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ABSTRACT 

 

Ewing sarcoma (ES), Ewing-like sarcomas (ELS) and undifferentiated synovial 

sarcoma (SS) represent the main entities belonging to the family of the Small Round Cell 

Sarcomas (SRCS), a group of rare, heterogenous and highly aggressive mesenchymal tumors. 

SRCS are classified according to a specific single gene rearrangement. However, despite 

specific histological features are strongly correlated with the underlying molecular alteration, 

morphological overlapping may occur, and combined with their rarity, make the diagnosis 

challenging especially for non-expert pathologists. Within this context, the spreading of digital 

pathology and the recent developments of deep learning technologies for image processing, 

offer new opportunities for analysis, interpretation, and classification of histopathological 

slides.  

In this study, a deep learning-based framework called DeeRasNET, was specifically 

developed to classify hematoxylin and eosin-stained slides of ES, SS, BCOR and CIC 

rearranged sarcomas. Accuracy was the main metrics parameter used to evaluate the model 

performance.  

Initially, due to the small size of the datasets implemented for the model training, the 

classification accuracy for each class of sarcoma resulted low (mean accuracy of 0.6). To 

increase the performance of the model, we developed a pre-processing semi-automated 

pipeline comprising an open-source graphical interface unit (called TilerPath) with which we 

managed the tissue whole slide images, selecting interesting tissue areas and performing a 

quality control of the images used for classifier implementation. By TilerPath uninformative 

and misleading images were excluded from the model. After pre-preprocessing by Tilerpath, a 

total of 18193 tiles, selected from 124 digital slides covering all the four histotypes 

investigated, was used to train and test DeeRasNET. Finally, the scalability of the system was 

demonstrated on a validation dataset comprising 2706 tiles randomly selected from cases not 

included into the training and test set.  

After quality improvement, the final model showed a strong increase of classification 

performance, with accuracies ranging from 0.98 to 0.99 among all the sarcoma types.  

Both the TylerPath and the DeeRASnet source code were released as open-source 

software. 

  



5 
 

CHAPTER 1 

 

INTRODUCTION 

 Clinical problem & work Hypothesis 

1.1 Small Round Cell Sarcomas 

Small round cell sarcoma (SRCS) is a term used to indicate a large group of high 

aggressive malignant neoplasms that most often occurring in children and young adults. SRCS 

share a monotonous morphology of small cells with dark round nucleus, inconspicuous nucleoli 

and scant cytoplasm(Lessnick et al., 2009)(Sbaraglia et al., 2020). This category includes 

subtypes of sarcomas, and rare histological variants of carcinomas, lymphomas, and melanoma. 

Small round cell sarcomas (SRCS) include Ewing and Ewing-like sarcomas, alveolar 

rhabdomyosarcoma, desmoplastic small round cell tumor (DSRCT), poorly differentiated 

synovial sarcoma (round cell variant), round cell liposarcoma, and undifferentiated round cell 

sarcoma(Honoré et al., 2020)(Tos, 2018). Interestingly, SRCS are characterized by specific 

chromosomal translocations associated with an extremely low tumor mutational 

burden(Chalmers et al., 2017). The differential diagnosis among the SRCS entities remains a 

challenge for pathologists, and requires careful attention to a combination of clinical 

examination, imaging consultation, conventional histopathology examination and dedicated 

molecular pathology(Righi et al., 2019). This study focuses on the main four types of SRCS: 

Ewing sarcoma (ES), Ewing-like sarcoma (ELS, CIC and BCOR rearranged types), and 

monophasic synovial sarcoma (SS).  

1.1.1 Ewing Sarcoma 

ES accounts for less than 1% of all soft tissue sarcomas, affecting predominantly 

(approximately 80% of cases) the metaphysis of long bones, with a peak incidence between the 

first and the second decades(Grünewald et al., 2018). ES in adults tends to occur predominantly 

in the deep soft tissues of the paravertebral region and of the proximal portions of the lower 

and upper extremities. Visceral locations, such as kidney, pancreas, and meninges were also 

documented(Sbaraglia et al., 2020). 

The typical molecular alteration that drives ES oncogenesis is the translocation of the 

EWSR1 (or less represented FUS) gene with one member of the ETS (avian Erythroblastosis 

virus Transforming Sequence) family of transcription factors. In 85% of cases the molecular 

https://paperpile.com/c/fKxJvx/Sh4j
https://paperpile.com/c/fKxJvx/9C1w
https://paperpile.com/c/fKxJvx/5KI4
https://paperpile.com/c/fKxJvx/GDWj
https://paperpile.com/c/fKxJvx/Zii8
https://paperpile.com/c/fKxJvx/vQek
https://paperpile.com/c/fKxJvx/00qDb
https://paperpile.com/c/fKxJvx/9C1w
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alteration harbored by ESs is the t(11;22)(q24;q12) that encodes for the fusion product 

EWSR1-FL1. Less represented (about 10%) is the t(21;22)(q22;q12) that encodes for the fusion 

product EWSR1-ERG. The remaining 5% is covered by the other ETS family members which 

are ETV1, ETV4 and FEV (see table 1 for more details). 

