
The Annals of Applied Probability
2021, Vol. 31, No. 6, 2538–2566
https://doi.org/10.1214/20-AAP1655
© Institute of Mathematical Statistics, 2021

SUBMODULAR MEAN FIELD GAMES: EXISTENCE AND
APPROXIMATION OF SOLUTIONS

BY JODI DIANETTI1,*, GIORGIO FERRARI1,†, MARKUS FISCHER2 AND

MAX NENDEL1,‡

1Center for Mathematical Economics (IMW), Bielefeld University, *jodi.dianetti@uni-bielefeld.de;
†giorgio.ferrari@uni-bielefeld.de; ‡max.nendel@uni-bielefeld.de

2Department of Mathematics “Tullio Levi-Civita”, University of Padua, fischer@math.unipd.it

We study mean field games with scalar Itô-type dynamics and costs that
are submodular with respect to a suitable order relation on the state and mea-
sure space. The submodularity assumption has a number of interesting conse-
quences. First, it allows us to prove existence of solutions via an application
of Tarski’s fixed point theorem, covering cases with discontinuous depen-
dence on the measure variable. Second, it ensures that the set of solutions
enjoys a lattice structure: in particular, there exist minimal and maximal so-
lutions. Third, it guarantees that those two solutions can be obtained through
a simple learning procedure based on the iterations of the best-response-map.
The mean field game is first defined over ordinary stochastic controls, then
extended to relaxed controls. Our approach also allows us to prove existence
of a strong solution for a class of submodular mean field games with com-
mon noise, where the representative player at equilibrium interacts with the
(conditional) mean of its state’s distribution.

1. Introduction. In this paper, we study a representative class of mean field games with
submodular costs. Mean field games (MFGs for short), as introduced by Lasry and Lions [23]
and, independently, by Huang, Malhamé and Caines [20], are limit models for noncooperative
symmetric N -player games with mean field interaction as the number of players N tends to
infinity; see, for instance, [6, 10], and the recent two-volume work [9].

Submodular games were first introduced by Topkis in [31] in the context of static noncoop-
erative N -player games. They are characterized by costs of the players that have decreasing
differences with respect to a partial order induced by a lattice on the set of strategy vectors.
Because the notion of submodularity is related to that of substitute goods in Economics, sub-
modular games have received large attention in the economic literature (see [2, 25], among
many others). A systematic treatment of submodular games can be found in [32, 34], and in
the survey [3].

The submodularity assumption has been applied to mean field games by Adlaka and Johari
in [1] for a class of discrete time games with infinite horizon discounted costs, by Wiȩcek
in [35] for a class of finite state mean field games with total reward up to a time of first
exit, and by Carmona, Delarue, and Lacker in [12] for mean field games of timing (optimal
stopping), in order to study dynamic models of bank runs in a continuous time setting. It is
also worth noticing that mean field games considered in recent works addressing the problem
of nonuniqueness of solutions enjoy a submodular structure (see, e.g., [4, 13, 15]), even if the
latter is not exploited therein.

Here, we consider a class of finite horizon mean field games with Itô-type dynamics. More
specifically, the evolution of the state of the representative player is described by a one-
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dimensional Itô stochastic differential equation (SDE) with random (not necessarily Marko-
vian) coefficients and controlled drift. The diffusion coefficient, while independent of state
and control, is possibly degenerate. Deterministic dynamics are thus included as a special
case. The measure variable, which represents the distribution of the continuum of “other”
players, only appears in the (random, not Markovian) cost coefficients with running costs
split into two parts, one depending on the control, the other on the measure. The measure-
dependent costs are assumed to be submodular with respect to first order stochastic domi-
nance on measures and the standard order relation on states (cf. Assumption 2.9 below).

The submodularity assumption has a number of remarkable consequences. It yields, in par-
ticular, an alternative way of establishing the existence of solutions and gives rise to a simple
learning procedure. Existence of solutions to the mean field game can be obtained through
Banach’s fixed point theorem if the time horizon is small (cf. [20]). For arbitrary time hori-
zons, a version of the Brouwer–Schauder fixed point theorem, including generalizations to
multi-valued maps, can be used; cf. [6] and [22]. Under the submodularity assumption, exis-
tence of solutions can instead be deduced from Tarski’s fixed point theorem [29]. This allows
us to cover systems with coefficients that are possibly discontinuous in the measure variable.
Another notable consequence of the submodularity is that the set of all solutions for a given
initial distribution enjoys a lattice structure so that there are a minimal solution and a maximal
solution with respect to the order relation. The existence of multiple solutions is in fact quite
common in mean field games (see [4, 15] and the references therein), and the submodularity
assumption is compatible with this nonuniqueness of solutions. In particular (yet relevant)
cases, we can also prove the existence of MFG solutions when the dynamics of the state pro-
cess depends on the measure (see Section 4.4). Furthermore, our lattice-theoretical approach
allows us to deal with a class of MFGs with common noise in which the representative agent
faces a mean field interaction through the conditional mean of its state given the common
noise (see Section 4.5). Such MFGs have been studied in [15] and [30]—where the issue of
uniqueness and selection of equilibria is addressed in a linear-quadratic setting—and for them
we are able to show existence of a strong solution, a kind of result which is still relatively in-
frequent in the literature (cf. Remark 4.6 and Section 6 in [11]). Finally, although our results
strongly hinge on the one-dimensional nature of the setting, suitable multidimensional cases
can also be considered. In particular, if the dependence on the measure is only through one
of its one-dimensional marginals, existence and approximation of MFG solutions can still be
obtained in some settings (cf. Section 4.1).

The problem of how to find solutions to a mean field game in a constructive way has
been addressed by Cardaliaguet and Hadikhanloo [7]. They analyze a learning procedure,
similar to what is known as fictitious play (cf. [19] and the references therein), where the
representative agent, starting from an arbitrary flow of measures, computes a new flow of
measures by updating the average over past measure flows according to the best response to
that average. For potential mean field games, the authors establish convergence of this kind
of fictitious play. A simpler learning procedure consists in directly iterating the best response
map, thus computing a new flow of measures as best response to the previous measure flow.
Under the submodularity assumption, we show that this procedure converges to a mean field
game solution for appropriately chosen initial measure flows (cf. Remark 2.20), while it need
not converge for potential or other classes of mean field games.

The rest of this paper is organized as follows. In Section 2.1, we introduce the controlled
system dynamics and costs, together with our standing assumptions, and give the definition
of a mean field game, where we take ordinary stochastic open-loop controls as admissible
strategies. In Section 2.2, we define the order relation on probability measures which is cru-
cial for the submodularity assumption on the cost coefficients of the game. That assumption
is stated and discussed in Section 2.3, while Section 2.4 deals with properties of the best
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response map. Section 2.5 contains our main results, namely Theorem 2.14 on the existence
and lattice structure of MFG solutions and Theorem 2.17 on the convergence of the simple
learning procedure. In Section 3, we extend the analysis of Section 2 to submodular mean
field games defined over stochastic relaxed controls. This allows us to re-obtain the existence
and, especially, the convergence result under more general conditions. Section 4 concludes
with comments on the multidimensional setting, the linear-quadratic case, systems with mul-
tiplicative and mean field dependent dynamics, and mean field games with common noise.
Some auxiliary results on first order stochastic dominance are collected in the Appendix A.

Notation. Throughout the rest of this paper, given x, y ∈ R, we set x ∧ y := min{x, y}
and x∨y := max{x, y}. Moreover, given a probability space (�,F,P) and a random variable
X : � → R, we use the notation P ◦ X−1 for the law of X under P, that is, we set (P ◦
X−1)[E] := P[X ∈ E] for each Borel set E of R. Finally, for a given T ∈ (0,∞) and a
stochastic process X = (Xt)t∈[0,T ], with a slight abuse of notation, we denote by P ◦X−1 the
flow of measures associated to X; that is, we set P ◦ X−1 := (P ◦ X−1

t )t∈[0,T ].

2. The submodular mean field game. In this section we develop our set up for submod-
ular mean field games. This set up allows us to prove the existence of MFG solutions without
using a weak formulation or the notion of relaxed controls. Instead, we combine probabilis-
tic arguments together with a lattice-theoretical approach in order to prove the existence and
approximation of MFG solutions.

2.1. The mean field game problem. Let T > 0 be a fixed time horizon and W =
(Wt)t∈[0,T ] be a Brownian Motion on a complete filtered probability space (�,F,

(Ft )t∈[0,T ],P). Let ξ ∈ L2(�,F0,P) and (σt )t∈[0,T ] ⊂ [0,∞) be a progressively measurable
square integrable stochastic process. Notice that we allow the volatility process to be zero on
a progressively measurable set E ⊂ [0, T ]×� with positive measure, thus leading to a degen-
erate dynamics. For a closed and convex set U ⊂ R, define the the set of admissible controls
A as the set of all square integrable progressively measurable processes α : � × [0, T ] → U .
For a measurable function b : � × [0, T ] × R × U → R and an admissible process α, we
consider the controlled SDE (SDE(α), in short)

(2.1) dXt = b(t,Xt , αt ) dt + σt dWt, t ∈ [0, T ],X0 = ξ.

With no further reference, throughout this paper we will assume that for each (x, a) ∈ R×U

the process b(·, ·, x, a) is progressively measurable and that the usual Lipschitz continuity
and growth conditions are satisfied; that is, there exists a constant C1 > 0 such that for each
(ω, t, a) ∈ � × [0, T ] × U we have∣∣b(ω, t, x, a) − b(ω, t, y, a)

∣∣≤ C1|x − y|, ∀x, y ∈R,∣∣b(ω, t, x, a)
∣∣≤ C1

(
1 + |x| + |a|), ∀x ∈ R.

(2.2)

Under the standing assumption, by standard SDE theory, for each α ∈ A there exists a unique
strong solution Xα := (Xα

t )t∈[0,T ] to the controlled SDE(α) (2.1).
Let P(R) denote the space of all probability measures on the Borel σ -algebra B(R), en-

dowed with the classical (Cb-)weak topology, that is, the topology induced by the weak con-
vergence of probability measures. The costs of the problem are given by three measurable
functions

f : � × [0, T ] ×R×P(R) →R,

l : � × [0, T ] ×R× U →R,(2.3)

g : � ×R×P(R) →R,
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such that, for each (x,μ, a) ∈ R × P(R) × U , the processes f (·, ·, x,μ), l(·, ·, x, a) are
progressively measurable and the random variable g(·, x,μ) is FT -measurable. We underline
that the cost processes f and g are not necessarily Markovian.

For any given and fixed measurable flow μ = (μt )t∈[0,T ] of probability measures on B(R),
we introduce the cost functional

(2.4) J (α,μ) := E

[∫ T

0

[
f
(
t,Xα

t ,μt

)+ l
(
t,Xα

t , αt

)]
dt + g

(
Xα

T ,μT

)]
, α ∈A,

and consider the optimal control problem infα∈A J (α,μ).
We say that (Xμ,αμ) is an optimal pair for the flow μ if −∞ < J(αμ,μ) ≤ J (α,μ) for

each admissible α ∈A and Xμ = Xαμ
.

REMARK 2.1. The subsequent results of this paper remain valid if we consider a geo-
metric dynamics for X (cf. Section 4.3 below). Moreover, for suitable choices of the costs,
we can also allow for geometric or mean-reverting state processes with dependence on the
measure in the dynamics (see Section 4.4 for more details).

We make the following standing assumption.

ASSUMPTION 2.2.

1. For each measurable flow μ of probability measures on B(R), there exists a unique (up
to indistinguishability) optimal pair (Xμ,αμ).

2. There exists a continuous and strictly increasing function ψ : [0,∞) → [0,∞) with
lims→∞ ψ(s) = ∞ and a constant M > ψ(0) such that

(2.5) E
[
ψ
(∣∣Xμ

t

∣∣)]≤ M for all measurable flows of probabilities μ and t ∈ [0, T ].

REMARK 2.3. To underline the flexibility of our set up, condition (1) in Assumption 2.2
is stated at an informal level. Condition (1) holds, for example, in the case of a linear-convex
setting in which b(t, x, a) = ct + ptx + qta, for suitable processes ct , pt , qt , l(t, ·, ·) is
strictly convex and lower semicontinuous, f (t, ·,μ) and g(·,μ) are lower semicontinuous,
and U is convex and compact. More general conditions ensuring existence and uniqueness of
an optimal pair in the strong formulation of the control problem can be found in [17] and in
Chapter II of [8], among others.

