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A B S T R A C T

In recent years, various kernels have been proposed in the context of persistent homology to
deal with persistence diagrams in supervised learning approaches. In this paper, we consider the
idea of variably scaled kernels, for approximating functions and data, and we interpret it in the
framework of persistent homology. We call them Variably Scaled Persistence Kernels (VSPKs).
These new kernels are then tested in different classification experiments. The obtained results
show that they can improve the performance and the efficiency of existing standard kernels.

1. Introduction

Let 𝛺 ⊂ R𝑣 and let  = {𝒙1,… ,𝒙𝑛} ⊂ 𝛺 be a set of input data, 𝑣, 𝑛 ∈ N. In the classification setting, each element 𝒙𝑖 of the
ataset, 𝑖 = 1,… , 𝑛, is uniquely associated to a label (or class) 𝑦𝑖, which is an element of a certain set of labels  = {𝑐1,… , 𝑐𝑡}, 𝑡 ∈ N.
n principle, the labels can be real numbers, but they can also represent categorical concepts to be learned. Then, we can define the
ataset  = {(𝒙𝑖, 𝑦𝑖) | 𝒙𝑖 ∈  , 𝑦𝑖 ∈  }. The supervised learning task consists in finding a decision function 𝑠 ∶ 𝛺 ⟶  such that:

(i) it models the input–output relation in ;
(ii) letting 𝝃1,… , 𝝃𝑚 ∈ 𝛺 ⧵  be unseen instances, 𝑚 ∈ N, with associated labels 𝜄𝑖 ∈  , 𝑠 models the input–output relation

{(𝝃𝑖, 𝜄𝑖)}𝑖=1,…,𝑚 ⊂ (𝛺 ⧵ ) ×  , 𝑚 ≥ 1.

The generalisation capability required in (ii) is fundamental in the learning problem, since it is trivial to find a decision function
that satisfies (i); for an introduction concerning (statistical) learning theory, refer to e.g. [1, §1.3] and [2].

Kernel methods are well-established tools in supervised machine learning, as well as in a variety of research and applied
fields [3,4]. The flexibility provided by kernel-based schemes allows the handling of different kinds of possible structured data,
e.g., graphs and words, which are encoded in some dot product space where even complex patterns may be distinguished [5–8].

In the following, our data consist of persistence diagrams, which represent an output of the so-called persistent homology,
in the framework of Topological Data Analysis (TDA). The usage of topological methods and analysis techniques to extract
significant features and patterns from data is receiving more and more interest; for a complete overview concerning TDA, see e.g.
[9–11]. In the last years, several kernels specifically devoted to deal with the peculiar structure of persistence diagrams have been
proposed [12–15], therefore the construction of suitable kernels is a very active research line in this context.

Here, we introduce what we call the Variably Scaled Persistence Kernels (VSPKs), which are inspired by the variably scaled
kernels introduced in the context of approximation theory in [16] and employed as a feature augmentation strategy in [17,18]
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for kernel-based learning. Indeed, our aim is to build a bridge between classical variably scaled kernels and kernels defined in the
context of persistent homology. After defining VSPKs, we design some scaling functions and we test the performance of the resulting
kernels by experimenting with three different datasets. The obtained results show that the variably scaled setting may yield to better
classification outcomes and efficiency with respect to the standard setting, and thus can be considered for further investigations and
applications involving persistence diagrams.

The paper is organised as follows. In Sections 2 and 3, we introduce kernel-based learning with Support Vector Machines (SVMs)
nd we recall some notions concerning persistent homology, also presenting some kernels of recent introduction that are dedicated
o persistence diagrams. VSPKs are proposed and analysed in Section 4, and related numerical experiments are exposed in Section 5.
inally, in Section 6 we present some conclusions and final remarks.

. Positive definite and variably scaled kernels

Let 𝜅 ∶ 𝛺 × 𝛺 ⟶ R be a kernel. Given a set of data  = {𝒙1,… ,𝒙𝑛} ⊂ 𝛺, the 𝑛 × 𝑛 matrix 𝐾 with elements 𝐾𝑖𝑗 = 𝜅(𝒙𝑖,𝒙𝑗 ),
𝑖, 𝑗 = 1,… , 𝑛, is the Gram matrix of the kernel 𝜅 with respect to  . If 𝜅 is positive definite (strictly positive definite) on 𝛺×𝛺, i.e., 𝐾
is positive semi-definite (definite) for all possible datasets in 𝛺, then it is possible to decompose the kernel according to Mercer
heorem [19], and to interpret such decomposition as an inner product in a Reproducing Kernel Hilbert Space (RKHS) ℱ . Indeed,
here exists a (non-unique) feature map 𝛷 ∶ 𝛺 ⟶ ℱ such that

𝜅(𝒙, 𝒚) = ⟨𝛷(𝒙), 𝛷(𝒚)⟩ℱ 𝒙, 𝒚 ∈ 𝛺,

eing ⟨⋅, ⋅⟩ℱ the bilinear form related to the RKHS (e.g. 𝛷(𝒙) = 𝜅(⋅,𝒙)). Moreover, the kernel 𝜅 induces a distance 𝑑𝜅 on 𝛺

𝑑𝜅 (𝒙, 𝒚) = 𝜅(𝒙,𝒙) + 𝜅(𝒚, 𝒚) − 2𝜅(𝒙, 𝒚). (1)

Variably Scaled Kernels (VSKs) have been introduced in [16] in the context of kernel-based approximation, with the aim of
vercoming instability issues. Then, they have been extended to work in a more general setting in [17], as presented in the following
orm. Let 𝛬 ⊆ R𝜈 , 𝜈 > 0 ∈ N and let 𝜅 ∶ �̃� × �̃� ⟶ R be a continuous (strictly) positive definite kernel, where �̃� = 𝛺 × 𝛬 ⊆ R𝑣+𝜈 .
iven a scaling function 𝜓 ∶ 𝛺 ⟶ 𝛬, and by defining 𝛹 (𝒙) = (𝒙, 𝜓(𝒙)), a VSK 𝜅𝛹 ∶ 𝛺 ×𝛺 ⟶ R is defined as

𝜅𝛹 (𝒙, 𝒚) = 𝜅((𝒙, 𝜓(𝒙)), (𝒚, 𝜓(𝒚))) (2)

for 𝒙, 𝒚 ∈ 𝛺. The function 𝛹 can be interpreted as a feature augmentation map, which adds 𝜈 coordinates (features) to the original
sample. In this view, the VSK setting has been analysed in [17] as a stacking technique, which is capable of enhancing the prediction
performances of classical kernel-based classifiers such as, e.g., SVMs.