Cancer Type Molecular alteration Gene fusion 

Ewing sarcoma  t(11;22)(q24;q12) 

t(21;22)(q22;q12) 

EWSR1-FLI1 

EWSR1-ERG 

EWSR1-ETV1orETV4orFEV 

Synovial sarcoma t(X;18)(p11;q11) SYT-SSX (SSX2 or SSX4) 

BCOR-rearranged sarcoma inv(x)(p11;p11) 

BCOR-ITD 

t(10;17)(q23.3;p13.3) 

t(4;x)(p11;q31) 

t(x;22)(p11;q13.2) 

BCOR-CCNB3 

BCOR-ITD 

YWHAE-NUTM2B 

BCOR-MAML3 

ZC3H7B-BCOR 

CIC-rearranged sarcoma t(4;19)(q35;q13) 

t(10;19)(q26;q13) 

t(x;19)(q13;q13.3) 

t(15;19)(q14;q13.2) 

t(10;19)(q23.3;q13) 

CIC-DUX4 

CIC-DUX4 

CIC-FOXO4 

CIC-NUTM1 

CIC-NUTM2B 

Table 1. Genomic alterations of Ewing sarcoma, Synovial sarcoma and Ewing-like sarcomas investigated  

The 5-year overall survival in localized disease is currently around 75% whereas in 

metastatic disease, it drops to approximately 30%(Casali et al., 2018). 

Grossly ES appears as large and multilobulated mass, necrosis and/or haemorrhagic areas are 

frequent. Microscopically, ES is composed of a distinctively monomorphic round cell 

population, showing vesicular nuclei with finely dispersed chromatin and scant cytoplasm 

(Figure 1). Cytoplasmic clearing may be observed. Tumor cells forming rosettes can be 

detected and are traditionally interpreted as evidence of neuroectodermal differentiation. 

Mitotic activity is usually high. Immunohistochemically strong CD99 membrane 

immunopositivity it’s a characteristic finding in  all cases of ES. However, as CD99 is 

expressed within a variety of mesenchymal tumors, its positivity needs to be evaluated in 

context with morphology. Importantly, in consideration of its remarkable sensitivity, CD99 

immuno-negativity would strongly argue against a diagnosis of ES(Sbaraglia et al., 2020). S-

100 protein, CD57, neurofilaments, cytokeratin, and desmin are markers that may be expressed 

in ES however with no particular diagnostic utility. FLI-1 and ERG expression can be seen in 

those ES harboring EWSR1-FLI1 and EWSR1-ERG gene fusions, respectively. Recently, 

expression of PAX7 has been shown to represent another promising diagnostic tool for those 

https://paperpile.com/c/fKxJvx/TdO2Q
https://paperpile.com/c/fKxJvx/9C1w
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ES  demonstrating a fusion between EWSR1 and FLI1, ERG (Charville et al., 2017)(Charville 

et al., 2019). NKX2–2, a home domain transcription factor involved in neuroendocrine/glial 

differentiation and a downstream target of EWSR1-FLI1, has been reported as an 

immunohistochemical marker for ES(Hung et al., 2016). 

1.1.2 Ewing-like sarcomas 

Ewing-like tumors (ELS) comprise three main categories: round cell sarcomas with 

EWSR1 gene fusion with non-ETS family members (not discussed in this work), CIC-

rearranged sarcomas, and BCOR-rearranged sarcomas(Sbaraglia et al., 2020). 

CIC-rearranged small round cell sarcomas 

The most frequent and best characterized subgroup of the family of ELS is the CIC-

rearranged sarcoma. This tumor occurs mostly in children and young adults, with median age 

in the second decade. Most tumors arise in the deep soft tissue of the trunk, limbs, or head and 

neck region, sometimes with secondary bone involvement. Superficial soft tissues are primarily 

involved in less than 10% of cases. Occurrence as bone primary is extremely rare, whereas 

visceral location is reported in approximately 10% of cases. The recently reported CIC-NUTM1 

variant seems to exhibit significant tropism for the central nervous system(Le Loarer et al., 

2019). 

CIC sarcomas generally showed a dismal prognosis with poor response to the standard 

chemotherapeutic protocols, and most often presents with lung metastasis at onset. The 5-year 

overall survival is less than 50%(Sbaraglia et al., 2020). 

