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Impact of tissue kinetic 
heterogeneity on PET 
quantification: case study with the 
L-[1-11C]leucine PET method for 
cerebral protein synthesis rates
Mattia Veronese1,2, Alessandra Bertoldo3,4, Giampaolo Tomasi1, Carolyn Beebe Smith1 & 
Kathleen C. Schmidt1

Functional quantification with PET is generally based on modeling that assumes tissue regions are 
kinetically homogeneous. Even in regions sufficiently small to approach homogeneity, spillover due 
to resolution limitations of PET scanners may introduce heterogeneous kinetics into measured data. 
Herein we consider effects of kinetic heterogeneity at the smallest volume accessible, the single 
image voxel. We used L-[1-11C]leucine PET and compared rates of cerebral protein synthesis (rCPS) 
estimated voxelwise with methods that do (Spectral Analysis Iterative Filter, SAIF) and do not (Basis 
Function Method, BFM) allow for kinetic heterogeneity. In high resolution PET data with good counting 
statistics BFM produced estimates of rCPS comparable to SAIF, but at lower computational cost; 
thus the simpler, less costly method can be applied. With poorer counting statistics (lower injected 
radiotracer doses), BFM estimates were more biased. In data smoothed to simulate lower resolution 
PET, BFM produced estimates of rCPS 9–14% higher than SAIF, overestimation consistent with applying 
a homogeneous tissue model to kinetically heterogeneous data. Hence with lower resolution data it 
is necessary to account for kinetic heterogeneity in the analysis. Kinetic heterogeneity may impact 
analyses of other tracers and scanning protocols differently; assessments should be made on a case by 
case basis.

One of the great strengths of positron emission tomography (PET) is that it can be used to provide quantitative 
measurements of physiological and biochemical processes. Functional quantification with PET is generally based 
on kinetic modeling approaches that relate a particular biological process of interest to measurements of activity 
in blood and tissue following administration of a radiolabeled tracer1,2. Kinetic models used in PET are necessar-
ily simplified representations of tissue processes, and one of the simplifying assumptions frequently made is that 
the tissue volume being analyzed is kinetically homogeneous, i.e., rates of blood flow, delivery and efflux of tracer 
to/from tissue, metabolism, and incorporation into labeled products do not vary within the tissue region exam-
ined. In brain these assumptions are difficult to meet. At spatial resolutions approximately an order of magnitude 
higher than PET, such as achieved in autoradiographic studies, one clearly sees heterogeneity of rates of blood 
flow, glucose metabolism, and protein synthesis across the brain3. The rates of these processes not only differ 
between gray and white matter, but they can also vary considerably within gray matter structures themselves, as 
for example in the cortical layers4,5. At the relatively lower spatial resolution of PET scanning, therefore, activities 
measured in brain can be expected to originate from kinetically heterogeneous mixtures of tissue. Application of 
kinetic models designed for homogeneous tissues to heterogeneous tissues leads to errors in estimated rates of 
cerebral blood flow and glucose metabolism, as well as to errors in estimates of receptor binding parameters6–9.
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Two approaches are in current use to reduce the effects of heterogeneity on estimation of kinetic model 
parameters from which rates of the process of interest are determined: (1) reducing the volume of tissue in which 
activity is analyzed, and (2) utilizing an analysis approach that does not depend on the assumption of kinetic 
homogeneity. There is a limit with PET data of how small a volume of tissue can be examined, as the smallest unit 
of available data is the single image voxel. But even if the voxel size could be made arbitrarily small (even lower 
than neuroimaging standards of 1–2 mm in size) and possibly contain only kinetically homogeneous tissue, its 
measured activity will be affected by the resolution limit of the technique (a positron travels an average 1–3 mm 
before annihilation)10,11, the resolution limit of the PET scanner12 and the partial volume effect, a limiting charac-
teristic of all tomographic imaging systems13–15.

In the present study we investigate the effect of tissue kinetic heterogeneity when PET quantification is per-
formed at the voxel level, with the final aim of understanding whether the assumption of kinetic homogeneity 
within a voxel is applicable or not. In particular we are interested in (1) quantifying the degree of kinetic heter-
ogeneity for a given PET tracer and (2) assessing the impact of PET scanner resolution and injected tracer dose 
on this problem.

We utilize data from L-[1-11C]leucine PET studies for quantitative measurement of rates of cerebral protein 
synthesis (rCPS) in human subjects16–19 to explore these questions. Although the specific conclusions for this 
tracer may differ from those of other tracers and other scanning conditions, the considerations and the tech-
niques for examining them can be extended to all PET tracers in brain and non-brain tissues.

Materials and Methods
Quantification of rCPS with L-[1-11C]leucine. Two approaches have been validated for quantification of 
rCPS at the voxel level. They depend on the assumptions used to model the behavior of L-[1−11C]leucine in brain, 
specifically whether the tissue is modeled as kinetically homogeneous or kinetically heterogeneous.

The homogeneous tissue kinetic model16 is shown in Fig. 1. The parameters of the model are K1, the rate con-
stant for transport of leucine from plasma to tissue; k2 + k3, the sum of the rate constant for transport of leucine 
from tissue to plasma plus the rate constant for the first two steps in leucine catabolism; k4, the rate constant for 

Figure 1. Homogeneous Tissue Model for L-[1-11C]Leucine PET method. In the homogeneous tissue model16 
K1 and k2 are the rate constants for transport of leucine from plasma to tissue and back, respectively. k3 is the 
rate constant for the first two steps in leucine catabolism, transamination and decarboxylation, which yields 
11CO2. k4 and k5 are the rate constants for leucine incorporation into protein and for the release of free leucine 
from proteolysis, respectively. Because of the long half-life of protein in brain37, it is assumed that there is no 
significant breakdown of labeled product (P*) during the experimental interval, i.e., k5P* ~ 0. Under the 
assumptions of negligible fixation of 11CO2 during the experimental period38,39 and rapid equilibration of 11CO2 
between brain and blood38, the model reduces to two tissue compartments (CE*, which represents labeled 
leucine in the tissue, and P*) plus the 11CO2 compartment in which the concentration is assumed to be known. 
Total concentration of 11C in the field of view of the PET camera (CT