REMARK 2.4. Notice that condition (2) in Assumption 2.2 is equivalent to the tightness
of the family of laws {P ◦ (X

μ
t )−1 : μ is a measurable flow, t ∈ [0, T ]} (cf. [14, 24] or [27]).

The latter is satisfied, for example, if U is compact or if b is bounded in a. Alternatively,
one can assume that U is closed and convex and that there exist exponents p′ > p ≥ 1 and
constants κ,K > 0 such that E[|ξ |p′ ] < ∞ and∣∣f (t, x,μ)

∣∣+ ∣∣g(x,μ)
∣∣≤ K

(
1 + |x|p),

κ|a|p′ − K
(
1 + |x|p)≤ l(t, x, a) ≤ K

(
1 + |x|p + |a|p′)

,
(2.6)

for all (t, x,μ, a) ∈ [0, T ] × R × P(R) × U . Indeed, following the proof of Lemma 5.1 in
[22], these conditions allow us to have an a priori bound on the p-moments of the minimizers
independent of the measure μ; that is, there exists a constant M > 0 such that

(2.7) E
[∣∣Xμ

t

∣∣p′]≤ M for all measurable flows of probabilities μ and t ∈ [0, T ].
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REMARK 2.5 (On the topology on R × P(R) and the noncontinuity of the costs). We
point out that the space R is endowed with the usual Euclidean distance, while the set P(R)

is endowed with the classical (Cb-)weak topology, that is, the topology induced by the weak
convergence of probability measures. Also, we say that sequence of probability measures
converges weakly if it converges in the (Cb-)weak topology. Unless otherwise stated, the set
R×P(R) will always be endowed with the product topology, and the continuity of f , g will
mean continuity with respect to this topology.

Alternatively, for p ≥ 1, one could work on the space Pp(R) := {μ ∈ P(R) |∫
R

|y|p dμ(y) < ∞} endowed with the p-Wasserstein distance

Wp(μ,ν) :=
(

inf
γ∈�(μ,ν)

∫
R2

|x − y|p dγ (x, y)

)1/p

, μ, ν ∈Pp(R),

where �(μ, ν) denotes the set of probability measures γ on the Borel sets of R2, such that
γ (E × R) = μ(E) and γ (R × E) = ν(E) for each E ∈ B(R). The latter distance is usually
used in the literature to address the continuity of the costs (see, e.g., [22]).

Differently from the standard conditions in the literature on mean field games, our exis-
tence result (Theorem 2.14) does not require any continuity of the costs f and g with respect
to the measure μ. In fact, f and g can be discontinuous with respect to the weak topology or
with respect to any Wasserstein distance.

For each measurable flow μ of probability measures on B(R), we now define the best-
response by R(μ) := P ◦ (Xμ)−1, where we set P ◦ (Xμ)−1 := (P ◦ (X

μ
t )−1)t∈[0,T ]. The map

μ → R(μ) is called the best-response-map.

DEFINITION 1 (MFG solution). A measurable flow μ∗ of probability measures on B(R)

is a mean field game solution if it is a fixed point of the best-response-map R; that is, if
R(μ∗) = μ∗.

2.2. The lattice structure. In this section, we endow the space of measurable flows with
a suitable lattice structure, which is fundamental for the subsequent analysis. We start by
identifying the set of probability measures P(R) with the set of distribution functions on R,
setting μ(s) := μ(−∞, s] for each s ∈ R and μ ∈ P(R). On P(R) we then consider the order
relation ≤st given by the first order stochastic dominance, that is, we write

(2.8) μ ≤st ν for μ,ν ∈ P(R) if and only if μ(s) ≥ ν(s) for each s ∈ R.

The partially ordered set (P(R),≤st) is then endowed with a lattice structure by defining

(2.9)
(
μ ∧st ν

)
(s) := μ(s) ∨ ν(s) and

(
μ ∨st ν

)
(s) := μ(s) ∧ ν(s) for each s ∈ R.

Observe that (see, e.g., [28]), for μ,ν ∈ P(R), we have

(2.10) μ ≤st ν if and only if 〈ϕ,μ〉 ≤ 〈ϕ, ν〉
for any increasing function ϕ : R →R such that 〈ϕ,μ〉 and 〈ϕ, ν〉 are finite, where 〈ϕ,μ〉 :=∫
R

ϕ(y)dμ(y).
Recall that by (2.5),

E
[
ψ
(∣∣Xμ

t

∣∣)]≤ M for all measurable flows μ and t ∈ [0, T ].
Then, following the arguments in the proof of Lemma A.2, we can define μMin,μMax ∈ P(R)

with

μMin ≤st
P ◦ (Xμ

t

)−1 ≤st μMax for all measurable flows μ and t ∈ [0, T ],
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where, extending ψ to (−∞,0) by ψ(s) := ψ(0) for s < 0, μMin and μMax are given by

(2.11) μMin(s) := M

ψ(−s)
∧ 1 and μMax(s) :=

(
1 − M

ψ(s)

)
∨ 0 for all s ∈R.

This observation suggests to consider the interval[
μMin,μMax]= {

μ ∈ P(R) | μMin ≤st μ ≤st μMax}
endowed with the Borel σ -algebra induced by the weak topology, that is, the topology related
to the weak convergence of probability measures. We consider the finite measure π := δ0 +
dt + δT on the Borel σ -algebra B([0, T ]) of the interval [0, T ], where δt denotes the Dirac
measure at time t ∈ [0, T ]. Notice that we include δ0 into the definition of the measure π

in order to prescribe the initial law P ◦ ξ−1. We then define the set L of feasible flows of
measures as the set of all equivalence classes (w.r.t. π ) of measurable flows (μt )t∈[0,T ] with
μt ∈ [μMin,μMax] for π -almost all t ∈ (0, T ] and μ0 = P ◦ ξ−1. On L we consider the order
relation ≤L given by μ ≤L ν if and only if μt ≤st νt for π -a.a. t ∈ [0, T ]. This order relation
implies that L can be endowed with the lattice structure given by(

μ ∧L ν
)
t := μt ∧st νt and

(
μ ∨L ν

)
t := μt ∨st νt for π -a.a. t ∈ [0, T ].

Notice that (P ◦ (X
μ
t )−1)t∈[0,T ] ∈ L for every μ ∈ L. In particular, the best-response-map

R : L → L is well defined.

REMARK 2.6. We point out that if ψ(x) = x2, then each element of [μMin,μMax] has
finite first-order moment, that is,

∫
R

|y|dμ(y) < ∞ for each [μMin,μMax]. This follows di-
rectly from Lemma A.3. Notice also that a higher integrability requirement in (2.5) implies
the existence and uniform boundedness of higher moments for the elements of [μMin,μMax].
More precisely, if ψ(x) = xp′

for some p′ ∈ (1,∞), then

sup
μ∈[μMin,μMax]

∫
R

|y|p dμ(y) < ∞ for all p ∈ (
1,p′).

We now turn our focus on the main result of this subsection, which is the following
lemma. Its proof follows from the more general Proposition A.4, which is relegated to the
Appendix A.

LEMMA 2.7. The lattice (L,≤L) is complete. That is, each subset of L has a least upper
bound and a greatest lower bound.

REMARK 2.8. We underline that, in general, infL and supL are given by

(infL)t := 1{0}(t)P ◦ ξ−1 + 1(0,T ](t)μMin, (supL)t := 1{0}(t)P ◦ ξ−1 + 1(0,T ](t)μMax,

with μMin, μMax defined in (2.11) in terms of ψ and M . In particular, according to Re-
mark 2.4, if U is compact, if b is bounded or if Condition (2.6) is satisfied, then condition (2)
in Assumption 2.2 is satisfied with ψ(s) = sp for s ≥ 0 and some p ≥ 1. In this case, infL
and supL are explicitly given by

(2.12) (infL)t (s) := 1{0}(t)P ◦ ξ−1(s) + 1(0,T ](t)
[
1{s<0}

(
M

(−s)p
∧ 1

)
+ 1{s≥0}

]
,

for a.a. t ∈ [0, T ] and for each s ∈ R, and

(2.13) (supL)t (s) := 1{0}(t)P ◦ ξ−1(s) + 1(0,T ](t)
[
1{s≤0} + 1{s>0}

(
1 − M

(s)p

)
∨ 0

]
,

for a.a. t ∈ [0, T ] and for each s ∈ R.
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2.3. The submodularity condition. Our subsequent results rely on the following key as-
sumption.

ASSUMPTION 2.9 (Submodularity condition). For P ⊗ dt a.a. (ω, t) ∈ � × [0, T ], the
functions f (t, ·, ·) and g have decreasing differences in (x,μ); that is, for φ ∈ {f (t, ·, ·), g},

φ(x̄, μ̄) − φ(x, μ̄) ≤ φ(x̄,μ) − φ(x,μ),

for all x̄, x ∈ R and μ̄,μ ∈ P(R) s.t. x̄ ≥ x and μ̄ ≥st μ.

We list here two examples in which Assumption 2.9 is satisfied.

EXAMPLE 1 (Mean-field interaction of scalar type). Consider a mean-field interaction
of scalar type; that is, φ(x,μ) = γ (x, 〈ϕ,μ〉) for given measurable maps γ : R2 → R and
ϕ : R → R. If the map ϕ is increasing and the map γ : R2 → R has decreasing differences
in (x, y) ∈ R

2, then Assumption 2.9 is satisfied. Observe that a function γ ∈ C2(R2) has
decreasing differences in (x, y) if and only if

∂2γ

∂x∂y
(x, y) ≤ 0 for each (x, y) ∈ R

2.

EXAMPLE 2 (Mean-field interactions of order-1). Another example is provided by the
interactions of order-1, that is, when φ is of the form

φ(x,μ) =
∫
R

γ (x, y) dμ(y).

It is easy to check that, thanks to (2.10), Assumption 2.9 holds when γ has decreasing differ-
ences in (x, y).

A natural and relevant question related to Assumption 2.9 concerns its link to the so-called
Lasry–Lions monotonicity condition, that is, the condition

(2.14)
∫
R

(
φ(x, μ̄) − φ(x,μ)

)
d(μ̄ − μ)(x) ≥ 0, ∀μ̄,μ ∈ P(R).

In general, there is no relation between the submodularity condition and (2.14). However,
since Assumption 2.9 is equivalent to the fact that the map φ(·, μ̄)−φ(·,μ) is decreasing for
μ, μ̄ ∈ P(R) with μ̄ ≥st μ, Assumption 2.9 and (2.10) imply that∫

R

(
φ(x, μ̄) − φ(x,μ)

)
d(μ̄ − μ)(x) ≤ 0, ∀μ̄,μ ∈ P(R) with μ̄ ≥st μ;

the latter, roughly speaking, being sort of an opposite version of the Lasry–Lions monotonic-
ity condition (2.14).

REMARK 2.10. Specific cost functions satisfying Assumption 2.9 are, for example,

f (t, x,μ) ≡ 0, l(t, x, a) = a2

2
, g(x,μ) = (

x − 1[0,∞)

(〈id,μ〉))2,
where id(y) = y. Notice that the function μ → g(x,μ) is discontinuous, in contrast to the
typical continuity requirement assumed in the literature (see, e.g., [22]).
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2.4. The best-response-map. In the following lemma, we show that the set of admissible
trajectories is a lattice.

LEMMA 2.11. If α and ᾱ are admissible controls, then there exists an admissible control
α∨ such that Xα ∨ Xᾱ = Xα∨

. Moreover, there exists an admissible control α∧ such that
Xα ∧ Xᾱ = Xα∧

.

PROOF. Let α and ᾱ be admissible controls and define the process α∨ by

α∨
s :=

{
αs on

{
Xα

s > Xᾱ
s

}∪ {
Xα

s = Xᾱ
s , b

(
s,Xα

s , αs

)≥ b
(
s,Xᾱ

s , ᾱs

)}
,

ᾱs on
{
Xα

s < Xᾱ
s

}∪ {
Xα

s = Xᾱ
s , b

(
s,Xα

s , αs

)
< b

(
s,Xᾱ

s , ᾱs

)}
.