This entity represents an undifferentiated round cell malignancy characterized by the recurrent 

CIC (capicua transcriptional repressor) gene rearrangements.  The CIC gene is the human 

homolog of the Drosophila gene Capicua. It encodes a high-mobility group box transcription 

factor mainly involved in the development of the central nervous system(Lee, 2020). The most 

common molecular alterations  described so far are the translocation t(4;19) (q35;q13) or the 

t(10;19)(q26;q13), both encoding for fusion product CIC-DUX4 (Richkind et al., 1996). 

Fusions with non-DUX4 gene partners (FOXO4, LEUTX, NUTM1, and NUTM2A) are less 

common and occur in approximately 5% of cases and are sustained by specific molecular 

alterations (Table 1)(Italiano et al., 2012). Morphologically, CIC-rearranged sarcoma appears 

less monotonous than ES, featuring mild-to-moderate pleomorphism. In particular, areas with 

https://paperpile.com/c/fKxJvx/UvgWo
https://paperpile.com/c/fKxJvx/Ajgbr
https://paperpile.com/c/fKxJvx/Ajgbr
https://paperpile.com/c/fKxJvx/t22jd
https://paperpile.com/c/fKxJvx/9C1w
https://paperpile.com/c/fKxJvx/8mtcg
https://paperpile.com/c/fKxJvx/8mtcg
https://paperpile.com/c/fKxJvx/9C1w
https://paperpile.com/c/fKxJvx/cEMy
https://paperpile.com/c/fKxJvx/UzhvU
https://paperpile.com/c/fKxJvx/HLoyV
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vesicular nuclei and distinctive nucleoli are present (Figure 1). In rare cases, neoplastic cells 

assume an epithelioid morphology with occasionally rhabdoid-like cytoplasm or with clear cell 

change of cytoplasm. Neoplastic cells may also be observed in a lobular growth pattern, with 

associated fibrous septa. Confluent necrosis represents a frequent finding and myxoid change 

of the stroma may also be observed. Rarely focal cell spindling can be appreciated. Mitotic 

activity is typically high. Immunohistochemically, CD99 staining is observed in approximately 

85% of cases, however, it is often patchy and lacks the strong, diffuse membranous pattern 

observed in ES. Nuclear expression of DUX4 is consistently present. ETV4 is diffusely 

expressed as a consequence of the upregulation of the ETV4 gene; however, it is not entirely 

specific. In fact, 10% of ES, rare DRCTs, rhabdomyosarcomas, and melanomas may also show 

ETV4 nuclear expression(Le Guellec et al., 2016). Immunoreactivity for both n- and c-terminus 

of WT1, desmin, and S100 has been reported.  

BCOR-rearranged small round cell sarcomas 

BCOR-rearranged tumors were described for the first time only in 2012 by the Pierron 

group. This entity accounts for approximately 4% of round cell sarcomas, with a striking male 

predominance and the peak of incidence in the second decade. (Pierron et al., 2012). 

BCOR-rearranged sarcomas tend to occur more frequently in bone than in soft tissues, 

and involves more frequently the pelvis, the lower limbs, and the paraspinal region. Visceral 

location is reported but appears to be extremely rare. Importantly, compared to ES and CIC-

rearranged sarcomas, patients with BCOR-rearranged sarcomas seem to have a more indolent 

clinical behavior(Puls, Niblett, Marland, Gaston, Douis, Mangham, et al., 2014). 

The morphologic spectrum of BCOR-CCNB3 sarcoma is rather broad, with tumors composed 

of a mixed proliferation of round and spindle cells arranged in sheets or fascicles. In some cases 

spindling may predominate. Nuclei are angulated and hyperchromatic with finely dispersed 

chromatin. In the majority of cases, nucleoli are not prominent. Significant variation in 

cellularity and myxoid change of the stroma is sometimes seen. Small foci of necrosis are 

commonly seen. Mitotic activity is often very high (Figure 1). When compared with the 

primary tumor, recurrent and metastatic lesions show increased cellularity and higher 

pleomorphism, occasionally simulating undifferentiated pleomorphic sarcoma. 

