k  at time 2t t+   when state anc

l  was measured in the previous step of the dynamics and 

 ( )
( )( )( )anc anc anc † anc anc † anc

anc anc2
k l l k

lk
l lk

U U t U U
t t

p p
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

 
+  =  (V.36) 

is the correspondent density matrix of the system. Then, eq. (V.35) can be simplified as 

 

( ) ( )( )( )
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       
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   

 

+  =  

 
=   

 
 

= +  

= +  



 



 (V.37) 

The results shown in this Appendix are of course valid also when the states of the system and ancillae are 

described by pure states at the initial time t . In this particular case, it is trivial to demonstrate that the density 

matrix of a trajectory ( ( )l t t +  , ( )2lk t t +   and so on) is still a pure state [40], i.e., it is possible to write 

the state of the system in terms of statevectors without the need of considering a density matrix evolution. 

V.6 Appendix B 
To complete the characterization of our system, we could add extra relaxation channels to describe the 

exciton recombination R  and the trapping from site 3 to the reaction centre T  (cf. with Chapter IV). We 

have already shown the Lindblad-type form of these channels in the previous Chapter, to which we refer for 

more details. However, for the completeness of the discussion, we report them here as 
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 ( ) ( ) ( )R R

1

10 0 ,
2

N

i
t i t i i i t   

+
=

 
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 
 , (V.38) 

 ( ) ( ) ( )T T 1r.c. 3 3 r.c. 3 3 ,
2

t t t   
+

 
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 
 (V.39) 

where R  is the recombination rate that we have assumed to be constant for every chromophore, and T  is 

the trapping rate to the reaction centre r.c. . 

When these extra channels are inserted in the description of the system, eq.  takes the form 

 ( ) ( ) ( ) ( ) ( )T R exc-ph HU t U t U t U t U t =     , (V.40) 

Where ( )RU t  is the collision operator for the recombination of the exciton, defined as 

 ( ) ( ) ( )
R

R R
R anc anc

1
exp i , 0 0

N

i i
i

U t H t H i i
t


 + −

=

 = −  = +


 , (V.41) 

while ( )TU t  is the collision operator for the trapping to the reaction centre, defined as 

 ( ) ( ) ( )
T

T T
T anc ancexp i , r.c. 3 3 r.c.U t H t H

t


 + − = −  = +


. (V.42) 

We stress once again that, in the propagation scheme we propose, each collision must involve an ancilla 

initially prepared in state anc0 , and the state of the ancilla must be reset after every collision. 

For the implementation on a digital quantum computer, the inclusion of extra states for the reaction centre 

and the ground state requires a total number of qubits ( )2log 2q N=  +    for the enlarged system register 

(exciton states plus 2 extra states) using an algorithmic mapping. Then, each collision operator the form 

( )RU t  can be decomposed in 1- and 2-qubit gates using ( ) ( )1 24q N+ =  CNOTs and a subsequent reset 

gate for the ancilla. Since there are N  collision operators that implement the recombination channels acting 

on different sites, ( )RU t  requires a total number of ( )3N  CNOTs gates and N  resets for the execution. 

The same reasoning can be applied also for ( )TU t , that requires ( ) ( )1 24q N+ =  CNOT and 1 reset for 

the implementation. 

V.7 Appendix C 
To allow a more agile implementation of the collision model of the full secular Redfield, we propose here 

a revisited writing of eq. (V.13). Since the FMO Hamiltonian has not degenerate frequencies except for 0 =
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, operators ( )iS   take the simple form of ( )i iS S    = , where    − = . Thus the full secular 

equation for systems with non-degenerate frequencies can be rewritten as 
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where we have separated the 0 =  terms from the rest. Now, if we define 
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the full secular Redfield becomes 

 

( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

exc LS,sec

1

,

1i , 0 0 0 0 0 ,
2

1 ,
2

N

i i i i
i

d t
H H t C S t S S S t

dt

C w t t  
 
 


  

         

+
=

+



  = − + + −       

 
 + − −  

 




 (V.45) 

The advantage of using eq. (V.45) instead of eq. (V.43) in a collision model is in the number of collision 

operators to compute that reduces from ( )3N  to ( )2N . 
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In the following, we report the plots of the dynamics analysed in Chapter IV. 