*) is given by:  
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where β = k2 + k3 + k4. The model used to describe labeled leucine holds also for unlabeled leucine, except that 
unlabeled protein is assumed to be in steady state, and its steady state breakdown to amino acids including 
leucine is greater than zero, i.e., k5P > 0. Assuming no isotope effect, the rate constants are identical for 
unlabeled and labeled leucine.
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leucine incorporation into protein; and Vb, the fraction of the measured volume occupied by blood. rCPS is a 
function of the measured concentration of unlabeled leucine in arterial plasma, Cp, and the rate constants, i.e.,
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The fraction of unlabeled leucine in the precursor pool for protein synthesis derived from arterial plasma, λ, is 
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Figure 2. Heterogeneous Tissue Model for L-[1-11C]Leucine PET method. The heterogeneous tissue model20 
for the labeled leucine assumed that each tissue is composed of n kinetically homogenous subregions (a,b,…,n), 
each described by the homogeneous tissue model of Fig. 1. The corresponding fractional weights of the 
subregions are wa wb, … wn (wa ≥ 0, wb ≥ 0, …, wn ≥ 0; n ≥ 1; wa + wb + … + wn = 1). Total activity in the 
heterogeneous region as a whole can therefore be described by the weighted sum of the activities in each of the 
subregions. Expressed in terms of rate constants we have:  
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If n, θ0, θi (i = a, b, …, n) and Vb are known, or have been estimated, then the above equations can be used to 
determine the weighted average influx rate constant for the mixed tissue, K1 = waK1a + wbK1 b+ … +wnK1n, as  
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only the sum over all subregions. Nor can the fraction of unlabeled leucine derived from arterial plasma in each 
individual subregion, i.e., λi = (k2i + k3i)/(k2i + k3i + k4i), be identified as this fraction appears in the equation for 
θi only as the product with the non-identifiable term wiK1i. However, regional variations in measured values of λ 
are small18 and the parameter can be assumed constant across subregions, (i.e. λ = λa = λb = … = λn), resulting 
in 
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Weighted average rCPS is then given by  
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The remainder (1 − λ) derives from breakdown of unlabeled protein in tissue. In the present study the Basis 
Function Method (BFM) of Tomasi et al.20 was used for estimation of the kinetic model parameters of the homo-
geneous tissue model; the blood:brain equilibrium volume of distribution of 11CO2 (VD) is fixed at 0.4121. BFM 
utilizes a grid search approach together with linear least squares estimation. In the case that any kinetic model 
parameter estimate is negative for a particular voxel, estimates are replaced by those from the appropriately con-
strained linear least squares algorithm (Supplemental Material). The use of linear least squares algorithms results 
in faster and more robust estimation compared to the use of non-linear least squares methods. These properties 
are of high value when BFM is applied at voxel level, since it produces high quality parametric maps with reduced 
computational requirements20.

The model for L-[1−11C]leucine that explicitly takes tissue heterogeneity into account22 is shown in Fig. 2. It 
assumes that each tissue is composed of n kinetically homogenous subregions whose weighted combination 
expresses total activity measured in the given volume. In the current study, estimation of parameters of interest, 
allowing that there may be more than one kinetically homogeneous subregion in the voxel, was performed with 
the Spectral Analysis Iterative Filter (SAIF) method22,23. SAIF was developed in order to quantify L-[1-11C]leucine 
PET data without prior assumptions concerning kinetic homogeneity or heterogeneity in the data22. SAIF is a 
modified version of Spectral Analysis used for [18F]fluorodeoxyglucose PET studies24,25. SAIF implements a filter-
ing procedure to reduce the impact of noise; this makes voxel-wise quantification feasible22. The filter employed 
by SAIF is a bandpass filter that separates blood components and tracer trapped in the tissue from other tissue 
components. Additionally, the filter limits detection of phantom components that arise from measurement noise. 
For irreversible tracers SAIF is optimized for estimation of the weighted average rate constant for net trapping of 
tracer and the weighted average influx rate constant (K1), two parameters that are fundamental for the computa-
tion of λ and rCPS22,23. In addition to the parameter estimates, SAIF returns the number of components detected 
in the tissue and thus provides information about the presence of kinetic inhomogeneity22. SAIF utilizes a 
non-negative linear least squares estimator, which is computationally faster than non-linear estimators, but slower 
than unconstrained linear least squares.

Simulation Studies. Simulation studies were performed to evaluate the performance of BFM and SAIF 
under different kinetic modeling assumptions and different noise conditions. For simulating homogeneous tissue 
data, we began with the kinetic model parameters estimated in 18 regions of interest and whole brain in normal 
healthy volunteers (Bishu et al.18). The 19 inter-subject mean regional estimates of K1, k2 + k3 and k4 were used as 
our reference parameter set; Vb was fixed at 0.05. Values of K1 in the reference set were between 0.025 and 
0.062 mL/g/min, k2 + k3 ranged from 0.054 to 0.157 min−1, and k4 from 0.027 to 0.053 min−1. For each set of ref-
erence parameters we computed the corresponding values of rCPS and λ by use of equations (1) and (2), respec-
tively, and generated a tissue time-activity curve based the equation of the homogeneous tissue model (Fig. 1). 
This case was our homogenous tissue simulation scenario.

From each set of parameters in the homogeneous tissue reference set, we generated a reference set of kinetic 
model parameters for a heterogeneous tissue as follows. We assumed the heterogeneous tissue region had two 
homogeneous subregions of equal weight, and that values of λ were equal in the two subregions. Vb was kept at 
0.05. We also assumed that the weighted average of the K1 values in the two subregions equals the K1 for the cor-
responding region in the homogeneous tissue simulation scenario. These assumptions assure that the weighted 
average rCPS in the mixed tissue equals rCPS in the corresponding homogeneous tissue. The remaining param-
eters were derived assuming that the sum of the rate constants k2 + k3 + k4 in the first subregion is five times that 
in the second subregion, and that the product of rate constants K1(k2 + k3) in the first subregion is 25 times that 
in the second subregion. These combinations of rate constants appear in the equation for total activity described 
by the heterogeneous tissue model (Fig. 2) and the values used in the simulation are consistent with previous 
analyses22. This case was our heterogeneous tissue simulation scenario.