Immunohistochemically, almost all cases exhibit strong and diffuse cyclin B3 (CCNB3) 

nuclear positivity, with only a few cases showing patchy staining. CCNB3 staining is highly 

https://paperpile.com/c/fKxJvx/jyEp3
https://paperpile.com/c/fKxJvx/9UeAj
https://paperpile.com/c/fKxJvx/HIPtP
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specific although cytoplasmic staining may be seen in several sarcomas including ES and 

SS(Puls, Niblett, Marland, Gaston, Douis, Chas Mangham, et al., 2014). BCOR 

immunoreactivity can also be observed but it is less specific than CCNB3. CD99 staining is 

generally weaker or totally absent. Two-thirds of cases may show SATB2 expression. BCOR-

CCNB3 rearrangements account for 60% of BCOR gene alterations. This fusion originates from 

a paracentric inversion on the X-chromosome and splicing of the end of the BCOR coding 

sequence to the CCNB3 exon 5 splice acceptor site. The resultant fusion protein is composed 

of full-length BCOR, a transcriptional repressor encoding the Bcl-6 co-repressor, and the C-

terminus of CCNB3, a cyclin normally expressed in leptotene and zygotene phases of 

meiosis(Nguyen et al., 2002). In vitro studies suggest that the BCOR-CCNB3 fusion protein is 

oncogenic and drives proliferation in this sarcoma. Recently alternative fusion partners of 

BCOR have been identified, including MAML3 (a member of the mastermind-like family of 

transcriptional coactivators), and ZC3H7B (a zinc-finger CCCH domain-containing protein 

7B)(Specht et al., 2016). BCOR internal tandem duplication (ITD) has been described in a 

subgroup of round cell sarcoma of infancy most often involving the soft tissue of the trunk, 

retroperitoneum, and head and neck region. Despite remarkable clinical and occasionally 

pathological similarities to ES, gene profiling and single nucleotide polymorphic allele (SNP) 

array analyses indicate that this new group of tumors is biologically distinct from both ES and 

CIC-rearranged sarcoma. 

1.1.3 Synovial sarcoma 

SS represents about 10% of all soft tissue sarcoma of the adult. In particular SS affects 

young adults more frequently within the second-third decade. More common sites affected are 

limbs and head and neck, and a slight male predominance is reported. The 20% of SS presented 

at diagnosis as poorly differentiated SS, that often, presents a round small cell morphology. 

Poorly differentiated synovial sarcoma has a poor prognosis, with an even higher 

metastatic rate than conventional forms of SS. 

Synovial sarcoma has a characteristic chromosomal translocation, t(X;18)(p11;q11), 

that results in fusion of the SS18 (SYT) gene at chromosome 18 to SSX genes, which have two 

different copies, SSX1 (SYT-SSX1) and SSX2 (SYT-SSX2), located in two subregions of 

chromosome Xp11 (23 and 21, respectively), extremely rare fusion partner is also SSX4(El 

Beaino et al., 2020). Synovial sarcoma provides a clear example of the correlation that may 

https://paperpile.com/c/fKxJvx/VGCEi
https://paperpile.com/c/fKxJvx/Lh7f
https://paperpile.com/c/fKxJvx/4Y29H
https://paperpile.com/c/fKxJvx/DfFlg
https://paperpile.com/c/fKxJvx/DfFlg
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exist between the fusion transcript type and the tumor phenotype. Interestingly, SYT-SSX1 

fusions are associated with biphasic synovial sarcoma (in both epithelioid and spindle cell 

elements), whereas the monophasic variant usually contains SYT-SSX2 fusions(Antonescu et 

al., 2020). No significant correlations exist between the round cell variant of poorly 

differentiated synovial sarcoma and a specific transcript subtype(Sbaraglia et al., 2020). 

Poorly differentiated synovial sarcoma has three morphologic sub-variants: the most common 

round cell variant, a large cell epithelioid variant, and a high-grade spindle cell 

variant(Gazendam et al., 2021). The round cell variant of poorly differentiated synovial 

sarcoma, compared with other synovial sarcoma variants, more frequently shows necrosis, a 

high mitotic rate (>10 mitoses/10 high-power fields), vascular invasion, and a 

hemangiopericytoma-like pattern of growth (Figure 1). Pericellular collagen deposition is an 

important diagnostic clue of SS(Sbaraglia et al., 2020). The immunohistochemical profile of 

the round cell variant of SS is similar to that of more conventional subtypes, and patchy 

expression of EMA and keratin in scattered cells is typical.  Nuclear TLE1 was identified as a 

highly sensitive and relatively specific marker of SS. CD99 immunoreactivity may be seen in 

SS and may become a source of diagnostic confusion (especially in small biopsies specimens) 

because it is also expressed in ES, which is the main differential diagnosis(Sbaraglia et al., 

2020). EMA and keratin expression in poorly differentiated synovial sarcoma can be limited, 

and these markers may be completely negative in small biopsy specimens. In this context, 

molecular testing is crucial, not only for the proper diagnosis but also for treatment strategies. 

https://paperpile.com/c/fKxJvx/NzvhA
https://paperpile.com/c/fKxJvx/NzvhA
https://paperpile.com/c/fKxJvx/9C1w
https://paperpile.com/c/fKxJvx/I90P
https://paperpile.com/c/fKxJvx/9C1w
https://paperpile.com/c/fKxJvx/9C1w
https://paperpile.com/c/fKxJvx/9C1w
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Recently antibodies reacting against the fusion product of SYT gene have been introduced and 

represent an optimal surrogate for molecular tests. 