The process α∨ is clearly progressively measurable and square integrable, hence admissible.
We want to show that Xα ∨ Xᾱ = Xα∨

; that is,

(2.15) Xα
t ∨ Xᾱ

t = ξ +
∫ t

0
b
(
s,Xα

s ∨ Xᾱ
s , α∨

s

)
ds +

∫ t

0
σs dWs, ∀t ∈ [0, T ],P-a.s.

In order to do so, observe that the process Xα ∨ Xᾱ satisfies, P-a.s. for each t ∈ [0, T ], the
following integral equation

(2.16) Xα
t ∨ Xᾱ

t = ξ +
∫ t

0
σs dWs +

(∫ t

0
b
(
s,Xα

s , αs

)
ds

)
∨
(∫ t

0
b
(
s,Xᾱ

s , ᾱs

)
ds

)
.

Furthermore, defining the two processes A and Ā by

At :=
∫ t

0
b
(
s,Xα

s , αs

)
ds and Āt :=

∫ t

0
b
(
s,Xᾱ

s , ᾱs

)
ds,

we see that the process S, defined by St := At ∨ Āt , is P-a.s. absolutely continuous. Hence
the time derivative of S exists a.e. in [0, T ] and, in view of (2.16), in order to prove (2.15) it
suffices to show that dSt/dt = b(t,Xα

t ∨ Xᾱ
t , α∨

t ) for P⊗ dt a.a. (ω, t) ∈ � × [0, T ].
Since the processes A, Ā and S are P-a.s. absolutely continuous, for each ω in a set of

full probability, the paths A(ω), Ā(ω) and S(ω) admit time derivatives in a subset E(ω) ⊂
[0, T ] with full Lebesgue measure. We now use a pathwise argument, without stressing the
dependence on ω ∈ �. Take t ∈ E such that Xα

t > Xᾱ
t . By continuity, there exists a (random)

neighborhood It of t in R such that Xα
s > Xᾱ

s for each s ∈ It ∩ [0, T ], which, by (2.16), is
true if and only if As > Ās for each s ∈ It ∩ [0, T ]. Hence, by definition of S, we have

dSs

ds
= dAs

ds
= b

(
s,Xα

s , αs

)
, ∀s ∈ It ∩ [0, T ],

and, in particular, dSs/ds = b(s,Xα
s ∨ Xᾱ

s , α∨
s ) for each s ∈ It ∩ [0, T ].

Take now t ∈ E such that Xα
t = Xᾱ

t and b(t,Xα
t , αt ) ≥ b(t,Xᾱ

t , ᾱt ). From (2.16) it follows
that At = Āt , which in turn implies that

dSt

dt
= lim

h→0

At+h ∨ Āt+h − At ∨ Āt

h
≥ dAt

dt
∨ dĀt

dt
.

By construction,

(2.17)
dAt

dt
= b

(
t,Xα

t , αt

)≥ b
(
t,Xᾱ

t , ᾱt

)= dĀt

dt
.

If there exists a sequence {hj }j∈N converging to 0 such that At+hj ≥ Āt+hj for each j ∈
N, then clearly dSt/dt = dAt/dt = b(t,Xα

t , αt ) = b(t,Xα
t ∨ Xᾱ

t , α∨
t ), as desired. On the

other hand, if such a sequence does not exist, then there exists some δ > 0 such that At+h ≤
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Āt+h for each h ∈ (−δ, δ). Recalling (2.17), this implies that dAt/dt ≤ dSt/dt = dĀt/dt ≤
dAt/dt , hence we obtain again that dSt/dt = dAt/dt .

Altogether, we have proved that for a.a. t ∈ [0, T ] with Xα
t > Xᾱ

t or Xα
t = Xᾱ

t and
b(t,Xα

t , αt ) ≥ b(t,Xᾱ
t , ᾱt ), we have dSt/dt = b(t,Xα

t , αt ) = b(t,Xα
t ∨ Xᾱ

t , α∨
t ). Analo-

gously, one can prove that dSt/dt = b(t,Xᾱ
t , ᾱt ) = b(t,Xα

t ∨ Xᾱ
t , α∨

t ) for a.a. t ∈ [0, T ]
with Xα

t < Xᾱ
t or Xα

t = Xᾱ
t and b(t,Xα

t , αt ) < b(t,Xᾱ
t , ᾱt ). Therefore dSt/dt = b(t,Xα

t ∨
Xᾱ

t , α∨
t ) for P⊗ dt a.a. (ω, t) ∈ � × [0, T ], which proves (2.15).

The arguments employed above allow us to prove that the process Xα ∧ Xᾱ satisfies the
SDE controlled by α∧; that is,

Xα
t ∧ Xᾱ

t = ξ +
∫ t

0
b
(
s,Xα

s ∧ Xᾱ
s , α∧

s

)
ds +

∫ t

0
σs dWs, ∀t ∈ [0, T ],P-a.s.,

where α∧ is defined by

α∧
s :=

{
ᾱs on

{
Xα

s > Xᾱ
s

}∪ {
Xα

s = Xᾱ
s , b

(
s,Xα

s , αs

)≥ b
(
s,Xᾱ

s , ᾱs

)}
,

αs on
{
Xα

s < Xᾱ
s

}∪ {
Xα

s = Xᾱ
s , b

(
s,Xα

s , αs

)
< b

(
s,Xᾱ

s , ᾱs

)}
.

The proof of the lemma is therefore completed. �

We now prove the fundamental property of the best-response-map.

LEMMA 2.12. The best-response-map R is increasing in (L,≤L).

PROOF. Take μ̄,μ ∈ L such that μ ≤L μ̄ and let (Xμ̄,αμ̄) and (Xμ,αμ) be the optimal
pairs related to μ̄ and μ, respectively. For t ∈ [0, T ], we define the event

(2.18) Bt := {
X

μ
t > X

μ̄
t

}∪ {
X

μ
t = X

μ̄
t , b

(
t,X

μ
t , α

μ
t

)≥ b
(
t,X

μ̄
t , αt

μ̄)}.
As it is shown in Lemma 2.11, the process Xμ ∨ Xμ̄ is the solution to the dynamics (2.1)
controlled by α∨

t := α
μ
t 1Bt +α

μ̄
t 1Bc

t
, and the process Xμ ∧Xμ̄ is the solution to the dynamics

controlled by α∧
t := α

μ
t 1Bc

t
+ α

μ̄
t 1Bt .

By the admissibility of α∨ and the optimality of αμ̄ we can write

0 ≤ J
(
α∨, μ̄

)− J
(
αμ̄, μ̄

)
= E

[∫ T

0

[
f
(
t,X

μ
t ∨ X

μ̄
t , μ̄t

)− f
(
t,X

μ̄
t , μ̄t

)]
dt

]

+E

[∫ T

0

[
l
(
t,X

μ
t ∨ X

μ̄
t , α∨

t

)− l
(
t,X

μ̄
t , α

μ̄
t

)]
dt

]
+E

[
g
(
X

μ
T ∨ X

μ̄
T , μ̄T

)− g
(
X

μ̄
T , μ̄T

)]
.

(2.19)

Next, from the definition of Bt in (2.18) and the trivial identity 1 = 1Bt + 1Bc
t
, we find

E

[∫ T

0

[
f
(
t,X

μ
t ∨ X

μ̄
t , μ̄t

)− f
(
t,X

μ̄
t , μ̄t

)]
dt

]

= E

[∫ T

0
1Bt

[
f
(
t,X

μ
t , μ̄t

)− f
(
t,X

μ̄
t , μ̄t

)]
dt

]

= E

[∫ T

0

[
f
(
t,X

μ
t , μ̄t

)− f
(
t,X

μ
t ∧ X

μ̄
t , μ̄t

)]
dt

]
,

as well as

E
[
g
(
X

μ
T ∨ X

μ̄
T , μ̄T

)− g
(
X

μ̄
T , μ̄T

)]= E
[
g
(
X

μ
T , μ̄T

)− g
(
X

μ
T ∧ X

μ̄
T , μ̄T

)]
.
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In the same way, by the definition of α∨ and α∧, we see that

E

[∫ T

0

[
l
(
t,X

μ
t ∨ X

μ̄
t , α∨

t

)− l
(
t,X

μ̄
t , α

μ̄
t

)]
dt

]

= E

[∫ T

0
1Bt

[
l
(
t,X

μ
t , α

μ
t

)− l
(
t,X

μ̄
t , α∧

t

)]
dt

]

= E

[∫ T

0

[
l
(
t,X

μ
t , α

μ
t

)− l
(
t,X

μ
t ∧ X

μ̄
t , α∧

t

)]
dt

]
.

Now, the latter three equalities allow us to rewrite (2.19) as

0 ≤ J
(
α∨, μ̄

)− J
(
αμ̄, μ̄

)
= E

[∫ T

0

[
f
(
t,X

μ
t , μ̄t

)− f
(
t,X

μ
t ∧ X

μ̄
t , μ̄t

)]
dt

]

+E

[∫ T

0

[
l
(
t,X

μ
t , α

μ
t

)− l
(
t,X

μ
t ∧ X

μ̄
t , α∧

t

)]
dt

]
+E

[
g
(
X

μ
T , μ̄T

)− g
(
X

μ
T ∧ X

μ̄
T , μ̄T

)]
,

(2.20)

which reads as

(2.21) J
(
α∨, μ̄

)− J
(
αμ̄, μ̄

)= J
(
αμ, μ̄

)− J
(
α∧, μ̄

)
.

Finally, exploiting Assumption 2.9 in the expectations in (2.20), we deduce that

0 ≤ J
(
α∨, μ̄

)− J
(
αμ̄, μ̄

)
(2.22)

≤ E

[∫ T

0

[
f
(
t,X

μ
t ,μt

)− f
(
t,X

μ
t ∧ X

μ̄
t ,μt

)]
dt

]

+E

[∫ T

0

[
l
(
t,X

μ
t , α

μ
t

)− l
(
t,X

μ
t ∧ X

μ̄
t , α∧

t

)]
dt

]
+E

[
g
(
X

μ
T ,μT

)− g
(
X

μ
T ∧ X

μ̄
T ,μT

)]
= J

(
αμ,μ

)− J
(
α∧,μ

)
.(2.23)

Hence the control α∧ is a minimizer for J (·,μ), and, by uniqueness of the minimizer, we
conclude that Xμ ∧Xμ̄ = Xμ; that is, X

μ
t ≤ X

μ̄
t for each t ∈ [0, T ] P-a.s., which implies that

R(μ) ≤L R(μ̄). �

REMARK 2.13. For later use, we point out that we have actually proved that for μ̄,μ ∈ L

such that μ ≤L μ̄ we have that X
μ
t ≤ X

μ̄
t for each t ∈ [0, T ], P-a.s.

2.5. Existence and approximation of MFG solutions. We finally obtain an existence re-
sult for the mean field game solutions.

THEOREM 2.14. Under Assumptions 2.2 and 2.9, the set of MFG solutions (M,≤L) is a
nonempty complete lattice: in particular there exist a minimal and a maximal MFG solution.

PROOF. Combining Lemma 2.7 together with Lemma 2.12, we have that the best re-
sponse map R is an increasing map from the complete lattice (L,≤L) into itself. The state-
ment then follows from Tarski’s fixed point theorem (see Theorem 1 in [29]). �

Following [31], we introduce learning procedures {μn}n∈N, {μn}n∈N ⊂ L for the mean
field game problem as follows:
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• μ0 := infL, μ0 := supL;
• μn+1 = R(μn), μn+1 = R(μn) for each n ≥ 1.

For simplicity, we make the following assumption. A discussion on the role of these condi-
tions is postponed to Remark 2.19 below.

ASSUMPTION 2.15.

1. The control set U ⊂ R is compact and there exists some p > 1 such that E[|ξ |p] < ∞.
2. The dynamics of the system given by b(t, x, a) = ct + ptx + qta, where ct , pt and qt

are deterministic and continuous in t . The volatility σ is constant.
3. For P ⊗ dt-a.a. (ω, t) in � × [0, T ], the cost functions f (t, ·, ·), g are continuous in

(x,μ), and the cost function l(t, ·, ·) is convex and lower semicontinuous in (x, a).
4. f , l and g have subpolynomial growth; that is, there exists a constant C > 0 such that

for all (ω, t, x, a,μ) ∈ � × [0, T ] ×R× U × [μMin,μMax],∣∣f (t, x,μ)
∣∣+ ∣∣l(t, x, a)

∣∣+ ∣∣g(x,μ)
∣∣≤ C

(
1 + |x|p).