All simulations used the arterial input functions from one subject studied previously18. For simplicity, 11CO2 
in brain was not included in the simulations as it constitutes only 1–2% of the total measured activity18. The two 
sets of 19 previously generated time-activity curves were sampled as 42 frames of data (16 × 15, 4 × 30, 4 × 60, 
4 × 150, 14 × 300 sec), the standard protocol in L-[1-11C]leucine PET studies18,19. For each frame of each refer-
ence time-activity curve (both homogenous and heterogeneous scenarios) 200 noise-added realizations were 
generated via Monte Carlo techniques. Noise was defined consistent with a stochastic process with zero mean and 
Gaussian distribution whose variance is described by
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where γ is the decay constant for 11C, Δti is the length of Frame i, CT
*(ti) is the mean decay-corrected concentra-

tion of 11C in Frame i of the tissue, and α is the proportionality coefficient reflecting the noise level in the data26. 
The scale factor for the noise variance was set to be consistent with voxel-wise error, as detailed previously20, for 
both homogeneous and heterogeneous tissue simulation scenarios. Additionally, we generated noise consistent 
with regional time-activity curve error22 for the heterogeneous tissue simulation scenario. ROI-level noise was not 
used in the homogeneous tissue simulation scenario, assuming that a volume sufficient to have the lower noise 
level would be too large to contain only kinetically homogeneous tissue.

BFM and SAIF were then applied to all simulated datasets. For both methods a predefined grid of 100 values 
of β = k2 + k3 + k4, logarithmically distributed27 in the range 0.0037–1.33 min−1, was used. For SAIF, the filter 
bandpass was set to [0.02 min−1, 0.3 min−1] in order to be consistent with application to low as well as high 
signal-to-noise ratios23. Weights were set proportional to the inverse of the error variance (equation (3)).



www.nature.com/scientificreports/

5SCIENtIfIC REPORTS |  (2018) 8:931  | DOI:10.1038/s41598-017-18890-x

The performances of BFM and SAIF were evaluated in terms of robustness and accuracy. Robustness was 
defined as the number of failures to converge to a solution, or to find physiologically meaningful parameter esti-
mates, divided by the total number of simulated cases23. We defined as non-physiological those estimates in which 
K1 > 1 mL g−1 min−1, Vb > 1, or rCPS > 10 nmol g−1 min−1. (The BFM and SAIF algorithms guarantee that all esti-
mates are non-negative). For each of the 19 sets of parameters in the reference data set, accuracy was assessed as 
the bias in K1, λ and rCPS, defined as the mean relative difference between simulated and estimated parameter 
values. Overall method performance was assessed as the root mean square error

∑= −=
^RMSE p p1

200
( )

(4)j i j ij1
200 2

2

where pj represents the jth simulated reference value for K1, λ or rCPS (j=1, 2, …, 19) and p̂ij  represents its ith 
corresponding simulation estimate. For SAIF we also investigated the capacity of the method to correctly identify 
the number of subregions in the simulated tissue.

Studies of L-[1-11C]leucine data measured with the High Resolution Research Tomograph.  
Data from previously-reported studies18,19 of eight healthy, awake, male subjects (age 20–24) were reanalyzed in 
the current study. The subjects were chosen to have a range of injected activities of L-[1-11C]leucine. Five of our 
reanalyzed group were administered >0.30 mCi L-[1-11C]leucine/kg body weight, the target dose for the studies. 
The remaining 3 subjects had injected doses of 0.29, 0.17, and 0.16 mCi/kg. Subject inclusion criteria as well as 
the PET scan protocol were described in detail previously18. Briefly, all PET studies were performed on the ECAT 
High Resolution Research Tomograph (HRRT) (CPS Innovations, Knoxville, TN), with a spatial resolution of 
~2.6 mm full width at half maximum (FWHM)28. The 90-min emission scan was initiated coincident with a 
2-min intravenous infusion of L-[1-11C]leucine. Images were reconstructed using the motion-compensated 3D 
ordinary Poisson ordered subset expectation maximization algorithm28 as 42 frames of data (16 × 15, 4 × 30, 
4 × 60, 4 × 150, 14 × 300 sec); voxel size was 1.21 × 1.21 × 1.23 mm. Arterial blood was sampled over the course 
of the study and concentrations of unlabeled and labeled leucine in arterial plasma and total 11C and 11CO2 
activities in whole blood were measured according to methods detailed previously18. All subjects underwent a 
T1-weighted MRI of the brain. ROIs were drawn on the MRI, and a 3D volume of each ROI mask was created. 
The MRI was then co-registered to the mean of the 30–60 min PET images by use of a 3D rigid body transforma-
tion and the transformation parameters were applied to the ROI mask volumes. Vinci software (Volume Imaging 
in Neurological research, Co-registration and ROIs Included; Max Planck Institute for Neurological Research, 
Cologne, Germany) was used for the co-registration.

Whole brain and 12 regions (specifically cerebellum, caudate, putamen, frontal cortex, corona radiata, thal-
amus, occipital cortex, parietal cortex, vermis, amygdala, hippocampus and temporal cortex) were evaluated in 
all subjects. Estimates of K1, λ, and rCPS were determined in each voxel by means of both BFM and SAIF. The 
algorithm settings were maintained the same as in the simulation studies. The difference between tracer arrival 
time in brain and arterial sampling site was estimated by shifting the whole brain time-activity curve (TAC) with 
various tracer delays (0–20 sec), fitting the whole brain TAC by use of SAIF, and selecting the delay that produced 
the smallest weighted residual sum of squares.

For all subjects and regions, the mean of the voxel estimates in all voxels of the ROI was used as the parameter 
estimate for the region. Correlation between SAIF and BFM estimates was assessed, and the relative difference 
between BFM and SAIF estimates was computed. In addition, we used SAIF to assess the level of heterogeneity 
for each region, defined as the fraction of voxels described by two or more equilibrating components. Analysis 
was performed by single application of SAIF and by use of a bootstrap approach (N of repetitions = 50)23. The 
method exploits random resampling of normalized residuals as an alternative to random noise generation with 
a Gaussian model29,30. Heterogeneity maps were constructed by fusing the MR image, resliced to match the PET 
data, with a map of the spatial distribution of voxels with two or more SAIF-estimated equilibrating components.