Due to the lack of space in the figures, we report here the colour scheme that is maintained for all plots: 

− Site (or exciton) 1: blue ■■■ 

− Site (or exciton) 2: orange ■■■ 

− Site (or exciton) 3: green ■■■ 

− Site (or exciton) 4: yellow ■■■ 

− Site (or exciton) 5: red ■■■ 

− Site (or exciton) 6: aquamarine ■■■ 

− Site (or exciton) 7: violet ■■■ 

− Reaction centre: pink ■■■ 

− Ground state: black ■■■ 

S.1 Dynamics of the populations at the variation of the reorganization 

energy 
The dynamics of the populations of the FMO, in the site and exciton (i.e., the eigenvalues of excH ) basis, 

are shown at the variation of the reorganization energy. The results of the Redfield equation are reported in 

Figures 1-2, the secular Redfield equation is shown in Figures 3-4, the Redfield equation without the imaginary 

part is in Figures 5-6 and the Haken-Strobl is reported in Figures 7-8. 

The fixed parameters are: initial state localized at site 1, 1150 cm− = , 347 KT =  and 10 fst = . 

The values of the reorganization energy are: 11 cm −=  (a), 15 cm −=  (b), 110 cm −=  (c), 150 cm −=  

(d), 1100 cm −=  (e), 1500 cm −=  (f) and 11000 cm −=  (g). 
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Figure 1. Dynamics of the site populations at the 

variation of the reorganization energy. Full Redfield 

equation. 

Figure 2. Dynamics of the exciton populations at the 

variation of the reorganization energy. Full Redfield 

equation. 
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Figure 3. Dynamics of the site populations at the 

variation of the reorganization energy. Secular 

Redfield equation. 

Figure 4. Dynamics of the exciton populations at the 

variation of the reorganization energy. Secular 

Redfield equation. 
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Figure 5. Dynamics of the site populations at the 

variation of the reorganization energy. Redfield 

equation without imaginary part. 

Figure 6. Dynamics of the exciton populations at the 

variation of the reorganization energy. Redfield 

equation without imaginary part. 
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Figure 7. Dynamics of the site populations at the 

variation of the reorganization energy. Haken-Strobl 

equation. 

Figure 8. Dynamics of the exciton populations at the 

variation of the reorganization energy. Haken-Strobl 

equation. 
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S.2 Dynamics of the populations at the variation of the cutoff 

frequency 
The dynamics of the populations of the FMO, in the site and exciton basis, are shown at the variation of the 

cutoff frequency. The results of the Redfield equation are reported in Figures 9-10, the secular Redfield 

equation is shown in Figures 11-12, the Redfield equation without the imaginary part is in Figures 13-14 and 

the Haken-Strobl is reported in Figures 15-16. 

The fixed parameters are: initial state localized at site 1, 135 cm −= , 347 KT =  and 10 fst = . 

The values of the cutoff frequency are: 15300 cm− =  (a), 11500 cm− =  (b), 1530 cm− =  (c), 

1150 cm− =  (d) and 180 cm− =  (e). 
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Figure 9. Dynamics of the site populations at the 

variation of the cutoff frequency. Full Redfield 

equation. 

Figure 10. Dynamics of the exciton populations at 

the variation of the cutoff frequency. Full Redfield 

equation. 
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Figure 11. Dynamics of the site populations at the 

variation of the cutoff frequency. Secular Redfield 

equation. 

Figure 12. Dynamics of the exciton populations at 

the variation of the cutoff frequency. Secular 

Redfield equation. 
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Figure 13. Dynamics of the site populations at the 

variation of the cutoff frequency. Redfield equation 

without imaginary part. 

Figure 14. Dynamics of the exciton populations at 

the variation of the cutoff frequency. Redfield 

equation without imaginary part. 
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Figure 15. Dynamics of the site populations at the 

variation of the cutoff frequency. Haken-Strobl 

equation. 

Figure 16. Dynamics of the exciton populations at 

the variation of the cutoff frequency. Haken-Strobl 

equation. 
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S.3 Dynamics of the populations at the variation of the temperature 
The dynamics of the populations of the FMO, in the site and exciton basis, are shown at the variation of the 

temperature. The results of the Redfield equation are reported in Figures 17-18, the secular Redfield equation 

is shown in Figures 19-20, the Redfield equation without the imaginary part is in Figures 21-22 and the Haken-

Strobl is reported in Figures 23-24. 