Letting 𝒙 = (𝑥1,… , 𝑥𝑑 )⊺ ∈ 𝛺, we recall that a binary (i.e.  = {−1,+1}) SVMs classifier is characterised by the decision function

𝑠(𝒙) = sign(ℎ(𝒙)) = sign(⟨𝛷(𝒙),𝒘⟩ℱ + 𝑏),

where

𝒘 =
𝑛
∑

𝑖=1
𝛼𝑖𝑦𝑖𝛷(𝒙𝑖) ∈ ℱ .

The coefficients 𝜶 = (𝛼1,… , 𝛼𝑛) ∈ R𝑛 are the solution of the following soft margin problem [20, §18, p. 346–347]

⎧

⎪

⎨

⎪

⎩

min𝜶∈R𝑛
1
2
∑𝑛
𝑖=1

∑𝑛
𝑗=1 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝜅(𝒙𝑖,𝒙𝑗 ) −

∑𝑛
𝑖=1 𝛼𝑖,

s.t. ∑𝑛
𝑖=1 𝛼𝑖𝑦𝑖 = 0,

0 ≤ 𝛼𝑖 ≤ 𝜁, 𝑖 = 1,… , 𝑛,

here [0, 𝜁]𝑛 is the bounding box, with 𝜁 ∈ [0,+∞). Usually, a binary SVMs classifier is extended to the multiclass setting by
onsidering a one-vs-rest approach.

The strength of kernel-based classifiers as SVMs mainly relies on the flexibility that concerns the construction of the kernel.
ndeed, any type of structured data may potentially be translated into a certain Hilbert space (e.g., the classical R𝑛) by a properly
efined feature map. This is the case of persistence diagrams, which are useful tools in TDA characterised by a peculiar structure, as
e outline in the next section.

. Persistent homology and kernels

.1. Basics on persistent homology

In the following, we recall some basic ideas about some tools of persistent homology. For a more detailed treatment, especially
oncerning the algebraic aspects of the construction, we refer e.g. to [10,21].
2
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Data, manifolds and simplicial complexes. Let our data  = {𝒙1,… ,𝒙𝑛} ⊂ 𝛺 be interpreted as a set of vertices sampled from some
manifold 𝑀 , and suppose that we wish to highlight some of its intrinsic homological properties. Intuitively, such properties provide
important geometrical information on  by describing the number of holes and cavities that can be related to the data distribution.
In order to do this, a concrete possibility consists in studying the geometrical features of a manifold built upon  and that can be
considered as an approximation of 𝑀 . Precisely, letting 𝜀 > 0, we study

𝑀 ,𝜀 =
𝑛
⋃

𝑖=1
𝐵(𝒙𝑖, 𝜀),

where 𝐵(𝒙𝑖, 𝜀) is the ball of radius 𝜀 and centre 𝒙𝑖. The next step is to associate to 𝑀 ,𝜀 an abstract simplicial complex, which
s formally defined as a family of sets that is closed with respect to the subset operator. In a sense, it can be considered as an
nriched graph structure, where not only points and edges are included, but also triangles (i.e. formal combinations of three points
n two-dimensional), tetrahedra (i.e. formal combinations of four points in three-dimensional), and so on. Moreover, the concept of
ace plays a central role. For example, an edge is characterised by two zero-dimensional faces (two extremal points), a triangle by
hree one-dimensional faces (three side edges), et cetera. Simplicial complexes can be defined by using different construction rules,
hich determine to what extent higher dimensional structures are built from low dimensional ones. Here, we associate to 𝑀 ,𝜀 a
ietoris–Rips simplicial complex 𝐾 ,𝜀, where two distinct vertices 𝒙𝑖,𝒙𝑗 are connected by an edge if and only if ‖𝒙𝑖 − 𝒙𝑗‖2 ≤ 𝜀, and
e consider 𝑟-dimensional elements that are determined by 𝑟 + 1 connected (𝑟 − 1)-dimensional faces as long as 𝑟 ≤ 𝑣. In Fig. 1

top left/right and bottom left), we show a two-dimensional example (𝑣 = 2) where different numbers of edges and triangles are
enerated depending on the chosen 𝜀.

he homology group. Formal linear combinations of 𝑟-dimensional faces in 𝐾 ,𝜀 form the 𝑟-chains algebraic group 𝐶 ,𝜀
𝑟 . Moreover,

etting [𝒙𝑖0 ,… ,𝒙𝑖𝑟 ] be the face constructed upon distinct vertices 𝒙𝑖0 ,… ,𝒙𝑖𝑟 in  , 𝑖0,… , 𝑖𝑟 ∈ {1,… , 𝑛}, we define the linear boundary
perator 𝜕𝑟 ∶ 𝐶

 ,𝜀
𝑟 ⟶ 𝐶 ,𝜀

𝑟−1 as

𝜕𝑟[𝒙𝑖0 ,… ,𝒙𝑖𝑟 ] =
𝑟
∑

𝑗=0
(−1)𝑟[𝒙𝑖0 ,… ,𝒙𝑖𝑗−1 ,𝒙𝑖𝑗+1 ,… ,𝒙𝑖𝑟 ].

he 𝑟-cycles and 𝑟-boundaries groups are defined as 𝑍 ,𝜀
𝑟 = ker𝜕𝑟 and 𝐵 ,𝜀

𝑟 = im𝜕𝑟+1, respectively. Furthermore, it can be proved that
he rank of the 𝑟-homology group 𝐻 ,𝜀

𝑟 = 𝑍 ,𝜀
𝑟 ∕𝐵 ,𝜀

𝑟 expresses the concept of 𝑟-dimensional holes in 𝐾 ,𝜀, thus relatable to 𝑀 and  ,
hich is the sought geometrical characterisation.

ersistent homology. Unfortunately, finding an optimal 𝜀⋆ that represents the intrinsic geometric properties of 𝑀 is a tough and
nstable process. This is evident in the example in Fig. 1 (top left/right and bottom left), where different values of 𝜀 determine a
ompletely different simplicial structure. To solve this issue, one can drop the idea of selecting a good parameter and analyse the
hole filtration {𝑀 ,𝜀

| 𝜀 > 0}. In particular, letting 𝜀1 <⋯ < 𝜀𝑢 be increasing real numbers, the nested sequence 𝐾 ,𝜀1 ⊆⋯ ⊆ 𝐾 ,𝜀𝑢

s obtained. Then, for 𝑟 ≥ 0 and 𝑖 ∈ {1,… , 𝑢}, we can associate to this filtration the 𝓁-persistent homology group

𝐻 ,𝜀𝑖
𝑟,𝓁 = 𝑍 ,𝜀𝑖

𝑟 ∕(𝑍 ,𝜀𝑖
𝑟 ∩ 𝐵 ,𝜀𝑖+𝓁

𝑟 ).