Simulation Scenario Analysis

K1 λ rCPS Outliersb

Biasc (%) RMSEd (%) Biasc (%) RMSEd (%) Biasc (%) RMSEd (%) (% of total)

Noise Levele Noise Levele Noise Levele Noise Levele Noise Levele Noise Levele Noise Levele

ROI Voxel ROI Voxel ROI Voxel ROI Voxel ROI Voxel ROI Voxel ROI Voxel

Homogeneous Tissue
BFM 1 ± 1 8 ± 1 <1 ± 2 6 ± 2 1 ± 4 20 ± 5 <1 ± <1

SAIF 2 ± 1 8 ± 1 2 ± 1 8 ± 1 −4 ± 4 23 ± 4 <1 ± < 1

Heterogeneous Tissue
BFM 1 ± 1 <1 ± 1 2 ± <1 8 ± 1 −5 ± 1 −3 ± 2 5 ± 1 7 ± 2 15 ± 5 13 ± 5 16 ± 4 26 ± 5 < 1 ± < 1 1 ± 2

SAIF 1 ± 1 2 ± 1 2 ± 1 8 ± 1 −1 ± 1 <1 ± 2 3 ± 1 8 ± 2 5 ± 4 5 ± 5 10 ± 2 26 ± 5 <1 ± <1 <1 ± < 1

Table 1. Performance of BFM and SAIF algorithms in simulation studiesa. aValues are Means ± SD for the 19 
sets of reference parameters. bOutliers are those cases in which the algorithm did not converge to a solution 
or led to nonphysiological estimates. cBias was computed as the mean relative difference between the true 
simulated and estimated parameter values. dRMSE was computed as the square root of the mean of the square of 
all of the error. eNoise levels are consistent with Region-of-Interest (ROI) or voxel-level data.
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Influence of PET scanner resolution. In order to examine the influence of scanner resolution on the 
L-[1-11C]leucine data analyses, we artificially reduced the resolution of our data by applying a 3D Gaussian filter 
(FWHM 7.1 mm) to all HRRT PET images in the study. The decreased-resolution data were reanalyzed with both 
SAIF and BFM, and the same comparisons were made as in the unsmoothed HRRT data described above.

Availability of Datasets. Datasets generated during and/or analyzed in the current study are available from 
the corresponding author upon request.

Results
Simulated data: Comparison of BFM and SAIF performance. BFM and SAIF demonstrated a high 
degree of robustness to noise in terms of producing physiologically meaningful parameter estimates. We define 
outliers as cases in which the algorithm fails to converge to physiologically meaningful estimates. Less than 1% of 
the total simulated TACs produced outliers when analyzed by SAIF, independent of the simulation scenario and 
level of noise (Outlier Fraction, Table 1). At high noise levels BFM returned ~1% outliers for both homogenous 
and heterogeneous model scenarios. At low noise levels, less than 1% of the BFM estimates were outliers. These 
results are in agreement with previous findings20,23.

Percentage bias and RMSE for the parameters K1, λ, and rCPS are shown in Table 1. Values represent the 
mean ± standard deviation for the 19 sets of simulated parameters. In general, performance of the estimation 
methods reflected the relationship between the type of simulated kinetics and the kinetic model assumptions on 
which BFM and SAIF are based. BFM performed well in the homogenous tissue simulation scenario with noise 
consistent with voxel level data (see TAC, Fig. 3a). When the method was applied to the heterogeneous tissue 
simulation scenario with voxel-level noise (see TAC, Fig. 3b), bias and RMSE in K1 and λ were similar to the 

Figure 3. Simulated Time-Activity Curves. (a) Simulated homogeneous tissue TAC with noise variance 
consistent with voxel error. (b) Simulated heterogeneous tissue TAC with noise variance consistent with voxel 
error. (c) Simulated heterogeneous tissue TAC with noise variance consistent with ROI error. Open circles 
denote simulated data points, red line is the best-fitting TAC from BFM estimation, and black line is the best-
fitting TAC from SAIF estimation.
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homogeneous tissue simulation, but bias and RMSE in rCPS were higher. With low ROI-level noise in the heter-
ogeneous tissue simulation (see TAC, Fig. 3c), overall performance of BFM was worse in terms of bias but better 
in terms of RMSE. This behavior (higher bias for lower noise) suggests that the misspecified tracer kinetic model 
(homogeneous tissue model applied to a heterogeneous tissue) is mainly responsible for the poor performance.

SAIF, on the other hand, showed very similar bias and RMSE in the homogeneous tissue and heterogeneous 
tissue simulation scenarios with high voxel-level noise. In the heterogeneous tissue simulation scenario with high 
voxel-level noise, SAIF biases in all the parameters were lower than the corresponding BFM biases, but RMSE 
in all parameters were equivalent for BFM and SAIF. In the heterogeneous tissue simulation scenario with low 
ROI-level noise, bias in SAIF estimates was ~1% for K1 and λ, and 5% for rCPS.

The capacity of SAIF for measuring the degree of heterogeneity was influenced by the level of noise. At the low 
regional noise level SAIF returned the correct degree of heterogeneity in 89% of simulated cases. Mis-classified 
cases were almost completely associated with SAIF’s finding a higher degree of heterogeneity than the simulated 
one (i.e., number of subregions >2). This tendency of SAIF to overestimate the number of tissue components 
was amplified at the high noise level: only 49% of the homogeneous simulated spectra were correctly identified, 
while 49% and 2% were associated with 2 and 3 equilibrating components, respectively. Of the heterogeneous 
simulated spectra, 79% were correctly identified, while the remaining ~20% were associated with 3 or more equil-
ibrating components. Less than 1% of voxels with simulated heterogeneous kinetics were identified by SAIF as 

Figure 4. Time-Activity curves measured with the High Resolution Research Tomograph. (a) Single voxel TAC 
in which BFM and SAIF methods yielded good agreement in rCPS (relative difference < 1%). (b) Single voxel 
TAC in which BFM and SAIF methods yielded different estimates for rCPS. BFM returned a zero value for 
rCPS and SAIF a positive one. Open circles are measured data points, red line is the best-fitting TAC from BFM 
estimation, and black line is the best-fitting TAC from SAIF estimation.(c) Representative time-activity curve of 
a 15 cc region drawn on the parietal cortex of one subject. Open circles are the mean of ~8300 measured voxel 
TACs. Means of the best fitting BFM and SAIF curves of the individual voxel TACs are shown as red and black 
lines, respectively. After the first minute, the difference between the two best-fitting curves was <1%. In this 
region, the methods also showed good agreement in the mean of the voxel estimates of rCPS (<4%).
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homogeneous. These results are in agreement with what was observed with standard spectral analysis technique31 
and previous SAIF analyses23.