 

Figure 1. Representative histology of Ewing sarcoma (A); CIC-rearranged sarcoma (B); BCOR-rearranged sarcoma (C) and 

a monophasic synovial sarcoma with small round cell morphology (D). Despite histological differences among these entities 

may be appreciated, figure shows as the small round cell morphology may predominate the histological pattern creating 

confusion and diagnostic challenges. Haematoxylin & eosin stain, original magnification 200x. 

    

1.2 Artificial Intelligence and Deep Learning in digital pathology 

Artificial Intelligence (AI) is a branch of computer science focusing on development of 

algorithms able to autonomously solve decisional tasks on behalf of the human being(Nativi & 

Craglia, n.d.). AI systems may be implemented through different computational techniques as 

Machine Learning (ML) and Deep Learning (DL)(Cohen, 2020). ML is a computational 

strategy in which the output (e.g. a final decision of a classification task) of the algorithm is 

automatically defined through statistical and data-driven rules that are not previously defined 

by humans, and are extracted from a large set of input data. In ML models input data are 

represented by exemples of the specific event that comprises the relationship between input 

and output data (e.g. two classes of images that must be classified). However, ML systems are 

limited by the fact that they require expertise and human engineering to design feature 

extractors that transform raw input data into suitable mathematical representations from which 

the algorithm could detect the rules (also called representations) that link the input with the 

output(Maier et al., 2019). In contrast, DL is a subfield of ML in which the algorithm is 

designed to autonomously define through the training and the test processes its own 

mathematical representation from raw data, achieving in this way a final decision without 

https://paperpile.com/c/fKxJvx/UG0p
https://paperpile.com/c/fKxJvx/UG0p
https://paperpile.com/c/fKxJvx/GAuR
https://paperpile.com/c/fKxJvx/zfwI
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human inferences(Esteva et al., 2019). During the last decades, DL has had a tremendous 

impact on various fields of science, and in particular in image analysis tasks such as image 

classification. Convolutional neural networks (CNNs), is a type of DL algorithm inspired by 

the biological architecture of the neurons that is specifically designed to process data that 

exhibits natural spatial invariance (e.g. images)(Laak et al., 2021). CNNs play a pivotal role in 

tasks such as image classification and segmentation, especially in the field of pathology, in 

which the transition towards digital pathology represents an optimal substrate for the 

development of these technologies. During the last years, a plethora of tasks comprising tumor 

detection, tissue classification, biomarkers extractions, prognosis stratification and prediction 

analysis have been performed by CNN algorithm using H&E stained slides of  several types of 

cancer(Cohen, 2020; Gertych et al., 2019; Hekler et al., 2019; Tran et al., 2021). However, 

despite these encouraging results many diagnostic challenges still have to be addressed. From 

a technical point of view, large-scale validation of algorithms is crucial to confirm safety and 

accuracy for broad applications that represent fundamental requirements for regulatory 

approval, and actually most of the studies reported results based on internal validation with a 

limited number of cases, and large public datasets truly representative of the true clinicals 

scenario are still lacking(Laak et al., 2021). Moreover, AI solutions based on DL models are 

systems not explicitly programmed, meaning that it is very difficult for humans to understand 

the exact functioning of the systems that lead to the final decision (the so-called ‘black box’ 

concept). To fix this problem, data scientists have focused on strategies of explainable AI, in 

which techniques are developed to better understand the functioning leading to the final 

decision of the model(Guidotti et al., 2019). Finally, the use of patient data for algorithms 

development and the ‘black box’ problem lead to ethical and legal concerns that have to be 

addressed properly. The European Commission published guidelines for the development of 

trustworthy AI, specifying the correct framework to help researchers to achieve AI solutions 

that are ethical and lawful within a specific clinical context. The main conclusion of the 

European Commission's amendment is concerned with the need to overcome the concept of 

‘black box’ systems encouraging explainable AI solutions, and also to create a reliable 

framework for data management and sharing that avoids iniquities with the nature of the data 

used for the models implementation (such as concerns regarding socioeconomic status, race, 

ethnic, religious background, gender and disability), and that could affect the generalizability 

of the decisional pipeline(Cannarsa, 2021). Finally, regarding the scalability of AI solutions in 

the field of pathology, it is imperative to realize that pathologists formulate diagnosis not only 

by analyzing a sample of tissue under the microscope, but also integrating clinical information 

https://paperpile.com/c/fKxJvx/dP3E
https://paperpile.com/c/fKxJvx/p9iF
https://paperpile.com/c/fKxJvx/HsHc+4ub3+YxAn+GAuR
https://paperpile.com/c/fKxJvx/p9iF
https://paperpile.com/c/fKxJvx/4xjT
https://paperpile.com/c/fKxJvx/xbDM
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from different sources, their own clinical expertise and the specific circumstances of the 

patient. It is more reasonable to think that AI solutions in the midterms may help pathologists 

in tedious and time-consuming activities such as first-line tissue screening or IHC evaluation 

and control quality, rather than a mere replacement of human activity and judgment.                       