he group 𝐻 ,𝜀𝑖
𝑟,𝓁 contains the homology classes that persist in the time interval [𝑖, 𝑖+ 𝓁], i.e., they are born with 𝐾 ,𝜀𝑗 for some 𝑗 < 𝑖

nd they are alive with 𝐾 ,𝜀𝑖+𝓁 . We point out that such homology classes might persist indefinitely (we will denote this case as an
level), or they might die with a certain 𝜀𝑗 , 𝑖 < 𝑗 ≤ 𝑢. In other words, studying persistent homology groups provides information

n holes and cavities in data along with their persistence: the more an element is persistent, the more is likely to be descriptive of
he data structure.

ersistence diagrams. Consequently, each element of the persistent homology groups obtained by considering the whole filtration
an be represented by a birth–death pair (𝑏, 𝑑) ∈ R2

+, 𝑏 = 𝜀ℎ, 𝑑 = 𝜀𝑘 for some ℎ ∈ {1,… , 𝑚}, 𝑘 ∈ {1,… , 𝑚} ∪ {∞}, ℎ < 𝑘. We say
hat 𝑑 − 𝑏 is the persistence of (𝑏, 𝑑), and that a birth–death pair is 𝑟-dimensional if it is related to 𝑟-dimensional homology groups.
oreover, letting 𝜺 = (𝜀1,… , 𝜀𝑢), we define a persistence diagram 𝐷𝑟( , 𝜺) related to the filtration 𝐾 ,𝜀1 ⊆⋯ ⊆ 𝐾 ,𝜀𝑚 as

𝐷𝑟( , 𝜺) = {(𝑏, 𝑑) | (𝑏, 𝑑) ∈ 𝑃𝑟( , 𝜺)} ∪ , 𝑟 ≥ 0, (3)

here 𝑃𝑟( , 𝜺) denotes the set of 𝑟-dimensional birth–death pairs obtained with the filtration and  = {(𝑧, 𝑧) |𝑧 ≥ 0}. We remark that
𝑟( , 𝜺) is a multiset, since a couple (𝑏, 𝑑) might appear more than once, i.e., might have multiplicity greater than one. Furthermore,

he bisector  is composed by an infinite number of elements characterised by infinite multiplicity, and it is added in order to achieve
ome uniformity among different persistence diagrams and facilitate the formulation of proper metrics, as we present below. In Fig. 1
bottom right), we display the result of the discussed analysis with the example dataset. We observe that such analysis captures some
ntrinsic geometrical properties of  . In particular, the unique most persistent zero-dimensional pair, which is significantly far from
he others, suggests that a unique connected component underlies  . Moreover, the persistent one-dimensional pair indicates the
resence of a one-dimensional hole in the structure of the dataset, which is highlighted by the simplicial complex depicted in the
ottom left figure.

Persistence diagrams show some stability properties with respect to perturbations of the involved dataset [22]. To better clarify
his aspect, let us recall some useful metrics. Let  , ⊂ 𝛺 be two non-empty datasets. The Hausdorff distance is defined as

𝑑𝐻 ( ,) = max
{

sup inf ‖𝑥 − 𝑦‖∞, sup inf ‖𝑥 − 𝑦‖∞

}

.

𝑥∈ 𝑦∈ 𝑦∈ 𝑥∈

3
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Fig. 1. Given a set of points  , the construction of the Vietoris–Rips complex along the filtration is depicted on top (left: 𝜀 = 0.1; right: 𝜀 = 0.22) and bottom
eft (𝜀 = 0.4) figures. The persistence diagrams 𝐷0( , 𝜺) and 𝐷1( , 𝜺) are overlapped in the bottom right figure.

oreover, letting 𝐷𝑟( , 𝜺) and 𝐷𝑟( , 𝜺) be persistence diagrams for some 𝑟 ≥ 0 and filtration radii vector 𝜺, we recall the 𝑝-Wasserstein
istance

𝑑𝑊 ,𝑝(𝐷𝑟( , 𝜺), 𝐷𝑟( , 𝜺)) =
(

inf
𝛾∈𝛤

∑

𝑥∈𝐷𝑟( ,𝜺)
‖𝑥 − 𝛾(𝑥)‖𝑝∞

)
1
𝑝
,

here 𝛤 = {𝛾 ∶ 𝐷𝑟( , 𝜺) ⟶ 𝐷𝑟( , 𝜺) | 𝛾 is a bijection}. In particular, letting 𝑝→ ∞, we obtain the bottleneck distance

𝑑𝑊 ,∞(𝐷𝑟( , 𝜺), 𝐷𝑟( , 𝜺)) = 𝑑𝐵(𝐷𝑟( , 𝜺), 𝐷𝑟( , 𝜺)) = inf
𝛾∈𝛤

sup
𝑥∈𝐷𝑟( ,𝜺)

‖𝑥 − 𝛾(𝑥)‖∞.

e have the stability result [13]

𝑑𝐵(𝐷𝑟( , 𝜺), 𝐷𝑟( , 𝜺)) ≤ 𝑑𝐻 ( ,),

.e., the bottleneck distance between persistence diagrams is controlled as long as the underlying datasets are close in the Hausdorff
etric.

.2. Kernels for persistence diagrams

In order to better measure similarities between persistence diagrams, various positive definite kernels that are suitable for dealing
ith the peculiar structure of persistence diagrams have been introduced and studied in the recent literature. In our applications, we
ill consider the following ones. Moreover, sometimes we will denote as 𝐷1 = 𝐷𝑟( , 𝜺) and 𝐷2 = 𝐷𝑟( , 𝜺) to simplify the notation.

• The Persistence Scale Space (PSS) kernel [15]

𝜅𝜎 (𝐷1, 𝐷2) =
1

8𝜋𝜎
∑

𝒚∈𝐷1

exp
(

−
‖𝒚 − 𝒛‖2

8𝜎

)

− exp
(

−
‖𝒚 − 𝒛‖2

8𝜎

)

, (4)
𝒛∈𝐷2

4
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R

where 𝜎 > 0 and 𝒛 = (𝑑, 𝑏) if 𝒛 = (𝑏, 𝑑). It is 1-Wasserstein stable, i.e.:

‖𝛷𝜎 (𝐷1) −𝛷𝜎 (𝐷2)‖𝐿2(𝛺) ≤
1

2
√

𝜋𝜎
𝑑𝑊 ,1(𝐷1, 𝐷2),

where 𝛷𝜎 is the feature map related to 𝜅𝜎 that is associated to the solution of the heat equation (see [15, Definition 1]).
• The Persistence Weighted Gaussian (PWG) kernel [13]

𝜅𝐺(𝐷1, 𝐷2; 𝜅, 𝜔) = exp
(

− 1
2𝜏2

‖𝐸𝜅 (𝜇𝜔𝐷1
) − 𝐸𝜅 (𝜇𝜔𝐷2

)‖2ℱ

)

𝜏 > 0, (5)

which is built upon a standard Gaussian kernel 𝜅 and a weight function 𝜔, where

𝐸𝜅 (𝜇𝜔𝐷1
) =

∑

𝒙∈𝐷1

𝜔(𝒙) 𝜅(⋅,𝒙).