High resolution measured data: Comparison of BFM and SAIF performance. Both BFM and SAIF 
were highly robust; the methods converged to physiological solutions in more than 99% of the voxels analyzed. In 
terms of fit of the data (Fig. 4), SAIF provided a slightly better description of the voxel TACs compared with BFM, 
as indicated by lower values of the weighted residual sums of squares (mean relative difference: −7%). This result 
was expected since SAIF is based on an over-complete representation of the system that has a higher number of 
degrees of freedom than BFM32. Qualitatively, parameters estimated with SAIF and BFM applied to HRRT L-[1-
11C]leucine PET data showed good agreement; rCPS is shown in Fig. 5. Quantitatively, the means of parameter 
estimates taken over all voxels in each ROI showed good agreement between methods in the parameter K1 (not 
shown) and in rCPS (Fig. 6a), but λ was slightly higher when estimated with BFM (not shown). Mean regional 
estimates of rCPS computed by BFM and SAIF, however, showed a tendency to agree better in those subjects who 
were administered larger doses of L-[1-11C]leucine (≥0.3 mCi/kg, green circles, Fig. 6a) than in those adminis-
tered lower doses (<0.3 mCi/kg, red and gray circles, Fig. 6a). This was due to slightly lower mean BFM-estimated 
rCPS, and slightly higher mean SAIF-estimated rCPS, in the subjects with lower doses compared with the subjects 
who had higher injected doses; none of the differences reached statistical significance, with the exception of rCPS 
estimated with SAIF in thalamus (p < 0.05, Student’s t-test). We produced scatter plots to further examine the 
relationship between injected dose of L-[1-11C]leucine and the percentage difference between rCPS determined 
by the two methods (Fig. 6b,c). In many regions there was a clear trend for better agreement between rCPS esti-
mates at higher injected doses. Furthermore, the absolute difference in rCPS estimates became quite small at high 
injected doses. In whole brain, cortex, caudate, thalamus and white matter there was a statistically significant 
negative linear correlation between injected dose of L-[1-11C]leucine and the difference between rCPS estimated 
by the two methods (Fig. 6d). To see which voxels produce the largest difference in rCPS estimated by the two 
methods, we look at their respective cumulative distribution functions (CDFs, Fig. 7). Figure 7a illustrates the 
CDFs for BFM-estimated and SAIF-estimated rCPS in all brain voxels for the subject with the highest injected 
dose of L-[1-11C]leucine. The largest difference between rCPS estimates occurs when rCPS is low (<1 nmol/g/
min); this implies we would expect higher differences in rCPS between methods in regions that are high in white 
matter content, since white matter has low rCPS. In the subject with the lowest injected dose (Fig. 7b) differences 
in rCPS between methods are greater at low values of rCPS. Additionally, the entire BFM CDF lies to the left of 
that of SAIF, indicating overall lower estimates of rCPS with BFM.

The foregoing data show that differences in rCPS estimated with BFM and SAIF are dissimilar in the sub-
jects who received a low injected dose from those who received higher doses. We, therefore, looked at how the 
methods compare in the subset of five subjects who received a dose of L-[1-11C]leucine greater than or equal to 
the target dose for our studies of 0.30 mCi/kg (Table 2). Estimates of K1, λ, and rCPS for each region and each 
subject were determined as the mean of the parameter estimates taken over all voxels within the region. Data in 
Table 2 are the inter-subject means and SDs of the regional parameter estimates for the five subjects. Estimates 
of λ demonstrated the closest agreement between methods, with relative differences ranging from −6% to +1%, 
depending on the region. K1 also showed good agreement (relative difference between methods −10% to +2%). 
In general rCPS estimated with SAIF was higher than when estimated with BFM. In amygdala and hippocampus 
the discrepancy between methods was greatest: rCPS estimated with SAIF was 13% and 15% higher, respectively, 
than when estimated with BFM. In cerebellum and corona radiata SAIF estimates were 6% higher, and in all 

Figure 5. rCPS estimated with BFM and SAIF. (a) MRI T1-weighted image. (b) rCPS parametric map obtained 
with BFM (under the hypothesis of a homogenous tissue kinetic model). (c) rCPS estimated with SAIF (under 
the hypothesis of a heterogeneous tissue kinetic model). Data are from a single 21 year old male subject who 
underwent a L-[1-11C]leucine PET study with the High Resolution Research Tomograph (injected dose 
0.39 mCi/kg).
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Figure 6. Effect of injected dose of L-[1-11C]leucine on differences in rCPS estimated with BFM and SAIF. 
(a) Regional values of rCPS estimated with SAIF (abscissa) and BFM (ordinate) from a L-[1-11C]leucine PET 
study with the High Resolution Research Tomograph (HRRT). Each circle represents one region in one subject; 
results from eight subjects; whole brain and 7 regions are shown (cerebellum, frontal and occipital cortices, 
thalamus, caudate, putamen, and corona radiata). Green circles are regions in five subjects with injected doses 
>0.3 mCi/kg L-[1-11C]leucine, red circles are regions in two subjects with injected dose <0.2 mCi/kg, and gray-
filled circles are regions in one subject with an intermediate dose. Dotted line is the line of identity. (b,c) Relative 
difference between rCPS estimated with the BFM and SAIF methods in the frontal cortex and corona radiata, 
respectively. Differences (ordinate) are shown for the various doses (abscissa) injected in our subjects. Studies 
were carried out on the HRRT which has a spatial resolution of ~2.6 mm FWHM40. Note the tendency for lower 
injected doses to be associated with higher differences in rCPS between estimation methods. (d) Correlations 
between injected dose and relative difference in rCPS between methods for 12 regions and whole brain 
(*p < 0.05; **p < 0.01; ***p < 0.005). Correlations are negative reflecting increases in relative differences in 
rCPS with decreases in injected dose. (e–h) Results corresponding to b-d from analysis of HRRT emission data 
spatially smoothed to simulate scans from a lower spatial resolution tomograph. With reduced spatial resolution 
BFM estimates of rCPS are systematically higher in all regions and subjects than rCPS estimated with SAIF, and 
the correlation between relative differences in rCPS and injected dose is not significant in most regions.
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other regions the difference was <5%. There was good agreement between SAIF and BFM estimates in terms of 
variability.

It is interesting to note that the methods require substantially different computational power: SAIF required 
at least 4.5 hours for a whole brain analysis while BFM averaged about 30 minutes. Times refer to analyses run on 
the same desktop computer (Intel® Core™ i7-3770 CPU @ 3.40 GHz, RAM 32 GB), without parallel computing 
optimization.