REMARK 2.16. Under Assumption 2.15 it can be easily verified that for each admissible
control α the map t → P ◦ (Xα

t )−1 is continuous in the weak topology.

We then have the following convergence result.

THEOREM 2.17. Under Assumptions 2.2, 2.9 and 2.15 we have:

(i) The sequence {μn}n∈N is increasing in (L,≤L) and it converges weakly to the minimal
MFG solution, π -a.e.

(ii) The sequence {μn}n∈N is decreasing in (L,≤L) and it converges weakly to the maxi-
mal MFG solution, π -a.e.

PROOF. We only prove the first claim, since the second follows by analogous arguments.
By Lemma 2.12 the sequence {μn}n∈N is clearly increasing. Moreover, the completeness of

the lattice L allows us to define μ∗ as the least upper bound in the lattice (L,≤L) of {μn}n∈N,
and, by Remark A.5 in Appendix A, the sequence μn converges weakly to μ∗ π -a.e.

Define now, for each n ≥ 1, the optimal pairs (Xn,αn) := (Xμn−1
, αμn−1

). Since the con-
trols αn take values in the compact set U , the processes Xn are pathwise equicontinuous
and equibounded. Moreover, by Remark 2.13, the sequence (Xn)n∈N is increasing. There-
fore, by Arzelà–Ascoli’s theorem, we can find an adapted process X such that Xn converges
uniformly on [0, T ] to X, P-a.s.

We now prove that μ∗ is a MFG solution. Since μn
t

= R(μn−1)t = P ◦ (X
μn−1

t )−1 = P ◦
(Xn

t )−1 and since Xn converges uniformly to X P-a.s. and μn
t

converges weakly to μ∗
t

for

π -a.a. t ∈ [0, T ], we deduce that μ∗
t
= P◦X−1

t for π -a.a. t ∈ [0, T ]. Hence, by the continuity

of the map t → P ◦ X−1
t in the weak topology (see Remark 2.16), we can take P ◦ X−1 as

a continuous version of μ∗; that is, μ∗
t

= P ◦ X−1
t for each t ∈ [0, T ]. It remains to find an

admissible control α such that X = Xα and (X,α) is the optimal pair for μ∗.
In order to do so, thanks to the compactness of U , we invoke the Banach–Saks theorem to

find a subsequence of indexes (nj )j∈N such that the Cesàro means of (αnj ) converge in L2 to
a process α. Up to a subsequence, we can assume that the convergence of the Cesàro means
to the process α is pointwise; that is,

(2.24) βm
t := 1

m

m∑
j=1

α
nj

t → αt as m → ∞,P⊗ dt-a.e.
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Moreover, observe that, by Assumption 2.15(2), we have Xβm = 1
m

∑m
j=1 Xnj . Hence, be-

cause we already know that Xnj converges to X uniformly in [0, T ], P-a.s. as nj → ∞, we
deduce that Xβm

converges uniformly to X P-a.s. as m → ∞, and that

Xt = ξ +
∫ t

0
(cs + psXs + qsαs) ds + σWt, ∀t ∈ [0, T ],P-a.s.;

that is, the process X is the solution to the dynamics controlled by α. Furthermore, by the
subpolynomial growth of the costs, we have −∞ < J(α,μ∗).

We now prove that the pair (X,α) is optimal for the flow μ∗. Observe that, for each ad-
missible ζ and each nj ≥ 1, by the optimality of the pair (Xnj , αnj ) for the flow μnj−1, we
have

J
(
αnj ,μnj−1)≤ J

(
ζ,μnj−1).

Summing over j ≤ m, we write

1

m

m∑
j=1

E

[∫ T

0

[
f
(
t,X

nj

t ,μnj−1
t

)+ l
(
t,X

nj

t , α
nj

t

)]
dt + g

(
X

nj

T ,μ
nj−1
T

)]≤ 1

m

m∑
j=1

J
(
ζ,μnj−1),

which, by convexity of l, in turn implies that

E

[∫ T

0
l
(
t,X

βm

t , βm
t

)
dt

]
+ 1

m

m∑
j=1

E

[∫ T

0
f
(
t,X

nj

t ,μnj−1
t

)
dt + g

(
X

nj

T ,μ
nj−1
T

)]

≤ 1

m

m∑
j=1

J
(
ζ,μnj−1).

(2.25)

By the compactness of U and the subpolynomial growth of l, the sequence l(t,X
βm

t , βm
t )

is clearly uniformly integrable with respect to the measure P ⊗ dt . Moreover, by the con-
vergence of Xβm

and βm, thanks to the lower semi-continuity of l, we obtain the pointwise
limit

l(t,Xt , αt ) ≤ lim inf
m

l
(
t,X

βm

t , βm
t

)
, P⊗ dt-a.e.

Therefore, we can take limits as m → ∞ in the first expectation in (2.25) to find that

(2.26) E

[∫ T

0
l(t,Xt , αt ) dt

]
≤ lim inf

m
E

[∫ T

0
l
(
t,X

βm

t , βm
t

)
dt

]
.

Furthermore, by the convergence of Xn and of μn and the continuity of the costs f and g,
we can use the subpolynomial growth of f and g and the boundedness of the sequence μn

(cf. Remark 2.6) to deduce that

(2.27)

E

[∫ T

0
f
(
t,Xt ,μ

∗
t

)
dt + g

(
XT ,μ∗

T

)]

= lim
m

1

m

m∑
j=1

E

[∫ T

0
f
(
t,X

nj

t ,μnj−1
t

)
dt + g

(
X

nj

T ,μ
nj−1
T

)]

and that

(2.28) J
(
ζ,μ∗)= lim

m

1

m

m∑
j=1

J
(
ζ,μnj−1).
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Finally, using (2.26), (2.27) and (2.28) in (2.25), we conclude that J (α,μ∗) ≤ J (ζ,μ∗),
which, in turn, proves the optimality of (X,α) for μ∗, by arbitrariness of ζ . Hence, μ∗ is
a MFG solution.

It only remains to prove the minimality of μ∗. Suppose that ν∗ ∈ L is another MFG so-
lution. By definition, infL = μ0 ≤L ν∗. Since R is increasing, we have μ1 = R(μ0) ≤L

R(ν∗) = ν∗ and, by induction, we conclude that μn ≤L ν∗ for each n ∈ N. This implies that
the same inequality holds for the least upper bound of {μn}n∈N; that is, μ∗ ≤L ν∗, which
completes the proof of the claim. �

2.6. Remarks and examples. In this subsection we collect some remarks and some ex-
amples concerning the previous theorems.

REMARK 2.18. In light of Theorem 2.17, a natural question is whether the minimal
(resp. maximal) MFG solution is associated to the minimal expected cost. In fact, this relation
does not hold in general (see Example 3 below). Nevertheless, it is easy to see that whenever
f (t, x, ·) and g(x, ·) are increasing (resp. decreasing) in μ for each (t, x) ∈ [0, T ] × R, the
minimal (resp. maximal) solution leads to the minimal expected cost and can be approximated
via the learning procedure above.

REMARK 2.19 (On Assumption 2.15). We point out that the linear-convex structure re-
quired in conditions (2) and (3) of Assumption 2.15 is crucial for our proof of Theorem 2.17.
Indeed, the linear-convex structure is employed, together with a Banach–Sacks compactifi-
cation argument, in order to characterize the limit points of the learning procedure as MFG
solutions. In the next section, we extend Theorem 2.17 to a nonconvex setting, by employing
a weak formulation of the problem (see also Remark 3.6). Clearly, also the continuity of the
costs f and g in the measure μ plays an essential role in the proof of Theorem 2.17. Alter-
natively, one could require the continuity of f and g with respect to a Wasserstein distance
(see Remark 2.5).

On the other hand, conditions (1) and (4) can be replaced by the growth condition (2.6)
(when p′ ≥ 2), unless to slightly extend some of the arguments. Also, if the a priori estimate
(2.7) is satisfied, one can see that the continuity of f and g in the weak topology can be
replaced by the continuity in the p-Wasserstein distance, where p′ > p ≥ 1 are as in Re-
mark 2.4.

REMARK 2.20 (On the initialization of the learning procedure). Theorem 2.17 assumes
a more concrete meaning observing that, according to Remark 2.8, the initial conditions of
the learning procedure can be written in terms of the data of the problem. In particular, if U is
compact, if b is bounded or if the growth condition (2.6) is satisfied (see also Remark 2.19),
(2.12) and (2.13) provides an explicit expression for infL and supL, respectively.

Moreover, let μ be a generic flow of probabilities, which is not necessarily an element of L.
Define the sequence μ0 := μ and μn+1 := R(μn) for n ∈ N. Following the proof of Theo-
rem 2.17 we see that, if μ0 ≤L R(μ0) = μ1 (resp. μ0 ≥L R(μ0) = μ1), then the sequence
{μn}n∈N is increasing (resp. decreasing) in (L,≤L) and it converges to a MFG equilibrium.
In other words, if the learning procedure of Theorem 2.17 starts from an arbitrary element,
then it converges to a MFG equilibrium whenever the first and the second element of the
sequence are comparable. In particular, in order to approximate the minimal (resp. the max-
imal) MFG equilibrium, it is sufficient to start the learning procedure from a generic flow of
measures μ0 such that μ0 ≤L infL (resp. ≥L supL).
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EXAMPLE 3. We discuss here the setting studied in [15] in order to draw a connection
between the solutions selected therein and our maximal and minimal solutions. Consider
the case U = R, ξ = 0, b(t, x, a) = cx + a, c ∈ R, σ constant, f (t, x,μ) = 0, l(t, x, a) =
(x2 + a2)/2 and g(x,μ) = (x + ϕ(〈id,μ〉)2/2. Here ϕ is defined as

ϕ(y) := − y

rδ
1{|y|≤rδ} − sign(y)1{|y|>rδ}, y ∈ R, δ ∈ (0, T ), rδ :=

∫ T

δ
w−2

s ds,

with wt := exp[∫ T
t (−c + ηs) ds], η solution to the Riccati equation dηt

dt
= η2

t − 2cηt − 1,
ηT = 1.

By the monotonicity of ϕ (see also Example 1), we can easily verify that g satisfies the
Submodularity Assumption 2.9, while existence and uniqueness of optimal pairs is a conse-
quence of the strict convexity of the costs, and of the linearity of b (we refer to [15] for more
datails). Moreover, by the boundedness of ϕ, we have that g(x,μ) ≤ x2 + 1. Hence, for any
flow of measures μ we see that the optimal control αμ must satisfy

E

[∫ T

0

(α
μ
t )2

2
dt

]
≤ J

(
αμ,μ

)≤ J (0,μ) ≤ 1 +E

[∫ T

0

(X0
t )

2

2
dt + (

X0
T

)2]
< ∞,

where 0 denotes the control constantly equal to zero. From the latter estimate, and a standard
use of Grönwall’s inequality, we deduce that (2.7) is satisfied with p′ = 2. All the require-
ments of Theorem 2.14 are then fulfilled. Moreover, the proof of Theorem 2.17 can be easily
modified to fit the example under consideration (see also Remark 2.19). Therefore, the set of
MFG solutions is a nonempty complete lattice, and the minimal and maximal MFG solutions
can be selected by the learning procedure introduced in the previous subsection.

It is shown in [15] that the set of MFG solutions M has exactly three elements, namely
M = {μ−1,μ0,μ1}, satisfying

(2.29)
〈
id,μA

t

〉 := Awt

∫ t

0
w−2

s ds for each t ∈ [0, T ],A ∈ {−1,0,1}.

Since w > 0, we immediately see that 〈id,μ−1
t 〉 < 〈id,μ0

t 〉 < 〈id,μ1
t 〉 for each t ∈ [0, T ],

which can happen only if μ−1 ≤L μ0 ≤L μ1. We finally draw a connection between the
solutions selected in [15] and our maximal and minimal solutions, recalling from [15] the
following facts:

• The equilibrium with minimal cost is μ0.
• The “zero-noise limit” and the “N -player game limit” select a randomized equilibrium,

given by a combination of the maximal and the minimal MFG solution, both with proba-
bility 1/2; that is, with law 1

2δμ−1 + 1
2δμ1 .