It is both 1-Wasserstein and bottleneck stable, if we choose as weight function

𝜔arc(𝒙) = arctan(𝐶(𝑑 − 𝑏)𝛿) 𝒙 = (𝑏, 𝑑), 𝐶 > 0, 𝛿 ∈ Z>0.

Indeed, there exist 𝛿 ∈ Z>0 and 𝐿 > 0 such that

‖𝐸𝜅 (𝜇
𝜔arc
𝐷1

) − 𝐸𝜅 (𝜇
𝜔arc
𝐷2

)‖ ≤ 𝐿𝑑𝐵(𝐷1, 𝐷2). (6)

• The Sliced Wasserstein (SW) kernel [12]

𝜅𝑆𝑊 (𝐷1, 𝐷2) = exp
(

−
𝑆𝑊 (𝐷1, 𝐷2)

2𝜒2

)

. (7)

which is based on the so called Sliced Wasserstein distance, which is equivalent to the 1-Wasserstein distance, i.e.,
1

2𝑀
𝑑𝑊 ,1(𝐷1, 𝐷2) ≤ 𝑑𝑆𝑊 (𝐷1, 𝐷2) ≤ 2

√

2 𝑑𝑊 ,1(𝐷1, 𝐷2)

for some positive constant 𝑀 .

emark 1. We observe that the PWG and SW kernels are in the form

𝜅(𝐷1, 𝐷2) = exp
(

−𝛽𝑑(𝐷1, 𝐷2)
)

for some 𝛽 > 0, where 𝑑(⋅, ⋅) is the distance induced by the underlying metric in the case of the SW (for more details, we refer to
the cited seminal papers), while for the PWG kernel the distance is induced by the kernel (see (1)).

4. Variably scaled persistence kernels

In the following, our purpose is to interpret the idea underlying VSKs in the context of persistent homology. The main difference
between standard kernels and kernels for persistence diagrams is the structure of the input data. Since persistent diagrams consists
of a collection of topological features, i.e. birth–death couples in R2

≥ = {𝒙 = (𝑏, 𝑑) ∈ R2
+ | 𝑑 ≥ 𝑏}, introducing a scaling function

whose output lies outside R2
≥ would be meaningless. Hence, letting D𝑟(𝜺) = {𝐷𝑟( , 𝜺) | ⊂ 𝛺}, we propose the following definition.

Definition 1. Let 𝜅 ∶ D𝑟(𝜺) × D𝑟(𝜺) ⟶ R be a kernel for persistence diagrams and let 𝛹 ∶ D𝑟(𝜺) → D𝑟(𝜺). A variably scaled
persistence kernel 𝜅𝛹 on D𝑟(𝜺) ×D𝑟(𝜺) is defined as

𝜅𝛹 (𝐷𝑟( , 𝜺), 𝐷𝑟( , 𝜺)) = 𝜅(𝛹 (𝐷𝑟( , 𝜺)), 𝛹 (𝐷𝑟( , 𝜺)))

for 𝐷𝑟( , 𝜺), 𝐷𝑟( , 𝜺) ∈ D𝑟(𝜺).

As in other contexts, a proper function 𝛹 needs to be designed. We will construct it upon an auxiliary function 𝜓 ∶ D𝑟(𝜺) ⟶ R2
≥,

whose design is deepened in Section 4.3. In the next subsections, we propose two different structures for 𝛹 , which will be denoted
as 𝛹𝑎 and 𝛹𝜌.

4.1. The feature augmentation map: 𝛹𝑎

We define

𝛹𝑎(𝐷𝑟( , 𝜺)) = 𝐷𝑟( , 𝜺) ∪ 𝜓(𝐷𝑟( , 𝜺)).

The map 𝛹𝑎 plays the role of a feature augmenting map, since an additional generator is added in the persistence diagram.
We have the following stability results for the VSPK framework in terms of the classical setting.

Proposition 1. Let 𝜅𝜎 be the PSS kernel defined in (4) and let 𝐷1, 𝐷2 be 𝑟-dimensional persistence diagrams for some 𝑟 ≥ 0. We have

‖𝛷𝛹𝑎
𝜎 (𝐷1) −𝛷

𝛹𝑎
𝜎 (𝐷2)‖𝐿2(𝛺) ≤

1
√

(

𝑑𝑊 ,1(𝐷1, 𝐷2) + ‖𝜓(𝐷1) − 𝜓(𝐷2)‖∞

)

.

2 𝜋𝜎
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Proof. By definition, for any 𝛿 > 𝑑𝑊 ,1(𝐷1, 𝐷2) there exists a bijection 𝛾 between 𝐷1 and 𝐷2 such that ∑𝒙∈𝐷1
‖𝒙 − 𝛾(𝒙)‖∞ ≤ 𝛿. Then,

y denoting 𝑢𝒚(𝒙) =
1

4𝜋𝜎 exp
(

− ‖𝒙−𝒚‖2
4𝜎

)

and imposing the extension 𝛾(𝜓(𝐷1)) = 𝜓(𝐷2), we obtain

‖𝛷𝛹𝑎
𝜎 (𝐷1) −𝛷

𝛹𝑎
𝜎 (𝐷2)‖𝐿2(𝛺) = ‖𝛷𝜎 (𝐷1 ∪ 𝜓(𝐷1)) −𝛷𝜎 (𝐷2 ∪ 𝜓(𝐷2))‖

=
‖

‖

‖

‖

∑

𝒚∈𝐷1∪𝜓(𝐷1)
(𝑢𝒚 − 𝑢𝒚) − (𝑢𝛾(𝒚) − 𝑢𝛾(𝒚))

‖

‖

‖

‖𝐿2(𝛺)

= ‖𝛷𝜎 (𝐷1) −𝛷𝜎 (𝐷2) +𝛷𝜎 (𝜓(𝐷1)) −𝛷𝜎 (𝜓(𝐷2))‖𝐿2(𝛺).