Decreased resolution of measured data: Comparison of BFM and SAIF performance. PET data 
resolution had a strong impact on estimates of the parameters of interest for both methods of estimation (Table 3). 
When SAIF was used in the analysis, reduced spatial resolution led to decreased mean regional estimates of K1 
by 4–10% (except in corona radiata) and decreased estimates of rCPS by 2–16% (except in corona radiata and 
putamen); estimates of λ remained largely unchanged. In all regions other than corona radiata, analysis with BFM 
also led to lower estimates of K1 by 7–19%, lower estimates of λ by 3–10%, and higher estimates of rCPS by 4–15% 
than found with the original HRRT resolution data.

Application of spatial filtering to reduce the PET resolution changed the sign of the differences between SAIF 
and BFM parameter estimates, most notably rCPS. This can be seen in the scatter analysis (Fig. 6e) as well as in 
Table 3. Estimates of K1 were 1% to 6% higher, estimates of λ were 3% to 5% higher, and estimates of rCPS were 
9% to 14% lower when estimated with SAIF than when estimated with BFM. There was no apparent relationship 
between injected dose of L-[1-11C]leucine and differences in rCPS estimated with the two methods (Fig. 6f,g,h).

Analysis of kinetic heterogeneity. The heterogeneity fraction (HF) for each region was computed by 
SAIF as the number of voxels found to have two or more subregions divided by the total number of voxels in the 
region. Maps of the heterogeneity fraction for one subject are shown in Fig. 8. This fraction showed an inverse 
relationship between image resolution and degree of heterogeneity: in the original HRRT PET data the whole 
brain heterogeneity fraction was 47% ± 2% (inter-subject mean ± SD, n = 8); in the decreased-resolution PET 
data the corresponding fraction increased to 76% ± 6% (inter-subject mean ± SD, n = 8). There were no apparent 
differences in the heterogeneity fraction among the regions analyzed (Fig. 8f) or between the subjects injected 
lower doses of L-[1-11C]leucine (data not shown). From a single analysis of each subject, it was not possible to 

Figure 7. Cumulative distribution of voxel values of rCPS estimated with BFM and SAIF. On the abscissa 
are values of rCPS in the range 0–4 nmol/g/min; estimated rCPS in most voxels in whole brain fall into this 
interval. On the ordinate is the fraction of all voxels in brain in which estimated rCPS is less than or equal to 
the corresponding value on the abscissa. (a) data from the subject with the highest injected dose (0.41 mCi/
kg L-[1-11C]leucine) and (b) subject with the lowest injected dose (0.16 mCi/kg). In the high dose subject, 
the largest differences in rCPS estimated with the two methods are in the voxels with rCPS < 1 nmol/g/min; 
these are voxels concentrated in white matter. In the low dose subject, differences in rCPS estimated with the 
two methods are greater at both ends of the range of rCPS values. Estimates of rCPS were made from the data 
acquired on the HRRT scanner. Number of voxels in brain, from which the empirical cumulative distribution 
functions were determined, is approximately 0.7 × 106.
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localize which areas in brain have higher heterogeneity fractions (Fig. 8b,d). When the heterogeneity fraction was 
assessed with a bootstrap approach23, however, a clearer distribution pattern became apparent (Fig. 8c,e). In the 
HRRT resolution PET data, the heterogeneous voxels appear to be concentrated at the borders between gray and 
white matter and in the sulci (Fig. 8c); the border areas of heterogeneous voxels expand considerably when the 
resolution of the image is decreased (Fig. 8e).

Discussion
In this work we explored the impact of tissue kinetic heterogeneity on PET parametric mapping of in vivo cerebral 
protein synthesis rates, with the final aim of understanding whether this effect is trivial or is instead a real source 

Volume (cc)

Spectral Analysis Iterative Filter (SAIF) Basis Function Method (BFM)

K1 (ml/g/min) λ (unitless)
rCPS  
(nmol/g/min) K1 (ml/g/min) λ (unitless)

rCPS  
(nmol/g/min)

(SAIF-BFM)/BFMb 
rCPS

HRRT Resolution

Whole Brain 1411.2 ± 179.3 0.050 ± 0.008 0.75 ± 0.03 1.69 ± 0.05 0.052 ± 0.008 0.77 ± 0.02 1.62 ± 0.08 4.3% ± 2.4%

Cerebellum 118.2 ± 12.0 0.063 ± 0.011 0.75 ± 0.02 2.04 ± 0.10 0.070 ± 0.011 0.78 ± 0.02 1.93 ± 0.14 6.0% ± 4.8%

Vermis 5.4 ± 1.1 0.060 ± 0.012 0.74 ± 0.03 2.01 ± 0.15 0.065 ± 0.013 0.77 ± 0.03 1.91 ± 0.14 4.8% ± 5.2%

Cortical Regions

  Frontal Cortex 122.8 ± 24.1 0.053 ± 0.009 0.74 ± 0.03 1.88 ± 0.06 0.054 ± 0.009 0.75 ± 0.02 1.84 ± 0.09 2.0% ± 2.3%

  Occipital Cortex 30.9 ± 15.3 0.063 ± 0.010 0.74 ± 0.02 2.12 ± 0.17 0.066 ± 0.010 0.75 ± 0.03 2.12 ± 0.19 0.0% ± 1.2%

  Parietal Cortex 14.2 ± 4.5 0.054 ± 0.009 0.74 ± 0.02 1.92 ± 0.12 0.056 ± 0.008 0.76 ± 0.02 1.87 ± 0.14 2.9% ± 2.0%

  Temporal Cortex 54.4 ± 10.7 0.049 ± 0.008 0.73 ± 0.02 1.79 ± 0.06 0.049 ± 0.008 0.75 ± 0.02 1.71 ± 0.07 4.2% ± 2.4%

Subcortical Gray

  Caudate 7.9 ± 1.2 0.039 ± 0.008 0.78 ± 0.03 1.08 ± 0.08 0.038 ± 0.007 0.79 ± 0.02 1.04 ± 0.05 3.8% ± 5.9%

  Putamen 8.9 ± 1.2 0.053 ± 0.010 0.80 ± 0.01 1.30 ± 0.05 0.052 ± 0.009 0.79 ± 0.02 1.34 ± 0.06 −2.8% ± 2.6%

  Thalamus 18.9 ± 3.2 0.049 ± 0.009 0.77 ± 0.02 1.46 ± 0.09 0.051 ± 0.009 0.78 ± 0.02 1.45 ± 0.10 0.5% ± 2.9%

  Amygdala 4.9 ± 0.7 0.035 ± 0.004 0.71 ± 0.03 1.49 ± 0.06 0.036 ± 0.004 0.75 ± 0.02 1.32 ± 0.08 13.4% ± 7.3%

  Hippocampus 4.9 ± 1.7 0.038 ± 0.006 0.72 ± 0.03 1.54 ± 0.07 0.039 ± 0.006 0.76 ± 0.02 1.35 ± 0.14 14.5% ± 7.0%

White Matter

  Corona Radiata 47.6 ± 6.9 0.032 ± 0.006 0.77 ± 0.03 0.94 ± 0.02 0.031 ± 0.006 0.79 ± 0.02 0.89 ± 0.03 6.2% ± 5.2%

Table 2. Parameters estimated from data measured with the High Resolution Research Tomographa. aAll 
subjects with injected dose ≥ 0.30 mCi/kg body weight; values are inter-subject mean ± SD, n = 5. bValues are 
inter-subject mean ± SD of the relative difference in each subject.