3. Relaxed submodular mean field games. In this section we aim at allowing for mul-
tiple solutions of the individual optimization problem, and at overcoming the linear-convex
setting in the convergence result. This comes with the price of pushing the analysis to a more
technical level, by working with a weak formulation of the problem and with the so-called
relaxed controls.

3.1. The relaxed mean field game. Let b, σ , f , l, g, U be given as in Section 2 (see (2.2)
and (2.3)), with the additional assumption that b, f , l, g are deterministic and, for simplicity,
that σ is constant. Let C denote the set of continuous functions on [0, T ]. In view of a weak
formulation of the problem, the initial value of the dynamics will be described through an
initial fixed probability distribution ν0 ∈ P(R).

Let � denote the set of deterministic relaxed controls on [0, T ] × U ; that is, the set of
positive measures λ on [0, T ] × U such that λ([s, t] × U) = t − s for all s, t ∈ [0, T ] with
s < t .
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DEFINITION 2. A 7-tuple ρ = (�,F,F,P, ξ,W,λ) is said to be an admissible relaxed
control if:

1. (�,F,F,P) is a filtered probability space satisfying the usual conditions;
2. ξ is an F0-measurable R-valued random variable (r.v.) such that P ◦ ξ−1 = ν0;
3. W = (Wt)t∈[0,T ] is a standard (�,F,F,P)-Brownian motion;
4. λ is a �-valued r.v. defined on � such that σ {λ([0, t] × E) | E ∈ B(U)} ⊂ Ft , ∀t ∈

[0, T ].
We denote by Ã the set of admissible relaxed controls.

The set of admissible ordinary controls is naturally included in the set of relaxed con-
trols via the map α → λα(dt, da) := δαt (da) dt . Any admissible relaxed control ρ =
(�,F,F,P, ξ,W,λ) ∈ Ã, on the other hand, can be factorized in that one can find an adapted
process λ : � × [0, T ] →P(U) such that λ(dt, da) = λt (da) dt P-almost surely.

Furthermore, since b is assumed to satisfy the usual Lipschitz continuity and growth con-
ditions, there exists a unique process Xρ : � × [0, T ] → R, solving the system’s dynamics
equation that now reads as

(3.1) X
ρ
t = ξ +

∫ t

0

∫
U

b
(
t,X

ρ
t , a

)
λt (da) dt + σWt, t ∈ [0, T ].

Then, for a measurable flow of probability measures μ, we define the cost functional

J̃ (ρ,μ) := E
P

[∫ T

0

∫
U

[
f
(
t,X

ρ
t ,μt

)+ l
(
t,X

ρ
t , a

)]
λt (da) dt + g

(
X

ρ
T ,μT

)]
, ρ ∈ Ã,

and we say that ρ ∈ Ã is an optimal relaxed control for the flow of measures μ if it solves
the optimal control problem related to μ; that is, if −∞ < J̃ (ρ,μ) = inf J̃ (·,μ).

We now make the following assumptions, which will be employed in the existence result
of Theorem 3.5.

ASSUMPTION 3.1.

1. The control space U is compact.
2. The costs f (t, ·,μ), l(t, ·, ·) and g(·,μ) are lower semicontinuous in (x, a) for each

(t,μ) ∈ [0, T ] ×P(R).
3. There exist exponents p′ > p ≥ 1 and a constant K > 0 such that |ν0|p′ :=∫

R
|y|p′

dν0(y) < ∞ and such that, for all (t, x,μ, a) ∈ [0, T ] ×R×P(R) × U ,∣∣g(x,μ)
∣∣≤ K

(
1 + |x|p + |μ|p),∣∣f (t, x,μ)

∣∣+ ∣∣l(t, x, a)
∣∣≤ K

(
1 + |x|p + |μ|p),

where |μ|p = ∫
R

|y|p dμ(y).
4. f and g satisfy the Submodularity Assumption 2.9.

REMARK 3.2. Alternatively, as discussed also in Remark 2.4, we can replace (1) in
Assumption 3.1 by requiring U to be closed and the growth condition (2.6) to be satisfied.

REMARK 3.3. Under Assumption 3.1, it is well known that for each measurable flow
μ, arg min J̃ (·,μ) is nonempty. This can be proved using the so-called “compactification-
method” (see, e.g., [16] and [18], among others). For later use, we now sketch the main
argument. Let (ρn)n∈N be a minimizing sequence for J̃ (·,μ), with ρn = (�n,Fn,Fn,Pn, ξn,

Wn,λn). Then, since U is compact, thanks to the growth conditions on b, the sequence
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P
n ◦ (ξn,Wn,λn,Xρn)−1 is tight in P(R × C × � × C), so that, up to a subsequence,

P
n ◦ (ξn,Wn,λn,Xρn)−1 converges weakly to a probability measure P̄ ∈P(R×C ×�×C).

Moreover, through a Skorokhod representation argument, we can find an admissible relaxed
control ρ∗ = (�∗,F∗,F∗,P∗, ξ∗,W∗, λ∗) such that P̄ = P∗ ◦ (ξ∗,W∗, λ∗,Xρ∗)−1. Finally,
the continuity assumptions on the costs together with their polynomial growth, allows us to
conclude that

J̃ (ρ∗,μ) ≤ lim inf
n

J̃ (ρn,μ) = inf J̃ (·,μ);

that is, ρ∗ ∈ arg min J̃ (·,μ). In particular, this argument shows that for any sequence
(ρn)n∈N ⊂ arg min J̃ (·,μ) we can find an admissible relaxed control ρ∗ = (�∗,F∗,F∗,P∗,
ξ∗,W∗, λ∗) ∈ arg min J̃ (·,μ) such that, up to a subsequence, Pn ◦ (Xρn)−1 converges weakly
to P∗ ◦ (Xρ∗)−1 in P(C).

The compactness of U and (2.2) immediately imply that there exists a constant M > 0
such that,

E
P
[∣∣Xρ

t

∣∣p′]≤ M, ∀t ∈ [0, T ], ρ ∈ Ã.

Hence, Lemma A.2 in the Appendix A allows us to find μMin,μMax ∈ P(R) with

μMin ≤st
P ◦ (Xρ

t

)−1 ≤st μMax, ∀t ∈ [0, T ], ρ ∈ Ã.

Moreover, as it is shown in Remark 2.6, we have uniform boundedness of the moments

(3.2) sup
μ∈[μMin,μMax]

|μ|q < ∞, ∀q < p′.

Next, define the set of feasible flows of measures L as the set of all equivalence classes
(w.r.t. π := δ0 + dt + δT ) of measurable flows (μt )t∈[0,T ] with μt ∈ [μMin,μMax] for π -
almost all t ∈ (0, T ] and μ0 = ν0. Let 2L be the set of all subset of L, and define the best-
response-correspondence R : L → 2L by

(3.3) R(μ) :=
{
P ◦ (Xρ)−1 ∣∣ ρ ∈ arg min J̃ (·,μ)

}
⊂ L, μ ∈ L.

We can then give the following definition.

DEFINITION 3. The flow of measures μ∗ is a relaxed mean field game solution if μ∗ ∈
R(μ∗).

3.2. Existence and approximation of relaxed MFG solutions. We now move on to prov-
ing the existence and approximation of relaxed mean field game solutions. In order to keep a
self-contained but concise analysis, the proofs of the subsequent results will be only sketched
whenever their arguments follow along the same lines of those employed in the proofs of
Section 2.

LEMMA 3.4. Under Assumption 3.1, the best-response-correspondence satisfies the fol-
lowing:

(i) For all μ ∈ L, we have that infR(μ), supR(μ) ∈ R(μ).
(ii) infR(μ) ≤L infR(μ) and supR(μ) ≤L supR(μ) for all μ,μ ∈ L with μ ≤L μ.
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PROOF. We prove the two claims separately.
Proof of (i). Take μ ∈ L. In order to show that infR(μ) ∈ R(μ), we recall that, as it is

shown in the proof of Lemma A.4 in the Appendix A, we can select a sequence of relaxed
controls (ρn)n∈N ⊂ arg min J̃ (·,μ) such that inf{Pn ◦ Xρn | n ∈ N} = infR(μ).

Without loss of generality, we can assume that the relaxed controls ρn are defined on the
same stochastic basis; that is, ρn = (�,F,F,P, ξ,W,λn) for each n ∈ N. Indeed, we can
choose

� := R× C × �N

as sample space and take ξ , W , λn, n ∈ N, as the canonical projections. Let F̂ be the Borel
σ -algebra on � (w.r.t. the product topology), and let F̂ be the natural filtration induced by
ξ , W , λn, n ∈ N; that is, F̂t := σ(ξ,W(s), λn(C) : s ∈ [0, t],C ∈ B([0, t] × U),n ∈ N), t ∈
[0, T ]. Thus, W corresponds to a continuous real-valued F̂-adapted process, while λn can be
identified with a P(U)-valued F̂-predictable process (see, for instance, Lemma 3.2 in [22]).
Recall that ν0 denotes the common initial distribution. Let γ denote standard Wiener measure
on B(C). If ρ̄n = (�n,Fn,F

n,Pn, ξ
n,Wn, λ̄n), n ∈ N, are stochastic relaxed controls with

Pn ◦ (ξn)−1 = ν0, hence Pn ◦ (ξn,Wn)−1 = ν0 ⊗ γ , then let Qn denote the Markov kernel
from R× C to � that corresponds to (a version of) the regular conditional distribution of λ̄n

given (ξn,Wn). Let P be the probability measure on F̂ determined by

P

(
{ξ ∈ B0} ∩ {W ∈ B} ∩ ⋂

i∈I

{
λi ∈ Ci

}) :=
∫
B0×B

(∏
i∈I

Qi(x,w;Ci)

)
ν0 ⊗ γ (dx, dw)

for any choice of B0 ∈ B(R), B ∈ B(C), I ⊂ N a finite subset, and Ci ∈ B(�), i ∈ I . Then
P ◦ (ξ,W,λn)−1 = Pn ◦ (ξn,Wn, λ̄n)−1 for all n ∈ N. As a last step, define F to be the
P-completion of F̂ , and let F be the right-continuous P-augmentation of F̂.

We will now employ an inductive scheme. Let ρ1, ρ2 be the first two elements of the
sequence (ρn)n∈N. As in Lemma 2.11, we can define two �-valued r.v.’s λ∨ and λ∧ and two
admissible relaxed controls ρ∨ = (�,F,F,P, ξ,W,λ∨) and ρ∧ = (�,F,F,P, ξ,W,λ∧)

such that Xρ1 ∨ Xρ2 = Xρ∨
and Xρ1 ∧ Xρ2 = Xρ∧

. In fact, set

λ∧
s :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

λ2
s on

{
Xρ1

s > Xρ2
s

}
∪
{
Xρ1

s = Xρ2
s ,

∫
U

b
(
s,Xρ1

s , a
)
λ1

s (da) ≥
∫
U

b
(
s,Xρ2

s , a
)
λ2

s (da)

}
,

λ1
s on

{
Xρ1

s < Xρ2
s

}
∪
{
Xρ1

s = Xρ2
s ,

∫
U

b
(
s,Xρ1

s , a
)
λ1

s (da) <

∫
U

b
(
s,Xρ2

s , a
)
λ2

s (da)

}
,

where λ1(ds, da) = λ1
s (da) ds, λ2(ds, da) = λ2

s (da) ds, and λ∧(ds, da) := λ∧
s (da) ds. The

definition of λ∨ is analogous. Repeating the same arguments which lead to (2.21) in the proof
of Lemma 2.12, we see that

0 ≤ J̃
(
ρ∨,μ

)− J̃ (ρ1,μ) = J̃ (ρ2,μ) − J̃
(
ρ∧,μ

)= 0,

which implies that P ◦ (Xρ∧
)−1 = P ◦ (Xρ1 ∧ Xρ2)−1 ∈ R(μ). Moreover, since Xρ1 ∧

Xρ2 = Xρ∧
, we obviously have P ◦ (Xρ∧

)−1 ≤L
P ◦ (Xρ1

)−1 ∧L
P ◦ (Xρ2

)−1. Repeat-
ing this construction inductively, for each n ∈ N we find an admissible relaxed control
ρ∧n = (�,F,F,P, ξ,W,λ∧n) such that P ◦ (Xρ∧n