Therefore, by following the proof of [15, Theorem 2] and by observing that 𝑑𝑊 ,1(𝜓(𝐷1), 𝜓(𝐷2)) = ‖𝜓(𝐷1) −𝜓(𝐷2)‖∞, the triangular
nequality leads to

‖𝛷𝛹𝑎
𝜎 (𝐷1) −𝛷

𝛹𝑎
𝜎 (𝐷2)‖𝐿2(𝛺) ≤

1
2
√

𝜋𝜎
(𝛿 + ‖𝜓(𝐷1) − 𝜓(𝐷2)‖∞)

and the proof is concluded. □

roposition 2. Let 𝜅𝐺(⋅, ⋅, 𝜅, 𝜔arc) be the PWG kernel defined in (5), where 𝜅(𝒙, 𝒚) = exp(−‖𝒙−𝒚‖2∕(2𝜂2)), and let 𝐷1, 𝐷2 be 𝑟-dimensional
persistence diagrams for some 𝑟 ≥ 0. By denoting as 𝐸𝛹𝑎𝜅 (𝜇𝜔arc

𝐷1
) = 𝐸𝜅 (𝜇

𝜔arc
𝐷1∪𝜓(𝐷1)

), we have

‖𝐸𝛹𝑎𝜅 (𝜇𝜔arc
𝐷1

) − 𝐸𝛹𝑎𝜅 (𝜇𝜔arc
𝐷2

)‖ ≤ 𝐿𝑑𝐵(𝐷1, 𝐷2) + 𝐿𝜓 (𝐷1, 𝐷2)

with 𝐿𝜓 (𝐷1, 𝐷2) = 2𝜔arc(𝜓(𝐷1))
(

1 − exp
(

− ‖𝜓(𝐷1)−𝜓(𝐷2)‖2

2𝜂2

))

+ |𝜔arc(𝜓(𝐷1)) − 𝜔arc(𝜓(𝐷2))| and 𝐿 as in (6).

roof. We can follow the proof of [23, Theorem D.1] and the assumptions therein. As in Proposition 1, we impose the extension
(𝜓(𝐷1)) = 𝜓(𝐷2) for the bijection between 𝐷1 and 𝐷2, obtaining then

‖𝐸𝛹𝑎𝜅 (𝜇𝜔arc
𝐷1

) − 𝐸𝛹𝑎𝜅 (𝜇𝜔arc
𝐷2

)‖ ≤
∑

𝒙∈𝐷1∪𝜓(𝐷1)
𝜔arc(𝒙)‖𝜅𝐺(⋅,𝒙) − 𝜅𝐺(⋅, 𝛾(𝒙))‖ℱ

+
∑

𝒙∈𝐷1∪𝜓(𝐷1)
|𝜔arc(𝒙) − 𝜔arc(𝛾(𝒙))|‖𝜅𝐺(⋅, 𝛾(𝒙))‖ℱ

+
∑

𝒚∈(𝐷2∪𝜓(𝐷2))′
𝜔arc(𝒚)‖𝜅𝐺(⋅, 𝛾(𝒚))‖ℱ

≤ 𝐿𝑑𝐵(𝐷1, 𝐷2) + 𝜔arc(𝜓(𝐷1))‖𝜅𝐺(⋅, 𝜓(𝐷1)) − 𝜅𝐺(⋅, 𝜓(𝐷2))‖ℱ
+ |𝜔arc(𝜓(𝐷1)) − 𝜔arc(𝜓(𝐷2))|‖𝜅𝐺(⋅, 𝜓(𝐷2))‖ℱ .

We conclude by observing that

‖𝜅𝐺(⋅, 𝜓(𝐷1)) − 𝜅𝐺(⋅, 𝜓(𝐷2))‖ℱ = 2
(

1 − exp
(

−
‖𝜓(𝐷1) − 𝜓(𝐷2)‖2

2𝜂2

))

. □

roposition 3. Let 𝜅𝑆𝑊 be the SW kernel defined in (7) and let 𝐷1, 𝐷2 be 𝑟-dimensional persistence diagrams for some 𝑟 ≥ 0. We have

𝑑𝛹𝑎𝑆𝑊 (𝐷1, 𝐷2) ≤ 𝑑𝑆𝑊 (𝐷1, 𝐷2) + 𝑑𝑆𝑊 (𝜓(𝐷1), 𝜓(𝐷2)).

Proof. We follow the assumptions of [12, Theorem 3.3 & Theorem 3.4]. Letting 𝜃 ∈ R2, with ‖𝜃‖2 = 1, we introduce 𝜇𝜃𝐷 =
∑

𝑝∈𝐷 𝛿𝜋𝜃 (𝑝)
and 𝜇𝜃𝐷 =

∑

𝑝∈𝐷 𝛿𝜋𝜃 (𝑝)◦𝜋 , where 𝜋𝜃 ∶ R2 → 𝐿(𝜃) is the orthogonal projection onto the line 𝐿(𝜃) = {𝜆𝜃 ∶ 𝜆 ∈ R}, 𝜋 is the orthogonal
rojection onto the diagonal and 𝛿 is the Dirac function. Furthermore, let

(𝜇, 𝜈) = inf
𝑃∈𝛱(𝜇,𝜈)∬R×R

|𝑥 − 𝑦|𝑃 (𝑑𝑥, 𝑑𝑦)

here 𝛱(𝜇, 𝜈) is the set of measures on R2 with marginals 𝜇 and 𝜈. Then,

𝑑𝛹𝑎𝑆𝑊 (𝐷1, 𝐷2) =
1
2𝜋 ∫S

(𝜇𝜃𝛹𝑎(𝐷1)
+ 𝜇𝜃𝛹𝑎(𝐷2)

, 𝜇𝜃𝛹𝑎(𝐷2)
+ 𝜇𝜃𝛹𝑎(𝐷1)

)𝑑𝜃,

nd, under the condition of [12, Remark 2.2], we have that

(𝜇𝜃𝐷1
, 𝜇𝜃𝐷2

) = ‖𝑆𝜃𝐷1
− 𝑆𝜃𝐷2

‖1,

here 𝑆𝜃𝐷1
, 𝑆𝜃𝐷2

are the vectors of points 𝑥 ∈ 𝐷1 and 𝑦 ∈ 𝐷2, respectively, projected onto the line 𝐿(𝜃) and then sorted from the
smallest value to the highest. Then, we have

(𝜇𝜃𝛹𝑎(𝐷1)
+ 𝜇𝜃𝛹𝑎(𝐷2)

, 𝜇𝜃𝛹𝑎(𝐷2)
+ 𝜇𝜃𝛹𝑎(𝐷1)

) =

= ‖𝑆𝜃 − 𝑆𝜃 ‖
𝛹𝑎(𝐷1)∪𝛹𝑎(𝐷2) 𝛹𝑎(𝐷2)∪𝛹𝑎(𝐷1) 1

6
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≤ ‖𝑆𝜃𝐷1∪𝐷2
− 𝑆𝜃𝐷2∪𝐷1

‖1 + ‖𝑆𝜃𝜓(𝐷1)∪𝜓(𝐷2)
− 𝑆𝜃𝜓(𝐷2)∪𝜓(𝐷1)

‖1

= (𝜇𝜃𝐷1
+ 𝜇𝜃𝐷2

, 𝜇𝜃𝐷2
+ 𝜇𝜃𝐷1

) +(𝜇𝜃𝜓(𝐷1)
+ 𝜇𝜃𝜓(𝐷2)

, 𝜇𝜃𝜓(𝐷2)
+ 𝜇𝜃𝜓(𝐷1)

),

from which our statement follows. □

Corollary 1. In the hypotheses of Proposition 3, we have

𝑑𝛹𝑎𝑆𝑊 (𝐷1, 𝐷2) ≤ 2
√

2(𝑑𝑊 ,1(𝐷1, 𝐷2) + ‖𝜓(𝐷1) − 𝜓(𝐷2)‖∞).