Volume (cc)

Spectral Analysis Iterative Filter (SAIF) Basis Function Method (BFM)

K1 (ml/g/min) λ (unitless)
rCPS  
(nmol/g/min) K1 (ml/g/min) λ (unitless)

rCPS  
(nmol/g/min)

(SAIF-BFM)/BFMb 
rCPS

Reduced Resolution (Smoothed Gaussian Kernel 7 mm FWHM)

Whole Brain 1411.2 ± 179.3 0.046 ± 0.008 0.75 ± 0.03 1.56 ± 0.04 0.045 ± 0.009 0.72 ± 0.04 1.77 ± 0.06 −12.0% ± 2.5%

Cerebellum 118.2 ± 12.0 0.059 ± 0.011 0.77 ± 0.02 1.78 ± 0.07 0.057 ± 0.010 0.74 ± 0.03 2.01 ± 0.10 −11.1% ± 3.3%

Vermis 5.4 ± 1.1 0.055 ± 0.011 0.76 ± 0.03 1.68 ± 0.10 0.053 ± 0.011 0.73 ± 0.03 1.90 ± 0.15 −11.5% ± 4.3%

Cortical Regions

  Frontal Cortex 122.8 ± 24.1 0.049 ± 0.009 0.74 ± 0.03 1.76 ± 0.03  0.048 ± 0.010 0.70 ± 0.04 1.99 ± 0.07 −12.0% ± 2.4%

  Occipital Cortex 30.9 ± 15.3 0.059 ± 0.010 0.76 ± 0.03 1.91 ± 0.10 0.056 ± 0.010 0.72 ± 0.04 2.22 ± 0.17 −13.6% ± 3.4%

  Parietal Cortex 14.2 ± 4.5 0.049 ± 0.008 0.74 ± 0.02 1.71 ± 0.07 0.047 ± 0.008 0.70 ± 0.04 1.97 ± 0.13 −13.1% ± 3.6%

  Temporal Cortex 54.4 ± 10.7 0.044 ± 0.008 0.73 ± 0.03 1.65 ± 0.05 0.043 ± 0.009 0.70 ± 0.04 1.86 ± 0.06 −11.3% ± 2.4%

  Subcortical Gray

Caudate 7.9 ± 1.2 0.035 ± 0.007 0.77 ± 0.03 1.03 ± 0.05 0.035 ± 0.009 0.74 ± 0.04 1.17 ± 0.09 −12.4% ± 4.1%

  Putamen 8.9 ± 1.2 0.049 ± 0.009 0.79 ± 0.02 1.32 ± 0.03 0.049 ± 0.010 0.77 ± 0.03 1.47 ± 0.06 −10.2% ± 2.3%

  Thalamus 18.9 ± 3.2 0.047 ± 0.010 0.77 ± 0.02 1.42 ± 0.07 0.045 ± 0.009 0.74 ± 0.03 1.62 ± 0.10 −12.0% ± 2.7%

  Amygdala 4.9 ± 0.7 0.032 ± 0.005 0.70 ± 0.03 1.37 ± 0.07 0.032 ± 0.007 0.68 ± 0.05 1.50 ± 0.07 −9.1% ± 1.6%

  Hippocampus 4.9 ± 1.7 0.035 ± 0.007 0.72 ± 0.03 1.39 ± 0.10 0.034 ± 0.009 0.69 ± 0.05 1.55 ± 0.07 −10.4% ± 4.5%

White Matter

  Corona Radiata 47.6 ± 6.9 0.032 ± 0.007 0.76 ± 0.03 1.01 ± 0.04 0.031 ± 0.008 0.73 ± 0.05 1.14 ± 0.05 −12.0% ± 2.0%

Table 3. Parameters estimated from measured PET data smoothed to lower spatial resolutiona. aAll subjects 
with injected dose ≥0.30 mCi/kg body weight; values are inter-subject mean ± SD, n = 5. bValues are inter-
subject mean ± SD of the relative difference in each subject.
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of bias for voxel-by-voxel analyses. We used L-[1-11C]leucine PET data acquired on a high resolution PET scanner 
to compare two computational methods, one based on a homogeneous tissue model (BFM) and one that accounts 
for tissue kinetic heterogeneity (SAIF). With high resolution data and good counting statistics, estimates of the 
variable of interest in our study, rCPS, were equally good with BFM and SAIF; the impact of kinetic heterogeneity 
on rCPS estimates was negligible. Thus the BFM analysis based on a homogenous tissue model can be used; this is 
not only simpler, but results in a substantially lower computational cost. When spatial resolution was reduced by 
smoothing the data, effects of tissue kinetic heterogeneity on estimates of rCPS were notably higher: BFM overes-
timated rCPS, a result consistent with applying a homogeneous tissue model to kinetically heterogeneous data. In 
this case, analyses need to take heterogeneity into account, even though this results in higher computational costs.