)−1 ∈ R(μ) and P ◦ (Xρ∧n
)−1 ≤L

P ◦
(Xρ1 ∧L · · · ∧L

P ◦ Xρn
)−1. Furthermore, the sequence P ◦ (Xρ∧n

)−1 is decreasing in L,

since for each n we have X
ρ∧n

t = X1
t ∧ · · · ∧ Xn

t ≤ X1
t ∧ · · · ∧ Xn−1

t for each t ∈ [0, T ] P-a.s.
Hence,

infR(μ) = inf
{
P ◦ (Xρn

)−1 | n ∈ N
}= inf

{
P ◦ (Xρ∧n)−1 | n ∈ N

}
,



SUBMODULAR MEAN FIELD GAMES 2555

which implies that the sequence P ◦ (Xρ∧n
)−1 converges weakly to infR(μ), π -a.e. Since

(P ◦ (Xρ∧n
)−1)n∈N ⊂ R(μ), by the closure property of R(μ) (see Remark 3.3), we conclude

that infR(μ) ∈ R(μ).
Analogously, it can be shown that supR(μ) ∈ R(μ).
Proof of (ii). Let μ, μ̄ ∈ L with μ ≤L μ̄ and ρ, ρ̄ ∈ Ã with ρ ∈ arg min J̃ (·,μ) and ρ̄ ∈

arg min J̃ (·, μ̄). As in the proof of claim (i), we may assume that ρ and ρ̄ are defined on the
same stochastic basis; that is, ρ = (�,F,F,P, ξ,W,λ) and ρ = (�,F,F,P, ξ,W, λ̄). As
above, we can then define two �-valued r.v.’s λ∨ and λ∧ and two admissible relaxed controls
ρ∨ = (�,F,F,P, ξ,W,λ∨) and ρ∧ = (�,F,F,P, ξ,W,λ∧) such that Xρ ∨Xρ̄ = Xρ∨

and
Xρ ∧ Xρ̄ = Xρ∧

.
Repeating the arguments which lead to (2.22) in the proof of Lemma 2.12, we exploit the

submodularity of the costs and the definitions of λ∨ and λ∧ to find

(3.4) 0 ≤ J̃
(
ρ∨, μ̄

)− J̃ (ρ̄, μ̄) ≤ J̃
(
ρ∨,μ

)− J̃ (ρ̄,μ) = J̃ (ρ,μ) − J̃
(
ρ∧,μ

)≤ 0,

where the first and the last inequality hold because of the optimality of ρ and ρ̄.
By claim (i), we have that supR(μ) ∈ R(μ) and supR(μ̄) ∈ R(μ̄), therefore, we can

choose ρ and ρ̄ such that P ◦ (Xρ̄)−1 = supR(μ̄) and P ◦ (Xρ)−1 = supR(μ). From (3.4)
we see that ρ∨ ∈ arg min J̃ (·, μ̄), which implies that P ◦ (Xρ∨

)−1 ≤L supR(μ̄). This, by
construction of ρ∨, in turn implies that

supR(μ) = P ◦ (Xρ)−1 ≤L
P ◦ (Xρ)−1 ∨L

P ◦ (Xρ)−1 ≤L
P ◦ (Xρ∨)−1 ≤L supR(μ̄);

that is, supR(μ) ≤L supR(μ̄). In the same way, choosing ρ and ρ̄ such that P ◦ (Xρ̄)−1 =
infR(μ̄) and P ◦ (Xρ)−1 = infR(μ) we conclude that infR(μ) ≤L infR(μ̄). �

THEOREM 3.5. Under Assumption 3.1, we have that:

(i) The set of mean field game solutions M is nonempty and admits a minimal and a
maximal element.

Assume moreover that the costs f (t, ·, ·) and g(·, ·) are continuous in (x,μ). Then:

(ii) For μ0 := infL and μn := infR(μn−1) for n ∈ N, we have that the learning proce-
dure (μn)n∈N is increasing and it converges weakly to infM, π -a.e.

(iii) For μ0 := supL and μn := supR(μn−1) for n ∈ N, we have that the learning proce-
dure (μn)n∈N is decreasing and it converges weakly to supM, π -a.e.

PROOF. Claim (i) follows from Lemma 3.4 and Theorem 4.1 in [33].
We only prove (ii), since the proof of (iii) is similar. By Lemma 3.4 the sequence (μn)n∈N

is increasing, hence it converges weakly to its least upper bound μ∗, π -a.e. For each n ∈ N, let

ρn = (�n,Fn,Fn,Pn, ξn,Wn,λn) be an admissible relaxed control such that Pn◦(Xρn
)−1 =

infR(μn−1). As in Remark 3.3, the sequence (P ◦ (ξn,Wn,λn,Xρn
)−1)n∈N is tight, so that,

up to a subsequence, we can assume that the sequence P
n ◦ (ξ,W,λn,Xρn

)−1 converges
weakly to a probability measure P̄ ∈ P(R×C×�×C). Moreover, we can find an admissible
relaxed control ρ∗ = (�∗,F∗,F∗,P∗, ξ∗,W∗, λ∗) such that P̄ = P∗ ◦(ξ∗,W∗, λ∗,Xρ∗)−1, and
this implies that μ∗ = P∗ ◦ (Xρ∗)−1.

By the optimality of ρn for the flow of measures μn−1, we have

(3.5) J̃
(
ρn,μn−1)≤ J̃

(
ρ,μn−1), ∀ρ ∈ Ã.

Now, the continuity of the costs f , l and g, together with their polynomial growth and the
uniform integrability condition (3.2), allow us to show the continuity of the functional J̃

along the sequences (ρn,μn−1)n∈N and (ρ,μn−1)n∈N. This in turn enables us to take limits
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as n → ∞ in (3.5) and to deduce that J̃ (ρ∗,μ∗) ≤ J̃ (ρ,μ∗) for each ρ ∈ Ã. Hence, Xρ∗ is

an optimal trajectory for the flow μ∗ and, since μ∗ = P∗ ◦ (Xρ∗)−1, we have μ∗ ∈ R(μ∗);
that is, μ∗ is a mean field game solution.

It remains to show that μ∗ = infM. Let ν ∈ M. By definition, we have μ0 = infL ≤L ν.

Since infR is increasing by (ii) in Lemma 3.4, μ1 = infR(μ0) ≤L infR(ν) ≤L ν, where the
last inequality follows from ν ∈ R(ν). By induction, we deduce that μn ≤L ν for each n ∈ N.
Recalling that μ∗ = sup{μn | n ∈ N}, we conclude that μ∗ ≤L ν, which completes the proof.

�

REMARK 3.6. Notice that the role of the compactification through the problem’s weak
formulation and the use of relaxed controls is twofold. On the one hand, it ensures that the
sets of best responses R(·) admit minimal and maximal elements, which is essential for our
arguments in the case in which R(·) are not singletons. On the other hand, regarding the
convergence of the learning procedure, it replaces the compactification via Banach–Saks’
theorem used in the proof of Theorem 2.17, for which the additional linear-convex structure
(enforced in Assumption 2.15) is necessary (see also Remark 2.19).

4. Concluding remarks and further extensions. In the following, we provide some
comments on our assumptions and further extensions of the techniques elaborated in the
previous sections.

4.1. On the multidimensional case. Our approach can be extended only to some partic-
ular multidimensional cases. Indeed, although the first order stochastic dominance induces
a lattice structure on P(R), it does not induce a lattice order on P(Rd) for d > 1 (cf. [21]
and [26]). Also, Lemma 2.11 does not hold, in general, for multidimensional settings, as the
following counterexample shows.

EXAMPLE 4. Consider a two-dimensional Brownian motion W = (W 1,W 2). For any R-
valued integrable progressively measurable process α, let Xα = (X1,α,X2,α) be the solution
to

X
1,α
t =

∫ t

0
αs ds + W 1

t , X
2,α
t = −

∫ t

0
αs ds + W 2

t .

Taking a positive α, we see that X1,α ∨ X1,−α = X1,α , while X2,α ∨ X2,−α = X2,−α . This
means that the first component of Xα ∨ X−α should be controlled by α, while the second
component should be controlled by −α. Therefore, Xβ �= Xα ∨ X−α for any control β .

Nevertheless, the results in this paper can be extended to suitable multidimensional settings
where the actual dependence on the measure is only through one of its one-dimensional
marginals, and Lemma 2.11 and Proposition 2.12 hold.

For example, take d > 1 and a d-dimensional Brownian motion W = (W 1, . . . ,Wd), on a
complete filtered probability space (�,F, (Ft )t∈[0,T ],P). Consider closed sets Ui ⊂ R, i =
1, . . . , d . Admissible controls are d-dimensional square integrable progressively measurable
processes α = (α1, . . . , αd) taking values in U1 × · · · × Ud . Take measurable functions

bi, li : � × [0, T ] ×R× Ui →R, i = 1, . . . , d,

f : � × [0, T ] ×R
d ×P(R) →R, g : � ×R

d ×P(R) →R,



SUBMODULAR MEAN FIELD GAMES 2557

and a d-dimensional F0-measurable square integrable random variable ξ = (ξ1, . . . , ξd). For
each admissible control α, let the process Xα = (X1,α, . . . ,Xd,α) denote the solution to the
system

dX
i,α
t = bi(t,Xi,α

t , αi
t

)
dt + dWi

t , t ∈ [0, T ],Xi,α
0 = ξ i, i = 1, . . . , d.

Next, for any given measurable flow μ = (μt )t∈[0,T ] of probability measures on B(R), we
consider the cost functional

J (α,μ) := E

[∫ T

0

[
f
(
t,Xα

t ,μt

)+
d∑

i=1

li
(
t,X

i,α
t , αi

t

)]
dt + g

(
Xα

T ,μT

)]
.

We enforce an analogous of Assumption 2.2; that is, we assume that for each flow μ the exists
a unique optimal pair (Xμ,αμ) with Xμ satisfying some tightness condition uniformly in μ.

Notice that we assume that the minimization problem depends on a measure on R, not on
R

d . For example, the problem can depend only on one fixed marginal, say the first. In this
spirit, a MFG solution is a measurable flow μ∗ = (μ∗

t )t∈[0,T ] of probabilities such that

μ∗
t = P ◦ (X1,μ∗

t

)−1 for each t ∈ [0, T ].
Now, since the components of Xα are decoupled, we easily see that Lemma 2.11 can be

recovered. However, in order to deal with the multidimensional setting, we need to enforce a
stronger version of Assumption 2.9.

ASSUMPTION 4.1. For P⊗ dt a.a. (ω, t) ∈ � × [0, T ], for φ ∈ {f (t, ·, ·), g}, we have

φ(x̄ ∨ x,μ) − φ(x̄,μ) ≤ φ(x,μ) − φ(x̄ ∧ x,μ),

for all x̄, x ∈ R
d and μ ∈ P(R), and

φ(x̄, μ̄) − φ(x, μ̄) ≤ φ(x̄,μ) − φ(x,μ),

for all x̄, x ∈ R
d and μ̄,μ ∈P(R) s.t. x̄ ≥ x and μ̄ ≥st μ.

By the additive structure of the running cost involving the controls, using Assumption 4.1
we can adapt the proof of Proposition 2.12 to prove that the best reply map is increasing.
Therefore, for this particular set up, the arguments of Section 2 can be recovered, and Theo-
rems 2.14 and (by making an analogous of Assumption 2.15) 2.17 can be extended.

4.2. On linear-quadratic MFG. Assumption 2.9 is fulfilled in the linear-quadratic case

b(t, x, a) = ct + ptx + qta,

f (t, x,μ) + l(t, x, a) = 1

2
nta

2 + 1

2

(
mtx + m̂t 〈id,μ〉)2,

g(x,μ) = 1

2

(
htx + ĥt 〈id,μ〉)2,

where id(y) = y, and for deterministic continuous functions ct , pt , qt , nt , mt , m̂t , ht and ĥt

such that inft∈[0,T ] qt > 0, inft∈[0,T ] nt > 0, ntm̂t ≤ 0 and ht ĥt ≤ 0 for each t ∈ [0, T ].
However, the tightness condition (2) in Assumption 2.2 is not satisfied unless we consider a

compact control set U . In fact, when U is not compact, there is a counterexample in Section 7
of [22], which shows that a mean field game solution may not exist.