Proof. We can write

𝑑𝛹𝑎𝑆𝑊 (𝐷1, 𝐷2) ≤ 𝑑𝑆𝑊 (𝐷1, 𝐷2) + 𝑑𝑆𝑊 (𝜓(𝐷1), 𝜓(𝐷2))

≤ 2
√

2(𝑑𝑊 ,1(𝐷1, 𝐷2) + 𝑑𝑊 ,1(𝜓(𝐷1), 𝜓(𝐷2)))

≤ 2
√

2(𝑑𝑊 ,1(𝐷1, 𝐷2) + ‖𝜓(𝐷1) − 𝜓(𝐷2)‖∞). □

4.2. The feature extraction map: 𝛹𝜌

Let 𝜌 ∈ N and 𝐷𝑟( , 𝜺) = 𝐷𝑟( , 𝜺) ⧵. We define the set 𝐷𝑟( , 𝜺, 𝜌), which consists of the 𝜌 most persistent elements in 𝐷𝑟( , 𝜺),
and the function

𝛹𝜌(𝐷𝑟( , 𝜺)) = 𝐷𝑟( , 𝜺, 𝜌) ∪ 𝜓
(

𝐷𝑟( , 𝜺) ⧵𝐷𝑟( , 𝜺, 𝜌)
)

∪ .

We remark that (𝐷𝑟( , 𝜺) ⧵𝐷𝑟( , 𝜺, 𝜌)) ∈ D𝑟(𝜺), therefore 𝛹𝜌(𝐷𝑟( , 𝜺)) is well defined.
The map 𝛹𝜌 performs a feature extraction procedure. Indeed, the resulting persistence diagram consists of the most 𝜌 persistent

elements,  while the remaining elements, which are possible large in numbers, are compressed into a single generator. Nevertheless,
it can be related to 𝛹𝑎 by the formula

𝛹𝜌 = 𝐷𝑟( , 𝜺, 𝜌) ∪ 𝛹𝑎(𝐷𝑟( , 𝜺) ⧵𝐷𝑟( , 𝜺, 𝜌)) ⧵ (𝐷𝑟( , 𝜺) ⧵𝐷𝑟( , 𝜺, 𝜌)).

As we experiment in Section 5, 𝛹𝜌 turns out to be useful especially in cases where many generators are related to noisy structures
in the data, leading to a consistent saving in terms of computational costs.

4.3. The auxiliary function 𝜓

We define the auxiliary function 𝜓 ∶ D𝑟(𝜺) → R2
≥ as

𝜓(𝐷𝑟( , 𝜺)) =
1
𝑊

∑

𝒙∈𝐷𝑟( ,𝜺)

𝑤(𝒙)𝒙 (8)

where 𝑤 ∶ R2
+ ⟶ R+ is a weight function and 𝑊 =

∑

𝒙∈𝐷𝑟( ,𝜺)
𝑤(𝒙). We observe that 𝐷𝑟( , 𝜺) contains a finite number of elements

(generators), therefore the sum in (8) is always defined (see also Remark 2).
We propose the following weights.

1. Let 𝑤1(𝒙) = 1∕|𝐷𝑟( , 𝜺)|, being |𝐷𝑟( , 𝜺)| the cardinality of the multiset, i.e., each element is counted with its multiplicity.
We denote as centre of uniform mass the resulting auxiliary function

𝜓1(𝐷𝑟( , 𝜺)) =
1

|𝐷𝑟( , 𝜺)|

∑

𝒙∈𝐷𝑟( ,𝜺)

𝒙.

2. Let 𝒙 = (𝑏, 𝑑) ∈ 𝐷𝑟( , 𝜺), where 𝑏, 𝑑 ∈ R+ are the birth–death time of the element 𝒙 (see (3)), and let 𝑤2(𝑥) = 𝑑 − 𝑏 be the
persistence of 𝒙. We denote as centre of persistence the auxiliary function

𝜓2(𝐷𝑟( , 𝜺)) =
1

∑

𝒙=(𝑏,𝑑)∈𝐷𝑟( ,𝜺)
(𝑑 − 𝑏)

∑

𝒙=(𝑏,𝑑)∈𝐷𝑟( ,𝜺)

(𝑑 − 𝑏)𝒙.

Both the options aim at extracting a representative element from the generators of the persistence diagram. While the centre
of uniform mass is the barycentre of the elements of the multiset, the centre of persistence assigns different weights according to
the persistence of the elements. This is a natural choice to be analysed, since elements with low persistence are more likely to be
related to noise structures resulting in the filtration, while elements of large persistence are linked to more representative geometrical
features of the dataset (see the example in Fig. 1). For these reasons, in Section 5 we mainly use the function 𝜓2 in our experiments,
but we also compare 𝜓1 and 𝜓2 in Section 5.1.

Remark 2. If we take 𝒙 ∈ 𝐷𝑟( , 𝜺) in (8), additional conditions on the weight function 𝑤 are needed to guarantee the convergence
of the sum. However, such infinite setting is not meaningful to be analysed, since elements in the bisector carry no topological
information concerning the dataset. As a further observation, the centre of persistence might be formally computed by summing
over 𝐷 ( , 𝜺), as in this case 𝑤(𝒙) = 0 for 𝒙 ∈ .
𝑟
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Table 1
Demographic details and baseline cognitive status measures of the study population.

AD
(mean)

AD
(st.dev.)

Control
(mean)

Control
(st.dev.)

No. of subjects 225 – 248 –
Gender (F/M) 114/111 – 126/122 –
Hand preference (A/L/R) 5/23/197 – 6/26/216 –
Age at entry 74.41 7.60 65.21 9.62
Education (years) 14.77 3.08 16.04 2.51
MMSE 20.33 6.38 29.27 1.30

Remark 3. Since 𝐷𝑟( , 𝜺) contains an infinite number of elements for all  ⊂ 𝛺 by definition, the VSPK 𝜅𝛹 is still well defined on
D𝑟(𝜺) ×D𝑟(𝜺). Moreover, if 𝜅 is (strictly) positive definite, so it is 𝜅𝛹 .