In the high resolution data set, SAIF identification of kinetic heterogeneity highlights that ~45% of brain 
voxels should be classified as kinetically heterogeneous in L-[1-11C]leucine studies; this violates the assumption 

Figure 8. Distribution of kinetic inhomogeneity estimated by SAIF. T1-weighted MRI image (a) and the same 
image fused with an image of the spatial distribution of voxels estimated to be heterogeneous (Panels b–e). 
Panels b and c refer to HRRT PET data with single and bootstrap application of SAIF, respectively. Panels d and 
e refer to the corresponding single and bootstrap applications of SAIF with decreased-resolution PET data. The 
blue areas represent voxels where the SAIF algorithm detects at least two equilibrating components in the voxel 
time-activity curve. The red area highlights gray matter, including voxels at its border with white matter. For the 
bootstrap approach the probability threshold for heterogeneity voxel selection was fixed to 0.80 (see text). In 
the HRRT resolution PET data (c), the heterogeneous voxels appear to be concentrated at the borders between 
gray and white matter (see, for example, yellow arrows) as well as in some sulci (see, for example green arrows). 
The areas with heterogeneous voxels expand considerably when the resolution of the image is decreased (e). 
Panel f illustrates the effect of resolution on detection of kinetic inhomogeneity. Green and red lines represent, 
respectively, the mean heterogeneity fraction determined in an SAIF single analysis of each ROI in the HRRT 
and decreased-resolution PET data. Error bars are the standard deviation of the regional heterogeneity fractions 
in the eight subjects.
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of tissue homogeneity usually standard in PET data analyses and, in particular, in the BFM method used here. It 
is worth noting that the voxels classified as kinetically heterogeneous tended to be located along borders of gray 
and white matter tissue, where the partial volume effect would be expected to play a stronger role. The biggest 
effect of neglecting heterogeneity in the model for quantification of rCPS was found in voxels with the lowest 
values of rCPS and in regions containing a large fraction of low-rCPS voxels. In particular, neglecting hetero-
geneity had the largest effect on rCPS in regions that contained low-rCPS voxels interspersed with higher-rCPS 
voxels. The regions with highest differences between SAIF and BFM estimates of rCPS included the amygdala and 
hippocampus (15% and 17% respectively). Intermediate differences were found in white matter and cerebellum 
(~6%). For the remaining regions the two methods produced very similar results (absolute relative differences 
<5%). Interestingly, the injected tracer dose played a role in the differences between the SAIF and BFM estimates 
of rCPS, with higher injected doses associated with lower differences. This underlines the importance of good 
counting statistics for PET imaging studies33.

When low resolution PET data were generated by smoothing the HRRT images, SAIF estimates of kinetic het-
erogeneity were found for ~75% of the brain voxels. The increased fraction of heterogeneous voxels is as expected: 
greater partial volume effects are associated with lower spatial resolution. The distribution of these kinetically 
heterogeneous voxels was still along the white matter-gray matter borders, but was more extensive. The higher 
heterogeneity resulted in higher discrepancy between rCPS estimated with the SAIF and BFM methods (~12%), 
an effect consistent across the tissue ROIs. We note that the effect of injected dose on rCPS estimates was not 
significant for most of the ROIs as had been found in the analysis of original HRRT data. This could be the result 
of a lowering of the noise level in the data by the smoothing process.

Findings from the simulation studies were consistent with observations from the analysis of the measured 
data. The simulations help to identify the conditions in which failure to account for tissue kinetic heterogeneity 
can lead to biases in estimates of rCPS. In the homogenous tissue simulation scenario, BFM outperformed SAIF 
despite the fact that both methods support a homogeneous tissue model. SAIF is characterized by more degrees of 
freedom than BFM and the presence of data noise tends to lead to overfitting and overestimation of tissue kinetic 
heterogeneity. This behavior is typical of spectral-analysis-based methodologies23. In the heterogeneous tissue 
simulation scenario, BFM underperformed compared to SAIF in terms of bias in rCPS. At high voxel-level noise, 
however, overall performances in terms of RMSE of BFM and SAIF were equivalent.

Ideally for PET quantification, one would expect better performance for the model whose kinetic assumptions 
best match with the kinetics of the investigated data. In practice this is not always the case, especially for voxel 
level analysis, due to its high level of noise. Both simulation and measured data results show that one cannot sepa-
rate effects of true kinetic heterogeneity in the tissue from effects resulting from the measurement system, includ-
ing partial volume and noise. SAIF, with its overcomplete representation of the underlying kinetics, provides a 
method to help find a good trade-off between model kinetic flexibility and robustness to noise.

Some limitations of the study should be taken into account. First, the results reported here refer to the quite 
unique case of L-[1-11C]leucine PET data acquired with the HRRT scanner. Although the applicability of these 
findings to different tracers, different scanner types or different experimental protocols should be assessed on 
a case by case basis, the methodology presented here provides a framework for approaching such analyses. 
Secondly, because of the lack of available L-[1-11C]leucine PET data acquired with a scanner other than the HRRT, 
the low resolution scenario was artificially created by smoothing the high-resolution data. These conditions do 
not account for the spatial interaction between nearby voxels due to the finite resolution of the HRRT PET scan-
ner on which the data were acquired (FWHM ~2.6 mm). Thirdly, only two out of 8 subjects were injected with a 
substantially lower dose of tracer (~0.16 mCi/kg), limiting the inferences that can be made concerning the inter-
action between tracer dose and tissue kinetic heterogeneity; this topic needs further exploration.

The problem of tissue kinetic heterogeneity in PET data quantification is clearly a general problem that 
goes beyond the measurement of protein synthesis with the L-[1-11C]leucine method. Studies have shown that 
tissue kinetic heterogeneity can be a significant source of bias when PET imaging is used to measure cerebral 
blood flow, glucose metabolism, or neuroreceptor binding6–8. Compared to compartmental modelling, Spectral 
Analysis-based techniques have the advantage of not requiring that the number of compartments be fixed a 
priori; thus they become applicable to heterogeneous as well as homogeneous tissues without any additional 
assumptions. Interestingly, measurement of kinetic heterogeneity and its distribution across various tissues has 
been shown to be an informative parameter linked to the biological “complexity” and can provide useful insight 
when applied to pathology. In PET oncological studies, for example, tissue kinetic heterogeneity has been shown 
to provide information about tumor characterization and treatment response34,35. In acute lung injury the heter-
ogeneity fraction has been linked to the presence of edema36. Further studies are needed to test the reliability of 
the measure and its biological value in different contexts.

Conclusion
In this study we showed how voxelwise analysis of L-[1-11C]leucine PET data can be affected by the problem 
of tissue kinetic heterogeneity. The effect on the variable of interest in our study, rCPS, is negligible when we 
have good counting statistics and high-resolution data, but it becomes significant with poorer spatial resolution. 
With high-resolution data and poorer counting statistics small biases in rCPS become apparent, but the effects of 
kinetic heterogeneity and high noise cannot be independently assessed. These findings may be extended to other 
PET tracers, to tissues other than brain, or to pathological conditions (as tumors or inflammation) that might 
increase the level of tissue kinetic heterogeneity, but each condition must be assessed on a case by case basis.
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