1.3 Work Hypothesis 

Based on the recent improvements of AI applications for image processing, we assume 

that a DL-based algorithm will be able to recognize the specific histological subtype of SRCS 

through automatic analysis of histological H&E slides. We also assume that the DL-based 

classifier can be conceived as part of a data-driven diagnostic pipeline able to improve 

diagnostic accuracy even with rare cancer histotypes.     
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1.4 Graphic abstract 

 

 
Figure 2. Graphic overview representing the four main phases of the work with their key features showed in each 

box. Tensorflow, Keras and Python were the software resources used to implement the entire pipeline and to 

analyse all data.  
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CHAPTER 2 

 

Experiments implementation  

 

2.1 Datasets implementation (WSI management & quality check) 

For this study a dataset for each SRCS entity investigated was created. Cases with a 

diagnosis of ES, CIC-rearranged sarcoma, BCOR-rearranged sarcoma and SS (biphasic SS 

were excluded), were collected from the archives of the Pathology Department of the 

University of Padova, from the Istituto Oncologico Veneto (IOV, Padova, Italy), and from the 

Istituto Ortopedico Rizzoli (Bologna, Italy) (see Table 2 for clinical data).  

Histotype Cases Sex (M/F) 
Age 

(mean,min-max) 
Tiles 

 

Ewing sarcoma 39 20/19 36.4 (15 - 83) 262185 

Synovial sarcoma 36 21/15 30.2 (18 - 61) 438640 

CIC sarcoma 28 11/17 29.1 (10 - 42) 189781 

BCOR sarcoma 21 10/11 17.8 (7 - 25) 75966 

Total 124 62/62 28.4 (7- 83) 966572 

Table 2. Clinical data and tiles generated for each class of tumour investigated  

Only cases confirmed by molecular tests were considered. Each case was reviewed by expert 

pathologists to confirm the diagnosis and then scanned at the maximum resolution available 

(40X) using three different types of scanner: 1) Hamamatsu Nanozoomer (Hamamatsu 

Photonics, Hamamatsu, Japan), Aperio (Leica biosystems, Wetzlar, Germany) and Ventana 

DP200 (Roche, Basel, Switzerland). A total of 124 cases were collected including 39 ES, 36 

SS, 28 CIC-rearranged sarcomas and 21 BCOR-rearranged sarcomas (Figure 1). In each slide, 

a representative tumor area was outlined by a pathologist and then subdivided into non 

overlapping tiles of size 383x383 pixels, which were then exported to the corresponding 

dataset. Tiles was generated with TilerPath, a custom tool developed using Python coding 

language (see section 2.2 for details about TilerPath). Finally, 966572 tiles were generated 

and implemented into the final datasets: 438640 (40%) tiles for SS, 262185 (27%) tiles for ES, 

189781 (20%) tiles for CIC-rearranged and 75966 (13%) tiles for BCOR-rearranged (Figure 

2).  
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Figure 3. Graphic overview of the final datasets used to develop DeeRasnet. Tiles as reported in the document 

are balanced across the four different tumors in order to harmonize the training.  

 

2.2 TilerPath 

The management of the WSI for AI research purposes remains a challenging task that 

requires specific actions generally not provided by commercial slides viewers. Such actions 

comprise direct tissue annotation or labeling, tiles generation and automatic dataset 

implementation. To fill this gap we developed a graphical user interface called TilerPath. 

TilerPath was conceived as an open-source tool mainly based on the open-source library 

Openslide that allow the user to open different WSI format files, to navigate over the tissue at 

different level of magnification, to create custom region of interest, custom size tiles 

generation, to perform a quality check on single tiles and to export tiles into specific directory 

(Figure 3). Quality check was based on the ability to analyze each tile by the Stardist algorithm 

directly implemented into TilerPath to calculate and compare with a threshold set by the user, 

the complessive percentage of the area of the cells nuclei covering the tile surface. In this way 

the user can choose the cellularity of each tile and discard unnecessary tiles. Moreover, 