Remark 4. Referring to Remark 1, if 𝜅 is a PWG or SW kernel, then 𝜅𝛹 can be directly expressed in terms of the distance 𝑑𝛹 (⋅, ⋅)
induced in the variably scaled setting.

5. Experiments

Our aim is to show how the SVM classifier may benefit of the introduced VSPKs.
In the experiments the kernels are handled using Python 3.8 and the modulus scikit-learn [24] on a 2.6 GHz Dual-Core Intel Core

i5. Persistence diagrams are constructed via the modulii persim [25], ripser [26] and GUDHI [27]. Free and open source PYTHON
oftware is available at

https://github.com/reevost/vspk_code .
We validate the following hyperparameters. About the considered kernels, we follow the guidelines provided by the authors of

he seminal papers.

• Concerning the SVM classifier, we validate 𝜁 ∈ {10𝑗 | 𝑗 = −3,… , 3}.
• Concerning the PSS kernel, we take 𝜎 ∈ {10𝑗 | 𝑗 = −3,… , 3} ∪ {5 ⋅ 10𝑗 | 𝑗 = −3,… , 2}.
• Concerning the PWG kernel, the parameters 𝐶 and 𝜏 of the PWGK are chosen in {10𝑗 | 𝑗 = −2,… , 2}, while 𝛿 is set to 10

(see [23, Theorem 3.2]). Moreover, as underlying standard kernel we use the Gaussian.
• Concerning the SW kernel, 𝜒 is obtained following the procedure carried out in [12, §4].

To assess the performance of the classifiers, we consider the following scores.

• The accuracy score

accuracy =
true positives + true negatives

true positives + true negatives + false positives + false negatives .

• The f1-score [28]

f1-score = 2 ⋅
precision ⋅ recall
precision + recall ,

where

precision =
true positives

true positives + false positives ,

recall = true positives
true positives + false negatives .

The f1-score is indeed the harmonic mean between precision and recall, and it is then widely-used in literature since it
represents a useful trade-off between these two important metrics.

.1. Alzheimer’s disease diagnosis

The Open Access Series of Imaging Studies (OASIS) is a project aimed at making neuroimaging data sets of the brain freely
vailable for the scientific community. In particular, OASIS-3 is a compilation of MRI and PET imaging and related clinical data
or 1098 participants who were collected across several ongoing studies in the Washington University Knight Alzheimer Disease
esearch Center over the course of 15 years. Imaging data is accompanied by dementia and APOE status and longitudinal clinical
nd cognitive outcomes [29,30].

We consider a subset of the full study group, in order to have a balanced set of data.
A summary of demographic and neuropsychological details of the subjects considered in our study is presented in Table 1.
For each subject, we build the persistence diagrams using the estimation of cortical thickness on 34 points in both right and

eft hemisphere of the brain, for a total of 64 values. For simplicity, in the study we consider the same coordinates of the above
8
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Fig. 2. Persistence diagrams of an AD subject with a MMSE of 30 (left) and the persistence diagram of a control subject with a MMSE of 7 (right).

Fig. 3. 1-dimensional (left) and 2-dimensional (right) persistence diagram of an AD subject. The red dot is the added centre of persistence via 𝛹𝑎 and 𝜓2.

Table 2
OASIS-3 dataset. Results of SVMs classification obtained considering 𝐻1 and 𝐻2 persistence diagrams and using
the SW kernel.

𝛹 𝜓 Accuracy f1-score Validation time (s)

SW (𝐻1) – – 0.741 0.716 220
VSP-SW (𝐻1) 𝛹𝑎 𝜓2 0.732 0.700 223
VSP-SW (𝐻1) 𝛹𝜌 𝜓2 0.731 0.693 184
SW (𝐻2) – – 0.741 0.712 183
VSP-SW (𝐻2) 𝛹𝑎 𝜓2 0.753 0.720 300

mentioned points for all subjects. The coordinates are computed with the scipy toolbox [31]. From this coordinates we build the
persistence diagrams and we extract 1 and 2-dimensional topological features, i.e., we obtain the generators associated with 𝐻1 and
𝐻2 homological groups.

In Fig. 2 we show two examples of persistence diagrams, and in Fig. 3 we highlight the generator added as centre of persistence.
We evaluate the performance achieved by a SVMs classifier that makes use of the presented PSS, PWG and SW kernels, both in

the classical and in the variably scaled settings.
In each test, we perform a random 70%∕30% splitting of the dataset for training and testing, and we consider 5-fold cross

validation on the training set for the tuning of the hyperparameters. The results displayed in Tables 2 3 4 have been averaged
over 10 runs of tests. There, the reported validation time refers to the time required by the whole cross-validation process.

For the variably scaled setting, we consider 𝛹𝑎 for both 𝐻1 and 𝐻2 diagrams, while 𝛹𝜌, with 𝜌 = 10, is employed with 𝐻1 only,
ince 𝐻2 diagrams are limited in the number of generators, and therefore compressing features is not meaningful.

Furthermore, we use 𝜓2 as auxiliary function. Indeed, as highlighted in Table 5, 𝜓2 definitely outperforms 𝜓1 in our setting.
oreover, we observe that the performances achieved by the auxiliary function alone, i.e., taking the centres of mass or persistence

n place of the persistence diagram, are definitely not competitive with respect to the classical and variably scaled settings.
We observe that VSPKs are competitive with respect to the classical setting, improving the performance in some cases. Moreover,

he usage of 𝛹 leads to a consistent saving in validation time.
𝜌
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Table 3
OASIS-3 dataset. Results of SVMs classification obtained considering 𝐻1 and 𝐻2 persistence diagrams and using
the PWG kernel.

𝛹 𝜓 Accuracy f1-score Validation time (s)

PWGK (𝐻1) – – 0.749 0.723 18165
VSP-PWG (𝐻1) 𝛹𝑎 𝜓2 0.750 0.726 18082
VSP-PWG (𝐻1) 𝛹𝜌 𝜓2 0.759 0.735 8731
PWG (𝐻2) – – 0.716 0.699 4422
VSP-PWG (𝐻2) 𝛹𝑎 𝜓2 0.709 0.683 4713

Table 4
OASIS-3 dataset. Results of SVMs classification obtained considering 𝐻1 and 𝐻2 persistence diagrams and using
the PSS kernel.

𝛹 𝜓 Accuracy f1-score Validation time (s)

PSS (𝐻1) – – 0.743 0.721 9238
VSP-PSS (𝐻1) 𝛹𝑎 𝜓2 0.752 0.728 9045
VSP-PSS (𝐻1) 𝛹𝜌 𝜓2 0.750 0.723 3330
PSS (𝐻2) – – 0.781 0.762 2825
VSP-PSS (𝐻2) 𝛹𝑎 𝜓2 0.775 0.755 3120

Table 5
OASIS-3 dataset. Results of SVMs classification obtained by
using the centre of mass and persistence alone in place of the
persistence diagrams.