Nevertheless, our approach allows us to treat nonstandard linear-quadratic mean field
games as, for example, the one considered in Section 2.2 in [15] (see also [5] and [10]).
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4.3. On a geometric dynamics. Our results still hold true if we replace (2.1) with a dy-
namics of the geometric form

(4.1) dXt = b(t,Xt , αt )Xt dt + σtXt dWt, t ∈ [0, T ],X0 = ξ,

for some square-integrable positive r.v. ξ , a bounded drift b and a bounded stochastic pro-
cess σ . Indeed, for each square-integrable process α there exists a unique strong solution Xα

to the latter SDE, and classical estimates show that there exists a constant M > 0 such that

sup
t∈[0,T ]

E
[∣∣Xα

t

∣∣2]≤ M;

hence, the tightness condition in Assumption 2.2 is satisfied. Moreover, the solution to (4.1)
can be represented as

Xα
t = ξ exp

(∫ t

0

(
b
(
s,Xα

s , αs

)− 1

2
σ 2

s

)
ds +

∫ t

0
σs dWs

)
, t ∈ [0, T ],

and the mapping x → exp(x) is monotone. Hence, since ξ is positive, for any couple of
admissible controls α, ᾱ, we have that for each t ∈ [0, T ] P-a.s.

Xᾱ
t ≥ Xα

t if and only if
∫ t

0
b
(
s,Xᾱ

s , ᾱs

)
ds ≥

∫ t

0
b
(
s,Xα

s , αs

)
ds.

The latter property allows us to repeat all the arguments employed in the proof of Lemma 2.11
and (mutatis mutandis) to carry on the analysis that lead to the existence results of Theo-
rems 2.14 and 3.5.

4.4. On mean field dependent dynamics. For a suitable choice of the costs f , g and l,
Theorem 2.14 still holds if we have a “sufficiently simple” mean field dependence in the
dynamics of the system. For the sake of illustration, we discuss here two examples.

Let U be a compact subset of R. For any admissible process α and any measurable flow
of probability measures μ, consider a state process given by

(4.2) dXt = Xt

(
αt + m(μt)

)
dt + σXt dWt, t ∈ [0, T ],X0 = ξ,

where ξ is a positive square-integrable r.v. and m : P(R) → R is a bounded function which
is measurable with respect to the Borel σ -algebra associated to the topology of weak conver-
gence of probability measures. Assume moreover that m is increasing with respect to the first
order stochastic dominance.

Notice that, for each measurable flow μ and for each admissible α, the SDE (4.2) admits
the explicit solution

(4.3) X
α,μ
t = Et(α)Mt(μ),

where

Et(α) := ξ exp
(∫ t

0

(
αs − σ 2

2

)
ds + σWt

)
and Mt(μ) := exp

(∫ t

0
m(μs) ds

)
.

Since U is compact and m is bounded, we can find a constant K > 0 which is independent of
μ, such that

sup
t∈[0,T ]

E
[∣∣Xα,μ

t

∣∣2]≤ K.

The latter implies the tightness condition in Assumption 2.2. As in Section 2.2, this allows us
to define a set L of feasible flows of measures, and to show that (L,≤L) is a complete lattice.
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Given μ ∈ L and two admissible controls α and ᾱ, as in Lemma 2.11 we can construct
α∨ and α∧ such that X

α,μ
t ∨ X

ᾱ,μ
t = X

α∨,μ
t and X

α,μ
t ∧ X

ᾱ,μ
t = X

α∧,μ
t . Moreover, due to the

particular structure of (4.2), the construction of α∨ and α∧ does not depend on μ.
Consider now cost functions l(t, x, a) = a2/2 and f (t, x,μ) = xψ(μ), for a measurable

function ψ : P(R) →R− which is decreasing w.r.t. the first order stochastic dominance. With
such a choice of the costs, the functional J is strictly convex w.r.t. α. Hence, for each μ ∈ L,
there exists a unique minimizer α of J (·,μ) (see, e.g., Theorem 5.2 in [36]). We then have
the following result.

LEMMA 4.2. The best-response-map R : L → L is increasing.

PROOF. Take μ, μ̄ ∈ L with μ ≤L μ̄. Let α ∈ arg minJ (·,μ) and ᾱ ∈ arg minJ (·, μ̄).
Similar to Lemma 2.12, we first see that

(4.4) 0 ≥ J (α,μ) − J
(
α∧,μ

)= J
(
α∨,μ

)− J (ᾱ,μ).

We also observe that, exploiting (4.3), the monotonicity of m and the fact that ψ is negative
and decreasing, one has(

X
α∨,μ
t − X

ᾱ,μ
t

)
ψ(μt) = (

Et

(
α∨)− Et(ᾱ)

)
Mt(μ)ψ(μt)

≥ (
Et

(
α∨)− Et(ᾱ)

)
Mt(μ̄)ψ(μ̄t ) = (

X
α∨,μ̄
t − X

ᾱ,μ̄
t

)
ψ(μ̄t ).

(4.5)

Thus, combining (4.4) and (4.5), we obtain

0 ≥ J
(
α∨,μ

)− J (ᾱ,μ) = E

[∫ T

0

(
(α∨

t )2

2
− ᾱ2

t

2
+ (

X
α∨,μ
t − X

ᾱ,μ
t

)
ψ(μt)

)
dt

]

≥ E

[∫ T

0

(
(α∨

t )2

2
− ᾱ2

t

2
+ (

X
α∨,μ̄
t − X

ᾱ,μ̄
t

)
ψ(μ̄t )

)
dt

]
= J

(
α∨, μ̄

)− J (ᾱ, μ̄).

Hence α∨ ∈ arg minJ (·, μ̄), which, by uniqueness, implies that α∨ = ᾱ. This in turn im-
plies that Et(α

∨) = Et(α) ∨ Et(ᾱ) = Et(ᾱ). Hence, Et(α) ≤ Et(ᾱ) and, by monotonicity
of m, we find X

α,μ
t = Et(α)Mt(μ) ≤ Et(ᾱ)Mt(μ̄) = X

ᾱ,μ̄
t and R(μ) = P ◦ (X

α,μ
t )−1 ≤L

P ◦ (X
ᾱ,μ̄
t )−1 = R(μ̄), which completes the proof. �

Thanks to Lemma 4.2, we can invoke Tarski’s fixed point theorem in order to deduce that
the set of mean field game equilibria is a nonempty and complete lattice.

REMARK 4.3. Statements analogous to the previous ones still hold if we consider a
controlled Ornstein–Uhlenbeck process with mean field term in the dynamics; that is, if the
state process is given by

(4.6) dXt = (
κXt + αt + m(μt)

)
dt + σ dWt, t ∈ [0, T ],X0 = ξ with κ ∈ R and σ ≥ 0,

for a measurable bounded increasing function m : P(R) →R.

4.5. On a class of MFGs with common noise. Our approach allows us also to treat a class
of submodular mean field games with common noise, in which the representative player
interacts with the population through the conditional mean of its state given the common
noise. We refer to the recent works [11, 15] and [30] for a related set up. In the following,
we provide the main ingredients of the setting and we show that the set of solutions to the
considered class of MFGs with common noise is a nonempty complete lattice.
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Let (Wt)t∈[0,T ] and (Bt )t∈[0,T ] be two independent Brownian motions on a complete fil-
tered probability space (�,F, (Ft )t∈[0,T ],P). Let ξ ∈ L2(�,F0,P), σ ≥ 0 and σ0 > 0. For
each α ∈ A (see the beginning of Section 2.1), consider a dynamics of the system given by

(4.7) dXt = b(t,Xt , αt ) dt + σ dWt + σ0 dBt , t ∈ [0, T ],X0 = ξ,

for some measurable function b satisfying the requirements in (2.2). Here, the Brownian
motion B stands for the common noise, while W represents the idiosyncratic noises affecting
the state processes in the pre-limit N -player game.

Notice that, if we assume the control set U to be compact, then, by a standard use of
Grönwall inequality, we can find a constant C > 0 such that the solution Xα to the SDE (4.7)
satisfies (P-a.s.) the estimate∣∣Xα

t

∣∣≤ C
(
1 + |ξ | + σ sup

s∈[0,t]
|Ws | + σ0 sup

s∈[0,t]
|Bs |

)
=: Yt for all t ∈ [0, T ] and α ∈A.

Moreover, notice that the process (Yt )t∈[0,T ] belongs to L2(� × [0, T ]).
Let FB = (FB

t ) be the natural filtration generated by B augmented by all P-null sets,
and define LB to be the set of all real-valued F

B -progressively measurable processes m =
(mt )t∈[0,T ] such that |mt | ≤ Yt P-a.s., for each t ∈ [0, T ]. Then, for any given process m ∈
LB , consider the optimization problem infJ (·,m), with J defined by

J (α,m) := E

[∫ T

0

[
f
(
t,Xα

t ,mt

)+ l
(
t,Xα

t , αt

)]
dt + g

(
Xα

T ,mT

)]
, α ∈ A,

for appropriately measurable functions f : � × [0, T ] ×R
2 →R, l : � × [0, T ] ×R× U →

R and g : � × R
2 → R. Notice that f and g are now functions of the process m, which

represents the conditional mean of the population given the common noise B .

ASSUMPTION 4.4.

1. The control space U is compact.
2. For each process m ∈ LB , there exists a unique optimal pair (Xm,αm).
3. For P ⊗ dt a.a. (ω, t) ∈ � × [0, T ], the functions f (t, ·, ·) and g have decreasing dif-

ferences in (x, y); that is, for φ ∈ {f (t, ·, ·), g},
φ(x̄, ȳ) − φ(x, ȳ) ≤ φ(x̄, y) − φ(x, y),

for all x̄, x, ȳ, y ∈ R s.t. x̄ ≥ x and ȳ ≥ y.

Next, introduce the map R : LB → LB defined by

R(m)t := E
[
Xm

t | FB
T

]
for t ∈ [0, T ].

Notice that R(m) is F
B -adapted (see Remark 1 in [30]) and continuous in t , and therefore

F
B -progressively measurable.

DEFINITION 4. A process m∗ ∈ LB is a strong MFG solution to the MFG with common
noise if

m∗
t = E

[
Xm∗

t |FB
T

]
for each t ∈ [0, T ].

Consider on LB the order relation given by m ≤ m if and only if mt ≤ mt P⊗dt-a.e. Since
LB is a bounded subset of the Dedekind complete lattice L2(� × [0, T ]), it is a complete
lattice. Moreover, as in Remark 2.13, for m,m ∈ LB with m ≤ m we have that Xm

t ≤ Xm
t for

each t ∈ [0, T ], P-a.s., and hence

R(m)t = E
[
Xm

t | FB
T

]≤ E
[
Xm

t | FB
T

]= R(m)t , P⊗ dt-a.e.,

which implies that R : LB → LB is increasing. Once more, using Tarski’s fixed point theo-
rem, we have proved the following result.



SUBMODULAR MEAN FIELD GAMES 2561

THEOREM 4.5. Under Assumption 4.4, the set of strong solutions of the MFG with com-
mon noise is a nonempty complete lattice.

REMARK 4.6. We point out that Theorem 4.5 guarantees existence of a strong solution to
the MFG; that is, a solution which is adapted to the common noise. As a matter of fact, results
of existence of strong solutions are still relatively limited in the literature on MFGs with
common noise, and they are usually proved through uniqueness results (see, e.g., Section 6 in
[11]), in the spirit of the Yamada–Watanabe theory for weak and strong solutions to standard
SDEs.

REMARK 4.7. Notice that the crucial step in order to obtain Theorem 4.5 is the inequality
Xm

t ≤ Xm
t , for each t ∈ [0, T ], whenever m ≤ m. Following the arguments developed in

Section 4.4 for MFG without common noise, a similar relation can be established also in the
case of mean field dependent dynamics as in (4.2) or (4.6) with an additional common noise
term σ0 dBt . Note that the latter mean-reverting dynamics is exactly the one considered in
[15] and [30].