TilerPath is implemented with a library containing a transformative convolutional neural 

network that we trained to recognize and discard tiles with common tissue artifacts (tissue 

folding, dark spots, ink, marker, dusts, electrocution effects and area scanned out of focus) that 

could affect the classification performance (Manuscript under revision). More technical details 

about TilerPath are presented in a dedicated paper (Manuscript under revision).   
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Figure 4. Representative screenshots of TilerPath during the datasets creation. Each whole slide image may be 

opened and explored at the original magnification provided by the scanner. A File manager tool allows the user 

to select the path in which are stored the scanned slides, and to select a specific output path in which the tiles 

generated will be stored. The ROI manager tool allows the user to outline the tissue area that will be tiled. Tiles 

dimension and capture magnification may be managed within the Tiles manager tool, tils don’t overlap each other 

and remain confined within the selected area (yellow box). Filters manager tool allow the user to run algorithms 

for the tiles quality control, with this tool cellularity cut-off may be selected and tiles with tissue artifacts 

automatically excluded from the export. To use Filters manager tool a Graphical Processing Unit (GPU) is 

recommended, users without GPU can skip Filters manager without interfering with the other functions of the 

system. Finally, the Save manager tool allows to export the generated tiles to specific directory created by the 

user. TylerPath was specifically designed to run on Windows 10 or further version.    

 

2.3 The classifier 

In this project the Google’s inception network (GIN) was applied. GIN is an advanced 

DL architecture that performs convolution and pooling operations in parallel through the so-

called inception block. In particular the InceptionV3 CNN architecture was adopted for the 

SRCS classification model to classify image tiles from the four different types of SRCS 

investigated. Input tiles were sized at 383x383 pixels. Model was pretrained on ImageNet and 
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subsequently trained with stochastic gradient descent algorithms in Keras with TensorFlow 

backend. No data augmentation was adopted for training. The CNN architecture comprised 

five convolutional layers interconnected by four max-pooling layers and a final fully-connected 

layer (Figure 4). 

 

 

Figure 5. Graphic overview of DeeRASnet architecture 

 

2.4 Results: training, test & validation 

Morphology of each specific histotype of SRCS is displayed in Figure 1, and the basic 

clinical characteristics of the cases selected for his study are summarized in Table 2. ES was 

the more represented entity (31% of the cases) while the less represented was the BCOR-

rearranged class (21% of the cases). By automatic quality check with TilerPath a total of 94789 

tiles (10%) were removed from the native datasets. Considering that the number of the tiles 

generated was different among the four classes, the size of the datasets used for the experiments 

was balanced according to the number of available tiles of the less represented class (BCOR-

rearranged sarcoma). Finally for the experiments a total of 18193 tiles were randomly selected 

and used for the experiments. For the training phase the 70% of tiles for each class (3675 tiles 

for ES, 2995 tiles for SS, 3040 tiles for BCOR-rearranged and 3043 tiles for CIC-rearranged) 

was used. The remaining 30% of the tiles were splitted for the test (15%, 792 tiles for ES, 630 

tiles for SS, 654 tiles for BCOR-rearranged and 655 tiles for CIC-rearranged) and the final 

validation (15%, 792 tiles for ES, 630 tiles for SS, 654 tiles for BCOR-rearranged and 630 tiles 

for CIC-rearranged) phase (Figure 3). Tiles were assigned to the training, test and validation 

phases avoiding splitting tiles from the same patient. The model identified a total of 1,388,100 

parameters to solve the classification task with the best accuracy (Figure 5). The final model 

performance was shown through a confusion matrix and sensibility, specificity and final 

accuracy resulted: 0,99, 0,99 and 0,99 for BCOR-rearranged sarcoma; 0,99, 0,99 and 0,99 for 

CIC-rearranged sarcoma; 0,98, 0,99 and 0,98 for ES; 0,98, 0,99 and 0,98 for SS (Figure 6). 
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Figure 6. Details of the parameters used by DeeRaSnet to obtain the best classification performance. 

 

 

 

Figure 7. Summary of performance of all the classification tasks before (A) and after (C) pre-processing with 

TIlerPath. Box B shows the significative accuracy increase after quality check, removing tiles with low cellularity 

(B1) and with tissue artifacts (B2). In D the confusion matrix of all patients evaluated stratified random 

permutation cross-validation.   
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CHAPTER 3 

Discussion & Conclusion & Perspectives  

  

Soft tissue sarcomas (STSs) refer to a group of neoplasms subdivided in at least 100 

different histologic and molecular subtypes, with each subtype displaying variable clinical 

behavior(W. H. O. Classification WHO Classification of Tumours Editorial Board & Who 