Accuracy f1-score

𝜓1 0.56 0.55
𝜓2 0.65 0.72

Fig. 4. Fixed (𝑥0 , 𝑦0) ∈ [0, 1]2, the orbits resulting from the linked twisted map taking 𝑟 = 2.5, 4.1, 4.3, from left to right, respectively.

.2. Orbit recognition

As second experiment, we follow the idea proposed in [32] and we analyse the linked twisted map, which models fluid flows.
he corresponding orbits are computed via the discrete system

{

𝑥𝑛+1 = 𝑥𝑛 + 𝑟𝑦𝑛(1 − 𝑦𝑛) mod 1
𝑦𝑛+1 = 𝑦𝑛 + 𝑟𝑥𝑛+1(1 − 𝑥𝑛+1) mod 1

here (𝑥0, 𝑦0) ∈ [0, 1] × [0, 1] is the initial position and 𝑟 > 0 is a real parameter that influences the orbit. The topological
tructure of the orbit changes with the initial position and 𝑟, as displayed in Figs. 4 and 5, where we depict the first 1000 iterations
(𝑥𝑛, 𝑦𝑛) ∶ 𝑛 = 0,… , 1000}.

In the following tests, accordingly to [32], we choose a set of five parameters 𝑟 = 2.5, 3.5, 4, 4.1, 4.3 as set of classification labels.
or each label, we compute the first 1000 points of 50 orbits, with random starting point. Therefore, the dataset consists of 250
lements. Then, we compute the persistence diagram related to each orbit.

Here, since each persistence diagram has a huge number of generators (≈105), we restrict to the most 𝜌 = 10 persistent elements in
ach diagram. Indeed, in our experiments, we observed that considering a larger number of generators does not significantly affect
he classification performance, while leading to a higher computational cost. More precisely, here 𝛹𝑎 is computed with respect
o such 10 elements, while in the case of 𝛹𝜌 the discarded less persistent generators are compressed in a unique element via 𝜓2.
oreover, since we are dealing with 2-dimensional orbits, we compute the 𝐻1 homology group only.

As in Section 5.1, we consider a 5-fold cross validation on the training set, and the results displayed in Tables 6–8 are averaged
ver 10 runs with 70%/30% training-test split of the data.
10
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Fig. 5. Fixed 𝑟 = 4.3, the orbits resulting from the linked twisted map taking different starting points (𝑥0 , 𝑦0) ∈ [0, 1]2.

Table 6
Orbit Recognition. Results of SVMs classification on 𝐻1 persistence diagrams using the SW kernel.

𝛹 𝜓 Accuracy f1-score

SW (𝐻1) – – 0.832 0.831
VSP-SW (𝐻1) 𝛹𝑎 𝜓2 0.814 0.812
VSP-SW (𝐻1) 𝛹𝜌 𝜓2 0.833 0.832

Table 7
Orbit Recognition. Results of SVMs classification on 𝐻1 persistence diagrams using the PWG
kernel.

𝛹 𝜓 Accuracy f1-score

PWG (𝐻1) – – 0.858 0.866
VSP-PWG (𝐻1) 𝛹𝑎 𝜓2 0.858 0.866
VSP-PWG (𝐻1) 𝛹𝜌 𝜓2 0.846 0.853

Table 8
Orbit Recognition. Results of SVMs classification on 𝐻1 persistence diagrams using the PSS kernel.

𝛹 𝜓 Accuracy f1-score

PSS (𝐻1) – – 0.806 0.803
VSP-PSS (𝐻1) 𝛹𝑎 𝜓2 0.824 0.821
VSP-PSS (𝐻1) 𝛹𝜌 𝜓2 0.826 0.823

Table 9
Details about the considered datasets.
Category Number of samples Number/type of labels

Ant 72546 5 (head, torso, tail, legs, antennas)
Airplane 59546 4 (head, torso, tail, wings)
Bird 50902 4 (head, torso, tail, wings)
Octopus 66248 2 (head, legs)

5.3. 3D shape segmentation

Here, we follow an experiment proposed also in [12]. We consider some categories of the mesh segmentation benchmark
ntroduced in [33], which contains different 3D shapes of several categories. Precisely, we consider four different categories/datasets:
nt, Airplane, Bird and Octopus. In the datasets, each sample is a face, which is represented as a triplet of 3D points. Separately for

each category, the classification task consists in associating each sample to its corresponding segmentation label, which describes the
relative position of the sample with respect to the shape. We point out that four different classification tasks are indeed considered,
and each dataset is related to a different number of labels, as detailed in Table 9. A 𝐻1 persistence diagram is then computed for
each face by using the geodesic distance on the 3D shape; for more details concerning the datasets, we refer to [34], while in Fig. 6
we display some examples of shape segmentation.

As in the previous subsections, we consider a 5-fold cross validation on the training set, and the results displayed in Tables 10
and 11 are averaged over 10 runs with 20%/80% training-test split of the data.

We remark that the elements of the persistence diagrams in this experiment are limited in numbers and free of noisy generators,
because of the particular construction of the diagrams obtained via the geodesic metric. Therefore, the usage of 𝛹𝜌 is not significant.

6. Conclusions and future work

In this paper, we proposed VSPKs for dealing with persistence diagrams in the context of persistent homology. The proposed
framework, which is directly inspired by the variably scaled setting explored in kernel-based approximation and learning, may
11
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Fig. 6. Examples of 3D shapes and corresponding segmentation labels. From top left, clock-wise, Ant, Airplane, Bird and Octopus.

Table 10
Accuracy achieved by the SVMs classifiers in the carried out tests. In the variably scaled setting,
we used 𝛹𝑎 and 𝜓2 functions.

PSS (𝐻1) VSP-PSS (𝐻1) SW (𝐻1) VSP-SW (𝐻1)

Ant 0.925 0.920 0.925 0.934
Airplane 0.822 0.820 0.822 0.843
Bird 0.881 0.858 0.881 0.882
Octopus 0.915 0.925 0.915 0.942

Table 11
f1-score achieved by the SVMs classifiers in the carried out tests. In the variably scaled setting,
we used 𝛹𝑎 and 𝜓2 functions.

PSS (𝐻1) VSP-PSS (𝐻1) SW (𝐻1) VSP-SW (𝐻1)

Ant 0.910 0.905 0.910 0.913
Airplane 0.811 0.813 0.811 0.814
Bird 0.826 0.779 0.826 0.807
Octopus 0.912 0.922 0.912 0.940

enhance the performance and the efficiency of existing kernels for persistence diagrams, as suggested by the obtained results. Future
work consists of investigating more on the design of the scaling function, which plays a key role in the construction of the kernel.
In this view, the analysis of VSPKs in the context of algebraic topology may provide useful insights.
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