APPENDIX A: SOME RESULTS ON FIRST ORDER STOCHASTIC DOMINANCE

In this section, we derive some technical results concerning the first order stochastic dom-
inance introduced in Section 2.2. As in Section 2.2, we identify the set of probability mea-
sures P(R) with the set of distribution functions on R, setting μ(s) := μ(−∞, s] for each
s ∈ R and μ ∈ P(R). On P(R) we then consider the lattice ordering of first order stochastic
dominance given by (2.8) and (2.9). In the following remark, we collect some fundamental
observations that are crucial for the analysis in this section.

REMARK A.1.

(a) Notice that by identifying μ by its distribution function, P(R) coincides with the set
of all nondecreasing right continuous functions F : R → [0,1] with lims→−∞ F(s) = 0 and
lims→∞ F(s) = 1. Moreover, we would like to recall that the weak topology is metrizable and
that the weak convergence coincides with the pointwise convergence of distribution functions
at every continuity point, that is, μn → μ if and only if

μn(s) → μ(s) as n → ∞ for every continuity point s ∈ R of μ.

Therefore, the weak convergence behaves well with the pointwise lattice operations ∨st and
∧st. In particular, the maps (μ, ν) → μ ∨st ν and (μ, ν) → μ ∧st ν are continuous P(R) ×
P(R) → P(R).

(b) Recall that a nondecreasing function R → R is right continuous if and only if it
is upper semicontinuous (usc). Hence, for a sequence (μn)n∈N ∈ P(R) which is bounded
above, the supremum supn∈N μn is exactly the pointwise infimum of the distribution func-
tions (μn)n∈N.

(c) For a nondecreasing function F : R →R, we define its usc-envelope F ∗ : R→R by

F ∗(s) := inf
δ>0

F(s + δ) for all s ∈R.

Notice that

(A.1) F(s) ≤ F ∗(s) ≤ F(s + ε) for all s ∈R and ε > 0.

Intuitively speaking, F ∗ is the right continuous version of F . That is, F ∗ differs from F

only at discontinuity points of F . For a sequence (μn)n∈N ∈ P(R) which is bounded below,
the infimum infn∈N μn is then given by the usc-envelope of the pointwise supremum of the
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distribution functions (μn)n∈N. That is, one has to modify the pointwise supremum at all
its discontinuity points in order to be right continuous. In fact, let μ = F ∗ denote the usc-
envelope of the pointwise supremum F of (μn)n∈N. By equation (A.1), μ(s) ≤ F(s + ε) ≤
μ(s + ε) for all s ∈ R and ε > 0, that is, μ is nondecreasing and μ ≤st μn for all n ∈ N.
Moreover, by definition, μ is usc, and thus right-continuous. Since μ ≤st μ1, μ(s) ≥ μ1(s) →
1 as s → ∞. Let ν be a lower bound of (μn)n∈N. Then, μ(s) ≤ F(s + ε) ≤ ν(s + ε) for all
s ∈ R and ε > 0. Taking the limit ε → 0, we may conclude that μ(s) ≤ ν(s) for all s ∈ R. In
particular, μ(s) ≤ ν(s) → 0 as s → −∞. Altogether, we have shown that μ is a distribution
function with ν ≤st μ ≤st μn for all n ∈ N and every lower bound ν of (μn)n∈N.

(d) Combining the previous remarks, leads to the following insight: If (μn)n∈N ⊂ P(R) is
a bounded and nondecreasing or nonincreasing sequence, then (μn)n∈N converges weakly to
its supremum or infimum, respectively. In fact, we have seen that the supremum μ̄ of (μn)n∈N
exists, and that its distribution function is given by the pointwise supremum of the sequence
of distribution functions of (μn)n∈N. In particular, μn(s) → μ̄(s) as n → ∞ for all s ∈ R.
Moreover, it is shown that infimum μ of (μn)n∈N exists, and its distribution function is given
by the usc-envelope of the pointwise supremum of the sequence of distribution functions of
(μn)n∈N. Therefore, the distribution function of μ coincides with the pointwise supremum of
the sequence of distribution functions of (μn)n∈N at every continuity point of the distribution
function of μ. In particular, μn(s) → μ(s) as n → ∞ for every continuity point s ∈ R of the
distribution function of μ. Since the weak convergence of probability measures is equivalent
to the pointwise convergence of the distribution functions at every continuity point of the
distribution function of the limit, we obtain that μn → μ̄ and μn → μ weakly as n → ∞.

LEMMA A.2. Let K ⊂ P(R) and ψ : [0,∞) → [0,∞) be continuous and strictly in-
creasing with ψ(s) → ∞ as s → ∞ and

sup
μ∈M

∫
R

ψ
(|x|)dμ(x) < ∞.

Then, there exist μMin,μMax ∈ P(R) with μMin ≤st μ ≤st μMax for all μ ∈ K .

PROOF. We extend ψ to (−∞,0) by ψ(s) := ψ(0) for s < 0. Moreover, let C ≥ ψ(0)

with

sup
μ∈K

∫
R

ψ
(|x|)dμ(x) ≤ C.

Then, we define μMin,μMax : R→ [0,1] by

(A.2) μMin(s) := C

ψ(−s)
∧ 1 and μMax(s) :=

(
1 − C

ψ(s)

)
∨ 0

for all s ∈ R. Since ψ is strictly increasing with ψ(s) → ∞ as s → ∞, μMin(s) = 1 for
s ≥ −ψ−1(C) and μMax = 0 for s ≤ ψ−1(C). In particular, lims→−∞ μMin(s) = 0 and
lims→∞ μMax(s) = 1. Moreover, μMin and μMin are nondecreasing and (right) continuous,
which shows that μMin,μMax ∈P(R). Now, let μ ∈ K . Then, recalling that ψ is nondecreas-
ing, one has

1 − μ(s) ≤ 1

ψ(s)

∫ ∞
s

ψ
(|x|)dμ(x) ≤ 1

ψ(s)

∫
R

ψ
(|x|)dμ(x) ≤ C

ψ(s)
= 1 − μMax(s)

for all s ∈ R with ψ(s) > C. Since μMax(s) = 0 for all s ∈ R with ψ(s) ≤ C, it follows that
μ ≤ μMax. On the other hand,

μ(s) ≤ 1

ψ(−s)

∫ s

−∞
ψ
(|x|)dμ(x) ≤ 1

ψ(−s)

∫
R

ψ
(|x|)dμ(x) ≤ C

ψ(−s)
= μMin(s)
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for all s ∈ R with ψ(−s) > C. Since μMin(s) = 1 for all s ∈ R with ψ(−s) ≤ C, it follows
that μ ≥ μMin. �

LEMMA A.3. Let K ⊂ P(R) and ψ : [0,∞) → [0,∞) be continuous and strictly in-
creasing with ψ(s) → ∞ as s → ∞ and

sup
μ∈M

∫
R

ψ
(|x|)dμ(x) < ∞.

Further, let μMin and μMax be given by (A.2) and 0 ≤ α < 1. Then, the map x → ψ(|x|)α is
u.i for [μMin,μMax], that is,

sup
μ∈[μMin,μMax]

∫
R

1(M,∞)

(|x|) · ψ(|x|)α dμ(x) → 0 as M → ∞.

PROOF. Let β ∈ (α,1). Then, by (A.2),

(A.3)

ψ(s) = C

1 − μMax(s)
for s ≥ ψ−1(C) and

ψ(−s) = C

μMin(s)
for s ≤ −ψ−1(C).

Recall ψ−1(C) = max{s ∈ R | (μMax)(s) = 0} and −ψ−1(C) = min{s ∈ R | (μMin)(s) = 1}.
This together with (A.3) implies that∫ ∞

0
ψ(s)β dμMax(s) =

∫ ∞
ψ−1(C)

(
C

1 − μMax(s)

)β

dμMax(s) =
∫ 1

0

(
C

1 − u

)β

du < ∞

and ∫ 0

−∞
ψ(−s)β dμMin(s) =

∫ −ψ−1(C)

−∞

(
C

μMin(s)

)β

dμMin(s) =
∫ 1

0

(
C

u

)β

du < ∞,

where, in both equalities, we used the transformation lemma. It follows that

sup
μ∈[μMin,μMax]

∫
R

ψ
(|x|)β dμ(x) ≤

∫ ∞
0

ψ(s)β dμMax(s) +
∫ 0

−∞
ψ(−s)β dμMin(s).

By the De La Vallée–Poussin Lemma, it follows that |x| → ψ(|x|)α is u.i. for [μMin,μMax].
In particular, if ψ(s) ≥ sp for some p ∈ (0,∞), then, x → |x|q is u.i. for [μMin,μMax] for
all q ∈ (0,p). �

We now turn our focus on measurable flows of probability measures. The following propo-
sition is the starting point in order to apply Tarski’s fixed point theorem in the proof of the
existence of mean field game solutions. We start by building up the setup. Let μ,μ ∈ P(R)

with μ ≤st μ and (S,S, π) be a finite measure space. We denote by B the Borel σ -algebra
on P(R) generated by the weak topology. We denote the lattice of all equivalence classes of
S-B-measurable functions S → [μ,μ] by L = L0(S,π; [μ,μ]). An arbitrary element μ of
L will be denoted in the form μ = (μt )t∈S . On L we consider the order relation ≤L given by
μ ≤L ν if and only if μt ≤st νt for π -a.a. t ∈ S. The following proposition can be found in a
more general form in [27]. However, for the sake of a self-contained exposition, we provide
a short proof below.

PROPOSITION A.4. The lattice L is complete.
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PROOF. Let M ⊂ L be a nonempty subset of L. Then, for every countable set � ⊂ M , we
denote by μ� := supμ∈� μ. Let � be a countable subset of M , and (�n)n∈N be a sequence
of finite subsets of � with �n ⊂ �n+1 for all n ∈ N and

⋃
n∈N �n = � . As �n is finite, by

Remark A.1(b), μ�n ∈ L with μ�n ≤L μ�n+1
for all n ∈ N. By Remark A.1(d), if follows that

(μ�n)n∈N converges weakly π -a.e. to μ� . As a consequence, μ� ∈ L for every countable set
� ⊂ M . Let

c := sup
{∫

S

∫
R

arctan(x) dμ�
t (x) dπ(t)

∣∣∣� ⊂ M countable
}
.

Notice that the map t → ∫
R

arctan(x) dμt is measurable for every μ ∈ L since arctan ∈ Cb(R)

induces a continuous (w.r.t. to the weak topology) linear functional P(R) →R. By definition
of the constant c, there exists a sequence (�n)n∈N of countable subsets of M with∫

S

∫
R

arctan(x) dμ�n

t (x) dπ(t) → c as n → ∞.

Let �∗ := ⋃
n∈N �n and μ∗ := μ�∗

. We now show that μ ≤L μ∗ π -a.s. for all μ ∈ M . In
order to see this, fix some μ ∈ M and let � ′ := �∗ ∪ {μ}. Then, it follows that

c =
∫
S

∫
R

arctan(x) dμ∗
t (x) dπ(t) ≤

∫
S

∫
R

arctan(x) dμ� ′
t (x) dπ(t) ≤ c.

Since arctan is strictly increasing it follows that μ� ′ = μ∗, that is, μ ≤L μ∗. Moreover, for
any upper bound μ ∈ L of M it is easily seen that μ∗ ≤L μ. Altogether, we have shown that
μ∗ = supM . In a similar way, one shows that M has an infimum. �

REMARK A.5. Let M ⊂ L be nonempty. Then, we say that M is directed upwards or
directed downwards if for all μ,ν ∈ M there exists some η ∈ M with μ ∨ ν ≤L η or η ≤L

μ ∧ ν, respectively.

(a) The proof of the previous theorem shows that if M is directed upwards, then there
exists a nondecreasing sequence (μn)n∈N ⊂ M with μn → supM weakly π -a.e. as n → ∞.
The analogous statement holds for the infimum if M is directed downwards. In particular, if
(μn)n∈N is a nondecreasing or nonincreasing sequence in L, then it converges weakly π -a.e.
to its least upper bound or greatest lower bound, respectively.

(b) Assume that S is a singleton with π(S) > 0. Then, the previous remark implies the
following: For any nonempty set K ⊂ P(R) that is bounded above and directed upwards, its
supremum exists and can be weakly approximated by a monotone sequence. An analogous
statement holds for the infimum if the set K is bounded below and directed downwards.
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