The fixed parameters are: initial state localized at site 1, 135 cm −= , 1150 cm− =  and 10 fst = . 

The values of the temperature are: 77 KT =  (a), 131 KT =  (b), 239 KT =  (c) and 347 KT =  (d). 



180 Supporting information  

  
Figure 17. Dynamics of the site populations at the 

variation of the temperature. Full Redfield equation.  

Figure 18. Dynamics of the exciton populations at 

the variation of the temperature. Full Redfield 

equation. 
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Figure 19. Dynamics of the site populations at the 

variation of the temperature. Secular Redfield 

equation. 

Figure 20. Dynamics of the exciton populations at 

the variation of the temperature. Secular Redfield 

equation. 
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Figure 21. Dynamics of the site populations at the 

variation of the temperature. Redfield equation 

without the imaginary part. 

Figure 22. Dynamics of the exciton populations at 

the variation of the temperature. Redfield equation 

without the imaginary part. 
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Figure 23. Dynamics of the site populations at the 

variation of the temperature. Haken-Strobl equation. 

Figure 24. Dynamics of the exciton populations at 

the variation of the temperature. Haken-Strobl 

equation. 
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S.4 Dynamics of the coherences at the variation of the reorganization 

energy 
The dynamics of the absolute values of the coherences of the FMO, in the site and exciton basis, are shown 

at the variation of the reorganization energy. The results of the Redfield equation are reported in Figures 25-

26, the secular Redfield equation is shown in Figures 27-28, the Redfield equation without the imaginary part 

is in Figures 29-30 and the Haken-Strobl is reported in Figures 31-32. 

The fixed parameters are: initial state localized at site 1, 1150 cm− = , 347 KT =  and 10 fst = . 

The values of the reorganization energy are: 11 cm −=  (a), 15 cm −=  (b), 110 cm −=  (c), 150 cm −=  

(d), 1100 cm −=  (e), 1500 cm −=  (f) and 11000 cm −=  (g). 
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Figure 25. Dynamics of the site coherences at the 

variation of the reorganization energy. Full Redfield 

equation. 

Figure 26. Dynamics of the exciton coherences at the 

variation of the reorganization energy. Full Redfield 

equation. 
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Figure 27. Dynamics of the site coherences at the 

variation of the reorganization energy. Secular 

Redfield equation. 

Figure 28. Dynamics of the exciton coherences at the 

variation of the reorganization energy. Secular 

Redfield equation. 
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Figure 29. Dynamics of the site coherences at the 

variation of the reorganization energy. Redfield 

equation without the imaginary part. 

Figure 30. Dynamics of the exciton coherences at the 

variation of the reorganization energy. Redfield 

equation without the imaginary part. 
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Figure 31. Dynamics of the site coherences at the 

variation of the reorganization energy. Haken-Strobl 

equation . 

Figure 32. Dynamics of the exciton coherences at the 

variation of the reorganization energy. Haken-Strobl 

equation. 
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S.5 Dynamics of the dynamical IPR and purity 
The dynamics of the dynamical IPR on the exciton basis and the dynamics of the purity of the density 

matrix are shown at the variation of the reorganization energy. The results of the Redfield equation are reported 

in Figure 33, the secular Redfield equation is shown in Figure 34, the Redfield equation without the imaginary 

part is in Figure 35 and the Haken-Strobl is reported in Figure 36. 

The fixed parameters are: initial state localized at site 1, 1150 cm− = , 347 KT =  and 10 fst = . 

The values of the reorganization energy are: 11 cm −=  (a), 15 cm −=  (b), 110 cm −=  (c), 150 cm −=  

(d), 1100 cm −=  (e), 1500 cm −=  (f) and 11000 cm −=  (g). 
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Figure 33. Dynamics of the dynamical IPR and 

purity at the variation of the reorganization energy. 

Full Redfield equation. 

Figure 34. Dynamics of the dynamical IPR and 

purity at the variation of the reorganization energy. 

Secular Redfield equation. 
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Figure 35. Dynamics of the dynamical IPR and 

purity at the variation of the reorganization energy. 

Redfield equation without the imaginary part. 

Figure 36. Dynamics of the dynamical IPR and 

purity at the variation of the reorganization energy. 

Haken-Strobl equation. 
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