Classification of Tumours Editorial, 2020). Globally STSs account for nearly 20% of all 

pediatric solid malignancies and less than 1% of all adult solid malignancies(Burningham et 

al., 2012). Within STSs, specific entities such as the SRCSs account together for less than 1%, 

representing ultra rare histotypes affecting principally children and young adults. Despite 

continuous advances in translational research, rarity, heterogeneous morphology and also 

overlapping morphological and molecular features make diagnosis of STSs still challenging 

especially for those with an extremely low incidence(Gamboa et al., 2020). Despite substantial 

differences in biological behavior, clinical prognosis and response to treatments make a correct 

histological diagnosis mandatory, expertise in this field of pathology is still limited to few 

reference centers (Mesko et al., 2014). Moreover, in many peripheral centers, due to 

bureaucratic quibbles, limitations prevent a tempestive access to referral centers for second 

opinions and for non routinary diagnostic analysis, leading to a significant delayed diagnosis 

with a related negative impact on the lives of patients and their caregivers(Gamboa et al., 2020). 

Digitalization and AI solutions may almost in part play a central role in providing concrete 

solutions to overcome these challenges. However, despite AI solutions have been largely 

investigated with encouraging results in most fields such as breast, lung and urological 

pathology(Cohen, 2020), these techniques have not been investigated into the field of ultra rare 

cancers as SRCS. In this work, we present a possible solution to approach rare cancer histotypes 

with undifferentiated small round cell morphology. Our DL-based model, based on a CNN 

trained to recognize the four main types of SRCS on H&E stained slides, showed a great 

classification performance with final accuracies ranging from 98% to 99%. A high histological 

prediction yield in this context means that the pathologists, especially those working in non-

reference institutions may make more appropriate decisions focusing on specific available 

ancillary tests to support the predicted diagnosis avoiding wasting material and preserving it 

for the confirmatory molecular analysis. Importantly, we stress the fact that DeeRASnet 

remains a tool that is not designed to substitute experts' opinions, which remain the fundamental 

steps into the diagnostic workflow of all the rare tumors(Gamboa et al., 2020), but rather as a 

technological solution to support pathologists within a diagnostic workflow completely under 

https://paperpile.com/c/fKxJvx/tYdP
https://paperpile.com/c/fKxJvx/tYdP
https://paperpile.com/c/fKxJvx/3UN2
https://paperpile.com/c/fKxJvx/3UN2
https://paperpile.com/c/fKxJvx/ehYa
https://paperpile.com/c/fKxJvx/EUqs
https://paperpile.com/c/fKxJvx/ehYa
https://paperpile.com/c/fKxJvx/GAuR
https://paperpile.com/c/fKxJvx/ehYa
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a full human supervision as presented in Figure 7. In a research context, scalability and 

usefulness of DL-based classifiers in the field of STSs have been investigated in a previous 

study by which authors demonstrated that this supporting technology may contribute to 

shortening the diagnostic time and saving biological material and costs(Foersch et al., 2021).  

Despite encouraging results obtained by this study, some critical points need to be pointed out 

with the perspective to set the basis for further improvements. Firstly, due to their extreme 

rarity, SRCS entities as EWSR1-non_ETS gene rearranged sarcoma, desmoplastic round cell 

tumor, small round cell osteosarcoma and mesenchymal chondrosarcoma were not included 

into the training sets and therefore not recognizable by DeeRASnet. Secondly, we are not yet 

able to explain the mathematical representations (and their corresponding features within the 

image) that DeeRASnet used to classify the input images, making our approach still at a ‘black 

box’ level. Thirdly, a large external validation set to assess the true scalability of DeeRASnet 

into a larger clinical context is still lacking limiting inference about the true generalizability of 

the model. 

 

 
Figure 8. Schematic representation of diagnostic workflow implemented with DeeRASnet. Note the pivotal role 

played by the pathologist who remains responsible for all the steps.  

 

Despite these critical points, results obtained so far are really encouraging; we achieved an high 

classification performance if compared with most of the recent studies published so 

far(Coudray et al., 2018; Kather et al., 2020), and the implementation of our training dataset 

with all the SRCS histotypes remain a priority challenge that we intend to solve in near future 

extending our collaborative research network. Moreover, this study serves also as a model for 

showing the feasibility of an AI-based approach to rare and ultra-rare tumours, for us an 

important point to highlight, since rare tumors represent up to 30% of all tumors meaning that 

about 1 out of 4 new cancer patients has a diagnosis of rare cancer (Gatta et al., 2011).  Finally, 

https://paperpile.com/c/fKxJvx/jWMn
https://paperpile.com/c/fKxJvx/RID6+X8ZT
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to make DeeRASnet a more transparent classifier, through CNN ‘reverse analysis’ and 

sophisticated visualization techniques we intend to define the morphological parameters that 

are used by the machine to achieve the final classification, and smart and scalability solutions 

will be designed to insert and test DeeRASnet within the clinical context.  
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